圆柱与圆锥的复习课课件(人教课标版六年级下册数学课件)
合集下载
圆锥的认识说课(课件)人教版六年级下册数学
四、说教学重难点
教学重点
掌握圆锥的特征
教学难点
圆锥的高的测量方法
五、说教法学法
本课在教学时适宜让学生主动思考,合作交流,动手实践,让学生在具 体情境中亲自体验感知圆锥的特征。另外,要鼓励学生主动参与、动手 操作、发挥自己的聪明才智,能根据具体情况想出测量高的方法。在教 学过程中,恰当地运用远程教育资源,既能创设教学情境,又能将抽象 的知识直观化,更加直观地体验感知圆锥的特征。本课我将采取“引导 ——探索——发展”的教学模式,在教学中充分利用根据实情进行二次 加工的农远资源课件,更加优化本课的教学,提高教学效率。这种教学 模式,能促使学生学中有思,思中有疑,疑中有得。
轻松,记得牢固。整个过程体现出了学生是学习的主体,教师是应用资 源合理组织学生求知的引导者这一新课理念。
板块三、巩固练习。 1、求下列各圆锥的体积。 (1)底面积30平方厘米,高5厘米。 (2)底面半径4分米,高是3分米。 (3)底面直径12厘米,高是10厘米。 (4)底面周长31.4厘米,高6厘米。
为了巩固圆锥的表象,激发学生的学习兴趣,我问学生:“在生活中, 你还见过那些圆锥形的物体?”想一想、说一说。 并开展小游戏:学生抢答出屏幕上圆锥形物体的名称。 揭示课题,板题:圆锥的认识
2、认识圆锥的特征 我先引导学生看一看、摸一摸圆锥形实物,再让学生观看动画,在生动 有趣的氛围中轻松掌握圆锥的各部分名称及特征。 接着让学生拿起圆锥模型,小组同学相互说说圆锥的各部分名称。 最后,让学生闭上眼睛想一想圆锥是什么样子的?在脑中建立圆锥的模 型。
2.求下面各物体的体积。(单位:厘米) 目的是让学生运用所学的知识解决实际问题。 3.讨论题:把一个体积是60立方厘米的圆柱体木块,削成一个最大的圆 锥体,圆锥体的体积是多少?削去的体积是多少? 通过讨论,让学生把所学的知识,形成技能技巧,培养学生的创新能力 。
新人教版六年级下册数学圆柱的认识例1例2课件
例二
做一做
下面是同一个圆柱的展开图,说一说每个图是怎样展开的。
做一做
一个圆柱形茶叶筒的侧面贴着商标纸,圆柱底面半径是 5 cm,高是 20 cm 。这张商标纸展开后是一个长方形,它的长和宽各是多少厘米?
长:2 × 3.14 × 5 = 31.4(cm) 宽:20 cm
基础练习
指出下列图形哪些是圆柱?
练习三
全世界最大的圆柱形水族箱
世界上的豪华酒店不胜枚举,有 的酒店在豪华程度上更是到了让人咋舌 的地步。所以如果我现在告诉你下面将 要介绍的酒店有个“鱼缸”,你一定会 嗤之以鼻,但是我说这个“鱼缸”有 25 米高 9 米宽,你就会感到惊讶了。
全世界最大的圆柱形水族箱
在德国柏林有一家名字叫雷迪森 蓝光(Radisson Blu)的酒店。这家 酒店在外面看起来与其他的豪华酒店 一样,没有太多的区别,然而当你推 开它的大门,进入大堂后,你所看见 的东西会让你惊讶得闭不拢嘴!因为 在酒店的大堂中间,有一个 25 米高
全世界最大的圆柱形水族箱
在该酒店住宿的客人可以在酒店里的 大堂、走廊,甚至房间里看到水族馆,让 人有一种梦幻的感觉。这个水族馆在 2003 年 12 月建成,耗资约 1280 万欧元 。建造水族馆的材料是亚克力玻璃,采用 了美国雷诺公司的聚合物技术。
提高练习
用的一底张面边周长长为是(66.2.288)分分米米的,正圆方柱形的纸高,是卷(成6.一28个)圆分柱米,。圆柱
拓展练习
算一算:
已侧知面圆展柱开的的底长面方直形径的是长41(厘2.5米6,)高厘是米2,宽厘是米2(。 )厘米 。 把体一底个面圆半柱径的是侧3 面厘展米开,得圆到柱一的个高正是方(1形8,.84这)个厘圆米柱。
用一张长 2152.1.526ccmm,宽 21522..515.2612ccmmcm的长方12形.5纸6 ,cm卷成一个圆柱
数学人教版六年级下册《圆柱和圆锥》复习课PPT
体积
表面积=侧面积+两个底面面积
底面周长×高
体积
表面积=侧面积+两个底面面积
底面周长×高
体积=底面积×高
有关体积,我们会遇到哪些 情况?
