人教版数学八年级下第十九章《一次函数》单元检测题含答案
人教版八年级下册数学第十九章一次函数测试题带答案
人教版八年级下册数学第十九章测试卷一、选择题 (每题 3分,共 30分)1.函数 y=错误!未找到引用源。
+x-2的自变量 x 的取值范围是 ()A. x≥2B. x> 2C.x≠2D.x≤22.某种正方形合金板材的成本 y(元)与它的面积成正比 ,设边长为 x 厘米. 当 x=3 时,y=18,那么当成本为 72 元时,边长为 ( )A.6 厘米B.12 厘米C.24 厘米D.36 厘米3.已知在一次函数 y=-1.5x+3 的图象上 ,有三点(-3,y1),(-1,y2),(2,y3),则 y1,y2,y3 的大小关系为 ( )A.y1>y2>y3B. y1>y3>y 2C.y2>y 1>y 3D.无法确定4.已知一次函数 y=kx+b (k,b是常数,且 k≠0中) x与 y 的部分对应值如下表所示 ,那么不等式 kx+b< 0 的解集是 ( )x -2 -1 0 1 2 3y 3 2 1 0 -1 -2A.x<0B.x>0C.x<1D.x>15.直线 l 1:y=k1x+b与直线 l2:y=k2x在同一平面直角坐标系中的位置如图 , 则关于 x 的不等式 k2x<k1x+b 的解集为 ( )6. 已知一次函数 y=kx+b ,y 随着 x 的增大而减小 ,且 kb>0,则这个函数的7. 如图,过 A 点的一次函数的图象与正比例函数 y= 2x 的图象相交于点B,则这个一次函数的解析式是 ( )A.y=2x+3B.y=x- 3C.y= 2x-3D.y=-x+ 38. 如图,点A 的坐标为(-1,0),点B 在直线 y=x 上运动,当线段 AB 最短时,A.(0,0)B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找 到引用源。
9. 一辆慢车与一辆快车分别从甲、 乙两地同时出发 ,匀速相向而行 ,两车 在途中相遇后分别按原速同时驶往甲地 ,两车A. x<-1B. x>-1C. x>2D. x<2大致图象是(之间的距离 s(km)与慢车行驶时间 t(h)之间的函数图象如图所示 ,下列说法 :①甲、乙两地之间的距离为 560 km;②快车速度是慢车速度的 1.5 倍;③快车到达甲地时 ,慢车距离甲地 60 km;④相遇时,快车距甲地 320 km.其中正确的个数是D.410.如图,在等腰三角形 ABC中,直线 l垂直于底边 BC,现将直线 l沿线段BC从B点匀速平移至 C点,直线 l与△ABC的边相交于 E,F两点,设线段 EF 的长度为 y, 平移时间为 t,则能较好地反映y 与 t 的函数关系的图二、填空题(每题 3分,共 30分)11.函数 y=(m-2)x+m2-4是正比例函数 ,则 m= .12.一次函数 y= 2x-6 的图象与 x轴的交点坐标为 .13.如果直线 y=错误!未找到引用源。
人教版八年级数学下册第十九章《一次函数》单元测试附答案卷
第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。
人教版八年级下册数学第十九章 一次函数 单元测试卷(含答案解析)
人教版八年级下册数学第十九章 一次函数 单元测试卷一、 选择题 (本题共计 10 小题 ,共计29分 )1. (2分) 在函数y =√x−11−x 中,自变量x 的取值范围是( ) A.x ≥1 B.x >1 C.x <1 D.x ≤12. (3分) 在直角坐标系中,点M ,N 在同一个正比例函数图像上的是( )A.M(2, −3),N(−4, 6)B.M(−2, 3),N(4, 6)C.M(−2, −3),N(4, −6)D.M(2, 3),N(−4, 6)3. (3分) 若函数y =(2m +1)x 2+(1−2m)x (m 为常数)是正比例函数,则m 的值为( )A.m >12B.m =12C.m <12D.m =−12 4. (3分) 已知函数y ={−x +6(x ≤2),2x(x >2),则当函数值y =8时,自变量x 的值是( ) A.−2或4 B.4 C.−2 D.±2或±45. (3分) 已知方程kx +b =0的解是x =3,则函数y =kx +b 的图象可能是( )A. B. C. D.6. (3分) 某地某一时刻的地面温度为10∘C ,高度每增加1km ,温度下降4∘C ,则下列说法中:①10∘C 是常量;②高度是变量;③温度是变量;④该地某一高度这一时刻的温度y(∘C)与高度x(km)的关系式为y =10−4x ;正确的是( )A.①②③B.②③④C.①③④D.①②③④7. (3分) 如图,直线y 1=mx 经过P(2, 1)和Q(−4, −2)两点,且与直线y 2=kx +b 交于点P ,则不等式kx +b >mx 的解集为( )A.x >2B.x <2C.x >−4D.x <−48. (3分) 根据如图所示程序计算函数值,若输入的x 的值为12,则输出的函数值为( )A.−12B.14C.1D.2549. (3分)甲、乙两车在同一直线上从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早出发2ℎ,并且甲车途中休息了0.5ℎ,如图是甲、乙两车离开A地的距离y(km)与甲车行驶时间x(ℎ)的函数图像.根据图中提供的信息,有下列说法:(1)m的值为1;(2)a的值为40;(3)乙车比甲车早1.75ℎ到达B地.其中正确的有( )A.3个B.2个C.1个D.0个10. (3分)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润.下列结论错误的是( )A.第24天的销售量为300件B.第10天销售一件产品的利润是15元C.第27天的日销售利润是1250元D.第15天与第30天的日销售量相等二、填空题(本题共计 7 小题,每题 3 分,共计21分)11. 已知函数y=3+(m−2)x m2−3是一次函数,则m=________,此函数图象经过第________象限.12. 长方形相邻两边长分别为x、y,面积为30,则用含x的式子表示y为________,则这个问题中,________是常量;________是变量.13. 用一根长16cm的细铁丝围成一个等腰三角形,设三角形的底边长为ycm,腰长为xcm,则底边长y与腰长x的函数关系式为________,自变量x的取值范围为________.14. 已知变量x与y的四种关系:①y=|x|;②|y|=x;③2x2−y=0;④x+y2= 1,其中,y是x的函数的有________.15. 如图是二次函数y1=ax2+bx+c和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.16. 已知点A(0, −4),B(8, 0)和C(a, −a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值等于________.17. 某超市,苹果的标价为3元/千克,设购买这种苹果xkg,付费y元,在这个过程中常量是________,变量是________,请写出y与x的函数表达式________.三、解答题(本题共计 7 小题,每题 10 分,共计70分)18. 如图,在平面直角坐标系中,一次函数y=kx+4的图象经过点A(1, 3),点B是一x的图象的交点.次函数y=kx+4与正比例函数y=13(1)求一次函数y=kx+4的表达式及点B的坐标;(2)求△AOB的面积.x+5的图像l1分别与x,y轴交于A,B 19. 如图,直角坐标系xOy中,一次函数y=−12两点,正比例函数的图像l2与l1交于点C(m, 4).(1)求m的值及l2的解析式;(2)求S△AOC−S△BOC的值;(3)一次函数y=kx+1的图像为l3,且l1,l2,l3不能围成三角形,请直接写出k的值.。
人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析
人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.下列关于变量x ,y 的关系,其中y 不是x 的函数的是()A .B .C .D .2.下列变量之间的关系不是函数关系的是()A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边与面积D .速度一定时,行驶的路程与时间3.小明以4km /h 的速度匀速前进,则他行走的路程()km s 与时间()h t 之间的函数关系式是()A .4s t=B .4000s t=C .4t s =D .4s t=4.平面直角坐标系中,直线y =2x ﹣6不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.一次函数y =kx +b (k ≠0)的图象如图所示,则k ,b 的取值范围是()A .k >0,b <0B .k >0,b >0C .k <0,b <0D .k <0,b >06.要从直线43y x =得到直线423x y +=,就要把直线43y x =()A .向上平移23个单位B .向下平移23个单位C .向左平移23个单位D .向右平移23个单位7.下列一次函数中,y 随x 增大而增大的有()①87y x =-;②65y x =-;③83y x =-+;④(57)y x =-;⑤9y x =.A .①②③B .①②⑤C .①③⑤D .①④⑤8.一次函数26y x =-+的图象与两坐标轴交于点A 、B ,则AOB 的面积等于().A .18B .12C .9D .69.如图是一次函数y kx b =+的图象,若0y >,则x 的取值范围是()A .0x >B .2x >C .3x >-D .32x -<<10.小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h (米)与小强出发后的时间t (分钟)的函数关系如右图所示,给出结论①山的高度是720米,②1l 表示的是爷爷爬山的情况,2l 表示的是小强爬山的情况,③小强爬山的速度是爷爷的2倍,④爷爷比小强先出发20分钟.其中正确的有().A .1个B .2个C .3个D .4个二、填空题11.已知函数26y x =-,当3x =时,y =_______;当19y =时,x =_______.12.如图中的两条直线1l 、2l 的交点坐标可以看做方程组__________的解.13.已知O 为坐标原点,点(2,)A m 在直线2y x =上,在x 轴上有一点B 使得AOB 的面积为8,则直线AB 与y 轴的交点坐标为________.14.某商场销售某种商品时,顾客一次购买20件以内的(含20件)按原价付款,超过20件的,超出部分按原价的7折付款.若付款的总数y (元)与顾客一次所购买数量x (件)之间的函数关系如图,则这种商品每件的原价为______元.15.某工厂生产甲乙两种产品,共有工人200名,每人每天可以生产5件甲产品或3件乙产品,若甲产品每件可获利4元,乙产品每件可获利7元,工厂每天安排x 人生产甲产品,其余人生产乙产品,则每日的利润y (元)与x 之间的函数关系式为________.三、解答题16.小明说,在式子y kx b =+中,x 每增加1,kx 增加了k ,b 没变,因此y 也增加了k .而如图所示的一次函数图象中,x 从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k 的值是2.小明这种确定k 的方法有道理吗?说说你的认识.17.如图,直线1是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.h与温度t(℃)之间的关系,某日研究人员在该地的不18.为了研究某地的高度()km同高度处同时进行了若干次测量,测得的数据如下表:h00.51 1.52 2.53/kmt/℃2521.818.615.3128.7 5.5(1)在直角坐标系内,描出各组有序数对(h,t)所对应的点;(2)这些点是否近似地在一条直线上?(3)写出h与t之间的一个近似关系式;(4)估计此时3.5km高度处的温度.19.如图(单位:cm ),规格相同的某种盘子整齐地摞在一起.(1)设x 个这种盘子摞在一起的高度为y cm ,求y 与x 之间的关系式;(2)求10个这种盘子摞在一起的高度.20.已知一次函数的图象经过()2,3M --,()1,3N 两点.(1)求这个一次函数的解析式;(2)设图象与x 轴、y 轴交点分别是A 、B ,求点A 、B 的坐标;(3)求此函数图象与x 轴、y 轴所围成的三角形的面积.21.如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(1)根据图象分别求出12l l 、的函数解析式;(2)如果电费是0.5元/度,求两种灯各自的功率;(注:功率单位:瓦,1度=1000瓦×1小时)(3)若照明时间不超过2000小时,如何选择两种灯具,能使使用者更合算?22.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部,三款手机的进价和售价如下表:手机型号A型B型C型进价(单位:元/部)90012001100预售价(单位:元/部)120016001300(1)请求出y与x之间的函数关系式,并求出x的取值范围;(2)假设所购进的手机全部售出,在此过程中经销商需额外支出各种费用共1500元,请求出预估利润P(元)与x之间的函数关系;(注:预估利润=预售总额-购机款-额外费用)(3)在(2)的条件下,请求出P的最大值,并求出此时购进三款手机各多少部.参考答案1.D 2.C3.A4.B5.C6.A7.C8.C9.C10.B11.35±12.421t s t s +=ìí-=-î13.()0,8或80,3æöç÷èø14.215.4200y x=-16.解:将x +1代入得:y 2=k (x +1)+b ,∴y 2-y =k (x +1)+b -kx -b =k ,∵y 2-y =2,∴k =2;所以小明的说法是正确的;实际上,当x 增加1时,y 的值的增加量为:()()1k x b kx b k ++-+=.17.