大学物理第17章 量子物理

合集下载

大学物理课件-量子力学

大学物理课件-量子力学

(2)
1 2
(
x,
t
)e
i
px
dx
▲ 態疊加原理是粒子波動性體現,是量子力
學基本原理之一。
薛定諤
Erwin Schrodinger 奧地利人 1887-1961
創立量子力學
獲1933年諾貝爾 物理學獎
19.3
問題 提出
經薛典定粒諤子方程(SFchrodddt2r2inger equation)
三、波函數的要求 波函數的有限性: 根據波函數統計解釋,在空間任何有限體積
元中找到粒子的概率必須為有限值。
波函數的歸一性: 根據波函數統計解釋,在空間各點的概率總
和必須為1。 r, t 2 d 1
注意:若
2
A(r ) d A

1 A
A
(r )
2
d
1
1 ——歸一化因數
A
波函數的單值性:
其狀態用 2( x) 描述, 電子的概率分佈為P2 |Ψ2|2
雙縫 齊開時,電子可通過上縫也可通過下縫
通過上、下縫各有一定的概率
總的概率幅為 Ψ12 Ψ1 Ψ2
Ψ12 Ψ1 Ψ2
P12 |Ψ12 |2 |Ψ1 Ψ2 |2 |Ψ1|2 |Ψ2|2 P1 P2
即使只有一個電子,當雙縫齊開時,
▲ 在空間的某一點波函數模的平方和該點找到 粒子的幾率成正比。 波動性:某處明亮則某處光強大, 即 I 大 粒子性:某處明亮則某處光子多, 即 N大
光子數 N I A2
I大,光子出現概率大; I小,光子出現概率小。
2.數學表示 t 時刻,在
r
端點處單位體積中發現一個粒子
的概率,稱為概率密度。即
Ae

大学物理课件量子力学

大学物理课件量子力学

量子通信与量子密码学
利用量子态的特性实现信息传输和保护,具有更高的安全性和保密性。 量子通信 量子密码学 量子密钥分发 基于量子力学原理的密码学技术,能够提供更强的加密和认证能力,保障信息安全。 利用量子力学原理实现密钥分发,能够确保通信双方拥有相同的密钥,保障通信安全。
量子纠缠与量子隐形传态
量子纠缠 量子力学中的一种现象,两个或多个粒子之间存在一种特殊的关联,当一个粒子状态发生变化时,另一个粒子也会立即发生相应变化。 量子隐形传态 利用量子纠缠实现信息传输的技术,能够在不直接传输粒子的情况下传输量子态的信息。 量子隐形传态的应用 在量子通信和量子计算中具有重要的应用价值,能够实现更安全、更快速的信息传输和处理。
大学物理课件量子力学
汇报人姓名
汇报时间:12月20日
Annual Work Summary Report
#2022
O1
点击此处添加正文,文字是您思想的提炼。
catalogue
O2
点击此处添加正文,文字是您思想的提炼。
目 录
引言
O1
量子力学的起源与发展
量子力学的发展经历了从初步提出到逐步完善的过程,期间涌现出许多杰出物理学家,如普朗克、爱因斯坦、玻尔等。 19世纪末,经典物理学无法解释黑体辐射、光电效应等现象,为解决这些问题,量子力学应运而生。
量子系统的演化与动力学是由薛定谔方程所描述的,该方程是一个偏微分方程,用于描述系统状态随时间的变化。薛定谔方程的解给出了系统在任意时刻的状态,从而可以预测系统在未来时刻的状态。薛定谔方程是量子力学中最重要的方程之一,是研究量子系统演化与动力学的基础。
总结词
详细描述
演化与动力学
量子力学中的重要理论
O3

大学物理量子力学

大学物理量子力学
相对论量子力学
将相对论原理引入量子力学中,考虑 了相对论效应对量子系统的影响。
03
量子力学应用领域
量子计算与量子计算机
量子计算
利用量子力学原理进行 信息处理和计算的新型
计算模式。
量子计算机
基于量子力学原理构建 的计算机,具有超强的 计算能力和处理复杂问
题的能力。
量子算法
利用量子力学原理设计 的算法,可以加速某些 特定问题的求解速度。
不确定性关系
描述了测量误差之间的基本限制,是量子力学的一个重要特 征。
泡利不相容原理与量子态
泡利不相容原理
在量子力学中,两个不同的量子态不 能同时被占据。
量子态
描述了量子系统的状态,可以用态矢 量和态空间来表示。
狄拉克方程与相对论量子力学
狄拉克方程
结合了狭义相对论和量子力学的原理 ,描述了电子等粒子的运动行为。
量子纠错码
利用量子力学原理设计 的错误纠正码,可以保 护量子信息免受噪声和
干扰的影响。
量子通信与量子密码学
01
02
03
04
量子通信
利用量子力学原理实现的信息 传输和通信方式。
量子密码学
基于量子力学原理设计的密码 学方法,可以提供更安全和可
靠的加密和认证手段。
量子密钥分发
利用量子力学原理实现的安全 密钥分发方式,可以防止窃听
量子纠缠实验与验证技术
要点一
量子纠缠实验
利用纠缠态光子实现远距离通信和量子计算中的纠缠操作 。
要点二
验证技术
通过实验验证纠缠态的制备和操控,确保量子通信和计算 的可靠性。
量子计算实验与验证技术
量子计算实验
利用量子力学原理实现量子计算,提高计算速度和效率 。

大学物理 第十七章 量子力学基础3

大学物理 第十七章 量子力学基础3

e2
运用球坐标系
1 2 1 ( r ) (sin ) 2 2 r r r r sin 1 2 2m e2 2 2 2 (E ) 0 2 r sin 40 r
17
将 分离变量为
( r, , ) R( r )( )( )
科学家简介——尼尔斯· 玻尔
6
尼尔斯· 玻尔
尼尔斯· 玻尔(Bohr,Niels)1885年10月 7日生于丹麦首都哥本哈根,父亲是哥本 哈根大学的生理学教授.从小受到良好 的家庭教育.1903年进入哥本哈根大学 学习物理,1909年获科学硕士学位, 1911年获博士学位.大学二年级时研究 水的表面张力问题,自制实验器材,通 过实验取得了精确的数据,并在理论方 面改进了物理学家瑞利的理论,研究论 文获得丹麦科学院的金奖章.
23
在不同的状态中,电子在各处出现的概率是不一样 的.如果用疏密不同的点子表示电子在各个位臵出现的概 率,画出图来,就像云雾一样,可以形象地称做电子云. 注意:1)电子云是几率云,只知电子在何处出现的几 率大小,要问电子在何处,答曰;“云深不知处” 2)电子没有确定的轨道,所谓“轨道”只是电子出现几 率最大的地方。 对于基态 n 1.l 0, ml 0
14
m

