圆柱和圆锥的整理与复习PPT课件
合集下载
六年级下册数学课件-第3单元 圆柱与圆锥 丨人教新课标 (共88张PPT)
5. 时代广场有一个圆柱形喷水池,底面直径是4 m, 深0.8 m。如果要在喷水池的底面和内壁贴上瓷砖,那 么贴瓷砖的面积是多少平方米?
3.14×(4÷2)2+3.14×4×0.8 =22.608 (m2) 答:贴瓷砖的面积是22.608 m2。
能力提升扩展 6. 如图,一张正方形纸卷成一个圆柱,求这个圆柱的 高与底面直径的比。
2. 选一选。(把正确答案的字母代号填在括号里)
(1)圆柱的底面半径是2.5 cm,高是3 cm,沿高展开
得到的长方形的长是( A )cm,宽是( D )cm。
A. 15.7
B. 5
C.18.84
D. 3
(2)下图以直线(虚线)为轴快速旋转一周,能形成
圆柱的是
( A )。
3. 辨一辨。(对的在后面的括号里画“√”,错的画
6 dm=0.6 m 3.14×(0.6÷2)2×2+3.14×0.6×1.2≈3 (m2) 答:做这个油桶至少需要3 m2的铁皮。
能力提升扩展
6. 把一个实心大圆柱切成3个同样大小的小圆柱,3个 小圆柱的表面积之和比大圆柱的表面积多了3.6 dm2。 大圆柱的底面积是多少?
3.6÷[(3-1)×2]=0.9 (dm2) 答:大圆柱的底面积是0.9 dm2。
它们的体积也相等。
(√)
4. 一根圆柱形塑料棒,底面积为75 cm2,长110 cm。 它的体积是多少?
75×110=8250 (cm3) 答:它的体积是8250 cm3。 5. 一个圆柱的体积是120 m3,底面积是12 m2。它的高 是多少? 120÷12=10 (m)
答:它的高是10 m。
能力提升扩展
7 圆柱的体积(2)
基础巩固
新人教版小学数学六年级下册课件:《整理和复习》(共18张ppt)
3.正确选择。
A
B
综合应用
(3)甲乙两人分别利用一张长20厘米,宽15厘米的纸用两种不同的方法围成一个圆柱体(接头处不重叠),那么围成的圆柱( )。 A. 高一定相等 B. 侧面积一定相等 C. 侧面积和高都相等 D. 侧面积和高都不相等
综合应用
问题一
底面
底面
底面的周长
底面
底面
高
长方形的长=圆柱底面的周长,宽=圆柱的高。
圆柱的展开图
底面的周长
圆锥的特征
从圆锥的顶点到底面圆心的距离是圆锥的高。
底面
O
r
h
高
圆锥的底面是个圆, 侧面是一个扇形。
问题一
顶点
问题二
圆柱的侧面积与表面积
底面
底面
高
侧 面
底面
底面
高
底面的周长
S表面积=S侧面积+2×S底面积
综合应用
(1)做一个圆柱形烟囱要用多少铁皮,是求圆柱的( )。 A.侧面积 B.表面积 C.体积 (2)一个圆柱形水箱,底面周长是12.56分米,给这个水箱配一个盖子,应选铁皮为( )。(单位:分米) A. B. C.
——
0.5cm
4.5m
——
10dm
1m
40cm
2dm
1cm
314dm3
6280cm3
1.1775m3
2.198m3
10.048dm3
282.6dm2
3140cm2
10.676m2
综合应用
1. 计算下面各图形的体积。
8.5×4×3=102 (dm3)
( )2×3.14×5=251.2(cm3)
8 2
综合应用
A
B
综合应用
(3)甲乙两人分别利用一张长20厘米,宽15厘米的纸用两种不同的方法围成一个圆柱体(接头处不重叠),那么围成的圆柱( )。 A. 高一定相等 B. 侧面积一定相等 C. 侧面积和高都相等 D. 侧面积和高都不相等
综合应用
问题一
底面
底面
底面的周长
底面
底面
高
长方形的长=圆柱底面的周长,宽=圆柱的高。
圆柱的展开图
底面的周长
圆锥的特征
从圆锥的顶点到底面圆心的距离是圆锥的高。
底面
O
r
h
高
圆锥的底面是个圆, 侧面是一个扇形。
问题一
顶点
问题二
圆柱的侧面积与表面积
底面
底面
高
侧 面
底面
底面
高
底面的周长
S表面积=S侧面积+2×S底面积
综合应用
(1)做一个圆柱形烟囱要用多少铁皮,是求圆柱的( )。 A.侧面积 B.表面积 C.体积 (2)一个圆柱形水箱,底面周长是12.56分米,给这个水箱配一个盖子,应选铁皮为( )。(单位:分米) A. B. C.
——
0.5cm
4.5m
——
10dm
1m
40cm
2dm
1cm
314dm3
6280cm3
1.1775m3
2.198m3
10.048dm3
282.6dm2
3140cm2
10.676m2
综合应用
1. 计算下面各图形的体积。
8.5×4×3=102 (dm3)
( )2×3.14×5=251.2(cm3)
8 2
综合应用
人教版《圆柱与圆锥》(完美版)PPT课件1
解答此类题的关键是明确长方形的长(宽)或 正方形的边长等于圆柱的底面周长,根据公式 C=2πr 或C=πd求出圆的周长,然后与长方形 的长(宽)或正方形的边长进行比较即可确定 答案。
规范解答:选择①和B、②和A或②和C都恰好 能做成圆柱形的盒子。
1.把圆柱的侧面沿高展开,得到一个(长方形),它 的长等于圆柱底面的(周长),宽等于圆柱的 ( 高 )。
思路分析:塔的顶端呈圆锥形,求塔的顶端的体积就
是求圆锥的体积。计算时先根据公式S底=π
求
出圆锥的底面积,再根据公式V
求出圆锥的体
积。
规范解答::圆锥的底面积: 3.14×(18.84÷3.14÷2)²
=3.14×9 =28.26(m²) 圆锥的体积:
×28.26×6 =2×28.26 =56.52(m³) 答:塔的顶端的体积是 56.52立方米。
20×2×3.14×60+202×3.14=8792(cm²) 答:做这个水桶至少需要8792平方厘米铁皮。
例3 一根钢管,长50厘米,外圆直径是10厘米, 钢管厚2cm(如下图)。铸造这样一根钢管需要 钢材多少立方厘米?
