北师大版九年级数学上册期末检测数学试卷及答案.-共13页

合集下载

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.下列函数中不是反比例函数的是()A .3y x=B .13y x -=C .1xy =D .3x y =-2.下列立体图形中,主视图是圆的是()A .B .C .D .3.如图,在菱形ABCD 中,60B ∠=︒,4AB =,则正方形ACEF 的面积为()A .8B .12C .16D .204.用如图所示的两个转盘(分别进行四等分和三等分)设计一个“配紫色”的游戏,其中一个转出红色,另一个转出蓝色即可配成紫色,分别转动两个转盘(指针指向区域分界线时,忽略不计),那么可配成紫色的概率为()A .712B .12C .512D .135.如图,在平面直角坐标系中,OAB 与OCD 位似,点O 是它们的位似中心,已知()4,2A -,()2,1C -,则OAB 与OCD 的面积之比为()A .1:1B .2:1C .3:1D .4:16.若双曲线ay x=在第二、四象限,那么关于x 的方程2210ax x ++=的根的情况为()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .无实根7.如图,四边形OABC 是平行四边形,对角线OB 在y 轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线1k y x=和2ky x =的一支上,过点A ,点C 分别作x 轴的垂线,垂足分别为M 和N ,有以下结论:①ON OM =;②12k AM CN k =;③阴影部分面积是()121k k 2+;④若四边形OABC 是菱形,则图中曲线关于y 轴对称.其中正确的结论是()A .①④B .②③C .①②④D .①③④8.如图,矩形ABCD 中,点E ,点F 分别是BC ,CD 的中点,AE 交对角线BD 于点G ,BF 交AE 于点H .则GHHE的值是()A .12B .23C.2D9.如图,已知△A′B′C′与△ABC 是位似图形,点O 是位似中心,若A′是OA 的中点,则△A′B'C′与△ABC 的面积比是()A .1:4B .1:2C .2:1D .4:110.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,且AC =6,BD =8,过A 点作AE 垂直BC ,交BC 于点E ,则BECE的值为()A .512B .725C .718D .524二、填空题11.如果四条线段a ,b ,c ,d 是成比例线段,且4a =,12b =,8c =,那么d 为______.12.已知1x =是一元二次方程220x ax +-=的一个根,则此方程的另一个根为______.13.如图,在ABC 中,∥DE BC ,若:3:2AD DB =,6cm AE =,则EC 的长为______cm .14.已知近视眼镜的度数D (度)与镜片焦距f (米)成反比例关系,且400度近视眼镜镜片的焦距为0.25米.小慧原来戴400度的近视眼镜,经过一段时间的矫正治疗后,现在只需戴镜片焦距为0.4米的眼镜了,则小慧所戴眼镜的度数降低了___度.15.如图,函数()0y kx k =-≠的图象与2y x=-的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为C ,连接BC ,则BOC 的面积为______.16.如图,这是一个几何体的三视图,根据图中所标的数据,这个几何体的体积为______.17.如图,在正方形ABCD 中,顶点A ,B ,C ,D 在坐标轴上,且()2,0B ,以AB 为边构造菱形ABEF (点E 在x 轴正半轴上),将菱形ABEF 与正方形ABCD 组成的图形绕点O 逆时针旋转,每次旋转45°,则第2022次旋转结束时,点2022F 的坐标为______.18.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题19.关于x 的一元二次方程2240x x k --=有两个不相等的实数根.(1)求k 的取值范围;(2)若1k =,请用配方法求该方程的根.20.如图,矩形ABCD 的对角线AC ,BD 交于点O ,且//DE AC ,//AE BD ,连接OE .求证:OE AD ⊥.21.如图,正比例函数与反比例函数的图象交于A、B两点,点A的坐标为(1,2).(1)求反比例函数的解析式;(2)根据图像直接写出使正比例函数的值大于反比例函数的值的x取值范围.22.如图:一次函数的图象与反比例函数kyx=的图象交于()2,6A-和点()4,B n.(1)求点B的坐标;(2)根据图象回答,当x在什么范围时,一次函数的值大于反比例函数的值.23.如图,BD、CE是ABC的两条高,M、N分别是BC、DE的中点.(1)求证:ADE ABC △△∽.(2)试说明MN 与DE 的关系.24.如图,在ABC 中,2BC AB =,AD 是BC 边上的中线,O 是AD 的中点,过点A 作AE BC ∥,交BO 的延长线于点E ,BE 交AC 于点F ,连接DE 交AC 于点G .(1)判断四边形ABDE 的形状,并说明理由;(2)若34AB =:3:5OA OB =,求四边形ABDE 的面积;(3)连接DF ,求证:2DF FG FC =⋅.25.如图,点E 是矩形ABCD 的边BA 延长线上一点,连接ED ,EC ,EC 交AD 于点G ,作CF ∥ED 交AB 于点F ,DC =DE .(1)求证:四边形CDEF 是菱形;(2)若BC =3,CD =5,求AG 的长.26.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.27.如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)求ABBC的值.参考答案1.D2.D3.C4.A5.D6.A 7.C 8.B 9.A 10.C 11.2412.2x =-13.414.15015.116.18π17.(2,-18.60.19.(1)2k >-(2)1x =2x =20.证明://,//A C D E E D A B ,∴四边形AODE 是平行四边形,四边形ABCD 是矩形,1122OA OD AC BD ∴===,∴平行四边形AODE 是菱形,OE AD ∴⊥.21.(1)2y x=;(2)10x -<<或1x >.【详解】解:(1)设反比例函数表达式为k y x=,∵正比例函数与反比例函数的图象交于A 、B 两点,∴将A 的坐标(1,2)代入k y x =得:21k=,解得:k=2,∴2y x=;(2)设正比例函数表达式为y=ax ,将A 的坐标(1,2)代入y=ax 得:2=a ,∴y=2x ,联立正比例函数表达式和反比例函数表达式,得:22y x y x⎧=⎪⎨⎪=⎩,整理得:222x =,解得:1211x x ==-,,∴B 点横坐标为-1,将x=-1代入y=2x 得:y=-2.∴B(-1,-2),由图像可得,正比例函数的值大于反比例函数的值的x 取值范围是10x -<<或1x >.22.(1)()4,3B -;(2)2x <-或04x <<.【详解】解:(1)将点()2,6A -代入ky x=得:2612k =-⨯=-,则反比例函数的解析式为12y x=-,将点()4,B n 代入12y x=-得:1234n =-=-,则点B 的坐标为()4,3B -;(2) 一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象的上方,2x ∴<-或04x <<.23.(1)见解析(2)MN 垂直平分DE ,理由见解析【分析】(1)根据三角形高、相似三角形的性质,通过证明ABD ACE ∽△△,得AB ACAD AE=,再根据相似三角形的性质分析,即可完成证明;(2)根据直角三角形斜边中线的性质,得12EM BC =,12DM BC =,再根据等腰三角形三线合一的性质分析,即可得到答案.(1)∵BD 、CE 是ABC 的两条高,∴90ADB AEC ∠=∠=︒,∵A A ∠=∠,∴ABD ACE ∽△△,∴AB ADAC AE=,∴AB ACAD AE=,∵A A ∠=∠,∴ADE ABC △△∽;(2)如图,连接DM ,EM∵BD 、CE 是ABC 的两条高,∴90CDB BEC ==︒∠∠∵M 是BC 的中点,,∴12EM BC =,12DM BC =,∴EM DM =,∵N 是DE 的中点,∴MN 垂直平分DE .24.(1)四边形ABDE 是菱形,理由见解析(2)30(3)见解析【分析】(1)先判定△AOE ≌△DOB (ASA ),得出AE =BD ,根据AE ∥BD ,即可得出四边形ABDE 是平行四边形,再根据BD =BA ,即可得到平行四边形ABDE 是菱形;(2)根据四边形ABDE是菱形,AB =OA:OB =3:5,运用勾股定理求得AD =6,BE =10,即可得出菱形ABDE 的面积;(3)根据菱形的性质得出∠GDF =∠DCF ,再根据∠GFD =∠DFC ,即可判定△DFG ∽△CFD ,进而得到GFDFDF CF =,得证.(1)解:(1)四边形ABDE 是菱形.理由:∵AE BC ∥,∴EAO BDO ∠=∠,∵O 是AD 的中点,∴AO DO =,在AOE △和DOB 中,EAO BDOAO DO AOE DOB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA AOE DOB △△≌,∴AE BD =,又∵AE BD ∥,∴四边形ABDE 是平行四边形,∵AD 是BC 边上的中线,∴2BC BD =,又∵2BC AB =,∴BD BA =,∴平行四边形ABDE 是菱形.(2)解:∵四边形ABDE 是菱形,∴AD BE ⊥,12AO AD =,12BO BE =,设3OA k =,5OB k =,在Rt AOB △中,由勾股定理得222AO OB AB +=,∴()()22235k k +=,整理得2292534k k +=,解得1k =,∴3OA =,5OB =,∴6AD =,10BE =,∴菱形ABDE 的面积1106302=⨯⨯=.(3)证明:∵四边形ABDE 是菱形,∴BE 垂直平分AD ,EA ED =,FA FD =,∴EAO EDO ∠=∠,FAO FDO ∠=∠,∴EAF EDF ∠=∠,∵AE BC ∥,∴EAF DCF ∠=∠,∴GDF DCF ∠=∠,又∵GFD DFC ∠=∠,∴DFG CFD △△∽,∴GFDFDF CF =,∴2DF FG FC =⋅.25.(1)解:证明:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,∵CF ∥ED ,∴四边形CDEF 是平行四边形,∵DC=DE .∴四边形CDEF 是菱形;(2)如图,连接GF ,∵四边形CDEF 是菱形,∴CF=CD=5,∵BC=3,∴BF=4==,∴AF=AB-BF=5-4=1,在△CDG 和△CFG 中,CD CF DCG FCG CG CG =⎧⎪∠=∠⎨⎪=⎩,∴△CDG ≌△CFG (SAS ),∴FG=GD ,∴FG=GD=AD-AG=3-AG ,在Rt △FGA 中,根据勾股定理,得FG 2=AF 2+AG 2,∴(3-AG )2=12+AG 2,解得AG=43.26.(1)见解析(2)【分析】(1)证△ABE ≌△CBE (SAS ),即可得出结论;(2)连接AC 交BD 于H ,先由菱形的性质可得AH ⊥BD ,BH =DH ,AH =CH ,求出BH 、EH 的长,由勾股定理求出AH 的长,再由勾股定理求出AB 的长,即可得出结果.【详解】(1)∵四边形ABCD 是菱形,∴∠ABE =∠CBE ,AB =CB ,在△ABE 和△CBE 中,AB CB ABE CBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBE ,∴AE =CE ,∵AE =DE ,∴CE =DE ;(2)如图,连接AC 交BD 于H ,∵四边形ABCD 是菱形,∴AH ⊥BD ,BH =DH ,AH =CH ,∵CE =DE =AE =1,∴BD =BE+DE =2+1=3,∴BH =12BD =32,EH =BE ﹣BH =2﹣32=12,在Rt △AHE 中,由勾股定理得:AH在Rt △AHB 中,由勾股定理得:AB=27.(1)y =2x;(2)1【分析】(1)将点A 坐标代入两个解析式可求a 的值,k 的值,即可求解;(2)连接OA ,OB ,先求得B 、C 的坐标,然后求得S △AOC =1322⨯⨯=3,S △BOC =1312⨯⨯=32,则可求得S △AOB =32,根据同高三角形面积的比等于底边的比即可求得结论.【详解】解:(1)把点A (1,a )代入y =﹣x+3,得a =2,∴A (1,2),把A (1,2)代入反比例函数k y x =,∴k =1×2=2,∴反比例函数的表达式为y =2x;(2)如图,连接OA ,OB ,由一次函数y =﹣x+3可知C 的坐标为(3,0),解23y x y x ⎧=⎪⎨⎪=-+⎩得12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,∴B (2,1),∴S △AOC =1322⨯⨯=3,S △BOC =1312⨯⨯=32,∴33322AOB AOC BOC S S S =-=-= ,∴AOB BOC S S ∆∆=1,∴AB BC =1.。

最新北师大版九年级数学上册期末考试及答案【完整版】

最新北师大版九年级数学上册期末考试及答案【完整版】

最新北师大版九年级数学上册期末考试及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.一5的绝对值是( )A .5B .15C .15-D .-5 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( )A .30°B .60°C .30°或150°D .60°或120°4.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤75.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大6.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°8.如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( )A .B .4C .D .89.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°10.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)11x +有意义的x 的取值范围是__________.2.因式分解:3269a a a -+=_________.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.如图,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0)和B (3,2),不等式x 2+bx +c >x +m 的解集为__________.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.在平面直角坐标系xOy 中,抛物线21y ax bx a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示);(2)求抛物线的对称轴;(3)已知点11(,)2Pa,(2,2)Q.若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.3.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.4.如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.5.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人”选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.6.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、A5、A6、C7、B8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1x ≥-2、2(3)a a -3、0或14、140°5、x <1或x >36、 1三、解答题(本大题共6小题,共72分)1、x=32、(1)点B 的坐标为1(2,)a -;(2)对称轴为直线1x =;(3)当12a ≤-时,抛物线与线段PQ 恰有一个公共点.3、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)4、(1)略;(2)AD =.5、(1)补图见解析;50°;(2)35. 6、(1)y=﹣10x+740(44≤x ≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.。

最新北师大版九年级数学上册期末测试卷(及参考答案)

最新北师大版九年级数学上册期末测试卷(及参考答案)

最新北师大版九年级数学上册期末测试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是( )A .±2B .2C .﹣2D .162.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥33.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩4.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13C .29 D .195.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根6.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .-1或2B .-1C .2D .07.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C.20°D.15°8.一次函数y=ax+b和反比例函数ya bx-=在同一直角坐标系中的大致图象是()A.B.C.D.9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A为60︒角与直尺交点,3AB=,则光盘的直径是()A.3 B.33C.6D.6310.如图,在矩形ABCD中,AB=10,4=AD,点E从点D向C以每秒1个单位长度的速度运动,以AE为一边在AE的左上方作正方形AEFG,同时垂直于CD 的直线MN也从点C向点D以每秒2个单位长度的速度运动,当点F落在直线MN上,设运动的时间为t,则t的值为()A.103B.4 C.143D.163二、填空题(本大题共6小题,每小题3分,共18分)1.计算:18322-+=____________.2.分解因式:34x x -=________.3.若n 边形的内角和是它的外角和的2倍,则n =__________.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是__________(结果保留π)三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++= (1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC是等腰三角形时,求k的值3.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C,若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.41.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.5.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为多少;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.6.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、A5、A6、B7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、02、x (x +2)(x ﹣2).3、64、72°5、x=26、8﹣2π三、解答题(本大题共6小题,共72分)1、x=12、(1)详见解析(2)k 4=或k 5=3、(1)y=﹣x 2+2x+3(2,32)(3)当点P 的坐标为(32,154)时,四边形ACPB 的最大面积值为7584、(1)略;(2)5、(1)享受9折优惠的概率为14;(2)顾客享受8折优惠的概率为16. 6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。

北师大版九年级数学上册期末考试卷(参考答案)

北师大版九年级数学上册期末考试卷(参考答案)

北师大版九年级数学上册期末考试卷(参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是( )A .±2B .2C .﹣2D .162.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )A .1B .2C .3D .43.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤<6.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB ∆绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是( )A .()1,23-+B .()3,3-C .()3,23-+D .()3,3- 9.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°10.如图,⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC ,若∠A=60°,∠ADC=85°,则∠C 的度数是( )A .25°B .27.5°C .30°D .35°二、填空题(本大题共6小题,每小题3分,共18分)1368______________.2.因式分解:2()4()a a b a b ---=_______.3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,在矩形纸片ABCD 中,AD =10,AB =8,将AB 沿AE 翻折,使点B 落在B '处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C '处,EF 为折痕,连接AC '.若CF =3,则tan B AC ''∠=__________.6.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为__________.三、解答题(本大题共6小题,共72分)1.解方程:311(1)(2)x x x x -=--+2.已知关于x 的一元二次方程x 2+x +m ﹣1=0.(1)当m =0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m 的取值范围.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.如图,点C为△ABD外接圆上的一动点(点C不在BD上,且不与点B,D重合),∠ACB=∠ABD=45°.(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究222DM AM BM,,,三者之间满足的等量关系,并证明你的结论.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、A4、B5、D6、B7、A8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)12、()()()22a b a a -+-3、60°或120°4、425、146、(6)三、解答题(本大题共6小题,共72分)1、原方程无解.2、(1)x 1x 2(2)m <543、(1)相切,略;(2)4、(1)详略;(2)详略;(3)DM 2=BM 2+2MA 2,理由详略.5、(1)50;(2)见解析;(3)16. 6、(1)A ,B 两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A 种书包有1个,B 种书包有个,样品中A种书包有2个,B种书包有2个.。

