人教版六年级数学下册圆柱和圆锥_整理和复习
人教版六年级下册数学 圆柱与圆锥整理和复习
40
(单位:厘米)
增加两个长方形的面, 长等于圆柱的高,宽等 于底面直径。
滚、刷、切、削、熔……
切割前后的表面积 增加了,体积不变
。
滚、刷、切、削、熔……
把圆柱削成最大的圆锥,需要削去多少?
50
问题1:怎么削才算是最大的圆锥?
问题2:削成的圆锥与圆柱有什么关系?
2
3.14×(40÷2)2×50×
选择 一个有盖的圆柱形铁桶。 1、求这个铁桶的占地面积,是求( A. 容积 B. 底面积 C. 表面积
B) D. 体积
2、做这样一个铁桶用多少铁皮,是求( C ) A. 容积 B. 底面积 C. 表面积 D. 体积
3、这个铁桶能装多少水,是求( A ) A. 容积 B. 底面积 C. 表面积 D. 体积
0.5m 1m 4.5m ——
314dm3 2.198m3 6280cm3 10.048dm3 1.1775m3
3.妈妈给小雨的塑料壶做了一个布套(如图)小雨每天上学带一壶水。 (1)至少用了多少布料? (2)小雨在学校一天喝1.5L的水,这壶水够喝吗?(水壶的厚度忽略不 计。)
分析:求所用布料就是求水壶的表面积,求能装多少水 即求水壶的体积。
答:旋转一周后围成的立体图形的体积是301.44cm3。
3.一个圆柱形鱼缸,底面直径是40cm,高是25cm,里面盛了一 些水,把一个底面半径为10cm的圆锥放入鱼缸中(圆锥全部浸 入水中),鱼缸中的水面升高了2cm。这个圆锥的高是多少?
水面升高的那部分圆柱的体积就是
放入水中的圆锥的体积。
2cm
V 锥 = V 柱=3.14×(40÷2)2×2 =3.14×800 =2512(cm3)
3.一个圆柱形鱼缸,底面直径是40cm,高是25cm,里面盛了一 些水,把一个底面半径为10cm的圆锥放入鱼缸中(圆锥全部浸 入水中),鱼缸中的水面升高了2cm。这个圆锥的高是多少?
六年级数学总复习课件_圆柱与圆锥整理复习_1
20cm
2.把这根木头全都刷上油漆, 刷油漆的面积有多大?
S=S侧+ S底X2 =3.14X20X30+ 3.14X ( 20÷2 ) X2 =1884 + 628
Copyright 2004-2009 版权所有 盗版必究
2
=2512(平方厘米)
Copyright 2004-2009 版权所有 盗版必究
Copyright 2004-2009 版权所有 盗版必究
20cm
Copyright 2004-2009 版权所有 盗版必究
20cm
5.削掉部分占这个圆柱体积的
几分之几?
Copyright 2004-2009 版权所有 盗版必究
9dm
20cm
Copyright 2004-2009 版权所有 盗版必究
30 10
Copyright 2004-2009 版权所有 盗版必究
20 8
Copyright 2004-2009 版权所有 盗版必究
Hale Waihona Puke 回答下面的问题,并列出算式: 一个圆柱形无盖的水桶,底面半径10分米,高20分米。 1.给这个水桶加个箍,是求什么? 2.求这个水桶的占地面积,是求什么? 3.做这样一个水桶用多少铁皮,是求什么? 4.这个水桶能装多少水,是求什么?
Copyright 2004-2009 版权所有 盗版必究
20cm
Copyright 2004-2009 版权所有 盗版必究
一个圆柱高10厘米,接上4 厘米的一段后,表面积增加了 25.12平方厘米,求原来圆柱的 体积是多少立方厘米?
Copyright 2004-2009 版权所有 盗版必究
一个酒瓶里面深30厘米,底面直径 是8厘米,瓶里有酒深10厘米,把酒 瓶塞紧后倒置(瓶口向下),这时酒 深20厘米,你能算出酒瓶的容积是 多少毫升来吗?