E(eV)
0(电离态) -0.54 -0.85 -1.51
布喇开系
帕邢系 巴耳末系
5 4
3
2
-3.39
赖曼系
1 氢原子中电子的能级
15
-13.6(基态)
玻尔把当时人们持极大怀疑的普朗克--爱因斯坦 的量子化与表面上毫不相干的光谱实验巧妙地结合起 来,解释了近30年的光谱之谜--巴耳末与里德伯的公 式,并首次算出里德伯常数。 在表面上完全不同的事物之间寻找它们的内在联系, 这永远是自然科学的一个令人向往的主题。 玻尔能成功解释氢原子光谱的规律性,但不能解 释复杂光谱规律等问题。产生这种缺陷的原因是玻尔 的原子模型是牛顿力学概念和量子化条件的混合物。 1922年,玻尔因为对原子结构和原子放射性的 研究而获诺贝尔物理奖。

大学物理量子物理

大学物理量子物理

大学物理量子物理在大学物理的广袤领域中,量子物理无疑是最为神秘和令人着迷的一部分。

它颠覆了我们传统的认知,挑战着经典物理学的观念,为我们揭示了微观世界中奇妙而又令人费解的现象。

让我们先从一个简单的问题开始:什么是量子物理?简单来说,量子物理是研究微观世界中粒子行为的物理学分支。

在这个微小的尺度下,物质和能量的表现与我们在日常生活中所熟悉的宏观世界截然不同。

想象一下,在宏观世界中,一个物体的位置和速度可以被精确地测量和确定。

但在量子世界里,这一切都变得模糊不清。

粒子的位置和动量不能同时被精确地知道,这就是著名的海森堡不确定性原理。

这就好像我们试图同时确定一只蝴蝶的位置和飞行速度,但却发现这几乎是不可能的。

量子物理中的另一个重要概念是量子态。

粒子不再像宏观物体那样具有明确的、确定的状态,而是处于一种叠加态。

就好像一个硬币,在被观察之前,它既是正面朝上又是反面朝上。

这种奇特的现象让我们对现实的本质产生了深深的思考。

那么,量子物理是如何被发现的呢?这要追溯到20 世纪初。

当时,许多物理学家在研究黑体辐射、光电效应等问题时,发现经典物理学无法给出合理的解释。

普朗克提出了能量量子化的概念,为量子物理的诞生奠定了基础。

随后,爱因斯坦对光电效应的解释进一步推动了量子物理的发展。

量子物理的应用极其广泛。

在现代科技中,从半导体芯片到激光技术,从量子计算到量子通信,无不依赖于量子物理的原理。

以半导体芯片为例,其工作原理就是基于量子物理中的能带理论。

通过控制半导体中的电子在不同能带之间的跃迁,实现了对电流和信号的处理。

激光技术则利用了原子在不同能级之间的跃迁产生的光子。

当大量原子处于相同的激发态,并在特定条件下同时跃迁到低能级时,就会产生一束高度相干、单色性好的激光。

而量子计算和量子通信则是当前科技领域的热门研究方向。

量子计算利用量子比特的叠加态和纠缠态,可以实现并行计算,大大提高计算速度。

量子通信则基于量子纠缠的特性,实现了绝对安全的信息传输。

华东理工大学大学物理作业答案

华东理工大学大学物理作业答案

第十七章 量子物理基础1、 某黑体在某一温度时,辐射本领为5.7W/cm 2,试求这一辐射本领具有的峰值的波长λm ?解:根据斯忒藩定律 )K m J 1067.5(T )T (E 3284⋅⋅⨯=σσ=-得 4)T (E T σ= 再由维恩位移定律 )K m 10898.2b ( b T 3m ⋅⨯==λ- m 1089.21067.5107.510898.2)T (E bTb68434m --⨯=⨯⨯⨯=σ==λ2、在天文学中,常用斯特藩—玻尔兹曼定律确定恒星半径。

已知某恒星到达地球的每单位面积上的辐射能为28m /W 102.1-⨯,恒星离地球距离为m 103.417⨯,表面温度为 5200 K 。

若恒星辐射与黑体相似,求恒星的半径。

解:对应于半径为m 103.417⨯的球面恒星发出的总的能量 21R 4E W π⋅= 则恒星表面单位面积上所发出能量E 0为22122120rR E r 4R 4E r 4WE =ππ=π= (1)由斯忒藩定律 40T E σ= (2) 联立(1)、(2)式得 m 103.75200103.41067.5102.1T R E r 92178821⨯=⨯⨯⨯=σ=--3、 绝对黑体的总发射本领为原来的16倍。

求其发射的峰值波长λm 为原来的几倍? 解:设原总发射本领为E 0,温度T 0,峰值波长0λ,则由斯忒藩-波耳兹曼定律可得 4040T 16T E 16E σ=σ==21T T 161)T T (040==∴又 由位移定律 b T m =λ可得 21T T 00m ==λλ∴4、从铝中移出一个电子需要4.2eV 的能量,今有波长为200nm 的光投射到铝表面上,问:(1)由此发射出来的光电子的最大动能为多少? (2)遏止电势差为多大? (3)铝的截止波长有多大? 解:由爱因斯坦方程 A E h k +=ν(1)eV 01.22.4106.1100.21031063.6A hc A h E 197834k =-⨯⨯⨯⨯⨯⨯=-λ=-ν=--- (2)由光电效应的实验规律得0k eU E = (U 0为遏止电势差)V 01.2101.2e E U K 0===(3)00hch A λ=ν= m 10958.2106.12.41031063.6A hc 7198340---⨯=⨯⨯⨯⨯⨯==λ∴5、 以波长为λ=410nm 的单色光照射某一光电池,产生的电子的最大动能E k =1.0eV ,求能使该光电池产生电子的单色光的最大波长是多少? 解:爱因斯坦光电效应方程,A E h K +=ν λ=νh 得)1(A E hcK +=λ按题意最大波长时满足 0E K = 得)2(A hc =λ则(1)、(2)得hcE 11K 0=λ-λ 即 6348197K 01064.11063.6103106.1101.41hc E 11⨯=⨯⨯⨯⨯-⨯=-λ=λ--- 故最大波长 nm 7.6090=λ6、一实验用光电管的阴极是铜的(铜的逸出功为4.47eV )。

大学物理下大物量子17分解

大学物理下大物量子17分解

hc

= 1.61013 J
h

5.35 10 22 (kg m s 1 )
光子质量: 由 h
hc

mc 2

h m 1.78 10 30 (kg ) c
大学物理
§17.3 康普顿效应
一、实验规律
二、 Compton 的解释
三、吴有训对研究康普顿效应的贡献
大学物理
遵守能量守恒定律和动量守恒定律
P0 P Pe h 0 m0 c h Ee
2
h
j
P 散射光子
Pe
反冲电子
P0 h 0
•利用相对论能量与动量关系
E P c m c
2 e 2 2 e
2 4 0
h P c
•得出结果
0 h (1 cosj ) m0c
•解释在散射线中还有原波长的成分 如果光子与石墨中被原子核束缚得很紧的电 子发生碰撞(内层电子) 相当于光子和整个原子碰撞(m0是原子质量)
这样 散射光的能量(波长)几乎不改变
从而散射线中还有与原波长相同的射线 原子序数愈大的散射体原波长的成分愈多
3.康普顿散射实验的意义
大学物理
支持了“光量子”概念 进一步证实 了 = h 首次在实验上证实了爱因斯坦提出的 “光量子具有动量”的假设 P = E/c = h/c = h/
T m = b
b = 2.897103m k.
大学物理
例1. 假定恒星表面的行为和黑体表面一样,测得 太阳和北极星辐射波谱的峰值波长分别为:
m 510nm, m 350nm, 试估计太阳和北极 星的表面温度及每单位表面上单位时间内辐 射出的总能量。