北师大版数学九年级上册期末试卷及参考答案

北师大版数学九年级上册期末试卷及参考答案

北师大版数学九年级上册期末试卷1一、选择题(每题3分,共30分)1.用配方法解方程3x2-6x+2=0,则方程可变形为()A.(x-3)2=23B.3(x-1)2=23C.(3x-1)2=1 D.(x-1)2=132.关于x的一元二次方程(a-1)x2+a2-1=0的一个根是0,则a的值为()A.1 B.-1 C.1或-1 D.1 23.已知反比例函数的图象经过点P(1,-2),则这个函数的图象位于() A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限4.如图是一次数学活动课上制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数(当指针恰好指在分界线上时,不记,重转),则记录的两个数都是正数的概率为()A.18B.16C.14D.125.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()6.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为()A.6 B.8 C.10 D.127.如图,线段AB的两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3)C.(3,1) D.(4,1)8.如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为()A.5 B.4 C.342D.349.如图,两个反比例函数y=1x和y=-2x的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△P AB的面积为()A.3 B.4 C.92D.510.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为()A.22B.32C.1 D.62二、填空题(每题3分,共30分)11.如图,添加一个条件:______________,使△ADE∽△ACB(写出一个即可).12.一个反比例函数的图象过点A(-3,2),则这个反比例函数的表达式是____________.13.若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k 的取值范围是___________________________.14.从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队,那么抽取的2人恰好是一名医生和一名护士的概率为________.15.若干桶方便面摆放在桌子上,三视图如图所示,则这一堆方便面共有___桶.16.若矩形ABCD的两邻边长分别为一元二次方程x2-7x+12=0的两个实数根,则矩形ABCD的对角线长为________.17.如图,在△ABC中,M,N分别为AC,BC的中点.若S△CMN=1,则S四边形ABNM=________.18.如图,在菱形ABCD中,AC交BD于点O,DE⊥BC于点E,连接OE,若∠ABC=140°,则∠OED=________.19.如图,A,B两点在函数y=4x(x>0)的图象上,分别经过A,B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=________.20.如图,正方形ABCD的边长为4,E是BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB,PE,当点P在AC上运动时,△PBE周长的最小值是________.三、解答题(21~25题每题8分,其余每题10分,共60分)21.解下列方程:(1)x2-6x-6=0;(2)(x+2)(x+3)=1.22.如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.(1)求证:四边形AODE是菱形;(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是________.23.关于x的一元二次方程x2-(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.24.现有5个质地、大小完全相同的小球,上面分别标有数-1,-2,1,2,3.先将标有数-2,1,3的小球放在一个不透明的盒子里,再将其余小球放在另一个不透明的盒子里.现分别从这两个盒子里各随机取出一个小球.(1)请利用画树状图或列表的方法表示取出的两个小球上的数之和的所有可能结果;(2)求取出的两个小球上的数之和等于0的概率.25.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售.销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出.如果这批旅游纪念品共获利1 250元,则第二周每个旅游纪念品的销售价格为多少元?26.如图,一次函数y1=kx+b和反比例函数y2=mx的图象交于A,B两点.(1)求一次函数y1=kx+b和反比例函数y2=mx的表达式;(2)观察图象,当y1<y2时,x的取值范围为________________;(3)求△OAB的面积.27.如图,在Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B 出发,在BA边上以5 cm/s的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以4 cm/s的速度向点B匀速运动,运动时间为t s(0<t<2),连接PQ.(1)若△BPQ和△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值.答案一、1.D 2.B 3.C 4.C 5.A 6.C 7.A 8.D 9.C 10.C 二、11.∠ADE =∠ACB (答案不唯一) 12.y =-6x 13.k >12且k ≠1 14.23 15.6 16.5 17.3 18.20° 19.6 20.6三、21.解:(1)移项,得x 2-6x =6,配方,得x 2-6x +9=6+9,即(x -3)2=15. 两边开平方,得x -3=±15, 即x -3=15或x -3=-15. ∴x 1=3+15,x 2=3-15.(2)将原方程化为一般形式,得x 2+5x +5=0.∵b 2-4ac =52-4×1×5=5,∴x =-5±52.∴x 1=-5+52,x 2=-5-52.22.(1)证明:∵DE ∥CA ,AE ∥BD ,∴四边形AODE 是平行四边形. ∵矩形ABCD 的对角线相交于点O , ∴AC =BD ,OA =OC =12AC ,OB =OD =12BD . ∴OA =OD .∴四边形AODE 是菱形. (2)矩形23.(1)证明:∵在方程x 2-(k +3)x +2k +2=0中,Δ=[-(k +3)]2-4×1×(2k +2)=k 2-2k +1=(k -1)2≥0, ∴方程总有两个实数根.(2)解:∵x 2-(k +3)x +2k +2=(x -2)(x -k -1)=0,∴x 1=2,x 2=k +1.∵方程有一个根小于1,∴k +1<1,解得k <0.24.解:(1)画树状图如图所示.(2)因为所有等可能的结果有6种,其中和为0的有2种,所以所求概率为26=13.25.解:由题意得出200×(10-6)+(10-x -6)×(200+50x )+(4-6)[600-200-(200+50x )]=1 250,即800+(4-x )(200+50x )-2(200-50x )=1 250, 整理得x 2-2x +1=0, 解得x 1=x 2=1. ∴10-1=9(元).答:第二周每个旅游纪念品的销售价格为9元. 26.解:(1)由图象可知点A 的坐标为(-2,-2).∵反比例函数y 2=mx 的图象过点A ,∴m =4. ∴反比例函数的表达式是y 2=4x .把x =3代入y 2=4x ,得y 2=43,∴点B 的坐标为⎝ ⎛⎭⎪⎫3,43.∵直线y 1=kx +b 过A ,B 两点, ∴⎩⎪⎨⎪⎧-2k +b =-2,3k +b =43,解得⎩⎪⎨⎪⎧k =23,b =-23. ∴一次函数的表达式是y 1=23x -23. (2)x <-2或0<x <3(3)设直线AB 与y 轴的交点为C ,由一次函数y 1=23x -23可知C ⎝ ⎛⎭⎪⎫0,-23,∴S △OAB =S △OAC +S △OBC =12×23×2+12×23×3=53.27.解:(1)由题易知AB=10 cm,BP=5t cm,CQ=4t cm,∴BQ=(8-4t) cm.当△ABC∽△PBQ时,有BPBA=BQBC,即5t10=8-4t8,∴t=1;当△ABC∽△QBP时,有BQBA=BPBC,即8-4t10=5t8,∴t=3241.∴若△BPQ和△ABC相似,则t=1 或t=32 41.(2)如图,过点P作PD⊥BC于点D.由(1)知BP=5t cm,CQ=4t cm,可求得PD=3t cm,BD=4t cm,∴CD=(8-4t) cm.∵AQ⊥CP,∠ACB=90°,∴∠CAQ+∠ACP=90°,∠DCP+∠ACP=90°.∴∠CAQ=∠DCP.又∵∠CDP=∠ACQ=90°,∴△CPD∽△AQC.∴CDAC=PDQC,即8-4t6=3t4t.∴t=78.北师大版数学九年级上册期末试卷2一、选择题(每题3分,共30分)1. 下列方程中,不是一元二次方程的是()A.3y2+2y+1=0B.12x2=1-3x C.110a2-16a+23=0D.x2+x-3=x22.如图放置的几何体的左视图是()3.下列命题为真命题的是()A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形4.若反比例函数y=kx的图象经过点(m,3m),其中m≠0,则反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限5.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个实数根,则k的取值范围是()A.k≤-2 B.k≤2 C.k≥2 D.k≤2且k≠16.有三张正面分别标有数-2,3,4的不透明卡片,它们除数不同外,其他全部相同.现将它们背面朝上洗匀后,从中任取两张,则抽取的两张卡片上的数之积为正偶数的概率是()A.49 B.112 C.13 D.167.如图,在△ABC中,已知点D,E分别是边AC,BC上的点,DE∥AB,且CE:EB=2:3,则DE AB等于()A.2:3 B.2:5 C.3:5 D.4:58.如图,在菱形纸片ABCD中,∠A=60°,P为AB的中点,折叠该纸片使点C 落在点C′处,且点P在DC′上,折痕为DE,则∠CDE的度数为()A.30°B.40°C.45°D.60°9.设△ABC的一边长为x,这条边上的高为y,y与x之间的反比例函数关系如图所示.当△ABC为等腰直角三角形时,x+y的值为()A.4 B.5 C.5或3 2 D.4或3 210.如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边上的中线,点D,E分别在边AC和BC上,DB=DE,DE与BM相交于点N,EF⊥AC于点F,有以下结论:①∠DBM=∠CDE;②S△BDE<S四边形BMFE;③CD·EN=BN·BD;④AC=2DF.其中正确结论的数量是()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.已知一元二次方程(m-2)x2-3x+m2-4=0的一个根为0,则m=________.12.如图,物理课上张明做小孔成像实验,已知蜡烛与成像板之间的距离为24 cm,要使烛焰的像A′B′是烛焰AB的2倍,则蜡烛与成像板之间带小孔的纸板应放在离蜡烛________的地方.13.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有________个.14.为预防流感,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y(mg)与时间x(min)之间的函数关系如图所示.已知在药物燃烧阶段,y与x成正比例,燃烧完后y与x成反比例.现测得药物10 min燃烧完,此时教室内每立方米空气含药量为8 mg.当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用.那么从消毒开始,经过________min后教室内的空气才能达到安全要求.15.已知三角形纸片(△ABC)中,AB=AC=5,BC=8,将三角形按照如图所示的方式折叠,使点B落在直线AC上,记为点B′,折痕为EF.若以点B′,F,C 为顶点的三角形与△ABC相似,则BF的长度是________.16.为了估计鱼塘中鱼的数量,养鱼者首先从鱼塘中捕获10条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞100条鱼.如果在这100条鱼中有2条鱼是有记号的,则可估计鱼塘中约有鱼________条.17.如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A,C的坐标分别为(2,4),(3,0),过点A的反比例函数y=kx的图象交BC于点D,连接AD,则四边形AOCD的面积是________.18.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H 分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.三、解答题(19~22题每题8分,23,24题每题11分,25题12分,共66分) 19.解方程:(1)x2-6x-6=0; (2)(x+2)(x+3)=1.20.已知关于x的一元二次方程kx2+x-2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1,x2,且满足(x1+x2)2+x1·x2=3,求k的值.21.在一个不透明的布袋里装有4个分别标有数字1,2,3,4的小球,它们除所标数字外其他完全相同,小明从布袋里随机取出1个小球,记下数字为x,小红在剩下的3个小球中随机取出1个小球,记下数字为y.(1)计算由x,y确定的点(x,y)在函数y=-x+5的图象上的概率.(2)小明和小红约定做一个游戏,其规则为:若x,y满足xy>6,则小明胜,若x,y满足xy<6,则小红胜,这个游戏公平吗?请说明理由.若不公平,请写出公平的游戏规则.22.如图,九(1)班的小明与小艳两位同学去操场测量旗杆DE的高度,已知直立在地面上的竹竿AB的长为3 m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2 m.(1)请你在图中画出此时旗杆DE在阳光下的投影,并写出画图步骤;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6 m,请你计算旗杆DE的高度.23.如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,-2),反比例函数y=kx的图象经过点C,一次函数y=ax+b的图象经过A,C两点.(1)求反比例函数与一次函数的表达式;(2)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求点P的坐标.24.如图①,在正方形ABCD中,P是BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.25.在等腰三角形ABC中,AB=AC,D是AB延长线上一点,E是AC上一点,DE交BC于点F.(1)如图①,若BD=CE,求证:DF=EF.(2)如图②,若BD=1n CE,试写出DF和EF之间的数量关系,并证明.(3)如图③,在(2)的条件下,若点E在CA的延长线上,那么(2)中的结论还成立吗?试证明.答案一、1.D 2.C 3.C4.B 【点拨】把点(m ,3m )的坐标代入y =kx ,得到k =3m 2,因为m ≠0,所以k >0.所以图象在第一、三象限. 5.D 6.C 7.B 8.C9.D 【点拨】由题意得xy =4,当等腰直角三角形ABC 的斜边长为x 时,x =2y ,所以2y 2=4,解得y =2或y =-2(不合题意,舍去),所以x =22,所以x +y =32;当等腰直角三角形ABC 的一条直角边长为x 时,x =y ,所以y 2=4,解得y =2或y =-2(不合题意,舍去),所以x =2,所以x +y =4.故x +y 的值为4或3 2.故选D.10.C 【点拨】设∠EDC =x ,则∠DEF =90°-x ,从而可得到∠DBE =∠DEB =180°-(90°-x )-45°=45°+x ,∠DBM =∠DBE -∠MBE =45°+x -45°=x ,从而可得到∠DBM =∠CDE ,所以①正确.可证明△BDM ≌△DEF ,然后可证明S △DNB =S 四边形NMFE ,所以S △DNB +S △BNE =S 四边形NMFE+S △BNE ,即S △BDE =S 四边形BMFE .所以②错误.可证明△DBC ∽△NEB ,所以CD BD =BNEN ,即CD ·EN =BN ·BD .所以③正确. 由△BDM ≌△DEF ,可知DF =BM ,由直角三角形斜边上的中线的性质可知BM =12AC ,所以DF =12AC ,即AC =2DF .所以④正确.故选C. 二、11.-2 12.8 cm13.5 【点拨】综合左视图和主视图知,这个几何体有两层,底层最少有2+1=3(个)小正方体,第二层有2个小正方体,因此组成这个几何体的小正方体最少有3+2=5(个).14.50 【点拨】设药物燃烧完后y 与x 之间的函数表达式为y =kx ,把点(10,8)的坐标代入y =k x ,得8=k10,解得k =80,所以药物燃烧完后y 与x 之间的函数表达式为y =80x .当y =1.6时,由y =80x 得x =50,所以从消毒开始,经过50 min后教室内的空气才能达到安全要求. 15.4或4013 16.50017.9 【点拨】由题易知OC =3,点B 的坐标为(5,4),▱ABCO 的面积为12.设直线BC 对应的函数表达式为y =k ′x +b ,则⎩⎨⎧3k ′+b =0,5k ′+b =4,解得⎩⎨⎧k ′=2,b =-6.∴直线BC 对应的函数表达式为y =2x -6.∵点A (2,4)在反比例函数y =k x 的图象上,∴k =8.∴反比例函数的表达式为y =8x .由⎩⎪⎨⎪⎧y =2x -6,y =8x解得⎩⎨⎧x =4,y =2或⎩⎨⎧x =-1,y =-8(舍去).∴点D 的坐标为(4,2). ∴△ABD 的面积为12×2×3=3. ∴四边形AOCD 的面积是9.18.12 【点拨】易知EF ∥BD ∥HG , 且EF =HG =12BD =3,EH ∥AC ∥GF 且EH =GF =12AC =4. ∵AC ⊥BD ,∴EF ⊥FG . ∴四边形EFGH 是矩形.∴四边形EFGH 的面积=EF ·EH =3×4=12. 三、19.解:(1)x 2-6x -6=0, x 2-6x +9= 15, (x -3)2= 15, x -3= ±15,∴x 1=3+15,x 2=3-15.(2)(x +2)(x +3)=1, x 2+5x +6= 1, x 2+5x +5= 0, ∵a =1,b =5,c =5, ∴b 2-4ac =52-4×1×5=5. ∴x =-5±52. ∴x 1=-5+52,x 2=-5-52. 20.解:(1)∵方程有两个不相等的实数根, ∴Δ=12+8k >0, ∴k >-18. 又∵k ≠0,∴k 的取值范围是k >-18且k ≠0.(2)由根与系数的关系,得x 1+x 2=-1k ,x 1·x 2=-2k . ∵(x 1+x 2)2+x 1·x 2=3,∴⎝ ⎛⎭⎪⎫-1k 2-2k =3,即3k 2+2k -1=0, 解得k =13或k =-1. 由(1)得k >-18且k ≠0, ∴k =13.21.解:(1)画树状图如图.由树状图可知共有12种等可能的结果.其中在函数y =-x +5的图象上的有(1,4),(2,3),(3,2),(4,1), ∴点(x ,y )在函数y =-x +5的图象上的概率为412=13.(2)不公平.理由:∵x ,y 满足xy >6的有(2,4),(3,4),(4,2),(4,3),共4种结果,x ,y 满足xy <6的有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),共6种结果, ∴P (小明胜)=412=13, P (小红胜)=612=12. ∵13≠12,∴游戏不公平.公平的游戏规则为:若x ,y 满足xy ≥6,则小明胜,若x ,y 满足xy <6,则小红胜.(规则不唯一)22.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.作法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求.(2)∵AC ∥DF ,∴∠ACB =∠DFE . 又∠ABC =∠DEF =90°, ∴△ABC ∽△DEF .∴AB DE =BC EF . ∵AB =3 m ,BC =2 m ,EF =6 m , ∴3DE =26. ∴DE =9 m.即旗杆DE 的高度为9 m.23.解:(1)∵点A 的坐标为(0,1),点B 的坐标为(0,-2), ∴AB =1+2=3,即正方形ABCD 的边长为3,∴点C 的坐标为(3,-2).将点C 的坐标代入y =kx 可得k =-6, ∴反比例函数的表达式为y =-6x .将C (3,-2),A (0,1)的坐标分别代入y =ax +b ,得⎩⎨⎧3a +b =-2,b =1,解得⎩⎨⎧a =-1,b =1,∴一次函数的表达式为y =-x +1. (2)设P ⎝ ⎛⎭⎪⎫t ,-6t ,∵△OAP 的面积恰好等于正方形ABCD 的面积, ∴12×1×|t |=3×3,解得t =±18.∴点P 的坐标为⎝ ⎛⎭⎪⎫18,-13或⎝ ⎛⎭⎪⎫-18,13. 24.(1)证明:∵四边形ABCD 是正方形, ∴AD =CD ,∠ADP =∠CDP . 又∵DP =DP ,∴△ADP ≌△CDP . ∴P A =PC .又∵P A =PE ,∴PC =PE . (2)解:由(1)知△ADP ≌△CDP , ∴∠DAP =∠DCP . ∵P A =PE ,∴∠DAP =∠E . ∴∠FCP =∠E .又∵∠PFC =∠DFE ,∠EDF =90°, ∴∠CPE =∠EDF =90°. (3)解:AP =CE .理由如下: ∵四边形ABCD 是菱形, ∴AD =CD ,∠ADP =∠CDP . 又∵DP =DP ,∴△ADP ≌△CDP . ∴P A =PC ,∠DAP =∠DCP .又∵P A=PE,∴PC=PE,∠DAP=∠DEP.∴∠DCP=∠DEP.又∵∠PFC=∠DFE,∴∠CPF=∠EDF.∵在菱形ABCD中,∠ABC=120°,∴∠ADC=120°.∴∠EDC=60°.∴∠CPE=∠EDF=60°.又∵PC=PE,∴△PCE是等边三角形.∴PE=CE.又∵P A=PE,∴AP=CE.25.(1)证明:在题图①中作EG∥AB交BC于点G,则∠ABC=∠EGC,∠D=∠FEG.∵AB=AC,∴∠ABC=∠C.∴∠EGC=∠C.∴EG=EC.∵BD=CE,∴BD=EG.又∵∠D=∠FEG,∠BFD=∠GFE,∴△BFD≌△GFE.∴DF=EF.(2)解:DF=1n EF.证明:在题图②中作EG∥AB交BC于点G,则∠D=∠FEG. 同(1)可得EG=EC.∵∠D=∠FEG,∠BFD=∠EFG,∴△BFD∽△GFE.∴BDEG=DFEF.∵BD=1n CE=1n EG,∴DF=1n EF.(3)解:成立.证明:在题图③中作EG∥AB交CB的延长线于点G,则仍有EG =EC ,△BFD ∽△GFE . ∴BD EG =DF EF .∵BD =1n CE =1n EG ,∴DF =1n EF .。

