抗肿瘤17_噻唑烷酮取代甾体衍生物的仿生合成
噻唑并嘧啶类衍生物的设计合成及抗肿瘤活性研究
噻唑并嘧啶类衍生物的设计合成及抗肿瘤活性研究李江;张诗缇;孟利红;李放;吴鹏;邓赛男;贾云宏【期刊名称】《化学世界》【年(卷),期】2016(57)8【摘要】为了发现具有良好抗肿瘤活性的新型先导化合物,在综合分析多种高活性化合物结构特点的基础上,设计、合成了一系列含噻唑并[3,2-a]嘧啶-5-酮类化合物。
以6-氨基-2-硫脲嘧啶为原料,经4步反应制得目标化合物,其结构经IR,1 H NMR,13C NMR和HRMS确证,并对该类化合物合成影响因素和结构特点进行了探讨。
采用噻唑蓝(MTT)法测试了所合成化合物的体外抗肿瘤(A549,MCF-7)活性,测试结果表明大部分化合物对于所试验的癌细胞的增殖都有一定程度的抑制作用。
【总页数】8页(P493-500)【关键词】噻唑并嘧啶;合成;抗肿瘤活性【作者】李江;张诗缇;孟利红;李放;吴鹏;邓赛男;贾云宏【作者单位】锦州医科大学药学院,辽宁锦州121001;锦州医科大学基础医学院,辽宁锦州121001【正文语种】中文【中图分类】R914.5【相关文献】1.17-取代雌二醇-嘧啶类衍生物的合成与体外抗肿瘤活性研究 [J], 程克光;张江玉;刘观艳;初相伍;凌丹;姚国义2.6-取代亚甲肼基-2,4-双吗啉嘧啶及三嗪类衍生物的合成与抗肿瘤活性研究 [J], 曹云云;朱五福;祝妍;郭飞;鲁向冉;宫平3.含吡咯结构的二芳氨基嘧啶类ALK抑制剂的设计合成及抗肿瘤活性研究 [J], 徐守平;王婕;邢凌云;郭明;翟鑫4.新型吡唑并[1,5-a]嘧啶-氮芥衍生物的设计、合成及抗肿瘤活性研究 [J], 赵明霞;张东霞;常进;赵治巨;齐传民;姜俊兵5.含1,3,4-噁二唑的苯并[d]咪唑并[2,1-b]噻唑类Twist1抑制剂的设计合成及抗肿瘤活性研究 [J], 邓燕莉;赵天铭;杨晶;李通;翟鑫因版权原因,仅展示原文概要,查看原文内容请购买。
熊果酸衍生物的合成及抗肿瘤血管生成活性
熊果酸衍生物的合成及抗肿瘤血管生成活性张文娟;陈少鹏;陆鑫;周国春【摘要】对熊果酸C28位与C3位进行结构修饰得到了24个衍生物, 并利用 1H NMR, 13C NMR, MS及HR-MS对这些化合物进行了结构表征. 进一步通过MTT 法, 以内皮细胞HUVEC为主要模型, 研究了24个衍生物抗肿瘤血管生成的活性, 同时以A549, Bel-7402及MCF-7细胞为模型研究了上述衍生物对肿瘤细胞的抑制活性. 研究结果表明, 与熊果酸相比, 化合物5, 9, 12e和14e对HUVEC细胞有较好的选择性, 化合物12a和13h比熊果酸的抗肿瘤血管生成活性略高, 因此通过适当改变熊果酸C28位的结构可以提高其对内皮细胞HUVEC的选择性, 增强抗肿瘤血管生成活性. 本文结果表明, 熊果酸及其衍生物是潜在的具有抗肿瘤血管生成作用的先导化合物, 通过有效的结构优化可能得到新型的抗肿瘤血管生成的化合物.【期刊名称】《高等学校化学学报》【年(卷),期】2010(031)011【总页数】12页(P2206-2217)【关键词】熊果酸;衍生物;抗肿瘤血管生成;抑制细胞增殖【作者】张文娟;陈少鹏;陆鑫;周国春【作者单位】中国科学院广州生物医药与健康研究院,广州,510663;中国科学院研究生院,北京,100049;中国科学院广州生物医药与健康研究院,广州,510663;中国科学院广州生物医药与健康研究院,广州,510663;中国科学院广州生物医药与健康研究院,广州,510663;中国科学院研究生院,北京,100049【正文语种】中文【中图分类】O624.1320世纪70年代,Folkman[1]提出肿瘤生长的血管依赖性学说,即肿瘤生长到其临界体积(Critical size)后需要丰富的血液供应,必然会伴随新生血管的增加;进一步研究发现,肿瘤细胞通过毛细血管转移而产生新的癌症病兆是恶性肿瘤致死的主要原因,因而阻断肿瘤血管生成,切断肿瘤的供养即可遏制肿瘤的增生、侵袭及转移[2~4],这一理论及后来的研究成果为抗肿瘤血管生成药物的研究与开发奠定了理论基础.熊果酸(Ursolic acid,1,结构见图1)是一种五环三萜类化合物,广泛存在于中药、食物及其它植物中.据报道,熊果酸具有抗肿瘤、镇静、抗炎、抗菌、抗氧化、抗糖尿病及降血糖等多种生物学效应[5~7].近年来,熊果酸的抗肿瘤作用备受关注,对其抗肿瘤活性及作用机制已有大量研究,并合成了一些衍生物以提高熊果酸的抗肿瘤活性[8~13].研究表明,熊果酸的抗肿瘤作用机制是多方面的,主要包括抑制肿瘤形成、直接杀伤肿瘤细胞、抗侵袭性、诱导肿瘤细胞凋亡、抑制肿瘤血管生成以及增强免疫功能等[8~13].目前,熊果酸抑制肿瘤血管生成的机制尚未阐明,针对其抗肿瘤血管生成活性的衍生物研究较少.本研究设计、合成和筛选了一系列熊果酸的衍生物,并对其抗肿瘤血管生成活性的构效关系进行了初步研究. Brucker AV-400核磁共振仪,以氘代氯仿和氘代甲醇为溶剂,化学位移以相应的溶剂为基准;Agilent 1200/MSD-LC-MS质谱仪(离子源为ESI和APCI复合源);MPA100 Optimelt熔点仪(Automated Melting Point System操作系统).所用试剂均为化学纯或分析纯;无水无氧反应所用溶剂均参照文献[14]中的方法处理;柱层析硅胶为200~300目;实验中所用(3S)-3-氨基戊内酰胺(10e)、(3S)-3-氨基己内酰胺(10f)、(3S)-3-氨基-6-羟基己内酰胺(10g)和(3S)-3-氨基-6-乙酰基己内酰胺(10h)为本实验室自行合成.化合物4~9的合成路线如Scheme 1所示.1.2.1 化合物4的合成化合物2和3参照文献[15,16]方法合成.将5.10 g熊果酸(1)用四氢呋喃溶解后加入催化量4-二甲氨基吡啶与4倍量乙酸酐,待反应完成后,用旋转蒸发仪除去四氢呋喃与过量的乙酸酐,残留物用100目硅胶拌样,经硅胶柱层析[流动相V(石油醚)∶V(乙酸乙酯)=10∶1]得5.29 g化合物2;将化合物2用二氯甲烷溶解,在冰浴冷却下加入4倍量草酰氯,移至室温下搅拌反应过夜,用旋转蒸发仪将二氯甲烷等除去,得5.50 g化合物3粗品.将5.50 g化合物3(约10.0 mmol)用二氯甲烷(200 mL)溶解,于冰浴下将该溶液滴加到50 mL甲醇和5 mL三乙胺的混合溶剂中,滴加完毕后在冰浴下搅拌反应0.5 h.加入饱和碳酸氢钠溶液终止反应,用二氯甲烷萃取,合并有机相,用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析[流动相V(石油醚)∶V(乙酸乙酯)=15∶1]得5.02 g白色固体4[16],m.p.244.1~246.9℃(文献值[16]:246℃),收率92%;ESI/APCI-MS,m/z:453.3[M+H-OAc]+.1.2.2 化合物5的合成将化合物4(5.02 g,9.8 mmol)用160 mL四氢呋喃与甲醇的混合溶液(体积比3∶1)溶解,搅拌均匀后加入40 mL 10 mol/L氢氧化钠溶液,10 min后将反应体系加热至40℃,反应3.5 h.用旋转蒸发仪将大部分四氢呋喃与甲醇蒸出,残留液用水和二氯甲烷稀释,分出二氯甲烷层,水层用二氯甲烷萃取,合并有机相,用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析[流动相V(石油醚)∶V(乙酸乙酯)=15∶1]得4.05 g白色固体5[17],m.p.167~168.8℃(文献值[17]:169~170.5℃),收率88%;ESI/APCI-MS,m/z:453.3[M+H-H2O]+.1.2.3 化合物6的合成将化合物5(4.05 g,8.6 mmol)用二氯甲烷(200 mL)溶解,于冰浴下搅拌15 min后,加入2,6-二甲基吡啶(4 mL,34.4 mmol)和4-二甲氨基吡啶(0.53 g,4.3 mmol),继续搅拌15 min后,加入叔丁基二甲硅基三氟甲磺酸酯(TBSOTf,3.0 mL,13.1 mmol),1 h后终止反应.加入吡啶(3.5 mL,43.4 mmol),搅拌30 min,然后将反应体系旋干,残留物用少许100目硅胶拌样,经硅胶柱层析[流动相:V(石油醚)∶V(乙酸乙酯)=40∶1]得4.58 g白色固体6,m.p.152.9~156.2℃,收率91%;1H NMR(CDCl3,400 MHz),δ:5.24(m,1H),3.60(s,3H),3.18(m,1H),2.22(d,J= 11.2 Hz,1H),2.04~1.95(m,1H),1.90(dd,J=3.2,4.6 Hz,1H),1.86~1.25(m,16H),1.07 (s,3H,CH3),1.05~0.68(m,4H),0.94~0.87(m,9H,3CH3),0.88(s,9H,3CH3),0.85(d,J= 6.4 Hz,3H,CH3),0.74(s,3H,CH3),0,73(s,3H,CH3),0.03(s,6H,2CH3);ESI/APCI-MS,m/z:453.3[M+H-OTBS]+.1.2.4 化合物7的合成将化合物6(4.58 g,7.8 mmol)用乙醚(150 mL)溶解,于冰浴下搅拌15 min后,滴加入二异丁基氢化铝(24.0 mL,24.0 mmol),继续在冰浴下搅拌10 min,然后移至室温下反应3 h.小心加入硫酸钠饱和溶液终止反应,待氢氧化铝生成完全后过滤,滤液用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析[流动相:V(石油醚)∶V(乙酸乙酯)=20∶1]得3.91 g白色无定形粉末状固体7,收率90%;1H NMR(CDCl3,400 MHZ),δ:5.13(m,1H),3.53(d,J=10.8 Hz,1H),3.18(m,2H),1.92~1.84(m,3H),1.83~1.70(m,1H),1.66~1.14(m,16H),1.10(s,3H,CH3),1.03~0.68(m,4H),0.98(s,3H,CH3),0.93~0.90(m,9H,3CH3),0.88(s,9H,3CH3),0.80(d,J=5.6 Hz,3H,CH3),0.75(s,3H,CH3),0.03(s,6H,2CH3);ESI/APCI-MS,m/z:453.3[M+ H-OTBS]+.1.2.5 化合物8的合成将化合物7(2.0 g,3.6 mmol)用二氯甲烷(200 mL)溶解,搅拌10 min后,加入氯铬酸吡啶盐(PCC,1.94 g,9.0 mmol);待反应结束后,加入乙酸乙酯,搅拌30 min后,将反应体系过100目硅胶柱,用乙酸乙酯洗脱,除去溶剂后得到化合物8的粗品.然后经硅胶柱层析[流动相:V(石油醚)∶V(乙酸乙酯)=50∶1]得1.40 g白色固体8,m.p.188.4~190.9℃,产率70%;1HNMR(CDCl3,400 MHz),δ:9.33(s,1H),5.31(m,1H),3.18(m,1H),1.99~1.94(m,1H),1.90 (dd,J=3.6,4.4 Hz,1H),1.86~1.72(m,1H),1.66~1.22(m,16H),1.08(s,3H,CH3),1.05~0.66(m,4H),0.96(s,3H,CH3),0.92~0.82(m,9H,3CH3),0.88(s,9H,3CH3),0.76(s,3H,CH3),0.74(s,3H,CH3),0.03(s,6H,2×CH3);13C NMR(CDCl3,100 MHz),δ:207.3,137.8,126.3,79.5,55.3,52.7,50.1,47.6,42.2,39.8,39.3,39.0,38.8,38.7,36.8,33.2,31.9,30.2,28.6,27.7,26.9,25.9,25.9,25.9,23.3,23.3,23.2,21.1,18.5,18.1,17.2,16.6,16.2,15.6,-3.76,-3.89.1.2.6 化合物9的合成在氮气保护下,将化合物4(57.0 mg,0.11 mmol)用乙醚(25 mL)溶解,在冰浴下搅拌15 min后,加入1.0 mol/L二异丁基氢化铝的正己烷溶液(0.33 mL,0.33 mmol),反应1 h后,小心加入饱和硫酸钠溶液停止反应.待氢氧化铝生成完全后过滤,将除去溶剂后的滤液经硅胶柱层析[流动相:V(石油醚)∶V(乙酸乙酯)=15∶1]得白色固体9[17],m.p.226.5~228℃(文献值[17]: 227.5~229℃),产率34%;ESI/APCI-MS,m/z:425.3[M+H-H2O]+.1.2.7 化合物11a~11g的合成化合物11a~11g的合成如Scheme 2所示.将化合物8(99.7 mg,0.18 mmol)用四氢呋喃(15 mL)溶解后,加入相应的胺10a~10g(0.36 mmol)及催化量的冰醋酸,反应2 h后,加入氰基硼氢化钠(12.5 mg,0.20 mmol),继续反应1 h(11a~11d)或反应过夜(11e~11g).