大学物理17章答案

大学物理17章答案

第17章 量子物理基础17.1 根据玻尔理论,计算氢原子在n = 5的轨道上的动量矩与其在第一激发态轨道上的动量矩之比.[解答]玻尔的轨道角动量量子化假设认为电子绕核动转的轨道角动量为2π==n n hL mvr n ,对于第一激发态,n = 2,所以L 5/L 2 = 5/2.17.2设有原子核外的3p 态电子,试列出其可能性的四个量子数.[解答] 对于3p 态电子,主量子数为n = 3,角量子数为 l = 1,磁量子数为 m l = -l , -(l - 1), …, l -1, l ,自旋量子数为 m s = ±1/2.3p 态电子的四个可能的量子数(n ,l ,m l ,m s )为(3,1,1,1/2),(3,1,1,-1/2),(3,1,0,1/2),(3,1,0,-1/2),(3,1,-1,1/2),(3,1,-1,-1/2) .17.3 实验表明,黑体辐射实验曲线的峰值波长λm 和黑体温度的乘积为一常数,即λm T = b = 2.897×10-3m·K .实验测得太阳辐射波谱的峰值波长λm = 510nm ,设太阳可近似看作黑体,试估算太阳表面的温度.[解答]太阳表面的温度大约为392.8971051010λ--⨯==⨯m b T = 5680(K).17.4 实验表明,黑体辐射曲线和水平坐标轴所围成的面积M (即单位时间内从黑体单位表面上辐射出去的电磁波总能量,称总辐射度)与温度的4次方成正比,即M = σT 4,其中σ =5.67×10-8W·m -2·K -4.试由此估算太阳单位表面积的辐射功率(太阳表面温度可参见上题).[解答]太阳单位表面积的辐射功率大约为M = 5.67×10-8×(5680)4 = 5.9×107(W·m -2).17.5宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于3K 黑体辐射.求:(1)此辐射的单色辐射强度在什么波长下有极大值?(2)地球表面接收此辐射的功率是多少?[解答](1)根据公式λm T = b ,可得辐射的极值波长为λm = b/T = 2.897×10-3/3 = 9.66×10-4(m).(2)地球的半径约为R = 6.371×106m ,表面积为 S = 4πR 2.根据公式:黑体表面在单位时间,单位面积上辐射的能量为 M = σT 4,因此地球表面接收此辐射的功率是P = MS = 5.67×10-8×34×4π(6.371×106)2= 2.34×109(W).17.6 铝表面电子的逸出功为6.72×10-19J,今有波长为λ = 2.0×10-7m 的光投射到铝表面上.试求:(1)由此产生的光电子的最大初动能;(2)遏止电势差;(3)铝的红限波长.[解答](1)光子的能量为E = hν = hc/λ,根据爱因斯坦光电效应方程hν = E k + A,产生的光电子的最大初动能为E k= hν - A= 6.63×10-34×3×108/2.0×10-7-6.72×10-19= 3.23×10-19(J).(2)遏止电势差的公式为eU s = E k,遏止电势差为U s = E k/e = 3.23×10-19/1.6×10-19=2.0(V).(3)铝的红限频率为ν0= A/h,红限波长为λ0= c/ν0= hc/A= 6.63×10-34×3×108/6.72×10-19= 2.96×10-7(m).17.7 康普顿散射中入射X射线的波长是λ = 0.70×10-10m,散射的X 射线与入射的X射线垂直.求:(1)反冲电子的动能E K ;(2)散射X 射线的波长;(3)反冲电子的运动方向与入射X 射线间的夹角θ.[解答](1)(2)根据康普顿散射公式得波长变化为21222sin 2 2.42610sin 24ϕπλΛ-∆==⨯⨯= 2.426×10-12(m),散射线的波长为λ` = λ + Δλ = 0.72426×10-10(m).反冲电子的动能为`k hchcE λλ=-34834810106.6310310 6.63103100.7100.7242610----⨯⨯⨯⨯⨯⨯=-⨯⨯= 9.52×10-17(J).(3)由于 /`tan /`hc hc λλθλλ==,0.70.96650.72426==,所以夹角为θ = 44°1`.17.8 求波长分别为λ1 = 7.0×10-7m 的红光;λ2 = 0.25×10-10m 的X 射线的能量、动量和质量.[解答]X 射线的能量为E = h ν = hc/λ,动量为 p = h/λ;由E = hc/λ = mc 2,得其质量为m = h/cλ.对于红光来说,能量为348176.6310310710E --⨯⨯⨯=⨯= 2.84×10-19(J),动量为34176.6310710p --⨯=⨯= 9.47×10-25(kg·m·s -1),质量为341876.6310310710m --⨯=⨯⨯⨯= 3.16×10-36(kg).对于X 射线来说,能量为3482106.63103100.2510E --⨯⨯⨯=⨯= 7.956×10-15(J),动量为342106.63100.2510p --⨯=⨯= 2.652×10-23(kg·m·s -1),质量为3428106.63103100.2510m --⨯=⨯⨯⨯= 8.84×10-32(kg).17.9 处于第四激发态上的大量氢原子,最多可发射几个线系,共几条谱线?那一条波长最长.[解答]第四激发态的氢原子处于第5个能级,最多可发射四个线系.(1)能级5到4,1条谱线;(2)能级5和4到3,2条谱线;(3)能级5、4和3到2,3条谱线;(3)能级5、4、3和2到1,4条谱线.共10条谱线.从能级5跃迁到4发射的光谱频率最小,波长最长.17.10 设氢原子中电子从n = 2的状态被电离出去,需要多少能量.[解答]氢原子能级公式为4222018n me E h n ε=-,当n =1时,基态能级的能量为412208me E h ε=-≈-2.18×10-18(J) = -13.6(eV),因此 12n E E n =.当电子从n 能级跃迁到m 能级时放出(正)或吸收(负)光子的能量为12211()n m E E E E n m ∆=-=-.电离时,m 趋于无穷大.当电子从n = 2的能级电离时要吸收能量 221113.6()2E ∆=--∞= -3.4(eV),因此需要3.4eV 的能量.17.11 质量为m 的卫星,在半径为r 的轨道上环绕地球运动,线速度为v .(1)假定玻尔氢原子理论中关于轨道角动量的条件对于地球卫星同样成立.证明地球卫星的轨道半径与量子数的平方成正比,即r = Kn 2,(式中K 是比例常数);(2)应用(1)的结果求卫星轨道和下一个“容许”轨道间的距离,由此进一步说明在宏观问题中轨道半径实验上可认为是连续变化的(利用以下数据作估算:普朗克常数h = 6.63×10-34J·s ,地球质量M = 6×1024kg ,地球半径R = 6.4×103km ,万有引力常数G =6.7×10-11N·m 2·kg -2.[解答](1)卫星绕地球运动的向心力是万有引力22Mm mv G r r =;根据玻尔理论,角动量为mvr = nh /2π.将前式乘以mr 3得2222()()4nh GMm r mvr π==,所以 222224h n r Kn GMm π==,即:卫星的轨道半径与量子数的平方成正比.(2)假设卫星质量m = 100kg ,比例系数为2224h K GMm π=342211242(6.6310)4 6.710610(100)π--⨯=⨯⨯⨯⨯⨯ = 2.77×10-87.可见:比例系数很小.当r = R 时,地球表面的量子数为460 4.810n ⨯.可见:地球表面处的量子数很大.地面以上的量子数设为n `,(n` = 1,2,3,…),则总量子数可表示为两个量子数之和:n =n 0 + n`.轨道间的距离为Δr = K [(n 0 + n` + 1)2 - (n 0 + n`)2]= K [2(n 0 + n`) + 1].由于n 0>>1,所以Δr = 2Kn 0 + 2Kn`.设n` = kn 0,即:取地面以上的量子数为地球表面量子数的倍数,有n = (k + 1)n 0,则r = Kn 02(k + 1)2,Δr = 2Kn 0(k + 1) = 2.66×10-40(k + 1).这说明:当地面以上的量子数按k + 1成倍地增加时,半径将按k + 1的平方的规律增加,而轨道之间的距离只按k + 1的一次方的规律增加;由于Δr 的系数很小,所以轨道间距是非常非常小的,因此可认为轨道半径是连续变化的.17.12 电子和光子各具有波长2.0×10-10m ,它们的动量和总能量各是多少?