北师大版九年级(上)期末数学试卷及答案

北师大版九年级(上)期末数学试卷及答案

北师大版九年级(上)期末数学试卷及答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)如图,该几何体的主视图是()A.B.C.D.2.(3分)下列函数不是反比例函数的是()A.y=B.y=C.y=5x﹣1D.xy=103.(3分)一元二次方程2x2+3x=1化为一般式后的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,14.(3分)某商品经过连续两次降价,销售单价由原来的125元降到80元.设平均每次降价的百分率为x,根据题意列出的方程是()A.125(1﹣x)2=80B.80(1﹣x)2=125C.125(1+x)2=80D.125(1﹣x2)=805.(3分)已知点C是线段AB的黄金分割点,且AB=2,AC<BC,则AC长是()A.B.﹣1C.3﹣D.6.(3分)如图,△ABC的中线BE、CF交于点O,连接EF,则的值为()A.B.C.D.7.(3分)如图,反比例函数的图象经过A(﹣1,﹣2),则以下说法错误的是()A.k=2B.x>0,y随x的增大而减小C.图象也经过点B(2,1)D.当x<﹣1时,y<﹣28.(3分)如图,在矩形ABCD中,点E为AD上一点,且AB=8,AE=3,BC=4,点P为AB边上一动点,连接PC、PE,若△P AE与△PBC是相似三角形,则满足条件的点P的个数为()A.1B.2C.3D.4二、填空题(共5小题,每小题3分,计15分)9.(3分)如图,在菱形ABCD中,AC与BD交于点O,若AC=8,BD=6,则菱形ABCD的面积为.10.(3分)已知=,且a+b=22,则a的值为.11.(3分)把一元二次方程x2+6x﹣1=0通过配方化成(x+m)2=n的形式为.12.(3分)若sin A=,则锐角∠A的度数为.13.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8.若E、F是BC边上的两个动点,以EF为边的等边△EFP的顶点P在△ABC内部或边上,则等边△EFP的周长的最大值为.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)计算:4cos230°+|2﹣4|+6×.15.(5分)解方程:x(x+1)﹣x=1.16.(5分)已知:△ABC.求作:菱形DBEC,使菱形的顶点D落在AC边上.结论:.17.(6分)现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字2,3,4;B袋中的三个小球上分别标记数字3,4,5.这六个小球除标记的数字外,其余完全相同.(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为;(2)分别将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求摸出的这两个小球标记的数字之和为7的概率.18.(6分)点P在反比例函数(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,求反比例函数的表达式.19.(5分)如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.求证:四边形ABCD是菱形.20.(5分)如图,有一轮船在A处测得南偏东30°方向上有一小岛F,轮船沿正南方向航行至B处,测得小岛F 在南偏东45°方向上,接原方向再航行10海里至C处,测得小岛F在正东方向上,求A,B之间的距离.(结果保留根号)21.(8分)如图,路灯OP在BC左侧,路灯P距地面8米,当身高1.6米的小明在点A时影长为AM,距离灯的底部O点20米,小明沿AB所在的直线从点A行走14米到点B处时,影长为BN,(1)请你画出灯杆OP位置;(保留作图痕迹)(2)求此时人影的长度BN.22.(5分)关于x的一元二次方程x2﹣(k﹣3)x﹣2k+2=0.请说明方程实数根的情况并加以证明.23.(7分)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.24.(7分)已知A(﹣3,4),B(n,﹣2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与x轴交于点C.(1)求反比例函数和一次函数的关系式;(2)连接OB,求△AOB的面积.25.(5分)如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣2,1)、B (1,2),C(﹣4,4).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的下方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2,并写出A2,B2,C2的坐标.26.(12分)问题提出:如图,在锐角△ABC中,如何作一个正方形DEFG,使D,E落在BC边上,F,G分别落在AC,AB边上?勤奋小组同学给出了如下作法:①画一个有三个顶点落在△ABC两边上的正方形HIJK;②连接BJ,并延长交AC于点F;③过点F作EF⊥BC于点E;④过F作FG∥BC,交AB于点G;⑤过点G作GD⊥BC于点D,则四边形DEFG即为所求作的正方形.受勤奋小组同学的启发,创新小组同学认为可以在锐角△ABC中,作出长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(1)你认为勤奋小组同学的作法正确吗?请说明理由;(2)请你帮助创新小组同学在在锐角△ABC中,作出所有满足长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(在备用图中完成,不写作法,保留作图痕迹)解决问题:(3)在(2)的条件下,已知△ABC的面积为36,BC=12,求出矩形DEFG的面积.参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)如图,该几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,可得如下图形:故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.2.(3分)下列函数不是反比例函数的是()A.y=B.y=C.y=5x﹣1D.xy=10【分析】根据反比例函数的定义,知道反比例函数的形式有:y=(k为常数,k≠0)或y=kx﹣1(k为常数,k ≠0)或xy=k(k为常数,k≠0).【解答】解:A,C,D选项都是反比例函数的形式,故A,C,D选项都不符合题意;B选项不是反比例函数的形式,它是正比例函数,故该选项符合题意;故选:B.【点评】本题考查了反比例函数的定义,掌握反比例函数的三种形式是解题的关键.3.(3分)一元二次方程2x2+3x=1化为一般式后的a、b、c依次为()A.2,﹣3,1B.2,3,﹣1C.﹣2,﹣3,﹣1D.﹣2,3,1【分析】先把方程化为一元二次方程的一般形式,再确定a、b、c.【解答】解:∵方程2x2+3x=1化为一般形式为:2x2+3x﹣1=0,∴a=2,b=3,c=﹣1.故选:B.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式为ax2+bx+c=0(a≠0).其中a、b分别是二次项和一次项系数,c为常数项.4.(3分)某商品经过连续两次降价,销售单价由原来的125元降到80元.设平均每次降价的百分率为x,根据题意列出的方程是()A.125(1﹣x)2=80B.80(1﹣x)2=125C.125(1+x)2=80D.125(1﹣x2)=80【分析】设平均每次降价的百分率为x,则原价×(1﹣x)2=现价,据此列方程.【解答】解:设平均每次降价的百分率为x,由题意得,125(1﹣x)2=80.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.5.(3分)已知点C是线段AB的黄金分割点,且AB=2,AC<BC,则AC长是()A.B.﹣1C.3﹣D.【分析】根据黄金分割的定义:点C把线段AB分成两条线段AC和BC(AC<BC),且使BC是AB和AC的比例中项(即AB•BC=BC•AC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中BC=AB ≈0.618AB.【解答】解:∵点C是线段AB的黄金分割点,且AB=2,AC<BC,BC2=AC•AB(2﹣AC)2=2ACAC2﹣6AC+4=0解得AC=3+(舍去)或3﹣则AC长是3﹣.故选:C.【点评】本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.6.(3分)如图,△ABC的中线BE、CF交于点O,连接EF,则的值为()A.B.C.D.【分析】先根据三角形中位线的性质得到EF∥BC,EF=BC,则可判断△OEF∽△OBC,利用相似比得到=,然后根据比例的性质得到的值.【解答】解:∵中线BE、CF交于点O,∴EF为△ABC的中位线,∴EF∥BC,EF=BC,∴△OEF∽△OBC,∴==,∴=.故选:B.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.7.(3分)如图,反比例函数的图象经过A(﹣1,﹣2),则以下说法错误的是()A.k=2B.x>0,y随x的增大而减小C.图象也经过点B(2,1)D.当x<﹣1时,y<﹣2【分析】把A(﹣1,﹣2)代入反比例函数的解析式能求出k,把A的坐标代入一次函数的解析式得出关于k的方程,求出方程的解即可.【解答】解:把A(﹣1,﹣2)代入反比例函数的解析式得:k=xy=2,故A正确;∵k=2>0,∴y随x的增大而减小,∴x>0,y随x的增大而减小,故B正确;∵反比例函数的解析式为y=,把x=2代入求得y=1,∴图象也经过点B(2,1),故C正确;由图象可知x<﹣1时,则y>﹣2,故D错误;故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,主要考查反比例函数的性质,题目较好,难度适中.8.(3分)如图,在矩形ABCD中,点E为AD上一点,且AB=8,AE=3,BC=4,点P为AB边上一动点,连接PC、PE,若△P AE与△PBC是相似三角形,则满足条件的点P的个数为()A.1B.2C.3D.4【分析】设AP=x,则BP=8﹣x,分△P AE∽△PBC和△P AE∽△CBP两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:设AP=x,则BP=8﹣x,当△P AE∽△PBC时,=,即=,解得,x=,当△P AE∽△CBP时,=,即=,解得,x=2或6,可得:满足条件的点P的个数有3个.故选:C.【点评】本题考查了相似三角形的性质,解答时,注意分情况讨论思想的灵活运用.二、填空题(共5小题,每小题3分,计15分)9.(3分)如图,在菱形ABCD中,AC与BD交于点O,若AC=8,BD=6,则菱形ABCD的面积为24.【分析】由菱形面积公式即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∵AC=8,BD=6,∴菱形ABCD的面积为AC×BD=×8×6=24;故答案为:24.【点评】本题考查了菱形的性质;熟记菱形面积公式是解题的关键.10.(3分)已知=,且a+b=22,则a的值为12.【分析】根据题意设==k(k≠0),得出a=6k,b=5k,求出k的值,然后求出a的值即可.【解答】解:设==k(k≠0),则a=6k,b=5k,∵a+b=22,∴6k+5k=22,∴k=2,∴a=6k=6×2=12.故答案为:12.【点评】此题考查了比例的性质,根据题意设出a=6k,b=5k是解题的关键.11.(3分)把一元二次方程x2+6x﹣1=0通过配方化成(x+m)2=n的形式为(x+3)2=10.【分析】根据配方法即可求出答案.【解答】解:∵x2+6x﹣1=0,∴x2+6x=1,∴(x+3)2=10,故答案为:(x+3)2=10【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.12.(3分)若sin A=,则锐角∠A的度数为30°.【分析】根据锐角三角函数值即可确定锐角的度数.【解答】解:∵sin A=,∴锐角∠A的度数为30°.故答案为:30°.【点评】本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.13.(3分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8.若E、F是BC边上的两个动点,以EF为边的等边△EFP的顶点P在△ABC内部或边上,则等边△EFP的周长的最大值为6.【分析】当点F与C重合时,△EFP的边长最长,周长也最长,根据30°角所对的直角边是斜边的一半可得AC =4,AP=2,再由勾股定理可得答案.【解答】解:如图,当点F与C重合时,△EFP的边长最长,周长也最长,∵∠ACB=90°,∠PFE=60°,∴∠PCA=30°,∵∠A=60°,∴∠APC=90°,△ABC中,AC=AB=4,△ACP中,AP=AC=2,∴PC===2,∴周长为2×3=6.故答案为:6.【点评】本题考查含30°角的直角三角形的性质,运用勾股定理是解题关键.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)计算:4cos230°+|2﹣4|+6×.【分析】首先代入特殊角的三角函数值,再利用绝对值的性质和二次根式的乘法法则进行计算,最后计算加减即可.【解答】解:原式=4×+4﹣2+2=4+3=7.【点评】此题主要考查了二次根式的混合运算,关键是掌握特殊角的三角函数值和绝对值的性质,注意计算顺序.15.(5分)解方程:x(x+1)﹣x=1.【分析】先移项,再将左边利用提公因式法因式分解,继而可得两个关于x的一元一次方程,分别求解即可得出答案.【解答】解:∵x(x+1)﹣x=1,∴x(x+1)﹣(x+1)=0,则(x+1)(x﹣1)=0,∴x+1=0或x﹣1=0,解得x1=1,x2=﹣1.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.16.(5分)已知:△ABC.求作:菱形DBEC,使菱形的顶点D落在AC边上.结论:菱形DBEC即为所求.【分析】作BC的垂直平分线交AC于点D,连接DB,再分别以点B,C为圆心,BD长为半径画弧交于点E,进而可得菱形DBEC.【解答】解:如图,菱形DBEC即为所求.故答案为:菱形DBEC即为所求.【点评】本题考查作图﹣复杂作图,菱形的判定和性质等知识,解题的关键是掌握菱形的判定和性质,属于中考常考题型.17.(6分)现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字2,3,4;B袋中的三个小球上分别标记数字3,4,5.这六个小球除标记的数字外,其余完全相同.(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为;(2)分别将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,请利用画树状图或列表的方法,求摸出的这两个小球标记的数字之和为7的概率.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有9种等可能的结果,摸出的这两个小球标记的数字之和为7的结果有3种,再由概率公式求解即可.【解答】解:(1)将A袋中的小球摇匀,从中随机摸出一个小球,则摸出的这个小球上标记的数字是偶数的概率为,故答案为:;(2)画树状图如下:共有9种等可能的结果,摸出的这两个小球标记的数字之和为7的结果有3种,∴摸出的这两个小球标记的数字之和为7的概率为=.【点评】本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.18.(6分)点P在反比例函数(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,求反比例函数的表达式.【分析】先求出P点坐标,再把P点坐标代入反比例函数的解析式即可求出k的值,进而得出结论.【解答】解:∵点Q(2,4)和点P关于y轴对称,∴P点坐标为(﹣2,4),将(﹣2,4)代入解析式得,k=xy=﹣2×4=﹣8,∴反比例函数解析式为.【点评】本题考查的是待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.19.(5分)如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.求证:四边形ABCD是菱形.【分析】根据菱形的判定方法可得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,∵△ACE是等边三角形,∴EA=EC,∴BE⊥AC,∴平行四边形ABCD是菱形.【点评】本题考查了菱形的判定,等边三角形的性质,平行四边形的性质,熟练掌握菱形的判定方法是解题的关键.20.(5分)如图,有一轮船在A处测得南偏东30°方向上有一小岛F,轮船沿正南方向航行至B处,测得小岛F 在南偏东45°方向上,接原方向再航行10海里至C处,测得小岛F在正东方向上,求A,B之间的距离.(结果保留根号)【分析】根据等腰直角三角形的性质求出CF,根据正切的定义求出AC,结合图形计算,得到答案.【解答】解:在Rt△BCF中,∠BFC=45°,∴CF=BC=10,在Rt△ACF中,tan∠CAF=,即=,解得,AC=10,∴AB=AC﹣BC=10(﹣1),答:A,B之间的距离为10(﹣1)海里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.21.(8分)如图,路灯OP在BC左侧,路灯P距地面8米,当身高1.6米的小明在点A时影长为AM,距离灯的底部O点20米,小明沿AB所在的直线从点A行走14米到点B处时,影长为BN,(1)请你画出灯杆OP位置;(保留作图痕迹)(2)求此时人影的长度BN.【分析】(1)小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化;(2)证明△BCN∽△OPN,推出,由此可得结论.【解答】解:(1)如图即为所求.(2)解:∵OA=20米,AB=14米,∴OB=20﹣14=6(米).∵BC∥OP,∴△BCN∽△OPN,∴,即,解得BN=1.5(米)答:人影的长度为1.5米.【点评】本题考查的是相似三角形的应用,测量不能到达顶部的物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.22.(5分)关于x的一元二次方程x2﹣(k﹣3)x﹣2k+2=0.请说明方程实数根的情况并加以证明.【分析】方程总有两个实数根.计算方程根的判别式,利用根的判别式的符号进行证明即可.【解答】解:方程总有两个实数根.理由如下:∵Δ=b2﹣4ac=(k﹣3)2﹣4(﹣2k+2)=k2﹣6k+9+8k﹣8=k2+2k+1=(k+1)2≥0.所以方程总有两个实数根.【点评】此题考查了根的判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.23.(7分)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.24.(7分)已知A(﹣3,4),B(n,﹣2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与x轴交于点C.(1)求反比例函数和一次函数的关系式;(2)连接OB,求△AOB的面积.【分析】(1)把A点坐标代入反比例函数解析式可求得反比例函数解析式,则可求得B点坐标,再由A、B两点坐标可求得一次函数解析式;(2)根据一次函数解析式可求得C点的坐标,则可求得OC的长度,且根据S△AOB=S△AOC+S△BOC可求得△AOB 的面积.【解答】解:(1)∵A(﹣3,4)在反比例函数y=的图象上,∴m=﹣3×4=﹣12,∴反比例函数的关系式为y=﹣,又∵B(n,﹣2)在反比例函数y=的图象上,∴n=6,又∵B(6,﹣2),A(﹣3,4)是一次函数y=kx+b的上的点,∴,解得,∴一次函数的关系式为y=﹣x+2;(2)在y=﹣x+2中,令y=0,则x=3,∴C(3,0),∴CO=3,∴S△AOB=S△AOC+S△BOC=×3×4+=9.【点评】本题主要考查待定系数法求函数解析式,三角形的面积,掌握待定系数法求函数解析式的关键是求得点的坐标.25.(5分)如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣2,1)、B (1,2),C(﹣4,4).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的下方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2,并写出A2,B2,C2的坐标.【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)根据位似变换的定义分别作出三个顶点的对应点,再首尾顺次连接即可.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求,A2(4,﹣2),B2(﹣2,﹣4),C2(8,﹣8).【点评】本题主要考查作图—位似变换、轴对称变换,解题的关键是掌握位似变换与旋转变换的定义及性质.26.(12分)问题提出:如图,在锐角△ABC中,如何作一个正方形DEFG,使D,E落在BC边上,F,G分别落在AC,AB边上?勤奋小组同学给出了如下作法:①画一个有三个顶点落在△ABC两边上的正方形HIJK;②连接BJ,并延长交AC于点F;③过点F作EF⊥BC于点E;④过F作FG∥BC,交AB于点G;⑤过点G作GD⊥BC于点D,则四边形DEFG即为所求作的正方形.受勤奋小组同学的启发,创新小组同学认为可以在锐角△ABC中,作出长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(1)你认为勤奋小组同学的作法正确吗?请说明理由;(2)请你帮助创新小组同学在在锐角△ABC中,作出所有满足长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(在备用图中完成,不写作法,保留作图痕迹)解决问题:(3)在(2)的条件下,已知△ABC的面积为36,BC=12,求出矩形DEFG的面积.【分析】(1)由正方形的性质得出IJ=KJ,KJ∥BC,由平行线分线段成比例定理得出,则GF=EF,可得出结论;(2)按题意画出图形即可;(3)若DE=2DG,设AN=x,则MN=6﹣x,证明△AGF∽△ABC,由相似三角形的性质得出,则,求出x=3,若DG=2DE,可求出x=,则可得出答案.【解答】解:(1)正确.理由:∵EF⊥BC,BC⊥GD,∴∠FED=∠EDG=90°,∵FG∥BC,∴∠EFG=180°﹣∠FED=90°,∴四边形DEFG是矩形,∵四边形HIJK是正方形,∴IJ=KJ,KJ∥BC,∴,∴GF=EF,∴四边形DEFG为正方形;(2)如图1和图2,矩形DEFG为所作.(3)如图3,作△ABC的高AM,交GF于点N,∵△ABC的面积=BC•AM=×12×AM=36,∴AM=6,∵DE=2DG,设AN=x,则MN=6﹣x,DG=MN=6﹣x,DE=GF=2(6﹣x)=12﹣2x,∵GF∥BC,∴△AGF∽△ABC,∴,∴,解得x=3,∴DG=6﹣x=3,∴DE=2DG=6,∴矩形DEFG的面积=6×3=18,同理,在矩形DEFG中,若DG=2DE,可求出x=,∴DG=6﹣x=,DE=,∴矩形DEFG的面积==,故矩形DEFG的面积为18或.【点评】此题是四边形综合题,考查了相似三角形的判定与性质、正方形的判定与性质、矩形的性质等知识.解题时注意数形结合思想与方程思想的应用,注意准确作出辅助线是解此题的关键.。