六年级数学下册总复习
【篇一】六年级数学下册总复习六年级数学下册知识点归纳(人教版)六年级数学下册一、二单元知识点归纳整理第一单元负数1.负数:在数轴线上,负数都在0的(左侧),所有的负数都比自然数小。
负数用负号“-”标记,如-2,-,-45,-等。
2.正数:大于0的数叫正数(不包括0),数轴上0(右边)的数叫做正数若一个数大于零(>0),则称它是一个正数。
正数的前面可以加上正号“+”来表示。
正数有(无数个),其中有(正整数,正分数和正小数)。
3. 0的(左边),负数都小于0,正数都大于0,负数都比正数(小)。
第二单元圆柱和圆锥1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高。
2、圆柱的高:两个底面之间的距离叫做高。
3、圆柱的侧面展开图:当沿高展开时展开图是(长方形);这个长方形的长等于(圆柱的底面周长),长方形的宽等于(圆柱的高)。
这个长方形的面积等于(圆柱的侧面积),因为长方形面积=长×宽,所以圆柱的侧面积=底面周长×高当底面周长和高相等时,沿高展开图是(正方形);当不沿高展开时展开图是(平行四边形)。
4、圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S侧=Ch。
h=S侧÷C C= S侧÷hS侧=∏dh=2∏rh5、圆柱的表面积:圆柱的表面积=侧面积+底面积×2。
即S表= S侧+ S底×2=Ch+∏(C÷∏÷2)² ×2=∏dh+∏(d÷2) ²×2=2∏rh+∏r²×2(计算时最好分步使用公式,以免出现计算错误。
)6、圆柱表面积在实际中的应用:无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类7、圆柱的体积:V=Sh h=V÷S S=V÷hV=∏r²h (已知r)V=∏(d÷2) ²h (已知d)V=∏(C÷∏÷2)² h (已知C)8、把一个圆柱体切分成若干份拼成一个近似的长方体,在这个过程中,形状发生了变化,体积没有发生变化。
六年级下册数学教案《 第3单元 圆柱与圆锥 整理和复习 》 人教版
六年级下册数学教案《第3单元圆柱与圆锥整理和复习》人教版一. 教材分析本节课为人教版六年级下册数学第3单元“圆柱与圆锥”的整理和复习。
本单元的主要内容是圆柱和圆锥的特征、体积计算以及应用。
教材通过复习和整理,使学生对圆柱和圆锥的概念、性质、计算方法等有一个清晰、系统的认识,提高学生的空间想象能力和解决问题的能力。
二. 学情分析六年级的学生已经学习了圆柱和圆锥的基本知识,对圆柱和圆锥的特征、体积计算有一定的了解。
但部分学生对一些概念和公式的理解不够深入,应用能力有待提高。
此外,学生的空间想象能力和解决问题的能力参差不齐,需要在教学中加以关注和培养。
三. 教学目标1.知识与技能:通过对圆柱和圆锥的复习,使学生掌握圆柱和圆锥的基本概念、性质和体积计算方法,提高空间想象能力和解决问题的能力。
2.过程与方法:通过自主学习、合作交流、探究发现等方法,培养学生的动手操作能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和团队协作精神,使学生感受到数学与生活的密切联系。
四. 教学重难点1.重点:圆柱和圆锥的基本概念、性质和体积计算方法的掌握。
2.难点:对圆柱和圆锥体积公式的理解与应用,以及空间想象能力的培养。
五. 教学方法1.自主学习:引导学生独立思考,自主探究,发现和总结圆柱和圆锥的特点和规律。
2.合作交流:鼓励学生与他人分享学习心得,互相讨论,共同解决问题。
3.探究发现:引导学生动手操作,观察分析,发现圆柱和圆锥的体积计算方法。
4.启发引导:教师通过提问、设疑,引导学生思考,激发学生的学习兴趣。
六. 教学准备1.教具:圆柱和圆锥模型、图片、课件等。
2.学具:学生每人准备一个圆柱和圆锥模型,以及相关计算工具。
七. 教学过程1.导入(5分钟)利用课件展示生活中的圆柱和圆锥物体,引导学生回顾已学的知识,为新课的复习打下基础。
2.呈现(10分钟)教师通过讲解和示范,呈现圆柱和圆锥的基本概念、性质和体积计算方法。
小学六年级数学下册《圆柱和圆锥的整理与复习》教学设计