小心加入饱和碳酸氢钠溶液稀释,用二氯甲烷萃取,合并有机相,用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析得到化合物11a~11g.N-(3β-O-叔丁基二甲硅基-乌苏烷-12-烯-28-亚甲基)-苄胺(11a)[流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.84.3~86.9℃,产率91%;1HNMR(CDCl3,400 MHz),δ:7.30(m,4H),7.23(m,1H),5.09(m,1H),3.77(d,J=4.8 Hz,2H),3.19(m,1H),2.58(d,J=11.6 Hz,1H),2.14(d,J=11.6 Hz,1H),1.95~1.82(m,3H),1.72~1.20(m,16H),1.07(s,3H,CH3),0.97~1.16(m,4H),0.92~0.82(m,9H,3CH3),0.90(s,9H,3CH3),0.74~0.80(m,9H,3CH3),0.04(s,6H,2CH3);ESI/APCI-MS,m/z:646.5[M+H]+.N-(3β-O-叔丁基二甲硅基-乌苏烷-12-烯-28-亚甲基)-4-氟苄胺(11b)[流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.81.8~83.2℃,产率86%;1H NMR(CDCl3,400 MHz),δ:7.26(t,J=8.4 Hz,2H),6.97(t,J=8.4 Hz,2H),5.07(m,1H),3.70(m,2H),3.18(m,1H),2.53(d,J=11.6 Hz,1H),2.09(d,J=11.6 Hz,1H),1.94~1.82(m,3H),1.72~1.15(m,17H),1.07(s,3H,CH3),0.97~0.65(m,4H),0.93~0.82(m,9H,3CH3),0.90(s,3H,3CH3),0.79(d,J=5.2 Hz,3H,CH3),0.75(s,3H,CH3),0.74(s,3H,CH3),0.03(s,6H,2CH3);ESI/APCI-MS,m/z: 664.5[M+H]+.N-(3β-O-叔丁基二甲硅基-乌苏烷-12-烯-28-亚甲基)-4-甲氧基苄胺(11c)[流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.81.8~84.8℃,产率89%;1H NMR(CDCl3,400 MHz),δ:7.21 (d,J=8.4 Hz,2H),6.94(d,J=8.8 Hz,2H),5.08(m,1H),3.80(s,3H),3.68(d,J=9.6 Hz,2H),3.19(m,1H),2.53(d,J=12.0 Hz,1H),2.11(d,J=12.0 Hz,1H),1.93~1.79(m,3H),1.75~1.10(m,17H),1.07(s,3H,CH3),1.05~0.68(m,4H),0.93~0.82(m,9H,3CH3),0.90 (s,9H,3CH3),0.79(d,J=5.2 Hz,3H,CH3),0.77(s,3H,CH3),0.76(s,3H,CH3),0.04(s,6H,2CH3);ESI/APCI-MS,m/z:676.5[M+H]+.N-(3β-O-叔丁基二甲硅基-乌苏烷-12-烯-28-亚甲基)-4-氯苄胺(11d)[流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.81.6~84.7℃,产率83%;1H NMR(CDCl3,400 MHz),δ:7.27(m,2H),7.23(m,2H),5.07(m,1H),3.71(d,J=9.2 Hz,2H),3.18(m,1H),2.50(d,J=11.6 Hz,1H),2.10(d,J=11.6 Hz,1H),1.95~1.82(m,3H),1.67~1.12(m,16H),1.07(s,3H),0.95~0.66(m,4H),0.93~0.85(m,9H,3CH3),0.89(s,9H,3CH3),0.79(d,J=5.6 Hz,3H,CH3),0.76(s,3H,CH3),0.72(s,3H,CH3),0.04(s,6H,2CH3);ESI/APCI-MS,m/z:680.4[M+H]+.N-(3β-O-叔丁基二甲硅基-乌苏烷-12-烯-28-亚甲基)-(3S)-3-氨基戊内酰胺(11e)[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]为白色无定形粉末状固体,产率43%;1H NMR(CDCl3,400 MHz),δ: 6.53(s,1H),5.19(m,1H),4.05(br s,1H),3.47(m,1H),3.37(m,2H),3.18(m,1H),2.94(d,J=11.6 Hz,1H),2.22(m,3H),2.05~1.21(m,21H),1.10(s,3H),1.06~0.67(m,4H),0.96~0.85(m,12H,4CH3),0.88(s,9H,3CH3),0.80(d,J=6.0 Hz,3H,CH3),0.75(s,3H,CH3),0.03(s,6H,2CH3);ESI/APCI-MS,m/z:653.5[M+H]+.N-(3β-O-叔丁基二甲硅基-乌苏烷-12-烯-28-亚甲基)-(3S)-3-氨基己内酰胺(11f)[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]为白色无定形粉末状固体,产率51%;1H NMR(CDCl3,400 MHz),δ:7.00 (s,1H),5.17(m,1H),3.67(d,J=10.4 Hz,1H),3.33(m,1H),3.24~3.16(m,2H),2.98(d,J=12.0 Hz,1H),2.34(d,J=12.0 Hz,1H),2.18~1.20(m,28H),1.09(s,3H),1.07~0.67(m,4H),0.98(s,3H,CH3),0.94~0.85(m,9H,3CH3),0.88(s,9H,3CH3),0.78(d,J=6.0 Hz,3H,CH3),0.74(s,3H,CH3),0.03(s,6H,2CH3);ESI/APCI-MS,m/z:667.5[M+H]+.N-(3β-O-叔丁基二甲硅基-乌苏烷-12-烯-28-亚甲基)-(3S)-3-氨基-6-羟基己内酰胺(11g)[流动相: V(二氯甲烷)∶V(甲醇)=100∶3]为白色无定形粉末状固体,产率46%;1H NMR(CDCl3,400 MHz),δ:7.16(s,1H),6.99(s,1H),5.12(m,1H),3.91(m,1H),3.57(m,1H),3.42~3.30(m,2H),3.20~3.13(m,1H),2.79(m,1H),2.15(m,2H),2.06~1.10(m,25H),1.08(s,3H,CH3),1.02~0.65(m,4H),0.97(s,3H,CH3),0.94~0.82(m,9H,3CH3),0.88(s,9H,3CH3),0.78(d,J=6.0 Hz,3H,CH3),0.74(s,3H,CH3),0.02(s,6H,2CH3);ESI/APCI-MS,m/z:683.5[M+ H]+.1.2.8 化合物12a~12g的合成化合物12a~12g的合成如Scheme 2所示.将化合物11a~11g用二氯甲烷(10 mL)溶解,在0℃冷却下搅拌10 min后,加入三氟乙酸(0.3 mL),在0℃反应过夜.加入饱和碳酸氢钠溶液终止反应,分出二氯甲烷层,水层用乙酸乙酯萃取,合并有机相,用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析分别得到化合物12a~12g.N-(3β-羟基-乌苏烷-12-烯-28-亚甲基)-苄胺(12a)[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]为白色固体,m.p.85.2~87.9℃,产率61%;1H NMR(CDCl3,400 MHz),δ:7.28(m,4H),7.22(m,1H),5.08(m,1H),3.75(d,J=4.4 Hz,2H),3.24~3.19(m,1H),2.56(d,J=12.0 Hz,2H),2.13(d,J=12.0 Hz,1H),1.92~1.81(m,3H),1.76~1.15(m,17H),1.15~0.70(m,4H),1.07 (s,3H,CH3),0.96(s,3H,CH3),0.93(s,3H,CH3),0.92(d,J=4.0 Hz,3H,CH3),0.82(s,3H,CH3),0.81(d,J=7.0 Hz,3H,CH3),0.77(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:141.2,139.0,128.2,128.2,128.0,128.0,126.7,124.8,79.0,57.8,56.2,55.2,54.7,47.7,42.0,39.4,39.4,38.8,37.0,36.9,36.5,32.8,30.9,28.1,27.3,26.1,24.2,23.4,23.4,21.4,18.3,17.5,16.5,15.7,15.6;ESI/APCI-MS,m/z:532.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-亚甲基)-4-氟苄胺(12b)[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]为白色固体,m.p.81.4~84.1℃,产率50%;1HNMR(CDCl3,400 MHz),δ:7.26(t,J=7.6 Hz,2H),6.98(t,J=8.4 Hz,2H),5.07(m,1H),3.71(m,2H),3.25~3.17(m,1H),2.52(d,J= 12.0 Hz,1H),2.10(d,J=12.0 Hz,1H),1.92~1.72(m,3H),1.70~1.10(m,17H),1.10~0.68 (m,4H),1.07(s,3H,CH3),0.99(s,3H,CH3),0.924(s,3H,CH3),0.918(d,J=4.4 Hz,3H,CH3),0.82(s,3H,CH3),0.80(d,J=7.2 Hz,3H,CH3),0.74(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:139.0,136.9,136.9,129.5,129.5,124.8,115.0,115.0,79.0,57.7,56.1,55.2,53.9,47.7,42.0,40.0,39.4,39.4,38.8,38.8,37.0,36.8,36.5,32.8,30.9,28.1,27.3,26.1,24.3,23.3,21.3,18.3,17.5,16.4,15.6,15.6;ESI/APCI-MS,m/z:550.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-亚甲基)-4-甲氧基苄胺(12c)[流动相:V(二氯甲烷)∶V(甲醇)= 100∶1]为白色固体,81.7~85.3℃,产率53%;1H NMR(CDCl3,400 MHz),δ:7.22(d,J=8.4 Hz,2H),6.84(d,J=8.4 Hz,2H),5.08(m,1H),3.84(s,3H),3.71~3.61(m,2H),3.24~3.18(m,1H),2.54(d,J=11.6 Hz,1H),2.12(d,J=12.0 Hz,1H),1.95~1.81(m,3H),1.69~1.12(m,17H),1.10~0.68(m,4H),1.06(s,3H,CH3),0.97(s,3H,CH3),0.92(s,3H,CH3),0.89(d,J=5.2 Hz,3H,CH3),0.79(s,3H,CH3),0.76(d,J=7.2 Hz,3H,CH3),0.74(s,3H,CH3),0.72 (s,3H);13CNMR(CDCl3,100 MHz),δ:158.6,138.9,129.3,129.3,124.8,113.7,113.7,79.0,57.5,56.1,55.3,55.2,54.0,47.7,42.0,39.4,39.4,38.8,38.8,37.0,36.9,36.4,32.8,30.9,28.1,27.3,26.1,24.3,23.3,21.3,18.3,17.5,16.5,15.6,15.6;ESI/APCI-MS,m/z:562.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-亚甲基)-4-氯苄胺(12d)[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]为白色固体,m.p.81.5~83.5℃,产率48%;1HNMR(CDCl3,400 MHz),δ:7.32~7.18(m,4H),5.07(m,1H),3.75(s,1H),3.70(dd,J=9.2,11.4 Hz,2H),3.18~3.23(m,1H),2.50(d,J= 11.6 Hz,1H),2.10(d,J=11.6 Hz,1H),1.92~1.83(m,3H),1.68~1.10(m,17H),1.05~0.70 (m,4H),1.06(s,3H,CH3),0.99(s,3H,CH3),0.96(s,3H,CH3),0.92(d,J=5.6 Hz,3H,CH3),0.82~0.80(m,6H,2CH3),0.71(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:139.7,138.9,132.4,129.4,129.4,128.3,128.3,124.9,79.0,57.6,56.0,55.2,52.3,47.7,41.9,39.9,39.4,39.4,38.8,38.8,37.0,36.8,36.4,32.8,30.9,28.1,27.3,26.1,24.4,23.4,21.4,18.3,17.5,16.4,15.6,15.6;ESI/APCI-MS,m/z:566.