北师大版九年级上册数学期末考试试卷附答案详解

北师大版九年级上册数学期末考试试卷附答案详解

北师大版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.在下面的四个几何体中,同一几何体的主视图与俯视图相同的是()A .B .C .D .2.如图,Rt △ABC 中,∠C=90°,AB=2,BC=1,则sinA 等于()A .2BC .12D 3.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是A .∠ABP=∠CB .∠APB=∠ABC C .AP ABAB AC=D .AB ACBP CB=4.如果两个相似三角形的相似比是1:4,那么这两个相似三角形的周长比是()A .2:1B .1:16C .1:4D .1:25.要使菱形ABCD 成为正方形,需要添加的条件是()A .AB=CDB .AD=BCC .AB=BCD .AC=BD 6.已知点A (3,a )与点B (5,b )都在反比例函数y=﹣2x的图象上,则a 与b 之间的关系是()A .a >bB .a <bC .a≥bD .a=b7.某池塘中放养了鲫鱼1000条,鲮鱼若干条,在几次随机捕捞中,共抓到鲫鱼200条,鲮鱼400条,估计池塘中原来放养了鲮鱼()A .500条B .1000条C .2000条D .3000条8.一元二次方程x 2﹣2x+3=0根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断9.已知反比例函数ky x=的图象经过点(﹣1,5),则此反比例函数的图象位于()A .第一、二象限B .第二、三象限C .第二、四象限D .第一、三象限10.如图,一次函数1(0)y kx b k =+≠的图象与反比例函数2my x=(m 为常数且0m ≠)的图象都经过()()1,2,2,1A B --,结合图象,则不等式mkx b x+>的解集是()A .1x <-B .10x -<<C .1x <-或02x <<D .10x -<<或2x >二、填空题11.方程22x x =的根是________.12.如图,已知DE ∥BC ,AE=3,AC=5,AB=6,则AD=_____.13.如图,过反比例函数y=6x(x >0)图象上的一点A ,作x 轴的垂线,垂足为B 点,连接OA ,则S △AOB =_____14.如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC=8,BD=6,则菱形ABCD 的高DH=_____.15.如图,在A时测得旗杆的影长是4米,B时测得旗杆的影长是16米,若两次的日照光线恰好垂直,则旗杆的高度是______米.16.已知矩形的长是3,宽是2,另一个矩形的周长和面积分别是已知矩形周长和面积的2倍,那么新矩形的长是_____.三、解答题17.计算:2sin30°+4cos30°·tan60°-cos245°18.由于提倡环保节能,自行车已成为市民日常出行的主要工具之一,据某自行车经销店4至6月份统计,某品牌自行车4月份销售200辆,6月份销售338辆,求该品牌自行车销售量的月平均增长率.19.如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的格点上.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且相似比为1:2;(2)连接(1)中的BB′,CC′,求四边形BB′C′C的周长.(结果保留根号)20.如图,某幢大楼顶部有广告牌CD,小宇身高MA为1.89米,他站在立在离大楼45米的A 处测得大楼顶端点D的仰角为30°;接着他向大楼前进15米,站在点B处测得广告牌顶端点C 的仰角为45°.(1)求这幢大楼的高DH ;(2)求这块广告牌CD 的高度.(.732,计算结果保留一位小数)21.在一个不透明的口袋里装有若干个除颜色外其余均相同的红、黄、蓝三种颜色的小球,其中红球2个,篮球1个,若从中任意摸出一个球,摸到球是红球的概率为12.(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是红色与黄色这种组合(不考虑红、黄球顺序)的概率.22.某超市服装专柜在销售中发现:某男装上衣的进价为每件30元,当售价为每件50元时,每周可卖出200件,现需降价处理,经过市场调查,发现每降价1元,每周可多卖出20件.(1)为占有更大的市场份额,当降价为多少元时,每周盈利为4420元?(2)当降价为多少元时,每周盈利额最大?最大盈利多少元?23.如图,一次函数y=x+b 和反比例函数y=xk(k≠0)交于点A (4,1).(1)求反比例函数和一次函数的解析式;(2)求△AOB 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围.24.如图,以△ABC 的各边,在边BC 的同侧分别作三个正方形ABDI ,BCFE ,ACHG .(1)求证:△BDE ≌△BAC ;(2)求证:四边形ADEG 是平行四边形.(3)直接回答下面两个问题,不必证明:①当△ABC 满足条件_____________________时,四边形ADEG 是矩形.②当△ABC 满足条件_____________________时,四边形ADEG 是正方形?25.如图,直线y=﹣23x+c 与x 轴交于点A (3,0),与y 轴交于点B ,抛物线y=﹣43x 2+bx+c 经过点A ,B ,M (m ,0)为x 轴上一动点,点M 在线段OA 上运动且不与O ,A 重合,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .(1)求点B 的坐标和抛物线的解析式;(2)在运动过程中,若点P 为线段MN 的中点,求m 的值;(3)在运动过程中,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;参考答案1.D【详解】试题分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.因此,A、圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同,故A选项错误;B、圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同,故B选项错误;C、三棱柱主视图、俯视图分别是长方形,三角形,主视图与俯视图不相同,故C选项错误;D、球主视图、俯视图都是圆,主视图与俯视图相同,故D选项正确.故选D.考点:简单几何体的三视图.2.C【解析】【分析】结合图形运用三角函数定义求解.【详解】∵AB=2、BC=1,∴sinA=1=2 BC AB,故选C.【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.D【详解】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.4.C【分析】直接根据相似三角形周长的比等于相似比即可得出结论.【详解】∵两个相似三角形的相似比是1:4,∴这两个相似三角形的周长比是1:4.故选C.【点睛】本题考查的是相似三角形的性质,熟知相似三角形对应周长的比等于相似比是解答此题的关键.5.D【分析】根据有一个角是直角的菱形是正方形即可解答.【详解】如图,∵四边形ABCD是菱形,∴要使菱形ABCD成为一个正方形,需要添加一个条件,这个条件可以是:∠ABC=90°或AC=BD.故选D.【点睛】本题考查了正方形的判定,解答此题的关键是熟练掌握正方形的判定定理,正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用①或②进行判定.6.B【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵点A(3,a)与点B(5,b)都在反比例函数y=﹣2x的图象上,∴每个象限内y随x的增大而增大,则a<b.故选B.【点睛】此题主要考查了反比例函数的增减性,正确记忆反比例函数的性质是解题关键.7.C【分析】先根据题意可得到鲫鱼与鲮鱼之比为1:2,再根据鲫鱼的总条数计算出鲮鱼的条数即可.【详解】由题意得:鲫鱼与鲮鱼之比为:200:400=1:2,∵鲫鱼1000条,∴鲮鱼条数是:1000×2=2000.故答案选:C.【点睛】本题主要考查了用样本估计总体,关键是知道样本的鲫鱼与鲮鱼之比就是池塘内鲫鱼与鲮鱼之比.8.C【分析】直接利用根的判别式进而判断,即可得出答案.【详解】∵a=1,b=﹣2,c=3,∴b2﹣4ac=4=4﹣4×1×3=﹣8<0,∴此方程没有实数根.故选C.【点睛】此题主要考查了根的判别式,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.9.C 【分析】把点(-1,5)代入反比例函数ky x=得到关于k 的一元一次方程,解之,即可得到反比例函数的解析式,根据反比例函数的图象和性质,即可得到答案.【详解】解:把点(﹣1,5)代入反比例函数ky x=得:1k-=5,解得:k =﹣5,即反比例函数的解析式为:y =5x-,此反比例函数的图象位于第二、第四象限,故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的图象,反比例函数的性质,正确掌握代入法,反比例函数的图象和性质是解题的关键.10.C 【分析】根据一次函数图象在反比例函数图象上方的x 的取值范围便是不等式mkx b x+>的解集.【详解】解:由函数图象可知,当一次函数()10y kx b k =+≠的图象在反比例函数2my x=(m 为常数且0m ≠)的图象上方时,x 的取值范围是:1x <-或02x <<,∴不等式mkx b x+>的解集是1x <-或02x <<.故选C .【点睛】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.11.x 1=0,x 2=2【分析】先移项,再用因式分解法求解即可.【详解】解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.12.3.6.【分析】根据平行线分线段成比例定理得出比例式,代入求出即可.相似三角形的判定推出【详解】解:∵DE ∥BC ,∴AE ADAC AB=,∴356AD =,解得:AD =3.6,故答案为:3.6.【点睛】本题考查了平行线分线段成比例定理,能根据平行线得出比例式是解此题的关键.13.3【分析】设A (x ,6x ),则有OB=x ,AB=6x,根据三角形面积公式可得答案.【详解】设A (x ,6x )则有,OB=x ,AB=6x∴S△AOB =162xx⨯⨯=3,故答案为:3,【点睛】本题考查反比例函数系数k的几何意义,记住:反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.14.4.8.【详解】试题分析:在菱形ABCD中,AC⊥BD,∵AC=8,BD=6,∴OA=12AC=12×8=4,OB=12BD=12×6=3,在Rt△AOB中,由勾股定理可得AB=5,∵DH⊥AB,∴菱形ABCD的面积=12AC•BD=AB•DH,即12×6×8=5•DH,解得DH=4.8.考点:菱形的性质.15.8【分析】如图,∠CPD=90°,QC=4m,QD=9m,利用等角的余角相等得到∠QPC=∠D,则可判断Rt△PCQ∽Rt△DPQ,然后利用相似比可计算出PQ.【详解】解:如图,∠CPD=90°,QC=4m,QD=16m,∵PQ⊥CD,∴∠PQC=90°,∴∠C+∠QPC=90°,而∠C+∠D=90°,∴∠QPC=∠D,∴Rt△PCQ∽Rt△DPQ,∴PQ QCQD PQ=,即416PQPQ=,∴PQ=8,即旗杆的高度为8m.故答案为8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.也考查了相似三角形的判定与性质.16.【分析】设新矩形的长为x,则新矩形的宽为(10-x),根据新矩形的面积为12,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【详解】设新矩形的长为x,则新矩形的宽为(10﹣x),根据题意得:x(10﹣x)=2×3×2,整理得:x2﹣10x+12=0,解得:x1=5x2∵x≥10﹣x,∴x≥5,∴故答案为:【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.132【解析】分析:将sin30°=12,详解:原式=2×12+2=1+6-12=132点睛:考查了特殊角的三角函数值,解答本题的关键是掌握一些特殊角的三角函数值,请牢记以下特殊三角函数值:18.月平均增长率为30%.【分析】设该品牌自行车销售量的月平均增长率为x ,根据4月、6月份的销售量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设该品牌自行车销售量的月平均增长率为x ,根据题意得:200(1+x )2=338,解得:x 1=0.3=30%,x 2=﹣2.3(不合题意,舍去).答:该品牌自行车销售量的月平均增长率为30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.(1)见解析;(2)【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用勾股定理得出各线段长,进而得出答案.【详解】(1)如图所示:△A′B′C′,即为所求;(2)四边形BB′C′C 的周长为:.【点睛】此题主要考查了位似变换,正确得出对应点位置是解题关键.20.(1)楼高DH 为27.9米;(2)广告牌CD 的高度为4.0米.【解析】【分析】在Rt △DME 与Rt △CNE ;应利用ME-NE=AB=15构造方程关系式,进而可解即可求出答案.【详解】解:(1)在Rt △DME 中,ME=AH=45;由tan 30°=DE ME ,得DE=45×3≈15×1.732=25.98;又因为EH=MA=1.89,故大楼DH=DE+EH=25.98+1.89=27.87≈27.9.(2)在Rt △CNE 中,NE=45-15=30,由tan 45°=CE NE,得CE=NE=30,因而广告牌CD=CE-DE=30-25.98≈4.0.答:楼高DH 为27.9米,广告牌CD 的高度为4.0米.【点睛】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(1)袋中黄球的个数1个;(2)两次摸到球的颜色是红色与黄色这种组合的概率为1 3 .【分析】(1)首先设袋中的黄球个数为x个,然后根据古典概率的知识列方程,求解即可求得答案;(2)首先画树状图,然后求得全部情况的总数与符合条件的情况数目,求其二者的比值即可.【详解】(1)设袋中的黄球个数为x个,∴21= 212x++,解得:x=1,经检验,x=1是原方程的解,∴袋中黄球的个数1个;(2)画树状图得:,∴一共有12种情况,两次摸到球的颜色是红色与黄色这种组合的有4种,∴两次摸到球的颜色是红色与黄色这种组合的概率为:4 12 =13【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意方程思想的应用.22.(1)当降价为7元时,每周盈利为4420元;(2)当降价为5元时,每周盈利额最大,最大盈利4500元.【分析】(1)设降价为x元,根据“总利润=每件利润×销售量”列出关于x的方程,解之得出x的值,再根据要占有更大的市场份额,即销量尽可能的大取舍即可得;(2)设每周盈利为y,根据以上所列相等关系列出函数解析式,将其配方成顶点式后利用二次函数的性质求解可得.【详解】(1)设降价为x元,根据题意,可得:(50﹣x ﹣30)(200+20x )=4420,整理,得:x 2﹣10x+21=0,解得:x 1=3,x 2=7,因为要占有更大的市场份额,即销量尽可能的大,所以x=7,答:当降价为7元时,每周盈利为4420元;(2)设每周盈利为y ,则y=(50﹣x ﹣30)(200+20x )=﹣20x 2+200x+4000=﹣20(x ﹣5)2+4500,所以当x=5时,y 取得最大值,最大值为4500,答:当降价为5元时,每周盈利额最大,最大盈利4500元.【点睛】本题主要考查了二次函数的应用,最值问题一般的解决方法是转化为函数问题,根据函数的性质求解.23.(1)反比例函数的解析式为:y=4x ;一次函数的解析式为:y=x ﹣3;(2)S △AOB =152;(3)一次函数的值大于反比例函数的值的x 的取值范围为:﹣1<x <0或x >4.【分析】(1)把A 的坐标代入y=k x,求出反比例函数的解析式,把A 的坐标代入y=x+b 求出一次函数的解析式;(2)求出D 、B 的坐标,利用S △AOB =S △AOD +S △BOD 计算,即可求出答案;(3)根据函数的图象和A 、B 的坐标即可得出答案.【详解】(1)∵反比例函数y=k x 的图象过点A (4,1),∴1=k 4,即k=4,∴反比例函数的解析式为:y=4x.∵一次函数y=x+b (k≠0)的图象过点A (4,1),∴1=4+b,解得b=﹣3,∴一次函数的解析式为:y=x﹣3;(2)∵令x=0,则y=﹣3,∴D(0,﹣3),即DO=3.解方程4x=x﹣3,得x=﹣1,∴B(﹣1,﹣4),∴S△AOB =S△AOD+S△BOD=12×3×4+12×3×1=152;(3)∵A(4,1),B(﹣1,﹣4),∴一次函数的值大于反比例函数的值的x的取值范围为:﹣1<x<0或x>4.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.24.(1)见解析;(2)见解析;(3)①∠BAC=135°;②∠BAC=135°且AC【分析】(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC;(2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;(3)①根据“矩形的内角都是直角”易证∠DAG=90°.然后由周角的定义求得∠BAC=135°;②由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由正方形ABDI和正方形ACHG的性质证得:AC=.【详解】(1)∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°,∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,∵BD BADBE ABCBE BC=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△BAC(SAS);(2)∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)①当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;②当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD.又∵四边形ACHG是正方形,∴AC=AG,∴AC=,∴当∠BAC=135°且AC=时,四边形ADEG是正方形.【点睛】本题综合考查了正方形的判定与性质,全等三角形的判定与性质,平行四边形的判定与性质等知识点.解题时,注意利用隐含在题干中的已知条件:周角是360°.25.(1)B(0,2),抛物线解析式为y=﹣43x2+103x+2;(2)m的值为1 2;(3)当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5.0)或(118,0).【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点,可得到关于m 的方程,可求得m的值.(3)由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值,从而得到点M的坐标.【详解】(1)∵y=﹣23x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣43x2+bx+c经过点A,B,∴12302b cc-++=⎧⎨=⎩,解得1032bc⎧=⎪⎨⎪=⎩,∴抛物线解析式为y=﹣43x2+103x+2;(2)由(1)可知直线解析式为y=﹣23x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣23m+2),N(m,﹣43m2+103m+2),∵P为线段MN的中点时,∴有2(﹣23m+2)=﹣43m2+103m+2,解得m=3(三点重合,舍去)或m=1 2.故m的值为1 2.(3)由(1)可知直线解析式为y=﹣23x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣23m+2),N(m,﹣43m2+103m+2),∴PM=﹣23m+2,AM=3﹣m,PN=﹣43m2+103m+2﹣(﹣23m+2)=﹣43m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣43m2+103m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m ,BC=﹣43m 2+103m+2﹣2=﹣43m 2+103m ,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC ,∴Rt △NCB ∽Rt △BOA ,∴NC CB =OB OA,∴2π=2410333m m -+,解得m=0(舍去)或m=118,∴M (118,0);综上可知,当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2.5.0)或(118,0).【点睛】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中得到m 的方程是解题的关键,在(3)中利用相似三角形的性质得到关于m 的方程是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.若反比例函数12my x-=的图象位于第一、三象限,则m 的取值范围是()A .m <0B .m >0C .m <12D .m >122.如图是某个几何体的展开图,则把该几何体平放在平面上时,其俯视图为()A .B .C .D .3.如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标()A .(﹣1,﹣1)B .(﹣43,﹣1)C .(﹣1,﹣43)D .(﹣2,﹣1)4.已知关于x 的一元二次方程224x m x +=有两个不相等的实数根,则m 的取值范围是A .m≥2B .m<2C .m≥0D .m<05.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C′上.若AB =6,BC =9,则BF 的长为()A .4B .C .4.5D .56.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是()A .22500(1)9100x +=B .22500(1%)9100x +=C .22500(1)2500(1)9100x x +++=D .225002500(1)2500(1)9100x x ++++=8.如图,在矩形ABCD 中,AB =4,BC =3,点E 为AB 上一点,连接DE ,将△ADE 沿DE 折叠,点A 落在A '处,连接A C ',若F ,G 分别为A C ',BC 的中点,则FG 的最小值为()A .2BCD .19.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为()A .20B .24C .28D .3010.某数学兴趣小组来到城关区时代广场,设计用手电来测量广场附近某大厦CD 的高度,如图,点P 处放一水平的平面镜.光线从点A 出发经平面镜反射后刚好射到大厦CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,测得AB =1.5米,BP =2米,PD =52米,那么该大厦的高度约为()A .39米B .30米C .24米D .15米11.反比例函数4y x =和6y x =在第一象限的图象如图所示,点A 在函数6y x=图象上,点B 在函数4y x=图象上,AB ∥y 轴,点C 是y 轴上的一个动点,则△ABC 的面积为()A .1B .2C .3D .412.计算2cos 30°的值为()A .1B 3C 2D .12二、填空题13.已知一元二次方程()222340m x x m --+-=的一个根为0,则m =________.14.如图,在Rt △ABC 中,∠C=90°,BC=3,AC=4,那么sinA=___.15.如图,在ABC 中,D ,E 分别是边AB ,AC 的中点.若ADE 的面积为12.则四边形DBCE 的面积为_______.16.如图,矩形OABC 的顶点A ,C 分别在坐标轴上,A (8,0),D (5,7),点P 是边AB 或边OA 上的一点,连接CP ,DP ,当△CDP 为等腰三角形时,点P 的坐标为_____.17.如图,OA OB OC ==且30ACB ∠=︒,则AOB ∠的大小是______度.三、解答题18.解方程:()32142x x x +=+19.如图,在四边形ABCD 中,AB ∥CD ,连接BD ,点E 在BD 上,连接CE ,若∠1=∠2,AB=ED .(1)求证:BD=CD .(2)若∠A=150°,∠BDC=2∠1,求∠DBC 的度数.20.如图,在平行四边形ABCD 中,AC ⊥DE ,AE=AD ,AE 交BC 于O .(1)求证:∠BCA=∠EAC ;(2)若CE=3,AC=4,求 COE 的周长.21.某兴趣小组开展课外活动.如图,小明从点M 出发以1.5米/秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他(AB)在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他(CD)在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1.2米.(1)请在图中画出光源O点的位置,并画出O到MN的垂线段OH(不写画法);(2)若小明身高1.5m,求OH的长.22.某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低1万元时,平均每周能多售出2辆.该4S店要想平均每周的销售利润为96万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?23.如图,△ABC是等边三角形,点D在AC上,连接BD并延长,与∠ACF的角平分线交于点E.(1)求证:△ABD∽△CED;(2)若AB=8,AD=2CD,求CE的长.24.如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.(1)求证:四边形ABEF是正方形;(2)如果AB=6,AD=8,求tan∠ADP的值.25.某气象研究中心观测到一场沙尘暴从发生到减弱的全过程.开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y(千米/小时)与时间x(小时)成反比例函数关系缓慢减弱.(1)这场沙尘暴的最高风速是__________千米/小时,最高风速维持了__________小时;(2)当20x≥时,求出风速y(千米/小时)与时间x(小时)的函数关系式;(3)在这次沙尘暴形成的过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻为“危险时刻”,那么在沙尘暴整个过程中,求“危险时刻”共有几小时.26.如图,一次函数y=kx+b(k≠0)与反比例函数y=ax(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是以AO为直角边的直角三角形,直接写出所有可能的E点坐标.27.如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.(1)如图1,若k=1,则AF与AE之间的数量关系是;(2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)(3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.参考答案1.C【分析】根据反比例函数图象位于第一、三象限,可得1-2m>0,解不等式即可求解.【详解】解:∵反比例函数12myx-=的图象位于第一、三象限,∴1-2m>0,∴m<1 2 .故选C.【点睛】本题主要考查反比例函数图象性质,解决本题的关键是要熟练掌握反比例函数图象的性质.2.B【分析】先根据几何体的展开图,判断所围成的几何体的形状,然后利用三视图的概念求解.【详解】解:因为几何体的展开图为一个扇形和一个圆形,故这个几何体是圆锥,故选:B.【点睛】此题主要考查了展开图折叠成几何体以及三视图问题,熟悉圆锥的展开图特点是解答此题的关键.3.B【分析】根据关于以原点为位似中心的对应点的坐标的关系,把A 点的横纵坐标都乘以13-即可.【详解】解:∵以点O 为位似中心,位似比为13,而A (4,3),∴A 点的对应点C 的坐标为(43-,﹣1).故选:B .【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .4.B【分析】根据根的判别式,可知Δ>0,据此即可求出m 的取值范围.【详解】解:∵关于x 的一元二次方程224x m x +=有两个不相等的实数根,∴2420x x m -+=Δ=()24420m --⨯>,解得:m<2,故选:B 5.A【分析】先求出BC′,再由图形折叠特性知,C′F =CF =BC ﹣BF =9﹣BF ,在Rt △C′BF 中,运用勾股定理BF 2+BC′2=C′F 2求解.【详解】解:∵点C′是AB 边的中点,AB =6,∴BC′=3,由图形折叠特性知,C′F =CF =BC ﹣BF =9﹣BF ,在Rt △C′BF 中,BF 2+BC′2=C′F 2,∴BF 2+9=(9﹣BF )2,解得,BF =4,故选:A .【点睛】本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.6.C【分析】一次函数y1=kx+b 落在与反比例函数y 2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y1>y2的解集是﹣3<x <0或x >2,故选C .【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.7.D【分析】分别表示出5月,6月的营业额进而得出等式即可.【详解】解:设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程得:2250025001250019100x x ++++()()=.故选D .【点睛】考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.8.D【分析】由勾股定理和折叠的性质可求5BD =,3AD A D '==,由三角形的三边关系,A B BD A D >'-',则当点A '在DB 上时,A B '有最小值为2BD A D '-=,由三角形的中位线定理可求解.【详解】解:如图,连接A B ',BD ,4AB =Q ,3AD BC ==,5BD ∴===,将ADE ∆沿DE 折叠,3AD A D '∴==,在△A DB '中,A B BD A D >'-',∴当点A '在DB 上时,A B '有最小值为2BD A D '-=,F ,G 分别为A C ',BC 的中点,12FG A B '∴=,FG ∴的最小值为1,故选:D .9.D【分析】直接由概率公式求解即可.【详解】根据题意得9n=30%,解得:n=30,经检验:n=30符合题意,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选:D .10.A【分析】同学和大厦均和地面垂直,且光线的入射角等于反射角,因此构成一组相似三角形,利用对应边成比例即可解答.【详解】解:∵AB ⊥BD ,CD ⊥BD ,∴∠ABP=∠CDP ,∵∠APB=∠CPD ,∴△ABP ∽△PDC ,∴CD PDAB BP=,∴CD =PDBP ×AB =522×1.5=39米;那么该大厦的高度是39米.故选:A .11.A【分析】连接OA 、OB ,延长AB ,交x 轴于D ,如图,利用三角形面积公式得到S △OAB =S △ABC ,再根据反比例函数的比例系数k 的几何意义得到S △OAD =3,S △OBD =2,即可求得S △OAB =S △OAD -S △OBD =1.【详解】连结OA 、OB ,延长AB ,交x 轴于D ,如图,∵AB ∥y 轴,∴AD ⊥x 轴,OC ∥AB ,∴S △OAB=S △ABC ,而S △OAD=12×6=3,S △OBD=12×4=2,∴S △OAB=S △OAD ﹣S △OBD=1,∴S △ABC=1,故选:A .12.B【分析】直接利用特殊角的三角函数值进行计算即可得出答案.【详解】解:2cos30°,=2×32,3故选B .13.-2【分析】把x=0代入已知方程,列出关于m 的新方程,通过解新方程可以求得m 的值.【详解】解:根据题意将x=0代入原方程得:m 2-4=0,解得:m=2或m=-2,又∵m-2≠0,即m≠2,∴m=-2,故答案为:-2.14.35【详解】解:由题意知∠C=90°,BC=3,AC=4,根据勾股定理得,AB=5,因此可得:sinA=35BC AB .故答案为:3.515.32【分析】先根据三角形中位线定理得出1//,2DE BC DE BC =,再根据相似三角形的判定与性质得出2()ADE ABC S DE S BC= ,从而可得ABC 的面积,由此即可得出答案.【详解】 点D ,E 分别是边AB ,AC 的中点1//,2DE BC DE BC∴=ADE ABC∴ 21()4ADE ABC S DE S BC ∴==△△,即4ABC ADES S =△△又12ADE S = 1422ABC S ∴=⨯= 则四边形DBCE 的面积为13222ABC ADE S S -=-= 故答案为:32.16.(8,3)或(52,0)【分析】分两种情形分别讨论即可解决问题;【详解】解:∵四边形OABC 是矩形,A (8,0),D (5,7),∴B (8,7),OA =BC =8,OC =AB =7,∴CD =5,BD =3,∵点P 是边AB 或边OA 上的一点,∴当点P 在AB 边时,CD =DP =5,∴BP4,∴PA =AB ﹣BP =3,∴P (8,3).当点P 在边OA 上时,只有PC =PD ,此时P 在CD 的垂直平分线上,∴P (52,0).综上所述,满足条件的点P 坐标为(8,3)或(52,0).故答案为(8,3)或(52,0).17.60.【分析】设∠OAC=x ,∠CAB=y ,根据等腰三角形的性质,则∠OCA=x ,∠OBA=x+y ,∠OBC=x+30°,利用三角形内角和定理计算即可.【详解】解:设∠OAC=x ,∠CAB=y ,∵OA=OC ,∴∠OCA=x ,∵OA=OB ,∴∠OBA=x+y ,∵OC=OB ,∴∠OBC=x+30°,∵30ACB ∠=︒,∴∠CAB+∠OBA+∠OBC=150°,∴y+x+y+x+30°=150°,∴2(x+y)=120°,∵∠AOB=180°-2∠OBA=180°-2(x+y),∴∠AOB=180°-120°=60°,故答案为:60.18.123x =,212x =-【分析】先把方程化为:3(21)2(21)0x x x +-+=,再利用因式分解法解方程即可得到答案.【详解】解:方程整理得:3(21)2(21)0x x x +-+=,分解因式得:(32)(21)0x x -+=,可得320x -=或210x +=,解得:123x =,212x =-.19.(1)见解析(2)80°【分析】(1)根据平行线的性质可得ABD EDC ∠=∠,依据全等三角形的判定和性质即可证明;(2)根据全等三角形的性质可得150DEC A ∠=∠=︒,21∠=∠,再由各角之间的数量关系得出210∠=︒,利用等边对等角及三角形内角和定理即可得出结果.(1)证明:∵AB CD ∥,∴ABD EDC ∠=∠,在ABD 和EDC 中,12ABD EDC AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABD EDC ≌,∴DB CD =;(2)∵ABD EDC ≌,∴150DEC A ∠=∠=︒,21∠=∠,∵21BDC ∠=∠,∴22BDC ∠=∠,∵222230BDC ∠+∠=∠+∠=︒,∴210∠=︒,∴20BDC ∠=︒,∵BD CD =,∴()()11180180208022DBC DCB BDC ∠=∠=︒-∠=⨯︒-︒=︒.20.(1)证明见解析(2)8【分析】(1)先根据平行四边形的性质证明∠DAC=∠BCA ,再由三线合一定理证明EAC DAC ∠=∠,即可证明∠BCA=∠EAC ;(2)先根据等角对等边证明OA=OC ,再由勾股定理求出AE 的长,最后证明△COE 的周长=AE+CE 即可得到答案.(1)解:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴∠DAC=∠BCA ,∵AE=AD ,AC ⊥ED ,∴EAC DAC ∠=∠,∴∠BCA=∠EAC ;(2)解:∵∠BCA=∠EAC ,∴OA=OC ,∵AC ⊥DE ,即∠ACE=90°,∴在Rt △ACE 中,由勾股定理得:5AE ==,∴△COE 的周长=CE+OC+OE=OA+OE+CE=AE+CE=8.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,勾股定理,熟知等腰三角形的性质与判定条件是解题的关键.21.(1)见解析;(2)4m【分析】(1)作射线MA 和GC 交于O ,过O 作OH ⊥MN ,垂足为H ;(2)证明△CDG ∽△OHG 和△ABM ∽△OHM ,列比例式,可得OH 的长.【详解】解:(1)如图所示:(2)由题意得:BM=BD=2×1.5=3,∵CD∥OH,∴△CDG∽△OHG,∴CD DG OH GH=,∵AB=CD=1.5,∴1.5 1.21.2OH DH=+①,∵AB∥OH,∴△ABM∽△OHM,AB BMOH MH=,∴1.536OH DH=+②,由①②得:OH=4,则OH的长为4m.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.也考查了构建相似三角形,利用相似三角形的性质计算相应线段的长.22.21万元【分析】销售利润=一辆汽车的利润×销售汽车数量,一辆汽车的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”,根据每辆的盈利×销售的件数=96万元,即可列方程求解.【详解】解:设每辆汽车的定价应为x元,(x-15)[8+2(25-x)]=96解得x1=21,x2=23,为使成本尽可能的低,则x=21.答:每辆汽车的定价应为21万元.【点睛】此题主要考查了一元二次方程的应用,本题关键是会表示一辆汽车的利润,销售量增加的部分.找到关键描述语,找到等量关系:每辆的盈利×销售的件数=96万元是解决问题的关键.23.(1)见解析;(2)CE=4【分析】(1)根据等边三角形的性质得到60A ACB ∠=∠=︒,则120ACF ∠=︒,根据角平分线的性质,得到60ACE ∠=︒,即可求证;(2)利用相似三角形的性质得到CD CE AD AB=,即可求解.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠ACB=60°,∠ACF=120°;∵CE 平分∠ACF ,∴∠ACE=60°;∴∠BAC=∠ACE ;又∵∠ADB=∠CDE ,∴△ABD ∽△CED ;(2)解:∵△ABD ∽△CED ,∴CD CE AD AB=,∵AD=2DC ,AB=8;∴1842CD CE AB AD =⨯=⨯=【点睛】此题考查了相似三角形的判定与性质,涉及了等边三角形的性质,角平分线的性质,熟练掌握相关基本性质是解题的关键.24.(1)证明见解析(2)35【分析】(1)由矩形的性质得出∠FAB=∠ABE=90°,AF ∥BE ,证出四边形ABEF 是矩形,再证明AB=BE,即可得出四边形ABEF是正方形;(2)由正方形的性质得出BP=PF,BA⊥AD,∠PAF=45°,得出AB∥PH,求出DH=AD-AH=5,在Rt△PHD中,由三角函数即可得出结果.【详解】(1)证明:∵四边形ABCD是矩形,∴∠FAB=∠ABE=90°,AF∥BE,∵EF⊥AD,∴∠FAB=∠ABE=∠AFE=90°,∴四边形ABEF是矩形,∵AE平分∠BAD,AF∥BE,∴∠FAE=∠BAE=∠AEB,∴AB=BE,∴四边形ABEF是正方形;(2)解:过点P作PH⊥AD于H,如图所示:∵四边形ABEF是正方形,∴BP=PF,BA⊥AD,∠PAF=45°,∴AB∥PH,∵AB=6,∴AH=PH=3,∵AD=8,∴DH=AD﹣AH=8﹣3=5,在Rt△PHD中,∠PHD=90°.∴tan∠ADP=PHHD=35.25.(1)32,10;(2)640yx;(3)共有59.5小时【分析】(1)由速度=增加幅度×时间可得4时风速为8千米/时,10时达到最高风速,为32千米/时,与x轴平行的一段风速不变,最高风速维持时间为20-10=10小时;(2)设k y x=,将(20,32)代入,利用待定系数法即可求解;(3)由于4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米,所以4.5时风速为10千米/时,再将y=10代入(2)中所求函数解析式,求出x 的值,再减去4.5,即可求解.【详解】解:(1)0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,10~20时,风速不变,最高风速维持时间为20-10=10小时;故答案为:32,10.(2)设k y x=,将()20,32代入,得:3220k =,解得:640k =.所以当20x ≥时,风速y (千米/小时)与时间x (小时)之间的函数关系为:640y x =.(3)∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米,∴4.5时风速为10千米/时.将10y =代入640y x =,得64010x=,解得64x =,64 4.559.5-=(小时)故在沙尘暴整个过程中,“危险时刻”共有59.5小时.【点睛】本题考查反比例函数的应用,待定系数法求函数的解析式,学生阅读图象获取信息的能力,理解题意,读懂图象是解决本题的关键.26.(1)y=6x ,y=43-x+6;(2)92;(3)(316-,2)或(416,2).【分析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A 的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB 的解析式,进而求出AG ,用三角形的面积公式即可得出结论.(3)分情形分别讨论求解即可解决问题;【详解】解:(1)∵点B (3,2)在反比例函数y=a x的图象上,∴a=3×2=6,∴反比例函数的表达式为y=6x,∵点A 的纵坐标为4,∵点A 在反比例函数y=6x 图象上,∴A (32,4),∴32342k b k b +=⎧⎪⎨+=⎪⎩,∴436k b ⎧=-⎪⎨⎪=⎩,∴一次函数的表达式为y=-43x+6;(2)如图1,过点A 作AF ⊥x 轴于F 交OB 于G,∵B (3,2),∴直线OB 的解析式为y=23x ,∴G (32,1),A (32,4),∴AG=4-1=3,∴S △AOB =S △AOG +S △ABG =12×3×3=92.(3)①当∠AOE=90°时,∵直线AC 的解析式为y=83x ,∴直线OE 的解析式为y=83-x ,当y=2时,x=-316,∴E (-316,2);②当∠OAE=90°时,可得直线AE 的解析式为y=-83x+7316,当y=2时,x=416,∴E (416,2).综上所述,满足条件的E 的坐标为(-316,2)或(416,2).【点睛】此题主要考查了反比例函数综合题、待定系数法,三角形的面积公式,直角三角形的判定和性质,解本题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.27.(1)AF =AE ;(2)AF =kAE ,证明见解析;(3)EG 2【分析】(1)证明△EAB ≌△FAD (AAS ),由全等三角形的性质得出AF =AE ;(2)证明△ABE ∽△ADF ,由相似三角形的性质得出AB AE AD AF=,则可得出结论;(3)①如图1,当点F 在DA 上时,证得△GDF ∽△GBA ,得出12DF G GA BA F ==,求出AG=3.由△ABE ∽△ADF 可得出12AB A AF AD E ==,求出AE 2.则可得出答案;②如图2,当点F 在DC 的延长线上时,同理可求出EG 的长.【详解】解:(1)AE =AF .∵AD =AB ,四边形ABCD 矩形,∴四边形ABCD 是正方形,∴∠BAD =90°,∵AF ⊥AE ,∴∠EAF =90°,∴∠EAB =∠FAD ,∴△EAB ≌△FAD (AAS ),∴AF =AE ;故答案为:AF =AE .(2)AF =kAE .证明:∵四边形ABCD 是矩形,∴∠BAD =∠ABC =∠ADF =90°,∴∠FAD+∠FAB =90°,∵AF ⊥AE ,∴∠EAF=90°,∴∠EAB+∠FAB=90°,∴∠EAB=∠FAD,∵∠ABE+∠ABC=180°,∴∠ABE=180°﹣∠ABC=180°﹣90°=90°,∴∠ABE=∠ADF.∴△ABE∽△ADF,∴AB AE AD AF=,∵AD=kAB,∴1 ABAD k=,∴1 AEAF k=,∴AF=kAE.(3)解:①如图1,当点F在DA上时,∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∵AD=2AB=4,∴AB=2,∴CD=2,∵CF=1,∴DF=CD﹣CF=2﹣1=1.在Rt△ADF中,∠ADF=90°,∴AF=∵DF∥AB,∴∠GDF=∠GBA,∠GFD=∠GAB,∴△GDF ∽△GBA ,∴12DFG GA BA F==∵AF =GF+AG ,∴AG =233AF =∵△ABE ∽△ADF ,∴2142ABA A D EAF ===,∴AE =1122AF =在Rt △EAG 中,∠EAG =90°,∴EG ==,②如图2,当点F 在DC 的延长线上时,DF =CD+CF =2+1=3,在Rt △ADF 中,∠ADF =90°,∴AF 5==.∵DF ∥AB ,∵∠GAB =∠GFD ,∠GBA =∠GDF ,∴△AGB ∽△FGD ,∴23ABA FG FD G ==,∵GF+AG =AF =5,∴AG =2,∵△ABE ∽△ADF ,∴2142ABA A D EAF ===,∴1155222 AE AF==⨯=,在Rt△EAG中,∠EAG=90°,∴EG2=.综上所述,EG2.。