有关体积,我们会遇到哪些 情况?
(1)已知 s、h (2)已知 r、h (3)已知 d、h (4)已知 C、h 求v 求v 求v 求v
一个圆柱侧面积是62.8平方厘米, 底面半径是2厘米,求这个圆柱 的体积。
空间与图形 ——圆柱
刘 强
甄贤小学
圆柱是立体图形,它和哪些平面图 形有关系?有什么关系?
圆柱是立体图形,它和哪些平面图 形有关系?有什么关系?
圆柱是立体图形,它和哪些平面图 形有关系?有什么关系?
圆柱是立体图形,它和哪些平面图 形有关系?有什么关系?
圆柱是立体图形,它和哪些平面图 形有关系?有什么关系?
一个圆柱侧面积是50平方厘米, 底面半径是2厘米,求这个圆柱 的体积。
一个圆柱侧面积是50平方厘米, 底面半径是2厘米,求这个圆柱的 体积。
把一根半径20厘米的圆柱形木块沿着直径垂直 于底面切开,表面积增加了480平方厘米,求这 根圆柱形木块的体积。
把一根半径20厘米的圆柱形木块沿着直径垂直 于底面切开,表面积增加了480平方厘米,求这 根圆柱形木块的体积。
如果将这个木头,从中横 向切开,增加的表面积是 多少?
如果将这个木头,从,从中纵 向切开,增加的表面积是 多少?
如果将这个木头,从中纵 向切开,增加的表面积是 多少?
这根木头的表面积 是多少?
这根木头的表面积 是多少?
圆柱是立体图形,它和哪些平面图 形有关系?有什么关系?
平面图形
平面图形
六年级下册数学课件-第3单元 圆柱与圆锥 丨人教新课标 (共88张PPT)
5. 时代广场有一个圆柱形喷水池,底面直径是4 m, 深0.8 m。如果要在喷水池的底面和内壁贴上瓷砖,那 么贴瓷砖的面积是多少平方米?
3.14×(4÷2)2+3.14×4×0.8 =22.608 (m2) 答:贴瓷砖的面积是22.608 m2。
能力提升扩展 6. 如图,一张正方形纸卷成一个圆柱,求这个圆柱的 高与底面直径的比。
2. 选一选。(把正确答案的字母代号填在括号里)
(1)圆柱的底面半径是2.5 cm,高是3 cm,沿高展开
得到的长方形的长是( A )cm,宽是( D )cm。
A. 15.7
B. 5
C.18.84
D. 3
(2)下图以直线(虚线)为轴快速旋转一周,能形成
圆柱的是
( A )。
3. 辨一辨。(对的在后面的括号里画“√”,错的画
6 dm=0.6 m 3.14×(0.6÷2)2×2+3.14×0.6×1.2≈3 (m2) 答:做这个油桶至少需要3 m2的铁皮。
能力提升扩展
6. 把一个实心大圆柱切成3个同样大小的小圆柱,3个 小圆柱的表面积之和比大圆柱的表面积多了3.6 dm2。 大圆柱的底面积是多少?
3.6÷[(3-1)×2]=0.9 (dm2) 答:大圆柱的底面积是0.9 dm2。
它们的体积也相等。
(√)
4. 一根圆柱形塑料棒,底面积为75 cm2,长110 cm。 它的体积是多少?
