牛顿第二定律综合运用

合集下载

牛顿第二定律的综合应用(解析版)-高中物理

牛顿第二定律的综合应用(解析版)-高中物理

牛顿第二定律的综合应用1.高考真题考点分布题型考点考查考题统计计算题动力学两类基本问题2022年浙江卷选择题连接体问题2024年全国甲卷计算题传送带模型2024年湖北卷选择题、计算题板块模型2024年高考新课标卷、辽宁卷2.命题规律及备考策略【命题规律】高考对动力学两类基本问题、连接体问题、传送带和板块模型考查的非常频繁,有基础性的选题也有难度稍大的计算题。

【备考策略】1.利用牛顿第二定律处理动力学两类基本问题。

2.利用牛顿第二定律通过整体法和隔离法处理连接体问题。

3.利用牛顿第二定律处理传送带问题。

4.利用牛顿第二定律处理板块模型。

【命题预测】重点关注牛顿第二定律在两类基本问题、连接体、传送带和板块模型中的应用。

一、动力学两类基本问题1.已知物体的受力情况求运动情况;2.已知物体的运动情况求受力情况。

二、连接体问题多个相互关联的物体由细绳、细杆或弹簧等连接或叠放在一起,构成的系统称为连接体。

(1)弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等。

(2)物物叠放连接体:相对静止时有相同的加速度,相对运动时根据受力特点结合运动情景分析。

(3)轻绳(杆)连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等,轻杆平动时,连接体具有相同的平动速度。

三、传送带模型1.模型特点传送带问题的实质是相对运动问题,这样的相对运动将直接影响摩擦力的方向。

2.解题关键(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键。

(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口。

四、板块模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的相互作用下发生相对滑动。

2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1 -x2=L(板长);滑块和木板反向运动时,位移之和Δx=x2+x1=L。