北师大版九年级(上)期末数学试卷及答案

北师大版九年级(上)期末数学试卷及答案

北师大版九年级(上)期末数学试卷及答案第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列图形中,是中心对称图形的是( )A. B. C. D.2.下列关于x的函数是二次函数的是( )B. y=4x3+5A. y=9xC. y=3x−2D. y=2x2−x+13.如图,将一块含45°角的三角板ABC绕点A按逆时针方向旋转到△AB′C′的位置.若∠CAB′=20°,则旋转角的度数为( )A. 20°B. 25°C. 65°D. 70°4.一元二次方程3x2+2x−1=0的根的情况是( )A. 无法确定B. 无实数根C. 有两个相等的实数根D. 有两个不等的实数根5.如图,PA,PB与⊙O分别相切于点A,B,PA=2,∠P=60°,则AB=( )A. √3B. 2C. 2√3D. 36.下列事件为随机事件的是( )A. 一个图形旋转后所得的图形与原图形全等B. 直径是圆中最长的弦第2页,共19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………C. 方程ax 2+x =0是关于x 的一元二次方程D. 任意画一个三角形,其内角和为360°7. 一次函数y =x +a 与二次函数y =ax 2−a 在同一平面直角坐标系中的图象可能是( )A. B.C. D.8. 为响应国家传统文化进校园的号召,某校准备购进一批毕加索笔来奖励经典诵读优秀生.某文具超市为让利给学校,经过两次降价,每支毕加索笔单价由121元降为100元,两次降价的百分率相同,设每次降价的百分率为x ,根据题意列方程得( )A. 121(1−x 2)=100B. 121(1+x)2=100C. 121(1−2x)=100D. 121(1−x)2=1009. 数学活动课上,同学们想测出一个残损轮子的半径,小的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB⏜于点D ,测出AB ,CD 的长度,即可计算得出轮子的半径.现测出AB =40cm ,CD =10cm ,则轮子的半径为( )A. 50cmB. 35cmC. 25cmD. 20cm10. 从−1,0,1,2中任取一个数作为a 的值,既要使关于x 的方程x 2+2x −2a =0有实数根,又要满足2a −1<−a +2,则a 符合条件的概率为( )A. 14 B. 12 C. 34 D. 111. 已知⊙O 是正六边形ABCDEF 的外接圆,P 为⊙O 上除C 、D 外任意一点,则∠CPD 的度数为( )A. 30°B. 30°或150°C. 60°D. 60°或120°12. 如图,已知二次函数y =ax 2+bx +c 的图象过点(−1,0)和(m,0),下列结论:①abc <0;②4a +c <2b ;③b =a −am ;④bc =1−1m .其中正确的是( )A. ①②④B. ①②③C. ①③④D. ①②③④第II卷(非选择题)二、填空题(本大题共4小题,共16.0分)13.若点A(1,a)与点B(−1,−2)关于原点对称,则a的值为______.14.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了图②所示的折线统计图,由此他估计不规则图案的面积大约为______ m2(结果取整数).15.已知抛物线y=(x−1)2−4如图1所示,现将抛物线在x轴下方的部分沿x轴翻折,图象其余部分不变,得到一个新图象如图2.当直线y=m与新图象有四个交点时,m的取值范围是______.16.如图,在平面直角坐标系中,点A在y轴的正半轴上,OA=1,将OA绕点O顺时针旋转45°到OA1,扫过的面积记为S1,A1A2⊥OA1交x轴于点A2;将OA2绕点O顺时针旋转45°到OA3,扫过的面积记为S2,A3A4⊥OA3交y轴于点A4;将OA4绕点O顺时针旋转45°到OA5,扫过的面积记为S3,A5A6⊥OA5交x轴于点A6;…;按此规律,则S2022的值为______.第4页,共19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………三、解答题(本大题共9小题,共98.0分。