思路分析:求铸造这样一根钢管需要钢材的体积, 就是用大圆柱的体积减去中空的小圆柱的体积。
思路分析:瓶子正放和倒放时的容积与饮料的体积不
变,所以瓶子空余部分的容积相等。因此,饮料瓶的
容积就相当于一个高为(20+4)cm 的圆柱形容器的
容积,可推知饮料体积占瓶子容积的
,即
480mL的
。
确定瓶中饮料的体积占瓶子容积的几分之几是解答
此题的关键。
规范解答:20+4=24(cm) 480× =400(mL) 答:瓶内现有饮料400毫升。
3.一个内半径是10cm的饮料瓶里,饮料的高度为 4cm,把瓶盖拧紧倒置放平,无水部分是圆柱形, 高度为16cm,这个瓶子的容积是多少?
圆柱与圆锥的整理复习
立方米?如果每立方米稻谷重500千克,这个粮 囤能装稻谷多少吨?
圆柱的底面半径为:62.8÷3.14÷2=10(m) 3.14×10²×2+3.14×10²×1.2÷3=628+125.6=753.6(m³)
圆柱体积
圆锥体积
753.6×500=376800(千克)=376.8(吨)
答:————————————。
=314(cm²) 铁块的高为:6280 x3÷314= 60(cm)
答:————————。
7、一个圆锥形的沙堆,底面周长是31.4m, 高是7.2m,每立方米沙重1.5吨,如果用 一辆载重6吨的汽车来运,几次可以运完?
底面半径r=31.4÷3.14÷2=5(m) 沙堆的体积:
V=1/3 × 3.14 × 5²× 7.2=188.4(m³) 188.4 × 1.5÷6≈48(次)
答:——————————。
• 1 圆柱与圆锥各有哪些特征? • 2 怎样求圆柱的侧面积.表面积.体积? 计算公式各是什么?
• 3怎样求圆锥的体积?计算公式是什么? • 4圆柱与圆锥的体积之间有什么系?
圆柱的特征:
1.两个底面是半径相等的两个圆 2.圆柱有一个曲面叫做侧面,展 开后是一个长方形。 3.圆柱有无数条高,且高的 长度都相等
V=sh÷3
圆柱与圆锥的体积之间有什么关系?
等底等高圆锥体积是圆柱体积的 三分之一 等底等高圆柱体积是圆锥体积的3倍
请回答下面的问题,并列出算式。
一个圆柱形水桶,底面半径10分米,
高是20分米。 ①给这个水桶加个桶的外面涂上油漆,是求哪个
部分? ④这个水桶能装多少水,是求哪个部分?
1.甲乙两人分别利用一张长20厘米, 宽15厘米的纸用两种不同的方法围成 一个圆柱体(接头处不重叠),那么 围成的圆柱( B )。
圆柱的底面半径为:62.8÷3.14÷2=10(m) 3.14×10²×2+3.14×10²×1.2÷3=628+125.6=753.6(m³)
圆柱体积
圆锥体积
753.6×500=376800(千克)=376.8(吨)
答:————————————。
=314(cm²) 铁块的高为:6280 x3÷314= 60(cm)
答:————————。
7、一个圆锥形的沙堆,底面周长是31.4m, 高是7.2m,每立方米沙重1.5吨,如果用 一辆载重6吨的汽车来运,几次可以运完?
底面半径r=31.4÷3.14÷2=5(m) 沙堆的体积:
V=1/3 × 3.14 × 5²× 7.2=188.4(m³) 188.4 × 1.5÷6≈48(次)
答:——————————。
• 1 圆柱与圆锥各有哪些特征? • 2 怎样求圆柱的侧面积.表面积.体积? 计算公式各是什么?
• 3怎样求圆锥的体积?计算公式是什么? • 4圆柱与圆锥的体积之间有什么系?
圆柱的特征:
1.两个底面是半径相等的两个圆 2.圆柱有一个曲面叫做侧面,展 开后是一个长方形。 3.圆柱有无数条高,且高的 长度都相等
V=sh÷3
圆柱与圆锥的体积之间有什么关系?
等底等高圆锥体积是圆柱体积的 三分之一 等底等高圆柱体积是圆锥体积的3倍
请回答下面的问题,并列出算式。
一个圆柱形水桶,底面半径10分米,
高是20分米。 ①给这个水桶加个桶的外面涂上油漆,是求哪个
部分? ④这个水桶能装多少水,是求哪个部分?