15第3章 第2讲 应用牛顿第二定律处理“四类”问题

15第3章 第2讲  应用牛顿第二定律处理“四类”问题

第2讲应用牛顿第二定律处理“四类”问题一、瞬时问题1.牛顿第二定律的表达式为:F合=ma,加速度由物体所受决定,加速度的方向与物体所受的方向一致.当物体所受合外力发生突变时,加速度也随着发生突变,而物体运动的不能发生突变.2.轻绳、轻杆和轻弹簧(橡皮条)的区别:(1)轻绳和轻杆:剪断轻绳或轻杆断开后,原有的弹力将.(2)轻弹簧和橡皮条:当轻弹簧和橡皮条两端与其他物体连接时,轻弹簧或橡皮条的弹力.自测1如图1,A、B、C三个小球质量均为m,A、B之间用一根没有弹性的轻质细绳连在一起,B、C之间用轻弹簧拴接,整个系统用细线悬挂在天花板上并且处于静止状态.现将A上面的细线剪断,使A的上端失去拉力,则在剪断细线的瞬间,A、B、C三个小球的加速度分别是()图1A.1.5g,1.5g,0B.g,2g,0C.g,g,gD.g,g,0二、超重和失重1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力) 物体所受重力的现象.(2)产生条件:物体具有的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力) 物体所受重力的现象.(2)产生条件:物体具有的加速度.3.完全失重(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力) 的现象称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.4.实重和视重(1)实重:物体实际所受的重力,它与物体的运动状态.(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.自测2关于超重和失重的下列说法中,正确的是()A.超重就是物体所受的重力增大了,失重就是物体所受的重力减小了B.物体做自由落体运动时处于完全失重状态,所以做自由落体运动的物体不受重力作用C.物体具有向上的速度时处于超重状态,物体具有向下的速度时处于失重状态D.物体处于超重或失重状态时,物体的重力始终存在且不发生变化三、动力学图象1.类型(1)已知图象分析运动和情况;(2)已知运动和受力情况分析图象的形状.2.用到的相关知识通常要先对物体受力分析求合力,再根据求加速度,然后结合运动学公式分析.自测3(2016·海南单科·5)沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度—时间图线如图2所示.已知物体与斜面之间的动摩擦因数为常数,在0~5 s,5~10 s,10~15 s内F的大小分别为F1、F2和F3,则()图2A.F1<F2B.F2>F3C.F1>F3D.F1=F3命题点一超重与失重现象1.对超重和失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.(2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失.(3)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.(4)尽管整体没有竖直方向的加速度,但只要物体的一部分具有竖直方向的分加速度,整体也会出现超重或失重现象.2.判断超重和失重的方法从受力的角度判断当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态从加速度的角度判断当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态从速度变化的角度判断①物体向上加速或向下减速时,超重②物体向下加速或向上减速时,失重例1(2018·四川省乐山市第二次调研)图3甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的O表示人的重心.图乙是根据传感器采集到的数据画出的F-t图线,两图中a~g各点均对应,其中有几个点在图甲中没有画出.取重力加速度g=10 m/s2,根据图象分析可知()图3A.人的重力为1 500 NB.c点位置人处于失重状态C.e点位置人处于超重状态D.d点的加速度小于f点的加速度变式1广州塔,昵称小蛮腰,总高度达600米,游客乘坐观光电梯大约一分钟就可以到达观光平台.若电梯简化成只受重力与绳索拉力,已知电梯在t=0时由静止开始上升,a-t 图象如图4所示.则下列相关说法正确的是()图4A.t=4.5 s时,电梯处于失重状态B.5~55 s时间内,绳索拉力最小C.t=59.5 s时,电梯处于超重状态D.t=60 s时,电梯速度恰好为零变式2(2018·广东省深圳市三校模拟)如图5,将金属块用压缩的轻弹簧卡在一个箱子中,上顶板和下底板装有压力传感器.当箱子随电梯以a=4.0 m/s2的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为4.0 N,下底板的传感器显示的压力为10.0 N.取g=10 m/s2,若下底板示数不变,上顶板示数是下底板示数的一半,则电梯的运动状态可能是()图5A.匀加速上升,a=5 m/s2 B.匀加速下降,a=5 m/s2C.匀速上升D.静止状态命题点二瞬时问题的两类模型1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.解题思路分析瞬时变化前后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度3.两个易混问题(1)如图6甲、乙中小球m1、m2原来均静止,现如果均从图中A处剪断,则图甲中的轻质弹簧和图乙中的下段绳子的拉力将如何变化呢?(2)由(1)的分析可以得出什么结论?(2)绳的弹力可以突变而弹簧的弹力不能突变.图6例2(2019·河北省衡水中学第一次调研)如图7所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A小球,同时水平细线一端连着A球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A、B两小球分别连在另一根竖直弹簧两端.开始时A、B两球都静止不动,A、B两小球的质量相等,重力加速度为g,若不计弹簧质量,在水平细线被剪断瞬间,A、B两球的加速度分别为()图7A.a A=a B=g B.a A=2g,a B=0C.a A=3g,a B=0 D.a A=23g,a B=0例3(多选)如图8所示,倾角为θ的斜面静置于地面上,斜面上表面光滑,A、B、C三球的质量分别为m、2m、3m,轻质弹簧一端固定在斜面顶端、另一端与A球相连,A、B间固定一个轻杆,B、C间由一轻质细线连接.弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态,现突然剪断细线.下列判断正确的是()图8A.细线被剪断的瞬间,A、B、C三个小球的加速度均为零B.细线被剪断的瞬间,A、B之间杆的弹力大小为零C.细线被剪断的瞬间,A、B球的加速度沿斜面向上,大小为g sin θD.细线被剪断的瞬间,A、B之间杆的弹力大小为4mg sin θ变式3(2018·山西省吕梁市第一次模拟)如图9所示,A球质量为B球质量的3倍,光滑固定斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有()图9A.图甲中A球的加速度为g sin θB.图甲中B球的加速度为2g sin θC.图乙中A、B两球的加速度均为g sin θD.图乙中轻杆的作用力一定不为零命题点三动力学图象问题1.常见的动力学图象v-t图象、a-t图象、F-t图象、F-a图象等.2.图象问题的类型(1)已知物体受的力随时间变化的图线,要求分析物体的运动情况.(2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况.(3)由已知条件确定某物理量的变化图象.3.解题策略(1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等.(3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断.例4(2018·广东省湛江市第二次模拟)如图10甲所示,在光滑水平面上,静止放置一质量为M的足够长木板,质量为m的小滑块(可视为质点)放在长木板上.长木板受到水平拉力F 与加速度的关系如图乙所示,重力加速度大小g取10 m/s2,下列说法正确的是()图10A.长木板的质量M=2 kgB.小滑块与长木板之间的动摩擦因数为0.4C.当F=14 N时,长木板的加速度大小为3 m/s2D.当F增大时,小滑块的加速度一定增大变式4(多选)(2019·福建省三明市质检)水平地面上质量为1 kg的物块受到水平拉力F1、F2的作用,F1、F2随时间的变化如图11所示,已知物块在前2 s内以4 m/s的速度做匀速直线运动,取g=10 m/s2,则(最大静摩擦力等于滑动摩擦力)()图11A.物块与地面的动摩擦因数为0.2B.3 s末物块受到的摩擦力大小为3 NC.4 s末物块受到的摩擦力大小为1 ND.5 s末物块的加速度大小为3 m/s2变式5(2018·安徽省池州市上学期期末)如图12所示为质量m=75 kg的滑雪运动员在倾角θ=37°的直滑道上由静止开始向下滑行的v-t图象,图中的OA直线是t=0时刻速度图线的切线,速度图线末段BC平行于时间轴,运动员与滑道间的动摩擦因数为μ,所受空气阻力与速度成正比,比例系数为k.设最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8,则()图12A.滑雪运动员开始时做加速度增大的加速直线运动,最后做匀速运动B.t=0时刻运动员的加速度大小为2 m/s2C.动摩擦因数μ为0.25D.比例系数k为15 kg/s命题点四动力学中的连接体问题1.连接体的类型(1)弹簧连接体(2)物物叠放连接体(3)轻绳连接体(4)轻杆连接体2.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等.3.处理连接体问题的方法整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的外力,应用牛顿第二定律求出加速度或其他未知量隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”例5(多选)(2018·广东省湛江市第二次模拟)如图13所示,a、b、c 为三个质量均为m的物块,物块a、b通过水平轻绳相连后放在水平面上,物块c放在b上.现用水平拉力作用于a,使三个物块一起水平向右匀速运动.各接触面间的动摩擦因数均为μ,重力加速度大小为g.下列说法正确的是()图13A.该水平拉力大于轻绳的弹力B.物块c受到的摩擦力大小为μmgC.当该水平拉力增大为原来的1.5倍时,物块c受到的摩擦力大小为0.5μmgD.剪断轻绳后,在物块b向右运动的过程中,物块c受到的摩擦力大小为μmg变式6(多选)(2019·河南省郑州市质检)如图14所示,在粗糙的水平面上,质量分别为m 和M的物块A、B用轻弹簧相连,两物块与水平面间的动摩擦因数均为μ,当用水平力F作用于B上且两物块共同向右以加速度a1匀加速运动时,弹簧的伸长量为x1;当用同样大小的恒力F沿着倾角为θ的光滑斜面方向作用于B上且两物块共同以加速度a2匀加速沿斜面向上运动时,弹簧的伸长量为x2,则下列说法中正确的是()图14A.若m>M,有x1=x2B.若m<M,有x1=x2C.若μ>sin θ,有x1>x2D.若μ<sin θ,有x1<x2变式7(多选)如图15所示,倾角为θ的斜面放在粗糙的水平地面上,现有一带固定支架的滑块m正沿斜面加速下滑.支架上用细线悬挂的小球达到稳定(与滑块相对静止)后,悬线的方向与竖直方向的夹角也为θ,斜面体始终保持静止,则下列说法正确的是()图15A.斜面光滑B.斜面粗糙C.达到稳定状态后,地面对斜面体的摩擦力水平向左D.达到稳定状态后,地面对斜面体的摩擦力水平向右1.(多选)一人乘电梯上楼,在竖直上升过程中加速度a随时间t变化的图线如图1所示,以竖直向上为a的正方向,则人对地板的压力()图1A.t=2 s时最大B.t=2 s时最小C.t=8.5 s时最大D.t=8.5 s时最小2.(2018·湖北省黄冈市质检)如图2所示,电视剧拍摄时,要制造雨中场景,剧组工作人员用消防水枪向天空喷出水龙,降落时就成了一场“雨”.若忽略空气阻力,以下分析正确的是()图2A.水枪喷出的水在上升时超重B.水枪喷出的水在下降时超重C.水枪喷出的水在最高点时,速度方向斜向下D.水滴在下落时,越接近地面,速度方向越接近竖直方向3.(2019·广东省东莞市调研)为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图3所示.当此车匀减速上坡时,乘客(仅考虑乘客与水平面之间的作用)( )图3A .处于超重状态B .不受摩擦力的作用C .受到向后(水平向左)的摩擦力作用D .所受合力竖直向上4.(2019·安徽省淮北市质检)如图4甲所示,在光滑的水平面上,物体A 在水平方向的外力F 作用下做直线运动,其v -t 图象如图乙所示,规定向右为正方向.下列判断正确的是( )图4A .在3 s 末,物体处于出发点右方B .在1~2 s 内,物体正向左运动,且速度大小在减小C .在1~3 s 内,物体的加速度方向先向右后向左D .在0~1 s 内,外力F 不断增大5.如图5所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量均为m,2、4质量均为m 0,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4.重力加速度大小为g ,则有( )图5A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +m 0m 0g D .a 1=g ,a 2=m +m 0m 0g ,a 3=0,a 4=m +m 0m 0g6.(2018·福建省四地六校月考)如图6所示,A 、B 两物块质量均为m ,用一轻弹簧相连,将A 用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B 物块恰好与水平桌面接触,此时轻弹簧的伸长量为x ,现将悬绳剪断,则( )图6A .悬绳剪断瞬间A 物块的加速度大小为gB .悬绳剪断瞬间B 物块的加速度大小为gC .悬绳剪断后A 物块向下运动距离2x 时速度最大D .悬绳剪断后A 物块向下运动距离x 时加速度最小7.(多选)(2018·河北省张家口市上学期期末)质量为2m 的物块A 和质量为m 的物块B 相互接触放在水平地面上,如图7所示,若对A 施加水平推力F ,两物块沿水平方向做匀加速运动,关于A 对B 的作用力,下列说法中正确的是( )图7A .若水平地面光滑,物块A 对B 的作用力大小为FB .若水平地面光滑,物块A 对B 的作用力大小为F 3C .若物块A 与地面间无摩擦,B 与地面间的动摩擦因数为μ,则物块A 对B 的作用力大小为μmgD .若物块A 与地面间无摩擦,B 与地面间的动摩擦因数为μ,则物块A 对B 的作用力大小为F +2μmg 38.(2018·河南省鹤壁市第二次段考)如图8所示,表面光滑的斜面体固定在匀速上升的升降机上,质量相等的A 、B 两物体用一轻质弹簧连接着,B 的上端用一平行斜面的细线拴接在斜面上的固定装置上,斜面的倾角为30°,当升降机突然处于完全失重状态时,则此瞬间A 、B 两物体的瞬时加速度大小分别为(重力加速度为g )( )图8A.12g 、g B .g 、12g C.32g 、0 D.32g 、g 9.(2018·江西省临川二中第五次训练)如图9甲所示,用一水平外力F 推物体,使其静止在倾角为θ的光滑斜面上.逐渐增大F ,物体开始做变加速运动,其加速度a 随F 变化的图象如图乙所示.取g =10 m/s 2.根据图中所提供的信息不能计算出的是( )图9A .物体的质量B .斜面的倾角C .使物体静止在斜面上时水平外力F 的大小D .加速度为6 m/s 2时物体的速度10.(多选)(2018·内蒙古赤峰二中月考)如图10甲所示,物块的质量m =1 kg ,初速度v 0=10 m /s ,在一水平向左的恒力F 作用下从O 点沿粗糙的水平面向右运动,某时刻后恒力F 突然反向,整个过程中物块速度的平方随位置坐标变化的关系图象如图乙所示,g =10 m/s 2.下列选项中正确的是( )图10A .2秒末~3秒末内物块做匀减速运动B .在t =1 s 时刻,恒力F 反向C .物块与水平面间的动摩擦因数为0.3D .恒力F 大小为10 N11.(2018·广东省深圳市高级中学月考)如图11所示,A 、B 两滑环分别套在间距为1 m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1 m 的轻弹簧将两环相连,在A 环上作用一沿杆方向的、大小为20 N 的拉力F ,当两环都沿杆以相同的加速度a 1运动时,弹簧与杆夹角为53°,已知sin 53°=0.8,cos 53°=0.6,求:图11(1)弹簧的劲度系数为多少?(2)若突然撤去拉力F,在撤去拉力F的瞬间,A的加速度为a2,则a1∶a2为多少?12.(2018·四川省攀枝花市第二次统考)如图12所示,质量m1=500 g的木板A静止放在水平平台上,木板的右端放一质量m2=200 g的小物块B.轻质细线一端与长木板连接,另一端通过定滑轮与物块C连接,长木板与滑轮间的细线水平.现将物块C的质量由0逐渐增加,当C的质量增加到70 g时,A、B恰好开始一起匀速运动;当C的质量增加到400 g时,A、B 开始发生相对滑动.已知平台足够长、足够高,接触面间的最大静摩擦力等于滑动摩擦力,滑轮质量及摩擦不计.求木板与平台间、木板与物块B间的动摩擦因数.图12。