75×110=8250 (cm3) 答:它的体积是8250 cm3。 5. 一个圆柱的体积是120 m3,底面积是12 m2。它的高 是多少? 120÷12=10 (m)
答:它的高是10 m。
能力提升扩展
7 圆柱的体积(2)
基础巩固
部编版六年级数学下册第三单元《圆锥》(复习课件)
得到的是圆锥。 (1)以6 cm长的边所在直线为轴旋转一周时, d=16 cm,h=6 cm。 (2)以8 cm长的边所在直线为轴旋转一周时, d=12 cm,h=8 cm。
8.用如图所示的扇形纸片和圆形纸片能否制作成一个圆 锥?请通过计算说明理由。
扇形圆弧的长:3.14×2×2×34=9.42(cm) 圆的周长:3.14×3=9.42(cm) 扇形圆弧的长和圆的周长相等,所以能制作成一个圆锥。
3 圆柱与圆锥
圆锥 整理复习
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ
圆柱=
1 Sh 3
填一填。
(1)一个圆柱的体积是75.36m³,与它等底等高的圆锥的体积 是(25.12)m³。
一定时间内,降落在水平地面上的水,在未经蒸发、渗漏、流失情况下, 所及的深度称为降水量(通常以毫米为单位)。测定降水量常用雨量器 和量筒。我国气象上规定按24小时的降水量为标准,降水级别如下表:
级别 降水量/mm
小雨 10以下
中雨
大雨
暴雨
大暴雨
10-24.9 25-49.9 50-99.9 100-199.9
知识点 2 运用圆锥的体积公式计算
2.计算下面各圆锥的体积。
(1) 13×36×5=60(cm3)
(2)
3.14×42×12×31=200.96(cm3)
(3)
3.14×(4÷2)2×5.4×13=22.608(cm3)
易错辨析
3.判断。(对的画“√”,错的画“×”) (1)圆柱的体积是圆锥体积的3倍。
人教版六年级数学下册第三单元第11课《整理和复习》课件
少立方分米?(结果保留一位小数) 24÷12=2(dm) 3.14×(2÷2)2×2×13≈2.1(dm3) 答:削成的圆锥的体积约是 2.1 dm3。
6.乐乐先用橡皮泥做了一个圆柱,再在圆柱中凿了四 个相同的圆柱形孔,剩余部分的体积是多少立方厘 米?(大圆柱的底面直径为24 cm,小圆柱的底面直径 为 38.1c4m×,(2高4÷都2是)2×151c5m-)3.14×(8÷2)2×15×4=3768(cm3) 答:剩余部分的体积是3768 cm3。
(1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。)
先求这个进料漏斗的体积 × 每立方分米稻谷质量
圆锥的体积 圆柱的体积
3.14×(4÷2)2×4.2×
1 3
+
3.14×(4÷2)2×2
一种水稻磨米机的进料漏斗由圆柱和圆锥两部分组成。 圆柱和圆锥的底面直径都是4dm,圆柱高2dm,圆锥高 4.2dm。每立方分米稻谷大约重0.65kg。
×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
7.一管鞋油的出口直径为5 mm,爸爸每天挤出 20 mm长的鞋油擦鞋,这管鞋油可用36天。这 管鞋油有多少立方毫米? 3.14×(5÷2)2×20×36=14130(mm3) 答:这管鞋油有14130 mm3。
6.乐乐先用橡皮泥做了一个圆柱,再在圆柱中凿了四 个相同的圆柱形孔,剩余部分的体积是多少立方厘 米?(大圆柱的底面直径为24 cm,小圆柱的底面直径 为 38.1c4m×,(2高4÷都2是)2×151c5m-)3.14×(8÷2)2×15×4=3768(cm3) 答:剩余部分的体积是3768 cm3。
(1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。)
先求这个进料漏斗的体积 × 每立方分米稻谷质量
圆锥的体积 圆柱的体积
3.14×(4÷2)2×4.2×
1 3
+
3.14×(4÷2)2×2
一种水稻磨米机的进料漏斗由圆柱和圆锥两部分组成。 圆柱和圆锥的底面直径都是4dm,圆柱高2dm,圆锥高 4.2dm。每立方分米稻谷大约重0.65kg。
×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
7.一管鞋油的出口直径为5 mm,爸爸每天挤出 20 mm长的鞋油擦鞋,这管鞋油可用36天。这 管鞋油有多少立方毫米? 3.14×(5÷2)2×20×36=14130(mm3) 答:这管鞋油有14130 mm3。
六年级数学下册《圆锥的体积》课件
圆锥的体积公式推导
01
将圆锥分割成若干个小的圆柱体 ,每个圆柱体的体积为πr²h/3, 因此整个圆锥的体积为(1/3)πr²h 。
02
通过实验的方法,将圆锥装满水 或其他液体,然后将液体倒入量 杯或其他容器中,读出液体的体 积即为圆锥的体积。
圆锥的体积公式应用
计算圆锥的容积
通过测量圆锥的高度和底面直径或半径,利用公式计算出圆锥的 容积。
制造望远镜。
圆锥的体积练习题
04
基础练习题
01
02
03
04
圆锥的体积公式是什么 ?