1.甲乙两人分别利用一张长20厘米, 宽15厘米的纸用两种不同的方法围成 一个圆柱体(接头处不重叠),那么 围成的圆柱( B )。
人教版六年级数学下册第三单元第11课《整理和复习》课件
少立方分米?(结果保留一位小数) 24÷12=2(dm) 3.14×(2÷2)2×2×13≈2.1(dm3) 答:削成的圆锥的体积约是 2.1 dm3。
6.乐乐先用橡皮泥做了一个圆柱,再在圆柱中凿了四 个相同的圆柱形孔,剩余部分的体积是多少立方厘 米?(大圆柱的底面直径为24 cm,小圆柱的底面直径 为 38.1c4m×,(2高4÷都2是)2×151c5m-)3.14×(8÷2)2×15×4=3768(cm3) 答:剩余部分的体积是3768 cm3。
(1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。)
先求这个进料漏斗的体积 × 每立方分米稻谷质量
圆锥的体积 圆柱的体积
3.14×(4÷2)2×4.2×
1 3
+
3.14×(4÷2)2×2
一种水稻磨米机的进料漏斗由圆柱和圆锥两部分组成。 圆柱和圆锥的底面直径都是4dm,圆柱高2dm,圆锥高 4.2dm。每立方分米稻谷大约重0.65kg。
×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
7.一管鞋油的出口直径为5 mm,爸爸每天挤出 20 mm长的鞋油擦鞋,这管鞋油可用36天。这 管鞋油有多少立方毫米? 3.14×(5÷2)2×20×36=14130(mm3) 答:这管鞋油有14130 mm3。
6.乐乐先用橡皮泥做了一个圆柱,再在圆柱中凿了四 个相同的圆柱形孔,剩余部分的体积是多少立方厘 米?(大圆柱的底面直径为24 cm,小圆柱的底面直径 为 38.1c4m×,(2高4÷都2是)2×151c5m-)3.14×(8÷2)2×15×4=3768(cm3) 答:剩余部分的体积是3768 cm3。
(1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。)
先求这个进料漏斗的体积 × 每立方分米稻谷质量
圆锥的体积 圆柱的体积
3.14×(4÷2)2×4.2×
1 3
+
3.14×(4÷2)2×2
一种水稻磨米机的进料漏斗由圆柱和圆锥两部分组成。 圆柱和圆锥的底面直径都是4dm,圆柱高2dm,圆锥高 4.2dm。每立方分米稻谷大约重0.65kg。
×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
7.一管鞋油的出口直径为5 mm,爸爸每天挤出 20 mm长的鞋油擦鞋,这管鞋油可用36天。这 管鞋油有多少立方毫米? 3.14×(5÷2)2×20×36=14130(mm3) 答:这管鞋油有14130 mm3。
2022春六年级数学下册一圆柱和圆锥复习课件北师大版
第二十九页,编辑于星期六:三点 三十五分。
典型例题分析
分析:圆锥沿底面直径经过顶点切开后表面积比原来增加了两个三角形的面
积,这两个三角形的底是圆锥的底面直径,高是圆锥的高。先求出每个三角形的面
积,已知三角形的高是6cm,根据三角形的面积公式求出底,继而求出圆 锥的底面半径。
第三十页,编辑于星期六:三点 三十五分。
第十八页,编辑于星期六:三点 三十五分。
典型例题分析
解答:圆①的周长:3.14×4=12.56(cm) 圆②的周长:3.14×5=15.7(cm) 圆③的周长:3.14×6=18.84(cm)
比较:圆②的周长等于长方形的长。
答:选择圆②作底合适。
第十九页,编辑于星期六:三点 三十五分。
典型例题分析
2
2
(2)圆锥的体积
圆锥体积的计算公式为:圆锥的体积=底面积×高× =1 Sh1,因为S
=πr ,所以V=πr h。
2
2
33
第十二页,编辑于星期六:三点 三十五分。
复习驿站
(3)如何区分是求圆柱的体积、容积还是求表面积
求做圆柱形状的物体需要的材料、圆柱形状的墙壁抹水泥面积的多少,或贴墙需 要多少瓷砖等,这样的表述是求表面积。还有一个判定方法就是看所求问题的单位,所 求问题的单位是平方的,则求表面积;所求问题的单位是立方、升、毫升的,则求体积 。求圆柱能装下多少的问题,就是求容积,用体积公式。
2
3
答:这个粮囤大约能装稻3 谷7.95立方米。
第十五页,编辑于星期六:三点 三十五分。
复习驿站
8.圆锥、圆柱的体积关系
(1)等底(面积)等高时,圆锥的体积是圆柱体积的 ,1 即圆锥的体积=
圆柱的体积× 。1
典型例题分析
分析:圆锥沿底面直径经过顶点切开后表面积比原来增加了两个三角形的面
积,这两个三角形的底是圆锥的底面直径,高是圆锥的高。先求出每个三角形的面
积,已知三角形的高是6cm,根据三角形的面积公式求出底,继而求出圆 锥的底面半径。
第三十页,编辑于星期六:三点 三十五分。
第十八页,编辑于星期六:三点 三十五分。
典型例题分析
解答:圆①的周长:3.14×4=12.56(cm) 圆②的周长:3.14×5=15.7(cm) 圆③的周长:3.14×6=18.84(cm)
比较:圆②的周长等于长方形的长。
答:选择圆②作底合适。
第十九页,编辑于星期六:三点 三十五分。
典型例题分析
2
2
(2)圆锥的体积
圆锥体积的计算公式为:圆锥的体积=底面积×高× =1 Sh1,因为S
=πr ,所以V=πr h。
2
2
33
第十二页,编辑于星期六:三点 三十五分。
复习驿站
(3)如何区分是求圆柱的体积、容积还是求表面积
求做圆柱形状的物体需要的材料、圆柱形状的墙壁抹水泥面积的多少,或贴墙需 要多少瓷砖等,这样的表述是求表面积。还有一个判定方法就是看所求问题的单位,所 求问题的单位是平方的,则求表面积;所求问题的单位是立方、升、毫升的,则求体积 。求圆柱能装下多少的问题,就是求容积,用体积公式。
2
3
答:这个粮囤大约能装稻3 谷7.95立方米。
第十五页,编辑于星期六:三点 三十五分。
复习驿站
8.圆锥、圆柱的体积关系
(1)等底(面积)等高时,圆锥的体积是圆柱体积的 ,1 即圆锥的体积=
圆柱的体积× 。1
六年级下册数学第三单元圆柱与圆锥整理和复习PPT
在正方体中截取一个最大的圆柱, 圆柱的体积是正方体的体积78.5%
4.有块正方体的木料,它的棱长是4dm。把 这块木料加工成一个圆柱。这个圆柱的体积 最大是多少?
4×4×4×78.5%=50.24(dm3) 答:这个圆柱的体积最大是50.24dm3。
5.一个圆柱形木桶,底面内直径为4dm,桶口距 底面最小高度为5 dm,最大高度为7dm。这个木 桶如右图放置时,最多能装多少升水?
(1)3.14×(4÷2)2×2+
1 3
×3.14×(4÷2)2×4.2
=42.704(dm3)
0.65×42.704≈27(kg)
答:这个进料漏斗大约能装27千克稻谷。
(2)27×70%=18.9(kg) 答:一漏斗稻谷大约能磨出18.9千克大米。
随堂练习 1.把一块长方体钢坯熔铸成一根底面直径为4dm 的圆柱形钢材,求钢材的长度。
(1)做这个布套至少用了多少 布料? (2)一壶水够1.5L吗?(水壶 和布套的厚度忽略不计。)
(1)3.14×10×20+3.14×(10÷2)2×2 =785(cm2) 答:做这个布套至少用了785cm2的布料。
(2)3.14×(10÷2)2×20=1570(cm3)
1570cm3=1570mL=1.57L 1.57L>1.5L 答:一壶水够1.5L。
3.如图,把一个棱长是 6 dm 的正方体木料削成一个最 大的圆柱,圆柱的体积是( 169.56 )dm3,再将圆柱削 成一个最大的圆锥,还要再削去( 113.04)dm3。
二、一个圆锥形沙堆,底面直径是 6 m,高是 2.5 m,用这堆沙在 10 m 宽的公路上铺 2 cm 厚的路面,能铺多少米?