解:∵由题意x =0,y =1;x =3,y =-3,∴1033k b k b =´+ìí-=+î解得:431k b ì=-ïíï=î∴413y x =-+∴直线与坐标轴的交点分别为(0,1),(34,0),∴函数413y x =-+与两坐标轴围成三角形的面积=31142´´=38.18.解:(1)如图:(2)这些点近似地在一条直线上.(3)设t =kh +b ,∵过点(0,25),(2,12),∴25122b k b =ìí=+î,∴ 6.525k b =-ìí=î,∴t =25−6.5h ,(4)当h =3.5时,t =25−6.5×3.5=2.25℃所以3.5千米高度处的温度约为2.25℃.19.(1)解:设解析式为y=kx+b 由题意得:6497k bk b =+ìí=+î解得:12k b =ìí=î∴解析式为2y x =+(2)把x =10代入2y x =+得102y =+=12(cm)20.解:(1)设一次函数的解析式为y kx b =+,由题意得:233k b k b -+=-ìí+=î,解得21k b =ìí=î,∴一次函数的解析式为:21y x =+;(2)令x =0,则y =1,∴B (0,1),令y =0,则210x +=,解得12x =-,∴A (12-,0);(3)∵A (12-,0),B (0,1),∴12OA =,1OB =,∴111112224AOB S OA OB =×=´´=.21.(1)设1:(0)l y kx b k =+¹,将(0,2)、(500,17)代入得250017b k b =ìí+=î解得0.032k b =ìí=î1:0.032l y x \=+设2:(0)l y mx n m =+¹,将(0,20)和(500,26)代入得2050026n m n =ìí+=î解得0.01220m n =ìí=î2:0.01220l y x \=+(2)将x =2000分别代入12l l 、得162y =、244y =12l l 、的灯泡售价分别是2元和20元\2000小时12l l 、的用电量分别为(62-2)0.5120¸=(度)、(4420)0.548-¸=(度)\1l 灯泡的功率:1201000602000´=(瓦),2l 灯泡的功率481000242000´=(瓦)(3)令12=l l 得0.0320.01220x x +=+,解得x =1000照明时间少于1000小时时,选择白炽灯合算;照明时间等于1000小时时,二者均可;照明时间大于1000小时时,选择节能灯合算22.解:(1)根据题意,知购进C 型手机的部数为60-x -y ;根据题意,得:900x +1200y +1100(60-x -y )=61000,整理,得:y =2x -50;购进C 型手机部数为60-x -y =110-3x ,根据题意,可列不等式组:8250811038x x x ³ìï-³íï-³î,解得:29≤x ≤34,综上,y =2x -50(29≤x ≤34);(2)由题意,得:P =1200x +1600y +1300(60-x -y )-61000-1500=500x +500;(3)由(1)知29≤x ≤34,由(2)得P =500x +500,∵P 是x 的一次函数,k =500>0,∴P 随x 的增大而增大,∴当x =34时,P 取得最大值,最大值为17500元,此时购进A 型手机34部、B 型手机18部、C 型手机8部.。
八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版
八年级数学下册《十九章 一次函数》单元测试卷及答案解析-人教版一、单选题1.一本笔记本5元,买x 本共付y 元,则变量是( )A .5B .5和xC .xD .x 和y2.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .3.下列各点中,在一次函数21y x =-+的图像上的是( )A .()11-,B .()01,C .()22,D .()23-,4.如图,直线()0y kx b k =+≠经过点()32A -,,则关于x 的不等式2kx b +<解集为( )A .3x >-B .3x <-C .2x >D .2x <5.函数1x y x+=的自变量x 的取值范围是( ) A .1x >- B .1x ≥- C .1x ≥-或0x ≠D .1x ≥-且0x ≠6.某地出租车计费方式如下:3km 以内只收起步价5元,超过3km 的除收起步价外,每超出1km 另加收1元;不足1km 的按1km 计费.则能反映该地出租车行驶路程 x (km )与所收费用 y (元)之间的函数关系的图象是( )A .B .C .D .7.已知正比例函数y kx =的图象经过点(24)-,,如果(1)A a ,和(1)B b -,在该函数的图象上,那么a 和b 的大小关系是( ) A .a b ≥B .a b >C .a b ≤D .a b <8.点在直线23y x =-+上的是( )A .()23,B .()21-,C .()30,D .()03-,9.如图,函数y =2x 和y =ax+5的图像交于点A (m ,3),则不等式2x <ax+5的解集是( )A .x <32B .x <3C .x >32D .x >310.如图,欣欣妈妈在超市购买某种水果所付金额y (元)与购买x (千克)之间的函数图象如图所示,则一次性购买6千克这种水果比平均分2次购买可节省( )元.A .4B .3C .2D .1二、填空题11.若函数6y x =-在实数范围内有意义,则函数x 的取值范围是 . 12.平面直角坐标系中,点(13)(11)(3)A B C a --,,,,,在同一条直线上,则a 的值为 . 13.如图,直线3y x =和2y kx =+相交于点12P b ⎛⎫ ⎪⎝⎭,,则不等式32x kx ≥+的解集为 .14.小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了3分钟后沿原路按原速骑车返回.设他们出发后经过t (分)时小明与家之间的距离为 1s (米),小明爸爸与家之间的距离为 2s (米),图中折线OABD 、线段EF 分别表示 1s 、 2s 与t 之间的函数关系的图象.小明从家出发,经过 分钟在返回途中追上爸爸.三、解答题15.如图,在靠墙(墙长8m )的地方围建一个矩形的养鸡场,另外三边用栅栏围成,如果栅栏总长为32m ,求鸡场的一边y (m )与另一边x (m )的函数关系式,并求出自变量的取值范围.16.已知A 、B 两地相距30km ,小明以6km/h 的速度从A 步行到B 地的距离为y km ,步行的时间为x h .(1)求y 与x 之间的函数表达式,并指出y 是x 的什么函数; (2)写出该函数自变量的取值范围.17.一次函数y=kx+b ,当x=1时y=5;当x=-1时y=1.求k 和b 的值.18.由于灯管老化,现某学校要购进A 、B 两种节能灯管320只,A 、B 两种灯管的单价分别为25元和30元,现要求B 种灯管的数量不少于A 种灯管的3倍,那么购买A 种灯管多少只时可使所付金额最少?最少为多少元?19.一辆轿车在高速公路上匀速行使,油箱存油量Q (升)与行使的路程S (km )成一次函数关系.若行使100km 时油箱存油43.5升,当行使300km 时油箱存油30.5升,请求出这个一次函数关系式,并写出自变量S 的取值范围.四、综合题20.如图,长为32米,宽为20米的长方形地面上,修筑宽度均为m 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与m (米)的函数关系式 . (2)计算当m =3时地砖的费用.21.学校组织暑期夏令营,学校联系了报价均为每人200元的两家旅行社,经协商,甲旅行社的优惠条件是:全部师生7.5折优惠;乙旅行社的优惠条件是:可免去一位老师的费用,其余师生8折优惠.(1)分别写出两家旅行社所需的费用y (元)与师生人数x (人)的函数关系式; (2)当师生人数是多少时甲旅行社比乙旅行社更便宜.22.将正比例函数3y x =的图象平移后经过点()14,. (1)求平移后的函数表达式;(2)求平移后函数的图象与坐标轴围成的三角形的面积.23.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x 构成一种函数关系.每平方米种植2株时平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式;(2)每平方米种植多少株时能获得12.5kg 的产量?参考答案与解析1.【答案】D【解析】【解答】解:一本笔记本的单价是5元不变的,因此5是常量而购买的本数x ,总费用y 是变化的量,因此x 和y 是变量 故答案为:D .【分析】结合题意,利用变量的定义求解即可。
人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案
人教版八年级数学下册《第十九章一次函数》章节测试卷-带答案一、单选题(共10小题,满分40分)1.将直线y = 2x+5沿尤轴向左平移3个单位得到直线则直线&的解析式是()A. y=2x+2B. y=2x+8C. y=2x~lD. y=2x+ll 2.一次函数的图像经过点(1, 2)和(一3, -1),则它的表达式为()A 3 5 4 4A. y= —x — — B. y= —x ——J 4 4 ) 3 53 4C. y= —x+ — )4 53 5D. y= —x+ — '4 43.已知点(-2,叫),(-1见),(1,为)都在直线y=-5x+/?上,则/,力,为的大小关系是( )A. >3<>2<>1B. >1<>2<>34. D.为<乂<力C. >2<>1<>3如果函数y^~2x + m 的图象经过第二、三、四象限,那么农应满足的条件是()A. m>0B. m< 0C. m>0D. m<05.某快递公司每天上午8:00-9:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间工(分)之间的函数图象如图所示,那么当两仓库快递件C. 8:20D. 8:256.如图,直线y = -x + b 和"奴-3交于点尸,根据图象可知kx-3<-x+b 的解集为( )7.关于变量x, C. 0<x<l D. —y 有如下关系:①x-y=5;②y2=2x ; (3): y=|x|;④y=3x 4.其中y 是x 函数的是()A.①②③B.①②③④C.①③D.①③④8.已知两点M (4, 2), N (1, 1),点P 是x 轴上一动点,若使PM+PN 最短,则点P 为()A. (2, 0)B. (2.5, 0)C. (3, 0)D. (4, 0)9.如图是我市某一天内的气温变化图,根据图象,下列说法中错误的是()奇间时A. 这一天中最高气温是26°CB. 这一天中最高气温与最低气温的差为16°CC. 这一天中2时至14时之间的气温在逐渐升高D. 这一天中14时至24时之间的气温在逐渐降低10.已知一次函数y = kx+b (k, 8为常数,5)的图象如图所示,下列说法正确的是( )C.尤 >0 时 yv —2024 B. '随工的增大而减小D.方程kx+b = 0的解是x = 2024二、填空题(共8小题,满分32分)11. 若y 是'的一次函数,且不经过第三象限,请你写出一个符合条件的函数解析式.12. 李红爸爸到加油站加油,他应付的金额随加油量的变化而变化,在这个变化过程中,自变量是y = mx + n,13.如图,直线y^mx+n 与直线y = kx+b 的交点为A,则关于工,了的方程组( z 7的解是[y = kx +b14.已知直线l i:y=-2x+a和/2:>='+人图象上部分点的横坐标和纵坐标如下表所示,则关于X的方程—2x+a=x+Z?的解是-1012y——2x+a852-1y-x+b012315.一个弹簧秤不挂重物时长12cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长了(单位:cm)与所挂重物质量尤(单位:kg)的函数解析式是.16.一次函数y--5x+b的图象经过和热(1况),则>1,%的大小关系是.2117.若直线AB:y=-x+4与工轴、V轴分别交于点8和点A,直线CD:y=-尹+2与工轴、了轴分别交于点。
人教版八年级数学下册《第十九章一次函数》检测卷-附带答案
人教版八年级数学下册《第十九章一次函数》检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.一次函数的图象不经过...()A.第一象限B.第二象限C.第三象限D.第四象限2.函数图象向右平移个单位后,对应函数为()A.B.C.D.3.已知直线经过一、二、四象限,则直线的图象只能是()A.B.C.D.4.一次函数的函数值随的增大而减小,则的值为()A.2 B.3 C.4 D.55.一次函数的图象经过两个点和,则,的大小关系是()A. B. C.当时, D.当时,6.网语期印,李明同学在老家学习生活,为缓解线上学习疲劳,在某个周末和爸爸进行登山锻炼,登山过程中,两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示(甲为爸爸,乙为李明),李明提速后,李明的登山速度是原来速度的2倍,并先到达山顶.根据图象所提供的信息,下列说法情误的是()A.甲登山的速度是每分钟米B.乙在A地时距地面的高度b为米C.乙登山分钟时追上甲D.登山时间为5分钟、8分钟、分钟时,甲、乙两人距地面的高度差为米7.如图,直线分别与轴、轴交于点和点,直线分别与轴、轴交于点和点,点是内部(包括边上)的一点,则的最大值与最小值之差为()A.1 B.2 C.4 D.68.如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.二、填空题9.在函数y= 中,自变量x的取值范围是.10.若点在函数的图象上,则代数式的值为。