一个圆锥的底面积是15 平方厘米,高是8厘米, 它的体积是多少?
一个圆锥的体积是18立 方厘米,它的底面积是 多少?
一个圆锥的底面半径是3 厘米,高是5厘米,它的 体积是多少?
进阶练习题
01
02
03
04
一个圆锥的底面直径是6厘米 ,高是4厘米,它的体积是多
圆锥的体积在建筑中的应用
计算土方量
在建筑工地,挖土和填土是常见 的作业。圆锥的体积公式可以帮 助我们快速计算土方量,从而优
化施工计划。
设计桥梁
桥梁的桥墩通常设计成圆锥形,以 承受压力。通过计算圆锥的体积, 可以确定桥墩的大小和所需的材料 量。
设计排水系统
排水管道通常设计成圆柱形或圆锥 形。通过计算圆锥的体积,可以确 定管道的大小和所需的材料量。
六年级数学下册《圆锥 的体积》ppt课件
目录
• 圆锥的体积公式 • 圆锥的体积与圆柱的关系 • 圆锥的体积的实际应用 • 圆锥的体积练习题 • 圆锥的体积总结与回顾
圆锥的体积公式
01
圆锥的体积定义
圆锥的体积
指圆锥所占空间的大小。
人教版六年级下册数学第三单元 《圆柱与圆锥》教材分析(课件)
系; 3、解决有关的实际问题,培养解
题的能力。
关键课例:圆柱的认识 例2 圆柱的侧面展开图
有效开展活动
让侧面“展开”的慢一些
先猜一下,圆柱的侧面展开图是什么形状的? 验证,动手剪
再把展开的图形围成圆柱,探究展开图与圆柱间的关系。
教材注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测。在 通过实验和推理验证,培养学生良好的学习和思考习惯。例如教材联系长方 体体积公式,鼓励学生估计圆柱体积的计算方法。联系圆柱体积计算公式, 鼓励学生猜测圆锥体积的计算方法。圆锥体积的教学是是按照引出问题—— 联想,猜测——实验探究——导出公式的思路设计的。在猜测的基础上进行 实验和推理。使学生受到研究方法和思维方式的训练,发展和提高学生自主 学习的能力。
第三单元《圆柱和圆锥》
—— 教材分析
人教版 六年级 数学 下册
课标中“图形与几何”的要求
空间观念
(核心)
空间观念主要是指对空间物 体空或间图观形念的主形要状是、指大对小空及间位物置体关或 系图的形认的识形。状,大小及位置关系的 认识。能能够够根根据据物物体体特特征征抽抽象象出出几 何几图何形图,形根,据根几据何几图何形图想形象想出象所出 描所述描的述实的际实物际体物;体想,象想并象表并达表物达 体物的体空的间空方间位方和位相和互相之互间之的间位的置位 关置系关;系感。知感并知描并述描图述形图的形运的动运和动 变和化变规化律规。律,空间观念有助于理 解现空实间生观活念中有空助间于物理体解的现形实态生与 活结中构空,间是物形体成的空形间态想与象结力构的,经是验 形成空间想象基力础的。经验基础。
旋转 视图还原 抽象 切和裁 展开和折叠
等积变换
圆柱和圆锥的体积
圆柱和圆锥的特征
题的能力。
关键课例:圆柱的认识 例2 圆柱的侧面展开图
有效开展活动
让侧面“展开”的慢一些
先猜一下,圆柱的侧面展开图是什么形状的? 验证,动手剪
再把展开的图形围成圆柱,探究展开图与圆柱间的关系。
教材注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测。在 通过实验和推理验证,培养学生良好的学习和思考习惯。例如教材联系长方 体体积公式,鼓励学生估计圆柱体积的计算方法。联系圆柱体积计算公式, 鼓励学生猜测圆锥体积的计算方法。圆锥体积的教学是是按照引出问题—— 联想,猜测——实验探究——导出公式的思路设计的。在猜测的基础上进行 实验和推理。使学生受到研究方法和思维方式的训练,发展和提高学生自主 学习的能力。
第三单元《圆柱和圆锥》
—— 教材分析
人教版 六年级 数学 下册
课标中“图形与几何”的要求
空间观念
(核心)