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-亚甲基)-(3S)-3-氨基戊内酰胺(12e)[流动相:V(二氯甲烷)∶V(甲醇)=50∶1]为白色无定形粉末状固体,产率38%;1HNMR(CD3OD,400 MHz),δ:5.20(m,1H),3.27(m,3H),3.16(m,1H),2.86(d,J=11.6 Hz,1H),2.11(m,2H),2.00~1.90(m,3H),1.90~1.11(m,24H),1.14(s,3H,CH3),1.05(s,3H,CH3),1.05~0.73(m,4H),0.99(s,3H,CH3),0.98(s,3H,CH3),0.95(d,J=5.2 Hz,3H,CH3),0.84(d,J=6.0 Hz,3H,CH3),0.79(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:172.9,138.8,125.2,78.3,58.1,56.8,56.2,55.3,41.8,41.4,40.0,39.4,39.3,38.8,38.5,36.7,36.6,36.1,32.6,30.5,37.3,26.5,26.4,25.9,23.4,23.1,22.5,20.5,20.3,18.0,16.6,16.3,15.0,14.8;ESI/APCI-MS,m/z:539.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-亚甲基)-(3S)-3-氨基己内酰胺(12f)[流动相:V(二氯甲烷)∶V(甲醇)=50∶1]为白色无定形粉末状固体,产率47%;1H NMR(CDCl3,400 MHz),δ:6.26(br,1H),5.10(m,1H),3.23~3.12(m,4H),2.64(d,J=11.2 Hz,1H),2.08(d,J=11.6 Hz,1H),2.05~1.10(m,29H),1.09(s,3H,CH3),1.02~0.70(m,4H),0.95~0.86(m,12H,4CH3),0.78(s,3H,CH3),0.76(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:178.3,139.0,124.9,79.0,62.0,57.5,56.7,55.2,47.7,42.1,42.0,40.0,39.4,39.4,38.8,38.8,37.1,36.9,32.9,31.8,30.8,29.1,28.1,27.3,26.2,23.4,23.4,23.3,21.3,18.3,17.4,16.8,15.7,15.6;ESI/APCI-MS,m/z:533.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-亚甲基)-(3S)-3-氨基-6-羟基己内酰胺(12g)[流动相:V(二氯甲烷)∶V(甲醇)=20∶1]为白色无定形粉末状固体,产率31%;1HNMR(CD3OD,400 MHz),δ:5.19(m,1H),4.59(m,1/2H,一个异构体),3.83(m,1/2H,另一个异构体),3.49~3.35(m,2H),3.18~3.14(m,3H),2.77(m,1H),2.30~2.12(m,2H),2.05~1.80(m,6H),1.75~1.52(m,8H),1.51~1.34(m,6H),1.33~1.25(m,3H),1.14(s,3H,CH3),1.10~0.72(m,4H),1.05(s,3H,CH3),1.01~0.92(m,9H,3CH3),0.84(d,J=6.0 Hz,3H,CH3),0.79(s,3H,CH3);13C NMR (CDCl3,100 MHz,化合物12g碳谱中内酰胺的羰基碳的信号未能显示出),第一组δ:139.9,127.0,79.7,70.3,58.1,57.8,56.7,46.8,43.2,41.4,40.7,39.9,38.2,38.0,37.4,35.1,34.1,31.8,28.7,27.9,27.3,24.8,24.5,23.9,21.6,19.5,17.9,17.6,16.4,16.2;第二组δ:139.7,127.1,79.7,62.4,57.9,57.7,56.7,46.8,43.2,41.4,40.7,39.9,38.1,38.0,37.0,35.0,34.1,31.8,28.7,27.9,27.3,24.9,24.5,23.9,21.6,19.5,17.9,17.6,16.4,16.2;ESI/APCI-MS,m/z: 569.5[M+H]+.1.2.9 化合物13a~13d的合成化合物13a~13d的合成见Scheme 3.将化合物3粗品(约0.2 mmol)用二氯甲烷(20 mL)溶解,于冰浴下冷却10 min后,加入三乙胺(0.05 mL,0.4 mmol)与相应的苄胺类化合物(0.4 mmol),反应10 min后移至室温反应约3 h.小心加入饱和碳酸氢钠溶液终止反应后,用二氯甲烷萃取,合并有机相,用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析[流动相: V(石油醚)∶V(乙酸乙酯)=5∶1]分别得到化合物13a~13d.N-(3β-乙酰基-乌苏烷-12-烯-28-羰基)-苄胺(13a)[18,19]为白色固体,m.p.195.8~197.3℃(文献值[18,19]:197~198℃),产率78%.N-(3β-乙酰基-乌苏烷-12-烯-28-羰基)-4-氟-苄胺(13b)为白色固体,m.p.145.4~146.4℃,产率89%;1H NMR(CDCl3,400 MHz),δ:7.20(m,2H),6.99(m,2H),6.15(m,1H),5.21(m,1H),4.48(m,2H),4.13(m,1H),2.04(s,3H),2.01~1.15(m,19H),1.07(s,3H,CH3),1.05~0.73 (m,4H),0.94(s,3H,CH3),0.91(s,3H,CH3),0.84(m,9H,3CH3),0.66(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:178.0,171.0,139.9,134.3,134.3,129.6,129.6,125.6,115.5,115.3,80.8,55.2,54.0,47.8,47.4,42.9,42.5,39.7,39.5,39.1,38.3,37.7,37.2,36.8,32.7,30.9,28.0,27.8,24.9,23.5,23.3,23.2,22.7,21.3,21.2,18.1,17.2,17.0,16.7,15.5; ESI/APCI-MS,m/z:606.3[M+H]+.N-(3β-乙酰基-乌苏烷-12-烯-28-羰基)-4-甲氧基-苄胺(13c)为白色固体,m.p.188.3~190.0℃,产率84%;1H NMR(CDCl3,400 MHz),δ:7.16(d,J=8.4 Hz,2H),6.85(d,J=8.4 Hz,2H),6.07 (m,1H),5.19(m,1H),4.46(m,2H),4.10(m,1H),3.79(s,3H),2.04(s,3H),2.02~1.01 (m,19H),1.07(s,3H,CH3),1.00~0.70(m,4H),0.93(s,3H,CH3),0.91(s,3H,CH3),0.85 (m,9H,3CH3),0.70(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:177.8,171.0,159.0,139.9,130.5,129.2,129.2,125.6,114.0,114.0,80.8,55.3,55.2,54.0,47.7,47.5,43.2,42.5,39.7,39.6,39.1,38.3,37.7,37.2,36.8,32.7,30.9,28.0,27.9,24.8,23.5,23.3,23.2,21.3,21.2,18.2,17.2,17.0,16.7,15.5;ESI/APCI-MS,m/z:618.3[M+H]+.N-(3β-乙酰基-乌苏烷-12-烯-28-羰基)-4-氯-苄胺(13d)为白色固体,m.p.142.8~145.6℃,产率87%;1H NMR(CDCl3,400 MHz),δ:7.28(d,J=8.4 Hz,2H),7.17(d,J=8.4 Hz,2H),6.16(m,1H),5.22(m,1H),4.49(m,2H),4.12(m,1H),2.04(s,3H),2.00~1.05(m,19H),1.08(s,3H,CH3),0.97~0.72(m,4H),0.94(s,3H,CH3),0.91(s,3H,CH3),0.84(m,9H,3CH3),0.66 (s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:178.0,171.0,139.9,137.1,133.2,129.3,129.3,128.8,128.8,125.7,80.8,55.2,54.0,47.8,47.4,42.9,42.5,39.7,39.6,39.1,38.3,37.7,37.3,36.8,32.7,30.8,28.0,27.8,24.9,23.5,23.3,23.2,21.3,21.2,18.1,17.2,17.0,16.7,15.5;ESI/APCI-MS,m/z:622.2[M+H]+.1.2.10 化合物13e,13f和13h的合成合成路线见Scheme 3.将化合物3(约0.2 mmol)用二氯甲烷(20 mL)溶解,于冰浴冷却10 min后,加入相应的胺10e,10f 和10h(0.4 mmol)和三乙胺(0.05 mL,0.4 mmol),于冰浴下继续搅拌10 min后,移至室温反应过夜.加入饱和碳酸氢钠溶液终止反应,用二氯甲烷萃取,合并有机相,用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]分别得到化合物13e,13f和13h.N-(3β-乙酰基-乌苏烷-12-烯-28-羰基)-(3S)-3-氨基戊内酰胺(13e)为白色无定形粉末状固体,产率68%;1H NMR(CDCl3,400 MHz),δ:6.94(d,J=3.2 Hz,1H),6.40(s,1H),5.37(m,1H),4.46(m,1H),4.00~3.95(m,1H),3.30~3.27(m,2H),2.69~2.62(m,1H),2.01(s,3H),1.97~0.97(m,24H),1.06(s,3H,CH3),0.95~0.72(m,4H),0.92~0.80(m,15H,5CH3),0.74 (s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:178.8,172.0,171.0,138.0,126.8,80.9,55.2,53.4,50.9,47.9,47.6,42.2,41.5,39.7,39.6,39.0,38.4,37.7,37.5,36.8,32.9,30.9,28.0,27.9,26.5,24.6,23.6,23.4,21.3,21.2,20.8,18.2,17.2,16.7,16.7,15.6;ESI/APCI-MS,m/z:595.4[M+H]+.N-(3β-乙酰基-乌苏烷-12-烯-28-羰基)-(3S)-3-氨基己内酰胺(13f)为白色无定形粉末状固体,产率73%;1H NMR(CDCl3,400 MHz),δ:7.37(d,J=4.4 Hz,1H),6.72(m,1H),5.42(m,1H),4.47(m,1H),4.35(m,1H),3.22(m,2H),2.03(s,3H),2.01~1.10(m,27H),1.07(s,3H,CH3),1.05~0.76(m,4H),0.94~0.82(m,15H,5CH3),0.64(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:177.5,176.0,171.0,137.9,126.7,80.9,55.5,53.3,52.3,47.7,47.5,42.2,42.2,39.7,39.7,39.0,38.4,37.7,37.4,36.8,32.8,31.4,30.9,29.0,28.0,27.9,24.7,23.6,23.4,21.3,21.2,18.2,17.2,16.7,16.4,15.6;ESI/APCI-MS,m/z:609.4[M+H]+.N-(3β-乙酰基-乌苏烷-12-烯-28-羰基)-(3S)-3-氨基-6-乙酰基己内酰胺(13h)为白色无定形粉末状固体,产率65%;1H NMR(CDCl3,400 MHz),δ:7.32(m,2H),7.14(m,1H,一个异构体),6.71 (m,1H,另一个异构体),5.37(m,2H),4.84(m,1H),4.54(m,1H),4.42(m,2H),4.33(m,2H),3.50~3.43(m,1H),3.36(m,1H),3.32~3.12(m,2H),2.12~1.12(m,18H),1.99(s,3H),1.98(s,3H),1.02(s,3H),1.00~0.70(m,4H),0.90~0.75(m,12H,4CH3),0.58(m,6H,2CH3);13C NMR(CDCl3,100 MHz),第一组δ:177.8,175.2,171.0,170.3,137.9,126.8,80.9,67.6,55.2,53.3,51.8,47.8,47.5,43.3,42.2,39.6,39.6,39.0,38.3,37.7,37.4,36.8,32.9,31.8,30.9,29.1,28.0,27.9,25.8,23.6,23.4,21.2,21.0,18.2,17.2,16.7,16.5,15.6;第二组δ:177.7,175.1,171.0,170.1,137.9,126.8,80.9,71.4,55.2,53.3,51.9,47.7,47.5,45.1,42.2,39.7,39.7,39.0,38.3,37.7,37.4,36.8,32.8,31.8,30.9,29.1,28.0,27.9,24.7,23.4,23.4,21.3,21.1,18.2,17.2,16.7,16.4,15.6;ESI/APCI-MS,m/z:667.4[M+H]+,689.4[M+ Na]+.1.2.11 化合物13g的合成化合物13g的合成路线如Scheme 3所示.