11.已知一次函数与(k是常数,)的图像的交点坐标是,则方程组的解是.12.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程s(千米)与行驶时间t(小时)的函数关系及自变量的取值范围是13.如图,某电信公司提供了A、B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系.如果通讯费用为60元,那么A方案与B方案的通话时间相差分钟.三、解答题14.已知一次函数(,为常数,)的图象经过点和.(1)求该一次函数的解析式;(2)当时,求该一次函数的函数值的取值范围.15.如图,一次函数的图象与轴交于点B,与正比例函数的图象交于点.(1)求的面积;(2)利用函数图象直接写出当时,x的取值范围.16.油炸冰激凌是以面包、鸡蛋、冰激凌为材料制作的一种西式小吃,某油炸冰激凌专卖店每天固定制作甲、乙两个款型的油炸冰激凌共1000个,且所有产品当天全部售出,原料成本、销售单价及店员生产提成如表所示:设该店每天制作甲款型的油炸冰激凌x个,每天获得的总利润为y元(1)求出y与x之间的函数关系式;(2)若该店每天投入总成本不超过10750元,应怎样安排甲、乙两种款型的制作量,可使该店这一天所获得的利润最大?并求出最大利润(总成本=原料成本+生产提成,利润=销售收入﹣投入总成本)17.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示,根据图象信息解答下列问题:(1)乙车比甲车晚出发多少时间?(2)乙车出发后多少时间追上甲车?(3)求乙车出发多少时间,两车相距50千米?18.为提升学生的文学素养,培养学生的阅读兴趣,某校准备购进A ,B 两种图书.经调查,购进A 种图书费用y 元与购进A 种图书本数x 之间的函数关系如图所示,B 种图书每本20元. (1)当和时,求y 与x 之间的函数关系式;(2)现学校准备购进300本图书,其中购进A 种图书x 本,设购进两种图书的总费用为w 元. ①当时,求出w 与x 间的函数表达式;②若购进A 种图书不少于60本,且不超过B 种图书本数的2倍,那么应该怎样分配购买A ,B 两种图书才能使总费用最少?最少总费用多少元?19.如图,直线124l y x =-+:分别与x 轴、y 轴交于A ,B 两点,直线2l 与1l 交于点()2P a ,,与x 轴交于点()30C -,,点M 在线段AB 上,直线ME x ⊥轴于点E ,与2l 交于点N . (1)求直线2l 的表达式; (2)设点M 的横坐标为m . ①当32m =时,求线段MN 的长; ②若点M ,N ,E 三点中,其中两点恰好关于第三点对称,直接写出此时m 的值参考答案:1.D2.D3.B4.A5.A6.C7.B8.B9.x≠﹣110.1111.12.13.3014.(1)解:∵点,在该一次函数的图象上∴解得∴该一次函数的解析式为.(2)解:∵∴该一次函数的函数值随的增大而减小.当时;当时.∴当时,该一次函数的函数值的取值范围是.15.(1)解:∵一次函数的图象过点∴∴∴一次函数的表达式为 .当时∴∴ .(2)当时,的取值范围为16.(1)解:设该店每天制作甲款型的油炸冰激凌x个,每天获得的总利润为y元可得:y=(20﹣10﹣2) x+(16﹣8﹣1.5) (1000﹣x)=1.5x+6500;(2)设安排甲型产品x件,则乙型产品(1000-x)件,根据题意得到不等式,解不等式即可得到结论.由题意,12x+9.5(1000﹣x)≤10750,解得x≤500∵y=1.5x+6500,1.5>0∴x=500时,y有最大值=1.5×500+6500=7250答:该店每天制作甲、乙款型的油炸冰激凌各500个,可使该店这一天所获得的利润最大,最大利润7250元.17.(1)解:由图象可知乙车比甲车晚出发1个小时(2)解:设甲的函数解析式为y=kx,把点(5,300)代入得到k=60,故y=60x设乙的函数解析式为y=k′x+b,把点(1,0)和点(4,300)代入得到解得故y=100x﹣100由得= =1.5所以乙车出发后1.5小时追上甲车.(3)解:由题意:60x﹣(100x﹣100)=50或100x﹣100﹣60x=50解得到x= 或因为﹣1= ,﹣1=所以求乙车出发或小时,两车相距50千米.18.(1)解:当时,设将代入解析式,得解得当时,设将、分别代入解析式得解得综上, (2)解:①当时;②此时随x 的增大而减小 当时,w 最小,最小值为: 故购买A 种200本,B 种100本时总费用最少,最少总费用为5800元19.18.(1)解:将点()2P a ,代入124l y x =-+:,得224a =-+ 解得1a = 设2l y kx b =+:∴203k bk b =+⎧⎨=-+⎩解得1232k b ⎧=⎪⎪⎨⎪=⎪⎩∴2l 的表达式为1322y x =+ (2)解:①根据题意3931242N M ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,∴95144MN =-=. ②m 的值为139 13。
人教版八年级数学下册第十九章一次函数检测题(附答案)
第十九章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.函数y =x -1 的自变量x 的取值范围是DA .x >1B .x <1C .x ≤1D .x ≥12.若函数y =kx 的图象经过点(1,-2),那么它一定经过点BA .(2,-1)B .(-12 ,1)C .(-2,1)D .(-1,12) 3. “六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S 与时间t 之间函数关系的是B4.如图,直线y =x +b 和y =kx +2与x 轴分别交于点A (-2,0),点B (3,0),则⎩⎪⎨⎪⎧x +b >0,kx +2>0 解集为D A .x <-2 B .x >3 C .x <-2或x >3 D .-2<x <3第4题图 第9题图第10题图5.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是A6.已知一次函数y =(2m -1)x +1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1<x 2时,有y 1<y 2,那么m 的取值范围是BA .m <12B .m >12C .m <2D .m >0 7.已知一次函数的图象过点(3,5)与(-4,-9),则该函数的图象与y 轴交点的坐标为AA .(0,-1)B .(-1,0)C .(0,2)D .(-2,0)8.把直线y =-x -3向上平移m 个单位后,与直线y =2x +4的交点在第二象限,则m 的取值范围是AA .1<m <7B .3<m <4C .m >1D .m <49.在一次自行车越野赛中,出发m h 后,小明骑行了25 km ,小刚骑行了18 km ,此后两人分别以a km/h ,b km/h 匀速骑行,他们骑行的时间t (h)与骑行的路程s (km)之间的函数关系如图,观察图象,下列说法:①出发m h 内小明的速度比小刚快;②a =26;③小刚追上小明时离起点43 km ;④此次越野赛的全程为90 km.其中正确的说法有CA .1个B .2个C .3个D .4个10.如图,在平面直角坐标系中,点A 1,A 2,A 3…A n 在x 轴上,B 1,B 2,B 3…B n 在直线y =33x 上,若A 1(1,0),且△A 1B 1A 2,△A 2B 2A 3…△A n B n A n +1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S 1,S 2,S 3…S n .则S n 可表示为D A .22n 3 B .22n -13 C .22n -23 D .22n -33 二、填空题(每小题3分,共15分)11.函数y =5x 的图象经过的象限是一、三.12.在函数y =3x 2x -3 中,自变量x 的取值范围是x ≠32. 13.已知一次函数y =kx +b 的图象如图所示,则关于x 的不等式3kx -b >0的解集为x <2.第13题图 第14题图第15题图14.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是(32,4800).15.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54倍快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为2080米.三、解答题(共75分)16.(8分)已知2y -3与3x +1成正比例,且x =2时,y =5.(1)求x 与y 之间的函数关系,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a 的值.解:(1)y =32x +2,是一次函数 (2)a =017.(9分)已知一次函数y 1=kx +2(k 为常数,k ≠0)和y 2=x -3.(1)当k =-2时,若y 1>y 2,求x 的取值范围;(2)当x <1时,y 1>y 2.结合图象,直接写出k 的取值范围.解:(1)k =-2时,y 1=-2x +2,根据题意得-2x +2>x -3,解得x <53(2)当x =1时,y =x -3=-2,把(1,-2)代入y 1=kx +2得k +2=-2,解得k =-4,当-4≤k <0时,y 1>y 2;当0<k ≤1时,y 1>y 218.(9分)已知一次函数y =(a +8)x +(6-b ).(1)a ,b 为何值时,y 随x 的增大而增大?(2)a ,b 为何值时,图象过第一、二、四象限?(3)a ,b 为何值时,图象与y 轴的交点在x 轴上方?(4)a ,b 为何值时,图象过原点?解:(1)a >-8,b 为全体实数 (2)a <-8,b <6 (3)a ≠-8,b <6 (4)a ≠-8,b =619.(9分)有A ,B 两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A 和B 各发电多少度?(2)A ,B 两个发电厂共焚烧90吨的垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾两倍,求A 厂和B 厂总发电量的最大值.解:(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,根据题意得:⎩⎪⎨⎪⎧a -b =40,30b -20a =1800, 解得⎩⎪⎨⎪⎧a =300,b =260, 答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨垃圾,总发电量为y 度,则y =300x +260(90-x )=40x +23400,∵x ≤2(90-x ),∴x ≤60,∵y 随x 的增大而增大,∴当x =60时,y 有最大值为:40×60+23400=25800(度).答:A 厂和B 厂总发电量的最大值是25800度20.(9分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y (个)与甲加工时间x (h)之间的函数图象为折线OA -AB -BC ,如图所示.(1)这批零件一共有270个,甲机器每小时加工20个零件,乙机器排除故障后每小时加工40个零件;(2)当3≤x ≤6时,求y 与x 之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?解:(1)这批零件一共有270个,甲机器每小时加工零件:(90-50)÷(3-1)=20(个),乙机器排除故障后每小时加工零件:(270-90-20×3)÷3=40(个);故答案为:270;20;40 (2)设当3≤x ≤6时,y 与x 之间的函数关系式为y =kx +b ,把B (3,90),C (6,270)代入解析式,得⎩⎪⎨⎪⎧3k +b =90,6k +b =270, 解得⎩⎪⎨⎪⎧k =60,b =-90, ∴y =60x -90(3≤x ≤6) (3)设甲加工x小时时,甲乙加工的零件个数相等,①20x =30,解得x =1.5;②50-20=30,20x =30+40(x -3),解得x =4.5,答:甲加工1.5 h 或4.5 h 时,甲与乙加工的零件个数相等21.(10分)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y =-2|x |的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y =-2|x |+2和y =-2|x +2|的图象如图所示.x… -3 -2 -1 0 1 2 3 … y … -6 -4 -2 0 -2 -4 -6 …(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数y =-2|x +2|的对称轴;(2)探索思考:平移函数y =-2|x |的图象可以得到函数y =-2|x |+2和y =-2|x +2|的图象,分别写出平移的方向和距离;(3)拓展应用:在所给的平面直角坐标系内画出函数y =-2|x -3|+1的图象.若点(x 1,y 1)和(x 2,y 2)在该函数图象上,且x 2>x 1>3,比较y 1,y 2的大小.解:(1)A (0,2),B (-2,0),函数y =-2|x +2|的对称轴为x =-2 (2)将函数y =-2|x |的图象向上平移2个单位得到函数y =-2|x |+2的图象;将函数y =-2|x |的图象向左平移2个单位得到函数y =-2|x +2|的图象 (3)将函数y =-2|x |的图象向上平移1个单位,再向右平移3个单位得到函数y =-2|x -3|+1的图象.所画图象如图所示,当x 2>x 1>3时,y 1>y 222.