13 第三章 素养提升课(二) 牛顿第二定律的综合应用(一)

13 第三章 素养提升课(二) 牛顿第二定律的综合应用(一)

A [设斜面倾角为θ,开始时:mg sin θ=kx0;当用一沿斜面向上的 力F作用在Q上时,且Q的位移为x,根据牛顿第二定律可得:F+k(x0 -x)-mg sin θ=ma,解得F=kx+ma,故选项A正确。]
返回
02
提升点二 动力学中的连接体问题
(多维细研类)
【重难诠释】 处理连接体问题的关键——整体法与隔离法的灵活运用 1.整体法的选取原则:对于加速度相同的连接体,只涉及连接体整 体的受力和运动情况而不涉及连接体内某些物体的受力和运动情况时, 一般采用整体法。 2.隔离法的选取原则:对于加速度相同的连接体,当涉及连接体内 某个物体的受力和运动情况时,或者对于加速度不同的连接体,一般 采用隔离法。
2.【已知F -t图像分析物体的运动情况】 (多选)如图甲所示,一质量为m=1 kg的小物块静止在粗糙水平面上的 A点,从t=0时刻开始,物块在按如图乙所示规律变化的水平力F作用 下向右运动,第3 s末物块运动到B点时速度刚好为零,第5 s末物块刚 好回到A点,已知物块与粗糙水平面间的动摩擦因数μ=0.2,g取10 m/s2,下列说法正确的是 A.前3 s内,物块的加速度逐渐减小
【典例精析】
考向1 加速度相同的连接体问题
例3 如图所示,水平面上有两个质量分别为m1和m2的木 块1和2,中间用一条轻绳连接,两木块的材料相同,现用
力F向右拉木块2,当两木块一起向右做匀加速直线运动时,已知重力
加速度为g,下列说法正确的是
√A.若水平面是光滑的,则m2越大绳的拉力越大
B.若木块和地面间的动摩擦因数为 μ,则绳的拉力为
【针对训练】 1.【已知a -t图像分析有关问题】 (多选)如图甲所示,一个质量为2 kg的物体在水平力F作用下由静止开 始沿粗糙水平面做直线运动,t=1 s时撤去外力。物体的加速度a随时 间t的变化规律如图乙所示。则下列说法正确的是 A.F的大小为8 N

牛顿第二定律的应用-整体法与隔离法

牛顿第二定律的应用-整体法与隔离法

解题过程
首先确定整体受到的重力 和支持力,然后根据牛顿 第二定律求出加速度。
03 隔离法应用
定义与特点
定义
隔离法是将研究对象从其周围物体中 隔离出来,对它进行受力分析,研究 其运动状态变化规律的方法。
特点
隔离法可以单独地分析每个物体的受 力情况,从而简化问题,易于理解和 掌握。
适用范围与条件
适用范围
公式
F=ma,其中F表示作用力,m表示 物体的质量,a表示物体的加速度。
适用范围与条件
适用范围
适用于宏观低速的物体,即物体的速 度远小于光速,此时物体的运动状态 变化符合牛顿第二定律。
条件
作用力必须是物体受到的合外力,且 物体具有质量。
牛顿第二定律的重要性
基础性
牛顿第二定律是经典力学的基础,是研究物体运动规律和作用力的基本公式。
汽车加速与刹车
当汽车加速或刹车时,乘客会受到一个向心或离心的力,这是由于牛顿第二定律中加速度与力之间的 关系。
电梯载人
当电梯加速上升或减速下降时,乘客会感到超重或失重,这是因为牛顿第二定律中加速度与力之间的 关系。
在工程中的应用
桥梁设计
桥梁设计需要考虑重力、风载、地震等外力作用,通过牛顿第二定律可以计算出桥梁的 承载能力和稳定性。
适用于需要单独分析某个物体的受力情况,或者需要排除其他物体的影响,单独研究某个物体的运动状态变化。
条件
隔离法的使用需要满足一定的条件,如物体间的相互作用力较小,可以忽略不计;或者需要将复杂的系统分解为 若干个简单的子系统进行研究等。
实例分析:连接体问题
问题描述
两个或多个物体通过轻绳、轻弹簧等 连接在一起,共同运动,求各物体的 加速度和运动状态。