《圆柱和圆锥的整理与复习》教学设计教学内容:六年级下册圆柱和圆锥的整理与复习教学目标:1、回顾本单元的知识内容,进一步认识圆柱、圆锥的特征,巩固圆柱的侧面积、表面积及圆柱和圆锥的体积计算的一般方法,进一步理解直柱体的表面积可以用“两个底面积+侧面积”来计算,直柱体的体积可以用“底面积×高”来计算。
2、能运用有关知识,灵活地解决一些实际问题。
3、让学生体验掌握数学知识的成功喜悦,激发学习的兴趣,培养善于归纳总结、自我激励的良好学习习惯。
教学重点:归纳整理有关圆柱和圆锥的知识,形成知识体系。
教学难点:理解圆柱体与长方体、正方体等表面积及体积之间的联系,理解圆柱和圆锥之间的联系和区别,提高运用知识解决问题的能力。
教学过程:一、梳理知识点1、导入同学们,这节课我们要一起来复习圆柱和圆锥的有关知识。
2、检查课前整理知识情况3、展示交流,复习知识点师:《圆柱与圆锥》这一单元,你学会了哪些知识?谁来汇报一下。
指名学生上台投影交流展示并说出整理过程4、本单元易错点(指名说)二、练习与思考你能计算下面各图形的表面积与体积吗?各个图形之间的特征有什么联系?1、表面积:(1)它们的表面积是多少?(先让学生独立完成后全班交流)师:长方体和三棱柱的表面积还有其他不同的算法吗?(2)你们有什么发现?它们的表面积都可以用侧面积+两个底面积来计算(3)课件演示立体图形的平面展开图:课件展示:侧面积+两个底面积2、体积(1)它们的体积是多少?(先让学生独立完成后全班交流)(2)你有什么发现?它们的体积都可以用底面积×高来计算。
3.议一议:有一位同学说:“圆锥的体积是圆柱体积的1/3。
”你们认为他说得对吗?4、圆柱和圆锥的体积相等,高也相等,它们的底面积之间有什么关系?三、综合应用1、一个酒瓶里面深30厘米,底面直径是8厘米,瓶里有酒深10厘米,把酒瓶塞紧后倒置(瓶口向下),这时酒深20厘米。
酒瓶的容积是多少毫升?(先让学生独立完成,后全班交流)2、用一底面边长为2分米,高为5分米长方体木料做一个最大的圆柱,木料的利用率是多少?四、拓展延伸有一张长为12厘米,宽为6厘米的长方形卡纸,如果要把它折成高是6厘米的长方体或者圆柱体,它们的体积是多少立方厘米?先让学生独立思考并计算出结果,然后全班交流汇总你有什么发现?小组讨论后全班交流五、课后思考如果把它折成高是12厘米的长方体或者圆柱体,它们的体积是多少?六、总结收获这节课你有什么收获?。
六年级下册数学复习资料六年级数学下册复习资料(精选8篇)
六年级下册数学复习资料六年级数学下册复习资料(精选8篇)又到考试了,要如何复习数学这个问题不仅学生们头疼,老师家长们也闲不下来。
本页是编辑午夜帮大家整编的8篇六年级下册数学复习资料的相关范文,欢迎借鉴,希望大家能够喜欢。
六年级下册数学复习重点归纳篇一1、认识圆柱和圆锥,掌握它们的基本特征。
认识圆柱的底面、侧面和高。
认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。
7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。
8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。
进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
9、圆锥只有一个底面,底面是个圆。
圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的距离是圆锥的高。
圆锥只有一条高。
(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)11、把圆锥的侧面展开得到一个扇形。
12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。
13、常见的圆柱圆锥解决问题:①压路机压过路面面积(求侧面积);②压路机压过路面长度(求底面周长);③水桶铁皮(求侧面积和一个底面积);④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