(10分)某商店准备购进A ,B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A ,B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m (10<m <20)元,B 种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.解:(1)设A 种商品每件的进价是x 元,则B 种商品每件的进价是(x -20)元,由题意得:3000x =1800x -20,解得:x =50,经检验,x =50是原方程的解,且符合题意,50-20=30,答:A 种商品每件的进价是50元,B 种商品每件的进价是30元 (2)设购买A 种商品a 件,则购买B 商品(40-a )件,由题意得⎩⎨⎧50a +30(40-a )≤1560,a ≥40-a 2, 解得403 ≤a ≤18,∵a 为正整数,∴a =14,15,16,17,18,∴商店共有5种进货方案 (3)设销售A ,B 两种商品共获利y 元,由题意得:y =(80-50-m )a +(45-30)(40-a )=(15-m )a +600,①当10<m <15时,15-m >0,y 随a 的增大而增大,∴当a =18时,获利最大,即买18件A 商品,22件B 商品;②当m =15时,15-m =0,y 与a 的值无关,即(2)问中所有进货方案获利相同;③当15<m <20时,15-m <0,y 随a 的增大而减小,∴当a =14时,获利最大,即买14件A 商品,26件B 商品23.(11分)襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如下表所示:有机蔬菜种类进价(元/kg) 售价(元/kg) 甲 m16(1) 6 kg 和乙种蔬菜10 kg 需要200元.求m ,n 的值;(2)该超市决定每天购进甲、乙两种蔬菜共100 kg 进行销售,其中甲种蔬菜的数量不少于20 kg ,且不大于70 kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60 kg 的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y (元)与购进甲种蔬菜的数量x (kg)之间的函数关系式,并写出x 的取值范围;(3)在(2)的条件下,超市在获得的利润额y (元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的盈利率不低于20%,求a 的最大值.解:(1)由题意可得,⎩⎪⎨⎪⎧10m +5n =170,6m +10n =200, 解得⎩⎪⎨⎪⎧m =10,n =14, 答:m 的值是10,n 的值是14 (2)当20≤x ≤60时,y =(16-10)x +(18-14)(100-x )=2x +400,当60<x ≤70时,y =(16-10)×60+(16-10)×0.5×(x -60)+(18-14)(100-x )=-x +580,由上可得,y =⎩⎪⎨⎪⎧2x +400(20≤x ≤60)-x +580(60<x ≤70) (3)当20≤x ≤60时,y =2x +400,则当x =60时,y 取得最大值,此时y =520,当60<x ≤70时,y =-x +580,则y <-60+580=520,由上可得,当x =60时,y 取得最大值,此时y =520,∵在(2)的条件下,超市在获得的利润额y (元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,且要保证捐款后的盈利率不低于20%,∴520-2a ×60-40a 60×10+40×14≥20%,解得a ≤1.8,即a 的最大值是1.8。
人教版数学八年级下册第19章一次函数单元测试卷4份含答案
人教版数学八年级下册第19章一次函数单元测试卷4份第19章单元测试(1)一、填空题1.若一次函数的图象经过点(1,3)与(2,-1),则它的解析式为___________________,函数y随x的增大而____________.2.若函数y=(m-1)x|m|-2-1是关于x的一次函数,且y随x的增大而减小,则m=_______.3.一次函数y=(m+4)x-5+2m,当m__________时,y随x增大而增大;当m_______时,图象经过原点;当m__________时,图象不经过第一象限.4.一次函数y=2x-3的图象可以看作是函数y=2x的图象向__________平移________个单位长度得到的,它的图象经过_______________象限.5.已知一次函数y=kx-1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第______________象限.6.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x 的关系式.7.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了______元.8.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .(1)y随着x的增大而减小.(2)图象经过点(1,-3)9.已知一次函数y=kx+b的图象经过点P(2,-1)与点Q(-1,5),则当y 的值增加1时,x的值将_______________________.10.已知直线y=kx+b经过点(252,0)且与坐标轴所围成的三角形的面积是254,则该直线的解析式为_____________________________________.二、选择题11.一次函数y=2x+3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.已知一次函数y=(-1-m 2)x+3(m 为实数),则y 随x 的增大而 ( )A .增大B .减小C .与m 有关D .无法确定13.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( )A .P (2,0)B .P (-2,0)C .P (0,2)D .P (0,-2)14.无论实数m 取什么值,直线y=x+21m 与y=-x+5的交点都不能在( )A .第一象限B .第二象限C .第三象限D .第四象限15.已知一次函数y=(m -1)x+1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1>x 2时,有y 1<y 2,那么m 的取值范围是 ( ) A .m>0 B . m<0 C .m>1 D .m<1 16.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a 的值是 ( ) A .6或-6 B .6 C .-6 D .6和3 17.一次函数y=kx+b 与y=kbx ,它们在同一坐标系内的图象可能为 ( )18.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则ba 的值是( )A .4B .-2C .12D . 1219.某公司市场营部的营销人员的个人收入与其每月的销售业绩满足一次函数关系,其图象如图所示,由图中给出的信息可知:营销人员没有销售业绩时的收入是( )元.A .280B .290C .300D .31020.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点.设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是 ( )21.如图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自出发后3小时至 4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有 ( )A .1个B .2个C .3个D .4个三、解答题22.已知一次函数y=(2m+4)x+(3-n).⑴当m 、n 是什么数时,y 随x 的增大而增大? ⑵当m 、n 是什么数时,函数图象经过原点?⑶若图象经过一、二、三象限,求m 、n 的取值范围.23.已知一次函数y=(3m-7)x+m-1的图象与y轴交点在x轴的上方,且y随x 的增大而减小,求整数m的值.24.作出函数y=1x42的图象,并根据图象回答问题:⑴当x取何值时,y>0?⑵当-1≤x≤2时,求y的取值范围.25.已知直线y=3x+1和x、y轴分别交于点A、B两点,以线段AB为边在第一象限内作一个等边三角形ABC,第一象限内有一点P(m,0.5),且S△ABP =S△ABC,求m值.26.某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元.小彬经常来该店租碟,若每月租碟数量为x张.(1)写出零星租碟方式应付金额y(元)与租碟数量x(张)之间的函数关系1式;(2)写出会员卡租碟方式应付金额y(元)与租碟数量x(张)之间的函数关2系式;(3)小彬选取哪种租碟方式更合算?27.某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5米3的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1米3污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:①求出y与x的函数关系式.(纯利润=总收入-总支出)②当y=106000时,求该厂在这个月中生产产品的件数.28.一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以0.20元的价格返回报社,在一个月内(以30天计算),有20天每天可卖出100份,其余10天,每天可卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为x,每月所获得的利润为y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?答案一、1.47y x =-+ 减小 2.-3 3.4m >- 52m =4m <- 4.下,三,一、三、四象限 5.一、三 6. 1.86y x =- 7.36 8.3y x =-等9.减小1210.22112525y x y x =-=-+或二、11.D 12.B 13.A 14.C 15.D 16.B 17.A 18.D 19.C 20.A 21.A三、22.(1)2m >- n 为任何实数 (2)23m n ≠-⎧⎨=⎩ (3)23m n >-⎧⎨<⎩23.71,23m m m <<∴=又为整数,24.(1)由图像可知,当8,0x y >>时 (2)当912,32x y -≤≤-≤≤-时25.S △ABP m ==26.(1)1(0)y x x =≥ (2)20.412(0)y x x =+≥1212123,0.412,20,0.412,20,0.412,20y y x x x y y x x x y y x x x <<+<==+=>>+>()令则 令则 令则,所以,当租碟少于20张时,选零星租碟方式合算;当租碟20张时,两种方式一样;当租碟大于20张时,选会员卡租碟合算 27.(1)198000y x =- (2)6000x =(件)28.(1)20(10.7)1060(10.7)(0.70.2)(60)10y x x =-+⨯----⨯ 480(60100)x x x =+≤≤且为整数10100580(2)k y x x y =>==∴∴最大值随增大而增大当时(元),第19章单元测试(2)一、填空题 1.已知函数1231x y x -=-,x =__________时,y 的值时0,x=______时,y 的值是1;x=_______时,函数没有意义. 2.已知253x y x+=-,当x=2时,y=_________.3.在函数3y x =-中,自变量x 的取值范围是__________.4.一次函数y =kx +b 中,k 、b 都是 ,且k ,自变量x 的取值范围是 ,当 k ,b 时它是正比例函数. 5.已知82)3(-+=mx m y 是正比例函数,则m .6.函数n m x m y n +--=+12)2(,当m= ,n= 时为正比例函数; 当m= ,n= 时为一次函数.7.当直线y=2x+b 与直线y=kx-1平行时,k________,b___________.8.直线y=2x-1与x 轴的交点坐标是____________;与y 轴的交点坐标是_____________. 9.已知点A 坐标为(-1,-2),B 点坐标为(1,-1),C 点坐标为(5,1),其中在直线y=-x+6上的点有____________.在直线y=3x-4上的点有____________.10.一个长为120米,宽为100米的矩形场地要扩建成一个正方形场地,设长增加x 米,宽增加y 米,则y 与x 的函数关系式是 ,自变量的取值范围是 ,且y 是x 的 函数.11.直线y=kx+b 与直线y=32x -平行,且与直线y=312+-x 交于y 轴上同一点,则该直线的解析式为________________________________.二、选择题:12.下列函数中自变量x 的取值范围是x ≥5的函数是 ( )A .y =B .y =C .yD .y = 13.下列函数中自变量取值范围选取错误..的是( )A .2y x x =中取全体实数B .1y=中x ≠0x-1C .1y=中x ≠-1x+1D .1y x =≥14.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升。
人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析(1)