牛顿第二定律应用举例

牛顿第二定律应用举例

牛顿第二定律应用举例牛顿第二定律是经典力学中的基本定律之一,它描述了物体运动的力学规律。

这个定律阐述了力、质量和加速度之间的关系,被广泛应用于各个领域。

一、力与加速度的关系牛顿第二定律表达了物体的加速度与所受的力成正比的关系。

即F = ma,其中F代表物体所受的合力,m代表物体的质量,a代表物体的加速度。

这个定律可以用于解释各种场景下的物体运动。

例如,考虑一个沿平直轨道上的小车,当一个人用手推车时,手施加在车上的力将产生加速度。

根据牛顿第二定律,手推车的加速度和推力成正比,而且与车的质量成反比。

如果人用更大的力推车,它的加速度将增加。

而如果车的质量增加,相同的推力下,它的加速度将减小。

二、力的方向和大小牛顿第二定律不仅可以用于求解物体的加速度,还可以用来求解力的大小和方向。

例如,考虑一个快乐摩天轮的座舱。

当轮盘在旋转时,座舱内的人会受到离心力的作用,这个力指向轮盘的中心,与半径相切。

我们可以利用牛顿第二定律来计算离心力的大小。

如果轮盘的半径越大,座舱内的人受到的离心力就越大;而如果轮盘的角速度增加,离心力也会增加。

三、加速度与物体质量的关系牛顿第二定律还可以用于解释物体质量对加速度的影响。

例如,考虑一个物体在空气中自由下落的情况。

物体受到重力的作用,而空气阻力会减缓物体的下落速度,这个阻力与物体的质量成正比。

根据牛顿第二定律,物体的加速度与受力和质量之间的关系为a = (F - B)/m,其中F代表重力的大小,B代表空气阻力的大小,m代表物体的质量。

从这个公式可以看出,物体的质量越大,其受到的重力相同情况下,加速度就越小。

四、牛顿第二定律在工程中的应用牛顿第二定律在工程领域中有着广泛的应用。

例如,在设计交通工具时,需要考虑力对车辆的影响。

假设一个工程师要设计一辆汽车,他需要根据牛顿第二定律来计算引擎对车辆的推力需求。

为了让汽车在起步时加速度适宜,工程师需要确保引擎具备足够的扭矩和马力。

根据牛顿第二定律,扭矩与车辆的转动惯量和加速度成正比。

(完整版)牛顿第二定律的综合应用专题

(完整版)牛顿第二定律的综合应用专题

图1牛顿第二定律的应用第一类:由物体的受力情况确定物体的运动情况1. 如图1所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为0.10.( g=10m/s 2) (1)画出物块的受力示意图 (2)求物块运动的加速度的大小 (3)物体在t =2.0s 时速度v 的大小. (4)求物块速度达到s m v /0.6=时移动的距离2.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜向上的拉力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2,求(1)画出物体的受力示意图 (2)物体运动的加速度(3)物体在拉力作用下5s 内通过的位移大小。

〖方法归纳:〗〖自主练习:〗1.一辆总质量是4.0×103kg 的满载汽车,从静止出发,沿路面行驶,汽车的牵引力是6.0×103N ,受到的阻力为车重的0.1倍。

求汽车运动的加速度和20秒末的速度各是多大? ( g=10m/s 2)2.如图所示,一位滑雪者在一段水平雪地上滑雪。

已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=0.05。

从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。

求:( g=10m/s 2)(1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。

3.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜下上的推力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2, 求(1)物体运动的加速度(2)物体在拉力作用下5s 内通过的位移大小。

第四章复习课二牛顿第二定律的理解与运用

第四章复习课二牛顿第二定律的理解与运用

Байду номын сангаас 例1 如图1所示,质量m=2 kg的物体静止在水平地面上,
物体与水平面间的滑动摩擦力大小等于它们间弹力的
0.25倍,现对物体施加一个大小F=8 N、与水平方向成
图1
θ=37°角斜向上的拉力,已知sin 37°=0.6,cos 37°=
0.8,g取10 m/s2.求:
(1)画出物体的受力图,并求出物体的加速度;
针对训练 如图3所示,在倾角θ=37°的足够长的固定的斜面底端有一质 量m=1 kg的物体.物体与斜面间的动摩擦因数μ=0.25,现用轻细绳拉物体由 静止沿斜面向上运动.拉力F=10 N,方向平行斜面向上,经时间t=4 s绳子突 然断了,求:(已知sin 37°=0.6,cos 37°=0.8,取g=10 m/s2) (1)绳断时物体的速度大小;
(2)物体在拉力作用下5 s末的速度大小
(3)物体在拉力作用下5 s内通过的位移大小.
例2. 质量为m=3 kg的木块放在倾角为θ=30°的足够长斜面上,木块
可以沿斜面匀速下滑.如图2所示,若用沿斜面向上的力F作用于木块上,
使其由静止开始沿斜面向上加速运动,经过t=2 s时间物体沿斜面上滑
4 m的距离,则推力F为(g取10 m/s2)( )
解(1) 物块放到传送带上后,在滑动摩擦力的作用下先向右做匀加速
运动.由μmg=ma 得a=μg,
若传送带足够长,匀加速运动到与传送带同速后再与传送带一同向右做匀
速运动. 物块匀加速运动的时间 t1=va=μvg=4 s 物块匀加速运动的位移 x1=12at12=12μgt12=8 m
因为L=4.5 m<8 m,所以物块一直加速, 由 L=12at2 得 t=3 s

高考物理总复习牛顿第二定律的综合应用

高考物理总复习牛顿第二定律的综合应用
2019:海南T5
生活等实际问题,考查
牛顿第二定律的应用,
2023:湖北T9;
2021:上海T19,浙江1月T19 以选择题形式出现的可
能性较大.
2022:全国甲T19,江苏T1
返回目录
专题五
牛顿第二定律的综合应用
题型1
动力学中的图像问题
1. 常见图像
v-t图像、a-t图像、F-t图像、F-a图像等.
(3)由加速度结合初始运动状态,分析物体的运动情况
由已知条件确
(1)分析运动过程中物体的受力;
定物理量的变
(2)根据牛顿第二定律推导出加速度表达式;
化图像
(3)根据加速度的变化确定物理量的变化图像
返回目录
专题五
牛顿第二定律的综合应用
1. [v-t图像]物块以初速度v0竖直向上抛出,到达最高点后返回,物块所受空气阻力
多少?
[答案] 4 N
[解析] 对两物块整体应用牛顿第二定律有F-μ·2mg=2ma
再对后面的物块应用牛顿第二定律有FTmax-μmg=ma
又FTmax=2 N,联立解得F=4 N
返回目录
专题五
牛顿第二定律的综合应用
(2)[水平面→斜面]如图所示,倾角为θ的固定斜面上有两个质量分别为m1和m2的物
时间t1小于下降过程所用时间t2,故B错误,A正确.
返回目录
专题五
牛顿第二定律的综合应用
2. [F-a图像/2023全国甲/多选]用水平拉力使质量分别为m甲、m乙的甲、乙两物体
在水平桌面上由静止开始沿直线运动,两物体与桌面间的动摩擦因数分别为μ甲和μ
乙.甲、乙两物体运动后,所受拉力F与其加速度a的关系图线如图所示.由图可知

第三章 第3课时 专题强化:牛顿第二定律的综合应用

第三章 第3课时 专题强化:牛顿第二定律的综合应用

第3课时 专题强化:牛顿第二定律的综合应用 目标要求 1.知道连接体的类型以及运动特点,会用整体法、隔离法解决连接体问题。

2.理解几种常见的临界极值条件,会用极限法、假设法、数学方法解决临界极值问题。

考点一 动力学中的连接体问题多个相互关联的物体连接(叠放、并排或由绳子、细杆、弹簧等联系)在一起构成的物体系统称为连接体。

系统稳定时连接体一般具有相同的速度、加速度(或速度、加速度大小相等)。

1.共速连接体两物体通过弹力、摩擦力作用,具有相同的速度和相同的加速度。

(1)绳的拉力(或物体间的弹力)相关类连接体(2)叠加类连接体(一般与摩擦力相关)例1 如图所示,水平面上有两个质量分别为m 1和m 2的木块1和2,中间用一条轻绳连接,两木块的材料相同,现用力F 向右拉木块2,当两木块一起向右做匀加速直线运动时,已知重力加速度为g ,下列说法正确的是( )A .若水平面是光滑的,则m 2越大,绳的拉力越大B .若木块和地面间的动摩擦因数为μ,则绳的拉力为m 1F m 1+m 2+μm 1g C .绳的拉力大小与水平面是否粗糙无关D .绳的拉力大小与水平面是否粗糙有关答案 C解析 若设木块和地面间的动摩擦因数为μ,以两木块整体为研究对象,根据牛顿第二定律有F -μ(m 1+m 2)g =(m 1+m 2)a ,得a =F -μ(m 1+m 2)g m 1+m 2,以木块1为研究对象,根据牛顿第二定律有T -μm 1g =m 1a ,得a =T -μm 1g m 1,系统加速度与木块1加速度相同,联立解得T =m 1m 1+m 2F ,可知绳子拉力大小与动摩擦因数μ无关,与两木块质量大小有关,无论水平面是光滑的还是粗糙的,绳的拉力大小均为T =m 1m 1+m 2F ,且m 2越大,绳的拉力越小,故选C 。