[解答]它们的动量都为34106.6310210h p λ--⨯==⨯= 3.315×10-24(kg·m·s -1).根据公式E 2 = p 2c 2 + m 02c 4,电子的总能量为E ==3×108×[(3.315×10-24)2+ (9.1×10-31×3×108)2]1/2=8.19×10-14(J).光子的静止质量为零,总能量为E = cp= 3×108×3.315×10-24 = 9.945×10-16(J).17.13 室温下的中子称为热中子T = 300K ,试计算热中子的平均德布罗意波长.[解答]中子热运动的平均速度为=v其中k为玻尔兹曼常数k= 1.38×10-23J·K-1,m p是电子的质量m p= 1.675×10-27kg,可得平均速度为v= 2.509×104(m·s-1),平均动量为=np m v= 4.2×10-27(kg·m·s-1).平均德布罗意波长为/λ=h p= 1.58×10-10(m) = 0.158(nm).17.14 一束动量是p的电子,通过缝宽为a的狭缝,在距离狭缝为R 处放置一屏,屏上电子衍射图样中央最大的宽度是多少?[解答]根据动量和位置的不确定关系Δp x·Δx≧h,其中位置不确定量为Δx = a,动量的不确定量为Δp x = p sinθ.设电子衍射图样的中央最大半宽度为w,则sinθ = w/R,可得wp a hR⋅≥,宽度为22hRwpa≥.[注意]如果将h改为ћ/2,则宽度为2w≧ћR/pa.两者相差很小.17.15 一宽度为a的一维无限深势阱,试用不确定关系估算阱中质量为m的粒子最低能量为多少?[解答]粒子坐标的不确定范围是Δx ≦a ,动量的不确定范围是Δp ≧h /Δx ≧h /a .这也就是动量p 的范围.因此能量为E = p 2/2m ≧ h 2/2ma 2,最低能量可估计为E min = h 2/2ma 2.17.16 设有一宽度为a 的一维无限深势阱,粒子处于第一激发态,求在x = 0至x = a /3之间找到粒子的几率?[解答]粒子在一维无限深势阱中的定态波函数为(0)(),(1,2,3,...)πψ≤≤==n x a n x x n a ,Ψ(x ) = 0,(x < 0,x > a ).当粒子处于第一激发态时,n = 2,在x = 0至x = a /3之间被发现的几率为/3220|()|d ψ⎰a x x /32022sin d π=⎰a x x a a23== 0.391.17.17 设粒子在宽度为a 的一维无限深势阱运动时,其德布罗意波在阱内形成驻波,试利用这一关系导出粒子在阱中的能量计算式.[解答]当粒子在势阱中形成稳定驻波时,势阱宽度必然为半波长的整数倍,即n (λ/2) = a ,(n = 1,2,3,…).根据德布罗意假设 λ = h/p ,可得粒子的动量为2λ==h nhp a 能量为 222228==p h E n m ma .17.18假定对某个粒子动量的测定可精确到千分之一,试确定这个粒子位置的最小不确定量.(1)该粒子质量为5×10-3kg ,以2m·s -1的速度运动;(2)该粒子是速度为1.8×108m·s -1的电子.[解答]粒子的动量为 p = mv ,动量的不确定量为 Δp = p /1000,根据动量和位置的不确定关系Δp ·Δx ≧ћ/2,位置的不确定量为 Δx = ћ/2Δp .(1)100024h x p mv π∆≥=∆h3431000 6.631045102-⨯⨯=π⨯⨯⨯= 5.276×10-30(m).(2)100024h x p mv π∆≥=∆h343181000 6.631049.110 1.810--⨯⨯=π⨯⨯⨯⨯= 3.22×10-10(m).17.19设有某线性谐振子处于第一激发态,其波函数为2221ψ-=a x .式中a =,k 为常数,则该谐振子在何处出现的概率最大?[解答]第一激发态的概率为22221||a xw e ψ-==,对x 求导得222222d (2)]d a x a x w xe x a x e t --=+-2222(1)a xx x a e -=-,令d w /d t = 0,得概率最大的位置为x = ±1/a .17.20一维运动的粒子,处于如下的波函数所描述的状态,(0);()0,(0).x Axe x x x λψ-⎧>=⎨<⎩式中λ > 0,A 为常数.(1)将此波函数归一化;(2)求粒子位置的概率分布函数;(3)粒子在在何处出现的概率最大?[解答](1)归一化得222201||d d x x A xe x λψ∞∞--∞==⎰⎰ 22201d 2x A x e λλ∞--=⎰2222001{2d }2x x A x e xe x λλλ∞∞---=-⎰222012()d 2xA x e λλ∞--=-⎰ 22220012(){d }2xx A xe e x λλλ∞∞---=--⎰22323012()24xA A e λλλ∞--==,所以A =2λ3/2 .归一化波函数为3/22,(0);()0,(0).x xe x x x λλψ-⎧>=⎨<⎩([注]利用Γ函数的性质可简化积分过程.10()d n x n x e x∞--Γ=⎰,当n 为整数时,Γ(n ) = (n - 1)!.设y = 2λx ,则d x = d y /2λ,可得22331001d ()d 2x y x ex y e y λλ∞∞---=⎰⎰ 3311()(3)2()22λλ=Γ=,可以得出同一结果.)(2)粒子坐标的几率分布函数为32224,(0);()|()|0,(0).x x e x w x x x λλψ-⎧>==⎨<⎩(3)利用上一题的方法求导可得几率最大的位置为x = 1/λ.17.21 设有某一维势场如下:0,(0);,(0,).≤≤⎧=⎨<>⎩x LVV x x L该势场可称为有限高势阱,设粒子能量E < V0,求E所满足的关系式.[解答]粒子运动的薛定谔方程为222()0mE Vψψ∇+-=h.在三个区域的方程为210122d2()0,(0);dmE V xxψψ+-=<h22222d20,(0);dmE x Lxψψ+=<<h230322d2()0,().dmE V x Lxψψ+-=>h设1k=h,2k=h,则得221112d0,(0);dk xxψψ-=<(1)222222d0,(0);dk x Lxψψ+=<<(2)223132d0,().dk x Lxψψ-=>(3)方程的通解为ψ1(x) = A1exp(k1x) + B1exp(-k1x),(x<0);(4)ψ2(x ) = A 2cos(k 2x ) + B 2sin(k 2x ),(0<x <L );(5)ψ3(x) = A 3exp(k 1x ) + B 3exp(-k 1x ),(x >L ).(6)当x →-∞时,ψ1有限,所以B 1 = 0;当x →∞时,ψ3有限,所以A 3 = 0.当x = 0时,ψ1(0) = ψ2(0),可得A 1 = A 2; (7)同时ψ1`(0) = ψ2`(0),可得k 1A 1 = k 2B 2. (8)当x = L 时,ψ2(L ) = ψ3(L ),ψ2`(L ) = ψ3`(L ),可得A 2cos k 2L +B 2sin k 2L = B 3exp(-k 1L );(9)-k 2A 2sin k 2L + k 2B 2cos k 2L = -k 1B 3exp(-k 1L )(10)将(9)乘以k 1加(10)得k 1A 2cos k 2L + k 1B 2sin k 2L-k 2A 2sin k 2L + k 2B 2cos k 2L = 0.即 (k 1A 2 + k 2B 2)cos k 2L = (k 2A 2 - k 1B 2)sin k 2L ,亦 122222212t a n k A k B k L k A k B +=-. (11)由(7)和(8)得k 1A 2 = k 2B 2,即 B 2 = k 1A 2/k 2, (12)(12)代入(11)式得12222212tan kk k L k k =-,即0t a n =h (13)这就是总能量满足的关系式.17.22 原子内电子的量子态由n 、l 、m l 、m s 四个量子数表征,当n 、l 、m l 一定时,不同的量子态数目为多少?当n 、l 一定时,不同量子态数目为多少?当n 一定时,不同量子态数目为多少?[解答]当n 、l 、m l 一定时,m s 只取两个值,所以量子态数目为2. 当n 、l 一定时,m l 有(2l + 1)种不同取值,所以量子态数目为2(2l + 1).当n 一定时,l 从0到(n - 1)共有n 种不同取值,量子态数目为1110002(21)421n n n l l l l l ---===+=+∑∑∑2(1)4222n n n n -=⨯+=.。