人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则()A .2k <B .2k >C .0k >D .0k <2.下列各曲线中表示y 是x 的函数的是()A .B .C .D .3.一次函数24y x =+的图像与y 轴交点的坐标是()A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)4.已知一次函数y =kx +b ,当0≤x≤2时,对应的函数值y 的取值范围是-2≤y≤4,则k 的值为()A .3B .-3C .3或-3D .不确定5.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是()A .x=2B .x=0C .x=﹣1D .x=﹣37.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为()A .±1B .1-C .1D .28.一次函数()224y k x k =++-的图象经过原点,则k 的值为()A .2B .2-C .2或2-D .39.在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,则k 和b 的取值范围是().A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <010.一辆汽车从甲地以50km/h 的速度驶往乙地,已知甲地与乙地相距150km ,则汽车距乙地的距离s(km)与行驶时间t(h)之间的函数解析式是()A .s =150+50t(t≥0)B .s =150-50t(t≤3)C .s =150-50t(0<t <3)D .s =150-50t(0≤t≤3)11.如图,函数=2y x 和=+4y ax 的图象相交于A (m ,3),则不等式2+4x ax <的解集为()A .3x 2>B .x 3>C .3x 2<D .x 3<12.已知:将直线y =x ﹣1向上平移2个单位长度后得到直线y =kx +b ,则下列关于直线y =kx +b 的说法正确的是()A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小二、填空题13.对于圆的周长公式c=2πr ,其中自变量是______,因变量是______.14.若函数y =(k +1)x +k 2-1是正比例函数,则k 的值为________.15.已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.16.在平面直角坐标系中,已知一次函数21y x =+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y _______2y .(填”>”,”<”或”=”)17.如图,矩形ABCO 在平面直角坐标系中,且顶点O 为坐标原点,已知点B(3,2),则对角线AC 所在的直线l 对应的解析式为___.三、解答题18.已知函数y =(m +1)x 2-|m |+n +4.(1)当m ,n 为何值时,此函数是一次函数?(2)当m ,n 为何值时,此函数是正比例函数?19.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.20.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x 名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y 元,求y 与x 的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.21.已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标.(2)若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≤y2时x的取值范围.22.如图,直角坐标系xOy中,一次函数y=﹣1x+5的图象l1分别与x,y轴交于A,B2两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.参考答案1.B2.D3.B4.C5.C6.D7.B8.A9.C10.D 11.C12.C13.r c14.115.-116.<17.y=23-x+2解:∵四边形ABCO为矩形,BC x\轴,AB y∥轴,∵B(3,2),∴OA=BC=3,AB=OC=2,∴A(3,0),C(0,2),设直线AC解析式为y=kx+b,把A与C坐标代入得:30 {2k bb+==,解得:2 {32 kb=-=,则直线AC解析式为2 2.3y x=-+故答案为2 2.3y x=-+18.(1)当m=1,n为任意实数时,这个函数是一次函数;(2)当m=1,n=−4时,这个函数是正比例函数.解:(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又∵m+1≠0即m≠−1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2−|m|=1,n+4=0,解得:m=±1,n=−4,又∵m+1≠0即m≠−1,∴当m=1,n=−4时,这个函数是正比例函数.19.(1)y=2x+1;(2)不在;(3)0.25.解:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P (-1,1)代入函数解析式,1≠-2+1,∴点P 不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12-,此函数与x 轴、y 轴围成的三角形的面积为:11110.25224´´-==20.(1)y =-350x +63000.(2)安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.解:(1)根据题意得:()()70203540203513035063000y x x x x éù=--´´+-´´=-+ëû(2)因为7035(20)x x ³-,解得203x ³,又因为为正整数,且20x £.所以720x ££,且为正整数.因为3500-<,所以y 的值随着x 的值增大而减小,所以当7x =时,取最大值,最大值为35076300060550-´+=.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.21.(1)(1,3)-;(2)9;(3)1³x 解:(1)联立两函数解析式可得方程组24y x y x =--ìí=-î,解得:13x y =ìí=-î,\点A 的坐标为(1,3)-;(2)当10y =时,20x --=,解得:2x =-,,0()2B \-,当20y =时,40x -=,解得:4x =,(4,0)C \,6CB \=,ABC D ∴的面积为:16392´´=;(3)由图象可得:12y y £时x 的取值范围是1³x .22.(1)m =2,l 2的解析式为y =2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12.解:(1)把C (m ,4)代入一次函数y =﹣12x +5,可得4=﹣12m +5,解得m =2,∴C (2,4),设l 2的解析式为y =ax ,则4=2a ,解得a =2,∴l 2的解析式为y =2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2,y =﹣12x +5,令x =0,则y =5;令y =0,则x =10,∴A (10,0),B (0,5),∴AO =10,BO =5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k =32;当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣12;故k 的值为32或2或﹣12.。
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)
【精选】人教版八年级下册数学第十九章《一次函数》测试卷(含答案)一、选择题(每题3分,共30分)1.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( ) A .每小时用电量 B .室内温度 C .开机设置温度 D .用电时间2.【2022·恩施州】函数y =x +1x -3的自变量x 的取值范围是( )A .x ≠3B .x ≥3C .x ≥-1且x ≠3 D.x ≥-13.【教材P 82习题T 7变式】下列图象中,表示y 是x 的函数的是( )4.一个正比例函数的图象经过点(2,-1),则它的解析式为( )A .y =-2xB .y =2xC .y =-12xD .y =12x5.把直线y =x 向上平移3个单位长度,下列点在该平移后的直线上的是( )A .(2,2)B .(2,3)C .(2,4)D .(2,5)6.【2022·邵阳】在直角坐标系中,已知点A ⎝ ⎛⎭⎪⎫32,m ,点B ⎝⎛⎭⎪⎪⎫72,n 是直线y =kx+b (k <0)上的两点,则m ,n 的大小关系是( ) A .m <n B .m >n C .m ≥n D .m ≤n7.【2021·海南】李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是( )8.表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象可能是( )9.【2021·安徽】某品牌鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16 cm,44码鞋子的长度为27 cm,则38码鞋子的长度为( )A.23 cm B.24 cm C.25 cm D.26 cm10.【传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片,用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③春分和秋分,昼夜时长大致相等.其中正确的是( )A.①②B.②③C.②D.③二、填空题(每题3分,共24分)11.函数y=(m-2)x|m|-1+m+2是关于x的一次函数,则m=________. 12.【开放题】【2022·上海】已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:______________.13.若一个正比例函数的图象经过A(3,6),B(m,-4)两点,则m=________.14.如图,直线y=x+2与直线y=ax+4相交于点A(1,3),则关于x的不等式ax+4≥x+2的解集为__________.(第14题) (第17题) (第18题)15.关于x的一次函数y=(2-m)x-3m的图象经过第一、三、四象限,则m的取值范围为__________.16.声音在空气中传播的速度简称音速,科学研究发现声音在空气中传播的速度(m/s)与气温(℃)有关,下表列出了一组不同气温时的音速:用y(m/s)表示音速,用x(℃)表示气温,则y与x之间的关系式为____________.17.【教材P97图19.2-8变式】如图,AB,CB表示某工厂甲、乙两车间产品的总量y(t)与生产时间x(天)之间的函数图象,第30天结束时,甲、乙两车间产品总量为________t.18.【2022·天津四十三中模拟】日常生活中常用的二维码是由许多大小相同的黑白两色小正方形按某种规律组成的一个大正方形,图①是一个20×20格式(即黑白两色小正方形个数的和是400)的二维码,左上角、左下角、右上角是三个相同的7×7格式的正方形,将其中一个放大后如图②,除这三个正方形外,图①中其他的黑色小正方形个数y与白色小正方形个数x正好满足图③所示的函数图象,则图①所示的二维码中共有个白色小正方形.三、解答题(19,20题每题12分,其余每题14分,共66分)19.【教材P107复习题T4(2)改编】一次函数的图象经过(-2,1)和(1,4)两点.(1)求这个一次函数的解析式;(2)当x=3时,求y的值.20.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=-x -2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.21.【立德树人】【2022·成都】随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数解析式;(2)何时乙骑行在甲的前面?22.【数学建模】【2022·云南】某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.。
人教版数学八年级下《第十九章一次函数》单元测试题含答案
14.当直线 y 2x b 与直线 y kx 1平行时,k__________,b___________.
15.汽车行驶前,油箱中有油 55 升,已知每百千米汽车耗油 10 升,油箱中的余油量 Q (升)与它行驶的距离 s(百千米)之间的函数关系式为___ ________;为了保证行车 安全,油箱中至少存油 5 升,则汽车最多可行驶____________千米.
A.2
B.0
C.-2
11. 根据如图的程序,计算当输入 x 3 时,输出的结果 y
y x 5(x 1)
输
输
入
出
y x 5(x ≤1)
y
D. ±2 .
12.已知直线 y1=2x与直线 y = -2x+4相交于点 A.有以下结论:①点 A 的坐标为 A(1,2);② 2 当 x=1时,两个函数值相等;③当 x<1 时,y1<y2④直线 y =2x与直线 y =2 2x-4在平面 1 直角坐标系中的位置关系是平行.其中正确的是
是, A C 10 台, A D 2 台, B C 0 台, B D 6 台,此时总运费为 8600 元.
C.向上平移
5 3
个单位
B.向下平移 5 个单位
).