拓展 (1)两个质量分别为m 1和m 2的木块1和2,中间用一条轻绳连接。

①如图甲所示,用力F 竖直向上拉木块时,绳的拉力T =__________;②如图乙所示,用力F 沿光滑斜面向上拉木块时,绳的拉力为__________;斜面不光滑时绳的拉力T =__________。

物理一轮复习 专题12 牛顿运动定律的综合应用(讲)(含解析)

物理一轮复习 专题12 牛顿运动定律的综合应用(讲)(含解析)

专题12 牛顿运动定律的综合应用1.掌握超重、失重的概念,会分析有关超重、失重的问题。

2.学会分析临界与极值问题。

3.会进行动力学多过程问题的分析.1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)等于零的情况称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.考点一超重与失重1.超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化).2.只要物体有向上或向下的加速度,物体就处于超重或失重状态,与物体向上运动还是向下运动无关.3.尽管物体的加速度不是在竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.4.物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于ma。

★重点归纳★1.物体处于超重状态还是失重状态取决于加速度的方向,与速度的大小和方向没有关系.下表列出了加速度方向与物体所处状态的关系。

加速度超重、失重视重Fa=0不超重、不失重F=mga的方向竖直向上超重F=m(g+a)a的方向竖直向下失重F=m(g-a)a =g ,竖直向下完全失重F =0特别提醒:不论是超重、失重、完全失重,物体的重力都不变,只是“视重”改变. 2.超重和失重现象的判断“三”技巧(1)从受力的角度判断,当物体所受向上的拉力(或支持力)大于重力时, 物体处于超重状态,小于重力时处于失重状态,等于零时处于完全失重状态. (2)从加速度的角度判断,当物体具有向上的加速度时处于超重状态,具有向下的加 速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态. (3)从速度变化角度判断①物体向上加速或向下减速时,超重; ②物体向下加速或向上减速时,失重.★典型案例★在升降电梯内的地板上放一体重计,电梯静止时,晓敏同学站在体重计上,体重计示数为50 kg,电梯运动过程中,某一段时间内晓敏同学发现体重计示数如图所示,在这段时间内下列说法中正确的是: ( )A.晓敏同学所受的重力变小了B 。

板块模型-----牛顿运动定律与运动学的综合运用

板块模型-----牛顿运动定律与运动学的综合运用

板块模型-----牛顿运动定律与运动学的综合运用板块模型-----牛顿运动定律与运动学的综合运用一.涉及知识点:动力学,如受力分析,摩擦力(是静摩擦力还是滑动摩擦力,大小,方向)、牛顿第二定律,运动学规律公式。

二.与传送带模式的解题思路相似。

三.二者速度相等时,摩擦力的突变(大小,方向,f滑与fmax转变),从而受力情况变,加速度变,运动情况变。

四.板块模型中的功能关系,动量问题1.产生的内能:Q=f滑·X相对2.摩擦力做功:Q=f·X对地3.动能定理,能量守恒4.动量定理,动量守恒5.用隔离还是整体来分析问题例题1:如图所示,一质量为m=2kg、初速度为6m/s的小滑块(可视为质点),向右滑上一质量为M=4kg的静止在光滑水平面上足够长的滑板,m、M间动摩擦因数为μ=0.2。

(1)滑块滑上滑板时,滑块和滑板在水平方向上各受什么力,大小如何?方向向哪?(2)滑块和滑板各做什么运动?加速度各是多大?(3)1秒末滑块和滑板的速度分别是多少?(4)1秒末滑块和滑板的位移分别是多少?相对位移是多少?(5)2秒末滑块和滑板的速度分别是多少?(6)2秒末滑块和滑板的位移分别是多少?相对位移是多少?(7)2秒后滑块和滑板将怎样运动?例2:如图所示,一质量为m=3kg、初速度为5m/s的小滑块(可视为质点),向右滑上一质量为M=2kg的静止在水平面上足够长的滑板,m、M间动摩擦因数为μ1=0.2,滑板与水平面间的动摩擦因数为μ2=0.1,(设最大静摩擦力等于滑动摩擦力)。

(1)滑块滑上滑板时,滑块和滑板在水平方向上各受什么力,大小如何?方向向哪?(2)滑块和滑板各做什么运动?加速度各是多大?(3)滑块滑上滑板开始,经过多长时间后会与滑板保持相对静止?(4)滑块和滑板相对静止时,各自的位移是多少?(5)滑块和滑板相对静止时,滑块距离滑板的左端有多远?(6)5秒钟后,滑块和滑板的位移各是多少?1. 如图1所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为( ) A .物块先向左运动,再向右运动B .物块向右运动,速度逐渐减小,直到做匀速运动C .木板向右运动,速度逐渐减小,直到做匀速运动D .木板和物块的速度都逐渐减小,直到为零2、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为13μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g 。

牛顿第二定律与动能定理的综合应用

牛顿第二定律与动能定理的综合应用

感应电动势 ε = Bdv
感应电流
I′=
ε R
安培力 F′= BI′d
由牛顿第二定律,在 t 到 t + Δt 时间内,有
Δv
=
F m
Δt
则∑Δv =∑éëg sv1
=
gt1
sin
a
-
2B2 d3 mR
解得 t1 =
2m(BIld
-
2mgd
sin
a)
+
2B2 d3 R
W ,由动能定理,有 mg sin α × 4d + W - BIld = 0
且 Q = -W ,解得 Q = 4mgd sin α - BIld
(2)设线框刚离开磁场下边界时的速度为 v1 ,则
接着向下运动
2d
,有
mg
sin
α
×
2d
-
BIld
=
0
-
1 2
mv12
装置在磁场中运动时受到的合力
F = mg sin a - F′
导体棒
I I
B
绝缘杆
线框
2d
d
d
α
图3
(1)装置从释放到开始返回的过程中,线框中产
生的焦耳热 Q ;
(2)线框第一次穿越磁场区域所需的时间 t1 ; (3)经过足够长时间后,线框上边与磁场区域下
边界的最大距离 xm . 解析 (1)设装置由静止释放到导体棒运动到磁
场 下 边 界 的 过 程 中 ,作 用 在 线 框 上 的 安 培 力 做 功 为
mg sin a
(3)经过足够长时间后,线框在磁场下边界与最
大距离 xm 之间往复运动
由动能定理,有 mg sin α × xm - BIl(xm - d) = 0

牛顿运动定律的综合应用(二)(练习)(解析版)—2025年高考物理一轮复习讲练测(新教材新高考)

牛顿运动定律的综合应用(二)(练习)(解析版)—2025年高考物理一轮复习讲练测(新教材新高考)

A.1.0m B.1.5m 【答案】BA.木板的长度为2mB.木板的质量为1kgC.木板运动的最大距离为2m由图可知,木板的长度为:132m 3m 2L ´=´=木板运动的最大距离为:31m 1.5m 2x ´==分析滑块B ,减速时间设为B t ,则有:B B 0v a t =-解得:B 0.75st =()(0.75330.75´--A .1m =2mB .1m <2mC .1m >22mD .1m =22m 【答案】C【详解】由v t -图像分析可知,木板相对地面滑动,滑块与木板共速后一起减速到停止,对木板:122mg mgm m >则有:1m >22m 故选C 。