空间观念主要是指对空间物 体空或间图观形念的主形要状是、指大对小空及间位物置体关或 系图的形认的识形。状,大小及位置关系的 认识。能能够够根根据据物物体体特特征征抽抽象象出出几 何几图何形图,形根,据根几据何几图何形图想形象想出象所出 描所述描的述实的际实物际体物;体想,象想并象表并达表物达 体物的体空的间空方间位方和位相和互相之互间之的间位的置位 关置系关;系感。知感并知描并述描图述形图的形运的动运和动 变和化变规化律规。律,空间观念有助于理 解现空实间生观活念中有空助间于物理体解的现形实态生与 活结中构空,间是物形体成的空形间态想与象结力构的,经是验 形成空间想象基力础的。经验基础。
旋转 视图还原 抽象 切和裁 展开和折叠
等积变换
圆柱和圆锥的体积
圆柱和圆锥的特征
人教版六年级数学下册第三单元圆柱与圆锥——圆柱的体积(三课时)
净含量:500ml
1. 圆 柱 圆柱的体积(3)
R·六年级下册
一个内直径是8cm的瓶子里, 水的高度是7cm。
想一想,求不规则 的物体的体积,我们通 常会用到什么方法?
=
圆柱2
圆柱1
=
瓶子的容积=V水 +V空气 转化
瓶子的容积=V圆柱1+V圆柱2
探索新知
一个底面内直径是8cm的瓶子里,水的高度是 7cm,把瓶盖拧紧,把瓶子倒置、放平,无水部分是 圆柱形,高度是18cm。这个瓶子的容积是多少?
方法一:
30×10×4÷6=200(cm3)=200mL
答:平均每杯倒200毫升。
方法二:
200(cm3)=200mL
高 答:平均每杯倒200毫升。
10.某公园要修一道围墙,原计划用土石35m3。 后来多开了一个厚度为25cm的月亮门(见下图), 减少了土石的用量。现在用了多少立方米土石?
高
35-3.14×(2÷2)2×(25÷100) =35-0.785 =34.215(立方米)
V =πr2h
3.14×52×3.2=251.2(m3) 答:这个水池能蓄水251.2吨。
课堂小结
同学们,今天的数学课 你们有哪些收获呢?
巩固练习
1.一个圆柱形钢材,底面积是 0.5 dm2, 长是 0.8 dm,这个圆柱形钢材的体积是多少?
0.5×0.8 = 0.4(dm3)
2.和谐村在休闲广场上建了 10 个同样大小的圆柱形花 坛(如图),花坛的底面内直径为 2m,高为 0.6 m,如果 每个花坛里面填土的高度为 0.4 m,这 10 个花坛共需要 填土多少立方米?
3.14×[(10÷2)2-(8÷2)2]×80 =2260.8(cm3) 答:它所用钢材的体积是2260.8cm3。
人教版数学六年级下册《圆柱的认识》说课课件
二、说学情
学生通过前五年的学习,学生已有一定的观察、操作、合作、交流的 能力,探究学习的能力,具有较强的独立思考和动手操作的能力,这都 为本课时学习提供了经验支持。学生在低年级已经初步感性认识了圆柱 ,能够辨认圆柱物体。在学习了圆等平面图形和长方体、正方体等立体 图形基础上,本课进一步探索含有曲面的几何形体——圆柱。
板块四、全课总结 通过这节课的学习,你有什么收获? (学生可能会说我认识了圆柱;知道了圆柱各部分的名称等。) 这样的小结使学生能够回顾全课的内容,做到总结提高。
七、说板书设计
根据六年级的年龄特点,本课板书内容简单明了,重难点突 出。
《圆柱的认识》底面:完全相同的两个圆高:无数条且相等长=圆柱底面周长侧面: 长方形宽=圆柱高
《圆柱的认识》说课稿
人教版小学数学六年级下册
大家好,今天我说课的内容是人教版小学数学六年 级下册的《圆柱与圆锥》单元的课时内容《圆柱的认 识》。下面我将从说教材、说学情、说教学目标、说教 学重难点、说教法、说教学过程和板书设计及教学反思 这八个方面展开。接下来开始我的说课。恳请大家批评 指正。
目录
板块二、探究新知 1、探究圆柱的特征。 出示问题: ①圆柱有几个面?每个面有什么特征? ②同长方体、正方体比较,圆柱有什么不同的地方?