D.向下平移
5 3
个单位
8.经过一、二、四象限的函数是
A.y=7
B.y=-2x
C.y=7-2x
D.y=-2x-7
9.已知正比例函数 y=kx(k≠0)的函数值 y 随 x 的增大而减小,则函数 y=kx-k的图象大致 是
10.若方程 x-2=0的解也是直线 y=(2k-1)x+10与 x 轴的交点的横坐标,则 k 的值为
人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)
一、选择题1.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m >0B .m <0C .m >2D .m <22.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ 的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm 3.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 4.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .5.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =6.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和37.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .8.如图,在四边形ABCD 中,AD ∥BC ,∠B =60°,∠D =90°,AB =4,AD =2,点P 从点B 出发,沿B→A→D→C 的路线运动到点C ,过点P 作PQ ⊥BC ,垂足为Q .若点P 运动的路程为x ,△BPQ 的面积为y ,则表示y 与x 之间的函数关系图象大致是( )A .B .C .D .9.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9 B .11 C .15 D .1810.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限 11.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2,0⎛⎫ ⎪ ⎪⎝⎭C .10,0⎛⎫ ⎪ ⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭ 12.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <- 13.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( )①,B C 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达C 港时,乙船还需要一个小时才到达C 港⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个14.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <- 15.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( )A .k≠3B .k =±3C .k =3D .k =﹣3二、填空题16.如图,两个一次函数y =kx+b 与y =mx+n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (-2,0),l 2与x 轴交于点C (4,0),则不等式组0<mx+n <kx+b 的解集为_____.17.已知A 、B 两地相距200千米,货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资,货车乙遇到货车甲后,用了30分钟将物资从货车甲搬运到货车乙上,随后以原速开往B 地,货车甲以原速的25返回A 地.两辆货车之间的路程()km y 与货车甲出发的时间()h x 的函数关系如图所示(通话等其他时间忽略不计).若点C 的坐标是()1.6,120,点D 的坐标是()3.6,0,则点E 的坐标是______.18.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.19.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.20.函数1y x =-中自变量x 的取值范围是________. 21.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.22.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.23.函数1y x=-的定义域是______. 24.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.25.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.26.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______. 三、解答题27.如图直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A .(1)求A 点坐标;(2)求OAC 的面积;(3)如果在y 轴上存在一点P ,使OAP △是等腰三角形,请直接写出P 点坐标;(4)在直线27y x =-+上是否存在点Q ,使OAQ 的面积等于6?若存在,请求出Q 点的坐标,若不存在,请说明理由.28.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 29.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x 分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y 随x 的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.30.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留0.5h ,然后按原路原速返回,快车比慢车晚0.5h 到达甲地.快慢两车距各自出发地的路程()km y 与所用的时间()h x 的关系如图所示.(1)甲乙两地之间的路程为________km ;快车的速度为________km/h ;慢车的速度为_________km/h ;(2)出发________h ,快慢两车距各自出发地的路程相等;(3)快慢两车出发________h 相距250km .。
【八年级】八年级数学下《第十九章一次函数》检测试题(人教版含答案)
【八年级】八年级数学下《第十九章一次函数》检测试题(人教版含答案)第十九章《一次函数》检测题一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.以下函数中,就是一次函数的存有( )①y=x;②y=3x+1;③y=;④y=kx-2.a.1个b.2个c.3个d.4个2.在函数y=√x/(x-1)中,自变量x的取值范围是()a.x≥1b.x≤1且x≠0c.x≥0且x≠1d.x≠0且x≠13.下列图象中,y不是x的函数的是()a.b.c.d.4.下面关于函数的三种表示方法叙述错误的是()a.用图象法则表示函数关系,可以直观地窥见因变量如何随着自变量而变化b.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值c.用公式法则表示函数关系,可以便利地排序函数值d.任何函数关系都可以用上述三种方法来表示5.甲、乙两车从a地驶往b地,并以各自的速度匀速高速行驶,甲车比乙车早高速行驶2h,并且甲车途中歇息了0.5h,例如图就是甲乙两车高速行驶的距离y(km)与时间x(h)的函数图象.则以下结论:(1)a=40,m=1;(2)乙的速度就是80km/h;(3)甲比乙迟h到达b地;(4)乙车高速行驶小时或小时,两车恰好距离50km.正确的个数是()a.1b.2c.3d.46.若函数y=(k+1)x+k^2-1是正比例函数,则k的值为()a.1b.0c.±1d.-17.一次函数y=2x-6的图象经过()a.第一、二、三象限b.第二、三、四象限c.第一、二、四象限d.第一、三、四象限8.例如图,函数y=2x和y=ax+4的图象平行于点a(m,3),则不等式2x<ax+4的边值问题为【】a.x<3/2b.x<3c.x>-3/2d.x>39.若直线y=x+2k+1与直线y=1/2x+2的交点在第一象限,则k的值域范围就是()a.-5/2<k<1/2b.-1/6<k<5/2c.k>5/2d.k>-5/210.体育课上,20人一组展开足球比赛,每人箭点球5次,未知某一组的进球总数为49个,进球情况记录如下表中,其中入2个球的存有x人,入3个球的存有y人,若(x,y)恰好就是两条直线的交点座标,则这两条直线的解析式就是()a.y=x+9与y=2/3x+22/3b.y=-x+9与y=2/3x+22/3c.y=-x+9与y=-2/3x+22/3d.y=x+9与y=-2/3x+22/3二、填空题(每小题3分,共15分)11.未知函数y=?x+3,当x=_____时,函数值0.12.已知,一次函数y=kx+b,当2≤x≤5时,?3≤y≤6.则2k+b的值是______.13.未知函数y=kx+b的部分函数值如表中右图,则关于x的方程kx+b+3=0的解法_____.x…?2?101…y…531?1…14.一次函数y=x+b(b<0)与y=x?1图象之间的距离等于3,则b的值为_____.15.例如图,在平面直角坐标系则中,直线y=x+2交x轴于点a,交y轴于点a1,若图中阴影部分的三角形都就是全等直角三角形,则从左往右第4个阴影三角形的面积就是_____,第2021个阴影三角形的面积就是_____.三、解答题(共55分)16.(本题10分后)未知一次函数.(1)若函数图象经过原点,求的值;(2)若随其的减小而减小,谋的值域范围.17.(本题10分)已知y+4与x成正比例,且x=6时,y=8.(1)算出y与x之间的函数关系式;(2)在所给的直角坐标系(如图)中画出函数的图象;(3)轻易写下当-4≤y≤0时,自变量x的值域范围.18.(本题11分)某商场计划销售a,b两种型号的商品,经调查,用1500元采购a 型商品的件数是用600元采购b型商品的件数的2倍,一件a型商品的进价比一件b型商品的进价多30元.(1)谋一件a,b型商品的市场价分别为多少元?(2)若该商场购进a,b型商品共100件进行试销,其中a型商品的件数不大于b型的件数,已知a型商品的售价为200元/件,b型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?19.(本题12分后)例如图,直线l1:y1=?x+m与y轴处设点a(0,6),直线l2:y=kx+1分别与x轴处设点b(?2,0),与y轴处设点c,两条直线交点记作d.(1)m= ,k= ;(2)谋两直线交点d的座标;(3)根据图象直接写出y1<y2时自变量x的取值范围.20.(本题12分后)某农产品生产基地斩获红薯192吨,准备工作运给甲、乙两地的承包商展开分销.该基地用大、大两种货车共18辆恰好能够一次性运完这批红薯,未知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表中:车型运费运往甲地/(元/辆)运往乙地/(元/辆)大货车720800大货车500650(1)求这两种货车各用多少辆;(2)如果精心安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,谋w关于a的函数关系式;(2)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案1.b【解析】①②属一次函数;③自变量x在分母上,故不是一次函数;④当k=0时,就不是一次函数,故一共存有2个一次函数.故选b.2.c【解析】分析:根据分式和二次根式有意义的条件进行计算即可.揭秘:由题意得:x≥0且x?1≠0.Champsaur:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故挑选c.3.b【解析】【分析】函数存有两个变量x与y,对于x的每一个确认的值,y都存有唯一的值与其对应,融合选项即可做出推论.【详解】a、c、d对于x的每一个确定的值,y都有唯一的值与其对应,符合函数的定义,只有b选项对于x的每一个确认的值,存有两个y与之对应,不合乎函数的定义,故选b.4.d【解析】分析:根据函数的表示方法的优缺点分析解答即可.揭秘:a.用图象法则表示函数关系,可以直观地窥见因变量如何随着自变量而变化,恰当;b.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值,正确;c.用公式法则表示函数关系,可以便利地排序函数值,恰当;d.并不是任何函数关系都可以用上述三种方法来表示,错误.故挑选d.5.c【解析】(1)由题意,得m=1.5?0.5=1.120÷(3.5?0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5?2)=80km/h(千米/小时),故(2)恰当;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得Champsaur:∴y=40x?20,根据图形获知:甲、乙两车中先抵达b地的就是乙车,把y=260代入y=40x?20得,x=7,∵乙车的高速行驶速度:80km/h,∴乙车的行驶260km需要260÷80=3.25h,∴7?