高三数学选修2-2复习同步作业34

合集下载

高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案

高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案
求下列函数的导数: (1)y = e3x+2 ;(2)ln(2x − 1).

解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−

8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得

(x0 − 2)2 (x0 + 1) = 0.

(湘教版)高中数学选修2-2(全册)同步练习汇总

(湘教版)高中数学选修2-2(全册)同步练习汇总

(湘教版)高中数学选修2 -2 (全册)同步练习汇总第4章导数及其应用4.1导数概念4.1.1问题探索- -求自由落体的瞬时速度一、根底达标1.设物体的运动方程s=f(t) ,在计算从t到t+d这段时间内的平均速度时,其中时间的增量d() A.d>0 B.d<0C.d=0 D.d≠0答案 D2.一物体运动的方程是s=2t2 ,那么从2 s到(2+d) s这段时间内位移的增量为() A.8 B.8+2dC.8d+2d2D.4d+2d2答案 C解析Δs=2(2+d)2-2×22=8d+2d2.3.一物体的运动方程为s=3+t2 ,那么在时间段[2,2.1]内相应的平均速度为() A.4.11 B.4.01 C.4.0答案 D解析v=错误!=4.1.4.一木块沿某一斜面自由下滑,测得下滑的水平距离s与时间t之间的方程为s=18t2 ,那么t=2时,此木块水平方向的瞬时速度为()A.2 B.1 C.12 D.14答案 C解析ΔsΔt=18(2+Δt)2-18×22Δt=12+18Δt→12(Δt→0).5.质点运动规律s=2t2+1 ,那么从t=1到t=1+d时间段内运动距离对时间的变化率为________.答案4+2d解析v=2(1+d)2+1-2×12-11+d-1=4+2d.6.某个物体走过的路程s(单位:m)是时间t(单位:s)的函数:s=-t2+1.(1)t=2到t=2.1;(2)t =2到t =2.01; (3)t =2到t =2.001.那么三个时间段内的平均速度分别为________ ,________ ,________ ,估计该物体在t =2时的瞬时速度为________. 答案 -4.1 m/s -4.01 m/s -4.001 m/s -4 m/s7.某汽车的紧急刹车装置在遇到特别情况时 ,需在2 s 内完成刹车 ,其位移 (单位:m)关于时间(单位:s)的函数为: s (t )=-3t 3+t 2+20 ,求:(1)开始刹车后1 s 内的平均速度; (2)刹车1 s 到2 s 之间的平均速度; (3)刹车1 s 时的瞬时速度. 解 (1)刹车后1 s 内平均速度v 1=s (1)-s (0)1-0=(-3×13+12+20)-201=-2(m/s).(2)刹车后1 s 到2 s 内的平均速度为: v 2=s (2)-s (1)2-1=(-3×23+22+20)-(-3×13+12+20)1=-18(m/s).(3)从t =1 s 到t =(1+d )s 内平均速度为: v 3=s (1+d )-s (1)d=-3(1+d )3+(1+d )2+20-(-3×13+12+20)d=-7d -8d 2-3d 3d =-7-8d -3d 2→-7(m/s)(d →0)即t =1 s 时的瞬时速度为-7 m/s. 二、能力提升8.质点M 的运动方程为s =2t 2-2 ,那么在时间段[2,2+Δt ]内的平均速度为( )A .8+2ΔtB .4+2ΔtC .7+2ΔtD .-8+2Δt答案 A解析 Δs Δt =2(2+Δt )2-2-(2×22-2)Δt=8+2Δt .9.自由落体运动的物体下降的距离h 和时间t 的关系式为h =12gt 2 ,那么从t =0到t =1时间段内的平均速度为________ ,在t =1到t =1+Δt 时间段内的平均速度为________ ,在t =1时刻的瞬时速度为________. 答案 12g g +12g Δt g 解析 12g ×12-12g ×021-0=12g .12g (1+Δt )2-12g ×12Δt =g +12g Δt . 当Δt →0时 ,g +12g Δt →g .10.自由落体运动的物体下降距离h 和时间t 的关系式为h =12gt 2,t =2时的瞬时速度为19.6 ,那么g =________. 答案解析 12g (2+Δt )2-12g ×22Δt =2g +12g Δt . 当Δt →0时 ,2g +12g Δt →2g . ∴2g =19.6 ,g =9.8.11.求函数s =2t 2+t 在区间[2,2+d ]内的平均速度. 解 ∵Δs =2(2+d )2+(2+d )-(2×22+2)=9d +2d 2 , ∴平均速度为Δsd =9+2d .12.甲、乙二人平时跑步路程与时间的关系以及百米赛跑路程和时间的关系分别如图①、②所示.问:(1)甲、乙二人平时跑步哪一个跑得快?(2)甲、乙二人百米赛跑,快到终点时,谁跑得快(设Δs为s的增量)?解(1)由题图①在(0 ,t]时间段内,甲、乙跑过的路程s甲<s乙,故有s甲t<s乙t即在任一时间段(0 ,t]内,甲的平均速度小于乙的平均速度,所以乙比甲跑得快.(2)由题图②知,在终点附近[t-d,t)时间段内,路程增量Δs乙>Δs甲,所以Δs乙d>Δs甲d即快到终点时,乙的平均速度大于甲的平均速度,所以乙比甲跑得快.三、探究与创新13.质量为10 kg的物体按照s(t)=3t2+t+4的规律做直线运动,求运动开始后4秒时物体的动能.解s(Δt+4)-s(4)Δt=3(Δt+4)2+(Δt+4)+4-(3×42+4+4)Δt=3Δt+25 , 当Δt→0时,3Δt+25→25.即4秒时刻的瞬时速度为25.∴物质的动能为12m v2=12×10×252=3 125(J)4.问题探索- -求作抛物线的切线一、根底达标1.曲线y=2x2上一点A(1,2) ,那么A处的切线斜率等于() A.2 B.4C.6+6d+2d2D.6答案 B2.曲线y=12x2-2上的一点P(1 ,-32) ,那么过点P的切线的倾斜角为()A.30°B.45°C.135°D.165°答案 B3.如果曲线y=2x2+x+10的一条切线与直线y=5x+3平行,那么切点坐标为() A.(-1 ,-8) B.(1,13)C.(1,12)或(-1,8) D.(1,7)或(-1 ,-1)答案 B4.曲线y=x-2在点P(3,1)处的切线斜率为()A.-12B.0 C.12D.1答案 C解析(3+Δx)-2-3-2Δx=Δx+1-1Δx=1Δx+1+1.当Δx→0时,1Δx+1+1→12.5.假设曲线y=x2+1在曲线上某点处的斜率为2 ,那么曲线上该切点的坐标为________.答案(1,2)6.曲线y=x2+2在点P(1,3)处的切线方程为________.答案2x-y+1=0解析(1+Δx)2+2-(12+2)Δx=Δx+2 ,当Δx→0时,Δx+2→2.所以曲线y=x2+2在点P(1,3)处的切线斜率为2 ,其方程为y-3=2(x-1).即为2x-y+1=0.7.抛物线y=x2在点P处的切线与直线2x-y+4=0平行,求点P的坐标及切线方程.解设点P(x0 ,y0) ,f(x0+d)-f(x0)d=(x0+d)2-x20d=d+2x0 ,d→0时,d+2x0→2x0.抛物线在点P处的切线的斜率为2x0 ,由于切线平行于2x-y+4=0 ,∴2x0=2 ,x0=1 , 即P点坐标为(1,1) ,切线方程为y-1=2(x-1) ,即为2x-y-1=0.二、能力提升8.曲线y=-1x在点(1 ,-1)处的切线方程为()A.y=x-2 B.y=xC.y=x+2 D.y=-x-2 答案 A解析-1Δx+1-(-11)Δx=1-1Δx+1Δx=1Δx+1,当Δx→0时,1Δx+1→1.曲线y=-1x在点(1 ,-1)处的切线的斜率为1 ,切线方程为y+1=1×(x-1) ,即y=x-2.9.曲线f(x)=x2+3x在点A(2,10)处的切线的斜率为________.答案7解析f(2+Δx)-f(2)Δx=(2+Δx)2+3(2+Δx)-(22+3×2)Δx=Δx+7 ,当Δx→0时,Δx+7→7 ,所以,f(x)在A处的切线的斜率为7.10.曲线f(x)=x2+3x在点A处的切线的斜率为7 ,那么A点坐标为________.答案(2,10)解析设A点坐标为(x0 ,x20+3x0) ,那么f(x0+Δx)-f(x0)Δx=(x0+Δx)2+3(x0+Δx)-(x20+3x0)Δx=Δx+(2x0+3) ,当Δx→0时,Δx+(2x0+3)→2x0+3 ,∴2x0+3=7 ,∴x0=2.x20+3x0=10.A点坐标为(2,10).11.抛物线y=x2+1 ,求过点P(0,0)的曲线的切线方程.解设抛物线过点P的切线的切点为Q(x0 ,x20+1).那么(x0+Δx)2+1-(x20+1)Δx=Δx+2x0.Δx→0时,Δx+2x0→2x0.∴x20+1-0x0-0=2x0 ,∴x0=1或x0=-1.即切点为(1,2)或(-1,2).所以,过P(0,0)的切线方程为y=2x或y=-2x.即2x-y=0或2x+y=0.三、探究与创新12.直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,求切点的坐标及a的值.解设切点A(x0 ,y0) ,(x0+d)3-(x0+d)2+1-(x30-x20+1)d=3x20d+3x0d2+d3-2x0d-d2d=3x 20-2x 0+(3x 0-1)d +d 2→3x 20-2x 0(d →0). 故曲线上点A 处切线斜率为3x 20-2x 0 ,∴3x 20-2x 0=1 ,∴x 0=1或x 0=-13 ,代入C的方程得 ⎩⎪⎨⎪⎧x 0=1 y 0=1或⎩⎪⎨⎪⎧x 0=-13 y 0=2327代入直线l ,当⎩⎪⎨⎪⎧x 0=1y 0=1时 ,a =0(舍去) ,当⎩⎪⎨⎪⎧x 0=-13 y 0=2327时 ,a =3227 ,即切点坐标为(-13 ,2327) ,a =3227.4. 导数的概念和几何意义一、根底达标1.设f ′(x 0)=0 ,那么曲线y =f (x )在点(x 0 ,f (x 0))处的切线( )A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交答案 B2.函数y =f (x )的图象如图 ,那么f ′(x A )与f ′(x B )的大小关系是( )A.f′(x A)>f′(x B) B.f′(x A)<f′(x B)C.f′(x A)=f′(x B) D.不能确定答案 B解析分别作出A、B两点的切线,由题图可知k B>k A ,即f′(x B)>f′(x A).3.曲线y=2x2上一点A(2,8) ,那么在点A处的切线斜率为() A.4 B.16 C.8 D.2解析在点A处的切线的斜率即为曲线y=2x2在x=2时的导数,由导数定义可求y′=4x ,∴f′(2)=8.答案 C4.函数f(x)在x=1处的导数为3 ,那么f(x)的解析式可能为() A.f(x)=(x-1)2+3(x-1)B.f(x)=2(x-1)C.f(x)=2(x-1)2D.f(x)=x-1答案 A解析分别求四个选项的导函数分别为f′(x)=2(x-1)+3;f′(x)=2;f′(x)=4(x-1);f′(x)=1.5.抛物线y=x2+x+2上点(1,4)处的切线的斜率是________ ,该切线方程为____________.答案33x-y+1=0解析Δy=(1+d)2+(1+d)+2-(12+1+2)=3d+d2 ,故y′|x=1=limd→0Δy d=limd→0(3+d)=3.∴切线的方程为y-4=3(x-1) ,即3x-y+1=0.6.假设曲线y=x2-1的一条切线平行于直线y=4x-3 ,那么这条切线方程为____________.答案4x-y-5=0解析∵f′(x)=f(x+d)-f(x)d=(x+d)2-1-(x2-1)d=2xd+d2d=(2x+d)=2x.设切点坐标为(x0,y0) ,那么由题意知f′(x0)=4 ,即2x0=4 ,∴x0=2 ,代入曲线方程得y0y-3=4(x-2) ,即4x-y-5=0.7.求曲线y=x3在点(3,27)处的切线与两坐标轴所围成的三角形的面积.解∵f′(3)=f(3+d)-f(3)d=(3+d)3-33d=(d2+9d+27)=27 ,∴曲线在点(3,27)处的切线方程为y-27=27(x-3) , 即27x-y-54=0.此切线与x轴、y轴的交点分别为(2,0) ,(0 ,-54).∴切线与两坐标轴围成的三角形的面积为S=12×2×54=54.二、能力提升8.曲线y=-x3+3x2在点(1,2)处的切线方程为() A.y=3x-1 B.y=-3x+5C.y=3x+5 D.y=2x答案 A解析-(Δx+1)3+3(Δx+1)2-(-13+3×12)Δx=-Δx2+3.Δx→0时,-Δx2+3→3.∴f′(1)=3.即曲线在(1,2)处的切线斜率为3. 所以切线方程为y-2=3(x-1) ,即y=3x-1.9.函数y=f(x)图象在M(1 ,f(1))处的切线方程为y=12x+2 ,那么f(1)+f′(1)=________. 答案 3解析 由切点在切线上. ∴f (1)=12×1+2=52.切线的斜率f ′(1)=12.∴f (1)+f ′(1)=3.10.假设曲线y =x 2+ax +b 在点(0 ,b )处的切线方程为x -y +1=0 ,那么a ,b 的值分别为________ ,________. 答案 1 1解析 ∵点(0 ,b )在切线x -y +1=0上 , ∴-b +1=0 ,b =1.又f (0+Δx )-f (0)Δx =Δx 2+a Δx +b -b Δx =a +Δx ,∴f ′(0)=a =1.11.曲线y =x 3+1 ,求过点P (1,2)的曲线的切线方程. 解 设切点为A (x 0 ,y 0) ,那么y 0=x 30+1.(x 0+Δx )3+1-(x 30+1)Δx =Δx 3+3x 20Δx +3x 0Δx2Δx =Δx 2+3x 0Δx +3x 20.∴f ′(x 0)=3x 20 ,切线的斜率为k =3x 20.点(1,2)在切线上 ,∴2-(x 30+1)=3x 20(1-x 0).∴x 0=1或x 0=-12. 当x 0=1时 ,切线方程为3x -y -1=0 , 当x 0=-12时 ,切线方程为3x -4y +5=0.所以 ,所求切线方程为3x -y -1=0或3x -4y +5=0. 12.求抛物线y =x 2的过点P (52 ,6)的切线方程. 解 由得 ,Δyd =2x +d , ∴当d →0时 ,2x +d →2x , 即y ′=2x ,设此切线过抛物线上的点(x 0 ,x 20) , 又因为此切线过点(52 ,6)和点(x 0 ,x 20) ,其斜率应满足x20-6x0-52=2x0 ,由此x0应满足x20-5x0+6=0.解得x0=2或3.即切线过抛物线y=x2上的点(2,4) ,(3,9).所以切线方程分别为y-4=4(x-2) ,y-9=6(x-3).化简得4x-y-4=0,6x-y-9=0 ,此即是所求的切线方程.三、探究与创新13.求垂直于直线2x-6y+1=0并且与曲线y=x3+3x2-5相切的直线方程.解设切点为P(a ,b) ,函数y=x3+3x2-5的导数为y′=3x2+6x.故切线的斜率k=y′|x=a=3a2+6a=-3 ,得a=-1 ,代入y=x3+3x2-5得,b=-3 ,即P(-1 ,-3).故所求直线方程为y+3=-3(x+1) ,即3x+y+6=0.4.导数的运算法那么一、根底达标1.设y=-2e x sin x ,那么y′等于() A.-2e x cos x B.-2e x sin xC.2e x sin x D.-2e x(sin x+cos x)答案 D解析y′=-2(e x sin x+e x cos x)=-2e x(sin x+cos x).2.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=() A.a B.±a C.-a D.a2答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2 ,由x 20-a 2=0得x 0=±a . 3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直 ,那么a 等于( )A .2 B.12 C .-12 D .-2 答案 D 解析 ∵y =x +1x -1=1+2x -1, ∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2 ,即a =-2.4.曲线y =x 3在点P 处的切线斜率为k ,那么当k =3时的P 点坐标为( )A .(-2 ,-8)B .(-1 ,-1)或(1,1)C .(2,8)D.⎝ ⎛⎭⎪⎪⎫-12 -18 答案 B解析 y ′=3x 2 ,∵k =3 ,∴3x 2=3 ,∴x =±1 , 那么P 点坐标为(-1 ,-1)或(1,1).5.设函数f (x )=g (x )+x 2 ,曲线y =g (x )在点(1 ,g (1))处的切线方程为y =2x +1 ,那么曲线y =f (x )在点(1 ,f (1))处切线的斜率为________. 答案 4解析 依题意得f ′(x )=g ′(x )+2x , f ′(1)=g ′(1)+2=4.6.f (x )=13x 3+3xf ′(0) ,那么f ′(1)=________. 答案 1解析 由于f ′(0)是一常数 ,所以f ′(x )=x 2+3f ′(0) , 令x =0 ,那么f ′(0)=0 , ∴f ′(1)=12+3f ′(0)=1. 7.求以下函数的导数: (1)y =(2x 2+3)(3x -1); (2)y =x -sin x 2cos x2.解 (1)法一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+ 3(2x 2+3)=18x 2-4x +9.法二 ∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3 , ∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9. (2)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .二、能力提升8.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎪⎫π4 0处的切线的斜率为( )A .-12 B.12 C .-22 D.22 答案B 解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故y ′|x =π4=12 ,∴曲线在点M ⎝ ⎛⎭⎪⎪⎫π4 0处的切线的斜率为12. 9.点P 在曲线y =4e x +1上 ,α为曲线在点P 处的切线的倾斜角 ,那么α的取值范围是( )A .[0 ,π4) B .[π4 ,π2) C .(π2 ,3π4] D .[3π4 ,π)答案 D解析 y ′=-4e x (e x +1)2=-4e xe 2x +2e x+1 ,设t =e x ∈(0 ,+∞) ,那么y ′ =-4tt 2+2t +1=-4t +1t +2,∵t +1t ≥2 ,∴y ′∈[-1,0) ,α∈[3π4 ,π). 10.(2021·江西)设函数f (x )在(0 ,+∞)内可导 ,且f (e x )=x +e x ,那么f ′(1)=________. 答案 2解析 令t =e x ,那么x =ln t ,所以函数为f (t )=ln t +t ,即f (x )=ln x +x ,所以f ′(x )=1x +1 ,即f ′(1)=11+1=2.11.求过点(2,0)且与曲线y =x 3相切的直线方程.解 点(2,0)不在曲线y =x 3上 ,可令切点坐标为(x 0 ,x 30).由题意 ,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20 ,即x 30x 0-2=3x 20 ,解得x 0=0或x 0=3.当x 0=0时 ,得切点坐标是(0,0) ,斜率k =0 ,那么所求直线方程是y =0; 当x 0=3时 ,得切点坐标是(3,27) ,斜率k =27 , 那么所求直线方程是y -27=27(x -3) , 即27x -y -54=0.综上 ,所求的直线方程为y =0或27x -y -54=0.12.曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线 ,求曲线的切线方程. 解 设切点为(x 0 ,y 0) ,那么由导数定义得切线的斜率k =f ′(x 0)=3x 20-3 ,∴切线方程为y =(3x 20-3)x +16 , 又切点(x 0 ,y 0)在切线上 , ∴y 0=3(x 20-1)x 0+16 ,即x 30-3x 0=3(x 20-1)x 0+16 ,解得x 0=-2 ,∴切线方程为9x -y +16=0. 三、探究与创新13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2 ,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值 ,并求此定值. (1)解 由7x -4y -12=0得y =74x -3.当x =2时 ,y =12 ,∴f (2)=12 ,①又f ′(x )=a +bx 2 , ∴f ′(2)=74 ,②由① ,②得⎩⎪⎨⎪⎧2a -b 2=12 a +b 4=74.解之得⎩⎪⎨⎪⎧a =1b =3.故f (x )=x -3x .(2)证明 设P (x 0 ,y 0)为曲线上任一点 ,由y ′=1+3x 2知 曲线在点P (x 0 ,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0) ,即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎪⎫0 -6x 0. 令y =x 得y =x =2x 0 ,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P (x 0 ,y 0)处的切线与直线x =0 ,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y =f (x )上任一点处的切线与直线x =0 ,y =x 所围成的三角形的面积为定值 ,此定值为6.4.2 导数的运算4.2.1 几个幂函数的导数 4.2.2 一些初等函数的导数表一、根底达标1.以下结论中正确的个数为( )①y =ln 2 ,那么y ′=12;②y =1x 2 ,那么y ′|x =3=-227;③y =2x ,那么y ′=2x ln 2;④y =log 2x ,那么y ′=1x ln 2. A .0 B .1 C .2 D .3 答案 D解析 ①y =ln 2为常数 ,所以y ′=0.①错.②③④正确. 2.过曲线y =1x 上一点P 的切线的斜率为-4 ,那么点P 的坐标为( )A.⎝ ⎛⎭⎪⎪⎫12 2B.⎝ ⎛⎭⎪⎪⎫12 2或⎝ ⎛⎭⎪⎪⎫-12 -2C.⎝ ⎛⎭⎪⎪⎫-12 -2D.⎝ ⎛⎭⎪⎪⎫12 -2 答案 B解析 y ′=⎝ ⎛⎭⎪⎫1x ′=-1x 2=-4 ,x =±12 ,应选B. 3.f (x )=x a ,假设f ′(-1)=-4 ,那么a 的值等于( )A .4B .-4C .5D .-5 答案 A解析 f ′(x )=ax a -1 ,f ′(-1)=a (-1)a -1=-4 ,a =4. 4.函数f (x )=x 3的斜率等于1的切线有( )A .1条B .2条C .3条D .不确定 答案 B解析∵f ′(x )=3x 2 ,设切点为(x 0 ,y 0) ,那么3x 20=1 ,得x 0=±33 ,即在点⎝ ⎛⎭⎪⎪⎫33 39和点⎝ ⎛⎭⎪⎪⎫-33 -39处有斜率为1的切线. 5.曲线y =9x 在点M (3,3)处的切线方程是________. 答案 x +y -6=0解析 ∵y ′=-9x 2 ,∴y ′|x =3=-1 , ∴过点(3,3)的斜率为-1的切线方程为: y -3=-(x -3)即x +y -6=0. 6.假设曲线在点处的切线与两个坐标轴围成的三角形的面积为18 ,那么a =________. 答案 64 解析∴曲线在点处的切线斜率,∴切线方程为.令x =0得;令y =0得x =3a .∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·=18 ,∴a =64.7.求以下函数的导数:(1) y =7x 3;(2)y =1x 4;(3)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4;(4)y =log 2x 2-log 2x . 解 (1)y ′=⎝⎛⎭⎫7x 3′==377x 4.(2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5.(3)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4 =2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x 2=sin x ,∴y ′=(sin x )′=cos x . (4)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x ·ln 2. 二、能力提升8.直线y =kx 是曲线y =e x 的切线 ,那么实数k 的值为( )A.1e B .-1e C .-e D .e 答案 D解析y ′=e x,设切点为(x 0 ,y 0) ,那么⎩⎪⎨⎪⎧y 0=kx 0 y 0=e x 0k =e x 0.∴e x 0=e x 0·x 0 ,∴x 0=1 ,∴k =e.9.曲线y =ln x 在x =a 处的切线倾斜角为π4 ,那么a =______. 答案 1解析 y ′=1x ,∴y ′|x =a =1a =1 ,∴a =1.10.点P 是曲线y =e x 上任意一点 ,那么点P 到直线y =x 的最|小距离为________. 答案 22解析 根据题意设平行于直线y =x 的直线与曲线y =e x 相切于点(x 0 ,y 0) ,该切点即为与y =x 距离最|近的点 ,如图.那么在点(x 0 ,y 0)处的切线斜率为1 ,即y ′|x =x 0=1.∵y ′=(e x )′=e x ,∴e x 0=1 ,得x 0=0 ,代入y =e x ,得y 0=1 ,即P (0,1).利用点到直线的距离公式得距离为22.11.f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1 , 由f ′(x )+g ′(x )≤0 ,得-sin x +1≤0 , 即sin x ≥1 ,但sin x ∈[-1,1] , ∴sin x =1 ,∴x =2k π+π2 ,k ∈Z .12.抛物线y =x 2 ,直线x -y -2=0 ,求抛物线上的点到直线的最|短距离. 解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线 ,对应的切点到直线x-y-2=0的距离最|短,设切点坐标为(x0 ,x20) ,那么y′|x=x=2x0=1 ,所以x0=12,所以切点坐标为⎝⎛⎭⎪⎪⎫1214,切点到直线x-y-2=0的距离d=⎪⎪⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x-y-2=0的最|短距离为728.三、探究与创新13.设f0(x)=sin x ,f1(x)=f′0(x) ,f2(x)=f′1(x) ,… ,f n+1(x)=f′n(x) ,n∈N ,试求f2 014(x).