然后,让学生取出自己的学具,通过看一看、摸一摸等直观方法, 并同长方体、正方体的表面进行对比,研究圆柱的特征。再让同桌的两 个同学相互交流探究的结果,做到互相启发。最后指名汇报,并完成板 书。提问:“圆柱的高有几条?”最后,让学生画出圆柱的底面半径、 直径和圆柱的高,指出它的底面和侧面。加深对圆柱的认识,发展空间 观念。
总之,在整个教学过程中,我始终立足让学生在玩中学会, 在动手中提高技能,学生学得轻松愉快。我将继续努力,让 我的数学课堂教学更高效,更精彩。
人教版六年级数学下册第三单元第4课《圆柱的表面积》整理复习课件
一个圆柱的侧面积是188.4 dm2,底面半径是2 dm。 它的高是多少?
根据3.14×圆柱的底面半径×2×高=圆柱的侧面积
188.4÷(3.14×2×2)=15(dm)
侧面积 ÷ 底面周长 = 高
答:这个圆柱的高是15dm。
一根圆柱形木料的底面半径是0.5m,长是2m。如图所示, 将它截成4段,这些木料的表面积之和比原木料的表面积增 加了多少平方米?
正方形的边长
圆柱的底面周长 =圆柱的高
解:设圆柱的底面直径为d,底面周长为dπ。 直径与高的比 d∶πd =1∶π
答:这个圆柱底面直径与高的比是1∶π。
这节课你们都学会了哪些知识?
圆柱的表面积计算 1.计算方法:
圆柱的表面积=侧面积+两个底面积
2πrh
2×πr2
2.解决问题时要根据实际情况判断。
圆柱表面积的意义 1.填一填。 (1)圆柱的表面积是指圆柱的( 侧面积 )和
求用了多少彩纸,需要用圆 柱的表面积减去上下底面中 间留出的口的面积。
(1)侧面积:3.14×20×30=1884(cm2 ) (2)两个底面的面积:3.14×(20÷2)2 ×2=628(cm2 ) (3)需要用的彩纸:1884+628-78.5×2=2355(cm2 )
答:他用了2355cm2的彩纸。
3 圆柱与圆锥
练习四
说一说:圆柱展开图是什么样的。
用手摸一摸,圆的表面积是哪Fra bibliotek? 圆柱的表面积是指圆柱的侧面积和两个底面积 的面积和。
用字母怎么表示呢?
圆柱的表面积=侧面积+两个底面积
底面是圆形 S底= πr 2
S表=S侧 +2S底
长方形的面积= 长 × 宽
人教版六年级数学下册第三单元《圆柱与圆锥》第一讲讲义-含解析(知识精讲+典型例题+同步练习+进门考)
人教版六年级数学下册第三单元《圆柱与圆锥上》知识点1圆柱的表面积猫小咪和猫小喵发现了一大瓶鱼罐头,他们在密谋着如何解决掉这瓶罐头。
提问鱼罐头的包装盒属于哪种立体图形?认识圆柱总结:1.圆柱的上下两个底面面积相等。
2.周围的面(除底面外)叫做侧面。
思考:将圆柱沿侧面展开后得到什么图形?思考1.圆柱的侧面积=底面周长×高。
S侧=2πrh。
2.圆柱的表面积=圆柱的侧面积+两个底面圆的面积。
S表=2πrh+2πr²思考:一个圆柱体底面半径是1厘米,高是5厘米,那么它的侧面积和表面积分别是多少?(π取3.14)步骤:圆柱的表面积分为几个部分?三部分:两个底面积和一个侧面积。
两个底面积是多少?S底=3.14×1²×2=6.28平方厘米。
侧面积是多少?侧面积=底面周长×高。
S侧=3.14×1×2×5=31.4平方厘米。
圆柱体的表面积是多少?6.28+31.4=37.68平方厘米。
思考:如果把圆柱横着切一刀,它的表面积有什么变化?总结:切一刀表面积增加两个圆的面积。