化合物13h(69 mg,0.1 mmol)用甲醇和水(体积比3∶1)的混合溶液(20 mL)溶解,搅拌5 min后,加入碳酸钾(35 mg,0.25 mmol).待反应完成后,用旋转蒸发仪将大部分甲醇除出;加水和二氯甲烷稀释,分出二氯甲烷层,水层用二氯甲烷萃取,合并有机相,用无水硫酸钠干燥,过滤除去溶剂后,经硅胶柱层析[流动相:V(二氯甲烷)∶V(甲醇)=50∶1]得到57 mg白色无定形粉末状固体化合物13g,产率92%;1H NMR(CDCl3,400 MHz),δ:7.38(m,1H,一个异构体),7.26(m,1H,另一个异构体),6.72(m,1H),5.47(m,2H),4.46(m,2H),4.35(m,2H),3.96(m,1H),3.54(m,1H),3.35(m,2H),3.36(m,2H),2.15(m,1H),2.02(s,3H),2.00~1.15(m,18H),1.05(s,3H,CH3),1.02~0.73(m,4H),0.93(s,3H,CH3),0.90~0.80(m,9H,3CH3),0.60(m,6H,2CH3);13C NMR(CDCl3,100 MHz),第一组δ: 177.9,176.3,171.1,138.1,126.7,80.8,64.8,55.2,53.3,52.1,48.2,47.7,47.4,42.2,42.1,39.7,39.7,39.1,38.3,37.7,37.3,36.8,32.8,30.9,29.4,28.0,27.8,25.0,23.6,23.4,21.3,21.2,18.1,17.3,16.7,16.2,15.7;第二组δ:177.9,175.5,171.1,137.9,126.8,80.8,69.9,55.2,53.3,52.0,47.7,47.7,47.4,42.2,42.1,39.6,39.6,39.0,38.3,37.7,37.3,36.7,32.8,30.9,29.4,28.0,27.8,24.6,23.6,23.4,21.3,21.2,18.1,17.2,16.7,16.3,15.6;ESI/APCIMS,m/z:625.4[M+H]+,647.4[M+Na]+.1.2.12 化合物14a~14g的合成化合物14a~14g的合成方法与化合物5的合成方法相同,如Scheme 3所示.N-(3β-羟基-乌苏烷-12-烯-28-羰基)-苄胺(14a)[18,19][流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.265.3~267.8℃(文献值[18,19]:267~268℃),产率73%.N-(3β-羟基-乌苏烷-12-烯-28-羰基)-4-氟-苄胺(14b)[流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.261.5~264.4℃,产率80%;1H NMR(CDCl3,400 MHz),δ:7.21(m,2H),6.99 (m,2H),6.16(m,1H),5.21(m,1H),4.48(m,1H),4.12(m,1H),3.20(m,1H),2.05~1.20 (m,20H),1.08(s,3H,CH3),1.03~0.65(m,4H),0.97(s,3H,CH3),0.93(m,3H,CH3),0.88 (s,3H,CH3),0.84(d,J=6.4 Hz,3H,CH3),0.77(s,3H,CH3),0.67(s,3H,CH3);13C NMR (CDCl3,100 MHz),δ:178.0,139.9,134.2,129.6,129.6,125.8,115.5,115.3,78.9,55.2,54.0,47.8,47.5,42.9,42.5,39.7,39.5,39.1,38.8,38.6,37.2,36.9,32.8,30.9,28.1,27.9,27.2,24.9,23.3,23.2,21.2,18.3,17.2,17.0,15.6,15.4;ESI/APCI-MS,m/z:564.3[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-羰基)-4-甲氧基-苄胺(14c)[流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.228.6~231.1℃,产率76%;1HNMR(CDCl3,400 MHz),δ:7.14(d,J=8.4 Hz,2H),6.83(d,J=8.4 Hz,2H),6.10(m,1H),5.18(m,1H),4.42(m,1H),4.09(m,1H),3.77(s,3H),3.18(m,1H),1.98~1.05(m,20H),1.06(s,3H,CH3),1.02~0.65(m,4H),0.96 (s,3H,CH3),0.92(m,3H,CH3),0.87(s,3H,CH3),0.82(d,J=6.4 Hz,3H,CH3),0.76(s,3H,CH3),0.68(s,3H,CH3);13CNMR(CDCl3,100 MHz),δ:177.8,158.9,139.8,130.4,129.3,129.3,125.8,114.0,114.0,78.8,55.3,55.2,54.0,47.7,47.5,43.2,42.5,39.7,39.5,39.1,38.8,38.6,37.2,36.9,32.8,30.9,28.2,27.9,27.2,24.8,23.3,23.2,21.2,18.3,17.2,17.0,15.7,15.4;ESI/APCI-MS,m/z:576.3[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-羰基)-4-氯-苄胺(14d)[流动相:V(二氯甲烷)∶V(甲醇)=200∶1]为白色固体,m.p.263.1~265.4℃,产率67%;1H NMR(CDCl3,400 MHz),δ:7.28(d,J=8.0 Hz,2H),7.17(d,J=8.0 Hz,2H),6.17(m,1H),5.22(m,1H),4.49(m,1H),4.12(m,1H),3.20 (m,1H),1.98~1.09(m,20H),1.08(s,3H,CH3),1.04~0.65(m,4H),0.98(s,3H,CH3),0.94(m,3H,CH3),0.88(s,3H,CH3),0.84(d,J=6.4 Hz,3H,CH3),0.78(s,3H,CH3),0.66 (s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:178.0,139.9,137.0,133.2,129.3,129.3,128.8,128.8,125.8,78.9,55.2,54.0,47.8,47.5,42.9,42.5,39.8,39.5,39.1,38.8,38.6,37.3,36.9,32.8,30.9,28.1,27.9,27.2,24.9,23.3,23.2,21.2,18.2,17.2,17.0,15.6,15.4;ESI/ APCI-MS,m/z:580.2[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-羰基)-(3S)-3-氨基戊内酰胺(14e)[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]为白色无定形粉末状固体,产率41%;1H NMR(CDCl3,400 MHz),δ:6.96(s,1H),5.81(s,1H),5.42(m,1H),4.01(m,1H),3.33(m,2H),3.21(m,1H),2.73~2.68(m,1H),2.07~1.23(m,23H),1.09(s,3H,CH3),1.07~0.71(m,4H),0.98(s,3H,CH3),0.94(s,3H),0.91(m,3H,CH3),0.87(d,J=6.4 Hz,3H,CH3),0.77(m,6H,2CH3);13C NMR(CDCl3,100 MHz),δ:178.8,171.8,138.0,127.0,79.0,55.2,53.5,51.0,48.0,47.7,42.2,41.7,39.8,39.6,39.1,38.8,38.8,37.6,36.9,33.0,30.9,28.1,28.0,27.3,26.6,24.6,23.5,23.5,21.2,20.8,18.3,17.2,16.7,15.6,15.6;ESI/APCI-MS,m/z:553.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-羰基)-(3S)-3-氨基己内酰胺(14f)[流动相:V(二氯甲烷)∶V(甲醇)=100∶1]为白色无定形粉末状固体,产率68%;1H NMR(CDCl3,400 MHz),δ:7.32(d,J=4.0 Hz,1H),6.54(m,1H),5.43(m,1H),4.35(m,1H),3.28~3.18(m,3H),2.07~1.20(m,26H),1.08(s,3H),1.04~0.62(m,4H),0.97(s,3H,CH3),0.94(m,3H,CH3),0.88(m,6H,2CH3),0.76(s,3H,CH3),0.64(s,3H,CH3);13C NMR(CDCl3,100 MHz),δ:177.5,176.0,137.9,126.8,79.0,55.1,53.3,52.3,47.7,47.6,42.2,42.2,39.7,39.7,39.0,38.7,38.7,37.4,36.9,32.9,31.4,31.0,29.0,28.1,27.9,27.9,27.3,24.7,23.4,23.4,21.2,18.3,17.2,16.4,15.6,15.6;ESI/APCI-MS,m/z:567.4[M+H]+.N-(3β-羟基-乌苏烷-12-烯-28-羰基)-(3S)-3-氨基-6-羟基己内酰胺(14g)[流动相:V(二氯甲烷)∶V(甲醇)=20∶1]为白色无定形粉末状固体,产率33%;1HNMR(CDCl3,400 MHz),δ:7.38(d,J= 4.4 Hz,1H,一个异构体),7.34(d,J=4.4 Hz,1H,另一个异构体),6.91(m,1H),6.61(m,1H),5.45(m,2H),4.35(m,1H),4.00(m,1H),3.52(m,1H),3.43~3.38(m,1H),3.36~3.28(m,2H),3.12~2.95(m,1H),2.13(m,1H),2.10~1.20(m,19H),1.07(s,3H,CH3),1.05~0.60 (m,4H),0.96(s,3H,CH3),0.94(s,3H,CH3),0.90~0.85(m,6H,2CH3),0.75(s,3H,CH3),0.61(d,J=4.4 Hz,3H,CH3);13C NMR(CDCl3,100 MHz),第一组δ:177.9,176.0,138.0,126.9,79.0,64.8,55.1,53.3,52.1,48.1,47.5,42.2,42.2,39.6,39.6,39.1,38.7,38.7,37.4,36.9,32.9,30.9,29.4,28.1,27.9,25.1,23.4,23.4,21.2,18.3,17.2,16.3,15.6;第二组δ:177.8,175.5,137.8,126.9,77.4,69.9,55.1,53.3,52.0,47.7,47.7,42.2,42.2,39.6,39.6,39.0,38.7,38.7,37.4,36.7,32.9,30.9,29.4,28.1,27.2,24.7,23.4,23.4,21.2,18.3,17.2,16.3,15.6;ESI/APCI-MS,m/z:583.4[M+H]+.1.3.1 细胞培养及药物处理实验所用细胞为人脐带静脉内皮细胞HUVEC、非小细胞肺癌细胞A549、人肝癌细胞Bel-7402和人乳腺癌细胞MCF-7.A549和Bel-7402的培养液为含10%小牛血清的RPMI-1640,MCF-7的培养基为含10%小牛血清的DMEM,HUVEC细胞培养液为EGM-2(含生长因子),细胞在37℃和5%CO2条件下维持培养.