小学数学六年级下册《圆柱与圆锥》整理与复习教案
第三单元圆柱与圆锥第9课时整理与复习【学习目标】1.能够系统清晰地梳理本单元所学知识,正确理解知识间的联系与区别。
2.正确灵活地运用所学知识解决简单实际问题。
【学习过程】一、知识梳理在本单元我们都学习了哪些知识?用你喜欢的方法整理出来吧!我的问题:。
二、专项训练1.计算下面个图形的体积。
2.解决问题。
三、课堂达标1.填空。
你可以采用画图,列表格等不同方法哦!整理过程中你有什么问题吗?记录下来吧!计算中用到了哪些知识?说说你的思路!(1)一个圆柱和一个圆锥等底等高,圆锥的体积是24立方米,圆柱的体积是(),如果圆柱的体积比圆锥的体积大18立方米,圆柱的体积是(),圆锥的体积是()。
(2)用一张长15厘米,宽12厘米的长方形纸围成一个圆柱,这个圆柱的侧面积是()平方厘米。
(3)一个圆柱体削成一个与它等底等高的圆锥体, 削去的部分是圆锥体的( )%.2.同学们用彩纸制作了20个圆柱形灯罩,每个灯罩高35cm,底面圆的周长是47.1cm 。
至少需要用多少彩纸?想一想是要求圆柱的什么呀?3.一个圆锥形沙堆,底面积是28.26㎡,高是2.5m。
用这堆沙在10m宽的公路上铺2cm厚的路面,能铺多少米?计算时要注意单位哦!4.一块蜂窝煤大约需要用煤多少立方分米?(得数保留整数)四、课外拓展压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,前轮每分钟转动10周,每分钟前进多少米?每分钟压路多少平方米?为什么要规定“先乘除后加减”?对于这个问题,我们分两层来谈。
第一层先谈谈规定运算顺序的必要性,第二层再谈谈为什么要规定“先乘除后加减”。
(1)规定运算顺序的必要性。
先举两个例子予以说明。
例1 小勇买了一块橡皮,价18分,又买了3支铅笔,每支12分,一共多少钱?综合算式18+12×3=18+36=54(分)=5角4分根据题意,这道题先算乘法后算加法是合情合理的。
例2 小春有18分钱,小敏有12分钱,小冬的钱数是他们俩人钱数之和的3倍,问小冬有多少钱?解答这道题的时候应该先求出小春与小敏两人钱数之和,即求出(18+12=)30分,然后再求出30分的3倍,即(30×3=)90分。
人教版六年级数学下册第三单元第11课《整理和复习》课件
6.乐乐先用橡皮泥做了一个圆柱,再在圆柱中凿了四 个相同的圆柱形孔,剩余部分的体积是多少立方厘 米?(大圆柱的底面直径为24 cm,小圆柱的底面直径 为 38.1c4m×,(2高4÷都2是)2×151c5m-)3.14×(8÷2)2×15×4=3768(cm3) 答:剩余部分的体积是3768 cm3。
(1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。)
先求这个进料漏斗的体积 × 每立方分米稻谷质量
圆锥的体积 圆柱的体积
3.14×(4÷2)2×4.2×
1 3
+
3.14×(4÷2)2×2
一种水稻磨米机的进料漏斗由圆柱和圆锥两部分组成。 圆柱和圆锥的底面直径都是4dm,圆柱高2dm,圆锥高 4.2dm。每立方分米稻谷大约重0.65kg。
×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
7.一管鞋油的出口直径为5 mm,爸爸每天挤出 20 mm长的鞋油擦鞋,这管鞋油可用36天。这 管鞋油有多少立方毫米? 3.14×(5÷2)2×20×36=14130(mm3) 答:这管鞋油有14130 mm3。
2 人教版六年级下册第二单元《圆柱和圆锥》整理与复习
1.一铁制圆锥底面直径是12cm,高 为6cm,它的体积是多少?将其熔铸 成一个与它等底的圆柱体,这个圆 柱 的高是多少?
四、综合运用,拓展延伸
2、修建一个圆柱形的沼气 池,底面直径是3m,深2m。 在池的四壁与下底面抹上水 泥,抹水泥部分的面积是多 少?
四、综合运用,拓展延伸
3.一个圆锥形沙堆,底面圆的周长 是31.4米,高3米.这个沙堆的体积 是多少?如果用一辆一次能装8立 方米的卡车运送,一共需要卡车多 少辆?
四、综合运用,拓展延伸
4、求下列钢材的体 积。(单位:厘米)
20
15
五、课堂总结 这节课你有什么收获?