思考:把一根长1米的圆柱分成3段,表面积增加了48平方厘米,原来圆柱的表面积是多少平方厘米?(π取3)步骤:分成三段增加几个面?(3-1)×2=4个。
圆柱的底面半径是多少厘米?48÷4=12平方厘米。
12÷3=4 4=2×2。
所以半径是2厘米。
原来圆柱的表面积是多少?1米=100厘米2×3×2×100=1200平方厘米1200+12×2=1224平方厘米思考:把一张长方形铁皮按图剪开,正好能制成一个圆柱形水桶(有盖),那么这个水桶的表面积是多少平方厘米?(π取3.14,接头处忽略不计)步骤:水桶的表面积包含哪几部分?两个底面圆的面积和侧面积。
圆柱的底面周长等于右侧小长方形的长还是宽?等于小长方形的长。
人教版六年级数学下册第三单元第10课《圆锥 》整理复习课件
答:这座房子的体积是31.4m3。
明明把一块底面周长是18.84cm,高5cm的圆柱体橡皮泥 捏成一个底面直径是8cm的圆锥体,这个圆锥体的高是多 少厘米?(得数保留一位小数)
圆柱体变成圆锥体,形状变了,前后体积没变。 Ⅴ锥 = V 柱
18.84÷3.14÷2=3(cm) 3×3.14×32×5÷[3.14×(8÷2)2 =423.9÷50.24 ≈8.4(cm) 答:圆锥体的高是8.4cm。
利用圆锥的体积公式计算 2.计算下面各圆锥的体积。
13×36×5=60(cm3)
3.14×42×12×13=200.96(cm3) 3.14×(4÷2)2×5.4×13=22.608(cm3)
圆锥体积公式的逆用
3.(易错题)一个圆柱形铁块,底面半径是2 cm,高是 12 cm。将这个圆柱形铁块熔铸成一个底面半径是 4 cm的圆锥,圆锥的高是多少厘米? 3.14×22×12=150.72(cm3) 150.72×3÷3.14÷42=9(cm) 答:圆锥的高是9 cm。
1000×25%=250(万立方米)
250>200
答:该日该地区总降水为1000万立方米。
这些雨水的25%能满足绿化所需。
这节课你们都学会了哪些知识?
速记宝典
圆锥体积容易算,它与圆柱有关联。 等底等高不能忘,三分之一记心间。 题中条件亮红灯,单位一致需看清。 计算一定要仔细,这样才能出成绩。
圆锥的特点
3 圆柱与圆锥
练习六
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ
明明把一块底面周长是18.84cm,高5cm的圆柱体橡皮泥 捏成一个底面直径是8cm的圆锥体,这个圆锥体的高是多 少厘米?(得数保留一位小数)
圆柱体变成圆锥体,形状变了,前后体积没变。 Ⅴ锥 = V 柱
18.84÷3.14÷2=3(cm) 3×3.14×32×5÷[3.14×(8÷2)2 =423.9÷50.24 ≈8.4(cm) 答:圆锥体的高是8.4cm。
利用圆锥的体积公式计算 2.计算下面各圆锥的体积。
13×36×5=60(cm3)
3.14×42×12×13=200.96(cm3) 3.14×(4÷2)2×5.4×13=22.608(cm3)
圆锥体积公式的逆用
3.(易错题)一个圆柱形铁块,底面半径是2 cm,高是 12 cm。将这个圆柱形铁块熔铸成一个底面半径是 4 cm的圆锥,圆锥的高是多少厘米? 3.14×22×12=150.72(cm3) 150.72×3÷3.14÷42=9(cm) 答:圆锥的高是9 cm。
1000×25%=250(万立方米)
250>200
答:该日该地区总降水为1000万立方米。
这些雨水的25%能满足绿化所需。
这节课你们都学会了哪些知识?