解f1(x)=(sin x)′=cos x ,f2(x)=(cos x)′=-sin x ,f3(x)=(-sin x)′=-cos x ,f4(x)=(-cos x)′=sin x ,f5(x)=(sin x)′=f1(x) ,f6(x)=f2(x) ,… ,f n+4(x)=f n(x) ,可知周期为4 ,∴f2 014(x)=f2(x)=-sin x.4.3导数在研究函数中的应用4.3.1利用导数研究函数的单调性一、根底达标1.命题甲:对任意x∈(a ,b) ,有f′(x)>0;命题乙:f(x)在(a ,b)内是单调递增的,那么甲是乙的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析f(x)=x3在(-1,1)内是单调递增的,但f′(x)=3x2≥0(-1<x<1) ,故甲是乙的充分不必要条件,选A.2.函数y=12x2-ln x的单调减区间是()A.(0,1) B.(0,1)∪(-∞ ,-1) C.(-∞ ,1) D.(-∞ ,+∞)答案 A解析∵y=12x2-ln x的定义域为(0 ,+∞) ,∴y′=x-1x,令y′<0 ,即x-1x<0 ,解得:0<x<1或x<-1.又∵x>0 ,∴0<x<1 ,应选A.3.函数f(x)=x3+ax2+bx+c ,其中a ,b ,c为实数,当a2-3b<0时,f(x)是() A.增函数B.减函数C.常函数D.既不是增函数也不是减函数答案 A解析求函数的导函数f′(x)=3x2+2ax+b ,导函数对应方程f′(x)=0的Δ=4(a2-3b)<0 ,所以f′(x)>0恒成立,故f(x)是增函数.4.以下函数中,在(0 ,+∞)内为增函数的是() A.y=sin x B.y=x e2C.y=x3-x D.y=ln x-x答案 B解析 显然y =sin x 在(0 ,+∞)上既有增又有减 ,故排除A ;对于函数y =x e 2 ,因e 2为大于零的常数 ,不用求导就知y =x e 2在(0 ,+∞)内为增函数; 对于C ,y ′=3x 2-1=3⎝⎛⎭⎪⎫x +33⎝ ⎛⎭⎪⎫x -33 ,故函数在⎝ ⎛⎭⎪⎫-∞ -33 ,⎝ ⎛⎭⎪⎫33 +∞上为增函数 , 在⎝ ⎛⎭⎪⎪⎫-33 33上为减函数;对于D ,y ′=1x -1 (x >0). 故函数在(1 ,+∞)上为减函数 , 在(0,1)上为增函数.应选B.5.函数y =f (x )在其定义域⎝ ⎛⎭⎪⎪⎫-32 3内可导 ,其图象如下图 ,记y =f (x )的导函数为y=f ′(x ) ,那么不等式f ′(x )≤0的解集为________.答案 ⎣⎢⎢⎡⎦⎥⎥⎤-13 1∪[2,3)6.函数y =ln(x 2-x -2)的递减区间为________. 答案 (-∞ ,-1) 解析 f ′(x )=2x -1x 2-x -2,令f ′(x )<0得x <-1或12<x <2 ,注意到函数定义域为(-∞ ,-1)∪(2 ,+∞) ,故递减区间为(-∞ ,-1).7.函数f (x )=x 3+ax +8的单调递减区间为(-5,5) ,求函数y =f (x )的递增区间. 解 f ′(x )=3x 2+a .∵(-5,5)是函数y =f (x )的单调递减区间 ,那么-5,5是方程3x 2+a =0的根 ,∴af′(x)=3x2-75 ,令f′(x)>0 ,那么3x2-75>0 ,解得x>5或x<-5 ,∴函数y=f(x)的单调递增区间为(-∞ ,-5)和(5 ,+∞).二、能力提升8.如果函数f(x)的图象如图,那么导函数y=f′(x)的图象可能是()答案 A解析由f(x)与f′(x)关系可选A.9.设f(x) ,g(x)在[a ,b]上可导,且f′(x)>g′(x) ,那么当a<x<b时,有() A.f(x)>g(x)B.f(x)<g(x)C.f(x)+g(a)>g(x)+f(a)D.f(x)+g(b)>g(x)+f(b)答案 C解析∵f′(x)-g′(x)>0 ,∴(f(x)-g(x))′>0 ,∴f (x )-g (x )在[a ,b ]上是增函数 , ∴当a <x <b 时f (x )-g (x )>f (a )-g (a ) , ∴f (x )+g (a )>g (x )+f (a ).10.(2021·大纲版)假设函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎪⎫12 +∞是增函数 ,那么a 的取值范围是________. 答案 [3 ,+∞)解析 因为f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎪⎫12 +∞上是增函数 ,故f ′(x )=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎪⎫12 +∞上恒成立 , 即a ≥1x 2-2x 在⎝ ⎛⎭⎪⎪⎫12 +∞上恒成立. 令h (x )=1x 2-2x ,那么h ′(x )=-2x 3-2 , 当x ∈⎝ ⎛⎭⎪⎪⎫12 +∞时 ,h ′(x )<0 ,那么h (x )为减函数 , 所以h (x )<h ⎝ ⎛⎭⎪⎫12=3 ,所以a ≥3.11.求以下函数的单调区间: (1)y =x -ln x ; (2)y =ln(2x +3)+x 2.解 (1)函数的定义域为(0 ,+∞) ,y ′=1-1x , 由y ′>0 ,得x >1;由y ′<0 ,得0<x <1.∴函数y =x -ln x 的单调增区间为(1 ,+∞) ,单调减区间为(0,1). (2)函数y =ln(2x +3)+x 2的定义域为⎝ ⎛⎭⎪⎪⎫-32 +∞.∵y =ln(2x +3)+x 2 ,∴y ′=22x +3+2x =4x 2+6x +22x +3=2(2x +1)(x +1)2x +3.当y ′>0 ,即-32<x <-1或x >-12时 , 函数y =ln(2x +3)+x 2单调递增; 当y ′<0 ,即-1<x <-12时 , 函数y =ln(2x +3)+x 2单调递减.故函数y =ln(2x +3)+x 2的单调递增区间为⎝ ⎛⎭⎪⎪⎫-32 -1 ,⎝ ⎛⎭⎪⎪⎫-12 +∞ ,单调递减区间为⎝ ⎛⎭⎪⎪⎫-1 -12. 12.函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2) ,且在点M (-1 ,f (-1))处的切线方程为6x -y +7=0. (1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.解 (1)由y =f (x )的图象经过点P (0,2) ,知d =2 , ∴f (x )=x 3+bx 2+cx +2 ,f ′(x )=3x 2+2bx +c . 由在点M (-1 ,f (-1))处的切线方程为6x -y +7=0 , 知-6-f (-1)+7=0 ,即f (-1)=1 ,f ′(-1)=6. ∴⎩⎪⎨⎪⎧ 3-2b +c =6 -1+b -c +2=1 即⎩⎪⎨⎪⎧2b -c =-3 b -c =0 解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2. (2)f ′(x )=3x 2-6xf ′(x )>0 , 得x <1-2或x >1+2; 令f ′(x )<0 ,得1-2<x <1+ 2.故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞ ,1-2)和(1+ 2 ,+∞) ,单调递减区间为(1- 2 ,1+2). 三、探究与创新13.函数f(x)=mx3+nx2(m、n∈R ,m≠0) ,函数y=f(x)的图象在点(2 ,f(2))处的切线与x轴平行.(1)用关于m的代数式表示n;(2)求函数f(x)的单调增区间.解(1)由条件得f′(x)=3mx2+2nx ,又f′(2)=0 ,∴3m+n=0 ,故n=-3m.(2)∵n=-3m ,∴f(x)=mx3-3mx2 ,∴f′(x)=3mx2-6mx.令f′(x)>0 ,即3mx2-6mx>0 ,当m>0时,解得x<0或x>2 ,那么函数f(x)的单调增区间是(-∞,0)和(2 ,+∞);当m<0时,解得0<x<2 ,那么函数f(x)的单调增区间是(0,2).综上,当m>0时,函数f(x)的单调增区间是(-∞ ,0)和(2 ,+∞);当m<0时,函数f(x)的单调增区间是(0,2).4.3.2函数的极大值和极小值一、根底达标y=f(x)的定义域为(a,b) ,y=f′(x)的图象如图,那么函数y=f(x)在开区间(a ,b)内取得极小值的点有()A.1个B.2个C.3个D.4个答案 A解析当满足f′(x)=0的点,左侧f′(x)<0 ,右侧f′(x)>0时,该点为极小值点,观察题图,只有一个极小值点.2. "函数y=f(x)在一点的导数值为0”是 "函数y=f(x)在这点取得极值〞的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析对于f(x)=x3 ,f′(x)=3x2 ,f′(0)=0 ,不能推出f(x)在x=0处取极值,反之成立.应选B.3.假设a>0 ,b>0 ,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,那么ab的最|大值等于() A.2 B.3 C.6 D.9答案 D解析f′(x)=12x2-2ax-2b ,∵f(x)在x=1处有极值,∴f′(1)=12-2a-2b=0 ,∴a+b=6.又a>0 ,b>0 ,∴a+b≥2ab,∴2ab≤6 ,∴ab≤9 ,当且仅当a=b=3时等号成立,∴ab的最|大值为9.4.函数y=x3-3x2-9x(-2<x<2)有() A.极大值5 ,极小值-27B.极大值5 ,极小值-11C.极大值5 ,无极小值D.极小值-27 ,无极大值答案 C解析由y′=3x2-6x-9=0 ,得x=-1或x=3 ,当x<-1或x>3时,y′>0 ,当-1<x<3时,y′x=-1时,函数有极大值5;x取不到3 ,故无极小值.5.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,那么实数a的取值范围是________.答案(-∞ ,-1)∪(2 ,+∞)解析∵f′(x)=3x2+6ax+3(a+2) ,令3x2+6ax+3(a+2)=0 ,即x2+2ax+a +2=0 ,∵函数f(x)有极大值和极小值,∴方程x2+2ax+a+2=0有两个不相等的实数根 ,即Δ=4a 2-4a -8>0 ,解得a >2或a <-1.6.假设函数y =x 3-3ax +a 在(1,2)内有极小值 ,那么实数a 的取值范围是________. 答案 (1,4)解析 y ′=3x 2-3a ,当a ≤0时 ,y ′≥0 ,函数y =x 3-3ax +a 为单调函数 ,不合题意 ,舍去;当a >0时 ,y ′=3x 2-3a =0⇒x =±a ,不难分析 ,当 1<a <2 ,即1<a <4时 ,函数y =x 3-3ax +a 在(1,2)内有极小值. 7.求函数f (x )=x 2e -x 的极值. 解 函数的定义域为R , f ′(x )=2x e -x+x 2·⎝ ⎛⎭⎪⎫1e x ′ =2x e -x -x 2e -x =x (2-x )e -x , 令f ′(x )=0 ,得x =0或x =2.当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表: x (-∞ ,0) 0 (0,2) 2 (2 ,+∞) f ′(x ) -0 +0 -f (x )4e -2当x =2时 ,函数有极大值 ,且为f (2)=4e -2. 二、能力提升8.函数f (x ) ,x ∈R ,且在x =1处 ,f (x )存在极小值 ,那么( )A .当x ∈(-∞ ,1)时 ,f ′(x )>0;当x ∈(1 ,+∞)时 ,f ′(x )<0B .当x ∈(-∞ ,1)时 ,f ′(x )>0;当x ∈(1 ,+∞)时 ,f ′(x )>0C .当x ∈(-∞ ,1)时 ,f ′(x )<0;当x ∈(1 ,+∞)时 ,f ′(x )>0D .当x ∈(-∞ ,1)时 ,f ′(x )<0;当x ∈(1 ,+∞)时 ,f ′(x )<0 答案 C解析 ∵f (x )在x =1处存在极小值 , ∴x <1时 ,f ′(x )<0 ,x >1时 ,f ′(x )>0.9.(2021·福建)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点 ,以下结论一定正确的选项是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点 答案 D解析 x 0(x 0≠0)是f (x )的极大值点 ,并不是最|大值点.故A 错;f (-x )相当于f (x )关于y 轴的对称图象的函数 ,故-x 0应是f (-x )的极大值点 ,B 错;-f (x )相当于f (x )关于x 轴的对称图象的函数 ,故x 0应是-f (x )的极小值点.跟-x 0没有关系 ,C 错;-f (-x )相当于f (x )关于坐标原点的对称图象的函数.故D 正确.y =f (x )的导函数的图象如下图 ,给出以下判断: ①函数y =f (x )在区间⎝ ⎛⎭⎪⎪⎫-3 -12内单调递增; ②函数y =f (x )在区间⎝ ⎛⎭⎪⎪⎫-12 3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时 ,函数y =f (x )有极小值; ⑤当x =-12时 ,函数y =f (x )有极大值. 那么上述判断正确的选项是________.(填序号) 答案 ③解析 函数的单调性由导数的符号确定 ,当x ∈(-∞ ,-2)时 ,f ′(x )<0 ,所以f (x )在(-∞ ,-2)上为减函数 ,同理f (x )在(2,4)上为减函数 ,在(-2,2)上是增函数 ,在(4 ,+∞)上为增函数 ,所以可排除①和② ,可选择③.由于函数在x =2的左侧递增 ,右侧递减 ,所以当x =2时 ,函数有极大值;而在x = -12的左右两侧 ,函数的导数都是正数 ,故函数在x =-12的左右两侧均为增函数 ,所以x =-12不是函数的极值点.排除④和⑤.11.f (x )=x 3+12mx 2-2m 2x -4(m 为常数 ,且m >0)有极大值-52 ,求m 的值. 解 ∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ) , 令f ′(x )=0 ,那么x =-m 或x =23m . 当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x (-∞ ,-m ) -m⎝ ⎛⎭⎪⎪⎫-m 23m 23m ⎝ ⎛⎭⎪⎪⎫23m +∞ f ′(x ) +0 -0 +f (x )极大值极小值∴f (x )极大值=f (-m )=-m 3+12m 3+2m 3-4=-52 ,∴m =1. 12.设a 为实数 ,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时 ,曲线y =f (x )与x 轴仅有一个交点 ? 解 (1)f ′(x )=3x 2-2x -1. 令f ′(x )=0 ,那么x =-13或x =1.当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x ⎝ ⎛⎭⎪⎪⎫-∞ -13 -13 ⎝ ⎛⎭⎪⎪⎫-13 1 1 (1 ,+∞) f ′(x ) +0 -0 +f (x )极大值极小值所以f (x )的极大值是f ⎝ ⎛⎭⎪⎫-13=527+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1 , 由此可知 ,x 取足够大的正数时 ,有f (x )>0 , x 取足够小的负数时 ,有f (x )<0 ,所以曲线y =f (x )与x 轴至|少有一个交点.由(1)知f (x )极大值=f ⎝ ⎛⎭⎪⎫-13=527+a ,f (x )极小值=f (1)=a -1.∵曲线y =f (x )与x 轴仅有一个交点 ,∴f (x )极大值<0或f (x )极小值>0 , 即527+a <0或a -1>0 ,∴a <-527或a >1 ,∴当a ∈⎝ ⎛⎭⎪⎪⎫-∞ -527∪(1 ,+∞)时 ,曲线y =f (x )与x 轴仅有一个交点. 三、探究与创新13.(2021·新课标Ⅱ)函数f (x )=e x -ln(x +m ).(1)设x =0是f (x )的极值点 ,求m ,并讨论f (x )的单调性; (2)当m ≤2时 ,证明f (x )>0. (1)解 f ′(x )=e x -1x +m. 由x =0是f (x )的极值点得f ′(0)=0 ,所以m =1. 于是f (x )=e x -ln(x +1) ,定义域为(-1 ,+∞) , f ′(x )=e x -1x +1. 函数f ′(x )=e x -1x +1在(-1 ,+∞)单调递增 ,且f ′(0)=0 ,因此当 x ∈(-1,0)时 ,f ′(x )<0;当x ∈(0 ,+∞)时 ,f ′(x )>0. 所以f (x )在(-1,0)单调递减 ,在(0 ,+∞)单调递增. (2)证明 当m ≤2 ,x ∈(-m ,+∞)时 ,ln(x +m )≤ ln(x +2) ,故只需证明当m =2时 ,f (x )>0. 当m =2时 , 函数f ′(x )=e x -1x +2在(-2 ,+∞)单调递增.又f′(-1)<0 ,f′(0)>0 ,故f′(x)=0在(-2 ,+∞)有唯一实根x0 , 且x0∈(-1,0).当x∈(-2 ,x0)时,f′(x)<0;当x∈(x0 ,+∞)时,f′(x)>0 ,从而当x=x0时,f(x)取得最|小值.由f′(x0)=0得e x0=1x0+2,ln(x0+2)=-x0 ,故f(x)≥f(x0)=1x0+2+x0=(x0+1)2x0+2>0.综上,当m≤2时,f(x)>0.4.3.3三次函数的性质:单调区间和极值一、根底达标1.函数y=f(x)在[a ,b]上() A.极大值一定比极小值大B.极大值一定是最|大值C.最|大值一定是极大值D.最|大值一定大于极小值答案 D解析由函数的最|值与极值的概念可知,y=f(x)在[a,b]上的最|大值一定大于极小值.2.函数y=x e-x ,x∈[0,4]的最|大值是()A.0 B.1e C.4e4 D.2e2答案 B解析y′=e-x-x·e-x=e-x(1-x) ,令y′=0 ,∴x=1 ,∴f(0)=0 ,f(4)=4e4,f(1)=e-1=1e,∴f(1)为最|大值,应选B.3.函数y=ln xx的最|大值为()A.e-1B.e C.e2 D.10 3答案 A解析令y′=(ln x)′x-ln x·x′x2=1-ln xx2=0.(x>0)解得xx>e时,y′<0;当0<x<e时,y′>0.y极大值=f(e)=1e,在定义域(0 ,+∞)内只有一个极值,所以y max=1 e.4.函数y=4xx2+1在定义域内() A.有最|大值2 ,无最|小值B.无最|大值,有最|小值-2 C.有最|大值2 ,最|小值-2 D.无最|值答案 C解析令y′=4(x2+1)-4x·2x(x2+1)2=-4x2+4(x2+1)2=0 ,得xx变化时,y′ ,y随x的变化如下表:x (-∞ ,-1)-1(-1,1)1(1 ,+∞) y′-0+0-y 极小值极大值最|大值2.5.函数f(x)=e x-2x+a有零点,那么a的取值范围是________.答案(-∞ ,2ln 2-2]解析 函数f (x )=e x -2x +a 有零点 ,即方程e x -2x +a =0有实根 ,即函数 g (x )=2x -e x ,y =a 有交点 ,而g ′(x )=2-e x ,易知函数g (x )=2x -e x 在 (-∞ ,ln 2)上递增 ,在(ln 2 ,+∞)上递减 ,因而g (x )=2x -e x 的值域为 (-∞ ,2ln 2-2] ,所以要使函数g (x )=2x -e x ,y =a 有交点 ,只需 a ≤2ln 2-2即可.6.函数y =x +2cos x 在区间⎣⎢⎢⎡⎦⎥⎥⎤0 π2上的最|大值是________. 答案π6+ 3 解析 y ′=1-2sin x =0 ,x =π6 ,比拟0 ,π6 ,π2处的函数值 ,得y max =π6+ 3. 7.函数f (x )=2x 3-6x 2+a 在[-2,2]上有最|小值-37 ,求a 的值及f (x )在 [-2,2]上的最|大值.解 f ′(x )=6x 2-12x =6x (x -2) , 令f ′(x )=0 ,得x =0或x =2 ,当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x -2 (-2,0) 0 (0,2) 2 f ′(x ) +0 - 0 f (x )-40+a极大值a-8+amin 当x =0时 ,f (x )的最|大值为3. 二、能力提升8.设直线x =t 与函数f (x )=x 2 ,g (x )=ln x 的图象分别交于点M ,N ,那么当|MN |到达最|小时t 的值为( )A .1 B.12 C.52 D.22 答案 D解析 由题意画出函数图象如下图 ,由图可以看出|MN |=y =t 2-ln t (t >0).y′=2t-1t=2t2-1t=2⎝⎛⎭⎪⎫t+22⎝⎛⎭⎪⎫t-22t.当0<t<22时,y′<0 ,可知y在⎝⎛⎭⎪⎫22上单调递减;当t>22时,y′>0 ,可知y在⎝⎛⎭⎪⎫22+∞上单调递增.故当t=22时,|MN|有最|小值.9.(2021·湖北重点中学检测)函数f(x)=x3-tx2+3x,假设对于任意的a∈[1,2] ,b ∈(2,3] ,函数f(x)在区间[a ,b]上单调递减,那么实数t的取值范围是() A.(-∞ ,3] B.(-∞ ,5] C.[3 ,+∞) D.[5 ,+∞)答案 D解析∵f(x)=x3-tx2+3x,∴f′(x)=3x2-2tx+3 ,由于函数f(x)在(a,b)上单调递减,那么有f′(x)≤0在[a ,b]上恒成立,即不等式3x2-2tx+3≤0在[a,b]上恒成立,即有t≥32⎝⎛⎭⎪⎫x+1x在[a,b]上恒成立,而函数y=32⎝⎛⎭⎪⎫x+1x在[1,3]上单调递增,由于a∈[1,2] ,b∈(2,3] ,当b=3时,函数y=32⎝⎛⎭⎪⎫x+1x取得最|大值,即y max=32⎝⎛⎭⎪⎫3+13=5 ,所以t≥5 ,应选D.10.如果函数f(x)=x3-32x2+a在[-1,1]上的最|大值是2 ,那么f(x)在[-1,1]上的最|小值是________.答案-1 2解析f′(x)=3x2-3x ,令f′(x)=0得x=0 ,或x=1.∵f(0)=a ,f(-1)=-52+a ,f(1)=-12+a ,∴f(x)max=a=2.∴f (x )min =-52+a =-12.11.函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R ).(1)假设函数f (x )在x =-1和x =3处取得极值 ,试求a ,b 的值; (2)在(1)的条件下 ,当x ∈[-2,6]时 ,f (x )<2|c |恒成立 ,求c 的取值范围. 解 (1)f ′(x )=3x 2-2ax +b ,∵函数f (x )在x =-1和x =3处取得极值 , ∴-1,3是方程3x 2-2ax +b =0的两根. ∴⎩⎪⎨⎪⎧-1+3=23a -1×3=b3,∴⎩⎨⎧a =3b =-9.(2)由(1)知f (x )=x 3-3x 2-9x +c ,f ′(x )=3x 2-6x -9 ,令f ′(x )=0 ,得x =-1或x =3. 当x 变化时 ,f ′(x ) ,f (x )随x 的变化如下表:x (-∞ ,-1)-1 (-1,3) 3 (3 ,+∞) f ′(x ) +0 -0 +f (x )极大值c +5极小值 c -27∴当x ∈[-2,6]时 ,f (x )的最|大值为c +54 , 要使f (x )<2|c |恒成立 ,只要c +54<2|c |即可 , 当c ≥0时 ,c +54<2c ,∴c >54; 当c <0时 ,c +54<-2c ,∴c <-18.∴c ∈(-∞ ,-18)∪(54 ,+∞) ,此即为参数c 的取值范围. 12.函数f (x )=-x 3+3x 2+9x +a . (1)求f (x )的单调递减区间;(2)假设f (x )在区间[-2,2]上的最|大值为20 ,求它在该区间上的最|小值.解(1)∵f′(x)=-3x2+6x+9.令f′(x)<0 ,解得x<-1或x>3 ,∴函数f(x)的单调递减区间为(-∞ ,-1) ,(3 ,+∞).(2)∵f(-2)=8+12-18+a=2+a ,f(2)=-8+12+18+a=22+a ,∴f(2)>f(-2).于是有22+a=20 ,∴a=-2.∴f(x)=-x3+3x2+9x-2.∵在(-1,3)上f′(x)>0 ,∴f(x)在[-1,2]上单调递增.又由于f(x)在[-2 ,-1]上单调递减,∴f(2)和f(-1)分别是f(x)在区间[-2,2]上的最|大值和最|小值,∴f(-1)=1+3-9-2=-7 ,即f(x)最|小值为-7.三、探究与创新13.(2021·新课标Ⅰ)函数f(x)=x2+ax+b,g(x)=e x(cx+d) ,假设曲线y=f(x)和曲线y=g(x)都过点P(0,2) ,且在点P处有相同的切线y=4x+2.(1)求a ,b ,c ,d的值;(2)假设x≥-2时,f(x)≤kg(x) ,求k的取值范围.解(1)由得f(0)=2 ,g(0)=2 ,f′(0)=4 ,g′(0)=4 ,而f′(x)=2x+a ,g′(x)=e x(cx+d+c) ,∴a=4 ,b=2 ,c=2 ,d=2.(2)由(1)知,f(x)=x2+4x+2 ,g(x)=2e x(x+1) ,设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2(x≥-2) ,F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).有题设可得F(0)≥0 ,即k≥1 ,令F′(x)=0得,x1=-ln k ,x2=-2 ,①假设1≤k<e2 ,那么-2<x1≤0 ,∴当x∈(-2 ,x1)时,F′(x)<0 ,当x∈(x1 ,+∞)时,F′(x)>0 ,即F(x)在(-2 ,x1)单调递减,在(x1 ,+∞)单调递增,故F(x)在x=x1取最|小值F(x1) ,而F(x1)=2x1+2-x21-4x1-2=-x1(x1+2)≥0.∴当≥-2时,F(x)≥0 ,即f(x)≤kg(x)恒成立.②假设k=e2 ,那么F′(x)=2e2(x+2)(e x-e2) ,∴当x ≥-2时 ,F ′(x )≥0 ,∴F (x )在(-2 ,+∞)单调递增 ,而F (-2)=0 ,∴当x ≥-2时 ,F (x )≥0 ,即f (x )≤kg (x )恒成立 ,③假设k >e 2 ,那么F (-2)=-2k e -2+2=-2e -2(k -e 2)<0 ,∴当x ≥-2时 ,f (x )≤kg (x )不可能恒成立.综上所述 ,k 的取值范围为[1 ,e 2].4.4 生活中的优化问题举例一、根底达标1.方底无盖水箱的容积为256 ,那么最|省材料时 ,它的高为( )A .4B .6C .4.5D .8 答案 A解析 设底面边长为x ,高为h , 那么V (x )=x 2·h =256 ,∴h =256x 2 ,∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2.令S ′(x )=0 ,解得x =8 ,∴h =25682=4.2.某银行准备新设一种定期存款业务 ,经预算 ,存款量与存款利率的平方成正比 ,比例系数为k (k >0).贷款的利率为0.0486 ,且假设银行吸收的存款能全部放贷出去.设存款利率为x ,x ∈(0,0.0486) ,假设使银行获得最|大收益 ,那么x 的取值为( )A .0.016 2B .0.032 4C .0.024 3D .0.048 6 答案 B。