大学物理(第四版)课后习题及答案_量子物理

大学物理(第四版)课后习题及答案_量子物理

第十七 章量子物理题17.1:天狼星的温度大约是11000℃。

试由维思位移定律计算其辐射峰值的波长。

题17.1解:由维思位移定律可得天狼星单色辐出度的峰值所对应的波长该波长nm 257m 1057.27m =⨯==-Tbλ 属紫外区域,所以天狼星呈紫色题17.2:已知地球跟金星的大小差不多,金星的平均温度约为773 K ,地球的平均温度约为293 K 。

若把它们看作是理想黑体,这两个星体向空间辐射的能量之比为多少?题17.2解:由斯特藩一玻耳兹曼定律4)(T T M σ=可知,这两个星体辐射能量之比为4.484=⎪⎪⎭⎫⎝⎛=地金地金T T M M 题17.3:太阳可看作是半径为7.0 ⨯ 108 m 的球形黑体,试计算太阳的温度。

设太阳射到地球表面上的辐射能量为1.4 ⨯ 103W ⋅m -2,地球与太阳间的距离为1.5 ⨯ 1011m 。

题17.3解:以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某一位置上。

太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因此有 2244)(R Ed T M ππ=(1)4)(T T M σ= (2)由式(1)、(2)可得K 5800122=⎪⎪⎭⎫⎝⎛=σR E d T题17.4:钨的逸出功是4.52 eV ,钡的选出功是2.50 eV ,分别计算钨和钡的截止频率。

哪一种金属可以用作可见光范围内的光电管阴极材料?题17.4解:钨的截止频率 Hz 1009.115101⨯==hW ν 钡的截止频率Hz 1063.015202⨯==hW ν 对照可见光的频率范围可知,钡的截止频率02ν正好处于该范围内,而钨的截止频率01ν大于可见光的最大频率,因而钡可以用于可见光范围内的光电管材料。

题17.5:钾的截止频率为4.62 ⨯ 1014 Hz ,今以波长为435.8 nm 的光照射,求钾放出的光电子的初速度。

题17.5解:根据光电效应的爱因斯坦方程W mv h +=221ν 其中λνν/0c h W ==, 可得电子的初速度15210s m 1074.52-⋅⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=νλc m h v由于选出金属的电子的速度v << c ,故式中m 取电子的静止质量。

17基础物理学第三版第17章量子力学基础

17基础物理学第三版第17章量子力学基础

第二节 玻尔的氢原子理论
一、玻尔理论的基本假设
1913年,丹麦物理学家玻尔(Niels Bohr,1885—1962)在卢瑟 福模型的基础上,抛弃了部分经典理论的概念,引入普朗克和 爱因斯坦的量子概念,提出一个有关氢原子的模型。以下是玻 尔的主要思想。
1、量子条件(quantum condition)
第十七章 量子力学基础
学习目标
1. 掌握玻尔理论和对氢原子光谱的解释,理解玻尔 理论假设
2. 掌握德布罗意物质波的描述和物理思想,波函数 的统计解释和不确定关系 3. 理解薛定谔方程和对氢原子结构的量子力学描述
第一节 原子光谱的实验规律
一、氢原子光谱
光谱学是研究物质结构和组分的技术学科之一。处于聚集状态的 物质,如灯泡中的灯丝或高压下的气体加热到白炽后其辐射光谱 为连续谱。而灼热低压蒸气或气体中的原子或分子相隔甚远,相 互作用弱,它们的发射谱是线状谱。
1
nk
因此,可计算出上式中里德伯常数的理论值:
以上理论和实验的一致性表示玻尔理论在解释氢光谱时取得了巨 大的成功。但它也有缺陷,玻尔理论无法解释多电子原子光谱, 对谱线宽度、强度、偏振等问题也无法处理,但玻尔理论为建立 更完善的原子结构提供了线索。
me4 R理 2 3 1.097373 107 (1 / m) 8 0 h c
第二节 玻尔的氢原子理论
原子结构模型
1897年汤姆逊发现电子,1904年提 出了原子的“西瓜模型”,也可叫 做“果冻葡萄干”模型。占原子绝 大部分质量的、带正电荷的“果肉” 占据了原子的体积,带负电的电子 犹如镶嵌其中的“西瓜籽”。 但这一模型无法解释卢瑟福 散射——粒子的大角散射:
(Alpha particles = He++)