将A549,Bel-7402和MCF-7按每孔1500个细胞接种于96孔板,HUVEC细胞为每孔1000个细胞接种于96孔板,待细胞贴壁后加入药物(药物先用DMSO溶解,加药前用PBS稀释),溶剂对照组和加药组(包括阳性药物)的细胞培养液中DMSO终浓度均为0.1%,每个浓度有3个复孔.1.3.2 MTT检测加药再继续培养96 h后,于每孔加入20 μL MTT(5.0 mg/mL),再在37℃和5% CO2条件下继续孵育4 h,然后吸去细胞培养液,每孔加入100 μL DMSO(分析纯试剂)溶解MTT被还原的产物——蓝紫色Formazan结晶,并于超级酶标仪的570 nm下读数.超级酶标仪读数为Formazan的吸光度值(OD570nm),其反映活细胞的还原酶活力与细胞的活力成正比,因此基于溶剂对照组和加药组吸光度值可以计算出阳性药物和各个化合物的IC50.以熊果酸为起始原料,通过一系列反应得到了37个化合物,其中目标化合物24个.所得化合物中有30个新化合物,目标化合物中12a~12g,13b~13h和14b~14g共20个为新化合物.为得到关键中间体化合物8,首先将熊果酸C3位的羟基用乙酰基保护,再利用草酰氯将C17位的羧基变成酰氯;在三乙胺作用下,酰氯与甲醇反应得到熊果酸甲酯化合物4;脱掉乙酰基后,更换叔丁基二甲硅基作为保护基得到化合物6;用DIBAL-H将化合物6还原成醇得到化合物7,最后将化合物7氧化成醛得到关键中间体8.化合物8与一系列胺通过还原胺化反应得到目标化合物12a~12g.另外,参考文献[18,19]中的方法,在三乙胺的作用下,通过化合物3与一系列胺反应合成了酰胺类化合物13a~13h及14a~14g.在合成化合物13e,13f和13h时,由于所用的胺为油状物且在二氯甲烷中的溶解度不好,因此采用将化合物3的粗品与胺同时加入反应瓶中,再用二氯甲烷溶解的方法,边溶解边反应,一般反应时间较长但效果明显.合成目标化合物12g,13g,13h和14g时,所用的胺[(3S)-3-氨基-6-羟基己内酰胺(10g)、(3S)-3-氨基-6-乙酰基己内酰胺(10h)]为一对非对映异构体,摩尔比约为1∶1,因此在氢谱与碳谱中显示有2个化合物的摩尔比同样约为1∶1.采用MTT法,以人血管内皮细胞HUVEC为主要模型,采用不同的癌细胞株A549,Bel-7402和MCF-7对所合成的24个目标化合物进行了抗肿瘤血管生成活性测定和抑制肿瘤细胞增殖的活性测定,实验结果见表1.从表1的数据可以看出,化合物5,9,12e和14e对HUVEC细胞的抑制作用与熊果酸相仿,半数抑制浓度(IC50)均在5 μmol/L左右,但是化合物5,9,12e和14e对3种肿瘤细胞均无抑制作用,说明它们对HUVEC细胞有较好的选择性.在合成胺类化合物与酰胺类化合物时,所用的胺10e~10h为Bengamide类化合物的母环及其衍生物.Bengamide类化合物有较好的抑制肿瘤血管生成的活性,将其引入熊果酸C28位得到的化合物12e~12g,13e~13h和14e~14g均对内皮细胞HUVEC有一定的抑制活性,其中化合物13h对内皮细胞HUVEC抑制活性最高,IC50约为1 μmol/L,与熊果酸相比活性较高.将苄胺类化合物10a~10d引入熊果酸C28位,得到化合物12a~12d,13a~13d和14a~14d.从表1中的数据可见,胺类化合物12a~12d对内皮细胞HUVEC的抑制活性明显高于酰胺类化合物13a~13d和14a~14d,而化合物12a活性最好,IC50约为1 μmol/L,同样高于熊果酸的活性.对于所有的酰胺类化合物13a~13g和14a~14g,C3位的羟基是否裸露对于其抗肿瘤血管生成活性似无太大影响.综上,通过适当地改变熊果酸C28位的结构可以提高其对内皮细胞HUVEC的选择性,增强抗肿瘤血管生成活性;而且当引入的基团自身具有抗肿瘤血管生成的作用时效果更好.这些结果提示,进一步优化C28位的结构有可能得到选择性更高、活性更好的化合物,对以后的研究工作具有一定的指导意义.KeywordsUrsolic acid;Derivative;Anti-angigenesis;Antiproliferation【相关文献】[1] Folkman J..New Engl.J.Med.[J],1971,285(21):1182—1186[2] ZHANG Jun(张俊),XIE Ke-Ping(谢克平),ZHU Zheng-Gang(朱正纲),LIN Yan-Zhen(林言箴).J.Intern.Med.Concepts.Pract.(内科理论与实践)[J],2009,4(1):7—10[3] ZHOU Hong-Yu(周洪语).Chin.J.Cancer Biother.(中国肿瘤生物治疗杂志)[J],2000,7(4):308—310[4] DENG Yong(邓勇),ZHONG Yu-Guo(钟裕国),SHEN Yi(沈怡),LIU Shao-Hua(刘绍华).Chem.J.Chinese Universities(高等学校化学学报)[J],2003,24(2):260—264[5] BAI Yu-Jun(白育军),YANG Xiao-Sheng(杨小生),KANG Wen-Yi(康文艺).West China J.Pharm.Sci.(华西药学杂志)[J],2003,18(2):87—90[6] Liu J..J.Ethnopharmacol.[J],1995,49(2):57—68[7] Sarawat B.,Visen P.K.S.,Dayal R.,Agarwal D.P.,Patnaik G.K..Indian J.Pharmacol.[J],1996,28(4):232—239[8] Li J.,Guo W.J.,Yang Q.Y..World J.Gastroenterol.[J],2002,8(3):493—495[9] Cha H.J.,Bae S.K.,Lee H.Y..Cancer Res.[J],1996,56(10):2281—2284[10] Kim D.K.,Baek J.H.,Kang C.M.,Yoo M.A.,Sung J.W.,Chung H.Y.,Kim N.D.,Choi Y.H.,Lee S.H.,Kim K.W..Int.J.Cancer[J],2000,87(5):629—636[11] WANG Jie-Jun(王杰军),WANG Bing(王兵),GUO Jing(郭静),GAO Yong(高勇),XU Qing(许青),CHEN Wan-Sheng(陈万生).Med.Univ.(第二军医大学学报)[J],2000,21(11):1071—1073[12] You H.J.,Choi C.Y.,Kim J.Y.,Park S.J.,Hahm K.S.,Jeong H.G..FEBS Lett.[J],2001,509(2):156—160[13] Kiran M.S.,Viji R.I.,Sameer Kumar V.B.,Sudhakaranm.[J],2008,371(3):556—560[14] Armarego W.L.F.,Christina C..Purification of Laboratory Chemicals,Fifth Edition [M],Oxford:Butterworth-Heinemann,2003[15] Meng Y.Q.,Liu D.,Cai L.L.,Chen H.,Cao B.,Wang Y.Z..Bioorg.Med.Chem.[J],2009,17(2):848—854[16] Gnoatto S.C.B.,Susplugas S.,Vechia L.D.,Ferreira T.B.,Dassonville-Klimpt A.,Zimmer K.R.,Demailly C.,Nascimento S.D.,Guillon J.,Grellier P..Bioorg.Med.Chem.[J],2008,16(2),771—782[17] Sell H.M.,Kremers R.E..J.Biol.Chem.[J],1938,125(2):451—453[18] ZHAO Long-Xuan(赵龙铉),LIU Ning-Ning(刘宁宁),PEI Xiao-Juan(裴晓娟),WANG Di-Feng(王迪峰),LIU Dan-Zhu(刘丹竹).J.Liaoning Normal Univ.(Natural Science Edition)(辽宁师范大学学报,自然科学版)[J],2007,30(4):476—479[19]Liu D.,Meng Y.Q.,Zhao J.,Chen L.G..Chem.Res.Chinese Universities[J],2008,24(1):42—46AbstractTwenty-four derivatives of ursolic acid modified at C3 and C28 were designedand synthesized for the investigation of the structure-activity relationship of ursolicacid(1)against angiogenesis.All the compounds were characterized by1H NMR,13C NMR,MS and HR-MS.HUVEC was used as an angiogenesis target cell and A549,Bel-7402 and MCF-7 were as cancer target cells and the antiproliferative activity was assayed by MTT method.The results show that compounds 5,9,12e and 14e possess the selectively antiproliferative activity of HUVEC,meanwhile,compounds 12a and 13h are more active than compound 1 against the proliferation of HUVEC.Therefore,it is possible that more potent and selective angiogenesis inhibitors of ursolic acid derivatives could be discovered by suitable modification at C28 position of ursolic acid.These data suggestthat ursolic acid and its derivatives represent a promising lead structural core to discovera new class of antiangiogenesis agents.。
一种噻唑啉衍生物的抗癌医药用途[发明专利]
专利名称:一种噻唑啉衍生物的抗癌医药用途专利类型:发明专利
发明人:刘华平,李月群,金荣
申请号:CN201811606073.X
申请日:20181227
公开号:CN109498624A
公开日:
20190322
专利内容由知识产权出版社提供
摘要:本发明公开了一种噻唑啉衍生物的抗癌医药用途。
现代科学正在逐步揭示恶性肿瘤的发生本质,抗肿瘤药物研究已进入一个新的阶段。
紫杉醇等药物的研究成功,表明继续寻找有新作用机制及独特化学结构的细胞毒性药物仍有重要意义。
本发明提供的噻唑啉衍生物对人口腔鳞状细胞癌Tca8113之外的肿瘤细胞均无明显抑制作用;大部分噻唑啉衍生物均可以显著抑制人口腔鳞状细胞癌Tca8113的增殖。
本发明说明,噻唑啉衍生物的母核和取代基都显著影响其对肿瘤细胞的抑制作用。
申请人:南京盖斯夫医药科技有限公司
地址:211198 江苏省南京市江宁区科学园芝兰路18号
国籍:CN
更多信息请下载全文后查看。
一种吲唑类衍生物的合成方法及抗肿瘤应用[发明专利]
专利名称:一种吲唑类衍生物的合成方法及抗肿瘤应用专利类型:发明专利
发明人:徐志刚,陈中祝,张亚军
申请号:CN201811369716.3
申请日:20181117
公开号:CN109336890A
公开日:
20190215
专利内容由知识产权出版社提供
摘要:本发明涉及一种吲唑类衍生物的制备方法及其应用,本发明以四组分Ugi反应为基础,合成的中间体在不需要提纯的基础上,DMF溶剂中,通过微波辅助反应关环合成该类吲唑类衍生物,且具有抗肿瘤活性。
申请人:重庆文理学院
地址:402160 重庆市永川区红河大道319号
国籍:CN
更多信息请下载全文后查看。
新型噻唑并嘧啶酮类化合物的合成及抗肿瘤活性研究
新型噻唑并嘧啶酮类化合物的合成及抗肿瘤活性研究新型噻唑并嘧啶酮类化合物的合成及抗肿瘤活性研究引言:肿瘤是当今社会的一大健康问题,严重威胁人类的生命和健康。
随着人们对肿瘤发病原因的深入研究,发现肿瘤的形成常常与细胞的异常增殖以及凋亡失衡等因素有关。