高中数学选修2-2导数导学案加课后作业及参考答案

高中数学选修2-2导数导学案加课后作业及参考答案

§1.1.1函数的平均变化率导学案【学习要求】1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的一些实际问题.【学法指导】从山坡的平缓与陡峭程度理解函数的平均变化率,也可以从图象上数形结合看平均变化率的几何意义.【知识要点】1.函数的平均变化率:已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx = ,Δy =y 1-y 0=f (x 1)-f (x 0)= ,则当Δx ≠0时,商xx f x x f ∆-∆+)()(00=____叫做函数y =f (x )在x 0到x 0+Δx 之间的 .2.函数y =f (x )的平均变化率的几何意义:ΔyΔx =__________表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的 .【问题探究】在爬山过程中,我们都有这样的感觉:当山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁.怎样用数学反映山坡的平缓与陡峭程度呢?下面我们用函数变化的观点来研究这个问题. 探究点一 函数的平均变化率问题1 如何用数学反映曲线的“陡峭”程度?问题2 什么是平均变化率,平均变化率有何作用?例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率. 问题3 平均变化率有什么几何意义?跟踪训练1 如图是函数y =f (x )的图象,则:(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________.探究点二 求函数的平均变化率例2 已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率: (1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001].跟踪训练2 分别求函数f (x )=1-3x 在自变量x 从0变到1和从m 变到n (m ≠n )时的平均变化率.问题 一次函数y =kx +b (k ≠0)在区间[m ,n ]上的平均变化率有什么特点?探究点三 平均变化率的应用例3 甲、乙两人走过的路程s 1(t ),s 2(t )与时间t 的关系如图,试比较两人的平均速度哪个大?跟踪训练3 甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲、乙两人的经营成果?【当堂检测】1.函数f (x )=5-3x 2在区间[1,2]上的平均变化率为__________2.一物体的运动方程是s =3+2t ,则在[2,2.1]这段时间内的平均速度为________3.甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是________.【课堂小结】1.函数的平均变化率可以表示函数值在某个范围内变化的快慢;平均变化率的几何意义是曲线割线的斜率,在实际问题中表示事物变化的快慢. 2.求函数f (x )的平均变化率的步骤: (1)求函数值的增量Δy =f (x 2)-f (x 1); (2)计算平均变化率Δy Δx =1212)()(xx x f x f --.【拓展提高】1.设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆为( ) A .0()f x x +∆ B .0()f x x +∆ C .0()f x x ∆ D .00()()f x x f x +∆- 2.质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )A .6t +∆B .96t t+∆+∆ C .3t +∆ D .9t +∆【课后作业】一、基础过关1.当自变量从x 0变到x 1时,函数值的增量与相应自变量的增量之比是函数 ( )A .在[x 0,x 1]上的平均变化率B .在x 0处的变化率C .在x 1处的变化率D .以上都不对 2.函数f (x )=2x 2-x 在x =2附近的平均变化率是( ) A .7B .7+ΔxC .7+2ΔxD .7+2(Δx )23.某物体的运动规律是s =s (t ),则该物体在t 到t +Δt 这段时间内的平均速度是 ( ) A .v =s (t +Δt )-s (t )ΔtB .v =s (Δt )ΔtC .v =s (t )tD .v =s (t +Δt )-s (Δt )Δt4. 如图,函数y =f (x )在A ,B 两点间的平均变化率是 ( )A .1B .-1C .2D .-25.一物体的运动方程是s =3+t 2,则在[2,2.1]时间内的平均速度为 ( ) A .0.41B .3C .4D .4.16.过曲线y =f (x )=x 2+1上两点P (1,2)和Q (1+Δx,2+Δy )作曲线的割线, 当Δx =0.1时,割线的斜率k =________. 二、能力提升7.甲、乙二人跑步路程与时间关系如右图所示,则________跑得快. 8.将半径为R 的球加热,若半径从R =1到R =m 时球的体积膨胀 率为28π3,则m 的值为________.9.在x =1附近,取Δx =0.3,在四个函数①y =x ,②y =x 2,③y =x 3,④y =1x 中,平均变化率最大的是________.10.求函数y =sin x 在0到π6之间和π3到π2之间的平均变化率,并比较它们的大小.11.求函数y =-2x 2+5在区间[2,2+Δx ]内的平均变化率.12.已知气球的体积为V (单位:L )与半径r (单位:dm )之间的函数关系是V (r )=43πr 3.(1)求半径r 关于体积V 的函数r (V );(2)比较体积V 从0 L 增加到1 L 和从1 L 增加到2 L 半径r 的平均变化率;哪段半径变化较快(精确到0.01)?此结论可说明什么意义?三、探究与拓展13.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗?§1.1.2瞬时速度与导数导学案【学习要求】1.掌握用极限形式给出的瞬时速度及瞬时变化率的精确定义.2.会用瞬时速度及瞬时变化率定义求物体在某一时刻的瞬时速度及瞬时变化率. 3.理解并掌握导数的概念,掌握求函数在一点处的导数的方法. 4.理解并掌握开区间内的导数的概念,会求一个函数的导数.【学法指导】导数是研究函数的有力工具,要认真理解平均变化率和瞬时变化率的关系,体会无限逼近的思想;可以从物理意义,几何意义多角度理解导数.【知识要点】1.瞬时速度:我们把物体在某一时刻的速度称为 .设物体运动路程与时间的关系是s =s (t ),物体在t 0时刻的瞬时速度v 就是运动物体在t 0到t 0+Δt 这段时间内的平均变化率tt s t t s ∆-∆+)()(00,当Δt →0时的极限,即v =lim Δt →0 ΔsΔt =__________________2.瞬时变化率:一般地,函数y =f (x )在x 0处的瞬时变化率是lim Δx →0ΔyΔx=_________________. 3.导数的概念:一般地,函数y =f (x )在x 0处的瞬时变化率是_________________,我们称它为函数y =f (x )在x =x 0处的 ,记为 ,即f ′(x 0)=lim Δx →0 ΔyΔx =________________4.导函数:如果f (x )在开区间(a ,b )内每一点x 都是可导的,则称f (x )在区间(a ,b ) .这样,对开区间(a ,b )内每个值x ,都对应一个确定的导数)(x f ',于是在区间(a ,b )内,)(x f '构成一个新的函数,把这个函数称为函数y =f (x )的 .记为 或y ′(或y ′x ).导函数通常简称为【问题探究】探究点一 瞬时速度问题1 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速度v 粗略地描述其运动状态?问题2 物体的平均速度能否精确反映它的运动状态? 问题3 如何描述物体在某一时刻的运动状态?例1 火箭竖直向上发射.熄火时向上速度达到100 s m /.试问熄火后多长时间火箭向上速度为0? 问题4 火箭向上速度变为0,意味着什么?你能求出此火箭熄火后上升的最大高度吗?跟踪训练1 质点M 按规律s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s ).若质点M 在t =2时的瞬时速度为8s m /,求常数a 的值.探究点二 导 数问题1 从平均速度当Δt →0时极限是瞬时速度,推广到一般的函数方面,我们可以得到什么结论? 问题2 导数和瞬时变化率是什么关系?导数有什么作用? 问题3 导函数和函数在一点处的导数有什么关系?例2 利用导数的定义求函数f (x )=-x 2+3x 在x =2处的导数. 跟踪训练2 已知y =f (x )=x +2,求f ′(2).探究点三 导数的实际应用例3 一正方形铁板在0℃时,边长为10cm ,加热后铁板会膨胀.当温度为C t 0时,边长变为10(1+at )cm ,a 为常数,试求铁板面积对温度的膨胀率. 跟踪训练3 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果在第x h 时,原油的温度(单位:C 0)为y =f (x )=x 2-7x +15(0≤x ≤8).计算第2 h 和第6 h 时,原油温度的瞬时变化率,并说明它们的意义.【当堂检测】1.函数y =f (x )在x =x 0处的导数定义中,自变量x 在x 0处的增量Δx ( ) A .大于0 B .小于0 C .等于0 D .不等于02.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是 ( )A .at 0B .-at 0C .12at 0D .2at 03.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是 ( )A .3B .-3C .2D .-24.已知函数f (x )=1x,则)1(f '=________【课堂小结】1.瞬时速度是平均速度当Δt →0时的极限值;瞬时变化率是平均变化率当Δx →0时的极限值.2.利用导数定义求导数的步骤:(1)求函数的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率ΔyΔx ;(2)取极限得导数f ′(x 0)=lim Δx →0Δy Δx. 【拓展提高】1.()()()为则设hf h f f h 233lim ,430--='→( )A .-1B .-2C .-3D .12.一质点做直线运动,由始点起经过t s 后的距离为23416441t t t s +-=,则速度为零的时刻是 ( ) A .4s 末 B .8s 末 C .0s 与8s 末 D .0s ,4s ,8s 末【课后作业】一、基础过关1.一物体的运动方程是s =3+t 2,则在一小段时间[2,2.1]内相应的平均速度为 ( )A .0.41B .3C .4D .4.1 2.函数y =1在[2,2+Δx ]上的平均变化率是( )A .0B .1C .2D .Δx 3.设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1)D .f ′(3)4.一质点按规律s (t )=2t 3运动,则t =1时的瞬时速度为( ) A .4 B .6 C .24 D .48 5.函数y =3x 2在x =1处的导数为( )A .12B .6C .3D .26.甲、乙两厂污水的排放量W 与时间t 的关系如图所示,治污效果较好的是( )A .甲B .乙C .相同D .不确定7.函数f (x )=5-3x 2在区间[1,2]上的平均变化率为__________. 二、能力提升8.过曲线y =f (x )=x 2+1上两点P (1,2)和Q (1+Δx,2+Δy )作曲线的割线,当Δx =0.1时, 割线的斜率k =________.9.函数f (x )=1x 2+2在x =1处的导数f ′(1)=________.10.求函数y =-2x 2+5在区间[2,2+Δx ]内的平均变化率.11.求函数y =f (x )=2x 2+4x 在x =3处的导数.12.若函数f (x )=ax 2+c ,且f ′(1)=2,求a 的值.三、探究与拓展13.若一物体运动方程如下:(位移单位:m ,时间单位:s )s =⎩⎪⎨⎪⎧3t 2+2 (t ≥3) ①29+3(t -3)2 (0≤t <3) ② 求:(1)物体在t ∈[3,5]内的平均速度; (2)物体的初速度v 0; (3)物体在t =1时的瞬时速度.§1.1.3导数的几何意义导学案【学习要求】1.了解导函数的概念,理解导数的几何意义. 2.会求导函数.3.根据导数的几何意义,会求曲线上某点处的切线方程.【学法指导】前面通过导数的定义已体会到其中蕴涵的逼近思想,本节再利用数形结合思想进一步直观感受这种思想,并进一步体会另一种重要思想——以直代曲.【知识要点】1.导数的几何意义(1)割线斜率与切线斜率设函数y =f (x )的图象如图所示,AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx )) 的一条割线,此割线的斜率是ΔyΔx=__________________.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线在点A 处的 .于是,当Δx →0时,割线AB 的斜率无限趋向于在点A 的切线AD 的斜率k ,即k = =___________________. (2)导数的几何意义函数y =f (x )在点x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的 .也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应地,切线方程为_______________________. 2.函数的导数当x =x 0时,f ′(x 0)是一个确定的数,则当x 变化时,)(x f '是x 的一个函数,称)(x f '是f (x )的导函数(简称导数).)(x f '也记作y ′,即)(x f '=y ′=_______________【问题探究】探究点一 导数的几何意义问题1 如图,当点P n (x n ,f (x n ))(n =1,2,3,4)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 的变化趋势是什么?问题2 曲线的切线是不是一定和曲线只有一个交点?例1 如图,它表示跳水运动中高度随时间变化的函数h (t )=-4.9t 2+6.5t +10的图象.根据图象,请描述、比较曲线h (t )在t 0,t 1,t 2附近的变化情况.跟踪训练1 (1)根据例1的图象,描述函数h (t )在t 3和t 4附近增(减)以及增(减)快慢的情况.(2)若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是 ( )探究点二 求切线的方程问题1 怎样求曲线f (x )在点(x 0,f (x 0))处的切线方程?问题2 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同? 例2 已知曲线y =x 2,求:(1)曲线在点P (1,1)处的切线方程; (2)曲线过点P (3,5)的切线方程. 跟踪训练2 已知曲线y =2x 2-7,求:(1)曲线上哪一点的切线平行于直线4x -y -2=0? (2)曲线过点P (3,9)的切线方程.【当堂检测】1.已知曲线f (x )=2x 2上一点A (2,8),则点A 处的切线斜率为 ( ) A .4 B .16 C .8 D .22.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则 ( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 3.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为_______【课堂小结】1.导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =lim Δx →0f (x 0+Δx )-f (x 0)Δx=f ′(x 0),物理意义是运动物体在某一时刻的瞬时速度.2.“函数f (x )在点x 0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f ′(x 0)是其导数y =f ′(x )在x =x 0处的一个函数值.3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y -f (x 0)=f ′(x 0)(x -x 0);若已知点不在切线上,则设出切点(x 0,f (x 0)),表示出切线方程,然后求出切点.【拓展提高】1.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 2.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为【课后作业】一、基础过关 1.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在 2.已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是 ( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )<f ′(x B ) C .f ′(x A )=f ′(x B ) D .不能确定3.在曲线y =x 2上切线倾斜角为π4的点是 ( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)4.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1B .12C .-12 D .-15.曲线y =-1x 在点(1,-1)处的切线方程为( ) A .y =x -2B .y =xC .y =x +2D .y =-x -26.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.二、能力提升7.设f (x )为可导函数,且满足lim x →0f (1)-f (1-x )x =-1,则曲线y =f (x )在点(1,f (1))处的切线的斜率是 ( ) A .1B .-1C .12D .-28.若曲线y =2x 2-4x +P 与直线y =1相切,则P =________.9.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为________.10.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.11.已知抛物线y =x 2+4与直线y =x +10.求:(1)它们的交点;(2)抛物线在交点处的切线方程.12.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值.三、探究与拓展13.根据下面的文字描述,画出相应的路程s 关于时间t 的函数图象的大致形状:(1)小王骑车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (2)小华早上从家出发后,为了赶时间开始加速; (3)小白早上从家出发后越走越累,速度就慢下来了§1.2.1 常数函数与幂函数的导数导学案 §1.2.2 导数公式表及数学软件的应用导学案【学习要求】1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.【学法指导】1.利用导数的定义推导简单函数的导数公式,类推一般多项式函数的导数公式,体会由特殊到一般的思想.通过定义求导数的过程,培养归纳、探求规律的能力,提高学习兴趣. 2.本节公式是下面几节课的基础,记准公式是学好本章内容的关键.记公式时,要注意观察公式之间的联系.【知识要点】1原函数 导函数 f (x )=c f ′(x )=___ f (x )=x f ′(x )=___ f (x )=x 2 f ′(x )=___ f (x )=1xf ′(x )=_____ f (x )=xf ′(x )=_______2.基本初等函数的导数公式【问题探究】探究点一 求导函数问题1 怎样利用定义求函数y =f (x )的导数? 问题2 利用定义求下列常用函数的导数: (1)y =c ;(2)y =x ;(3)y =x 2;(4)y =1x;(5)y =x . 问题3 利用导数的定义可以求函数的导函数,但运算比较繁杂,有些函数式子在中学阶段无法变形,怎样解决这个问题?例1 求下列函数的导数:(1)y =sin π3;(2)y =5x ;(3)y =1x3;(4)y =4x 3;(5)y =log 3x .跟踪训练1 求下列函数的导数:(1)y =x 8;(2)y =(12)x ;(3)y =x x ;(4)x y 31log =探究点二 求某一点处的导数 例2 判断下列计算是否正确.求f (x )=cos x 在x =π3处的导数,过程如下:f ′⎝⎛⎭⎫π3=⎝⎛⎭⎫cos π3′=-sin π3=-32. 跟踪训练2 求函数f (x )=13x在x =1处的导数.探究点三 导数公式的综合应用例3 已知直线x -2y -4=0与抛物线y 2=x 相交于A 、B 两点,O 是坐标原点,试在抛物线的弧 上求一点P ,使△ABP 的面积最大.跟踪训练3 点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.【当堂检测】1.给出下列结论:①若y =1x 3,则y ′=-3x 4;②若y =3x ,则y ′=133x ;③若y =1x 2,则y ′=-2x -3;④若f (x )=3x ,则f ′(1)=3.其中正确的个数是 ( ) A .1 B .2C .3D .42.函数f (x )=x ,则f ′(3)等于 ( )A .36B .0C .12xD .323.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是 ( )A .[0,π4]∪[3π4,π)B .[0,π)C .[π4,3π4]D .[0,π4]∪[π2,3π4]4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________【课堂小结】1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x 2的导数.因为y =1-2sin 2x2=cos x ,所以y ′=(cos x )′=-sin x .3.对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.【拓展提高】1.若函数f (x )=e x cos x ,则此函数的图象在点(1,f (1))处的切线的倾斜角为( ) A .0° B .锐角C .直角 D .钝角2.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为___________【课后作业】一、基础过关1.下列结论中正确的个数为( )①y =ln 2,则y ′=12 ②y =1x 2,则y ′|x =3=-227③y =2x ,则y ′=2x ln 2 ④y =log 2x ,则y ′=1x ln 2A .0B .1C .2D .3 2.过曲线y =1x上一点P 的切线的斜率为-4,则点P 的坐标为( )A .⎝⎛⎭⎫12,2B .⎝⎛⎭⎫12,2或⎝⎛⎭⎫-12,-2C .⎝⎛⎭⎫-12,-2D .⎝⎛⎭⎫12,-2 3.已知f (x )=x a ,若f ′(-1)=-4,则a 的值等于 ( ) A .4 B .-4C .5D .-54.函数f (x )=x 3的斜率等于1的切线有( )A .1条B .2条C .3条D .不确定5.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a 等于 ( )A .64B .32C .16D .86.若y =10x,则y ′|x =1=________.7.曲线y =14x 3在x =1处的切线的倾斜角的正切值为______.二、能力提升8.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( )A .1eB .-1eC .-eD .e9.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b =________.10.求下列函数的导数:(1)y =x x ;(2)y =1x4;(3)y =5x 3;(4)y =log 2x 2-log 2x ;(5)y =-2sin x2⎝⎛⎭⎫1-2cos 2x 4.11.求与曲线y =3x 2在点P (8,4)处的切线垂直于点P 的直线方程.12.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离.三、探究与拓展13.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,试求f 2 012(x ).§1.2.3导数的四则运算法则(一)导学案【学习要求】1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.【学法指导】应用导数的四则运算法则和已学过的常用函数的导数公式可迅速解决一类简单函数的求导问题.要透彻理解函数求导法则的结构内涵,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,达到巩固知识、提升能力的目的.【知识要点】导数的运算法则设两个可导函数分别为f (x )和g (x )【问题探究】探究点一 导数的运算法则问题1 我们已经会求f (x )=5和g (x )=1.05x 等基本初等函数的导数,那么怎样求f (x )与g (x )的和、差、积、商的导数呢?问题2 应用导数的运算法则求导数有哪些注意点? 例1 求下列函数的导数: (1)y =3x-lg x ;(2)y =(x 2+1)(x -1);(3)y =x 5+x 7+x 9x.跟踪训练1 求下列函数的导数:(1)f (x )=x ·tan x ; (2)f (x )=2-2sin 2x 2; (3)f (x )=x -1x +1; (4)f (x )=sin x1+sin x.探究点二 导数的应用例2 (1)曲线y =x e x +2x +1在点(0,1)处的切线方程为_______________(2)在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为________(3)已知某运动着的物体的运动方程为s (t )=t -1t 2+2t 2(位移单位:m ,时间单位:s),求t =3 s 时物体的瞬时速度.跟踪训练2 (1)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为 ( ) A .-12B.12C .-22 D .22(2)设函数f (x )=13x 3-a2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1,确定b 、c的值.【当堂检测】1.设y =-2e x sin x ,则y ′等于 ( )A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )2.曲线f (x )=xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x +2 3.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( ) A .193B .163C .133D .1034.已知f (x )=13x 3+3xf ′(0),则f ′(1)=_______5.已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a 、b 、c 的值.【课堂小结】求函数的导数要准确把函数分割为基本函数的和、差、积、商,再利用运算法则求导数.在求导过程中,要仔细分析出函数解析式的结构特征,根据导数运算法则,联系基本函数的导数公式.对于不具备导数运算法则结构形式的要适当恒等变形,转化为较易求导的结构形式,再求导数,进而解决一些切线斜率、瞬时速度等问题.【课后作业】一、基础过关1.下列结论不正确的是( )A .若y =3,则y ′=0B .若f (x )=3x +1,则f ′(1)=3C .若y =-x +x ,则y ′=-12x+1 D .若y =sin x +cos x ,则y ′=cos x +sin x2.函数y =x1-cos x 的导数是 ( )A .1-cos x -x sin x 1-cos xB .1-cos x -x sin x (1-cos x )2C .1-cos x +sin x (1-cos x )2D .1-cos x +x sin x (1-cos x )23.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .04.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2B .12C .-12 D .-25.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f处切线的斜率为( )A .4B .-14C .2D .-126.已知a 为实数,f (x )=(x 2-4)(x -a ),且f ′(-1)=0,则a =________. 7.若某物体做s =(1-t )2的直线运动,则其在t =1.2 s 时的瞬时速度为________. 二、能力提升8.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]9.若函数f (x )=13x 3-f ′(-1)·x 2+x +5,则f ′(1)=________.10.求下列函数的导数:(1)y =(2x 2+3)(3x -1);(2)y =(x -2)2; (3)y =x -sin x 2cos x2.11.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的表达式.12.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.三、探究与拓展13.已知曲线C 1:y =x 2与曲线C 2:y =-(x -2)2,直线l 与C 1和C 2都相切,求直线l 的方程.§1.2.3导数的四则运算法则(二)导学案【学习要求】1.了解复合函数的概念,掌握复合函数的求导法则.2.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f (ax +b )的导数).【学法指导】复合函数的求导将复杂的问题简单化,体现了转化思想;学习中要通过中间变量的引入理解函数的复合过程.【问题探究】探究点一 复合函数的定义问题1 观察函数y =2x cos x 及y =ln(x +2)的结构特点,说明它们分别是由哪些基本函数组成的? 问题2 对一个复合函数,怎样判断函数的复合关系?问题3 在复合函数中,内层函数的值域A 与外层函数的定义域B 有何关系? 例1 指出下列函数是怎样复合而成的:(1)y =(3+5x )2; (2)y =log 3(x 2-2x +5); (3)y =cos 3x . 跟踪训练1 指出下列函数由哪些函数复合而成:(1)y =ln x ; (2)y =e sin x ; (3)y =cos (3x +1).探究点二 复合函数的导数 问题 如何求复合函数的导数? 例2 求下列函数的导数:(1)y =(2x -1)4; (2)y =11-2x ; (3)y =sin(-2x +π3); (4)y =102x +3.跟踪训练2 求下列函数的导数.(1)y =ln 1x; (2)y =e 3x ; (3)y =5log 2(2x +1).探究点三 导数的应用 例3 求曲线y =e 2x+1在点(-12,1)处的切线方程.跟踪训练3 曲线y =e 2x cos 3x 在(0,1)处的切线与直线l 平行,且与l 的距离为5,求直线l 的方程.【当堂检测】1.函数y =(3x -2)2的导数为 ( )A .2(3x -2)B .6xC .6x (3x -2)D .6(3x -2) 2.若函数y =sin 2x ,则y ′等于 ( ) A .sin 2x B .2sin x C .sin x cos x D .cos 2x 3.若y =f (x 2),则y ′等于 ( ) A .2xf ′(x 2) B .2xf ′(x ) C .4x 2f (x ) D .f ′(x 2)4.设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________.【课堂小结】求简单复合函数f (ax +b )的导数 求简单复合函数的导数,实质是运用整体思想,先把简单复合函数转化为常见函数y =f (u ),u =ax +b 的形式,然后再分别对y =f (u )与u =ax +b 分别求导,并把所得结果相乘.灵活应用整体思想把函数化为y =f (u ),u =ax +b 的形式是关键.【拓展提高】1 .已知函数2)1ln()(x x a x f -+=在区间)1,0(内任取两个实数q p ,,且q p ≠,不等式1)1()1(>-+-+qp q f p f 恒成立,则实数a 的取值范围为____________ 【课后作业】一、基础过关1.下列函数不是复合函数的是( )A .y =-x 3-1x +1B .y =cos(x +π4)C .y =1ln x D .y =(2x +3)42.函数y =1(3x -1)2的导数是( )A .6(3x -1)3B .6(3x -1)2C .-6(3x -1)3D .-6(3x -1)23.y =e x 2-1的导数是( )A .y ′=(x 2-1)e x 2-1B .y ′=2x e x 2-1C .y ′=(x 2-1)e xD .y ′=e x 2-1 4.函数y =x 2cos 2x的导数为( )A .y ′=2x cos 2x -x 2sin 2xB .y ′=2x cos 2x -2x 2sin 2xC .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x5.函数y =(2 011-8x )3的导数y ′=________.6.曲线y =cos(2x +π6)在x =π6处切线的斜率为________.7.函数f (x )=x (1-ax )2(a >0),且f ′(2)=5,则实数a 的值为________. 二、能力提升8.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )A .1B .2C .-1D .-29.曲线y =e 12x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A .92e 2B .4e 2C .2e 2D .e 210.求下列函数的导数:(1)y =(1+2x 2)8; (2)y =11-x 2; (3)y =sin 2x -cos 2x ; (4)y =cos x 2.11.已知a >0,f (x )=ax 2-2x +1+ln(x +1),l 是曲线y =f (x )在点P (0,f (0))处的切线.求切线l 的方程.12.有一把梯子贴靠在笔直的墙上,已知梯子上端下滑的距离s (单位:m )关于时间t (单位:s)的函数为s =s (t )=5-25-9t 2.求函数在t =715 s 时的导数,并解释它的实际意义.三、探究与拓展13.求证:可导的奇函数的导函数是偶函数.§1.3.1利用导数判断函数的单调性导学案【学习要求】1.结合实例,直观探索并掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式. 3.会求函数的单调区间(其中多项式函数一般不超过三次).【学法指导】结合函数图象(几何直观)探讨归纳函数的单调性与导函数正负之间的关系,体会数形结合思想,以直代曲思想.【知识要点】一般地,在区间(a ,b )内函数的单调性与导数有如下关系:f′(x)>0单调递___f′(x)<0单调递____f′(x)=0常函数【问题探究】探究点一函数的单调性与导函数正负的关系问题1观察下面四个函数的图象,回答函数的单调性与其导函数的正负有何关系?问题2若函数f(x)在区间(a,b)内单调递增,那么f′(x)一定大于零吗?问题3(1)如果一个函数具有相同单调性的单调区间不止一个,那么如何表示这些区间?试写出问题1中(4)的单调区间.(2)函数的单调区间与其定义域满足什么关系?例1已知导函数f′(x)的下列信息:当1<x<4时,f′(x)>0;当x>4或x<1时,f′(x)<0;当x=4或x=1时,f′(x)=0.试画出函数f(x)图象的大致形状.跟踪训练1函数y=f(x)的图象如图所示,试画出导函数f′(x)图象的大致形状.例2求下列函数的单调区间:(1)f(x)=x3-4x2+x-1;(2)f(x)=2x(e x-1)-x2;(3)f(x)=3x2-2ln x.跟踪训练2求下列函数的单调区间:(1)f(x)=x2-ln x;(2)f(x)=e xx-2;(3)f(x)=sin x(1+cos x)(0≤x<2π).探究点二函数的变化快慢与导数的关系问题我们知道导数的符号反映函数y=f(x)的增减情况,怎样反映函数y=f(x)增减的快慢呢?你能否从导数的角度解释变化的快慢呢?例3如图,设有圆C和定点O,当l从l0开始在平面上绕O匀速旋转(旋转角度不超过90°)时,它扫过的圆内阴影部分的面积S是时间t的函数,它的图象大致是下图所示的四种情况中的哪一种?() 跟踪训练3(1)如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图象.(2)已知f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是()【当堂检测】1.函数f(x)=x+ln x在(0,6)上是()A.单调增函数B.单调减函数C.在⎝⎛⎭⎫0,1e上是减函数,在⎝⎛⎭⎫1e,6上是增函数D.在⎝⎛⎭⎫0,1e上是增函数,在⎝⎛⎭⎫1e,6上是减函数2.f′(x)是函数y=f(x)的导函数,若y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()。