(3)圆锥的高是圆柱高的3倍,并且来自们 的底面积相等,则它们的体积相等(√) (4)如果两个圆柱的体积相等,它们的 ×) 表面积也一定相等。 (
3、选择 (1)、圆锥的侧面展开图是一个 ( D)
A . 长方形 B.正方形
C. 圆 D.扇形 (2)、圆柱和圆锥的侧面都是(C )
A . 直面 B.平面
C. 曲面
D.无法确定
(3)、“压路机的一个滚轮转动一 B 周能压多少路面”是指( )
A . 滚轮的两个底面积
C. 滚轮的表面积
B. 滚轮的侧面积
D. 以上说法都不对
(4)、求一段圆柱形钢材所占空间 的大小,是求它的(B )
A .容积 B .体积 C . 底面积 D. 侧面积
四、综合运用,拓展延伸
整理与复习
回顾整理,构建网络
这个单元我们学习了哪些 知识?
圆柱的认识
圆柱 圆柱和圆锥 圆柱的表面积 圆柱的体积 圆锥的认识
圆锥 圆锥的体积
类化练习、当堂巩固
1、看到这个图,你能想到了这个
六年级下册数学第三单元圆柱与圆锥整理和复习PPT
4.有块正方体的木料,它的棱长是4dm。把 这块木料加工成一个圆柱。这个圆柱的体积 最大是多少?
4×4×4×78.5%=50.24(dm3) 答:这个圆柱的体积最大是50.24dm3。
5.一个圆柱形木桶,底面内直径为4dm,桶口距 底面最小高度为5 dm,最大高度为7dm。这个木 桶如右图放置时,最多能装多少升水?
(1)3.14×(4÷2)2×2+
1 3
×3.14×(4÷2)2×4.2
=42.704(dm3)
0.65×42.704≈27(kg)
答:这个进料漏斗大约能装27千克稻谷。
(2)27×70%=18.9(kg) 答:一漏斗稻谷大约能磨出18.9千克大米。
随堂练习 1.把一块长方体钢坯熔铸成一根底面直径为4dm 的圆柱形钢材,求钢材的长度。
(1)做这个布套至少用了多少 布料? (2)一壶水够1.5L吗?(水壶 和布套的厚度忽略不计。)
(1)3.14×10×20+3.14×(10÷2)2×2 =785(cm2) 答:做这个布套至少用了785cm2的布料。
(2)3.14×(10÷2)2×20=1570(cm3)
1570cm3=1570mL=1.57L 1.57L>1.5L 答:一壶水够1.5L。
3.如图,把一个棱长是 6 dm 的正方体木料削成一个最 大的圆柱,圆柱的体积是( 169.56 )dm3,再将圆柱削 成一个最大的圆锥,还要再削去( 113.04)dm3。
二、一个圆锥形沙堆,底面直径是 6 m,高是 2.5 m,用这堆沙在 10 m 宽的公路上铺 2 cm 厚的路面,能铺多少米?
4.一种水稻磨米机的进料漏斗由圆柱和圆锥 两部分组成。圆柱和圆锥的底面直径都是 4dm,圆柱高2dm,圆锥高4.2dm。每立方 分米稻谷大约重0.65 kg。 (1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。) (2)如果稻谷的出米率是70%,一漏斗稻 谷大约能磨出多少千克大米?
人教版六年级数学下册第三单元第4课《圆柱的表面积》整理复习课件
一个圆柱的侧面积是188.4 dm2,底面半径是2 dm。 它的高是多少?
根据3.14×圆柱的底面半径×2×高=圆柱的侧面积
188.4÷(3.14×2×2)=15(dm)
侧面积 ÷ 底面周长 = 高
答:这个圆柱的高是15dm。
一根圆柱形木料的底面半径是0.5m,长是2m。如图所示, 将它截成4段,这些木料的表面积之和比原木料的表面积增 加了多少平方米?
正方形的边长
圆柱的底面周长 =圆柱的高
解:设圆柱的底面直径为d,底面周长为dπ。 直径与高的比 d∶πd =1∶π
答:这个圆柱底面直径与高的比是1∶π。
这节课你们都学会了哪些知识?