数学北师大版数学九年级(上)期末质检附标准答案

数学北师大版数学九年级(上)期末质检附标准答案

九年级(上)期末质检数学模拟试卷(北师大版)考试时间120分钟,试卷满分150分选择题(下列各题地备选答案中,只有一个答案是正确地,将正确答案地序号填入题后地括号内.每小题3分,共30分)1.下列计算结果为负数地是( )A 、(-3)0B 、-|-3|C 、(-3)2D 、(-3)-22.方程ax 2=bx 地解是( ) A. x=0; B. x=a b C. x=0或x=a b ;D. x=-ab 3.在直角坐标系中,A (1,2)点地横坐标乘以-1,纵坐标不变,得到A ’点,则A 与A ’地关系是( )A 、关于x 轴对称B 、关于y 轴对称C 、关于原点对称D 、将A 点向x 轴负方向平移一个单位4.如图,图中地两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上地概率是( )A 、25 B 、310 C 、320 D 、15RTCrp 5.下列运算正确地是 A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b=6.下列四个几何体中,主视图、左视图与俯视图是全等图形地几何体是( ) A 、球 B 、圆柱 C 、三棱柱 D 、圆锥7.有一张矩形纸片ABCD ,AB =2.5,AD =1.5,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AC 与BC 交于点F (如下图),则CF 地长为( )A 、0.5B 、0.75C 、1D 、1.25 8.如图,直线2=y x 与双曲线xky =地图象地一个交点坐标为(2,4).则它们地另一个交点坐标是A .(-2,-4)AB ACD A3489B .(-2,4)C .(-4,-2)D .(2,-4) 9.下列说法正确地是A .抛一枚硬币正面朝上地机会与抛一枚图钉钉尖着地地机会一样大.B .为了了解福州火车站某一天中通过地列车车辆数,可采用普查地方式进行.C .彩票中奖地机会是1%,买100张一定会中奖.D .福州市某中学学生小亮,对他所在地住宅小区地家庭进行调查,发现拥有空调地家庭占65%,于是他得出福州市拥有空调家庭地百分比为65%地结论.10.若点A (-2,y 1)、B (-1,y 2)、C (1,y 3)在反比例函数xy 1-=地图像上,则( )(A) y 1>y 2>y 3 (B) y 3>y 2>y 1 (C)y 2>y 1>y 3 (D) y 1>y 3> y 2二、填空题(每小题4分,共20分) 11.已知:如图,AC ⊥BC ,BD ⊥BC ,AC >BC >BD ,请你添加一个条件使△ABC ∽△CDB ,你添加地条件是___________________________.12.多项式x 2+px +12可分解为两个一次因式地积,整数p 地值是_____(写出一个即可) 13.双曲线y =kx和一次函数y =ax +b 地图象地两个交点分别是A(-1,-4),B(2,m),则a +2b =____________.14.如图,已知方格纸中是4个相同地正方形,则∠1+∠2+∠3=_______.15.右图是一回形图,其回形通道地宽和OB 地长均为1, 回形线与射线OA 交于,,,321A A A ….若从O 点到1A 点 地回形线为第1圈(长为7),从1A 点到2A 点地回形线 为第2圈,…,依此类推.则第10圈地长为. 三、解答题16、(1)已知x =2+1,求x +1-x 2x -1地值.(2)先化简后求值:)252(23--+÷--x x x x 其中x =22 17. 在一个宁静地夜晚,月光明媚,张芳和身高为1.65m 地李红两位同学在人民广场上玩.张芳测得李红地影长为1m ,并立即测得小树影长为1.5m ,请你估算小树地高约为多少?A B CD(第15题图)18.请你在图2中补全图1所示地圆锥形纸帽地 三种视图.19.如图,在□ABCD 中,点E 、F 在BD 上,且BF =DE. ⑴、写出图中所有你认为全等地三角形;⑵、延长AE 交BC 地延长线于G ,延长CF 交DA 地延长线于H(请补全图形),证明四边形AGCH 是平行四边形.20.小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半地路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下地一半路程地平均速度至少要达到多少?21.有一块梯形状地土地,现要平均分给两个农户种植(即将梯形地面积两等分),试设计两种方案(平分方案画在备用图上),并给予合理地解释.22.质检员为控制盒装饮料产品质量,需每天不定时地30次去检测生产线上地产品.若把从0时到24时地每十分钟作为一个时间段(共计144个时间段),请你设计一种随机抽取30个时间段地方法:使得任意一个时间段被抽取地机会均等,且同一时间段可以多次被抽取. (要求写出具体地操作步骤)23.已知关于x 地方程0141)1(22=+++-k x k x 地两根是一个矩形两邻边地长. ⑴k 取何值时,方程在两个实数根; ⑵当矩形地对角线长为5时,求k 地值.24.我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出地再生好纸,所能节约地造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样地大树.若我市2005年初中毕业生中环保意识较强地5万人,能把自己离校时地全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐.宜昌市从2001年初开始实施天然林保护工程,到2003年初成效显著,森林面积大约由1374.094万亩增加到1500.545万亩.假设我市年用纸量地15%可以作为废纸回收、森林面积年均增长率保持不变,请你按宜昌市总人口约为415万计算:在从2005A B CD E F俯视图主视图A B C D 备用图⑴A B CD 备用图⑵年初到2006年初这一年度内,我市新增加地森林面积与因回收废纸所能保护地森林面积之和最多可能达到多少亩.(精确到1亩)25. 如图,将一块直角三角形纸板地直角顶点放在)21,1(C 处,两直角边分别与y x ,轴平行,纸板地另两个顶点B A ,恰好是直线29+=kx y 与双曲线)0(>=m xm y 地交点.(1)求m 和k 地值; (2)设双曲线)0(>=m xmy 在B A ,之间地部分为L ,让一把三角尺地直角顶点P 在L 上 滑动,两直角边始终与坐标轴平行,且与线段AB 交于N M ,两点,请探究是否存在点P 使得AB MN 21=,写出你地探究过程和结论.参考答案一、1、B ;2、C ;3、B ;4、B ;5、D ;6、A ;7、C ;8、A ;9、B ;10、C ; 二、11.∠CAB =∠BCD 或∠CBA =∠BDC 或BC 2=AC ·BD 等; 12.±7;±8;±13;±24.5… 13.-214.90015.79 三、16.(1)解:原式=x 2-1-x x -1=-1x -1.当x =2+1时,原式=-12+1-1=22sQsAE (2)解:原式=2)3)(3(23--+÷--x x x x x =31+-x当x =22 时,原式=3223221-=+-(第25题图)17.1.62.41 1.5hh =∴= 答:小树高约为2.4m18.补全左视图……2分,画出俯视图……4分(漏掉圆心扣1分;画地俯视图半径超过1.5倍扣1分)19.⑴、△ABE ≌△CDF ,△AED ≌△CFB ,△ABD ≌△CDB ;………… 3分 ⑵、∵BF =DE ,∴BF +FE =DE +FE ,即BE =DE. ∵四边形ABCD 是平行四边形,∴AB ∥CD. ∴∠ABD =∠CDB.在△ABE 和△CDF 中:⎩⎪⎨⎪⎧AB =CD ∠ABE =∠CDF BE =DE ∴△ABE ≌△CDF , ∴∠AEB =∠CFD ,∴HC ∥CG ,∴四边形AGCH 为平行四边形.………………………………… 3分20.(按6分计)解:(方法一)设他行走剩下地一半路程地速度为x ,……1分 则6012x ≥ 2.4-1.2 …3分x ≥6..…5分答:他行走剩下地一半路程地速度至少为6千米/小时. (6分)(方法二)设他行走剩下地一半路程地速度为x ,……1分 则12x=2.4-1.2 …3分 x=0.1. .…5分, 所以只要行走速度大于0.1千米/分,小华都能按时到校(不答此点不扣分).答:他行走剩下地一半路程地速度至少为0.1千米/分. …6分(注:任何正确解法都可以同样评分,结果还有100米/分;35米/秒,无速度地单位或速度地单位错误扣1分; )21.只要正确、合理即可,以下三种方案供参考.写出一种方案给4分,满分8分. 解:设梯形上、下底分别为a 、b ,高为h.方案一:如图1,连结梯形上、下底地中点E 、F ,则S 四边形ABFE =S 四边形EFCD =(a +b)h4lzq7I 方案二:如图2,分别量出梯形上、下底a 、b 地长,在下底BC 上截取BE =12(a +b),连接AE ,则S △ABE =S 四边形AECD =(a +b)h4.方案三:如图3,连结AC ,取AC 地中点E ,连结BE 、ED ,则图中阴影部分地面积等于梯形ABCD 地面积地一半.分析此方案可知,∵AE =EC ,∴S △AEB =S △EBC ,S △AED =S △ECD , ∴S △AEB +S △AED =S △EBC +S △ECD ,∴图中阴影部分地面积等于梯形ABCD 地面积地一半FAB C D EGH A B C DE F 图1A B C D E 图 2A B CD E 图 322.解:(方法一)(1).用从1到144个数,将从0时到24时地每十分钟按时间顺序编号,共有144个编号.(2).在144个小物品(大小相同地小纸片或小球等)上标出1到144个数. (3)把这144个小物品用袋(箱)装好,并均匀混合.(4)每次从袋(箱)中摸出一个小物品,记下上面地数字后,将小物品返回袋中并均匀混合.(5)将上述步骤4重复30次,共得到30个数.(6)对得到地每一个数除以60转换成具体地时间.(不答此点不扣分) (方法二)(1)用从1到144个数,将从0时到24时地每十分钟按时间顺序编号,共有144个编号. (2)使计算器进入产生随机数地状态. (3).将1到144作为产生随机数地范围.(4)进行30次按键,记录下每次按键产生地随机数,共得到30个数. (5)对得到地每一个数除以60转换成具体地时间.(不答此点不扣分)注意:本题可以设计多种方法,学生地答案中(法一)只要体现出随机性即可评2分;体现出按时间段顺序编号即可评2分;体现出有放回地抽签(小物品)即可评1分;体现出30次性重复抽签即可评1分;叙述大体完整、基本清楚即可评1分,共7分.(法二)只要体现出按时间段顺序编号即可评2分;体现出30次重复按键即可评1分;其他只要叙述大体完整、基本清楚即可.23.解⑴ 要使方程有两个实数根,必须△≥0,即)141(4)]1([22+-+-k k ≥0 ………………………………1分 化简得:2k -3≥0 ………………………………2分 解之得:k ≥23………………………………3分 ⑵ 设矩形地两邻边长分别为a 、b ,则有⎪⎪⎩⎪⎪⎨⎧+=+=+=+分 分 514114)5(2222 k ab k b a b a 解之得:k 1=2,k 2=-6 ………………………………7分由⑴可知,k =-6时,方程无实数根,所以,只能取k =2 ……………8分 24.(按10分计)解:(1) 5万初中毕业生利用废纸回收使森林免遭砍伐地最少亩数是: 5×104×10÷1000×18÷80=112.5(亩)……… 3分 或分步骤计算:5万初中毕业生①废纸回收地数量:5×104×10=5×105(公斤)= 500(吨)…1分 ②因废纸回收使森林免遭砍伐地数量:500×18=9000 ……… 2分③因废纸回收使森林免遭砍伐地最少亩数是:9000÷80=112.5(亩)………3分 (注:学生因简单叙述或无文字叙述直接得出计算结果不扣分) (2)设2001年初到2003年初我市森林面积年均增长率为x ,依题意可得 1374.094×(1+x )2=1500.545 ……… 5分 解得:x =0.045=4.5% ……… 6分 ∴ 2005年初到2006年初全市新增加地森林面积: 1500.545×104×(1+4.5%)2×4.5% = 737385(亩)………7分 又全市因回收废纸所能保护最多地森林面积:415×104×28×15%÷1000×18÷50=6275(亩)…9分(结果正确即评2分,此点可单独评分)∴新增加地森林面积与保护地森林面积之和最多可能达到地亩数: 737385(亩)+6275(亩)= 743660(亩) ……… 10分 25.(按10分计)解:(1)∵B A ,在双曲线)0(>=m xmy 上,AC ∥y 轴,BC ∥x 轴, ∴A ,B 地坐标分别,1()m ,)21,2(m . ……………………(1分)又点A ,B 在直线29+=kx y 上,∴⎪⎩⎪⎨⎧+=+=.29221,29mk k m ……………………(2分) 解得⎪⎩⎪⎨⎧=-=.21,4m k 或⎪⎩⎪⎨⎧=-=.4,21m k …………………(4分) 当4-=k 且21=m 时,点A ,B 地坐标都是,1()21,不合题意,应舍去;当21-=k 且4=m 时,点A ,B 地坐标分别为,1()4,)21,8(,符合题意.∴21-=k 且4=m .………………………………………………………………(5分)(2)假设存在点P 使得AB MN 21=.∵AC ∥y 轴,MP ∥y 轴,∴AC ∥MP ,∴PMN ∠CAB ∠=,∴Rt ACB ∆∽Rt MPN ∆,∴21==AB MN AC MP ,……………(7分) 设点P 坐标为)4,(x x P (1<x <8=,则M 点坐标为)2921 ,(+-x x M ,∴x x MP 42921-+-=.又27214=-=AC ,∴4742921=-+-x x ,即0161122=+-x x (※) ……………………(9分)∵071624)11(2<-=⨯⨯--=∆.∴方程(※)无实数根. 所以不存在点P 使得AB MN 21=. …………………(10分)版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.HbmVN 。

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.方程2x x =的解是()A .13x =,23x =-B .11x =,20x =C .11x =,21x =-D .13x =,21x =-2.四边形ABCD 的对角线AC 、BD 互相平分,要使它成为矩形,可添加条件()A .AB CD=B .AC BD=C .AB CD∥D .AC BD⊥3.若反比例函数的图象经过()2,2-,()1,a ,则=a ()A .1B .-1C .4D .-44.一个不透明的箱子里装有红色小球和白色小球共4个,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量的重复实验后,发现摸到红色小球的频率稳定于0.75左右.请估计箱子里白色小球的个数是()A .1B .2C .3D .45.如图,点C 是线段AB 的黄金分割点,(BC AC >),下列结论错误的是()A .12BC AB -=B .2BC AB AC =⋅C .32BC AC =D .0.618ACBC≈6.某超市一月份的营业额为5万元,第一季度的营业额共60万元,如果平均每月增长率为x ,则所列方程为()A .()25160x +=B .()251260x +=C .()51260x +=D .()()2511160x x ⎡⎤++++=⎣⎦7.如图,在△ABC 中,点D 为AB 边上一点,点E 为BC 边上一点,DE AC ∥,若12BD AD =,则△EDO 和△ACO 的面积比为()A .13B .14C .19D .128.如图,在矩形ABCD 中,BC AB <,折叠矩形ABCD 使点B 与点D 重合,点C 与点E 重合,折痕与AB 、CD 相交于点M 、N ,若2AM =,8CD =,则MN =()A .B .C .D9.如图,在正方形ABCD 中,点E 、F 分别是BC 、CD 的中点,DE 、AF 交于点G ,连接BG .若DAF n ∠=︒,则ABG ∠的度数为()A .2n ︒B .90n ︒-︒C .45n ︒+︒D .1353n ︒-︒10.在同一直角坐标系中,一次函数y kx k =-与反比例函数ky x=(k≠0)的图象大致是A .B .C .D .二、填空题11.关于x 的一元二次方程2620kx x +-=有两个实数根,则k 的取值范围是______.12.在菱形ABCD 中,对角线6BD =,8AC =,则菱形ABCD 的周长为______.13.将方程22490x x --=配方成()2x m n +=的形式为______.14.在平面直角坐标系中,△ABC 的顶点A 的坐标为()6,4,以原点O 为位似中心,把△ABC 缩小为原来的12,得到A B C '''V ,则点A 的对应点A '的坐标为______.15.在反比例函数21a y x +=的图像上有()14,A y -,()23,B y -,()32,C y 三个点,则1y ,2y ,3y 的大小关系为______.16.如图,在平面直角坐标系中,△ABO 边AB 平行于y 轴,反比例函数(0)k y x x=>的图像经过OA 中点C 和点B ,且△OAB 的面积为9,则k=________17.如图,在矩形ABCD 中,AB =BC =ABM ,使AM AB =,点E 、点F 分别为BC 、BM 的中点,若15ABM S =V ,则EF =______.18.如图,以▱ABCO 的顶点O 为原点,边OC 所在直线为x 轴,建立平面直角坐标系,顶点A 、C 的坐标分别是(2,4)、(3,0),过点A 的反比例函数y=kx的图象交BC 于D ,连接AD ,则四边形AOCD 的面积是_____.三、解答题19.解方程:(1)解方程:267x x -=;(2)()()22231x x -=-.20.一个不透明的箱子里装有4个小球,小球上面分别写有A 、B 、C 、D ,每个小球除标记外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球.(1)求摸到小球A 的概率是______;(2)现从该箱子里摸出1个小球,记下标记后放回箱子里,摇匀后,再摸出1个小球,请用画树状图或列表格的方法,求出两次摸出的小球都不是A 的概率.21.如图,菱形ABCD 的对角线AC 和BD 相交于点O ,DE AB ⊥于点E 交AC 于点P ,BF CD ⊥于点F .(1)判断四边形DEBF 的形状,并说明理由;(2)如果3BE =,6BF =,求出DP 的长.22.如图,身高1.5米的李强站在A 处,路灯底部O 到A 的距离为20米,此时李强的影长5AD =米,李强沿AO 所在直线行走12米到达B 处.(1)请在图中画出表示路灯高的线段和李强在B 处时影长的线段;(2)请求出路灯的高度和李强在B 处的影长.23.某商场销售一种服装,每件服装的进价为40元,当每件售价为60元时,每星期可卖出300件,为了尽快减少库存,该商场决定降价销售,经市场调查发现,当每件降价1元时,每星期可多卖出20件.设每件服装的售价为x 元,每星期销售量为y 件.(1)求y 与x 的函数关系式;(2)当每件服装售价为多少元时,每星期可获得6000元销售利润?24.如图,反比例函数11k y x=(0k ≠,0x <)的图象与直线22y k x b =+()20k ≠交于()2,6A -和()6,B n -,该函数关于x 轴对称后的图象经过点()4,C m -.(1)求1y 和2y 的解析式及m 值;(2)根据图象直接写出12k k x b x≥+时x 的取值范围;(3)点M 是x 轴上一动点,求当AM MC -取得最大值时M 的坐标.25.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,AE BC ⊥交CB 延长线于E ,CF AE ∥交AD 延长线于点F .(1)求证:四边形AECF 是矩形;(2)若4AE =,5AD =,求OB 的长.26.如图,已知点()4,2A -、(),4B n -两点是一次函数y kx b =+的图象与反比例函数图象my x=的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出不等式0kkx b x+->的解集;(3)求△AOB 的面积.27.在△ABC 中,90ACB ∠=︒,60ABC ∠=︒,点D 是直线AB 上一动点,以CD 为边,在它右侧作等边△CDE .(1)如图1,当E 在边AC 上时,直接判断线段DE ,EA 的数量关系______;(2)如图2,在点D 运动的同时,过点A 作AF CE ∥,过点C 作CF AE ∥,两线交于点F ,判断四边形AECF 形状,并说明理由;(3)若263BC =,当四边形AECF 为正方形时,直接写出AD 的值.参考答案1.B 2.B3.D 4.A 5.C 6.D 7.C 8.B 9.A 10.A 11.92k ≥-且0k ≠【分析】根据一元二次方程的定义以及根的判别式的意义可得Δ=22-4=6-4(2)0b ac k ⨯-≥且k≠0,求出k 的取值范围即可.【详解】解:∵一元二次方程2620kx x +-=有两个实数根,∴22Δ=-4=6-4(2)00b ac k k ≠⎧⨯-≥⎨⎩,∴92k ≥-且0k ≠,故答案为:92k ≥-且0k ≠.12.20【分析】菱形的对角线性质:菱形的对角线互相垂直平分且平分每一组对角.根据菱形对角线的性质和勾股定理可得边长为5,再根据菱形的性质:四边相等,可得周长为20.【详解】 菱形的对角线互相垂直平分,∴5=∴菱形ABCD 的周长=45=20⨯故答案为20.13.()21112x -=【分析】先将-9移到等号右边变成2249x x -=,然后等号左右两边同时除以2得到2922x x -=,最后等号左右两边同时加上1,再把左边变成完全平方的形式即可.【详解】解:22490x x --=2249x x -=2922x x -=292112x x -+=+()21112x -=故答案为:()21112x -=【点睛】本题考查了一元二次方程的配方,掌握如何配方是解题关键.14.()3,2或()3,2--【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或k -,即可求得答案.【详解】解:ABC ∆ 的顶点(6,4)A ,以原点O 为位似中心,把ABC ∆缩小为原来的12,得到△A B C ''',∴点A 的对应点A '的坐标为1(62⨯,142⨯或1[6()2⨯-,14()]2⨯-,即(3,2)或(-3,-2).故答案为:(3,2)或(-3,-2).【点睛】此题主要考查了位似变换,解题的关键是正确掌握位似图形的性质.15.312y y y >>【分析】先由21a +得到函数在第一象限和第三象限的函数值随x 的增大而减小,然后即可得到1y ,2y ,3y 的大小关系.【详解】解:21a + 210a +> ,∴反比例函数在第一象限和第三象限的函数值随x 的增大而减小,4302-<-<< ,312y y y ∴>>(或213y y y <<).故答案为:312y y y >>或213y y y <<.16.6【分析】延长AB 交x 轴于D ,根据反比例函数k y x =(x >0)的图象经过点B ,设B k m m ⎛⎫ ⎪⎝⎭,,则OD =m ,根据△OAB 的面积为9,列等式可表示AB 的长,表示点A 的坐标,根据线段中点坐标公式可得C 的坐标,从而得出结论.【详解】解:延长AB 交x 轴于D ,如图所示:∵AB y ∥轴,∴AD ⊥x 轴,∵反比例函数ky x=(x >0)的图像经过OA 中点C 和点B ,∴设B k m m ⎛⎫⎪⎝⎭,,则OD =m ,∵△OAB 的面积为9,∴192AB OD ⋅=,即12AB•m =9,∴AB =18m ,∴A (m ,18k m+),∵C 是OA 的中点,∴C 11822k m m +⎛⎫ ⎪⎝⎭,,∴11822k k m m+=⋅,∴k =6,故答案为:6.17.1或5【分析】过点M 作GH AB ∥,交直线AD 于点G ,交直线BC 于点H ,由15ABMS =V ,可求得AG 、BH 长,进而由BC =CH 长,然后由AM AB ==,求得GM 和HM 长,再用勾股定理求得CM 长,最后由点E 、点F 分别为BC 、BM 的中点利用中位线性质求得EF 长.【详解】过点M 作GH AB ∥,交直线AD 于点G ,交直线BC 于点H ,则四边形ABHG 是矩形.①如图1所示,当点M 在矩形ABCD 内部时,∵11521522ABMS AB AG AG =⋅=⨯⨯=V ∴32AG BH ==∴()()2222523242GM AM AG =-=-=∴42322CH =-=,52422MH =-=∴()()2222222CM MH CH =+=+=∵点E 、点F 分别为BC 、BM 的中点∴EF 是BCM 的中位线,∴112122EF CM ==⨯=如图2所示,当点M 在直线AD 右侧,直线AB 下方时,由①得32AG BH ==,42GM =2MH =12EF CM =∴2322CH BC BH =+==∴()()222227210CM MH CH =++=∴152EF CM ==如图3所示,当点M 在直线AD 左侧,直线AB 上方时,由①得32AG BH ==,42GM =,2CH =,12EF CM =∵425292MH MG GH =+=+=∴()()2222922241CM MH CH =+=+=∴1412EF CM ==如图4所示,当点M 在直线AD 左侧,在直线AB 下方时,由②得2CH =由③得2MH =∴()()22227292265CM MH CH ++=∴1652EF CM ==故本题答案为1或54165【点睛】本题考查了矩形的性质、等腰三角形的性质、勾股定理、三角形中位线等知识点,利用分类讨论的思想正确的作出各种情况所对应的图形是解答本题的关键.18.9【详解】试题分析:∵四边形ABCD 是平行四边形,A 、C 的坐标分别是(2,4)、(3,0),∴点B 的坐标为:(5,4),把点A (2,4)代入反比例函数ky x=得:k=8,∴反比例函数的解析式为:8y x=;设直线BC 的解析式为:y kx b =+,把点B (5,4),C (3,0)代入得:54{30k b k b +=+=,解得:k=2,b=﹣6,∴直线BC 的解析式为:26y x =-,解方程组26{8y x y x=-=得:42x y =⎧⎨=⎩,或1{8x y =-=-(不合题意,舍去),∴点D 的坐标为:(4,2),即D 为BC 的中点,∴△ABD 的面积=14平行四边形ABCD 的面积,∴四边形AOCD 的面积=平行四边形ABCO 的面积﹣△ABD 的面积=3×4﹣14×3×4=9;故答案为9.考点:1.平行四边形的性质;2.反比例函数系数k 的几何意义;3.综合题;4.压轴题.19.(1)11x =-,27x =(2)134x =,212x =-【分析】(1)用公式法求解即可;(2)按照因式分解法的步骤:等式的右边化为0,左边因式分解,写成两个一元一次方程,分别求解即可.(1)解:2670--x x =,∵1a =6b =-7c =-,∴243628640b ac -=+=>,∴46822b x a -±==,∴11x =-,27x =;(2)解:()()222310x x ---=,()()2312310x x x x -+---+=,∴()430x -=或()210x --=,∴134x =,212x =-.【点睛】本题考查了一元二次方程的解法,熟练掌握解一元二次方程的方法是解题的关键.20.(1)14(2)916【分析】(1)共有4个小球,其中A 只有1个,因此随机摸出1球,是A 的概率为14;(2)用列表法列举出所有可能出现的结果,进而求出相应的概率即可.(1)解:一共有4个小球,其中写A 的只有1个,所以随机摸出1球,摸到小球A 的概率是14,故答案为:14;(2)解:用列表法表示所有可能出现的结果如下:ABCDA ()A A ,()AB ,()AC ,()AD ,B ()B A ,()B B ,()BC ,()BD ,C ()C A ,()C B ,()C C ,()C D ,D()D A ,()D B ,()D C ,()D D ,由表可知共有16种结果,每种结果出现的可能性相同,其中两次摸出的球不是A 的结果有9种∴两次摸出的小球没有A 的概率为916【点睛】本题考查列表法或树状图法求随机事件的概率,列举出所有可能出现的结果的情况是解决问题的关键.21.(1)矩形,理由见解析(2)154【分析】(1)根据菱形的性质和矩形的判定方法即可解答;(2)根据菱形的性质得到PB PD =,根据矩形的性质得到6DE FB ==,进而利用勾股定理即可解答.(1)四边形DEBF 是矩形理由:∵DE AB ⊥于E ,BF CD ⊥于F ,∴90DEB BFD ∠=∠=︒,∵四边形ABCD 是菱形,∴AB CD ∥,∴180DEB EDF ∠+∠=︒,∴90EDF DEB BFD ∠=∠=∠=︒,∴四边形DEBF 是矩形;(2)如图,连接PB ,∵四边形ABCD 是菱形,∴AC 垂直平分BD ,∴PB PD =,由(1)知,四边形DEBF 是矩形,∴6DE FB ==,设PD BP x ==,则()6PE x =-,在Rt △PEB 中,由勾股定理得:222PE BE BP +=,即,()22263x x -+=,解得154x =,∴154PD =.22.(1)见解析(2)路灯高度为7.5米,李强影长2米【分析】(1)利用中心投影的性质画出图形即可;(2)设HO x =米,由证得AED OHD ∽△△得AD AEDO HO=求出HO 的值,再证明FBC HOC ∽△△得到BC BFCO HO=,从而求解.(1)解:如图HO ,BC 即为所求(2)解:由题意知:1.5BF AE ==米,20OA =米,12AB =米,∴20128BO OA AB =-=-=米设HO x =米∵90HOA EAD ∠=∠=︒又∵D D ∠=∠∴AED OHD ∽△△∴AD AEDO HO =即1.5525x =解得,7.5x =∵90FBC HOD ∠=∠=︒又∵FCB FCO ∠=∠∴FBC HOC ∽△△∴BC BFCO HO =即1.587.5BC BC =+解得2BC =答:路灯高度为7.5米,BC 长2米23.(1)201500y x =-+(2)55元【分析】(1)根据当每件售价为60元时,每星期可卖出300件,当每件降价1元时,每星期可多卖出20件,列出关系式即可;(2)根据利润=(售价-进价)×数量列出方程求解即可.(1)解:由题意得:()3002060y x =+-201500x =-+(2)解:由题意得,()()201500406000x x -+-=整理,得211533000x x -+=,解得155x =,260x =(不合题意舍).答:当每件售价55元时,每星期可获得6000元销售利润.24.(1)112y x-=,28y x =+,3m =-(2)20x -≤<或6x ≤-(3)()6,0-【分析】(1)根据点A 坐标可求出1y ,即可得点B 坐标,由A 、B 两点的坐标可得2y 的函数表达式;(2)根据题意,可知要求使得反比例函数1y 在直线2y 的上方,所对应的x 的范围(3)点C 关于x 轴的对称点为()4,3F -,当点A 、F 、M 共线时,可得AM MC -最大,故点M 为直线AF 与x 轴的交点坐标.(1)∵图象过点()2,6A -,∴162k =,得112k =-,∴112y x-=;把点()6,B n -代入112y x-=中得126n -=-,∴2n =,点B 为()6,2-,∵12y k x b =+过点A ,B ,∴把()2,6A -和()6,2B -代入得2662k b k b -+=⎧⎨-+=⎩,解得18k b =⎧⎨=⎩,∴28y x =+易知()4,C m -关于x 轴对称点()4,F m --在12y x-=图象上,∴124m --=-∴3m =-;(2)由图象得20x -≤<或6x ≤-;(3)由(1)得,()2,6A -,()4,3C --,点C 关于x 轴的对称点为()4,3F -,射线AF 交x 轴于点M ,设AF 的解析式为y kx b =+,把()2,6A -,()4,3F -分别代入y kx b =+中,2643k b k b -+=⎧⎨-+=⎩,解得329k b ⎧=⎪⎨⎪=⎩,∴AF 的解析式为392y x =+,令0y =,则6x =-,∴当AM MC -最大时M 的坐标为(6,0)-.25.(1)证明见详解;5【分析】(1)根据菱形的性质;矩形的判定:有一个角是直角的平行四边形是矩形便可求证;(2)根据菱形的性质,在Rt △AEB ,Rt △AEC ,Rt △AOB 中分别利用勾股定理即可求出OB 的长;(1)证明:∵四边形ABCD 是菱形,∴AD ∥BC ,∴AF ∥EC ,∵AE ∥CF ,∴四边形AECF 是平行四边形,∵AE ⊥BC∴∠AEC=90°,∴平行四边形AECF 是矩形;(2)解:四边形ABCD 是菱形,则AB=BC=AD=5,线段AC ,BD 互相垂直平分,Rt △AEB 中,由勾股定理得3==,Rt △AEC 中,CE=CB +BE=5+3=8,==,Rt △AOB 中,AO=12AC=,故OB 26.(1)2yx =--;8y x=-(2)4x <-或02x <<(3)6-【分析】(1)把()4,2A -代入反比例函数my x=得出m 的值,再把AB 、代入一次函数的解析式y kx b =+,运用待定系数法分别求其解析式;(2)观察函数图象得到当4x <-或02x <<时,一次函数的图象在反比例函数图象上方,即0kkx b x+->.(3)先求出直线2y x =--与x 轴交点C 的坐标,然后利用S △AOB=S △AOC+S △BOC 进行计算即可;(1)解:∵()4,2A -在my x=上,∴m=-8.∴反比例函数的解析式为8y x=-.∵点(),4B n -在8y x=-上,∴n=2.∴()2,4B -.∵y=kx+b 经过A (-4,2),B (2,-4),∴4224k b k b -+=⎧⎨+=-⎩.解得:12k b =-⎧⎨=-⎩.∴一次函数的解析式为2y x =--.(2)解:根据题意,结合图像可知:当4x <-或02x <<时,一次函数的图象在反比例函数图象上方,即0kkx b x+->.(3)解:∵2yx =--,∴当y=0时,x=-2.∴点C (-2,0).∴OC=2.∴S △AOB=S △ACO+S △BCO=12×2×4+12×2×2=6;27.(1)相等(2)菱形,理由见解析【分析】(1)根据已知条件证明30ADE A ∠=︒=∠即可解答(2)根据已知条件可知四边形AECF 是平行四边形,再证明BCD OCE ≌△△,()OCE OAE SAS ≌△△即可解答(3)分点D 在AB 延长线上或在AB 上,通过解CDA 即可(1)∵90ACB ∠=︒,60ABC ∠=︒∴30A ∠=︒∵CDE △为等边三角形∴60DEC ∠=︒∵DEC ∠是ADE 外角∴DEC A ADE∠=∠+∠∴30ADE A∠=︒=∠∴DE EA=故答案为相等.(2)取AB 中点O ,连接OC 、OE∵AF CE ∥,CF AE∥∴四边形AECF 是平行四边形∵90ACB ∠=︒∴OC OB OA==∵60ABC ∠=︒∴△BCO 为等边三角形∵△CDE 是等边三角形∴60DCB OCE DCO∠=∠=︒-∠∴OC BC =CD CE=∴BCD OCE≌△△∴60EOC B ∠=∠=︒∴60EOA ∠=︒又∵OE OE =,OA OC=∴()OCE OAE SAS ≌△△∴CE EA=∴平行四边形AECF 是菱形(3)当点D 在AB 延长线上时,作CH AD ⊥于H ,当四边形AECF 为正方形时,45ACE BCE ∠=∠=︒,90AEC ∠=︒∵60DCE ∠=︒∴15DCB ∠=︒∵60ABC ∠=︒∴45CDH ∠=︒∵63BC =∴322AC ==∴122CH AC ==∴36AH =∵CDE △为等边三角形∴2CH DH ==∴62AD =当点D 在AB 上时作CH AB ⊥于H ,同理可得CDH △是等腰直角三角形,则AD AH DH=-综上AD=。