高中数学选修2-2 同步练习 专题2.3 数学归纳法(原卷版)

高中数学选修2-2 同步练习 专题2.3 数学归纳法(原卷版)

第二章 推理与证明2.3 数学归纳法一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.用数学归纳法证明“凸n 边形的内角和S =(n -2)π对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取 A .2 B .3 C .4D .52.已知为正偶数,用数学归纳法证明时,若已假设,且为偶数时命题为真,则还需要用归纳假设再证 A .时等式成立 B .时等式成立C .时等式成立D .时等式成立 3.用数学归纳法证明“”,则当时,应当在时对应的等式的两边加上 A .B .C .D .4.设()()*111122f n n n n n=++⋅⋅⋅+∈++N ,那么()()1f n f n +-= A .121n + B .122n +C .112122n n +++ D .112122n n -++ 5.当是正整数时,用数学归纳法证明从到等号左边需要增加的代数式为 A . B . C .D .二、填空题:请将答案填在题中横线上. 6.用数学归纳法证明:()22311111n n c c c c cc c++-+++++=≠-,当1n =时,左边为__________.7.对于不等式<n+1(n ∈N *),某同学用数学归纳法证明的主要过程如下:(1)当n =1时,<1+1 ,不等式成立;(2)假设当n =k (k ∈N *)时,不等式成立,有<k+1,即k 2+k <(k+1)2, 则当n =k+1时,=<==(k+1)+1,所以当n =k+1时,不等式也成立.则下列说法中正确的有__________.(填出所有正确说法的序号) ①证明过程全部正确;②n =1的验证不正确;③n =k 的归纳假设不正确;④从n =k 到n =k+1的推理不正确. 8.用数学归纳法证明不等式()*1111223212nnn n ++++>≥∈-N ,的过程中,由“”到“”时,左边增加了__________项三、解答题:解答应写出文字说明、证明过程或演算步骤. 9.求证:++…+=1-(其中n ∈N *).10.证明:.11.求证:n3+(n+1)3+(n+2)3(n∈N*)能被9整除.12.试比较2n+2与n2的大小(n∈N*),并用数学归纳法证明你的结论.13.在数列中,,其中.(1)计算的值;(2)猜想数列的通项公式,并用数学归纳法加以证明.。