圆柱的表面积计算 1.计算方法:
圆柱的表面积=侧面积+两个底面积
2πrh
2×πr2
2.解决问题时要根据实际情况判断。
圆柱表面积的意义 1.填一填。 (1)圆柱的表面积是指圆柱的( 侧面积 )和
求用了多少彩纸,需要用圆 柱的表面积减去上下底面中 间留出的口的面积。
(1)侧面积:3.14×20×30=1884(cm2 ) (2)两个底面的面积:3.14×(20÷2)2 ×2=628(cm2 ) (3)需要用的彩纸:1884+628-78.5×2=2355(cm2 )
答:他用了2355cm2的彩纸。
3 圆柱与圆锥
练习四
说一说:圆柱展开图是什么样的。
用手摸一摸,圆的表面积是哪Fra bibliotek? 圆柱的表面积是指圆柱的侧面积和两个底面积 的面积和。
用字母怎么表示呢?
圆柱的表面积=侧面积+两个底面积
底面是圆形 S底= πr 2
S表=S侧 +2S底
长方形的面积= 长 × 宽
人教版六年级数学下册第三单元第10课《圆锥 》整理复习课件
明明把一块底面周长是18.84cm,高5cm的圆柱体橡皮泥 捏成一个底面直径是8cm的圆锥体,这个圆锥体的高是多 少厘米?(得数保留一位小数)
圆柱体变成圆锥体,形状变了,前后体积没变。 Ⅴ锥 = V 柱
18.84÷3.14÷2=3(cm) 3×3.14×32×5÷[3.14×(8÷2)2 =423.9÷50.24 ≈8.4(cm) 答:圆锥体的高是8.4cm。
利用圆锥的体积公式计算 2.计算下面各圆锥的体积。
13×36×5=60(cm3)
3.14×42×12×13=200.96(cm3) 3.14×(4÷2)2×5.4×13=22.608(cm3)
圆锥体积公式的逆用
3.(易错题)一个圆柱形铁块,底面半径是2 cm,高是 12 cm。将这个圆柱形铁块熔铸成一个底面半径是 4 cm的圆锥,圆锥的高是多少厘米? 3.14×22×12=150.72(cm3) 150.72×3÷3.14÷42=9(cm) 答:圆锥的高是9 cm。
1000×25%=250(万立方米)
250>200
答:该日该地区总降水为1000万立方米。
这些雨水的25%能满足绿化所需。
这节课你们都学会了哪些知识?
速记宝典
圆锥体积容易算,它与圆柱有关联。 等底等高不能忘,三分之一记心间。 题中条件亮红灯,单位一致需看清。 计算一定要仔细,这样才能出成绩。
圆锥的特点
3 圆柱与圆锥
练习六
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ
人教版新插图小学六年级数学下册第3单元《练习3-7整理和复习》课件
黑布:
3.14×20×10+3.14×(20÷2)2 =942(cm2)
红布:
3.14×(40÷2)2-3.14×(20÷2)2 =942(cm2)
答:两种颜色的布用得一样多。
7.林叔叔用彩纸做了一个圆柱形的灯笼(如图)。上 下底面的中间分别留出了78.5cm2的圆孔,他用了多 少彩纸?
侧面:3.14×20×30=1884(cm2) 底面:3.14×(20÷2)2=314(cm2) 用的彩纸: 1884+314×2-78.5×2=2355(cm2) 答:他用了2355cm2彩纸。
4.如下图,上排图中切完后的截面或剪完后展开 的侧面分别是什么形状?请与下排图连一连。
5.把一张长方形的纸横着或竖着卷起来,可以卷成 什么形状?
可以卷成一个没有底面的圆柱。
人教版(新插图)小学六年级数学下册
第 3 单元 圆柱与圆锥
练习四
1.求下面各圆柱的表面积。(单位:cm)
侧面积: 3.14×40×3=376.8(cm2) 底面积: 3.14×(40÷2)2=1256(cm2) 表面积: 376.8+1256×2=2888.8(cm2)
=3.14×(4÷2)2×12 =150.72(cm3)
V =π ( d ) 2h 2
=3.14×(8÷2)2×8 =401.92(cm3)
2.一个圆柱形油桶的底面直径是60cm,高是90cm,这个 油桶最多可以装多少油?(数据是从油桶里面测量 得到的。 3.14×(60÷2)2×90 = 254340(cm3) 254340cm3 = 254.34L
答:这个油桶最多可以装254.34L油。
3. 学校建了两个同样大小的圆柱形花坛。花坛的 底面内直径是4m,高是0.8m。如果里面填土的高 度是0.5m,两个花坛一共需要填土多少立方米?