4.一种水稻磨米机的进料漏斗由圆柱和圆锥 两部分组成。圆柱和圆锥的底面直径都是 4dm,圆柱高2dm,圆锥高4.2dm。每立方 分米稻谷大约重0.65 kg。 (1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。) (2)如果稻谷的出米率是70%,一漏斗稻 谷大约能磨出多少千克大米?
4.有块正方体的木料,它的棱长是4dm。把 这块木料加工成一个圆柱。这个圆柱的体积 最大是多少?
4×4×4×78.5%=50.24(dm3) 答:这个圆柱的体积最大是50.24dm3。
5.一个圆柱形木桶,底面内直径为4dm,桶口距 底面最小高度为5 dm,最大高度为7dm。这个木 桶如右图放置时,最多能装多少升水?
(1)3.14×(4÷2)2×2+
1 3
×3.14×(4÷2)2×4.2
=42.704(dm3)
0.65×42.704≈27(kg)
答:这个进料漏斗大约能装27千克稻谷。
(2)27×70%=18.9(kg) 答:一漏斗稻谷大约能磨出18.9千克大米。
随堂练习 1.把一块长方体钢坯熔铸成一根底面直径为4dm 的圆柱形钢材,求钢材的长度。
(1)做这个布套至少用了多少 布料? (2)一壶水够1.5L吗?(水壶 和布套的厚度忽略不计。)
(1)3.14×10×20+3.14×(10÷2)2×2 =785(cm2) 答:做这个布套至少用了785cm2的布料。
(2)3.14×(10÷2)2×20=1570(cm3)
1570cm3=1570mL=1.57L 1.57L>1.5L 答:一壶水够1.5L。
3.如图,把一个棱长是 6 dm 的正方体木料削成一个最 大的圆柱,圆柱的体积是( 169.56 )dm3,再将圆柱削 成一个最大的圆锥,还要再削去( 113.04)dm3。
二、一个圆锥形沙堆,底面直径是 6 m,高是 2.5 m,用这堆沙在 10 m 宽的公路上铺 2 cm 厚的路面,能铺多少米?
4.一种水稻磨米机的进料漏斗由圆柱和圆锥 两部分组成。圆柱和圆锥的底面直径都是 4dm,圆柱高2dm,圆锥高4.2dm。每立方 分米稻谷大约重0.65 kg。 (1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。) (2)如果稻谷的出米率是70%,一漏斗稻 谷大约能磨出多少千克大米?
圆柱和圆锥的认识PPTPPT课件
侧高 面
底面 O
第11页/共39页
在生活中,圆柱的高会有不同的称呼,你知道吗?
深
长
第12页/共39页
厚
底面 o
侧面
高
o 底面
圆柱的上、下两个面叫做圆柱的(底面), 围成圆柱的曲面叫做圆柱的( 侧面),圆柱 两个底面之间的距离叫做圆柱的( 高 )。
第13页/共39页
圆柱展开图
第14页/共39页
圆柱展开图
第37页/共39页
通过这节课的学习你有什么收获? 还有什么疑问吗?
第38页/共39页
感谢您的观看。
第39页/共39页
哪些是圆柱,哪些是圆锥?
第1页/共39页
第2页/共39页
第3页/共39页
仔细观察圆柱,你发现了什么?
1.圆柱是由几个面围成的? 2.用手平摸上、下两个面,有什么特点?
上、下两?
第4页/共39页
两个圆柱有什么不同?
底面 O
精选课件14底面底面侧面圆柱的上下两个面叫做圆柱的围成圆柱的曲面叫做圆柱的圆柱两个底面之间的距离叫做圆柱的底面侧面精选课件15圆柱展开图精选课件16圆柱展开图精选课件17圆柱展开图精选课件18圆柱展开图精选课件19圆柱展开图精选课件20圆柱展开图精选课件21底面底面圆柱展开图精选课件22精选课件23精选课件24精选课件25底面底面精选课件263
第26页/共39页
5.判断对错
1.圆柱和圆锥的高都有无数条。 2.圆柱两个底面的直径相等。 3. 圆柱的侧面展开图一定是长方形。
第27页/共39页
第28页/共39页
7.为这个易拉罐设计一个包装纸。
为了不浪费纸张, 要量出哪些数据呢?
第29页/共39页
8、做一做:
底面 O
第11页/共39页
在生活中,圆柱的高会有不同的称呼,你知道吗?
深
长
第12页/共39页
厚
底面 o
侧面
高
o 底面
圆柱的上、下两个面叫做圆柱的(底面), 围成圆柱的曲面叫做圆柱的( 侧面),圆柱 两个底面之间的距离叫做圆柱的( 高 )。
第13页/共39页
圆柱展开图
第14页/共39页
圆柱展开图
第37页/共39页
通过这节课的学习你有什么收获? 还有什么疑问吗?
第38页/共39页
感谢您的观看。
第39页/共39页
哪些是圆柱,哪些是圆锥?
第1页/共39页
第2页/共39页
第3页/共39页
仔细观察圆柱,你发现了什么?
1.圆柱是由几个面围成的? 2.用手平摸上、下两个面,有什么特点?
上、下两?
第4页/共39页
两个圆柱有什么不同?
底面 O
精选课件14底面底面侧面圆柱的上下两个面叫做圆柱的围成圆柱的曲面叫做圆柱的圆柱两个底面之间的距离叫做圆柱的底面侧面精选课件15圆柱展开图精选课件16圆柱展开图精选课件17圆柱展开图精选课件18圆柱展开图精选课件19圆柱展开图精选课件20圆柱展开图精选课件21底面底面圆柱展开图精选课件22精选课件23精选课件24精选课件25底面底面精选课件263
第26页/共39页
5.判断对错
1.圆柱和圆锥的高都有无数条。 2.圆柱两个底面的直径相等。 3. 圆柱的侧面展开图一定是长方形。
第27页/共39页
第28页/共39页
7.为这个易拉罐设计一个包装纸。
为了不浪费纸张, 要量出哪些数据呢?