人教A版高中数学选修2-2全册同步练习及单元检测含答案

人教A版高中数学选修2-2全册同步练习及单元检测含答案

人教版高中数学选修2~2 全册章节同步检测试题选修2-2 1.1 第1课时 变化率问题一、选择题1.在平均变化率的定义中,自变量x 在x 0处的增量Δx ( ) A .大于零 B .小于零 C .等于零 D .不等于零[答案] D[解析] Δx 可正,可负,但不为0,故应选D.2.设函数y =f (x ),当自变量x 由x 0变化到x 0+Δx 时,函数的改变量Δy 为( ) A .f (x 0+Δx ) B .f (x 0)+Δx C .f (x 0)·ΔxD .f (x 0+Δx )-f (x 0)[答案] D[解析] 由定义,函数值的改变量Δy =f (x 0+Δx )-f (x 0),故应选D. 3.已知函数f (x )=-x 2+x ,则f (x )从-1到-0.9的平均变化率为( ) A .3B .0.29C .2.09D .2.9[答案] D[解析] f (-1)=-(-1)2+(-1)=-2.f (-0.9)=-(-0.9)2+(-0.9)=-1.71.∴平均变化率为f (-0.9)-f (-1)-0.9-(-1)=-1.71-(-2)0.1=2.9,故应选D.4.已知函数f (x )=x 2+4上两点A ,B ,x A =1,x B =1.3,则直线AB 的斜率为( ) A .2B .2.3C .2.09D .2.1[答案] B[解析] f (1)=5,f (1.3)=5.69. ∴k AB =f (1.3)-f (1)1.3-1=5.69-50.3=2.3,故应选B.5.已知函数f (x )=-x 2+2x ,函数f (x )从2到2+Δx 的平均变化率为( ) A .2-Δx B .-2-Δx C .2+ΔxD .(Δx )2-2·Δx[答案] B[解析] ∵f (2)=-22+2×2=0, ∴f (2+Δx )=-(2+Δx )2+2(2+Δx )=-2Δx -(Δx )2, ∴f (2+Δx )-f (2)2+Δx -2=-2-Δx ,故应选B.6.已知函数y =x 2+1的图象上一点(1,2)及邻近一点(1+Δx,2+Δy ),则Δy Δx等于( )A .2B .2xC .2+ΔxD .2+(Δx )2[答案] C [解析]Δy Δx =f (1+Δx )-f (1)Δx=[(1+Δx )2+1]-2Δx=2+Δx .故应选C.7.质点运动规律S (t )=t 2+3,则从3到3.3内,质点运动的平均速度为( ) A .6.3 B .36.3 C .3.3D .9.3[答案] A[解析] S (3)=12,S (3.3)=13.89, ∴平均速度v =S (3.3)-S (3)3.3-3=1.890.3=6.3,故应选A.8.在x =1附近,取Δx =0.3,在四个函数①y =x 、②y =x 2、③y =x 3、④y =1x中,平均变化率最大的是( )A .④B .③C .②D .①[答案] B[解析] Δx =0.3时,①y =x 在x =1附近的平均变化率k 1=1;②y =x 2在x =1附近的平均变化率k 2=2+Δx =2.3;③y =x 3在x =1附近的平均变化率k 3=3+3Δx +(Δx )2=3.99;④y =1x 在x =1附近的平均变化率k 4=-11+Δx =-1013.∴k 3>k 2>k 1>k 4,故应选B.9.物体做直线运动所经过的路程s 可以表示为时间t 的函数s =s (t ),则物体在时间间隔[t 0,t 0+Δt ]内的平均速度是( )A .v 0B.Δts (t 0+Δt )-s (t 0)C.s (t 0+Δt )-s (t 0)ΔtD.s (t )t[答案] C[解析] 由平均变化率的概念知C 正确,故应选C.10.已知曲线y =14x 2和这条曲线上的一点P ⎝ ⎛⎭⎪⎫1,14,Q 是曲线上点P 附近的一点,则点Q 的坐标为( )A.⎝ ⎛⎭⎪⎫1+Δx ,14(Δx )2B.⎝ ⎛⎭⎪⎫Δx ,14(Δx )2C.⎝ ⎛⎭⎪⎫1+Δx ,14(Δx +1)2D.⎝ ⎛⎭⎪⎫Δx ,14(1+Δx )2[答案] C[解析] 点Q 的横坐标应为1+Δx ,所以其纵坐标为f (1+Δx )=14(Δx +1)2,故应选C.二、填空题11.已知函数y =x 3-2,当x =2时,Δy Δx =________.[答案] (Δx )2+6Δx +12[解析] Δy Δx =(2+Δx )3-2-(23-2)Δx=(Δx )3+6(Δx )2+12ΔxΔx=(Δx )2+6Δx +12.12.在x =2附近,Δx =14时,函数y =1x 的平均变化率为________.[答案] -29[解析] Δy Δx =12+Δx -12Δx =-14+2Δx =-29.13.函数y =x 在x =1附近,当Δx =12时的平均变化率为________.[答案] 6-2[解析]Δy Δx =1+Δx -1Δx =11+Δx +1=6-2. 14.已知曲线y =x 2-1上两点A (2,3),B (2+Δx,3+Δy ),当Δx =1时,割线AB 的斜率是________;当Δx =0.1时,割线AB 的斜率是________.[答案] 5 4.1[解析] 当Δx =1时,割线AB 的斜率Δx Δx 1当Δx =0.1时,割线AB 的斜率 k 2=Δy Δx =(2+0.1)2-1-22+10.1=4.1.三、解答题15.已知函数f (x )=2x +1,g (x )=-2x ,分别计算在区间[-3,-1],[0,5]上函数f (x )及g (x )的平均变化率.[解析] 函数f (x )在[-3,-1]上的平均变化率为f (-1)-f (-3)-1-(-3)=[2×(-1)+1]-[2×(-3)+1]2=2.函数f (x )在[0,5]上的平均变化率为f (5)-f (0)5-0=2.函数g (x )在[-3,-1]上的平均变化率为g (-1)-g (-3)-1-(-3)=-2.函数g (x )在[0,5]上的平均变化率为g (5)-g (0)5-0=-2.16.过曲线f (x )=2x2的图象上两点A (1,2),B (1+Δx,2+Δy )作曲线的割线AB ,求出当Δx =14时割线的斜率.[解析] 割线AB 的斜率k =(2+Δy )-2(1+Δx )-1=ΔyΔx=2(1+Δx )2-2Δx =-2(Δx +2)(1+Δx )2=-7225. 17.求函数y =x 2在x =1、2、3附近的平均变化率,判断哪一点附近平均变化率最大? [解析] 在x =2附近的平均变化率为k 1=f (1+Δx )-f (1)Δx =(1+Δx )2-1Δx=2+Δx ;在x =2附近的平均变化率为k 2=f (2+Δx )-f (2)Δx =(2+Δx )2-22Δx=4+Δx ;在x =3附近的平均变化率为Δx Δx对任意Δx 有,k 1<k 2<k 3, ∴在x =3附近的平均变化率最大.18.(2010·杭州高二检测)路灯距地面8m ,一个身高为1.6m 的人以84m/min 的速度在地面上从路灯在地面上的射影点C 处沿直线离开路灯.(1)求身影的长度y 与人距路灯的距离x 之间的关系式; (2)求人离开路灯的第一个10s 内身影的平均变化率.[解析] (1)如图所示,设人从C 点运动到B 处的路程为x m ,AB 为身影长度,AB 的长度为y m ,由于CD ∥BE ,则AB AC =BE CD , 即yy +x =1.68,所以y =f (x )=14x . (2)84m/min =1.4m/s ,在[0,10]内自变量的增量为x 2-x 1=1.4×10-1.4×0=14, f (x 2)-f (x 1)=14×14-14×0=72.所以f (x 2)-f (x 1)x 2-x 1=7214=14.即人离开路灯的第一个10s 内身影的平均变化率为14.选修2-2 1.1 第2课时 导数的概念一、选择题1.函数在某一点的导数是( )A .在该点的函数值的增量与自变量的增量的比B .一个函数C .一个常数,不是变数D .函数在这一点到它附近一点之间的平均变化率 [答案] C[解析] 由定义,f ′(x 0)是当Δx 无限趋近于0时,ΔyΔx 无限趋近的常数,故应选C.2.如果质点A 按照规律s =3t 2运动,则在t 0=3时的瞬时速度为( ) A .6B .18C .54D .81[答案] B[解析] ∵s (t )=3t 2,t 0=3,∴Δs =s (t 0+Δt )-s (t 0)=3(3+Δt )2-3·32=18Δt +3(Δt )2∴Δs Δt =18+3Δt .当Δt →0时,ΔsΔt →18,故应选B.3.y =x 2在x =1处的导数为( ) A .2x B .2 C .2+Δx D .1[答案] B[解析] ∵f (x )=x 2,x =1,∴Δy =f (1+Δx )2-f (1)=(1+Δx )2-1=2·Δx +(Δx )2∴ΔyΔx=2+Δx 当Δx →0时,ΔyΔx →2∴f ′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s (t )=4t 2-3(s (t )的单位:m ,t 的单位:s),则t =5时的瞬时速度为( )A .37B .38C .39D .40[答案] D[解析] ∵Δs Δt =4(5+Δt )2-3-4×52+3Δt =40+4Δt ,∴s ′(5)=li m Δt →0 ΔsΔt =li m Δt →0 (40+4Δt )=40.故应选D. 5.已知函数y =f (x ),那么下列说法错误的是( ) A .Δy =f (x 0+Δx )-f (x 0)叫做函数值的增量 B.Δy Δx =f (x 0+Δx )-f (x 0)Δx叫做函数在x 0到x 0+Δx 之间的平均变化率 C .f (x )在x 0处的导数记为y ′ D .f (x )在x 0处的导数记为f ′(x 0) [答案] C[解析] 由导数的定义可知C 错误.故应选C.6.函数f (x )在x =x 0处的导数可表示为y ′|x =x 0,即( ) A .f ′(x 0)=f (x 0+Δx )-f (x 0) B .f ′(x 0)=li m Δx →0[f (x 0+Δx )-f (x 0)] C .f ′(x 0)=f (x 0+Δx )-f (x 0)ΔxD .f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx[答案] D[解析] 由导数的定义知D 正确.故应选D.7.函数y =ax 2+bx +c (a ≠0,a ,b ,c 为常数)在x =2时的瞬时变化率等于( ) A .4aB .2a +bC .bD .4a +b[答案] D[解析] ∵Δy Δx =a (2+Δx )2+b (2+Δx )+c -4a -2b -c Δx=4a +b +a Δx ,∴y ′|x =2=li m Δx →0 ΔyΔx =li m Δx →0 (4a +b +a ·Δx )=4a +b .故应选D. 8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A .圆B .抛物线C .椭圆D .直线[答案] D[解析] 当f (x )=b 时,f ′(x )=0,所以f (x )的图象为一条直线,故应选D. 9.一物体作直线运动,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度为( ) A .0 B .3 C .-2D .3-2t[答案] B[解析] ∵Δs Δt =3(0+Δt )-(0+Δt )2Δt =3-Δt ,∴s ′(0)=li m Δt →0 ΔsΔt=3.故应选B. 10.设f (x )=1x ,则li m x →a f (x )-f (a )x -a 等于( )A .-1aB.2aC .-1a2D.1a2[答案] C[解析] li m x →a f (x )-f (a )x -a =li m x →a 1x -1a x -a=li m x →aa -x (x -a )·xa =-li m x →a 1ax =-1a2.二、填空题11.已知函数y =f (x )在x =x 0处的导数为11,则 li m Δx →0f (x 0-Δx )-f (x 0)Δx =________;li m x →x 0f (x )-f (x 0)2(x 0-x )=________.[答案] -11,-112[解析] li m Δx →0 f (x 0-Δx )-f (x 0)Δx=-li m Δx →0 f (x 0-Δx )-f (x 0)-Δx=-f ′(x 0)=-11;li m x →x 0f (x )-f (x 0)2(x 0-x )=-12li m Δx →0 f (x 0+Δx )-f (x 0)Δx=-12f ′(x 0)=-112.12.函数y =x +1x在x =1处的导数是________.[答案] 0[解析] ∵Δy =⎝ ⎛⎭⎪⎫1+Δx +11+Δx -⎝ ⎛⎭⎪⎫1+11 =Δx -1+1Δx +1=(Δx )2Δx +1,∴Δy Δx =Δx Δx +1.∴y ′|x =1=li m Δx →0 Δx Δx +1=0. 13.已知函数f (x )=ax +4,若f ′(2)=2,则a 等于______. [答案] 2[解析] ∵Δy Δx =a (2+Δx )+4-2a -4Δx =a ,∴f ′(1)=li m Δx →0 ΔyΔx =a .∴a =2. 14.已知f ′(x 0)=li m x →x 0 f (x )-f (x 0)x -x 0,f (3)=2,f ′(3)=-2,则li m x →32x -3f (x )x -3的值是________.[答案] 8[解析] li m x →3 2x -3f (x )x -3=li m x →3 2x -3f (x )+3f (3)-3f (3)x -3 =lim x →32x -3f (3)x -3+li m x →3 3(f (3)-f (x ))x -3.由于f (3)=2,上式可化为li m x →3 2(x -3)x -3-3li m x →3 f (x )-f (3)x -3=2-3×(-2)=8. 三、解答题15.设f (x )=x 2,求f ′(x 0),f ′(-1),f ′(2). [解析] 由导数定义有f ′(x 0) =li m Δx →0f (x 0+Δx )-f (x 0)Δx=li m Δx →0 (x 0+Δx )2-x 20Δx =li m Δx →0 Δx (2x 0+Δx )Δx=2x 0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s 2,枪弹从枪口射出时所用时间为1.6×10-3s ,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s =12at 2∵Δs =12a (t 0+Δt )2-12at 20=at 0Δt +12a (Δt )2∴Δs Δt =at 0+12a Δt , ∴li m Δt →0 Δs Δt =li m Δt →0 ⎝ ⎛⎭⎪⎫at 0+12a Δt =at 0, 已知a =5.0×105m/s 2,t 0=1.6×10-3s , ∴at 0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y =f (x )=x 2+3的图象上取一点P (1,4)及附近一点(1+Δx,4+Δy ),求(1)ΔyΔx(2)f ′(1). [解析] (1)Δy Δx =f (1+Δx )-f (1)Δx=(1+Δx )2+3-12-3Δx =2+Δx .(2)f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx=lim Δx →0(2+Δx )=2. 18.函数f (x )=|x |(1+x )在点x 0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f (x )=⎩⎪⎨⎪⎧x +x 2(x ≥0)-x -x 2(x <0)Δy =f (0+Δx )-f (0)=f (Δx )=⎩⎪⎨⎪⎧Δx +(Δx )2(Δx >0)-Δx -(Δx )2(Δx <0)∴lim x →0+ Δy Δx =lim Δx →0+ (1+Δx )=1, lim Δx →0- Δy Δx =lim Δx →0-(-1-Δx )=-1, ∵lim Δx →0- Δy Δx ≠lim Δx →0+ Δy Δx ,∴Δx →0时,Δy Δx无极限. ∴函数f (x )=|x |(1+x )在点x 0=0处没有导数,即不可导.(x →0+表示x 从大于0的一边无限趋近于0,即x >0且x 趋近于0)选修2-2 1.1 第3课时 导数的几何意义一、选择题1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在[答案] B[解析] 切线x +2y -3=0的斜率k =-12,即f ′(x 0)=-12<0.故应选B.2.曲线y =12x 2-2在点⎝ ⎛⎭⎪⎫1,-32处切线的倾斜角为( )A .1 B.π4C.54πD .-π4[答案] B[解析] ∵y ′=li m Δx →0 [12(x +Δx )2-2]-(12x 2-2)Δx =li m Δx →0 (x +12Δx )=x ∴切线的斜率k =y ′|x =1=1. ∴切线的倾斜角为π4,故应选B.3.在曲线y =x 2上切线的倾斜角为π4的点是( )A .(0,0)B .(2,4)C.⎝ ⎛⎭⎪⎫14,116D.⎝ ⎛⎭⎪⎫12,14 [答案] D[解析] 易求y ′=2x ,设在点P (x 0,x 20)处切线的倾斜角为π4,则2x 0=1,∴x 0=12,∴P ⎝ ⎛⎭⎪⎫12,14.4.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( ) A .y =3x -4 B .y =-3x +2 C .y =-4x +3D .y =4x -5[答案] B[解析] y′=3x2-6x,∴y′|x=1=-3.由点斜式有y+1=-3(x-1).即y=-3x+2.5.设f(x)为可导函数,且满足limx→0f(1)-f(1-2x)2x=-1,则过曲线y=f(x)上点(1,f(1))处的切线斜率为( )A.2 B.-1C.1 D.-2[答案] B[解析] limx→0f(1)-f(1-2x)2x=limx→0f(1-2x)-f(1)-2x=-1,即y′|x=1=-1,则y=f(x)在点(1,f(1))处的切线斜率为-1,故选B.6.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴斜交[答案] B[解析] 由导数的几何意义知B正确,故应选B.7.已知曲线y=f(x)在x=5处的切线方程是y=-x+8,则f(5)及f′(5)分别为( ) A.3,3 B.3,-1C.-1,3 D.-1,-1[答案] B[解析] 由题意易得:f(5)=-5+8=3,f′(5)=-1,故应选B.8.曲线f(x)=x3+x-2在P点处的切线平行于直线y=4x-1,则P点的坐标为( ) A.(1,0)或(-1,-4) B.(0,1)C.(-1,0) D.(1,4)[答案] A[解析] ∵f(x)=x3+x-2,设x P=x0,∴Δy=3x20·Δx+3x0·(Δx)2+(Δx)3+Δx,∴ΔyΔx=3x20+1+3x0(Δx)+(Δx)2,∴f′(x0)=3x20+1,又k=4,∴3x20+1=4,x20=1.∴x0=±1,故P(1,0)或(-1,-4),故应选A.9.设点P 是曲线y =x 3-3x +23上的任意一点,P 点处的切线倾斜角为α,则α的取值范围为( )A.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫23π,πB.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫56π,πC.⎣⎢⎡⎭⎪⎫23π,πD.⎝⎛⎦⎥⎤π2,56π[答案] A[解析] 设P (x 0,y 0),∵f ′(x )=li m Δx →0 (x +Δx )3-3(x +Δx )+23-x 3+3x -23Δx =3x 2-3,∴切线的斜率k =3x 20-3, ∴tan α=3x 20-3≥- 3.∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫23π,π.故应选A.10.(2010·福州高二期末)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为[0,π4],则点P 横坐标的取值范围为( ) A .[-1,-12]B .[-1,0]C .[0,1]D .[12,1][答案] A[解析] 考查导数的几何意义.∵y ′=2x +2,且切线倾斜角θ∈[0,π4],∴切线的斜率k 满足0≤k ≤1,即0≤2x +2≤1, ∴-1≤x ≤-12.二、填空题11.已知函数f (x )=x 2+3,则f (x )在(2,f (2))处的切线方程为________. [答案] 4x -y -1=0[解析] ∵f (x )=x 2+3,x 0=2∴f (2)=7,Δy =f (2+Δx )-f (2)=4·Δx +(Δx )2∴Δy Δx=4+Δx .∴li m Δx →0 Δy Δx =4.即f ′(2)=4.又切线过(2,7)点,所以f (x )在(2,f (2))处的切线方程为y -7=4(x -2) 即4x -y -1=0.12.若函数f (x )=x -1x,则它与x 轴交点处的切线的方程为________.[答案] y =2(x -1)或y =2(x +1)[解析] 由f (x )=x -1x=0得x =±1,即与x 轴交点坐标为(1,0)或(-1,0).∵f ′(x )=li m Δx →0 (x +Δx )-1x +Δx -x +1xΔx=li m Δx →0⎣⎢⎡⎦⎥⎤1+1x (x +Δx )=1+1x 2. ∴切线的斜率k =1+11=2.∴切线的方程为y =2(x -1)或y =2(x +1).13.曲线C 在点P (x 0,y 0)处有切线l ,则直线l 与曲线C 的公共点有________个. [答案] 至少一[解析] 由切线的定义,直线l 与曲线在P (x 0,y 0)处相切,但也可能与曲线其他部分有公共点,故虽然相切,但直线与曲线公共点至少一个.14.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为________. [答案] 3x -y -11=0[解析] 设切点P (x 0,y 0),则过P (x 0,y 0)的切线斜率为,它是x 0的函数,求出其最小值.设切点为P (x 0,y 0),过点P 的切线斜率k ==3x 20+6x 0+6=3(x 0+1)2+3.当x 0=-1时k 有最小值3,此时P 的坐标为(-1,-14),其切线方程为3x -y -11=0.三、解答题15.求曲线y =1x -x 上一点P ⎝⎛⎭⎪⎫4,-74处的切线方程. [解析] ∴y ′=lim Δx →0⎝ ⎛⎭⎪⎫1x +Δx -1x -(x +Δx -x )Δx=lim Δx →0 -Δx x (x +Δx )-Δx x +Δx +x Δx=lim Δx →0⎝⎛⎭⎪⎫-1x (x +Δx )-1x +Δx +x =-1x 2-12x.∴y ′|x =4=-116-14=-516,∴曲线在点P ⎝⎛⎭⎪⎫4,-74处的切线方程为:y +74=-516(x -4).即5x +16y +8=0.16.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l . (1)求使直线l 和y =f (x )相切且以P 为切点的直线方程;(2)求使直线l 和y =f (x )相切且切点异于点P 的直线方程y =g (x ). [解析] (1)y ′=li m Δx →0 (x +Δx )3-3(x +Δx )-3x 3+3x Δx =3x 2-3. 则过点P 且以P (1,-2)为切点的直线的斜率k 1=f ′(1)=0,∴所求直线方程为y =-2. (2)设切点坐标为(x 0,x 30-3x 0), 则直线l 的斜率k 2=f ′(x 0)=3x 20-3,∴直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0) 又直线l 过点P (1,-2),∴-2-(x 30-3x 0)=(3x 20-3)(1-x 0), ∴x 30-3x 0+2=(3x 20-3)(x 0-1), 解得x 0=1(舍去)或x 0=-12.故所求直线斜率k =3x 20-3=-94,于是:y -(-2)=-94(x -1),即y =-94x +14.17.求证:函数y =x +1x图象上的各点处的切线斜率小于1.[解析] y ′=li m Δx →0f (x +Δx )-f (x )Δx=li m Δx →0 ⎝ ⎛⎭⎪⎫x +Δx +1x +Δx -⎝ ⎛⎭⎪⎫x +1x Δx=li m Δx →0 x ·Δx (x +Δx )-Δx(x +Δx )·x ·Δx=li m Δx →0(x +Δx )x -1(x +Δx )x=x 2-1x 2=1-1x2<1,∴y =x +1x图象上的各点处的切线斜率小于1.18.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积. [解析] (1)y ′|x =1=li m Δx →0 (1+Δx )2+(1+Δx )-2-(12+1-2)Δx =3, 所以l 1的方程为:y =3(x -1),即y =3x -3. 设l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2), y ′|x =b =li m Δx →0 (b +Δx )2+(b +Δx )-2-(b 2+b -2)Δx=2b +1,所以l 2的方程为:y -(b 2+b -2)=(2b +1)·(x -b ),即y =(2b +1)x -b 2-2.因为l 1⊥l 2,所以3×(2b +1)=-1,所以b =-23,所以l 2的方程为:y =-13x -229.(2)由⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎪⎨⎪⎧x =16,y =-52,即l 1与l 2的交点坐标为⎝ ⎛⎭⎪⎫16,-52.