(2+3.25)=h,∴甲比乙迟h到达b地,故(3)正确;(4)当1.5<x≤7时,y=40x?20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得Champsaur:∴y=80x?160.当40x?20?50=80x?160时,解得:x=.当40x?20+50=80x?160时,解得:x=.∴?2=,?2=.所以乙车行驶小时或小时,两车恰好相距50km,故(4)错误.故挑选c.6.a【解析】分析:先根据正比例函数的定义列举关于k的方程组,算出k的值即可.详解:∵函数y=(k+1)x+k2?1是正比例函数,∴{?(&k+1≠0@&k^2-1=0),解得:k=1.故挑选a.7.d【解析】分析:先根据一次函数的性质推论出来此函数图象所经过的象限,再展开答疑即可.详解:∵一次函数y=2x?6中,k=2>0,∴此函数图象经过一、三象限.∵b=?6<0,∴此函数图象与y轴正数半轴平行,∴此一次函数的图象经过一、三、四象限.故挑选d.8.a【解析】分析:先根据函数y=2x和y=ax+4的图象平行于点a(m,3),算出m的值,从而得出结论点a的座标,再根据函数的图象即可得出结论不等式2x<ax+4的边值问题.详解:∵函数y=2x和y=ax+4的图象相交于点a(m,3),∴3=2m,m=3/2,∴点a的座标就是(3/2,3),∴不等式2x<ax+4的解集为x<3/2;故挑选a.9.a【解析】分析:由两直线的解析式共同组成方程组,求出方程组的求解即为交点座标,再根据交点在第一象限确认k的值域范围.详解:由函数的解析式共同组成方程组可以得:{?(y=[emailprotected]=-1/2x+2)求解方程组得:{?(x=-4/3[emailprotected]=2/3k+5/3)又因为它们的交点在第一象限,所以{?(-4/3k+2/3>[emailprotected]/3k+5/3>0)Champsaur-5/2<k<1/2.故选a.10.c【解析】根据进球总数为49个得:2x+3y=49-5-3×4-2×5=22,整理得:y=-2/3x+22/3,∵20人一组展开足球比赛,∴1+5+x+y+3+2=20,整理得:y=-x+9,故挑选c.11.3【解析】分析:令y=0获得关于x的方程,从而可以求出x的值.详解:当y=0时,x+3=0,Champsaur:x=3.故答案为:3.12.?3或6.【解析】解:因为一次函数y=kx+b,当2≤x≤5时,?3≤y≤6.①当k>0,把(2,?3)和(5,6)代入函数解析式y=kx+b,可以得:{?(&2k+b=-3@&5k+b=6),Champsaur:{?(&k=3@&b=-9),所以2k+b=6?9=?3;②当k<0,把(2,6)和(5,?3)代入函数解析式y=kx+b。
人教版数学八年级下册第19章《一次函数》单元综合练习含答案解析
人教版数学八年级下册第19章《一次函数》单元综合练习含答案解析一.选择题(共10小题)1.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y2.下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积3.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+25004.函数中自变量x的取值范围是()A.x≥3B.x≤7C.3≤x≤7D.x≤3或x≥7 5.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.16.下列函数中y是x的一次函数的是()A.B.y=3x+1C.D.y=3x2+17.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t (min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化8.两条直接y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.9.下列图象中,可以表示一次函数y=kx+b与正比例函数y=kbx(k,b为常数,且kb≠0)的图象的是()A.B.C.D.10.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>2C.函数图象与y轴的交点坐标为(0,2)D.函数图象经过第一、二、四象限二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是.12.当m=时,函数y=(m﹣1)x+m是常值函数.13.佛山移动公司有一种手机资费套餐,月租费16元,免费市话通话时间40分钟,超出部分每分钟0.25元,设该套餐每月市话话费为y元,月市话通话时间为x(x>40)分钟,则y与x的函数关系式为.14.已知函数,则自变量x的取值范围.15.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=.16.若函数y=(m﹣2)是正比例函数,则m的值是.17.在平面直角坐标系中,函数y=kx+b的图象如图所示,则kb0(填“>”、“=”或“<”).18.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是;若x+y =0,则点P在坐标平面内的位置是;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.三.解答题(共7小题)19.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.20.已知等式y﹣ax2+2a﹣1=0(1)若等式中,已知a是非零常量,请写出因变量y与自变量x的函数解析式;当﹣1≤x≤3时,求y的最大值和最小值及对应的x的取值;(2)若等式中,x是非零常量,请写出因变量y与自变量a的函数解析式,并判断x在什么范围内取值时,y随a的增大而增大.21.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:.22.如图1,A是上一动点,D是弦BC上一定点,连接AB,AC,AD.设线段AB的长是xcm,线段AC的长是y1cm,线段AD的长是y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A在上的不同位置,画图、测量,得到了y1,y2的长度与x的几组值:位置1位置2位置3位置4位置5位置6位置7位置8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m值是;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为cm;当AC=2AD时,AB的长度约为cm.23.已知函数y=(m﹣1)x+n,(1)m为何值时,该函数是一次函数(2)m、n为何值时,该函数是正比例函数24.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x时,y>2.25.在同一平面直角坐标系中,画出函数y=2x,y=﹣x+6,y=x+2,y=4x﹣4的图象.(1)观察这四个图象,说出它们共同特点;(2)若函数y=kx+5的图象也有该特点,求k的值.参考答案与试题解析一.选择题(共10小题)1.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y【分析】根据函数的定义进行解答即可.【解答】解:在这个问题中,x和y都是变量,且x是自变量.故选:C.2.下列变量之间的关系不是函数关系的是()A.一天的气温和时间B.y2=x中的y与x的关系C.在银行中利息与时间D.正方形的周长与面积【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:A、一天的气温和时间的关系是函数关系,故本选项不合题意;B、y2=x中的y与x的关系不是函数关系,故本选项符合题意;C、在银行中利息与时间是函数关系,故本选项不合题意;D、正方形的周长与面积是函数关系,故本选项不合题意;故选:B.3.某商场自行车存放处每周的存车量为5000辆次,其中变速车存车费是每辆一次1元,普通车存车费为每辆一次0.5元,若普通车存车量为x辆次,存车的总收入为y元,则y与x之间的关系式是()A.y=0.5x+5000B.y=0.5x+2500C.y=﹣0.5x+5000D.y=﹣0.5x+2500【分析】根据题意可以写出题目中的函数解关系式,从而可以解答本题.【解答】解:由题意可得,y=0.5x+(5000﹣x)×1=﹣0.5x+5000,故选:C.4.函数中自变量x的取值范围是()A.x≥3B.x≤7C.3≤x≤7D.x≤3或x≥7【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得x﹣3≥0且7﹣x≥0,解得x≥3且x≤7,所以3≤x≤7.故选:C.5.当x=3时,函数y=x﹣2的值是()A.﹣2B.﹣1C.0D.1【分析】把x的值代入函数关系式计算,得到答案.【解答】解:当x=3时,函数y=x﹣2=3﹣2=1,故选:D.6.下列函数中y是x的一次函数的是()A.B.y=3x+1C.D.y=3x2+1【分析】一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.根据一次函数的定义条件进行逐一分析即可.【解答】解:A、y=不是一次函数,是反比例函数,不合题意;B、y=3x+1是一次函数,符合题意;C、y=不是一次函数,不合题意;D、y=3x2+1不是一次函数,是二次函数,不合题意.故选:B.7.下列变量之间关系中,一个变量是另一个变量的正比例函数的是()A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10L,以0.5L/min的流量往外放水,水箱中的剩水量V(L)随着放水时间t (min)的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化【分析】先依据题意列出函数关系式,然后依据函数关系式进行判断即可.【解答】解:A、S=x2是二次函数,故A错误;B、C=4x是正比例函数,故B正确;C、V=10﹣0.5t,是一次函数,故C错误;D、a=,是反比例函数,故D错误.故选:B.8.两条直接y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A.B.C.D.【分析】根据一次函数图象的性质加以分析即可,一次项系数决定直线的走向,常数项决定直线与y轴的交点位置.【解答】解:根据一次函数的图象与性质分析如下:A.y1=ax﹣b:a>0,b<0;y2=bx﹣a:a<0,b<0.A错误;B.y1=ax﹣b:a>0,b<0;y2=bx﹣a:a>0,b<0.B正确;C.y1=ax﹣b:a>0,b>0;y2=bx﹣a:a<0,b<0.C错误;D.y1=ax﹣b:a>0,b>0;y2=bx﹣a:a>0,b<0.D错误;故选:B.9.下列图象中,可以表示一次函数y=kx+b与正比例函数y=kbx(k,b为常数,且kb≠0)的图象的是()A.B.C.D.【分析】根据一次函数的图象与系数的关系,由一次函数y=kx+b图象分析可得k、b的符号,进而可得k•b的符号,从而判断y=kbx的图象是否正确,进而比较可得答案.【解答】解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k<0,b>0,kb<0;正比例函数y=kbx的图象可知kb<0,故此选项正确;B、由一次函数y=kx+b图象可知k>0,b>0;即kb>0,与正比例函数y=kbx的图象可知kb<0,矛盾,故此选项错误;C、由一次函数y=kx+b图象可知k<0,b>0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;D、由一次函数y=kx+b图象可知k>0,b<0;即kb<0,与正比例函数y=kbx的图象可知kb>0,矛盾,故此选项错误;故选:A.10.下列有关一次函数y=﹣3x+2的说法中,错误的是()A.y的值随着x增大而减小B.当x>0时,y>2C.函数图象与y轴的交点坐标为(0,2)D.函数图象经过第一、二、四象限【分析】利用一次函数的性质逐一判断后即可确定正确的选项.【解答】解:A、∵k=﹣3<0,∴当x值增大时,y的值随着x增大而减小,选项A不符合题意;B、当x=0时,y=﹣3x+2=2,∵y的值随着x增大而减小,∴当x>0时,y<2,∴选项B符合题意;C、当x=0时,y=﹣3x+2=2,∴函数图象与y轴的交点坐标为(0,2),选项C不符合题意;D、∵k=﹣3<0,b=2>0,∴一次函数y=﹣3x+2的图象经过第一、二、四象限,选项D不符合题意;当x=1时,y=﹣3x+2=﹣1,∴一次函数y=﹣3x+2的图象不经过点(1,5),选项D符合题意.故选:B.二.填空题(共8小题)11.快餐每盒5元,买n盒需付m元,则其中常量是5.【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.【解答】解:单价5元固定,是常量.故答案为:5.12.当m=1时,函数y=(m﹣1)x+m是常值函数.【分析】直接利用常值函数的定义分析得出答案.【解答】解:当m﹣1=0时,函数y=(m﹣1)x+m是常值函数,故m=1时,y=1.故答案为:1.13.佛山移动公司有一种手机资费套餐,月租费16元,免费市话通话时间40分钟,超出部分每分钟0.25元,设该套餐每月市话话费为y元,月市话通话时间为x(x>40)分钟,则y与x的函数关系式为y=0.25x+6.【分析】根据题意可得等量关系:话费=月租费16元+超出40分钟部分话费,根据等量关系列出函数解析式即可.【解答】解:由题意得:y=16+(x﹣40)×0.25=16+0.25x﹣10=0.25x+6,故答案为:y=0.25x+6.14.已知函数,则自变量x的取值范围x>.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,2x﹣3>0,解得x>.