F=时,小滑块和木板一起匀速运动A.当拉力18N运动F=时,小滑块和木板一起加速运动C.当拉力30NA.木板的长度为3m由图像可知2.5s时两者共速,则木板在物块在0~2.0s内的加速度大小为:物块在2.0s~2.5s内的加速度大小为:m=A.动摩擦因数0.5B.铁块A和长木板B共速后的速度大小为C.长木板的长度为2.25mD.从铁块放上到铁块和长木板共速的过程中,A.小孩在滑板上下滑的加速度大小为2m/sB.小孩和滑板脱离前滑板的加速度大小为C.经过1s的时间,小孩离开滑板D.小孩离开滑板时的速度大小为0.8m/s【答案】BC【详解】AB.对小孩,由牛顿第二定律得,加速度大小为:同理对滑板,加速度大小为:2sin37 mga°=A .10N 15N F <<时物块B 和木板C 相对滑动B .木板和物块两者间的动摩擦因数不可求出C .由题目条件可求木板C 的质量D .15N F >时物块B 和木板C 相对滑动【答案】DA .小滑块的加速度向右,大小为A.小物块从传送带左端滑离传送带B.小物块滑离传送带时的速度大小为6m/sC.小物块从滑上传送带到滑离传送带经历的时间为A .2t 时刻,小物块离A 处的距离最大B .20t :时间内,小物块的加速度方向先向右后向左C .20t :时间内,因摩擦产生的热量为12121()22vv t mg t t m éù++êúëûD .20t :时间内,物块在传送带上留下的划痕为()21122v v t t ++A.物块最终从传送带N点离开B.物块将在4.8s时回到原处C.物块与传送带之间的摩擦因数为3 2D.传送带的速度1m/sv=,方向沿斜面向下【答案】C【详解】AD.从v t-图像可知,物体速度减为零后反向向上运动,最终的速度大小为A.5N·s B.20N·s【答案】D【详解】邮件轻放在传送带上时,受力分析如图所示支持力:NN cos53F mg q==A....【答案】D>),且小于传送带的速度时,对小物块受力分析,由【详解】AB.当小物块的初速度沿斜面向下(tan qA.弹出纸板后瞬间,纸板的加速度大小为2m/s²B.橡皮擦与纸板达到相同速度后,一直与纸板相对静止C.最终橡皮擦不会脱离纸板. .. .【答案】C【详解】箱子以一定的水平初速度0v 从左端滑上平板车,在摩擦力作用下,箱子做匀减速直线运动,平板A .当F 足够小时,A 仍保持静止状态B .当拉力F mg m =时,物块A.货物与平台一起做匀加速直线运动v=时,货物加速度为B.当平台速度0.6m/sv=时,货物加速度为C.当平台速度0.6m/sF<,平台将保持静止D.若施加的恒力10N【答案】C可知平台受到两个圆柱表面对平台沿平行于轴线的方向的摩擦力大小均为:F-根据牛顿第二定律可得:2可知随着平台速度v的逐渐增大,匀加速直线运动,故A错误;v=时,则有:BC.当平台速度0.6m/sA.传送带的速度越快,饺子的加速度越大B.饺子相对与传送带的位移为C.饺子由静止开始加速到与传送带速度相等的过程中,增加的动能等于因摩擦产生的热量D.传送带因传送饺子多消耗的电能等于饺子增加的动能A.图线I 反映的是包裹的运动B.包裹和传送带间的动摩擦因数为C.传送带的长度为20 mD.包裹相对传送带滑动的距离为【答案】D【详解】A.传送带启动后做匀加速运动,包裹在摩擦力作用下也做加速运动,则包裹的加速度一定小于传送到的加速度,则由图像可知图线A.t=2.5s时,货物所受摩擦力方向改变B.货物与传送带间的动摩擦因数为0.4C.传送带运行的速度大小为0.5m/sD.货物向下运动过程中所具有的机械能先减小后不变【答案】C【详解】A.由图乙可知,在0~2.5s内,货物的速度大于传动带的速度,A.包裹在最高点c时,对圆弧轨道的压力为零B.第一个包裹在传送带上运动的时间为C.圆弧轨道半径为() 223m5-A.货物与输送带间的动摩擦因数为0.825B.输送带A、B两端点间的距离为8mC.货物从下端A点运动到上端B点的时间为9s D.皮带输送机因运送该货物而多消耗的能量为【答案】CA.滑雪板与滑雪毯间的动摩擦因数为B.滑雪者从坡道顶端由静止滑到底端所需时间为C.整个下滑过程滑雪板与雪毯之间由于摩擦而产生热量为D.整个过程中摩擦力对滑雪板一直做正功【答案】CA.游客在“雪地魔毯”上一直做匀加速运动B.游客在“雪地魔毯”上匀加速运动的时间为C.游客在“雪地魔毯”受到的摩擦力的方向可能改变D.游客与“雪地魔毯”间的动摩擦因数约为【答案】D【详解】A.若游客在“雪地魔毯”上一直做匀加速运动,则游客的位移:13.如图,物块A 、B 静置叠放在光滑水平面上,A 、B 上下表面水平。

考点8 牛顿运动定律的综合应用

考点8 牛顿运动定律的综合应用

考点8 牛顿运动定律的综合应用[题组一 基础小题]1.如图所示,小车在水平面上做匀变速直线运动,车厢内两质量相同的小球通过轻绳系于车厢顶部,轻绳OA 、OB 与竖直方向的夹角均为30°,其中一球用水平轻绳BC 系于车厢侧壁,重力加速度为g ,下列说法正确的是( )A .小车一定向右运动B .轻绳OA 、OB 的拉力大小相等C .小车的加速度大小为32gD .轻绳BC 的拉力大小是轻绳OB 拉力的 3 倍答案 B解析 对车厢内左侧小球受力分析,由牛顿第二定律有:T OA sin30°=ma ,又T OA cos30°=mg ,联立解得:T OA =233mg ,a =33g ,加速度方向水平向右,小车可能向右做加速运动,也可能向左做减速运动,故A 、C 错误;对车厢内右侧小球受力分析,由牛顿第二定律有:T CB -T OB sin30°=ma ,又T OB cos30°=mg ,联立解得:T OB =233mg =T OA ,T CB =233mg =T OB ,故B 正确,D 错误。

2.倾角为θ的光滑斜面体C 固定在水平面上,将两物体A 、B 叠放在斜面上,且同时由静止释放,若A 、B 的接触面与斜面平行,则下列说法正确的是( )A .物体A 相对于物体B 向上运动B .斜面体C 对水平面的压力等于A 、B 、C 三者重力之和C .物体A 、B 之间的动摩擦因数不可能为零D .物体A 运动的加速度大小为g sin θ答案 D解析 由于斜面光滑,所以A 和B 一起向下加速运动,根据牛顿第二定律可得二者的加速度大小为a =g sin θ,A 错误,D 正确;物体A 相对于物体B 没有运动趋势,二者之间的摩擦力为零,A 和B 之间的动摩擦因数可以为零,也可以不为零,故C 错误;由于A 、B 一起加速下滑,有竖直向下的分加速度,A 、B 在竖直方向上处于失重状态,所以斜面体C 对水平面的压力小于A 、B 、C 三者重力之和,故B 错误。