第三单元《圆柱和圆锥》章节总复习-六年级下册数学同步重难点讲练 人教版(含解析)
六年级下册数学同步重难点讲练圆柱、圆锥总复习教学目标1,通过整理和复习,学生进一步认识圆柱、圆锥的特征,掌握圆柱表面积、体积,圆锥体积的计算方法。
2、综合运用所学知识,灵活地解决与圆柱、圆锥有关的数学问题。
教学重难点重点:归纳整理有关圆柱和圆锥的知识,形成知识体系。
难点:综合运用所学知识,灵活地解决与圆柱、圆锥有关的数学问。
知识点1:圆柱的特征(1)底面的特征:圆柱的底面是完全相的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高。
7.圆柱的体积:2、圆柱的高:两个底面之间的距离叫做高。
3、圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时,沿高展开图是正方形;当不沿高展开时展开图是平行四边形。
【典例分析1】(2019春•平舆县月考)在下图中,以直线为轴旋转,可以得到圆柱体的是()A.B.C.D.【思路引导】根据各图形的特征,长方形绕一边所在的直线为轴旋转一周得到到一个圆柱;由此规范解答即可.【完整解答】由圆柱的特点可知:在下图中,以直线为轴旋转,可以得到圆柱体的是;故选:C .【变式训练1】(2019•大渡口区)15、用丝带捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去25厘米丝带,扎这个礼品盒至少需要( )的丝带.A .255cmB .260cmC .285cmD .460cm知识点2:圆柱的侧面积、表面积和体积1、圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S 侧=Ch 。
2、圆往的表面积:圆柱的表面积=侧面积+2×底面积。
即s 表=s 侧+2s 底。
3、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
V=Sh【典例分析2】(2019•怀化模拟)求下面各图形的表面积.(单位:)cm(1)(2)【思路引导】根据圆柱体的表面积=底面面积2⨯+侧面积,依据公式列式规范解答即可.【完整解答】(1)23.1432 3.143210⨯⨯+⨯⨯⨯56.52188.4=+2244.92()cm =答:表面积是2244.92cm .(2)23.14(122)2 3.14125⨯÷⨯+⨯⨯226.08188.4=+2414.48()cm =答:表面积是2414.48cm .【变式训练2】(2019•漳浦县校级自主招生)如图1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:)cm .将它们拼成如图2的新几何体,则该新几何体的体积用π表示,应为( )A .364cm πB .360cm πC .356cm πD .340cm π知识点3:圆锥的特征1、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
六年级数学下册3圆柱与圆锥3.6整理和复习教学反思新人教版
整理和复习
1.在设计这节复习课时,先指导学生对本单元的知识进行了整理,多数学生整理的都比较完整,说明学生已形成了总结能力。
学生掌握了本单元的知识结构后,还要强化教材的重点。
在复习圆柱和圆锥特征这部分内容时,让学生说一说圆柱的特征,互相补充,学生没有说到的,教师再进行补充。
这样学生从感性到理性对立体图形的特征有了进一步明确的认识,更进一步形成了空间观念。
对公式的理解和掌握又是本单元的另一个难点。
复习时,先让学生重温几个最基本公式的推导过程,进一步理解公式形成的过程,进而达到流利地复述,增强记忆的效果。
如:S侧=Ch,S表=S侧+2S底,V柱=Sh,V锥=Sh,其中的侧重点是让学生流利地复述圆柱侧面积、体积,圆锥体积等公式的推导过程,这样学生在整理复习中就抓住了教材的重点。
2.为了深化这部分知识,提高学生灵活运用知识的能力。
教学时,给学生提供了积极思考,充分参与探索活动的时间和空间。
其中圆锥的体积和与它等底等高的圆柱的体积的关系,应让学生在经历试验探究过程中获取,改变以往只通过演示得出结论的做法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.将下面图形分类,说说每类图形的名称和特征。圆柱圆锥来自圆柱的侧面积怎样计算呢?