因此,寻找对肿瘤细胞具有选择性毒杀和抑制细胞增殖的药物成为研究的热点。
噻唑并嘧啶酮类化合物成为近年来抗肿瘤药物研究的重要分支。
它们具有结构独特、多重靶点作用和广谱抗肿瘤活性等特点,被广泛用于抗肿瘤药物的发现与开发。
因此,本研究旨在合成一系列新型噻唑并嘧啶酮类化合物,并对其抗肿瘤活性进行综合评价,为抗肿瘤药物的开发提供理论依据和实验数据。
合成方法:本次研究的新型噻唑并嘧啶酮类化合物的合成过程采用多步反应。
首先,从商业化合物出发,以噻唑芳香酮为原料,经过氨基化、烷基化、酰基化等反应步骤,构建起噻唑并嘧啶酮的核心骨架。
然后,在核心骨架上通过简单的取代反应,引入不同的官能团,提高化合物的亲水性、脂溶性和生物可利用性。
合成的新型噻唑并嘧啶酮类化合物经过一系列的化学分析方法进行结构表征,包括质谱、红外光谱、核磁共振等。
所得的结构表征结果证实了目标化合物的结构与设计一致,为进一步的抗肿瘤活性研究提供了基础。
抗肿瘤活性研究:为了评价新型噻唑并嘧啶酮类化合物的抗肿瘤活性,我们采用了多种肿瘤细胞系进行体外药物筛选。
我们选择了两种不同类型的肿瘤细胞系:肺癌细胞系A549和乳腺癌细胞系MCF-7。
细胞增殖抑制实验结果显示,新合成的噻唑并嘧啶酮类化合物对A549和MCF-7细胞产生了显著的抑制作用。
进一步的细胞周期和凋亡分析结果表明,这些化合物通过诱导细胞凋亡和抑制细胞周期进展来发挥抗肿瘤活性。
我们还进行了细胞内信号通路的研究,发现新化合物可抑制PI3K/AKT和MAPK通路的活化,进一步揭示了这些化合物的抗肿瘤机制。
结论:本研究成功合成了一系列新型噻唑并嘧啶酮类化合物,并证实了其良好的抗肿瘤活性。
17-烷硫基赤霉酸酯类化合物及其制备方法与抗肿瘤用途[发明专利]
专利名称:17-烷硫基赤霉酸酯类化合物及其制备方法与抗肿瘤用途
专利类型:发明专利
发明人:陈静波,张洪彬,赵玉祥,隋迎春,飞鹏
申请号:CN201810131676.2
申请日:20180209
公开号:CN108276370B
公开日:
20220215
专利内容由知识产权出版社提供
摘要:本发明公开一种如通式(Ⅰ)所示的17‑烷硫基赤霉酸酯类化合物、以其为活性成分的药物组合物、其制备方法及其在制备抗肿瘤药物中的应用,本发明的化合物具有赤霉酸基本骨架结构,17‑位连接各种烷硫基基团,13‑位连接氯、羟基、乙酰氧基,7‑位羧酸酯是烷基酯、苄基酯或对甲氧基苄基酯。
此类17‑烷硫基赤霉酸酯类化合物是以含双α,β‑不饱和酮结构的赤霉酸衍生物与含巯基的化合物在不同条件下反应制备的。
此类化合物在体外抗肿瘤活性实验中显示了对多种人肿瘤细胞株增殖的抑制作用。
申请人:云南大学
地址:650091 云南省昆明市翠湖北路2号
国籍:CN
代理机构:昆明祥和知识产权代理有限公司
代理人:马晓青
更多信息请下载全文后查看。
抗肿瘤化合物噻唑烷酮双核铜化合物的制备方法[发明专利]
专利名称:抗肿瘤化合物噻唑烷酮双核铜化合物的制备方法专利类型:发明专利
发明人:邵佳,魏金霞,任海霞,张弋
申请号:CN202010980124.6
申请日:20200917
公开号:CN112125925A
公开日:
20201225
专利内容由知识产权出版社提供
摘要:一种抗肿瘤化合物噻唑烷酮双核铜化合物的制备方法,首先进行配体前体化合物的合成,将甲醇钠置于无水甲醇的单口烧瓶中,2‑氰基吡啶,氨基硫脲按照摩尔比4:1:1投料。
并将此混合液加热回流4‑8h,乙醇重结晶后得缩氨基硫脲产物;溴乙酸乙酯的使用可以使噻唑酮配体在室温下被合成,之后配体与铜离子结合生成噻唑烷酮双核铜化合物。
本发明提供的改进得噻唑酮配体制备方法,规避了极度危险的金属钠使用,溴乙酸乙酯的使用降低了能耗,节约能源。
合成的铜配合物对DNA有良好的切割效果,并且对多种细胞具有较好的抗癌活性,有作为未来抗肿瘤药物的可能。
申请人:天津市第一中心医院
地址:300000 天津市南开区复康路24号
国籍:CN
代理机构:天津英扬昊睿专利代理事务所(普通合伙)
代理人:吴扬
更多信息请下载全文后查看。
新型噻唑烷酮化合物抗脑胶质瘤的活性及其作用机制研究的开题报告
新型噻唑烷酮化合物抗脑胶质瘤的活性及其作用机制研究的开题报告一、选题背景脑胶质瘤是一种恶性肿瘤,发病率较高,且治疗难度大、预后差。
目前,较多的治疗方法为手术、放疗和化疗,但其疗效仍不尽如人意,因此需要寻找新的治疗方式。
近年来,针对脑胶质瘤的化学治疗逐渐成为研究热点。
研究表明,噻唑烷酮类化合物对脑胶质瘤具有一定的抗肿瘤活性,但其具体作用机制尚不清楚。
因此,本研究拟研究新型噻唑烷酮化合物在抗脑胶质瘤方面的活性及其作用机制,以期为脑胶质瘤的治疗提供新的思路和方法。
二、研究内容1. 合成新型噻唑烷酮类化合物。
2. 测定新化合物对人脑胶质瘤细胞的抗肿瘤活性。
3. 探究新化合物对脑胶质瘤细胞周期和凋亡的影响,分析相关机制。
4. 观察新化合物对胶质细胞的影响,比较其与一般化疗药物的异同。
5. 探索新化合物治疗脑胶质瘤的可行性及其可能的不良副作用。
三、预期目标根据实验结果,评估新型噻唑烷酮化合物作为抗脑胶质瘤药物的潜力,明确其相关作用机制,并为其开发应用提供理论基础。
四、研究意义1. 丰富脑胶质瘤治疗手段,为患者提供更多治疗选择。
2. 拓展噻唑烷酮类化合物在抗肿瘤方面的应用范围,为其在临床上的应用提供基础和依据。
3. 深入探究噻唑烷酮类化合物的抗肿瘤机制,为抗肿瘤药物的研究提供新的思路和方法。
五、研究方法1. 合成新型的噻唑烷酮类化合物,并通过红外光谱、质谱等手段进行表征。
2. 采用MTT法检测新化合物对脑胶质瘤细胞生长的影响。
3. 通过荧光显微镜、流式细胞术等手段观察新化合物对脑胶质瘤细胞凋亡和周期的影响,并分析相关机制。
4. 对新化合物和一般化疗药物进行比较,研究它们对胶质细胞的影响及同种作用机制和异同点。
5. 讨论新化合物在实验室条件下对人体安全性的考虑,以及其作为脑胶质瘤治疗药物的可行性。
六、研究进度安排第一年:完成新化合物的合成和表征工作,开展荧光显微镜和流式细胞术等实验。
第二年:在第一年实验基础上,开展MTT法测定新化合物对脑胶质瘤细胞生长的影响,以及对胶质细胞的影响比较实验。
噻唑啉酮脲衍生物的设计、合成及抗肿瘤活性研究
噻唑啉酮脲衍生物的设计、合成及抗肿瘤活性研究目的:基于已有的卡博替尼等喹啉类小分子c-Met抑制剂的构效关系,将噻唑啉酮脲这一重要的活性片段引入至芳氧取代的喹啉结构中,设计并合成结构新颖的受体酪氨酸激酶抑制剂,并对其进行结构确证,研究其抗肿瘤活性及作用机制,总结分析构效关系。
方法:以3-甲氧基-4-羟基苯乙酮为起始原料,经O-烃化反应、硝化、氨亚甲基化、分子内环合、N-烃化、氯代、亲核取代、还原、酰化、肼解及缩合等反应合成一系列具有噻唑啉酮脲结构片段的酪氨酸激酶抑制剂。
应用HRMS、<sup>1</sup>HNMR及<sup>13</sup>CNMR对化合物及部分中间体进行结构确证。
采用迁移率检测实验测定化合物对c-Met、IGF-1R、KDR及Ron 等激酶的抑制活性;选取A549、HT-29和MDA-MB-231肿瘤细胞株,采用MTT法对化合物进行体外抗肿瘤活性测定。
采用实时动态活细胞成像法、流式细胞术及细胞划痕实验等对抗肿瘤作用机制进行初步研究。
结果:设计并合成了41个新型具有噻唑啉酮脲结构片段的酪氨酸激酶抑制剂,目标化合物的结构经HRMS、<sup>1</sup>HNMR及<sup>13</sup>CNMR得到了确证。
多数化合物对测试的酪氨酸激酶及肿瘤细胞均表现出接近或明显优于阳性药物的抑制活性。
根据活性测试结果,该系列化合物的构效关系基本明确。
活性最优的化合物Ⅻ-35对c-Met、Ron、IGF-1R及c-Kit等激酶均表现出较好的抑制活性,IC<sub>50</sub>分别为0.015μM、0.0029μM、4.27μM和0.064μM。
体外抗肿瘤活性研究结果表明,化合物Ⅻ-35对人非小细胞肺癌细胞A549和人结肠癌细胞HT-29的IC<sub>50</sub>为0.35μM和0.073μM,分别为阳性药物抑制活性的27倍和157倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学Biomimetic synthesis of anti neoplastic 17 thiazolidine substituted steroidsM ENG Ge,LI Z henyu,W A NG M ei(Faculty o f P ha rmacy,School o f M edicine,Xi'an Jiaoto ng U niv ersit y,Shaanx i Xi'an,710061,China)Abstract:Objective T o o bt ain new 17 substituted ster oidal derivativ es as the possible anti neoplastic drug candidates.M ethods 17 (1,3 thiazolidinedione 5 yl) stero idal bioconjug ate w as designed by the method o f scaffo ld hopping and was sy nt hesized fro m co m mer cially av ailable mater ial via thr ee efficient steps including one bio mimetic st ep of reactio n.Result Both the inter mediate and tar g et molecule w ere r epo rted for the f irst time.T he structures of the all these new com pounds have been ver ified by spectr al analy sis,such as I R,1H NM R,13C NM R ,M S and element al analysis.Co nclusion T he sy nt hetic method and drug like pr operties of t he targ et compound mig ht be pro mising fo r further development.Key words:ster oid;t hiazo lidinedione;knoevenagel co ndensat ion;bio mimetic reduct ion;anti neoplastics抗肿瘤17 噻唑烷酮取代甾体衍生物的仿生合成孟 歌,李震宇,王 梅(西安交通大学药学系药物化学教研室,陕西西安710061)摘要:目的 合成17 取代甾体衍生物,寻找具有抗肿瘤活性的先导化合物。
方法 通过骨架迁跃的方法设计了一种结构新型的17 噻唑烷酮取代甾体生物缀合物,目标化合物由商业易得的原料经三步有效反应合成得到,其中涉及到一步生物催化的仿生合成。
结果 所得目标化合物和中间体未见文献报道,所有新化合物的化学结构经IR,1H N M R,13C N M R,M S 和元素分析等波谱解析验证。
结论 该噻唑烷酮 甾体生物缀合物具有一定的类药性,且合成方法简单,值得进一步的结构修饰和开发。
关键词:甾体骨架;噻唑烷二酮;脑文阁缩合;仿生合成;抗肿瘤do i:10.3969/j.issn.1004 2407.2011.04.027中图分类号:R914 文献标识码:A 文章编号:1004 2407(2011)04 0288 04基金项目:西安交通大学博士启动基金(2007)Large evidence show s that steroids and their bioconjug ates have a broad spectrum of bio logical activities,such as potent antimicrobial,analgesic,an ti inflam matory and anti tumo r activities[1 3].Themino r chang es in steroid structure could cause ex tensive changes in their bio logical activ ity and co n sequently in their therapeutic applications.Due to their lipophilic characters,m em br ane affinity and the ability o f binding to low density lipo pro teins,de sign and synthesis o f steroidal bioconjug ates are be coming mor e and mo re important.It is w orthy to be mentioned that 17 modification on the steroid skele to n o ften increases the bio logical activity,w hich have been v er ified in the cases o f solacongestidine,to matidine,solasodine,o lanocapsine