大学物理第17章.量子力学基础

大学物理第17章.量子力学基础
第17章 量子力学
§17.1 物质的波粒二象性 §17.2 不确定关系 §17.3 薛定谔方程 §17.4 一维无限深势阱 §17.5 势垒贯穿 §17.6 氢原子的量子力学处理 §17. 7 多电子原子 §17. 8 量子力学的理论假设
§17.1 物质的波粒二象性
一、德布罗意物质波假设 1.光的二象性
p2 eU , p 2meU
2m h 1.225 nm =0.167nm
pU
2. 汤姆逊(G.P.Thomson)实验(1927) 电子通过金薄膜的衍射实验
实验原理 3. 约恩逊(Jonsson)实验(1961)
电子的单缝、双缝、三缝和四缝衍射实验 基本数据
a 0.3μm d 1μm
V 50kV 0.5nm
微粒的波动性的应用 -----电子束代替光波来实现成像(电子显微镜)
电子与物质相互作用会产生透射电子,弹性散射电子,能量 损失电子,二次电子,背反射电子,吸收电子,X射线,俄 歇电子,阴极发光等等。电子显微镜就是利用这些信息来对 试样进行形貌观察、成分分析和结构测定。
由于微观粒子具有波粒二象性,这就要求在描述 微观粒子的运动时,要有创新的概念和思想来统一波 和粒子这样两个在经典物理中截然不同的物理图像。 波函数就是作为量子力学基本假设之一引入的一个新 的概念。
量子力学认为:微观粒子的运动状态可用一个复
函数(x,y,z,t)来描述,函数(x,y,z,t) —称为波函数。
2.波函数的统计解释
波动观点
粒子观点
明纹处: 电子波强(x,y,z,t)2大, 电子出现的概率大;
暗纹处: 电子波强(x,y,z,t)2小, 电子出现的概率小 。
可见,波函数模的平方(x,y,z,t)2与粒子在该处

大学物理(第四版)课后习题及答案 量子物理

大学物理(第四版)课后习题及答案 量子物理

第十七 章量子物理题17.1:天狼星的温度大约是11000℃。

试由维思位移定律计算其辐射峰值的波长。

题17.1解:由维思位移定律可得天狼星单色辐出度的峰值所对应的波长该波长nm 257m 1057.27m =⨯==-Tbλ 属紫外区域,所以天狼星呈紫色题17.2:已知地球跟金星的大小差不多,金星的平均温度约为773 K ,地球的平均温度约为293 K 。

若把它们看作是理想黑体,这两个星体向空间辐射的能量之比为多少?题17.2解:由斯特藩一玻耳兹曼定律4)(T T M σ=可知,这两个星体辐射能量之比为4.484=⎪⎪⎭⎫⎝⎛=地金地金T T M M 题17.3:太阳可看作是半径为7.0 ⨯ 108 m 的球形黑体,试计算太阳的温度。

设太阳射到地球表面上的辐射能量为1.4 ⨯ 103W ⋅m -2,地球与太阳间的距离为1.5 ⨯ 1011m 。

题17.3解:以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某一位置上。

太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因此有 2244)(R Ed T M ππ=(1)4)(T T M σ= (2)由式(1)、(2)可得K 58004122=⎪⎪⎭⎫⎝⎛=σR E d T题17.4:钨的逸出功是4.52 eV ,钡的选出功是2.50 eV ,分别计算钨和钡的截止频率。

哪一种金属可以用作可见光范围内的光电管阴极材料?题17.4解:钨的截止频率 Hz 1009.115101⨯==hW ν 钡的截止频率Hz 1063.015202⨯==hW ν 对照可见光的频率范围可知,钡的截止频率02ν正好处于该范围内,而钨的截止频率01ν大于可见光的最大频率,因而钡可以用于可见光范围内的光电管材料。

题17.5:钾的截止频率为4.62 ⨯ 1014 Hz ,今以波长为435.8 nm 的光照射,求钾放出的光电子的初速度。

题17.5解:根据光电效应的爱因斯坦方程W mv h +=221ν 其中λνν/0c h W ==,可得电子的初速度15210s m 1074.52-⋅⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=νλc m h v由于选出金属的电子的速度v << c ,故式中m 取电子的静止质量。

第17章 量子物理基础

第17章 量子物理基础
研究原子结构规律有两条途径: 1、利用高能粒子轰击原子—轰出未知粒子 来研究(高能物理); 2、通过在外界激发下,原子的发射光谱来 研究光谱分析。
一、光 谱
1、发射光谱:
1)连续光谱:炽热固体、液体、黑体; 2)线状光谱(原子):彼此分立亮线,气体放 电、火花电弧等。
2、吸收光谱:连续谱通过物质时,有些谱线 被吸收形成的暗线。
五、普朗克假设、黑体辐射公式
1、假设:金属空腔壁上带电谐振子(电子) 只吸收或发射 h 的整数倍的能量,即 能量的变化不连续.
频率为 的谐振子,其能量只能取 nh 等一系列不连续的值。
——能量量子化假设
h 6.630 10
34
J s ——普朗克常数
2、普朗克辐射公式
2 h d I ( , T )d h 2 c 1 kT e 与实验曲线符合的很好 “新概念”:能量量子化.开始人们不相信 ,后来1905年爱因斯坦利用其发展了光量子 概念,成功解释了光电效应,才被人们普遍 接受,1918年获Nobel奖。
1 c v
4
1 me 1 1 2 3 ( 2 2 ) RH ( 2 2 ) 8 0 h c ni n f ni n f
由玻尔理论得出的谱线系与实验事实吻合
四、玻尔氢原子理论的困难
满意解释了H、类H原子线谱,得到了RH且 能级概念也被F-H实验证实,但仍存在缺陷: 1、不能解释多电子原子光谱、强度、宽度 和偏振性等; 2、不能说明原子是如何结合成分子、构成 液、固体的。 3、逻辑上有错误:以经典理论为基础,又生 硬地加上与经典理论不相容的量子化假 设,很不协调——半经典半量子理论.
hv ,子量小的物质康普顿效应较显 著;原子量大的物质效应不显著。