圆柱的侧面积 = 底面周长 × 高
S圆柱侧=Ch
圆柱的表面积怎样计算呢?
圆柱的表面积 = 圆柱的侧面积 + 两个底面的面积
S圆柱表= S侧+ 2S底
底面 S圆柱侧=Ch
侧面
底面
圆柱的表面积= 圆柱的侧面积 + 两个底面的面积 =
) ×
4、一个圆柱的高缩小2倍,底面半径扩大2 倍,它的
体积不变。( ×)
厚度忽略不计时
5、圆柱的底面直径和高相等,那么它的侧面展开是
一个正方形。(× )
判断:
6、计算圆柱形油桶能装多少升油就是求这个油桶 的容积。( √ )
7、圆柱底面直径扩大2倍,高不变,它的体积也扩
大2倍。(× ) 8、圆柱的底面周长和高相等时,它的侧面展开图一 定是正方形。( √ ) 9、求做一个圆柱形的通风管需要多少铁皮,就是求
圆柱的表面积。( × )
基本练习:
回答下面的问题,并只列出算式:
一个圆柱形无盖的水桶,底面半径10分米,高20分米。
1.给这个水桶加个箍,是求什么? 求周长 2×3.14×10
2.求这个水桶的占地面积,是求什么? 求底面积 3.14×102 3.做这样一个水桶用多少铁皮,是求什么? 求表面积 2×3.14×10×20 + 3.14×102 4.这个水桶能装多少水,是求什么? 求体积 3.14×102×20
高 表面积 体积
关系
1 V Sh 3
圆锥的体积等于与它等底等高的圆柱体积的三分之一。
完成课本P37 2、3、4
判断:
1、长方体、正方体、圆柱体的体积都可以用底面积 乘以高来计算。(√ )
1 2、圆锥的体积是圆柱体积的 。( × ) 3 3、一个圆柱形杯子的体积等于它的容积。(
错的,体积是从外边量,容积是从里面量的
用字母表示是:
S圆柱表= S侧
+ 2S底 2 = 2πrh + 2πr
长方体的底面积等于圆柱的 底面积 高等于圆柱的 高 =底面积×高 长方体体积=底面积×高
, 。
圆柱体积 V圆柱=S底h
=
圆锥的体积正好等于与它等底等高的圆柱体积的
等底等高时:
三分之一
1 圆锥的体积= 圆柱的体积 3
V圆柱=S底h
用字母表示:
用文字表示:
1 Ⅴ圆锥= 3 S底h 1 = πr2 h 3
圆锥的体积= 1 底面积×高 3
圆柱和圆锥的特征与关系
圆柱 圆锥
一个,圆形。
一个,曲面,展开后 是扇形。 一条(顶点到底面圆 心)。 ————
底面
侧面
两个,圆形。完全相同,互 相平行。 一个,曲面,展开后是长方 形或正方形或平行四边形。 无数条,一样长。 S表= S侧+ 2S底 S表=C(r+h) S侧=Ch V=Sh
拓展练习:
一个圆柱长10厘米,接上4厘米的一段后,表面积增加了 25.12平方厘米,求原来圆柱的体积是多少立方厘米?
(1)求底面半径: 25.12÷4÷3.14÷2 =6.28÷3.14÷2 =1(cm)
(1)求原来的圆柱体积:
3.14×12×10 =31.4(cm2) 答:原来圆柱的体积是31.4cm3。
=23.55÷0.2 =117.75(m) 答:能铺117.25m。
3.14×(4÷2)2×4 =3.14×16 =50.24(dm3) 答:这个圆柱的体积是50.24dm2。
树苗如果因为怕痛 而拒绝修剪, 那就永远不会成材。
练
习
五
3.14× (12÷2)2×9-3.14×(2÷2)2×9×12 =3.14× 324-3.14×108 =3.14×216 =678.24(cm3) =0.67824(dm3) ≈1(dm3)
答:一块蜂窝煤大约需要用煤1dm3。
2cm=0.02m 1 28.26 2.5 (10 0.02) 3