第29页/共39页
8、做一做:
苏教版六年级下册数学《圆柱和圆锥的认识》圆柱和圆锥PPT电子课件
2.一根圆柱形木料,底面周长是62.8厘米,高是50厘米。这根木料的体 积是多少?
r=C÷2π=62.8÷6.28=10(cm) V=sh=10²π×50=15700(cm³)
教学新知
例一:完成下面的表格。
底面积/m2
高/m
圆 柱
0.6
1.2
0.25
3
体积/m3 0.72 0.75
例二:一个圆柱形零件,底面半径5厘米,高8厘米。这个零件
教学新知
例五:一个圆柱形状的奶粉盒,体积是5024立方厘米,底面 半径是 10厘米。它的高是多少厘米?
【讲解】 底面积×高=圆柱体积, 圆柱的高=圆柱体积÷底面积。圆柱 底面半径为10厘米,则底面积为 102×3.14=314(平方厘米),则圆 柱的高为5024÷314=16(厘米)。
课堂练习
1.填空题。 (1)圆柱体通过切拼,可以转化成近似__长__方___体。圆柱的底
想一想:如果把圆柱的底面平均分成32份、64份……切开后拼成的物 体会有什么变化?
教学新知
想一想:拼成的长方体与原来的圆柱有什么关系?
根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
圆柱的体积=底面积×高
知识要点
如果用V表示圆柱的体积,S表示圆柱的底面积,
h表示圆柱的高,圆柱的体积公式可以写成:
V=sh=3²π×10=282.6(cm³) 282.6cm³=282.6ml
课后习题
7.—个圆柱形粮囤,从里面量,底面半径是2米,高是2.5米。如果每立 方米稻谷重550千克,这个粮囤大约可装多少吨稻谷?
V=sh=2²π×2.5=31.4(m³) z=31.4×550=17270(kg)=17.27(t)
8.学校有一个圆柱形喷水池,池内底面直径是8米,最多能盛水25.12立 方米。这个水池深是多少米?
r=C÷2π=62.8÷6.28=10(cm) V=sh=10²π×50=15700(cm³)
教学新知
例一:完成下面的表格。
底面积/m2
高/m
圆 柱
0.6
1.2
0.25
3
体积/m3 0.72 0.75
例二:一个圆柱形零件,底面半径5厘米,高8厘米。这个零件
教学新知
例五:一个圆柱形状的奶粉盒,体积是5024立方厘米,底面 半径是 10厘米。它的高是多少厘米?
【讲解】 底面积×高=圆柱体积, 圆柱的高=圆柱体积÷底面积。圆柱 底面半径为10厘米,则底面积为 102×3.14=314(平方厘米),则圆 柱的高为5024÷314=16(厘米)。
课堂练习
1.填空题。 (1)圆柱体通过切拼,可以转化成近似__长__方___体。圆柱的底
想一想:如果把圆柱的底面平均分成32份、64份……切开后拼成的物 体会有什么变化?
教学新知
想一想:拼成的长方体与原来的圆柱有什么关系?
根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?
圆柱的体积=底面积×高
知识要点
如果用V表示圆柱的体积,S表示圆柱的底面积,
h表示圆柱的高,圆柱的体积公式可以写成:
V=sh=3²π×10=282.6(cm³) 282.6cm³=282.6ml
课后习题
7.—个圆柱形粮囤,从里面量,底面半径是2米,高是2.5米。如果每立 方米稻谷重550千克,这个粮囤大约可装多少吨稻谷?
V=sh=2²π×2.5=31.4(m³) z=31.4×550=17270(kg)=17.27(t)
8.学校有一个圆柱形喷水池,池内底面直径是8米,最多能盛水25.12立 方米。这个水池深是多少米?
圆柱与圆锥ppt模版课件
圆锥的体积
圆锥的体积计算公式为:V = (1/3) * π * r^2 * h,其中r是 底面半径,h是圆锥的高。
圆锥的体积由底面圆的面积和 高度共同决定,与斜高无关。
圆锥的体积随底面半径和高的 增大而增大。
圆锥的斜高与底面半径关系
圆锥的斜高计算公式为:l = sqrt(r^2 + h^2),其中r是底面
饮料瓶、帽子和灯罩等。
02 圆柱的几何性质
圆柱的表面积
01
02
03
04
圆柱的表面积由两个底面和一 个侧面组成。
底面是一个圆形,其面积为π × r^2,其中r是底面半径。
侧面是一个矩形,其面积为2 × π × r × h,其中h是圆柱的
高。
因此,圆柱的表面积A = 2 × π × r^2 + 2 × π × r × h。
当圆锥的高固定时,母线随底面半径的增大而增大;当底面半径固定时,母线随高 的增大而增大。
04 圆柱与圆锥的相互关系
圆柱与圆锥的相似性
01
02
03
定义相似
如果一个圆柱和一个圆锥 的底面直径与高之比相等, 则它们是相似的。
面积相似
相似圆柱和圆锥的底面面 积之比等于它们的半径平 方之比,而侧面积之比等 于它们的半径之比。
度。
圆柱与圆锥的应用场景
建筑学
圆柱和圆锥在建筑设计中有广 泛的应用,如柱子、穹顶和拱
门。
工程学
在机械工程中,圆柱和圆锥用 于制造各种零件和结构,如轴 承、齿轮和螺母。
自然界
自然界中存在许多圆柱和圆锥 形状的物体,如树木、植物和 动物的身体结构。
日常生活
在日常生活中,我们经常接触 到圆柱和圆锥形状的物品,如
圆柱圆锥整理和复习
圆柱侧面积= 底面周长×高
基 本 公 式
圆柱表面积= 侧面积+底面积× 2 圆柱体积= 底面积×高
V=sh
圆锥体积= 底面积×高÷3
V=sh÷3
圆柱与圆锥的体积之间有什么关系?