牛顿第二定律在生活中的应用教学案例

牛顿第二定律在生活中的应用教学案例

牛顿第二定律在生活中的应用教学案例。

案例一:汽车行驶汽车的行驶是我们每天都会接触到的,而牛顿第二定律对汽车行驶的原理作出了很好的解释。

我们知道,汽车行驶需要燃料进行推进,而这个过程就是牛顿第二定律的体现。

燃料中蕴含的能量被释放出来,被传递到车轮上,产生了一种向前的推力,使得汽车运动加速。

这个过程中,汽车的重量相当于物体的质量,而推动汽车的动力是作用在汽车上的力。

根据牛顿第二定律,这个力越大,汽车加速就越快,而车身越重,加速度就越小。

从中学的角度来讲,可以通过举办汽车模型的竞赛活动,让学生自己制作汽车模型并对模型进行测试,加深他们对牛顿第二定律的理解。

活动营造出趣味性,让学生在动手制作的过程中,了解汽车行驶的基本原理,并发现其中的物理问题。

让学生通过实验、观察和测量数据等方法,探究汽车重量、发动机功率、轮胎摩擦力等因素对汽车行驶过程的影响,锻炼他们的动手操作能力和科学思维能力。

案例二:运动员奔跑体育课上的跑步运动同样可以用牛顿第二定律进行讲解和理解。

在运动员奔跑的过程中,如果想要加快奔跑速度,除了增加脚步频率之外,就需要增加腿部肌肉的收缩力。

这个力就是运用牛顿第二定律进行解释的。

人体的重量相当于质量,肌肉的收缩力可以看作是作用在身体上的力。

根据牛顿第二定律,重力不变的情况下,如果增加身体向前的推力,奔跑速度就会加快。

从中学角度来讲,可以通过组织班级田径比赛活动,让学生在实际运动中探究身体推力与加速度之间的关系。

比如,可以通过比较不同的脚步频率和肌肉收缩力对奔跑速度的影响,让学生了解身体运动的科学原理,提高他们的实际操作能力和探究能力。

案例三:飞机起飞飞机起飞是航空工业中最为重要的一步,也是牛顿第二定律的一个经典应用。

在飞机起飞的时候,飞机发动机产生的推力需要克服引力和空气阻力。

这个过程同样可以用牛顿第二定律来进行解释。

飞机的重量相当于物体的质量,发动机产生的推力是作用在飞机上的力。

在飞机起飞的过程中,如果推力大于各种阻力的合力,那么飞机就能够顺利起飞。

三大力学观点的综合应用

三大力学观点的综合应用

(2)设 A 车的质量为 mA,碰后加速度大小为 aA,根据牛顿 第二定律有
μmAg=mAaA④ 设碰撞后瞬间 A 车速度的大小为 vA′,碰撞后滑行的距离 为 sA,由运动学公式有 vA′2=2aAsA⑤ 设碰撞前的瞬间 A 车速度的大小为 vA。两车在碰撞过程中 动量守恒,有 mAvA=mAvA′+mBvB′⑥ 联立③④⑤⑥式并利用题给数据得 vA=4.3 m/s。⑦
(1)求物块 M 碰撞后的速度大小; (2)若平台表面与物块 M 间的动摩擦因数 μ=0.5,物块 M 与 小球的初始距离为 x1=1.3 m,求物块 M 在 P 处的初速度大小。
[解析] (1)碰后物块 M 做平抛运动,设其平抛运动的初速 度为 v3,平抛运动时间为 t,由平抛运动规律得
h=12gt2① x=v3t② 得:v3=x 2gh=3.0 m/s。③ (2)物块 M 与小球在 B 点处碰撞,设碰撞前物块 M 的速度 为 v1,碰撞后小球的速度为 v2,由动量守恒定律: Mv1=mv2+Mv3④
解析:(1)由题图乙可知: 长木板的加速度 a1=12 m/s2=0.5 m/s2 由牛顿第二定律可知:小物块施加给长木板的滑动摩擦力 Ff= m1a1=2 N 小物块与长木板之间的动摩擦因数:μ=mF2fg=0.2。 (2)由题图乙可知,小物块的加速度 a2=42 m/s2=2 m/s2 由牛顿第二定律可知:F-μm2g=m2a2 解得 F=4 N。
碰后小球从 B 点处运动到最高点 A 过程中机械能守恒,设 小球在 A 点的速度为 vA,则12mv22=12mvA2+2mgL⑤
小球在最高点时有:2mg=mvLA2⑥ 由⑤⑥解得:v2=6.0 m/s⑦ 由③④⑦解得:v1=mv2+MMv3=6.0 m/s⑧ 物块 M 从 P 点运动到 B 点过程中,由动能定理: -μMgx1=12Mv12-12Mv02⑨ 解得:v0= v12+2μgx1=7.0 m/s。 [答案] (1)3.0 m/s (2)7.0 m/s

系统的牛顿第二定律及应用

系统的牛顿第二定律及应用

系统的牛顿第二定律及应用一、系统的牛顿第二定律若将系统受到的每一个外力,系统内每一物体的加速度均沿正交坐标系的x轴与y轴分解,则系统的牛顿第二定律的数学表达式如下:F1x+F2x+…=m1a1x+m2a2x+…F1y+F2y+…=m1a1y+m2a2y+…与采用隔离法、分别对每一物体应用牛顿第二定律求解不同的是,应用系统的牛顿第二定律解题时将使得系统内物体间的相互作用力变成内力,因而可以减少不必求解的物理量的个数,导致所列方程数减少,从而达到简化求解的目的,并能给人以一种赏心悦目的感觉,现通过实例分析与求解,说明系统的牛顿第二定律的具体应用,并力图帮助大家领略到应用系统的牛顿第二定律求解的优势。

二、系统的牛顿第二定律的应用1、求系统所受到的外力例1 在图1中,A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M。

B为铁片,质量为m。

整个装置用轻绳悬挂于O点。

当电磁铁通电,铁片被吸引上升的过程,轻绳上的拉力F的大小为()A、F=MgB、Mg<F<(m+M)gC、F=(m+M)gD、F>(m+M)g分析与解以A、B、C系统为研究对象,它受到的外力为竖直向下的重力(m+M)g,绳对系统竖直向上的拉力F(电磁铁A与铁片B间的相互引力为内力)。

A、C的加速度为0,铁片上升时向上的加速度不为0。

若以竖直向上方向为正向,设某时刻铁片B向上的加速度为a,则由系统的牛顿第二定律得F-(m+M)g=ma∴F=(m+M)g+ma>(m+M)g因此,应选正确答案D。

例2 如图2所8示,一根长为l的轻杆,两端各固定一个质量均为m 的小球A和B。

若轻杆以它的中点O为轴在竖直平面内转动,求轻杆转到竖直位置时,杆对轴的作用力。

分析与解取小球A、B及杆为研究对象,它受到竖直向下的重力2mg,轴对它竖直向上的弹力N.A、B在最低点与最高点时向心加速度恰为反向。

若取竖直向上方向为正向,由系统的牛顿第二定律得:N-2mg=maA +maB∵aA =-aB∴N=2mg由牛顿第三定律知杆对轴的弹力大小为2mg,方向竖直向下。

牛顿第二定律的应用

牛顿第二定律的应用

牛顿第二定律的应用牛顿第二定律是牛顿力学中最基础的定律之一,也是应用最为广泛的一条定律。

它描述了物体在受到外力作用下的运动状态,是物理学家研究力学问题的重要基础。

本文将从实际生活中的应用角度,探讨牛顿第二定律的具体应用。

一、汽车行驶过程中的运用在汽车行驶中,牛顿第二定律经常被用来计算车辆的加速度和制动距离。

例如,当汽车受到向前的牵引力时,按照牛顿第二定律的公式,F=ma,可以得出汽车的加速度。

同样的,如果汽车受到向后的制动力时,可以通过牛顿第二定律计算汽车需要的制动距离,以确保安全停车。

二、物体自由落体的运用物体自由落体是牛顿力学中的一个基本问题。

在不考虑空气阻力的情况下,任何物体都会在同样的重力作用下以等加速度自由落体。

这个加速度被称为重力加速度,约等于9.8米/秒^2。

因此,利用牛顿第二定律公式F=ma可以计算出自由落体物体下落的加速度和速度。

三、物体在斜面上运动的运用斜面问题是力学中一个基础问题,也是牛顿第二定律的一个重要应用场景。

当一个物体沿着斜面下滑或爬升时,可以使用牛顿第二定律公式F=ma,分解受到的重力和摩擦力,计算物体的加速度和速度。

跟汽车制动计算一样,这个问题的特别之处在于需要对斜坡的倾斜角度和物体与斜坡之间的摩擦系数等因素进行精细的计算和分析。

四、物体在空气中的运动的运用在空气中运动的物体会受到空气阻力的影响,这时候牛顿第二定律的应用就要考虑到空气阻力的影响。

例如,现代飞机在设计上要考虑到空气阻力和空气动力学特性等问题,确保飞机可以在空气中平稳地运动。

总结:牛顿第二定律是应用最为广泛的牛顿力学定律之一。

在实际生活和工程中,牛顿第二定律被用来描述物体在受到外力作用下的运动状态,计算物体的加速度、速度和运动距离等参数。

在汽车行驶、物体自由落体、斜面运动和空气动力学等领域,牛顿第二定律都有重要的应用价值。

而准确地应用牛顿第二定律,不仅需要熟练掌握相关公式和计算方法,同时也需要细致的分析和判断能力。

2025高考物理总复习牛顿第二定律的综合应用

2025高考物理总复习牛顿第二定律的综合应用
住,并用竖直向上的拉力F匀加速提起,砖与砖、砖与砖夹之间未发生相对
滑动,每块砖的重力大小均为G,砖夹的质量不计。若F=6G,则在加速提起
过程中第2、3块砖之间的摩擦力大小为( A )
A.0
B.G
C.2G
D.3G