又l 1,l 2与x 轴交点坐标分别为(1,0),⎝ ⎛⎭⎪⎫-223,0.所以所求三角形面积S =12×⎪⎪⎪⎪⎪⎪-52×⎪⎪⎪⎪⎪⎪1+223=12512.选修2-2 1.2 第1课时 几个常用的函数的导数一、选择题1.下列结论不正确的是( ) A .若y =0,则y ′=0 B .若y =5x ,则y ′=5 C .若y =x -1,则y ′=-x -2[答案] D2.若函数f (x )=x ,则f ′(1)等于( ) A .0 B .-12C .2D.12[答案] D[解析] f ′(x )=(x )′=12x ,所以f ′(1)=12×1=12,故应选D.3.抛物线y =14x 2在点(2,1)处的切线方程是( )A .x -y -1=0B .x +y -3=0C .x -y +1=0D .x +y -1=0[答案] A[解析] ∵f (x )=14x 2,∴f ′(2)=li m Δx →0f (2+Δx )-f (2)Δx =li m Δx →0 ⎝ ⎛⎭⎪⎫1+14Δx =1.∴切线方程为y -1=x -2.即x -y -1=0. 4.已知f (x )=x 3,则f ′(2)=( ) A .0 B .3x 2C .8D .12[答案] D[解析] f ′(2)=lim Δx →0 (2+Δx )3-23Δx=lim Δx →0 6Δx 2+12Δx Δx =lim Δx →0 (6Δx +12)=12,故选D. 5.已知f (x )=x α,若f ′(-1)=-2,则α的值等于( ) A .2 B .-2 C .3D .-3[答案] A[解析] 若α=2,则f (x )=x 2,∴f ′(x )=2x ,∴f ′(-1)=2×(-1)=-2适合条件.故应选A. 6.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4[答案] D[解析] ∵y =x 3+x 2-x -1∴Δy Δx =(1+Δx )3+(1+Δx )2-(1+Δx )-1Δx =4+4Δx +(Δx )2,∴y ′|x =1=li m Δx →0 Δy Δx =li m Δx →0[4+4·Δx +(Δx )2]=4. 故应选D.7.曲线y =x 2在点P 处切线斜率为k ,当k =2时的P 点坐标为( ) A .(-2,-8) B .(-1,-1) C .(1,1)D.⎝ ⎛⎭⎪⎫-12,-18[答案] C[解析] 设点P 的坐标为(x 0,y 0), ∵y =x 2,∴y ′=2x .∴k ==2x 0=2,∴x 0=1,∴y 0=x 20=1,即P (1,1),故应选C. 8.已知f (x )=f ′(1)x 2,则f ′(0)等于( ) A .0 B .1 C .2D .3[答案] A[解析] ∵f (x )=f ′(1)x 2,∴f ′(x )=2f ′(1)x ,∴f ′(0)=2f ′(1)×0=0.故应选A.9.曲线y=3x上的点P(0,0)的切线方程为( )A.y=-x B.x=0 C.y=0 D.不存在[答案] B[解析] ∵y=3 x∴Δy=3x+Δx-3x=x+Δx-x(3x+Δx)2+3x(x+Δx)+(3x)2=Δx(3x+Δx)2+3x(x+Δx)+(3x)2∴ΔyΔx=1(3x+Δx)2+3x(x+Δx)+(3x)2∴曲线在P(0,0)处切线的斜率不存在,∴切线方程为x=0.10.质点作直线运动的方程是s=4t,则质点在t=3时的速度是( )A.14433B.14334C.12334D.13443[答案] A[解析] Δs=4t+Δt-4t=t+Δt-t4t+Δt+4t=t+Δt-t(4t+Δt+4t)(t+Δt+t)=Δt(4t+Δt+4t)(t+Δt+t)∴li m Δt →0 Δs Δt=124t ·2t =144t 3, ∴s ′(3)=14433 .故应选A.二、填空题11.若y =x 表示路程关于时间的函数,则y ′=1可以解释为________. [答案] 某物体做瞬时速度为1的匀速运动[解析] 由导数的物理意义可知:y ′=1可以表示某物体做瞬时速度为1的匀速运动. 12.若曲线y =x 2的某一切线与直线y =4x +6平行,则切点坐标是________. [答案] (2,4)[解析] 设切点坐标为(x 0,x 20),因为y ′=2x ,所以切线的斜率k =2x 0,又切线与y =4x +6平行,所以2x 0=4,解得x 0=2,故切点为(2,4).13.过抛物线y =15x 2上点A ⎝ ⎛⎭⎪⎫2,45的切线的斜率为______________.[答案] 45[解析] ∵y =15x 2,∴y ′=25x∴k =25×2=45.14.(2010·江苏,8)函数y =x 2(x >0)的图像在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *,若a 1=16,则a 1+a 3+a 5的值是________.[答案] 21[解析] ∵y ′=2x ,∴过点(a k ,a 2k )的切线方程为y -a 2k =2a k (x -a k ),又该切线与x 轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.三、解答题15.过点P (-2,0)作曲线y =x 的切线,求切线方程. [解析] 因为点P 不在曲线y =x 上, 故设切点为Q (x 0,x 0),∵y ′=12x ,∴过点Q 的切线斜率为:12x 0=x 0x 0+2,∴x 0=2,∴切线方程为:y -2=122(x -2),即:x -22y +2=0.16.质点的运动方程为s =1t 2,求质点在第几秒的速度为-264.[解析] ∵s =1t2,∴Δs =1(t +Δt )2-1t2=t 2-(t +Δt )2t 2(t +Δt )2=-2t Δt -(Δt )2t 2(t +Δt )2∴li m Δt →0 Δs Δt =-2t t 2·t 2=-2t 3.∴-2t 3=-264,∴t =4. 即质点在第4秒的速度为-264. 17.已知曲线y =1x.(1)求曲线在点P (1,1)处的切线方程; (2)求曲线过点Q (1,0)处的切线方程; (3)求满足斜率为-13的曲线的切线方程.[解析] ∵y =1x ,∴y ′=-1x2.(1)显然P (1,1)是曲线上的点.所以P 为切点,所求切线斜率为函数y =1x在P (1,1)点导数.即k =f ′(1)=-1.所以曲线在P (1,1)处的切线方程为y -1=-(x -1),即为y =-x +2.(2)显然Q (1,0)不在曲线y =1x上.则可设过该点的切线的切点为A ⎝⎛⎭⎪⎫a ,1a ,那么该切线斜率为k =f ′(a )=-1a2.则切线方程为y -1a =-1a2(x -a ).①将Q (1,0)坐标代入方程:0-1a =-1a2(1-a ).解得a =12,代回方程①整理可得:切线方程为y =-4x +4.(3)设切点坐标为A ⎝ ⎛⎭⎪⎫a ,1a ,则切线斜率为k =-1a 2=-13,解得a =±3,那么A ⎝ ⎛⎭⎪⎫3,33,A ′⎝⎛⎭⎪⎫-3,3-3.代入点斜式方程得y -33=-13(x -3)或y +33=-13(x +3).整理得切线方程为y =-13x +233或y =-13x -233.18.求曲线y =1x与y =x 2在它们交点处的两条切线与x 轴所围成的三角形的面积.[解析] 两曲线方程联立得⎩⎪⎨⎪⎧y =1x,y =x 2,解得⎩⎪⎨⎪⎧x =1y =1.∴y ′=-1x2,∴k 1=-1,k 2=2x |x =1=2,∴两切线方程为x +y -2=0,2x -y -1=0,所围成的图形如上图所示. ∴S =12×1×⎝ ⎛⎭⎪⎫2-12=34.选修2-2 1.2.2 第1课时 基本初等函数的导数公式及导数运算法则一、选择题1.曲线y =13x 3-2在点⎝ ⎛⎭⎪⎫-1,-73处切线的倾斜角为( ) A .30° B .45° C .135°D .60°[答案] B[解析] y ′|x =-1=1,∴倾斜角为45°. 2.设f (x )=13x 2-1x x,则f ′(1)等于( )A .-16B.56 C .-76D.76[答案] B3.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0D .x +4y +3=0[答案] A[解析] ∵直线l 的斜率为4,而y ′=4x 3,由y ′=4得x =1而x =1时,y =x 4=1,故直线l 的方程为:y -1=4(x -1)即4x -y -3=0.4.已知f (x )=ax 3+9x 2+6x -7,若f ′(-1)=4,则a 的值等于( ) A.193B.163 C.103D.133[答案] B[解析] ∵f ′(x )=3ax 2+18x +6,∴由f ′(-1)=4得,3a -18+6=4,即a =163.∴选B.5.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒[答案] D[解析] 显然瞬时速度v =s ′=t 3-12t 2+32t =t (t 2-12t +32),令v =0可得t =0,4,8.故选D.6.(2010·新课标全国卷文,4)曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1B .y =-x -1C .y =2x -2D .y =-2x -2[答案] A[解析] 本题考查了导数的几何意义,切线方程的求法,在解题时应首先验证点是否在曲线上,然后通过求导得出切线的斜率,题目定位于简单题.由题可知,点(1,0)在曲线y =x 3-2x +1上,求导可得y ′=3x 2-2,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线y =x 3-2x +1的切线方程为y =x -1,故选A.7.若函数f (x )=e xsin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A.π2B .0C .钝角D .锐角[答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.8.曲线y =x sin x 在点⎝ ⎛⎭⎪⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为( )A.π22B .π2C .2π2D.12(2+π)2 [答案] A[解析] 曲线y =x sin x 在点⎝ ⎛⎭⎪⎫-π2,π2处的切线方程为y =-x ,所围成的三角形的面积为π22.9.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2011(x )等于( )A .sin xB .-sin xC .cos xD .-cos x[答案] D[解析] f 0(x )=sin x ,f 1(x )=f 0′(x )=(sin x )′=cos x , f 2(x )=f 1′(x )=(cos x )′=-sin x , f 3(x )=f 2′(x )=(-sin x )′=-cos x , f 4(x )=f 3′(x )=(-cos x )′=sin x ,∴4为最小正周期,∴f 2011(x )=f 3(x )=-cos x .故选D.10.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )-g (x )为常数C .f (x )=g (x )=0D .f (x )+g (x )为常数[答案] B[解析] 令F (x )=f (x )-g (x ),则F ′(x )=f ′(x )-g ′(x )=0,∴F (x )为常数. 二、填空题11.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′⎝ ⎛⎭⎪⎫π3=12,则a =________,b =________.[答案] 0 -1[解析] f ′(x )=2ax -b cos x ,由条件知 ⎩⎪⎨⎪⎧-b cos0=12π3a -b cos π3=12,∴⎩⎪⎨⎪⎧b =-1a =0.12.设f (x )=x 3-3x 2-9x +1,则不等式f ′(x )<0的解集为________. [答案] (-1,3)[解析] f ′(x )=3x 2-6x -9,由f ′(x )<0得3x 2-6x -9<0,∴x 2-2x -3<0,∴-1<x <3.13.曲线y =cos x 在点P ⎝ ⎛⎭⎪⎫π3,12处的切线的斜率为______.[答案] -32[解析] ∵y ′=(cos x )′=-sin x , ∴切线斜率k =y ′|x =π3=-sin π3=-32.14.已知函数f (x )=ax +b e x图象上在点P (-1,2)处的切线与直线y =-3x 平行,则函数f (x )的解析式是____________.[答案] f (x )=-52x -12e x +1[解析] 由题意可知,f ′(x )|x =-1=-3, ∴a +b e -1=-3,又f (-1)=2,∴-a +b e -1=2,解之得a =-52,b =-12e ,故f (x )=-52x -12e x +1.三、解答题15.求下列函数的导数:(1)y =x (x 2+1x +1x3);(2)y =(x +1)(1x-1);(3)y =sin 4x 4+cos 4x 4;(4)y =1+x 1-x +1-x 1+x .[解析] (1)∵y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3=x 3+1+1x2,∴y ′=3x 2-2x3;(3)∵y =sin 4x4+cos 4x4=⎝⎛⎭⎪⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x , ∴y ′=-14sin x ;(4)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2, ∴y ′=⎝⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.16.已知两条曲线y =sin x 、y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.[解析] 由于y =sin x 、y =cos x ,设两条曲线的一个公共点为P (x 0,y 0), ∴两条曲线在P (x 0,y 0)处的斜率分别为若使两条切线互相垂直,必须cos x 0·(-sin x 0)=-1, 即sin x 0·cos x 0=1,也就是sin2x 0=2,这是不可能的, ∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.17.已知曲线C 1:y =x 2与C 2:y =-(x -2)2.直线l 与C 1、C 2都相切,求直线l 的方程. [解析] 设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2).对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1),即y =2x 1x -x 21.①对于C 2:y ′=-2(x -2),与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4.②∵两切线重合,∴2x 1=-2(x 2-2)且-x 21=x 22-4, 解得x 1=0,x 2=2或x 1=2,x 2=0. ∴直线l 的方程为y =0或y =4x -4. 18.求满足下列条件的函数f (x ):(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0; (2)f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1. [解析] (1)设f (x )=ax 3+bx 2+cx +d (a ≠0) 则f ′(x )=3ax 2+2bx +c由f (0)=3,可知d =3,由f ′(0)=0可知c =0, 由f ′(1)=-3,f ′(2)=0可建立方程组⎩⎪⎨⎪⎧f ′(1)=3a +2b =-3f ′(2)=12a +4b =0,解得⎩⎪⎨⎪⎧a =1b =-3,所以f (x )=x 3-3x 2+3.(2)由f ′(x )是一次函数可知f (x )是二次函数, 则可设f (x )=ax 2+bx +c (a ≠0)f ′(x )=2ax +b ,把f (x )和f ′(x )代入方程,得x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1整理得(a -b )x 2+(b -2c )x +c =1 若想对任意x 方程都成立,则需⎩⎪⎨⎪⎧ a -b =0b -2c =0c =1解得⎩⎪⎨⎪⎧a =2b =2c =1,所以f (x )=2x 2+2x +1.选修2-2 1.2.2 第2课时 基本初等函数的导数公式及导数运算法则一、选择题1.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4[答案] D[解析] y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′ =2(x +1)·(x -1)+(x +1)2=3x 2+2x -1, ∴y ′|x =1=4.2.若对任意x ∈R ,f ′(x )=4x 3,f (1)=-1,则f (x )=( ) A .x 4B .x 4-2 C .4x 3-5D .x 4+2[答案] B[解析] ∵f ′(x )=4x 3.∴f (x )=x 4+c ,又f (1)=-1 ∴1+c =-1,∴c =-2,∴f (x )=x 4-2.3.设函数f (x )=x m+ax 的导数为f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1 C.nn -1D.n +1n[答案] A[解析] ∵f (x )=x m+ax 的导数为f ′(x )=2x +1, ∴m =2,a =1,∴f (x )=x 2+x , 即f (n )=n 2+n =n (n +1), ∴数列{1f (n )}(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1n (n +1)=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1, 故选A.4.二次函数y =f (x )的图象过原点,且它的导函数y =f ′(x )的图象是过第一、二、三象限的一条直线,则函数y =f (x )的图象的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] C[解析] 由题意可设f (x )=ax 2+bx ,f ′(x )=2ax +b ,由于f ′(x )的图象是过第一、二、三象限的一条直线,故2a >0,b >0,则f (x )=a ⎝ ⎛⎭⎪⎫x +b 2a 2-b 24a, 顶点⎝ ⎛⎭⎪⎫-b2a,-b 24a 在第三象限,故选C.5.函数y =(2+x 3)2的导数为( ) A .6x 5+12x 2B .4+2x 3C .2(2+x 3)2D .2(2+x 3)·3x[答案] A[解析] ∵y =(2+x 3)2=4+4x 3+x 6, ∴y ′=6x 5+12x 2.6.(2010·江西文,4)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0[答案] B[解析] 本题考查函数知识,求导运算及整体代换的思想,f ′(x )=4ax 3+2bx ,f ′(-1)=-4a -2b =-(4a +2b ),f ′(1)=4a +2b ,∴f ′(-1)=-f ′(1)=-2要善于观察,故选B.7.设函数f (x )=(1-2x 3)10,则f ′(1)=( ) A .0B .-1C .-60D .60[答案] D[解析] ∵f ′(x )=10(1-2x 3)9(1-2x 3)′=10(1-2x 3)9·(-6x 2)=-60x 2(1-2x 3)9,∴f ′(1)=60.8.函数y =sin2x -cos2x 的导数是( ) A .22cos ⎝⎛⎭⎪⎫2x -π4B .cos2x -sin2xC .sin2x +cos2xD .22cos ⎝⎛⎭⎪⎫2x +π4 [答案] A[解析] y ′=(sin2x -cos2x )′=(sin2x )′-(cos2x )′ =2cos2x +2sin2x =22cos ⎝⎛⎭⎪⎫2x -π4.9.(2010·高二潍坊检测)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D.12[答案] A[解析] 由f ′(x )=x 2-3x =12得x =3.10.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线的斜率为( )A .-15B .0 C.15D .5[答案] B[解析] 由题设可知f (x +5)=f (x ) ∴f ′(x +5)=f ′(x ),∴f ′(5)=f ′(0) 又f (-x )=f (x ),∴f ′(-x )(-1)=f ′(x ) 即f ′(-x )=-f ′(x ),∴f ′(0)=0 故f ′(5)=f ′(0)=0.故应选B. 二、填空题11.若f (x )=x ,φ(x )=1+sin2x ,则f [φ(x )]=_______,φ[f (x )]=________. [答案]2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +π4,1+sin2x[解析] f [φ(x )]=1+sin2x =(sin x +cos x )2=|sin x +cos x |=2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +π4.φ[f (x )]=1+sin2x .12.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ=________.[答案]π6[解析] f ′(x )=-3sin(3x +φ),f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ)=2sin ⎝⎛⎭⎪⎫3x +φ+5π6. 若f (x )+f ′(x )为奇函数,则f (0)+f ′(0)=0, 即0=2sin ⎝ ⎛⎭⎪⎫φ+5π6,∴φ+5π6=k π(k ∈Z ). 又∵φ∈(0,π),∴φ=π6.13.函数y =(1+2x 2)8的导数为________. [答案] 32x (1+2x 2)7[解析] 令u =1+2x 2,则y =u 8,∴y ′x =y ′u ·u ′x =8u 7·4x =8(1+2x 2)7·4x =32x (1+2x 2)7.14.函数y =x 1+x 2的导数为________. [答案] (1+2x 2)1+x21+x2[解析] y ′=(x 1+x 2)′=x ′1+x 2+x (1+x 2)′=1+x 2+x 21+x2=(1+2x 2)1+x21+x2. 三、解答题15.求下列函数的导数:(1)y =x sin 2x ; (2)y =ln(x +1+x 2); (3)y =e x+1e x -1; (4)y =x +cos x x +sin x .[解析] (1)y ′=(x )′sin 2x +x (sin 2x )′ =sin 2x +x ·2sin x ·(sin x )′=sin 2x +x sin2x . (2)y ′=1x +1+x2·(x +1+x 2)′ =1x +1+x2(1+x1+x2)=11+x2.(3)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=-2ex(e x -1)2 .(4)y ′=(x +cos x )′(x +sin x )-(x +cos x )(x +sin x )′(x +sin x )2=(1-sin x )(x +sin x )-(x +cos x )(1+cos x )(x +sin x )2=-x cos x -x sin x +sin x -cos x -1(x +sin x )2. 16.求下列函数的导数:(1)y =cos 2(x 2-x ); (2)y =cos x ·sin3x ; (3)y =x log a (x 2+x -1); (4)y =log 2x -1x +1. [解析] (1)y ′=[cos 2(x 2-x )]′ =2cos(x 2-x )[cos(x 2-x )]′=2cos(x 2-x )[-sin(x 2-x )](x 2-x )′ =2cos(x 2-x )[-sin(x 2-x )](2x -1) =(1-2x )sin2(x 2-x ).(2)y ′=(cos x ·sin3x )′=(cos x )′sin3x +cos x (sin3x )′ =-sin x sin3x +3cos x cos3x =3cos x cos3x -sin x sin3x .(3)y ′=log a (x 2+x -1)+x ·1x 2+x -1log a e(x 2+x -1)′=log a (x 2+x -1)+2x 2+x x 2+x -1log a e.(4)y ′=x +1x -1⎝ ⎛⎭⎪⎫x -1x +1′log 2e =x +1x -1log 2e x +1-x +1(x +1)2=2log 2e x 2-1. 17.设f (x )=2sin x 1+x 2,如果f ′(x )=2(1+x 2)2·g (x ),求g (x ).[解析] ∵f ′(x )=2cos x (1+x 2)-2sin x ·2x(1+x 2)2=2(1+x 2)2[(1+x 2)cos x -2x ·sin x ], 又f ′(x )=2(1+x 2)2·g (x ).∴g (x )=(1+x 2)cos x -2x sin x .18.求下列函数的导数:(其中f (x )是可导函数)(1)y =f ⎝ ⎛⎭⎪⎫1x;(2)y =f (x 2+1).。