北师大版九年级上册数学期末考试试题及答案

北师大版九年级上册数学期末考试试题及答案

北师大版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下面的几何体中,俯视图为三角形的是()A .B .C .D .2.下列函数关系式中,y 是x 的反比例函数的是()A .3y x=B .31y x =+C .3y x=D .23y x =3.方程(x ﹣3)(x +4)=0的解是()A .x =3B .x =﹣4C .x 1=3,x 2=﹣4D .x 1=﹣3,x 2=44.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是()A .12B .13C .14D .155.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为()A .35B .34C .5D .16.已知菱形的周长为40cm ,两条对角线的长度比为3:4,那么两条对角线的长分别为()A .6cm ,8cmB .3cm ,4cmC .12cm ,16cmD .24cm ,32cm7.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=()A .1:3B .1:4C .2:3D .1:28.函数21a y x--=(a 为常数)的图象上有三点(﹣4,y 1),(﹣1,y 2),(2,y 3),则函数值y 1,y 2,y 3的大小关系是()A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 19.如图,已知O 是矩形ABCD 的对角线的交点,∠AOB=60°,作DE ∥AC ,CE ∥BD ,DE 、CE 相交于点E.四边形OCED 的周长是20,则BC=()A .5B .C .10D .10.如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3,…是分别以A 1,A 2,A 3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C 1(x 1,y 1),C 2(x 2,y 2),C 3(x 3,y 3),…均在反比例函数4y x=(x >0)的图象上.则y 1+y 2+…+y 8的值为()A .B .6C .D .二、填空题11.如果x :y =1:2,那么x yy+=_____.12.若点(2)m -,在反比例函数6y x=的图像上,则m =______.13.若关于x 的一元二次方程2210x x a -+-=有实数根,则a 的取值范围为_______________.14.如图,Rt ABC ∆中,∠ACB=90°,AC=4,BC=3,CD AB ⊥则tan BCD ∠=_______.15.如图,l 是一条笔直的公路,道路管理部门在点A 设置了一个速度监测点,已知BC 为公路的一段,B 在点A 的北偏西30°方向,C 在点A 的东北方向,若AB=50米.则BC 的长为__________米.(结果保留根号)16.如图,等边△ABC 的边长为6,点D 在AC 上且DC =2,点E 在BC 上,连接AE 交BD 于点F ,且∠AFD =60°,若点M 是射线BC 上一点,当以B 、D 、M 为顶点的三角形与△ABF 相似时,则BM 的长为_____.17.如图,一次函数的图象y x b =-+与反比例函数的图象ay x=交于A(2,﹣4),B(m,2)两点.当x 满足条件______________时,一次函数的值大于反比例函数值.三、解答题1811tan 4512-⎛⎫+︒+ ⎪⎝⎭19.解方程2213x x+=20.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同.两辆汽车经过这个十字路口,求下列事件的概率:(1)两辆车全部继续直行(2)至少有一辆车向左转21.已知:x 2+3x +1=0.求(1)x +1x;(2)x 2+21x .22.如图,在ABC ∆中,点,E F 分别在,AB AC 上,且AE ABAF AC=.(1)求证:AEF ABC ∆∆ ;(2)若点D 在BC 上,AD 与EF 交于点G ,求证:EG FGBD CD=.23.“脱贫攻坚战”打响以来,全国贫困人口减少了8000多万人。

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试卷及答案

北师大版九年级上册数学期末考试试题一、单选题1.下列方程中,是关于x的一元二次方程的是()A.x(x-2)=0B.x2-1-y=0C.x2+1=x2-2x D.ax2+c=0 2.某几何体的三种视图如图所示,则此几何体是()A.圆锥B.长方体C.圆柱D.四棱柱3.如图,两条直线被三条平行线所截,若AC=8,CE=12,BD=6,则DF的值是()A.15B.14C.10D.94.在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下()A.不能够确定谁的影子长B.小刚的影子比小红的影子短C.小刚跟小红的影子一样长D.小刚的影子比小红的影子长5.正方形ABCD的一条对角线长为6,则这个正方形的面积是()A.B.18C.24D.366.如果两个相似三形对应边之比1:9,那么它们的对应中线之比是()A.1:2B.1:3C.1∶9D.1:817.已知点P在双曲线y=6x第一象限图象上,PA⊥x轴于点A,则△OPA的面积为()A.2B.3C.4D.58.如图,菱形OABC在平面直角坐标系中的位置如图所示,45AOC∠=︒,2OA=,则点C 的坐标为()A .)2,1B .2,2C .(2D .)21,1+9.学校为了对学生进行劳动教育,开辟一个面积为130平方米的矩形种植园,打算一面利用长为15米的仓库墙面,其它三面利用长为33米的围栏.如图,如果设矩形与墙面垂直的一边长为x 米,则下列方程中符合题意的是()A .(332)130x x -=B .(15)130x x -=C .(152)130x x -=D .(33)130x x -=10.如图,在正方形ABCD 中,点E 在对角线AC 上,EF ⊥AB 于点F ,EG ⊥BC 于点G ,连接DE ,若AB =10,AE =2,则ED 的长度为()A .7B .10C 58D 82二、填空题11.一个不透明的布袋中装有除颜色外完全相同的红、白两种玻璃球,已知白球有45个.同学们通过多次试验后发现摸到红色球的频率稳定在0.25左右,则袋中红球个数可能为_____个.12.在Rt △ABC 中,∠C =90°,AB =2AC ,则∠A =_____°.13.已知两个直角三角形的三边长为3,4,m 和6,8,n ,且这两个直角三角形不相似,则m n +的值为__________.14.如图,菱形ABCD 中,DE AB ⊥,垂足为E ,点F 、G 分别为边AD 、DC 的中点,5,8EF FG ==,则ABCD S =菱形___________.15.如图,在平面直角坐标系中,△OAB 与△OCD 位似,点O 是它们的位似中心,已知B (﹣4,0),D (2,0),C (3,﹣2),则点A 的坐标为_____.16.如图所示,某校数学兴趣小组利用标杆BE 测量某建筑物的高度,已知标杆BE 高1.5米,测得AB=1.8米,AC =9米,则建筑物CD 的高是_____米.17.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE 垂直平分BO ,交BD 于点E ,若AE=ABCD 的周长为_____.三、解答题18.解方程(1)x2﹣6x=﹣5;(2)2x2﹣5x+1=0;(3)x2+4x=5(x+4).19.如图,D,E分别是△ABC的边AB,AC上的点,AD=2,AC=6,13AEAB=,BC154=.(1)求证:△ADE∽△ACB;(2)求DE的长.20.某商店销售一款进价为70元的童装,每件售价为110元时,每天可售出20件.为了尽快减少库存,商店决定降价销售,经市场调查发现,该童装每降价1元,每天可多售出2件,每件童装售价定为多少元时,该商店每天销售这款童装的总利润为1200元?21.如图,一次函数y=2x﹣10与反比例函数y ax=的图象在第一象限交于点A(8,m),与y轴的负半轴交于点B.(1)求反比例函数y ax=的表达式;(2)若点C坐标为(﹣5,0),在第限内的y ax=的图象上是否存在一点D使△OCD的面积等于△BOA的面积,若存在,求出点D的坐标:若不存在,说明理由;(3)请直接写出关于x的不等式0<2x﹣10ax<成立的x的取值范围.22.如图,BD是△ABC的角平分线,过点作DE//BC交AB于点E,DF//AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠ABC=60°,∠ACB=45°,CD=6,求菱形BEDF的边长.23.某水果批发商经销一种水果,进货价是12元/千克,如果销售价定为22元/千克,每日可售出500千克;经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)若要每天销售盈利恰好为6000元,同时又可使顾客得到实惠,每千克应涨价为多少元?(2)当销售价是多少时,每天的盈利最多?最多是多少?24.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.25.如图,一次函数y=ax+b的图像与反比例函数kyx=的图像交于C、D两点,与x、y轴分别交于B、A两点,CE⊥x轴,且OB=4,CE=3,12 CE BE=(1)求一次函数的解析式和反比例函数的解析式.(2)求△OCD的面积.26.如图1,E为正方形ABCD的边BC上一点,F为边BA延长线上一点,且CE=AF.(1)求证:DE⊥DF;(2)如图2,若点G为边AB上一点,且∠BGE=2∠BFE,△BGE的周长为8,求四边形DEBF 的面积;(3)如图3,在(2)的条件下,DG与EF交于点H,连接CH且CH=AG 的长.参考答案1.A2.C3.D4.A5.B6.C7.B8.B9.A10.C11.1512.6013.5+10+14.9615.(﹣6,4)16.7.517.4+【分析】根据矩形的性质和线段垂直平分线的性质可证明△ABO 是等边三角形,解直角三角形求出AB 、AD 即可求解.【详解】解:∵四边形ABCD 是矩形,∴AO=OC=BO=OD ,∠BAD=90°,∵AE 垂直平分BO ,∴AO=AB ,∠AEB=90°,∴AO=AB=BO ,∴△ABO 是等边三角形,∴∠ABO=60°,在Rt △ABE 中,AE =∴AB =sin 60AE =2=,在Rt △ABD 中,AD=AB·tan60°=∴矩形ABCD 的周长为2(AB+AD )=4+,故答案为:4+.【点睛】本题考查矩形的性质、线段垂直平分线的性质、等边三角形的判定与性质、解直角三角形,熟练掌握矩形的性质和线段垂直平分线的性质,证得△ABO 是等边三角形是解答的关键.18.(1)x 1=5,x 2=1(2)x1=x2=(3)x 1=﹣4,x 2=5【分析】(1)先移项,然后分解因式,转化为两个一元一次方程,解一元一次方程即可.(2)利用公式法求解即可;(2)先移项,然后提公因式分解因式,转化为两个一元一次方程,解一元一次方程即可.(1)解:x 2﹣6x =﹣5,x 2﹣6x+5=0,(x ﹣5)(x ﹣1)=0,∴x ﹣5=0或x ﹣1=0,∴x 1=5,x 2=1.(2)2x 2﹣5x+1=0,这里a =2,b =﹣5,c =1,∴Δ=(﹣5)2﹣4×2×1=17>0,∴x 524b a -==,∴x 154=,x 254=.(3)x 2+4x =5(x+4),x (x+4)﹣5(x+4)=0,(x+4)(x ﹣5)=0,∴x+4=0或x ﹣5=0,∴x 1=﹣4,x 2=5.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,解一元二次方程的方法有直接开平方法、因式分解法、配方法、公式法等.19.(1)见解析(2)54【分析】(1)根据两边成比例夹角相等,证明三角形相似即可;(2)利用相似三角形的性质解决问题即可.(1)证明:∵AD=2,AC=6,13 AEAB=,∴13 AE ADAB AC==,∵∠A=∠A,∴△ADE∽△ACB;(2)解:∵△ADE∽△ACB,∴13 DE ADBC AC==,∵BC15 4 =,∴DE1155 344 =⨯=.【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.20.90元【分析】设每件童装售价定为x元,则每件童装的销售利润为(x﹣70)元,每天可售出(240﹣2x)件,利用该商店每天销售这款童装获得的总利润=每件的销售利润×每天的销售量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合要尽快减少库存,即可得出每件童装的售价应定为90元.【详解】解:设每件童装售价定为x元,则每件童装的销售利润为(x﹣70)元,每天可售出20+2(110﹣x)=(240﹣2x)件,依题意得:(x﹣70)(240﹣2x)=1200,整理得:x2﹣190x+9000=0,解得:x1=90,x2=100.又∵要尽快减少库存,∴x=90.答:每件童装的售价应定为90元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(1)y48 x =(2)存在D(3,16);(3)5<x<8【分析】(1)将点A(8,m)代入y=2x﹣10得,m=6,再将点A代入反比例函数解析式即可;(2)由S△OCD=S△AOB,得12⨯OC×yD=40,则yD=16,从而得到点D的坐标;(3)先求出直线AB与x轴交点坐标,再根据A点坐标可得答案.(1)解:将点(8,m)代入y=2x﹣10得,2×8﹣10=m,∴m=6,∴A(8,6),将点A(8,6)代入yax=得,a=6×8=48,∴y48 x =;(2)将x=0代入y=2x﹣10得,y=﹣10,∴B(0,﹣10),∴OB=10,∴S△AOB12=⨯OB×812=⨯10×8=40,∵S△OCD=S△AOB,∴12⨯OC×yD=40,∴yD=16,∴48x=16,∴x=3,∴D(3,16);(3)∵直线AB的解析式为y=2x-10,∴当y=0时,x=5,∵A(8,6),∴不等式0<2x ﹣10a x<的解集为5<x <8.22.(1)见解析;(2)【分析】(1)由题意可证BE =DE ,四边形BEDF 是平行四边形,即可证四边形BEDF 为菱形;(2)过点D 作DH ⊥BC 于H ,由直角三角形的性质可求解.【详解】证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形DEBF 是平行四边形,∵DE ∥BC ,∴∠EDB =∠DBF ,∵BD 平分∠ABC ,∴∠ABD =∠DBF =12∠ABC ,∴∠ABD =∠EDB ,∴DE =BE ,又∵四边形BEDF 为平行四边形,∴四边形BEDF 是菱形;(2)如图,过点D 作DH ⊥BC 于H ,∵DF ∥AB ,∴∠ABC =∠DFC =60°,∵DH ⊥BC ,∴∠FDH =30°,∴FH =12DF ,DH ,∵∠C =45°,DH ⊥BC ,∴∠C =∠HDC =45°,∴DC DH =2DF =6,∴DF =,∴菱形BEDF 的边长为23.(1)5元;(2)当销售价是592时,每天的盈利最多,最多是6125元【分析】(1)设每千克应涨价为x 元,根据(售价﹣进价+涨价额)×销售量=6000,可得关于x 的一元二次方程,求得方程的解并根据要使顾客得到实惠,可得答案;(2)设销售价为a 元时,每天的盈利为w ,由题意得w 关于a 的二次函数,将其写成顶点式,根据二次函数的性质可得答案.【详解】解:(1)设每千克应涨价为x 元,由题意得:(22﹣12+x )(500﹣20x )=6000,整理得:x 2﹣15x +50=0,解得:x 1=5,x 2=10.∵要使顾客得到实惠,∴x =5.∴每千克应涨价5元.(2)设销售价为a 元时,每天的盈利为w ,由题意得:w =(a ﹣12)[500﹣20(a ﹣22)]=﹣20a 2+1180a ﹣11280=﹣20259()2a +6125,∵二次项系数为负,抛物线开口向下,∴当a =592时,w 有最大值为6125.∴当销售价是592时,每天的盈利最多,最多是6125元.24.(1)证明见解析;(2)【详解】试题分析:(1)首先证明△ABC 是等边三角形,进而得出∠AEC=90°,四边形AECF 是平行四边形,即可得出答案;(2)利用勾股定理得出AE 的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD 是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=12AD,EC=12BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)在Rt△ABE中,AE==,所以,S菱形ABCD=考点:1.菱形的性质;2..矩形的判定.25.(1)一次函数的解析式为122y x=-+,反比例函数的解析式为6yx=-(2)8【分析】(1)根据已知条件求出B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)由一次函数解析式求得A的坐标,然后联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.(1)解:12CEBE=,3CE=,26BE CE∴==,4OB=2 OE BE OB∴=-=,(2,3)C ∴-,(4,0)B 将(2,3)C -代入k y x=得:236k =-⨯=-;将(2,3)C -,(4,0)B 代入y ax b =+得2340a b a b -+=⎧⎨+=⎩,解得122a b ⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为122y x =-+,反比例函数的解析式为6y x =-;(2)解: 122y x =-+(0,2)A ∴由1226y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩,解得1123x y =-⎧⎨=⎩,2261x y =⎧⎨=-⎩,(2,3)C - (6,1)D ∴-,∴114143822COD BOD BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=.26.(1)见解析(2)16(3)43【分析】(1)利用SAS 证明△ADF ≌△CDE ,则∠ADF =∠CDE ,得∠FDE =∠ADC =90°;(2)由∠BGE =2∠BFE ,∠BGE =∠BFE+∠GEF ,得∠GFE =∠GEF ,则GF =GE ,可求出AB =4,从而得出答案;(3)过点H 作HP ⊥HC 交CB 的延长线于点P ,证明HDC HEP ≅ ,进而得出∠HCD=∠HPE=45°,过点H 作MN//AD ,交AB 于M ,CD 于N ,则HNC △是等腰直角三角形,即可得出HN =CN =3,MH =1,得HD =,再根据MH//AD ,得14MH GH AD DG ==,则GD 3=,从而解决问题.(1)证明:∵四边形ABCD 是正方形,∴AD =CD ,∠DAF =∠DCE =90°,∵CE=AF,∴△ADF≌△CDE(SAS),∴∠ADF=∠CDE,∴∠FDE=∠ADC=90°,∴DE⊥DF;(2)解:∵∠BGE=2∠BFE,∠BGE=∠BFE+∠GEF,∴∠GFE=∠GEF,∴GF=GE,∴BE+BG+EG=BE+AB+CE=2AB=8,∴AB=4,∴S正方形ABCD=4×4=16,∵△ADF≌△CDE,=S△CDE,∴S△ADF∴四边形DEBF的面积=S正方形ABCD=16;(3)解:过点H作HP⊥HC交CB的延长线于点P,∵DE⊥DF,DF=DE,∴△DEF是等腰直角三角形,∵GE=GF,DF=DE,∴DG垂直平分EF,∴∠DHE=∠DCE=90°,∴∠DHE-∠EHC=∠PHC-∠EHC,即∠DHC=∠EHP ,∵在四边形DHEC 中,∠HDC+∠HEC=180°,∠HEC+∠HEP=180°,∴∠HEP=∠HDC ,,DHC EHPDH EH HDC HEP∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)HDC HEP ∴≅ ∴PH HC =,∠HCD=∠HPE ,PHC ∴ 是等腰直角三角形,∴∠HCD=∠HPE=45°,过点H 作MN//AD ,交AB 于M ,CD 于N ,则HNC △是等腰直角三角形,∵CH =,∴HN =CN =3,MH =1,∴HD =∵MH//AD ,∴△GHM ∽△GDF ,∴14MHGH AD DG ==,∴GD 3=,∴AG 43===.∴AG 的长为43.。