大学物理习题答案 第17章 量子物理学基础

大学物理习题答案 第17章 量子物理学基础

第17章 量子物理学基础 参考答案一、选择题1(D),2(D),3(C),4(B),5(A),6(C),7(C),8(C),9(D),10(C) 二、填空题(1). λ/hc ,λ/h ,)/(λc h . (2). 2.5,4.0×1014 . (3). A /h ,))(/(01νν-e h . (4). π,0 . (5).3/1 (6). 1.66×10-33 kg ·m ·s -1 ,0.4 m 或 63.7 mm . (7). 1, 2. (8).粒子在t 时刻在(x ,y ,z )处出现的概率密度. 单值、有限、连续.1d d d 2=⎰⎰⎰z y x ψ(9). 2, 2×(2l +1), 2n 2. (10). 泡利不相容, 能量最小. 三 计算题1. 用辐射高温计测得炼钢炉口的辐射出射度为22.8 W ·cm -2,试求炉内温度.(斯特藩常量σ = 5.67×10-8 W/(m 2·K 4) )解:炼钢炉口可视作绝对黑体,其辐射出射度为M B (T ) = 22.8 W ·cm -2=22.8×104 W ·m -2由斯特藩──玻尔兹曼定律 M B (T ) = σT 4 ∴ T = 1.42×103 K2.已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103 W/m 2. (1) 求太阳辐射的总功率. (2) 把太阳看作黑体,试计算太阳表面的温度.(地球与太阳的平均距离为1.5×108 km ,太阳的半径为6.76×105 km ,σ = 5.67×10-8 W/(m 2·K 4))解: (1) 太阳在单位时间内辐射的总能量 E = 1.37×103×4π(R SE )2 = 3.87×1026 W(2) 太阳的辐射出射度 =π=204Sr EE 0.674×108 W/m 2 由斯特藩-玻尔兹曼定律 40T E σ=可得 5872/40==σE T K3.图中所示为在一次光电效应实验中得出的曲线(1) 求证:对不同材料的金属,AB 线的斜率相同. (2) 由图上数据求出普朗克恒量h . (基本电荷e =1.60×10-19C)解:(1) 由 A h U e a -=ν 得 e A e h U a //-=ν|14Hz)e h U a /d /d =ν (恒量) 由此可知,对不同金属,曲线的斜率相同. (2) h = e tg θ 1410)0.50.10(00.2⨯--=e= 6.4×10-34J ·s4. 波长为λ的单色光照射某金属M 表面发生光电效应,发射的光电子(电荷绝对值为e ,质量为m )经狭缝S 后垂直进入磁感应强度为B的均匀磁场(如图示),今已测出电子在该磁场中作圆运动的最大半径为R .求(1) 金属材料的逸出功A ; (2) 遏止电势差U a .解:(1) 由 R m eB /2v v = 得 m R e B /)(=v ,代入 A m h +=221v ν 可得 222221mB e mR hc A ⋅-=λ m B e R hc 2222-=λ (2) 221v m U e a =, m eB R e m U a 22222==v .5.光电管的阴极用逸出功为A = 2.2 eV 的金属制成,今用一单色光照射此光电管,阴极发射出光电子,测得遏止电势差为| U a | = 5.0 V ,试求:(1) 光电管阴极金属的光电效应红限波长; (2) 入射光波长.(普朗克常量h = 6.63×10-34 J ·s , 基本电荷e = 1.6×10-19 C )解:(1) 由 00/λνhc h A == ==Ahc0λ 5.65×10-7 m = 565 nm(2)a U e m =221v , A U e hc h a +==λν 得 =+=AU e hca λ 1.73×10-7 m = 173 nm6.α粒子在磁感应强度为B = 0.025 T 的均匀磁场中沿半径为R =0.83 cm 的圆形轨道运动. (1) 试计算其德布罗意波长.(2) 若使质量m = 0.1 g 的小球以与α粒子相同的速率运动.则其波长为多少?(α粒子的质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)解:(1) 德布罗意公式:)/(v m h =λ由题可知α 粒子受磁场力作用作圆周运动R m B q /2v v α=,qRB m =v α又 e q 2= 则 e R B m 2=v α故 nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλB× × × × ×(2) 由上一问可得 αm eRB /2=v 对于质量为m 的小球 αααλλ⋅=⋅==mm m m eRB hm h 2v =6.64×10-34 m7. 一电子处于原子某能态的时间为10-8 s ,计算该能态的能量的最小不确定量.设电子从上述能态跃迁到基态所对应的光子能量为3.39 eV ,试确定所辐射的光子的波长及此波长的最小不确定量.( h = 6.63×10-34 J ·s )解:根据不确定关系式 ∆E ∆t ≥ 得∆E ≥ /∆t = 0.659×10-7 eV根据光子能量与波长的关系 λν/hc h E ==得光子的波长 ==E hc /λ 3.67×10-7 m波长的最小不确定量为 ∆λ = hc ∆E /E 2 = 7.13×10-15 m8.已知粒子处于宽度为a 的一维无限深方势阱中运动的波函数为 ax n a x n π=sin 2)(ψ , n = 1, 2, 3, … 试计算n = 1时,在 x 1 = a /4 →x 2 = 3a /4 区间找到粒子的概率.解:找到粒子的概率为⎰4/34/1*1d )()(a a x x x ψψ⎰π=4/34/2d sin 2a a x a x a π+=+ππ=121)12(1=0.818四 研讨题1. 人体也向外发出热辐射,为什么在黑暗中还是看不见人?参考解答:人体辐射频率太低,远离可见光波段。