高中数学苏教版选修2-2同步训练:第三章 章末检测 PDF版含答案

高中数学苏教版选修2-2同步训练:第三章 章末检测 PDF版含答案

第三章 章末检测1、若复数z 满足24iz i =+,则在复平面内z 对应的点的坐标是( )A.()2,4B.(2,4)-C.()4,2-D.()4,22、在复平面内,复数21i z i =+ (i 为虚数单位)的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3、若复数z 满足1z i i =-,其中i 为虚数单位,则z = ( ) A. 1i -B. 1i +C. 1i --D. 1i -+4、设复数z 满足11z i z +=-,则z = ( ) A. 1B.2 C. 3D. 25、已知复数z 满足(34)25i z +=,则z = ( )A. 34i -B. 34i +C. 34i --D. 34i -+6、已知i 是虚数单位, ,a b R ∈ ,则“1a b ==”是“()22a bi i +=”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 7、是的共轭复数,若,(是虚数单位),则等于( ) A.B.C.D. 8、复数(1)z i i =+ (i 为虚数单位)在复平面上对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限9、设复数z 满足(1)2i z i -=,则z = ( )A. 1i -+B. 1i --C. 1i +D. 1i -10、复数的11z i =-模为( ) A. 12B.22 2D. 211、数列{}n a 满足112a =,212n n a a a n a +++=,则数列{}n a 的通项公式n a =______. 12、已知复数()252z i =+ (i 是虚数单位),则z 的实部为__________.13、设复数a bi + (a ,b R ∈)3,则()()a bi a bi +-=__________.14、i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为__________.15、已知z 是复数, 2z i +,2z i-均为实数(i 为虚数单位),且复数()2z ai +在复平面内对应的点在第一象限,求实数a 的取值范围.答案以及解析1答案及解析:答案:C解析:由24iz i =+,得2442i z i i +==-,∴z 对应的点的坐标为()4,2-.故选C.2答案及解析:答案:D 解析:由21i z i =+得()()()21111i i z i i i -==++-,∴z 的共扼复数是1i -,故z 的共扼复数对应的点位于第四象限.3答案及解析:答案:A 解析:∵1z i i=-,∴(1)1z i i i =-=+,∴1z i =-.故选A4答案及解析:答案:A 解析:由题意知1z i zi +=-,所以()()()211111i i z i i i i --===++-,所以1z =,故选A. 考点:本题主要考查复数的运算和复数的模等.5答案及解析:答案:A解析:解法一:由题意得()()()()25342534253434343425i i z i i i i --====-++-,故选A. 解法二:设 (),z a bia b R =+∈, 则()()()()()3434344325i z i a bi a b a b i +=++=-++=,由复数相等得3425,{430,a b a b -=+= 解得3,{ 4.a b ==- 因此34z i =-,故选A.6答案及解析:答案:A解析:利用复数的运算性质,分别判断“1a b ==” ⇒ “()22a bi i +=”与“1a b ==” ⇐ “()22a bi i +=”的真假,进而根据充要条件的定义得到结论. 当“1a b ==”时,“()()2212a bi i i +=+=”成立,故“1a b ==”是“()22a bi i +=”的充分条件;当“()22222a bi a b abi i +=-+=”时,“1a b ==”或“1a b ==-”,故“1a b ==”是“()22a bi i +=”的不必要条件;综上所述,“1a b ==”是“()22a bi i +=”的充分不必要条件;故选A.7答案及解析:答案: D解析: 方法一:设, ,为实数,则. ∵,∴. 又,∴.故. 方法二:∵,∴. 又,∴,∴,∴.8答案及解析:答案:B 解析:(1)1z i i i =+=-+,故对应的点(1,1)-在第二象限.9答案及解析:解析:根据所给的等式两边同时除以1i -,得到z 的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果.解:∵复数z 满足()12z i i -=, ∴()()()2121111i i i z i i i i +===-+--+ 故选A.点评:本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.10答案及解析:答案:B 解析:由11z i =-得12i z --=,∴2z ==,故选B.11答案及解析: 答案:1(1)n n + 解析: 由题知2n n S n a =,当2n ≥时,21(1)1n n S n a -=--,则2211(1)n n n n S S n a n a ---=--,即221(1)n n n a n a n a -=--,得221(1)(1)n n n a n a --=-,111n n a n a n --∴=+, 故324123112312........3451(1)n n a a a a n a a a a n n n --==++, 从而12(1)n a a n n =+,得1(1)n a n n =+.12答案及解析:答案:21解析:由题意得()()22522525222120z i i i i =+=+⨯⨯+=+,所以其实部为21.13答案及解析:答案:3解析:复数a bi + (a ,b R ∈),则223a b +=,所以()()222223a bi a bi a b i a b +-=-⋅=+=.14答案及解析:答案:-2解析:()()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-.15答案及解析:答案:设(),z x yi x y R =+∈,∴()22z i x y i +=++,由题意得2y =-.()()2122225z x i x i i i i -==-+--()()1122455x x i =++-. 由题意得4x =,∴42z i =-.∵()()()2212482z ai a aa i +=+-+-, ∵()2z ai +在复平面内对应的点在第一象限,∴()21240{820a a a +->->,解得26a <<, ∴实数a 的取值范围是()2,6.解析:由Ruize收集整理。

高中数学人教A版选修2-2同步课时作业:3.1.2 Word版含解析、

高中数学人教A版选修2-2同步课时作业:3.1.2 Word版含解析、

第三章 3.1 3.1.2一、选择题(每小题5分,共20分)1.已知复数z 1=2-a i(a ∈R )对应的点在直线x -3y +4=0上,则复数z 2=a +2i 对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析: 复数z 1=2-a i 对应的点为(2,-a ),它在直线x -3y +4=0上,故2+3a +4=0,解得a =-2,于是复数z 2=-2+2i ,它对应点的点在第二象限,故选B.答案: B2.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( )A .(1,3)B .(1,5)C .(1,3)D .(1,5)解析: |z |=a 2+1,∵0<a <2,∴1<a 2+1<5,∴|z |∈(1,5).答案: B3.在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA →对应的复数为( )A .1-2iB .-1+2iC .3+4iD .-3-4i 解析: 由题意知AB →=(2,1),CB →=(-1,-3).CA →=CB →+BA →=(-1,-3)+(-2,-1)=(-3,-4),∴CA →对应的复数为-3-4i.答案: D4.满足条件|z -i|=|3+4i|的复数z 在复平面内对应点的轨迹是( )A .一条直线B .两条直线C .圆D .椭圆解析: 设z =x +y i ,∵|z -i|=|3+4i|, ∴x 2+(y -1)2=5.则x 2+(y -1)2=25,∴复数z 对应点的轨迹是圆.答案: C二、填空题(每小题5分,共10分)5.复平面内长方形ABCD 的四个顶点中,点A ,B ,C 所对应的复数分别是2+3i,3+2i ,-2-3i ,则D 点对应的复数为________.解析: 由题意可知A (2,3),B (3,2),C (-2,-3),设D (x ,y ),则AD →=BC →,即(x -2,y -3)=(-5,-5),解得⎩⎪⎨⎪⎧x =-3,y =-2.故D 点对应的复数为-3-2i. 答案: -3-2i6.复数z 1=a +2i ,z 2=-2+i ,如果|z 1|<|z 2|,则实数a 的取值范围是________.解析: ∵|z 1|=a 2+4,|z 2|=5, ∴a 2+4<5,∴-1<a <1.答案: (-1,1)三、解答题(每小题10分,共20分)7.写出如图所示复平面内各点所表示的复数(每个正方格的边长为1).解析: 如题图所示,点A 的坐标为(4,3),则点A 对应的复数为4+3i.同理可知点B ,C ,F ,G ,H ,O 对应的复数分别为:3-3i ,-3+2i ,-2,5i ,-5i,0.8.已知m ∈R ,复数z =m (m +2)m -1+(m 2+2m -3)i.则当m 为何值时, (1)z ∈R?(2)z 是纯虚数?(3)z 对应的点位于复平面第二象限?(4)z 对应的点在直线x +y +3=0上?解析: 复数z =a +b i(a ,b ∈R ),当且仅当b =0时,z ∈R ;当且仅当a =0且b ≠0时,z 为纯虚数;当a <0,b >0时,z 对应的点位于复平面的第二象限;复数z 对应的点的坐标是直线方程的解,则这个点就在这条直线上.(1)由m 2+2m -3=0且m -1≠0,得m =-3.故当m =-3时,z ∈R .(2)由⎩⎪⎨⎪⎧ m (m +2)m -1=0,m 2+2m -3≠0,解得m =0,或m =-2.故当m =0,或m =-2时,z 为纯虚数.(3)由⎩⎪⎨⎪⎧m (m +2)m -1<0,m 2+2m -3>0,解得m <-3.故当m <-3时,z 对应的点位于复平面的第二象限.(4)由m (m +2)m -1+(m 2+2m -3)+3=0, 解得m =0或m =-2.故当m =0或m =-2时,z 对应的点在直线x +y +3=0上. 尖子生题库 ☆☆☆ (10分)已知复数z 1=3+i ,z 2=-12+32i. (1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形? 解析: (1)|z 1|=|3+i|=(3)2+12=2,|z 2|= ⎝⎛⎭⎫-122+⎝⎛⎭⎫322=1, ∴|z 1|>|z 2|.(2)由|z 2|≤|z |≤|z 1|及(1)知1≤|z |≤2.因为|z |的几何意义就是复数z 对应的点到原点的距离,所以|z |≥1表示|z |=1所表示的圆外部所有点组成的集合,|z |≤2表示|z |=2所表示的圆内部所有点组成的集合,故符合题设条件点的集合是以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周),如图所示.。

人教A版选修2-2高三数学复习单元过关.docx

人教A版选修2-2高三数学复习单元过关.docx

高中数学学习材料马鸣风萧萧*整理制作河南省示范性高中罗山高中2016届高三数学复习单元过关练:选修2-2(含解析)1.设()[)[]2,0,12,1,2x x f x x x ⎧∈⎪=⎨-∈⎪⎩,则()20f x dx ⎰的值为( )A. 34 B . 45 C. 56 D. 762.⎰ππ-+22)cos 1(dx x 等于( )A. πB. 2C. 2-πD. 2+π3.若s i n21(2c o s 1)i θθ-++是纯虚数(其中i 是虚数单位),且[0,2)θπ∈,则θ的值是( )A 、4π B 、34π C 、54π D 、544ππ或 4.若211ai i=--,其中a 是实数,i 是虚数单位,则a= ( )(A )1 (B)2 (C ) 3 (D) -15.若函数mx e y x+=有极值,则实数m 的取值范围是( ) A .m>0 B .m<0 C .m>1 D .m<16.设a R ∈,若函数xy e ax =+,x R ∈,有大于零的极值点,则( ) A 、1a e <- B 、1a >- C 、1a <- D 、1a e>-7.已知3)2(3123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是() A. 21>-<b b ,或 B. 21≥-≤b b ,或 C. 21<<-b D. 21≤≤-b8.函数f (x )=x ln x 的单调递减区间是 ( ).A.1,e ⎛⎫+∞ ⎪⎝⎭B. 1,e ⎛⎫-∞ ⎪⎝⎭C.10,e ⎛⎫ ⎪⎝⎭D .(e ,+∞) 9.若0()3f x '=-,则000()(3)limh f x h f x h h→+--=( )A .3-B .12-C .9-D .6- 10.由直线1y x =+上的一点向圆22680x x y -++=引切线,则切线长的最小值为( )A . 1B .22C .7D .311.下列推理过程属于演绎推理的为( )A .老鼠、猴子与人在身体结构上有相似之处,某医药先在猴子身上试验,试验成功后再用于人体试验B .由22211,132,1353,=+=++=得出1+ 235(21)n n +++-=C .由三角形的三条中线交于一点联想到四面体四条中线(四面体每一个顶点与对面重心的连线)交于一点D .通项公式形如(0)n n a cq cq =≠的数列{}n a 为等比数列,则数列{2}n -为等比数列sin 21(2cos 1)i θθ-++i [0,2)θπ∈θ13.过抛物线y=)(x f 上一点A (1,0)的切线的倾斜角为45°则)1(/f =__________. 14.已知x 为实数,复数22(2)(32)=+-+++z x x x x i 为纯虚数,则x = .15.设20lg ,0(),3,0ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰若((1))1,f f =则5(42)x x a -+-展开式中常数项为 。