and v erazine [4].Bearing a five member ring on the 17 position of the ster oid skeleton (Fig.1),cardiac g lycoside or cardiac g lycogenin show s the activ ity against m any kinds of tum or [5 6].Cardiac g lyco side,like ouabain and dig itox igenin,mig ht induce the apo to sis of hu m an androgen independent pro state cancer cells [7 8].As the w ater so luble ex tr actio n from Ner ium indicum M ill and the first patented car diac g lycosideanticancer drug appro ved by FDA [9],Anvirzel co n tains tw o m ain active ingr ediants ar e oleandr in [10]and oleandrigenin [11]and has now passed the clinicalphase [12].A Chinese patent also claimed the anti tumor activity and preparation of g lycosides com pounds [13].Fig.1 Contrast between the structures of cardiac glycoside Aand the target moleculeT he ear ly research also sug gested that a new ly discovered compound w ith car diac g lycoside A type skeleton,separated from traditio nal Chinese medi cine show s m oderately antineoplastic activity [2].W hile co nsidering the antineoplastic activity of the thiazolidinedione containing heterocyclic com pounds [14]and the similarity betw een the thiazolidin edione fiv e m em ber ring and the lactone five m em ber r ing on 17 position o f cardiac gly coside (Fig.1),w ehave designed a br and new 17 thiazolidinedione methy lene substituted steroid bioconjug ate in order to increase the lipophilicity and the enhance per mea bility through cell m em br anes and favo rable specific org an distribution and so to enhance its antineo plas tic activity.T he synthesis of this compound w as achieved by three steps of efficient reactio ns,inclu ding of heterocyclic cy clization,Knoevenag el con densation and reduction starting from the readily a vailable materials such as chloroacetic acid,thiourea and dehydr oepiandrosterone (2)(Fig.2).Fig.2 Synthetic route of the target moleculeExperimentalMelting points w ere taken on a WRS 1digital melting point apparatus and w ere uncorr ected.Ele m ental analyses w ere perform ed on a Carlo Elba 1106elemental analy zer.IR spectra w ere recorded on a Nicolet FI IR 360Spectrophotometer.1H NM R spectra w ere on a Bruker AM 400(400MH z)spec tro meter w ith T MS as an inter nal standard.Chemi cal shifts w ere r eported in ppm dow nfield ( ).M ass Spectra w as measured o n a H P5988A instrument by direct inlet at 70eV.All m aterials w ere obtained fro m com mercial suppliers and used as received.Synthesis of 2,4 thiazolinedione(1):1w as synthesis fro m thiourea and choloracetic acid acco rding to li teratur e [15 16].Synthesis of (5Z) 5 ((10R,13S ) 1,3,4,7,8,9,10,11,12,13,15,16 dodecahydro 3 hydroxyl 10,13 dim ethyl 2H cyclopenta[ ]phenanthren 17(14H ) yli dene)thiazolidine 2,4 dione (3):T o a 50mL three neck flask equipped w ith a thermo meter and a co n denser,w as added under the magnetic stirring of (10R,13S ) 1,3,4,7,8,9,10,11,12,13,15,16 dodeca hy dro 3 hy dro xy 10,13 dim ethyl 2H cyclopenta [ ]phenanthren 17(14H ) o ne (2,1.16g,4mmo l)and 2,4 thiazolinedione (1,0.47g ,4mm ol),and then the catalytic am ount o f anhydr ous piperidine (0.058mL,0.06mm ol)w as added by a micro sy r ing e.All these abo ve material w as dissolved by etha no l (20mL )as so lvent co mpletely w hile being stirred.T he r eaction mix tur e w as heated to reflu x ing and w as monitored by TLC.After refluxing for 7h,tw o of the m ain m aterials disappear ed,the r eac tion m ixture w as co oled dow n to roo m temperatur e.Distilled w ater (10mL)w as added dro p w isely un der v ig oro us stirring ,a large amount of w hite flo ccu lation pr ecipitation w as form ed in the formerly o paque reaction mixture.The white product w ash ob tained by filtration under vacuum,washed with distilled w ater,dried in vacuo at room temperature,w hite solid w as then obtained as the crude compound 3(1.21g,78.1%).This compound could be further purified by column chrom atog raphy (Stationary:Silica g el,m o bile:petroleum ether and EtOA c:2 1,R f =0.4)to g et a w hite pow der (0.80g,51.4%).The cr ude compound could also be r ecrystallized fro m ethy l ac etate to give a w hite cry stal like so lid for larg e scale r eaction w ith the y ield of 60%.mp 150 152 ,IR (KBr ):3431( N H ),1740( C=O ),1728( C=O )cm;1H NMR (CDCl 3): :0.89(s,3H ,CH 3),1.04(s,3H ,CH 3),1.04 2.48(m,20H ,steroid skeleton CH ),3.53(s,w,1H ,OH ),5.39(s,1H ,C=CH 6);13C NMR (CDCl 3): :22.3,22.9,23.3,26.4,30.1,30.2,31.9,32.1,37.2,37.5,37.9,42.0,47.6,51.0,66.7,71.8,113.1,122.0,141.0,165.0,167.2,177.4.MS (m/z ,%):388(M +1),Anal.Cald for C 22H 29NO 3S (%):C,68.18;H ,7.54;N,3.61;S,8.27.Found:(%):C,67.16;H ,7.49;N ,3.58;S,8.33.Synthesis of 5 ((10S,13S ) hexadecahydro 3 hydroxy 10,13 dimethyl 1H cyclopenta [ ]phenanthren 17 yl)thia zolidine 2,4 dione (4):T o a beaker added g lucose (2g,11mmo l)and w ater (40mL)and the dried baker 's yeast pow der (100mg ),the m ix tur e w as cultivated at ro om tem perature for 30minutes.T o a 100mL three neck flask equipped w ith a g lass inlet of g as w as added 3(200m g,0.52mm ol),1,4 diox ane (10m L )and the abo ve yeast cultiv atedmixture.T he reaction mixture w as first intr oduced w ith N2and then H2.The reactio n m ixture w as stirred under hydrog en atm ospher e.T LC m onitor w ith the elution of petro leum/ethyl acetate(3 1) show ed that the reduction completed after48hours under room temperature.The reaction co uld also be com pleted after24hour s under38 .The reaction mixture w as filtered to get rid of insoluble solid. The filtr ation w as concentrated under vacuo to g ive an oily crude pro duct as the crude targ et mo lecule4. This com po und w as pur ified by co lum n chr omatog r aphy(Stationary:Silica gel,mobile:petr oleum ether and EtOAc:2 1,R f=0.5)to give pure target com po