等底等高圆锥体积是圆柱体积的 三分之一 等底等高圆柱体积是圆锥体积的3倍
请回答下面的问题,并列出算式。
一个圆柱形水桶,底面半径10分米, 高是20分米。 ①给这个水桶加个盖,是求哪个部分? ②给这个水桶加个箍,是求哪个部分?
圆柱的特征:
1.两个底面是半径相等的两个圆 2.圆柱有一个曲面叫做侧面,展 开后是一个长方形。 3.圆柱有无数条高,且高的 长度都相等
长=底面周长
宽 =高
圆锥的特征:
圆形
1.圆锥的底面是一个圆
h
2.圆锥的侧面是一个曲面, 展开后是一个扇形
扇形
3.圆锥只有一个顶点,一条高。
(从顶点到底面圆心的距离是圆锥的高)
米,圆柱的高是(1/3 )分米;如果圆柱的高
是1分米,圆锥的高是( 3 )分米。
比一比,谁的反应最灵敏!
一、对号入座
1、一个圆柱和一个圆锥等底等体积,圆柱的高是3分米, ③ 圆锥的高是( )分米。 ①3 ②1 ③9
2、一个圆柱和一个圆锥等高等体积,圆锥的底面积是3 平方分米,圆柱的底面积是( ① )平方分米 ①1 ②9 ③6
一根6米长的圆柱形木料锯成相等的3段, 表面积增加了15平方厘米,每一小段的 木料的体积是多少立方厘米?
解:每小段木料的长: 6÷3=2(m)=200(cm) 15÷4 × 200=750(cm³ ) ห้องสมุดไป่ตู้:———————。
③给这个水桶的外面涂上油漆,是求哪个 部分? ④这个水桶能装多少水,是求哪个部分?
圆柱与圆锥整理与复习课件
求各圆柱的表面积和体积。
6分米
15分米
把一个棱长是6厘米的正方体木块, 加工成一个最大的圆锥体,圆锥的 体积是多少立方厘米?
北师大版六年级数学下册
1、有两个底面:
面积相等
2、一个侧面:
高宽
长=底面周长
长
1、有两个底面:
面积相等
2、一个侧面:
高宽
ቤተ መጻሕፍቲ ባይዱ长=底面周长
长
圆锥有一个底面,
:
高
圆柱的表面由上、下两个底面和一个侧面组成。
圆柱的表面积=侧面积+两个底面的面积
一个圆柱的高是15厘米,底面半径是 5厘米,它的表面积是多少?
(1)侧面积:2 ×3.14 ×5 ×15=471(平方厘米) (2)底面积:3.14 ×52 =78.5(平方厘米) (3)表面积:471+78.5 × 2=628(平方厘米)
小结:
(1)在实际应用中计算圆柱形物体的 表面积,要根据实际情况计算各部分 的面积。
(2)求用料多少,一般采用进一法取 近似值,以保证材料够用。
圆柱体积=底面积×高
V=sh =∏r2h
20厘米 25厘米
(1)水桶的底面积:3.14×( 220)2=314(cm2) (2)水桶的容积: 314×25=7850(cm3)
圆锥的体积V等于和它等底等高 的圆柱体积的三分之一
V圆柱=sh
V=
1 3
sh
打谷场上,有一个近似于圆锥的小麦堆, 测得底面直径是4米,高是1.2米。每立方米小 麦约重735千克,这堆小麦大约有多少千克? (得数保留整数)
第一步:求麦堆底面积
每二步:求麦堆的体积
第三步:求小麦重量
返回
努 力 吧 !
圆柱和圆锥复习课件
性质
圆柱的高度与底面直径相等;圆 柱的侧面展开图是一个矩形。
圆锥的定义和性质
定义
圆锥是一个三维图形,其中有一个圆 形的底面和一个从底面到顶点的斜高 。
性质
圆锥的斜高与底面直径相等;圆锥的 侧面展开图是一个扇形。
圆柱和圆锥的异同点
相同点
圆柱和圆锥都是旋转体,都可以由旋转圆形得到。
不同点
圆柱是圆筒形,高度与底面直径相等;圆锥是锥形,斜高与底面直径相等。
04
圆柱和圆锥的应用与 问题建模
圆柱的应用与问题建模
圆柱体积公式
$V = \pi r^{2}h$,其中r是底面 圆的半径,h是高。
圆柱表面积公式
$S = 2\pi rh + 2\pi r^{2}$,其 中r是底面圆的半径,h是高。
圆柱的展开图
展开后是一个矩形,长为圆的周长 ,宽为圆柱的高。
圆锥的应用与问题建模
圆柱和圆锥复习课件
汇报人: 日期:
目录
• 圆柱和圆锥的基本概念 • 圆柱和圆锥的表面积与体积 • 圆柱和圆锥的截面与侧面展开图 • 圆柱和圆锥的应用与问题建模 • 圆柱和圆锥的拓展知识 • 复习题与巩固练习
01
圆柱和圆锥的基本概 念
圆柱的定义和性质
定义
圆柱是一个三维图形,其中有一 个圆形的底面和一个垂直于底面 的高度。
02
圆柱和圆锥的表面积 与体积
圆柱的表面积计算
01
02
03
圆柱的侧面积
根据公式“侧面积 = 圆周 长 × 高”,可以计算圆柱 的侧面积。
圆柱的底面积
根据公式“底面积 = 圆面 积”,可以计算圆柱的底 面积。
圆柱的总表面积
圆柱的总表面积等于两个 底面积加上侧面积。
圆柱的高度与底面直径相等;圆 柱的侧面展开图是一个矩形。
圆锥的定义和性质
定义
圆锥是一个三维图形,其中有一个圆 形的底面和一个从底面到顶点的斜高 。
性质
圆锥的斜高与底面直径相等;圆锥的 侧面展开图是一个扇形。
圆柱和圆锥的异同点
相同点
圆柱和圆锥都是旋转体,都可以由旋转圆形得到。
不同点
圆柱是圆筒形,高度与底面直径相等;圆锥是锥形,斜高与底面直径相等。
04
圆柱和圆锥的应用与 问题建模
圆柱的应用与问题建模
圆柱体积公式
$V = \pi r^{2}h$,其中r是底面 圆的半径,h是高。
圆柱表面积公式
$S = 2\pi rh + 2\pi r^{2}$,其 中r是底面圆的半径,h是高。
圆柱的展开图
展开后是一个矩形,长为圆的周长 ,宽为圆柱的高。
圆锥的应用与问题建模
圆柱和圆锥复习课件
汇报人: 日期:
目录
• 圆柱和圆锥的基本概念 • 圆柱和圆锥的表面积与体积 • 圆柱和圆锥的截面与侧面展开图 • 圆柱和圆锥的应用与问题建模 • 圆柱和圆锥的拓展知识 • 复习题与巩固练习
01
圆柱和圆锥的基本概 念
圆柱的定义和性质
定义
圆柱是一个三维图形,其中有一 个圆形的底面和一个垂直于底面 的高度。
02
圆柱和圆锥的表面积 与体积
圆柱的表面积计算
01
02
03
圆柱的侧面积
根据公式“侧面积 = 圆周 长 × 高”,可以计算圆柱 的侧面积。
圆柱的底面积
根据公式“底面积 = 圆面 积”,可以计算圆柱的底 面积。
圆柱的总表面积
圆柱的总表面积等于两个 底面积加上侧面积。
圆柱和圆锥整理与复习课件
1、一根圆柱形木材长20分米,把它 截成4个相等的圆柱体. 表面积增加 了18.84平方分米.截后每段圆柱体 积是多少立方分米?