高中数学2-3同步练习新人教B版选修2-2

高中数学2-3同步练习新人教B版选修2-2

一、选择题1.某个与正整数n 相关的命题,假如当n= k( k∈N*)时该命题建立,则可推得n= k+1 时该命题也建立,现已知n=5时命题不建立,那么可推得()A.当n= 4 时该命题不建立B.当n= 6 时该命题不建立C.当n= 4 时该命题建立D.当n= 6 时该命题建立[答案] A[分析] 由命题及其逆否命题的等价性知选 A.2 2 2 2 1 22.等式 1 +2 + 3 ++ n =2(5 n -7n+4)( )A.n为任何正整数都建立B.仅当n= 1,2,3时建立C.当n= 4 时建立,n=5 时不建立D.仅当= 4 时不建立n[答案] B[分析] 经考证, n=1,2,3 时建立, n=4,5,不建立.应选 B.3.用数学概括法证明某命题时,左式为1α ++cos(2n-+ cos α+ cos321) α ( α≠kπ,k∈Z,n∈ N* ) ,在考证n= 1 时,左侧所得的代数式为( )1A.21B.2+ cos α1C.2+ cos α+ cos3α1D.2+ cos α+ cos3α+ cos5α[答案] B1[ 分析 ]令n=1,左式=2+cosα.应选B.4.已知数列 { a n} 的前n项和S n=n2a n( n≥2) ,而a1=1,经过计算a2、 a3、 a4,猜想 a n =()22A.2B.( n + 1)n ( n +1)22C.2n- 1D.2n - 1[答案]B[ 分析 ]由 S n = n 2a n 知 S n + 1=( n + 1) 2a n +1∴ S n +1- S n = ( n +1) 2a n + 1-n 2a n∴ a n +1= ( n + 1) 2a n + 1- n 2a n∴ a = n + 2an( n ≥2) ,n +1n当 =2 时, 2= 4 2,又 2= 1+ 2,∴ 2= a =1,nSaS a aa1332 131a 3= 4a 2=6, a 4= 5a 3= 10.111由 a 1= 1, a 2= 3, a 3= 6, a 4= 102猜想 a n =n ( n + 1) . 应选 B.1 115.用数学概括法证明 1+ 2+ 3+ + 2n - 1<n ( n ∈ N + , n >1) 时,第一步应考证不等式()1 1 1A . 1+ 2<2B . 1+ 2+ 3<21 1 1 1 1C .1++ <3D .1+++ <32 32 3 4[答案]B1 1[分析]n = 2 时 1+ 2+22 -1<2. 应选 B.6.用数学概括法证明“( n + 1)(n×1×3 (2 +n +2) (n + n ) = 2 n - 1)( n ∈ N ) ”,则“从k 到 k +1”左端需乘的代数式为 ( )A . 2k + 1B . 2(2 k + 1) 2k + 1 2k + 3C.k + 1D.k + 1[答案] B[分析]n = k 时左式= ( k + 1)( k +2)( k + 3)n = k + 1 时左式= ( k + 2)( k +3) (2 k + 1)(2 k + 2) 故“从 k 到 k +1”左端需乘(2 k + 1)(2 k + 2)k + 1= 2(2 k + 1) .应选 B.7.用数学概括法证明命题“当 n 是正奇数时, x n + y n 能被 x + y 整除”,在第二步时,正确的说法是 ()A .假定 n = k ( k ∈ N * ) ,证明 n = k + 1 时命题建立B .假定 n = k ( k 是正奇数 ) ,证明 n = k + 1 时命题建立C .假定 = 2 + 1( k ∈N *) ,证明 n = + 1 时命题建立n kk D .假定 n = k ( k 是正奇数 ) ,证明 n = k + 2 时命题建立[答案] D[分析]A 中 = 时,k 不必定是奇数,不正确; B 中 n = +1 为偶数,不正确; C 中n kk2k + 1>k +1 与概括假定矛盾.应选D.8.用数学概括法证明 n ( n + 1)(2 n + 1) 能被 6 整除时,由概括假定推证 n = k + 1 时命题建立,需将 n = k + 1 时的原式表示成 ()A . k ( k + 1)(2 k + 1) + 6( k + 1)B . 6k ( k + 1)(2 k + 1)C . k ( k + 1)(2 k + 1) + 6( k + 1) 2D .以上都不对 [答案] C[分析] 当 n = k +1 时,原式 = ( k + 1)( k + 2)(2 k + 3) = k ( k + 1)(2 k + 1) + 6( k + 1) 2.应选 C.9.已知数列 { n } ,1= 1, 2 =2, n + 1= 2 a n + n - 1( k ∈ N * ) ,用数学概括法证明a 4n能被 4a aa a a整除时,假定 a 4k 能被 4 整除,应证 ()A . a 4k + 1 能被 4 整除B . a 4k + 2 能被 4 整除C . a 4k + 3 能被 4 整除D . a 4k + 4 能被 4 整除[答案]D[ 分析 ]在数列 { a 4n } 中,相邻两项下标差为 4,所以 a 4k 后一项为 a 4k + 4. 应选 D.10.凸 n 边形有 f ( n ) 条对角线,则凸 n + 1 边形的对角线的条数 f ( n + 1) 为 ( )A . f ( n ) + n + 1B . f ( n ) + nC . f ( n ) + n - 1D . f ( n ) + n - 2[答案]C[ 分析 ]由凸 n 边形变成凸 n + 1 边形后,应加一项,这个极点与不相邻的( n - 2) 个顶点连成 ( n -2) 条对角线,同时,本来的凸 n 边形的那条边也变成对角线, 故有 f ( n + 1) = f ( n )+ ( n - 2) +1. 应选 C.二、填空题n 2对随意 n ≥ k 的自然数都建立的最小 k 值为 ________.11.使不等式 2 >n + 1 [答案] 5[分析] 25= 32,5 2 +1= 26,对 n ≥5的全部自然数 n, 2n > n 2+1 都建立,自己用数学归纳法证明之.12.用数学概括法证明对于 n 的恒等式时, 当 n =k 时,表达式为 1×4+2×7+ + k (3 k+1) = k ( k + 1) 2,则当 n = k + 1 时,待证表达式应为 ________.[答案]1×4+2×7+ + k (3 k + 1) + ( k + 1)(3 k + 4) = ( k + 1)( k + 2) 213.用数学概括法证明: 1+ 2+ 22 + + 2n -1= 2n - 1( n ∈ N * ) 的过程以下:①当 n = 1 时,左侧= 20=1,右侧= 21- 1= 1,不等式建立;②假定 n = k 时,等式建立,即 1+2+ 22+ + 2k -1= 2k - 1.则当 n = k + 1 时,k + 12k - 1k1- 2k + 11+2+2 + + 2+2 ==2 -1,所以 n = k + 1 时等式建立.由此可知对随意正整数n ,等式都建立.以上证明错在哪处? ____________.[ 答案 ]没实用上概括假定[ 分析 ]由数学概括法证明步骤易知其错误所在.14.设 S 1= 12,S 2= 12+ 22+ 12, , S n =12 +22+ 32+ + n 2+ + 22+ 12. 用数学概括法证明 n = n (2 n+1) 时,第二步从 k 到 k + 1 应增添的项为 ________.S 2k[答案]( k + 2) ·2+ 12( k + 1)(2 k + 1k+1) k[分析]S k+ 1+ 1) k (2( k +2) ·2+ 1-S k =-=.22 2三、解答题15.在数列 { a n } 中, a 1= a 2= 1,当 n ∈ N * 时,知足 a n + 2= a n + 1+ a n ,且设 b n = a 4n ,求证:{ b n } 的各项均为 3 的倍数.[ 证明 ](1) ∵ a 1=a 2= 1,故 a 3= a 1+a 2= 2, a 4= a 3 +a 2= 3.∴ b 1= a 4=3,当 n =1 时, b 1 能被 3 整除.(2) 假定 n = k 时,即 b k = a 4k 是 3 的倍数.则 n =k + 1 时, b k + 1= a 4( k + 1) = a (4 k + 4) = a 4k + 3+ a 4k +2= a 4k +2+ a 4k + 1+a 4k + 1+ a 4k= 3a 4k + 1+ 2a 4k .由概括假定, a 4k 是 3 的倍数,故可知b k + 1 是 3 的倍数.∴ n = k + 1 时命题正确.综合 (1) 、 (2) 可知,对于随意正整数n ,数列 { b n } 的各项都是 3 的倍数.16.给出四个等式:1= 11- 4=- (1 + 2)1-4+9=1+2+31- 4+ 9- 16=- (1 + 2+ 3+4)猜想第 n ( n ∈ N * ) 个等式,并用数学概括法证明.[分析]第 n 个等式为:2222n - 1 2n - 1·(1 + 2+ 3+ + n ) .1-2+3 -4 + + ( -1) n = ( - 1)证明: (1) 当 n = 1 时,左侧= 12= 1,右侧= ( -1) 0×1× (1 + 1)=1,左侧=右侧,等式建立.2(2) 假定 n = k ( *1 2 - 2 2 + 3 22+ + ( -1) k - 1 2k -k ∈ N ) 时,等式建立,即 - 4k =(-1)1·k ( k + 1) .2则当 n = k + 1 时,12- 22+ 32-42+ + ( -1) k -1k 2+ ( - 1) k ( k +1) 2= ( - 1) k -1·k ( k + 1)+ ( - 1) k ( k+ 1) 2 2= ( - 1) k( k +1) · ( k + 1) -k2=( -1) k · ( k + 1)[( k + 1) +1] .2 ∴当 n = k + 1 时,等式也建立依据 (1) 、 (2) 可知,对于任何 n ∈N * 等式均建立.17.(2010 ·江苏卷, 23) 已知△ ABC 的三边长都是有理数(1) 求证: cos A 是有理数;(2) 对随意正整数 n ,求证 cos nA 是有理数.[ 分析 ]此题主要考察余弦定理、 数学概括法等基础知识, 考察推理论证的能力与剖析问题、解决问题的能力.2 22AB + AC -BC(1) 由、 、 为有理数及余弦定理知cos =是有理数.AB BC ACA2AB · AC(2) 用数学概括法证明 cos nA 和 sin A ·sin nA 都是有理数.①当 = 1 时,由 (1) 知 cos A 是有理数,进而有 sin ·sin=1- cos 2 也是有理数.n A A A②假定当 n = k ( k ≥1) 时, cos kA 和 cos A ·sin kA 都是有理数.当 n =k + 1 时,由cos( k + 1) A = cos A ·cos kA - sin A ·sin kA ,sin A ·sin( k + 1) A = sin A ·(sin A ·cos kA + cos A ·sin kA )= (sin A ·sin A ) ·cos kA + (sin A ·sin kA ) ·cos A ,由①和概括假定,知 cos( k + 1) A 与 sin A ·sin( k + 1) A 都是有理数.即当 n = k + 1 时,结论建立.综合①、②可知,对随意正整数n ,cos nA 是有理数.1218.首项为正数的数列 { a n } 知足 a n +1= 4( a n +3) , n ∈ N + .(1) 证明:若 a 1 为奇数,则对全部 n ≥2, a n 都是奇数;(2) 若对于全部 n ∈ N ,都有 a n + 1>a 1 ,求 a 1 的取值范围.[分析] (1)已知 a 1 是奇数,假定 a k = 2m - 1 是奇数,此中 m 为正整数,2+ 3a k则由递推关系得 a k + 1= 4 = m ( m -1) + 1 是奇数. 依据数学概括法,对任何n ∈ N +, n 都是奇数.a(2) 解法 1:由n + 1- a n = 1 ( a n - 1)( n -3) 知, a n + 1> n 当且仅当 n <1 或 a n >3. a 4 a a a1+ 3另一方面,若 0<a k <1,则 0<a k + 1< 4 = 1;若 a k >3,则 a k +1> 32+ 3 = 3.4依据数学概括法, 0<a <1? 0<a <1, ? ∈N ;a >3? a >3,? ∈ N .1nn+ 1nn+综上所述,对全部 n ∈ N + 都有 a n + 1>a n 的充要条件是 0<a 1<1 或 a 1>3.2解法 2:由aa 1+ 31,得21+ 3>0,于是 0< 1<1 或a 1>3.2=>1-44aaaa2a n + 3( a n + a n -1 )( a n - a n -1)a n + 1-a n =4=42a n + 3,由于 a 1>0, a n + 1=,所以全部的a n 均大于 0,所以 a n + 1- a n 与 a n -a n - 1 异号.4依据数学概括法, ? n ∈N + , a n +1- a n 与 a 2- a 1 同号.所以,对全部 n ∈ N + ,都有 a n + 1>a n 的充要条件是 0<a 1<1 或 a 1 >3.。

高三复习测试题数学选修2-2复数复习题Word版含答案

高三复习测试题数学选修2-2复数复习题Word版含答案

复 数 复习题一.选择题:1.若复数z 满足:i z i 34)43(+=-,则z 的虚部是( ) A.4- B.5- C.4 D.542.设复数z 满足:i z i 2)1(=⋅-,则=z ( ) A.i +-1 B.i --1 C.i +1 D.i -13.复数z 满足:i i z (,5)2)(3(=--为虚数单位),则z 的共轭复数z 为( ) A.i +2 B.i -2 C.i +5 D.i -54.设i 是虚数单位,z 是复数的共轭复数,若z i z z 22=+⋅,则=z ( ) A.i +1 B.i -1 C.i +-1 D.i --15.若复数z 满足:i z i 42+=⋅,则在复平面内,z 对应的点的坐标是( ) A.)4,2( B.)4,2(- C.)2,4(- D.)2,4(6.已知集合},2,1{zi M =,i 为虚数单位,,3{=N}4,}4{=⋂N M ,则复数=z ( )A.i 2-B.i 2C.i 4-D.i 47.在复平面内,复数i iiz (,12+=为虚数单位)的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限8.复数11-=i z 的模为( ) A.21B.22C.2D.29.设a 是实数,且211ii a -++是实数,则=a ( ) A.21B.1C.1-D.210.若i 是虚数单位,则20142013i i +的结果是( ) A.i +-1 B.i --1C.i +1D.i -1二.填空题:11.已知复数i i iz (,215+=是虚数单位),则=z 12.已知R b a ∈,,i 是虚数单位,若)1()(i i a +⋅+ bi =,则=+bi a13.若b a bi a i bi,(,13+=-+为实数,i 是虚数单位),则=+b a 14.已知i 是虚数单位,R n m ∈,,且+=+1)1(i m ni ,则=-+2014)(nim ni m15.已知复数i i ⋅-)21(,(其中i 是虚数单位)在复平面内对应的点M 在直线n mx y +=上,其中0>mn ,则nm 11+的最小值为16.设复数z 的共轭复数为z .若i i z (,1-=为虚数单位),则2z z z+的值为 17.已知定义在复数集C 上的函数)(x f 满足)(x f⎩⎨⎧∉-∈+=)(,)1()(,1R x x i R x x ,则=+)1(i f 18.若z 为z 的共轭复数,)(,1)(C z z z f ∈-=.已知i z i z -=+=5,3221,则)(21z z f = 19.已知),1(,)(2N n i i i n f n n ∈-=-=-,则集合)}({n f 中的元素是 三.解答题: 20.设i 2321+-=ω(1)求3ϖ的值;(2)求证:012=++ωϖ(3)求证:ωωω(,2=是ω的共轭复数)21.设复数θθsin 2cos 3i z +-=.(1)当πθ34=时,求z 的值; (2)若复数z 所对应的点在直线03=+y x 上, 求)4sin(212cos 22πθθ+-的值.。

高中数学选修《2 2》复习试题答案

高中数学选修《2 2》复习试题答案

高中数学选修《2-2》复习试题(2011.7)一、选择题(共8题,每题5分)1.复数(2)z i i =+在复平面内的对应点在( )A .第一象限B .第二象限C .第三象限D .第四象限2. 一质点做直线运动,由始点经过s t后的距离为3216323s t t t =-+,则速度为0的时刻是( ) A .4s t = B .8s t = C .4s t =与8s t = D .0s t =与4s t = 3. 某射击选手每次射击击中目标的概率是0.8,如果他连续射击5次,则这名射手恰有4次击中目标的概率是( )(A )40.80.2⨯ (B )445C 0.8⨯ (C )445C 0.80.2⨯⨯ (D )45C 0.80.2⨯⨯ 4.已知14a b c =+==则a ,b ,c 的大小关系为( ) A .a>b>cB .c>a>bC .c>b>aD .b>c>a5.曲线32y x =+上的任意一点P 处切线的斜率的取值范围是( ) A.,)3+∞B. ,)3+∞C. ()+∞D. [)+∞ 6. 有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x =是函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函数3()f x x =的极值点. 以上推理中( )A .大前提错误B . 小前提错误C .推理形式错误D .结论正确 7. .在复平面内, 复数1 + i 与31+i 分别对应向量OA 和OB , 其中O 为坐标原点,=( ) A.2 B.2 C.10 D. 48、函数2()1x f x x =-( )A .在(0,2)上单调递减B .在(,0)-∞和(2,)+∞上单调递增C .在(0,2)上单调递增D .在(,0)-∞和(2,)+∞上单调递减二、填空题(共6题,30分) 9. .观察下列式子 2222221311511171,1,1222332344+<++<+++< , … … , 则可归纳出________________________________10. 复数11z i =-的共轭复数是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单几何体的体积 同步练习
1. 求由曲线x h
r y ⋅=及直线0),0(,0=>==y h h x x 所围成的图形绕x 轴旋转而成的立体的体积。

2. 求曲线)41(≤≤=x x y 绕x 轴旋转所得旋转体的体积。

3. 求曲线x y 1=
,直线0,2,1===x y y 所围平面图形绕y 轴旋转所得立体的体积。

4. 求由曲线2x y =及直线x y =所围图形的面积,并求给图形绕x 轴旋转一周所得旋转体的体积。

5. 求曲线x e y =、直线2,0==x x 与x 轴所围图形绕x 轴旋转一周所得旋转体的体积。

6. 试解释下列式子的意义:
(1)⎰312dx x π; (2) ⎰-202)1(dx e x π。

参考答案: 1. h r dx x h r V h 22
03ππ=⎪⎭⎫ ⎝⎛=⎰。

2. ()ππ2152
41==⎰dx x V 。

3. 21212
ππ=⎪⎪⎭⎫ ⎝⎛=⎰dy y V ;注意旋转轴和积分函数。

4. 61)(102
=-=⎰dx x x S ;30)(1022ππ=-=⎰dx x x V 5. )1(2
121)(4202202-===⎰e e dx e V x
x πππ。

6. (1)由直线3,1,===x x x y 及x 轴所围图形绕x 轴旋转一周所得旋转体的体积。

(2)由曲线x e y =与直线2,0,1===x x y 及x 轴所围图形绕x 轴旋转一周所得旋转体的体积。

相关文档
最新文档