大学物理-量子物理

大学物理-量子物理

第十四章
早期量子论
1、物理学的发展过程
物理学
经典物理
现代物理
力学 热学 电磁学 光学
相对论 量子论 非线性
2、近年来的发展
粒子物理: 量子电动力学、重整化方法 天体物理:
太阳中微子短缺问题 引力波存在的问题 物体的速度能否超过光速的问题
生物物理
有机体遗传程序的研究(须运用量子力学、统计物理、X射线、电子能谱 和核磁共振技术等)。 非平衡热力学及统计物理
在单位时间内,从热力学温度为T的黑体的单位面积上、所辐射的各种波长范围的电磁波的能量总和,称为辐射出射度,简称辐出度。 单位:W·m-2
单色辐出度
辐射出射度
二、黑体辐射实验定律
1、测量黑体辐射的实验原理图
2、斯特藩-玻耳兹曼定律
黑体的辐出度与黑体的热力学温度的四次方成正比,这就是斯特藩-玻耳兹曼定律。
3、说明
普朗克假说不仅圆满地解释了绝对黑体的辐射问题,还解释了固体的比热问题等。它成为现代理论的重要组成部分。
从普朗克公式可导出斯特藩-玻耳兹曼定律,维恩公式,瑞利—金斯公式
维恩位移定律
斯特藩-玻耳兹曼定律
维恩公式
瑞利—金斯公式
五、黑体辐射的应用
普朗克抛弃了经典物理中的能量可连续变化的旧观点,提出了能量子、物体辐射或吸收能量只能一份一份地按不连续的方式进行的新观点。这不仅成功地解决了热辐射中的难题,而且开创物理学研究新局面,标志着人类对自然规律的认识已经从从宏观领域进入微观领域,为量子力学的诞生奠定了基础。 测量温度:通过测量星体的谱线分布来确定其热力学温度 热象图:通过比较物体表面不同区域的颜色变化情况来确定物体表面的温度分布; 3K背景辐射:对来自外界空间的辐射,可用wein位移公式来估算 消失线高温计:测量炉温
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M (T ) = s T
4
图17-3 黑体的辐出度按波长分布曲线
2.维恩位移定律
德国物理学家维恩(W.Wien)于1893 年得出了反映热力学温度T和最大单色辐出 度所对应的波长 m 之间关系的定律,称为 维恩位移定律,其内容为:热辐射的峰值波 长随着温度的增加而向着短波方向移动。数 学表达式为 T m = b 式中, K。 b = 2.897 ? 10- 3 m·
17.2.3 光的波—粒二象性
光子不仅具有能量,而且还具有质量和动 量。其质量可由相对论的质能公式求得 ,即 e hν m= 2 = 2 c c 光子的动量为
hν h p = mc = = c
结合光子的能量 e = hν ,可以看出, 表征粒子性的物理量(能量和动量)与表 征波动性的物理量(波长和频率)很好地 结合起来,而连接它们的桥梁就是普朗克 常数 。
图17-5 各种理论和实验结果比较图
17.2 光电效应 爱因斯坦光子理论
17.2.1 光电效应的实验规律
光电效应是由德国科学家鲁道夫· 赫 兹于1887年首先发现的。 图17-6所示为光电效应实验装置的 示意图。
图17-6 光电效应装置图
通过实验可以发现,若K接的是电源负极, 而A接的是电源正极,当波长较短的可见光或紫 外光照射到某些金属K表面上时,则会发现电 路中有电流通过,即金属中的电子会从金属表 面逸出,并在两板之间的加速电势差作用下, 从K到达A,并在电路中形成电流I,这种电流 叫做光电流,这种现象叫做光电效应,逸出的 电子叫做光电子。可以看出,致使光电子逸出 的能量来自入射光中。
相应的能量是某一最小能量(称为 能量子)的整数倍。于是他引进了一个 新的物理量,叫做普朗克常数,用 h表 示,对于振动频率为 v的谐振子来说,其 最小能量为
e = hν
图17-4 普朗克
其他谐振子的能量只能是 的整数倍,

e = nhν
在引进普朗克常数后,普朗克将维 恩公式和瑞利—金斯公式衔接起来,得 到了一个新的公式,称为普朗克公式, 其表达式为 1 2 - 5 M (T ) = 2πhc hc
e kT - 1
或者可以用频率表示
2πhv3 1 M ν (T ) = c 2 ehv kT - 1
当波长很短或者较低温度时,普朗 克公式可以转化为维恩公式,而在波长 很长或者温度较高时,普朗克公式又可 以转化为瑞利—金斯公式。 并且还可以从普朗克公式推导斯特 藩—玻尔兹曼定律及维恩位移定律。 通过图17-5可以看出,普朗克公式 与实验结果符合得很好。
为了研究物体的辐射,我们假设存 在一种理想物体,它能将外界辐射到其 表面的能量完全吸收,这种假想的物体 成为绝对黑体,简称黑体,如图17-2所 示。
图17-2 黑体模型
17.1.2 黑体辐射的实验定律
1.斯特藩(J.Stefan)——玻尔兹曼 (L.Boltzmann)定律
1879年,奥地利物理学家斯特藩通过实验得出 了表征黑体的总辐出度和温度之间关系的曲线,并 根据曲线总结出一条定律;1884年玻尔兹曼也得出 了同样的结论,所以叫做斯特藩—玻尔兹曼定律, 其内容为:黑体的辐出度 M (T )和黑体的热力学温度 T的四次方成正比,即
M (T ) =
C2 - 5 T C1 e
天才的德国科学家普朗克(Max Planck)在 总结了前人失败的经验后,他认为对待此类问题 不能用经典的理论进行假设,而必须从另外一个 角度进行思考,于是普朗克提出了一个全新的假 设:辐射黑体中电子的振动可以看作谐振子,这 些谐振子可以吸收和辐射能量,但是对于这些谐 振子来说,它们的能量不再像经典物理学所允许 的可具有任意值,而是分立的。
dM (, T ) M ( , T ) = d
图17-1 人体辐射
实验表明,如果一个物体吸收其他 物体辐射的本领强时,其向其他物体辐 射能量的本领也越强,反之亦然。即表 明,好的辐射体也是好的吸收体。
但是,在实际情况中,没有哪种物 体能全部吸收外界辐射的能量。 通常人们认为吸收性最好的煤烟也 只能吸收外界辐射的百分之九十几。
图17-7 遏止电势差与频率的关系
17.2.2 爱因斯坦光子理论
伟大的爱因斯坦在普朗克能量子理 论的基础上赋予了光新的内容,提出了 光量子的假设:光在空间传播时,也具 有粒子性。一束光是一束以光速c运动的 粒子流,这些粒子称为光量子,简称为 光子,每一光子的能量为
e = hν
式中,h 为普朗克常数。
17.1.3 普朗克量子假设 普朗克黑 体辐射公式
图17-3中的曲线是实验得到的结果,此 后的很多科学家们试图从理论上找到与之相 对应的函数表达式,他们尽管付出了相当大 的努力,但是由于都是站在经典物理的角度 上,所以最终都失败了。
有一些甚至得出了与实验结果相去 甚远的结论,其中以维恩公式和瑞利— 金斯公式最具有代表性。 1893年,维恩得出的维恩公式为
这两个定律反映了黑体辐射的一些 性质。比如,温度不太高的物体的辐射 能量的波长较长,而温度高的物体辐射 能量的波长较短。
这一结论被广泛应用在军事、宇航、 工业等范围内。 比较常见的如夜视仪。 另外,见过冶铁过程的读者也能有感 性的认识,当温度不太高的时候,火炉的 光是接近红色的,当温度升高时,火炉的 光则是蓝色的。
第17章 量子物理
17.1
黑体辐射 普朗克的量子假设
17.2
光电效应 爱因斯坦光子理论
17.3
氢原子光谱 玻尔的氢原子理论
17.4
德布罗意波
17.5
不确定度关系
17.6
波函数 薛定谔方程
17.7
量子力学中的氢原子问题
17.8
激光及其医学应用
17.1 黑体辐射 普朗克的量子假设
17.1ቤተ መጻሕፍቲ ባይዱ1 黑体 黑体辐射
任何物体,在任何的时候都要向外 以电磁波的形式辐射能量。 这种现象叫做热辐射,辐射的能量 叫做辐射能。
热辐射的本质是物体中的原子、分子 等受到热激发,因此,温度不同时,物体 的辐射能的波长也不一样,图17-1所示为 人体在某温度下辐射能量的情况。
我们把单位时间内温度为T的物体单位 面积上发射的波长在 到 + d 范围内的 辐射能量 dM ( , T )与波长间隔 d 的比值叫 做单色辐出度,用 M ( , T ) 表示。即
相关文档
最新文档