速记宝典
圆锥体积容易算,它与圆柱有关联。 等底等高不能忘,三分之一记心间。 题中条件亮红灯,单位一致需看清。 计算一定要仔细,这样才能出成绩。
圆锥的特点
3 圆柱与圆锥
练习六
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C侧面积和高都相等D侧面积和高都不 相等
2. 已知一个圆柱与一个跟它等底 等高的圆锥的体积相差18.84立方厘米, 圆柱的体积是( ),圆锥的体积 C 是( )。 A A、9.42 立方厘米 B、18.84立方厘米 C、28.26立方厘米 D、15.7立方厘米
3.下雨时,给打谷场上的 圆锥形谷堆盖上塑料防 雨布,所需防雨布的最小 面积是指圆锥的( C ). A. 表面积 B.体积 C. 侧面积
5.如下图,整个物体的体积相 当于绿色部分圆锥体体积的 ( 5 )倍。
Hale Waihona Puke aaa返回
1号题
如图,想想办法,你能否求 它的体积?( 单位:厘米)
4 2
6
2.把一个边长1分米的正方形 纸围成一个最大的圆柱体,这 个圆柱体的体积是( B )立 方分米.(得数保留)
1分米 1分米
A 4
C
1 B
4
返回
1.甲乙两人分别利用一张长20厘米, 宽15厘米的纸用两种不同的方法围成 一个圆柱体(接头处不重叠),那么 围成的圆柱( )。 A高一定相等 B侧面积一定相等 C侧面积和高都相等D侧面积和高都不 A y 相等 请看图
20厘米
15 厘 米
现在你知道了吗?
返回
1.甲乙两人分别利用一张长20厘米, 宽15厘米的纸用两种不同的方法围成 一个圆柱体(接头处不重叠),那么 围成的圆柱( B )。 A高一定相等 B侧面积一定相等
人教版小学数学第十二册
圆柱与圆锥的复习课
兴隆二小 唐谋东
知识 整理
抢答 部分
必答 部分
动手 思考
圆柱的特征:
1 有两个底面:
、
面积相等
2 一个侧面:
、
宽= 高
宽
长=底面周长
长
圆锥的特征:
h
侧面展开
扇形
圆形
底面
从圆锥的顶点到底面圆心的 距离叫做圆锥的高。
基 本 公 式
圆柱侧面积= 底面周长×高 圆柱表面积= 侧面积+底面积×2 圆 柱 体积= 底面积×高 圆 锥 体积= 底面积×高÷3
4.一根圆柱形木材长20分米,把截 成4个相等的圆柱体. 表面积增加 了18.84平方分米.截后每段圆柱 体积是( 15.7立方分米 ).
5.把一个圆柱在平坦的桌面上滚动, 那么滚动的路线是( B ). A 圆弧 B直线 C曲线
6.一个圆柱形水池的容 积是18.84立方米,池底 直径是4米,水池的深度 是( 1.5米 ).
返回
1.冬天护林工人给圆 柱形的树干的下端涂 防蛀涂料,那么粉刷树 干的面积是指( B ). A.底面积 C.表面积 B.侧面积 D.体积
2.已知两个体积不同的圆柱,高 相等,它们的底面半径的比是1:2, 那么它们的体积的比是( 1:4 )
圆柱体1 圆柱体2 2
半 径 底面积 高 体 积
1
1 1 1
4 D
3号 一个酒瓶里面深30厘米,底面直径 题 是8厘米,瓶里有酒深10厘米,把酒
瓶塞紧后倒置(瓶口向下),这时酒 深20厘米,你能算出酒瓶的容积是 多少毫升来吗?
30
10
8
20
返回
4 1 4
3.如下图,有三块不同的硬纸片, 让它们分别绕PQ边旋转一周, 它们所掠边的空间是圆锥体的 是( B ).
P
A
Q
B
P Q
P
C
Q
4.把一个棱长是2分米的正方体削成
一个最大的圆柱体,它的侧面积是 ( B )平方厘米。 A.6.28 B.12.56 C.18.84 D. 25.12
2 2 2 2×3.14×2
4÷2=2米
18.84÷(2×2×3.14)=1.5米
7.一个圆柱的侧面积是12.56 平方厘米,底面半径是2厘米, 那么这个圆柱的体积是 ( 12.56立方厘米 ).
注意:
圆柱体的体积可以这样算:
侧面积乘以半径÷2
8.一个圆锥的体积是a立 方米,和它等底等高的圆 柱体的体积是( C )立 方米。 A. a÷3 1 C. 3a B. 2a D. a的立方