新北师大版九年级数学上册期末试卷及完整答案

新北师大版九年级数学上册期末试卷及完整答案

新北师大版九年级数学上册期末试卷及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定 6.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点7.抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①;2a b 0+=②;③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-;⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++.其中正确的有( )A .5个B .4个C .3个D .2个8.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2(32)(32)+-=__________.2.因式分解:a 3-ab 2=____________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =__________度.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.如图,已知Rt △ABC 中,∠B=90°,∠A=60°,AC=23+4,点M 、N 分别在线段AC 、AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为__________.三、解答题(本大题共6小题,共72分)1.解方程: 22142x x x +=--2.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.已知:如图,四边形ABCD 中,AD ∥BC ,AD=CD ,E 是对角线BD 上一点,且EA=EC .(1)求证:四边形ABCD 是菱形;(2)如果BE=BC ,且∠CBE :∠BCE=2:3,求证:四边形ABCD 是正方形.4.如图,以Rt △ABC 的AC 边为直径作⊙O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点F 为BC 的中点,连接EF 和AD .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为2,∠EAC =60°,求AD 的长.5.八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有多少名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、B5、B6、B7、B8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、a(a+b)(a﹣b)3、24、45π5、46三、解答题(本大题共6小题,共72分)1、x=-32、(1)证明见解析(2)1或23、(1)略;(2)略.4、(1)略;(2)AD=5、(1)参与问卷调查的学生人数为100人;(2)补全图形见解析;(3)估计该校学生一个月阅读2本课外书的人数约为570人.6、(1)4元或6元;(2)九折.。

北师大版九年级数学上册期末检测数学试卷及答案

北师大版九年级数学上册期末检测数学试卷及答案

D .可能有两名学生生日相同,且可能性很大
二、填空题 (本大题共 7 个小题,每小题 3 分,满分 21 分)
1
9.计算 2cos60° + tan245° =

10.一元二次方程 x2 3x 0 的解是

11.请你写出一个反比例函数的解析式使它的图象在第一、三象限

12.在平行四边形 ABCD 中,对角线 AC 长为 10 cm ,∠ CAB=30 °, AB= 6 cm ,则平行四边形 ABCD 的面积
所以 y 与 s 的函数关系式 y 128 s
(2)当 s=1.6 时, y 128 80 1.6
所以当面条粗 1.6mm2 时,面条的总长度是 80 米
20.(本小题 8 分)列表得:
白球的概率 = 4 9
黑球的概率 = 1 9
袋1 袋2




(白, 白 ) (白, 白 )(白, 黑 )

( 白 , 白 ) (白 , 白 ) ( 白, 黑 )
21.(本小题 8 分)已知:四边形 ABCD 的对角线 AC 、 BD 相交于点 O,给出下列 5 个条件:
① AB ∥ DC;② OA=OC ;③ AB=DC ;④∠ BAD= ∠ DCB ;⑤ AD ∥BC 。
( 1)从以上 5 个条件中任意选取 2 个条件,能推出四边形 ABCD 是平行四边形的有(用序号表示) :如①

cm2 。
13.命题“等腰梯形的对角线相等” 。它的逆命题是
.
14.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是

k
15.已知反比例函数 y 的图像经过点 ( 1,- 2),则直线 y =( k- 1)x 的解析式为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上学期期末检测试题卷班级———— 姓名————— 成绩——————一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分) 1.下列方程中,是一元二次方程的是( )A .32-=y xB .2(1)3x +=C .11322+=-+x x x D .29x =2.有一实物如下左图,那么它的主视图是( )3.到三角形各顶点的距离相等的点是三角形( )A .三条角平分线的交点B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点 4.甲、乙两地相距60km ,则汽车由甲地行驶到乙地所用时间y (小时)与行驶速度x (千米/时)之间的函数图像大致是( )5.下列命题中,不正确的是( )A .顺次连结菱形各边中点所得的四边形是矩形B .有一个角是直角的菱形是正方形C .对角线相等且垂直的四边形是正方形D .有一个角是60°的等腰三角形是等边三角形 6.在Rt △ABC 中,∠C=90°,a =4,b =3,则sinA 的值是( )A .45B .35C .43 D .547.电影院呈阶梯或下坡形状的主要原因是( )A .为了美观B .减小盲区C .增大盲区D .盲区不变8.某校九年级一班共有学生50人,现在对他们的生日(可以不同年)进行统计,则正确的说法是( )A .至少有两名学生生日相同B .不可能有两名学生生日相同C .可能有两名学生生日相同,但可能性不大D .可能有两名学生生日相同,且可能性很大 二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算2cos60°+ tan 245°= 。

10.一元二次方程230x x -=的解是 。

11.请你写出一个反比例函数的解析式使它的图象在第一、三象限 。

12.在平行四边形ABCD 中,对角线AC 长为10cm ,∠CAB=30°,AB= 6cm ,则平行四边形ABCD的面积A B C DOxyA OxyB OxyCOxD y为 2cm 。

13.命题“等腰梯形的对角线相等”。

它的逆命题是 . 14.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是 。

15.已知反比例函数ky x=的图像经过点(1,-2),则直线y =(k -1)x 的解析式为 。

三、解答题(本大题共9个小题,满分75分) 16.(本小题6分)解方程:0672=+-x x17.(本小题6分)为响应国家“退耕还林”的号召,改变我省水土流失严重的状况,2019年我省退耕还 林1600亩,计划2019年退耕还林1936亩,问这两年平均每年退耕还林的增长率是多少? 18.(本小题6分)如图,小明为测量某铁塔AB 的高度,他在离塔底B 的10米C 处测得塔顶的仰角α=43°,已知小明的测角仪高CD=1.5米,求铁塔AB 的高。

(精确到0.1米)(参考数据:sin43° =0.6820, cos43° =0.7314, tan43° =0.9325) 19.(本小题8分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积) s (mm 2)的反比例函数,其图像如图所示。

(1)写出y 与s 的函数关系式;(2)求当面条粗1.6mm 2时,面条的总长度是多少米?18题 20.(本小题8分)两个布袋中分别装有除颜色外,其他都相同的2个白球,1个黑球,同时从这两个布袋中摸出一个球,请用列表法表示出可能出现的情况,并求出摸出的球颜色相同的概率。

21.(本小题8分)已知:四边形ABCD 的对角线AC 、BD 相交于点O ,给出下列5个条件:①AB∥DC;②OA=OC;③AB=DC;④∠BAD=∠DCB;⑤AD∥BC。

(1)从以上5个条件中任意选取2个条件,能推出四边形ABCD 是平行四边形的有(用序号表示):如①与⑤ 、 。

(直接在横线上再写出两种)22.(本小题9分)在如图所示的三角形纸片ABC 中,∠C=90°,∠B=30°,按如下步骤可以把这个直角三角形纸片分成三个全等的小直角三角形(图中虚线表示折痕)。

①先将点B 对折到点A ,②将对折后的纸片再沿AD 对折。

(1)由步骤①可以得到哪些等量关系? (2)请证明△ACD ≌△AEDCA B ED α 1 20s(mm 2)y(m) O 2 3 4 5 P (4,32)604080 100(3)按照这种方法能否将任意一个直角三角形分成三个全等的小三角形?23.(本小题12分)如图,已知直线y =-x +4与反比例函数y kx的图象相交于点A (-2,a ),并且与x 轴相交于点B 。

(1)求a 的值;(2)求反比例函数的表达式; (3)求△AOB 的面积。

24.(本小题12分)阅读下面材料,再回答问题:有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”。

解决下列问题:(1)菱形的“二分线”可以是 。

(2)三角形的“二分线”可以是 。

(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD 的“二分线”.A D A DBCBCx y AOBA C EDB九年级数学(答题卡) 姓名一、选择题(每小题3分,共24分)题号 1.2.3.4.5.6.7.8.答案二、填空题(每题3分,共21分)9. ; .10. . 11. . 12. 2cm .13. . 14. . 15. . 三、解答题(共75分)16.(6分) 解方程:0672=+-x x 17. (6分)解: 解:(18题图)18.(6分)解:(19题图)19. (8分)解:(1)20. (8分)解:(2)C ABE D α120 s(mm 2)y(m)O2345P (4,32)60 40 8010021. (8分)解:(1)如①与⑤ 、 。

(直接在横线上再写出两种).(2) .(21题图)22.( 9分)解:(1) . (2)证明:(22题图)(3) . 23. (12分)解:(1) (2)解: (3)解:24. (12)分解:(1)菱形的“二分线”可以是 。

(2)三角形的“二分线”可以是 。

(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD 的“二分线”。

ABDOCA C CEDBADA DB C B C九年级数学(参考答案)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分) 1.D 2.A 3.C 4.B 5.C 6.A 7.B 8.D 二、填空题(本大题共7个小题,每小题3分,满分21分)9.2 10.x 1=0, x 2=3 11.2y x= …… 12.3013.对角线相等的梯形是等腰梯形 14.1415.y =-3x三、解答题(本大题共9个小题,满分75分) 16.(本小题6分) 解方程得x 1=1,x 2=6 17.(本小题6分) 解: 设平均增长率为x ,则1600(1+x )2=1936 解得:x 1=0.1=10% x 2=- 2.1(舍去) 18.(本小题6分)解:如图,可知四边形DCBE 是矩形, 则EB = DC =1.5米,DE=CB=10米在Rt△AED 中,∠ADE=α=43º那么tan αAEDE=所以,AE=DEtan43º =10×0.9325=9.325所以,AB=AE+EB =9.325+1.5=10.825≈10.8(米) 19.(本小题8分)解:(1)设y 与s 的函数关系式为sky =,将s=4,y=32代入上式,解得k=4×32=128所以y 与s 的函数关系式sy 128=(2)当s=1.6时,806.1128==y所以当面条粗1.6mm 2时,面条的总长度是80米 20.(本小题8分)列表得:白球的概率=49黑球的概率=1921.(本小题8分) 解:(1)①与②;①与③;①与④;②与⑤;④与⑤ (只要写出两组即可;每写一个给2分) (2)③与⑤ 反例:等腰梯形 22.(本小题9分) 解:(1)AE=BE ,AD=BD ,∠B =∠DAE=30º,∠BDE=∠ADE=60º,∠AED=∠BED=90º。

(2)在Rt△A BC 中,∠B =30º,所以AE=EB ,因而AC=AEC A BE D α ,,,,,,,,,( )( )( )( )( )( )( )( )黑黑黑( )黑黑黑黑黑白白白白白白白白白白白白白白白白袋2袋1ADBC 又因为∠CAD=∠EAD ,AD=AD 所以△ACD ≌△AED(3)不能 23.(本小题12分) 解:(1)将A (-2,a )代入y=-x +4中,得:a =-(-2)+4 所以 a =6(2)由(1)得:A (-2,6)将A (-2,6)代入xk y =中,得到26-=k即k =-12所以反比例函数的表达式为:x y 12-=(3)如图:过A 点作AD⊥x 轴于D ;因为 A (-2,6) 所以 AD=6 在直线y=-x +4中,令y=0,得x =4 所以 B (4,0) 即OB=4所以△AOB 的面积S=21OB×AD=21×4×6=1224.(本小题12分) 解:(1)菱形的一条对角线所在的直线。

(或菱形的一组对边的中点所在的直线或菱形对角线交点的任意一条直线)。

(2)三角形一边中线所在的直线。

(3)方法一:取上、下底的中点,过两点作直线得梯形的二分线(如图1)方法二:过A 、D 作AE⊥BC,DF⊥BC,垂足E 、F ,连接AF 、DE 相交于O ,过点O 任意作直线即为梯形的二分线(如图2)2009-2019上学期期末检测试题卷九年级数学一、选择题(每小题3分,满分24分) 1.一元二次方程2560x x --=的根是( )A .x 1=1,x 2=6B .x 1=2,x 2=3C .x 1=1,x 2=-6D .x 1=-1,x 2=62.下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是( ) A .球 B .圆柱 C .三棱柱 D .圆锥ADBCE FOx y AOD B3.到三角形三条边的距离相等的点是三角形( )A .三条角平分线的交点B .三条高的交点C .三边的垂直平分线的交点D .三条中线的交点4.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致( )A B C D 5.下列函数中,属于反比例函数的是( ) A .3xy = B .13y x=C .52y x =-D .21y x =+ 6.在Rt △ABC 中,∠C=90°,a =4,b =3,则cosA 的值是( ) A .45B .35C .43D .547.如图(1),△ABC 中,∠A=30°,∠C=90°AB 的垂直平分线 (1) 交AC 于D 点,交AB 于E 点,则下列结论错误的是( )A 、AD=DB B 、DE=DC C 、BC=AED 、AD=BC8.顺次连结等腰梯形各边中点得到的四边形是 ( )A 、矩形B 、菱形C 、正方形D 、平行四边形 二、填空题(每小题3分,满分21分) 9.计算tan45°= .10.已知函数22(1)m y m x -=+是反比例函数,则m 的值为 . 11.请你写出一个反比例函数的解析式,使它的图象在第二、四象限 . 12.在直角三角形中,若两条直角边长分别为6cm 和8cm ,则斜边上的中线长yxOoy xy xoy xo为 cm .13. 已知菱形的周长为cm 40,一条对角线长为cm 16,则这个菱形的面积 为 (cm)2.14.已知正比例函数kx y =与反比例函数()0>=k xky 的一个交点是(2,3),则另 一个交点是( , ).15.如图,已知AC=DB ,要使△ABC ≌△DCB ,需添加的一个 条件是 .三、解答题(本大题共9个小题,满分75分) 16.(本小题8分)解方程:2(2)x x x -=-17.(本小题8分)如图,在△ABD 中,C 是BD 上的一点, 且AC ⊥BD ,AC=BC=CD .(1)求证:△ABD 是等腰三角形. (2)求∠BAD 的度数.18.(本小题8分)如图所示,课外活动中,小明在离旗杆AB 的10米C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD=1.5米,求旗杆AB 的高.(精确到0.1米)(供选用的数据:sin 400.64≈,cos 400.77≈,tan 400.84≈)19.(本小题8分)某商店四月份的营业额为40万元,五月份的营业额比四月份有所增长,六月份比五月份又增加了5个百分点,即增加了5%,营业额达到了50.6万元。

相关文档
最新文档