解析 将四块砖和砖夹看成一个整体,则加速度为 a= =

6-4
4
=

,将第2、
2
3块砖看成整体,则砖块1对砖块2的摩擦力与砖块4对砖块3的摩擦力都为Ff,
3
且方向均竖直向上,有2Ff-2mg=2ma,解得Ff=
;对砖块3,根据牛顿第二定
2
律有Ff23+Ff-mg=ma,由以上各式解得Ff23=0,即在加速提起过程中第2、3
块砖之间的摩擦力大小为0,A正确,B、C、D错误。
3
与斜面平行,物体A、B的质量分别为m、2m,A与斜面间的动摩擦因数为 3 ,
重力加速度大小为g,将A、B由静止释放,在B下降的过程中(物体A未碰到
滑轮),斜面体静止不动。下列说法正确的是( AC )
2
A.轻绳对 P 点的拉力大小为 mg
3
3
B.物体 A 的加速度大小为 g
5
C.地面对斜面体的摩擦力大小为
2a-masin 30°,解
得地面对斜面体的支持力为 FN=
3
0 +
2
g,D 错误。
易错点拨 根据初中学过的定滑轮、动滑轮的特点找出两个物体的速度、
加速度关系是本题关键,如果对初中知识不够熟练,解答本题极易出错。
题型二
动力学中的临界、极值问题
1.临界值或极值条件的四类标志
2.处理临界问题的三种方法

牛顿第二定律的运用

牛顿第二定律的运用

一、超重与失重1.视重:当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为“视重”,大小等于测力计所受的拉力或秤所受压力.2.超重、失重的分析3.超重、失重与平衡状态的比较 (1)物体超重与运动状态的关系:(2)物体失重与运动状态的关系:例:质量为60 kg 的人站在升降机中的体重计上,当升降机做下列各种运动时,体重计的读数是多少?(g =10 m/s2) (1)升降机匀速上升;(2)升降机以3 m/s2的加速度加速上升; (3)升降机以4 m/s2的加速度加速下降.二、瞬时加速度问题两类基本模型:(1)弹簧(或橡皮绳)模型:此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成是不变的.(2)刚性绳(或接触面)模型:这种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,形变恢复几乎不需要时间.例1:图中小球M处于静止状态,弹簧与竖直方向的夹角为θ,烧断BO绳的瞬间,试求小球M的加速度大小和方向.例2:如图用细绳AO、BO悬挂一物体M,烧断AO绳的瞬间,求物体M的加速度。

变式:如图所示,两小球悬挂在天花板上,a、b两小球用细线连接,上面是一轻质弹簧,a、b两球的质量分别为m和2m,求在细线烧断瞬间,a、b两球的加速度。

(取向下为正方向)如图所示,一水平传送带两端的距离为20m,传送带以v=2 m/s的速度做匀速运动,将一物体轻放在传送带一端,已知物体与传送带间的动摩擦因数为0.1,求物体由传送带一端运动到另一端所需时间。

(g取10 m/s2)三、连接体问题一、加速度相同当物体间相对静止,具有共同的对地加速度时,就可以把它们作为一个整体,通过对整体所受的合外力列出整体的牛顿第二定律方程。

当需要计算物体之间(或一个物体各部分之间)的相互作用力时,就必须把各个物体(或一个物体的各个部分)隔离出来,根据各个物体(或一个物体的各个部分)的受力情况,画出隔离体的受力图,列出牛顿第二定律方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿第二定律的综合运用
一、牛顿第二定律的动力学及图像问题
1、如图甲所示,质量为m=1 kg的物体置于倾角为θ=37°的固定斜面上(斜
=1 s时撤去拉面足够长),对物体施加平行于斜面向上的恒力F,作用时间t
1
力,物体运动的部分v-t图象如图乙所示,取g=10 m/s2,试求:
(1)物体与斜面间的动摩擦因数和拉力F的大小;
(2)t=6 s时物体的速度,并在图乙上将6 s内物体运动的v-t图象补画完整,要求标明有关数据.
二、牛顿运动定律的综合运用
(1)连接体问题
2、如图1-15所示:把质量为M的的物体放在光滑
..高台上,用一条可以
..的水平
忽略质量而且不变形的细绳绕过定滑轮把它与质量为m的物体连接起来,求:绳子的拉力和物体m的运动加速度各是多大?
3、两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图
所示,对物体A 施以水平的推力F ,则物体A
B 的作用力等于( )
A.F m m m 211+
B.F m m m 2
12+ C.F D.F m m 2
1 扩展:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。

4、如图所示,质量分别为m 和2m 的两物体A 、B 叠放在一起,放在光滑的水平地面上,若用水平力F 作用B 上,使A 、B 保持相对静止做加速运动,则作用于A 、B 之间摩擦力为多少?
5、如图1-24所示的装置中,物体A 在斜面上保持静止,由此可知:( )
A. 物体A 所受摩擦力的方向可能沿斜面向上。

B. 物体A 所受摩擦力的方向可能沿斜面向下。

C. 物体A 可能不受摩擦力作用。

D. 物体A 一定受摩擦力作用,但摩擦力的方向无法判
定。

(2) 传送带问题
6、如图,水平传送带两个转动轴轴心相距20m ,正在以v =4.0m/s 的速度匀速传动,某物块儿(可视为质点)与传送带之间的动摩擦因数为0.1,将该物块儿从传送带左端无初速地轻放在传送带上,则经过多长时间物块儿将到达传送带的右端(g =10m/s 2) ?
图2—1
7、如图2—1所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A →B 的长度L=16m ,则物体从A 到B 需要的时间为多少?
(3) 滑块、滑板问题
8、如图,质量M = 8.0kg 的小车停放在光滑水平面上。

在小车右端施加一个F = 8.0N 的水平恒力。

当小车向右运动的速度达到3.0m/s 时,在其右端轻轻放上一个质量m =2.0kg 小物块(初速为零),物块与小车间动摩擦因数μ = 0.20,假定小车足够长。

求:
⑴经多长时间物块停止在小车上相对滑动?
⑵小物块从放在车上开始,经过t = 3.0 s ,通过的位移是多少?
9、如图所示,长为L=1m、质量为M=1Kg的木板,放在光滑水平面上,在木板左端放一个质量m=1Kg的小滑块,开始都处于静止状态。

现用水平力F=20N 向右拉滑块,滑块与木板间摩擦因数μ=0.5,求把物块从木板右端拉出时,木板的位移为多大?
10、如图所示,质量M=0.2kg的长板静止在水平地面上,与地面间动摩擦因数
μ=0.1,另一质量m=0.1kg的小滑块以0.9m/s的初速度滑上长木板,滑块与长1
μ=0.4,求:
木板间动摩擦因数
2
(1)经过多长时间物块和木板速度相同。

(2)小滑块自滑上长板到最后静止(仍在木板上)的过程中,它相对于地运动的
路程(g=10m/s2).。

相关文档
最新文档