und4(186mg,48mmo l,92%).m p149 151,IR(KBr):3389( N H),2816(C H ),C=O1739(C=O ),1672(C=O)cm-1;1H NM R(CDCl3): :1.06(s,3H,CH3),1.16(s,3H,CH3),1.24 1.98 (m,23H,steroid skeleton CH),3.16(m,1H,3 CH OH),3.68(s,w,1H,OH),9.8(s,1H, NH);13C NMR(CDCl3): :15.3,16.2,20.9,23.4,26.9,29.1, 31.0,32.2,32.7,35.8,36.9,37.2,39.4,41.6,44.7, 49.4,51.8,52.8,55.8,71.5,167.1,174.6.M S(m/ z,%):392(M+1),Anal.Cald fo r C22H33NO3S (%):C,67.48;H,8.49;N,3.58;S,8.19.Fo und: (%):C,67.39;H,8.46N,3.53;S,8.18.Drug like properties prediction:Lipinski's rule of five is a simple m odel to forecast the absorptio n and in testinal perm eability of a compound[17 18].In the rule of fiv e model,co mpo unds are considered likely to be w ell absor bed w hen they possess these attri butes m olecular w eig ht<500,lg P<5,num ber of H bond donors<5,num ber H bond acceptor s<10, and number of rotatable bonds<10.T he dr ug like parameter s o f both3and4w e calculated via Chem draw softw are(Cambridge3D8.0)(T able1).All com po unds meet the drug like criteria of rule of five.Co nnolly m olecular ar ea(M S)w as obtained via Chem3D U tra(Cam br idge softw are)according to the follow ing procedure:mo lecular dy namics calcu lation and energy minimization w ere sequentially run on each mo lecule w ith default values(step interv al = 2.0fs,frame interval=10fs,terminate after10 000steps),the parameter s of com po unds(3and4) w ere then co mputed,respectively.Table1 Biological Prediction of the properties of the target moleculesCompounds34Properties Criteria M W387.546391.578<500lg P 3.0414 4.1286<5 Connolly molecular area( 2)334.318332.346Number of H bond donors22<5 Number of H bond acceptors32<10 Number of rotatab le bonds34<10ConclusionsAs a sum mary,tw o new stero id bioconjug ates as the antineoplastic ag ents hav e been desig ned and synthesized via biom imic w ay from comm er cial a vailable materials.The new ly reported3and4w er e first obtained by Knoevenag el condensatio n and the biomim etic reduction,the former metho d is a mor e efficient to intr oduce C=C double bo nd to the17 posito n of the ster oid skeleton for its sim ple w ork ups and relative hig h y ield com paring w ith other tra ditional methods such as W ittig reaction,etc.All o f the new com pounds w ere pr edicted from their drug like param eters,such M S,lg P,etc.All o f the com pounds(3,4)hav e lg P value o f<5.T herefore,bo th 3and4have show s the favo rable drug like pr oper ties and are potentially interesting for further opti mization.AcknowledgmentsT he research w ork w as funded by Xi'an Jiao tong University Docto r Initiating Fund(2007). References[1] Nahar,T urner A B.Sy nthesis of ester linked litho cho licacid dimers[J].Ster oids,2003,68(14):1157 1161. [2] M eng G,Zhang K J,Zhang M Z.Chemical constituents ofP.vulgar is L.and antitumo r activ ity[J].N o rthwestPharm J,2007,22(4):211 213.[3] Nahar L,Sarker SD,L i P K,et al.Sy nthesis o f new estr one driv ativ es uing ecess oalyl clor ide[J].Chem N atCo mpd,2004,40(1):50 53.[4] Chen Y H,Zho u Q T,Bai DL.Synthesis of sever al analog ues of antifung al st eroid alkalo ids[J].A cta PharmSin,1998,33(6):436 441.[5] Dmitr ieva RI,Do ris P A.Cardioto nic st eroids:po tentialendog enous so dium pump lig ands w ith diverse function[J].Ex p Biol M ed,2002,227(8):561 569.[6] Winnicka K,Bielawski K,Bielaw ska A.Cardiac g lycosides in cancer r esear ch and cancer therapy[J].Acta P olPharm,2006,63(2):109 115.[7] Huang YT,Chueh SC,T eng CM,et al.Investig atio n ofouaba in induced anticancer effect in human androg enndependent pr ostate cancer PC 3cells[J].BiochemPharm,2004,67(4):727 733.[8] H uang DM,Guh JH,H uang YT,et al.Cardiac g ly cosides induce resistance to tubulin dependent ant icancerdr ug s in andr ogen independent human pr ostate cancer[J].J Bio med Sci,2002,9(5):443 452.[9] Kho dadoust M,Sharma binato rial chemotherapytreatment using Na+/K+ AT Pase inhibit ors[P].W OPat A ppl,2006029018,2006.[10]Y eh JY,Huang WJ,K an SF,et al.Inhibitor y effect s ofdigitalis o n t he pr oliferat ion o f andr og en dependent andindependent pro state cancer cells[J].J U r ol,2001,166(5):1937 1942.[11]Smith JA,M adden T,Vijjesw arapu M,et al.Inhibitio n ofexpor t of fibro blast g ro wth factor 2(FGF 2)fr om theprostate cancer cell lines PC3and DU145by A nv irzeland its cardiac g lycoside co mpo nent,o leandr in[J].Biochem Phar m,2001,62(4):469 472.[12]N asu S,M ilas L,K awabe S,et al.Enhancement of r adiot her apy by oleandr in is a caspase 3dependent pr ocess[J].Cancer L ett,2002,185(2):145 151.[13]Yao XS,Shen P,Y ang CR,et a l.Ca rdiac g lyco side co mpound fo r tr eat ing neoplasm and its pr epar ation[P].CNPat A ppl,1414010A,2003.[14]Yo shizaki T,M ot omura W,T anno S,et al.T hiazolidinedio nes enhance v ascular endothelial g row th facto r expressio n and induce cell g row th inhibition in no n smallcell lung cancer cells[J].J Ex p Clin Canc Res,2010,29:22.[15]M eng G,Li ZY,Zheng M L.A n efficient one step metho dfor the lar ge scale sy nt hesis of2,4 thiazolidinedio ne[J].Or g P rep Pr oced Int,2008,40(6):572 574.[16]Meng G,Gao Y,Zheng M C.Improved Synthesis of2,4 thiazolidinedio ne[J].Org P rep Proed Int,2011,43(3):1 2. [17]Lipinski CA.Dr ug like pr operties and the causes of poo rso lubility and po or permeability[J].J Phar maco l T ox ico lM etho ds,2000,44(1):235 249.[18]L ipinski CA,L ombar do F,Do miny BW,et al.Experimental and com putatio nal appr oaches to estimate solubility and per meabilit y in dr ug discov ery and development settings[J].A dv Dr ug Deliv Rev,2001,46(1/3):3 26.(收稿日期:2011 03 15)(上接第287页)表3 一步制粒方差分析Tab.3 Analysis of variance of one step granulation方差来源离差平方和f方差F PA194.936297.468110.633**B57.669228.83532.729*C17.90928.95510.164误差D 1.7620.88由表2的直观分析与表3的方差分析结果可知,因素A即喷液速度对实验结果影响最大,差异具有统计学意义。