横截面积:18.84÷6=3.14(平方分米)
每段长度:20÷4=5(分米)
每段体积:3.14×5=15.7(立方分米)
2.你能求出下面这个直角三角 形沿AB边旋转一周形成的图 形的体积吗?
二、判断,对的打√ ,错的打×
1.圆柱的侧面展开一定是长方形 。(
×
)
)
2.圆锥的体积是圆柱体积的⅓。(
×
3.一个圆柱的高扩大2倍,底面积缩小2倍,它的体积不 变。( √ )
4.长方体、正方体、圆柱体的体积都可以用底面积乘高 来计算。( √ ) 5. 用两张完全相同的长方形纸围成两个不同的圆柱体 (接头处不重叠),那么围成的圆柱侧面积和高都相等。 (× )
义务教育课程标准实验教科书六年级下册
我们把圆柱沿底面直径平均切成若干等份,拼 成一个近似长方体,分的份数越多,拼成的图 形越接近长方体。 长方体的底面积等于圆柱的( 底面积 )
高等于圆柱的( 高
长方体的体积=底面积×高
)
圆柱的体积=( 底面积×高 )
一、你会求下面图形的表面积 或体积吗?只列式,不计算。 1.一个圆柱底面半径是6厘米,高是5厘 米,求它的表面积和体积。 2.一个圆锥底面积是25平方分米,高是 9分米,求它的体积。
AHale Waihona Puke 5 厘 米 B C3厘米
2.你能求出下面这个直角三角 形沿AB边旋转一周形成的图 形的体积吗?
A
5 厘 米
C
B 3厘米
现在你知道了吗?
1、妈妈给小明的水壶做 了一个布套(有盖), 至少用了多少布料?这 个水壶大约能装多少升 水?(水壶的厚度忽略 不计)
苏教版小学六年级数学下册第二单元《圆柱和圆锥》PPT课件
探 究 新 知 知识点2:圆柱表面积的计算方法 把右边圆柱的侧面沿高展开,得 到的长方形的长和宽各是多少厘 米? 圆柱的底面半径是多少厘米?
你能在下面的方格纸上画 出这个圆柱的展开图吗?
探究新知
.O
2cm
6.2.8cm
O 2cm
2cm
探究新知
底面
底面
高 底面的周长
底面的周长
高
底面
底面
圆柱的侧面积与两个底面积的和,叫作圆柱的表面积。
米,花柱的侧面和上面都插满塑料花。如果每 平方米有40朵花,这根花柱上一共有多少朵花?
3.14×0.5×2×3.5=10.99(平方米) 3.14×0.5²=0.785(平方米) (10.99+0.785)×40=471(朵) 答:这根花柱上一共有471朵花。
练习题
12.给5根这样的柱子刷 油漆,每平方米用油 漆0.5千克,一共要用 油漆多少千克?
底面周长×高。用字母表示为S侧=C h=π d h=2 π r h
2. 圆柱表面积的计算方法:圆柱的表面积=圆 柱的侧面积+圆柱的两个底面积。用字母表示 圆柱的表面积:S表=S侧+2S底
第二单元 圆柱和圆锥 2.3 练习二
练习题
6.算一算,填一填。
5cm
8cm
125.6cm² 50.24cm² 226.08cm² 314cm² 78.5cm² 471cm²
而长方体和正方体和圆柱是等底面积,等高。
探究新知
回顾圆柱体积公式的探索过 程, 你有什么体会?
可以用长方体体 积公式推导出圆 柱体积公式。
把圆柱转化成长方 体, 与探索圆面 积的方法类似。
计算长方体、正方体、圆柱的 体积都可以用底面积乘高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.底面积 B.侧面积
C.表面积 D.体积
-
6
2.下雨时,给打谷场上的圆锥形谷堆盖上塑料 防雨布,所需防雨布的最小面积是指圆锥的
( C ) A. 表面积 B.体积 C. 侧面积
-
7
3.甲乙两人分别利用一张长20厘米, 宽15厘米的纸用两种不同的方法围成 一个圆柱体(接头处不重叠),那么 围成的圆柱( B )。
13
四. 实践与应用
1.做一个底面直径是4分米,高5分米的圆柱形 水桶,至少需要多少平方米的铁皮?(得数保 留整数)这样的一个水桶能盛多少升水?
2、一个圆柱的底面直径是4厘米,它的侧面 展开正好是一个正方形,这个圆柱的体积是多 少立方厘米?
-
14
3.一个圆锥形沙堆,体积是628立方米,底面直径
是20米,那么这个沙堆的高是多少米?
A. a÷3 B. 2a
C. 3a
D. a
的立方
-
11
6.已知两个体积不同的圆柱,高 相等,它们的底面半径的比是1:2, 那么它们的体积的比是( 1:4 )
圆柱体1 圆柱体2
半径
1
底面积
1
高
1
体积
1-
2
4
1
4
12
7.如下图,整个物体的体积相
当于白色部分体积的( 三 )分 之( 五 ).
a aa
-
30
10
20
8
-
4
二 判断
1.圆锥体积比与它等底等高的圆柱体少2 倍。( )
2.圆锥的高是指圆锥的顶点到底面上一点 的长度。( )
3.圆柱的体积和它的底面积成正比。( )
4.圆锥的侧面是个扇形。( )
5.圆柱体积比圆锥体积大.(
)
-
5
三.走进生活
1.冬天护林工人给圆柱形的树 干的下端涂防蛀涂料,那么粉
刷树干的面积是指( B).
4.把一堆高5米,底面直径是6米的小麦堆放入底 面积是12.56平方米的圆柱粮仓内,至少要装多 高?
-
15
我最棒! 如图,想想办法,你能否求
它的体积?( 单位:厘米)
4
2
6
-
16
2号题 一个酒瓶里面深30厘米, 底面直径是8厘米,瓶里有酒深10 厘米,把酒瓶塞紧后倒置(瓶口向 下),这时酒深20厘米,你能算出酒 瓶的容积是多少毫升来吗?
A高一定相等
B侧面积一定相等
C侧面积和高都相等D侧面积和高都不
相等
-
8
20厘米
15 厘 米
-
9
4.一根圆柱形木材长20分米,把截成4个相等的 圆柱体. 表面积增加了18.84平方分米.截后每 段圆柱体积是( 方米,和它等底等
高的圆柱体的体积是( C )立方米。
---整理和复习
-
1
图形
名称
特征
举例
圆柱体
两个底面是完全相同的两个 圆;侧面是一个曲面,展开是
桥墩、门 厅柱子…
个长方形;有无数条高。
圆锥体
尖顶;底面是个圆;侧面是 沙堆、圣 一个曲面,展开是个扇形;只 诞帽子…
有一条高。
-
2
侧面积 底面周长×高 =表面积 侧面积+底面积× 2 =
体积= 底面积×高
V=s h
体积= 底面积×高÷3
V=sh÷ 3
-
3
一. 圆柱和圆锥的关系
1. 等底等高时,圆柱的体积是圆锥的(
)
2.
圆锥的体积是圆柱的(
)
3.
圆柱的体积比圆锥多(
)
4.
圆锥的体积比圆柱少(
)
5.
圆柱和圆锥的体积比是(
)
2.等体积等高时,圆锥的底面积是圆柱的( )
3.等体积等底时,圆锥的高是圆柱的( )
C.表面积 D.体积
-
6
2.下雨时,给打谷场上的圆锥形谷堆盖上塑料 防雨布,所需防雨布的最小面积是指圆锥的
( C ) A. 表面积 B.体积 C. 侧面积
-
7
3.甲乙两人分别利用一张长20厘米, 宽15厘米的纸用两种不同的方法围成 一个圆柱体(接头处不重叠),那么 围成的圆柱( B )。
13
四. 实践与应用
1.做一个底面直径是4分米,高5分米的圆柱形 水桶,至少需要多少平方米的铁皮?(得数保 留整数)这样的一个水桶能盛多少升水?
2、一个圆柱的底面直径是4厘米,它的侧面 展开正好是一个正方形,这个圆柱的体积是多 少立方厘米?
-
14
3.一个圆锥形沙堆,体积是628立方米,底面直径
是20米,那么这个沙堆的高是多少米?
A. a÷3 B. 2a
C. 3a
D. a
的立方
-
11
6.已知两个体积不同的圆柱,高 相等,它们的底面半径的比是1:2, 那么它们的体积的比是( 1:4 )
圆柱体1 圆柱体2
半径
1
底面积
1
高
1
体积
1-
2
4
1
4
12
7.如下图,整个物体的体积相
当于白色部分体积的( 三 )分 之( 五 ).
a aa
-
30
10
20
8
-
4
二 判断
1.圆锥体积比与它等底等高的圆柱体少2 倍。( )
2.圆锥的高是指圆锥的顶点到底面上一点 的长度。( )
3.圆柱的体积和它的底面积成正比。( )
4.圆锥的侧面是个扇形。( )
5.圆柱体积比圆锥体积大.(
)
-
5
三.走进生活
1.冬天护林工人给圆柱形的树 干的下端涂防蛀涂料,那么粉
刷树干的面积是指( B).
4.把一堆高5米,底面直径是6米的小麦堆放入底 面积是12.56平方米的圆柱粮仓内,至少要装多 高?
-
15
我最棒! 如图,想想办法,你能否求
它的体积?( 单位:厘米)
4
2
6
-
16
2号题 一个酒瓶里面深30厘米, 底面直径是8厘米,瓶里有酒深10 厘米,把酒瓶塞紧后倒置(瓶口向 下),这时酒深20厘米,你能算出酒 瓶的容积是多少毫升来吗?
A高一定相等
B侧面积一定相等
C侧面积和高都相等D侧面积和高都不
相等
-
8
20厘米
15 厘 米
-
9
4.一根圆柱形木材长20分米,把截成4个相等的 圆柱体. 表面积增加了18.84平方分米.截后每 段圆柱体积是( 方米,和它等底等
高的圆柱体的体积是( C )立方米。
---整理和复习
-
1
图形
名称
特征
举例
圆柱体
两个底面是完全相同的两个 圆;侧面是一个曲面,展开是
桥墩、门 厅柱子…
个长方形;有无数条高。
圆锥体
尖顶;底面是个圆;侧面是 沙堆、圣 一个曲面,展开是个扇形;只 诞帽子…
有一条高。
-
2
侧面积 底面周长×高 =表面积 侧面积+底面积× 2 =
体积= 底面积×高
V=s h
体积= 底面积×高÷3
V=sh÷ 3
-
3
一. 圆柱和圆锥的关系
1. 等底等高时,圆柱的体积是圆锥的(
)
2.
圆锥的体积是圆柱的(
)
3.
圆柱的体积比圆锥多(
)
4.
圆锥的体积比圆柱少(
)
5.
圆柱和圆锥的体积比是(
)
2.等体积等高时,圆锥的底面积是圆柱的( )
3.等体积等底时,圆锥的高是圆柱的( )