故答案为:x>.15.函数y=(m﹣2)x|m|﹣1+5是y关于x的一次函数,则m=﹣2.【分析】根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,即可得出m的值.【解答】解:根据一次函数的定义可得:m﹣2≠0,|m|﹣1=1,由|m|﹣1=1,解得:m=﹣2或2,又m﹣2≠0,m≠2,则m=﹣2.故答案为:﹣2.16.若函数y=(m﹣2)是正比例函数,则m的值是﹣2.【分析】直接利用正比例函数的定义直接得出答案.【解答】解:∵函数y=(m﹣2)是正比例函数,∴m2﹣3=1,m﹣2≠0,解得:m=±2,m≠2,故m=﹣2.故答案为:﹣2.17.在平面直角坐标系中,函数y=kx+b的图象如图所示,则kb<0(填“>”、“=”或“<”).【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,∴kb<0.故答案为:<18.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是在一、三象限的角平分线上;若x+y=0,则点P在坐标平面内的位置是在二、四象限的角平分线上;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.【分析】(1)根据互为相反数的两个数的和等于0判断出x、y互为相反数,然后解答.(2)根据点Q到两坐标轴的距离相等列出方程,然后求解得到a的值,再求解即可.【解答】解:(1)∵点P的坐标为(x,y),若x=y,∴点P在一、三象限内两坐标轴夹角的平分线上.∵x+y=0,∴x、y互为相反数,∴P点在二、四象限内两坐标轴夹角的平分线上.故答案为:在一、三象限的角平分线上.在二、四象限的角平分线上.(2)∵点Q到两坐标轴的距离相等,∴|2﹣2a|=|8+a|,∴2﹣2a=8+a或2﹣2a=﹣8﹣a,解得a=﹣2或a=10,当a=﹣2时,2﹣2a=2﹣2×(﹣2)=6,8+a=8﹣2=6,当a=10时,2﹣2a=2﹣20=﹣18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(﹣18,18).三.解答题(共7小题)19.“十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每干米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60(千米)时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【分析】(1)单位耗油量=耗油量÷行驶里程,剩余油量=油箱内油的升数﹣行驶路程的耗油量;(2)把x=60千米代入剩余油量公式,计算即可;(3)计算出35﹣3=32升油能行驶的距离,与200千米比较大小即可得.【解答】解:(1)该汽车平均每千米的耗油量为(35﹣25)÷80=0.125(升/千米),∴行驶路程x(千米)与剩余油量Q(升)的关系式为Q=35﹣0.125x;(2)当x=60时,Q=35﹣0.125×60=27.5(升),答:当x=60(千米)时,剩余油量Q的值为27.5升;(3)他们能在汽车报警前回到家,(35﹣3)÷0.125=256(千米),由256>200知他们能在汽车报警前回到家.20.已知等式y﹣ax2+2a﹣1=0(1)若等式中,已知a是非零常量,请写出因变量y与自变量x的函数解析式;当﹣1≤x≤3时,求y的最大值和最小值及对应的x的取值;(2)若等式中,x是非零常量,请写出因变量y与自变量a的函数解析式,并判断x在什么范围内取值时,y随a的增大而增大.【分析】(1)解方程得到y=ax2﹣4a+2,当x=﹣1时,y=5a+2,当x=3时,y=﹣3a+2,当a>0时当a<0时,根据题意求出结论即可;(2)解方程得到y=(x2﹣4)a+2,根据一次函数的性质解答即可..【解答】解:(1)∵y﹣ax2+2a﹣1=0,∴y=ax2﹣4a+2,当x=﹣1时,y=5a+2,当x=3时,y=﹣3a+2,当a>0时,﹣3a+2≤y≤5a+2,∴y的最大值是5a+2,对应的x的取值﹣1,最小值是﹣3a+2,对应的x的取值是3,当a<0时,5a+2≤y≤﹣3a+2,∴y的最大值是﹣3a+2,对应的x的取值3,最小值是5a+2,对应的x的取值是﹣1;(2)∵y﹣ax2+2a﹣1=0,∴y=(x2﹣4)a+2,当x2﹣4>0时,y随a的增大而增大,即x<﹣2或x>2时,y随a的增大而增大.21.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:当0<x<1时,y随x的增大而减小.【分析】(1)根据表中x,y的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为7所对应的函数值即可;②利用函数图象的图象求解.【解答】解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.22.如图1,A是上一动点,D是弦BC上一定点,连接AB,AC,AD.设线段AB的长是xcm,线段AC的长是y1cm,线段AD的长是y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点A在上的不同位置,画图、测量,得到了y1,y2的长度与x的几组值:位置1位置2位置3位置4位置5位置6位置7位置8 x/cm0.000.99 2.01 3.46 4.98 5.847.078.00y1/cm8.007.46 6.81 5.69 4.26 3.29 1.620.00y2/cm 2.50 2.08 1.88 2.15 2.99 3.61 4.62m 请直接写出上表中的m值是 5.5;(2)在同一平面直角坐标系xOy中,描出补全后表中各组数据所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为 5.7cm;当AC=2AD时,AB的长度约为 4.2cm.【分析】(1)由位置可知,AB=0时,即AB两点重合,此时AC=BC=8,AD=BD=2.5,再根据当y1=AC时,即A与重合即可求出表格中m=CD.(2)根据表中数据描点连线即可.(3)根据函数图象分别找出y1=y2和y1=2y2时对应的x即可.【解答】解:(1)∵当x=0时,y1=8,y2=2.5,∴BC=8cm,BD=2.5,∴当x=8.0时,即A点与C点重合,∴y2=AB=CD=BC﹣BD=8﹣2.5=5.5(cm),故答案为:5.5(2)(3)结合函数图象,解决问题:当AC=AD时,AB的长度约为5.7cm;当AC=2AD时,AB的长度约为4.2cm.故答案为:5.7;4.2.23.已知函数y=(m﹣1)x+n,(1)m为何值时,该函数是一次函数(2)m、n为何值时,该函数是正比例函数【分析】(1)直接利用一次函数的定义得出答案;(2)直接利用正比例函数的定义得出答案.【解答】解:(1)∵函数y=(m﹣1)x+n,∴当m﹣1≠0时,该函数是一次函数,即m≠1;(2)当m≠1,且n=0时,该函数是正比例函数.24.已知一次函数y=﹣2x+4,完成下列问题:(1)在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x<1时,y>2.【分析】(1)分别求出直线与x轴、y轴的交点,画出函数图象即可;(2)根据函数图象可直接得出结论.【解答】解:(1)∵当x=0时y=4,∴函数y=﹣2x+4的图象与y轴的交点坐标为(0,4);∵当y=0时,﹣2x+4=0,解得:x=2,∴函数y=﹣2x+4的图象与x轴的交点坐标(2,0).函数图象如图所示.(2)由图象可得,当x<1时,y>2.故答案为:<1.25.在同一平面直角坐标系中,画出函数y=2x,y=﹣x+6,y=x+2,y=4x﹣4的图象.(1)观察这四个图象,说出它们共同特点;(2)若函数y=kx+5的图象也有该特点,求k的值.【分析】(1)根据一次函数的图象是直线,画出图象即可;(2)根据图象过定点,代入得出k的值即可.【解答】(1)解:如图:共同特点是:此组直线均经过(2,4),∵解方程组得,,∴直线y=2x,y=﹣x+6过(2,4)点.对于直线y=x+2,当x=2时,y=4;对于直线y=4x﹣4,当x=2时,y=4;∴验证发现此组直线均经过(2,4);(2)把(2,4)代入y=kx+5得4=2k+5,得k=﹣.。
新版人教版八年级数学下册第十九章-一次函数测试卷(含答案)
24t/天S/t八年级第十九章测试题姓名 班级一、选择题1.下列变量之间的关系中,一个变量是另一个变量的正比例函数的是( ) A.正方形的面积S 随着边长x 的变化而变化.B.正方形的周长C 随着边长x 的变化而变化C.水箱以0.5L/min 的流量往外放水,水箱中的剩水量V L 随着放水时间t min 的变化而变化D.面积为20的三角形的一边a 随着这边上的高h 的变化而变化 2.如果某函数的图象如图所示,那么y 随x 的增大而( ) A.增大 B.减小 C.不变 D.有时增大有时减小 3.一次函数y=kx+b 中,y 随x 的正大而减小,b <0, 则这个函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限 4.如果P (2,m ),A (1,1),B (4,0)三点在同一直线上,则m 的值为( ) A.2 B.32-C.32D.15.某油箱容量为50L 的汽车,加满汽油后开了200km 时,油箱中的汽油大约消耗了41.如果加满汽油后汽车行驶的路程为xkm ,油箱中的剩油量为yL ,则y 与x 之间的函数关系式和自变量取值范围分别是( ) A.x y 0625.0=,x >0 B.x y 0625.050-=,x >0 C. x y 0625.0=,8000≤≤x D. x y 0625.050-=,8000≤≤x6.食用油沸点的温度远高于水的沸点温度(1000C ).小明为了用刻度不超过1000C 的温度计测量出某种食用油沸点的温度,在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s 测量一次A.2000CB.2300CC.2600CD.2900C 二、填空题(每小题5分,共20分)7.某电梯从1层(地面)直达3层用了20s ,若电梯运行时匀速的,则乘坐该电梯从2层直达8层所需要的时间是___________________s8.直线62-=x y 与y 轴的交点坐标为__________,与x 轴的交点坐标是_____________9.函数kx y =与x y -=6的图象如图所示,则=k ________________10.春耕期间,某农资门市部连续8天调进一批化肥进行销售,在开始调进化肥的第7天开始销售.若进货期间每天调入化肥的吨数与销售期间每天销售化肥的吨数保持不变,这个门市部的化肥存量S (单位:t )与时间t (单位:天)之间的函数关系如图所示,则该门市部这次化肥销售活动(从开始进货到销售完毕)所用时间是_______________三、解答题(第11,12题每题10分,第13题14分,第14题16分,共50分) 11.一次函数图象经过(-2,1)和(1,3)两点. (1)求这个一次函数的解析式;(2)当x=3时,求y 的值.12.如图是小明散步过程中所走的路程S (单位:m )与步行时间t (单位:min )的函数图象. (1)小明在散步过程中停留了多少时间?(2)求小明散步过程步行的平均速度.(3)在哪一时间段,小明是匀速步行的?在这一时间段,他步行的速度是多少?13.直线a:和直线b:相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E. (1)求△ABC的面积;(2)求四边形ADOC的面积14.某景点的门票销售分两类:一类为散客门票,价格为40元/张;另一类为团体门票(一次性购买门票10张及以上),每张门票价格在散客门票价格的基础上打8折.某班部分同学要去该景点旅游,设参加旅游x人,购买门票需要y元.(1)如果每人分别买门票,求y与x之间的函数关系式;(2)如果买团体票,求y与x之间的函数关系式,并写出自变量的取值范围;(3)请根据人数变化设计一种比较省钱的购票方案.。
人教版八年级下册数学 第十九章 一次函数 单元测试卷(含答案)
第十九章 一次函数 单元测试卷一.选择题(每小题3分,共30分)1.函数y=21-x 中,自变量x 的取值范围是( ) A.x >2 B.x <2C.x ≠2D.x ≠-22.关于函数y=-2x+1,下列结论正确的是( )A.图形必经过点(-2,1)B.图形经过第一、二、三象限C.当x >21时,y <0 D.y 随x 的增大而增大 3.如图,一次函数y=kx+b(k ≠0) 的图象经过A,B 两点,则关于x 的不等式kx+b <0的解集是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤14.直线y=-2x+m 与直线y=2x-1的焦点在第四象限,则 m 的取值范围是( )A.m >-1B.m <1C.-1<m <1D.-1≤m ≤15.若一次函数y=(1-2m)x+m 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1<y 2,且与y 轴相交于正半轴,则 m 的取值范围是( ) B.m < 21 A.m >0 C.0<m <21 D. .m >216.若函数y= 则当函数值y=8时,自变量x 的值是( ) A. 6± B.4C. 6±或4D.4或-67.一艘轮船在同一航线上往返于甲、乙两地 ,已知轮船在静水中的速度为15㎞/h,水流速度为 5 ㎞/h,轮船先从甲地顺水航行到乙地在乙地停留一段时间后,又从乙地逆水航行返回甲地,设轮船从甲地出发所用时间为 t(h),航行的路程s(㎞),则s 与t 的函数图象大致是( )C8.一次函数y=kx+b的图象如图所示,当x<1时,y的取值范围是()A.-2<y<0B. -4<y<0C. y<-2D. y<-49.将直线y=-2x向右平移2个单位所得直线的解析式为()A.y=-2x+2B.y=-2(x+2)C.y=-2x-2D.y=-2(x-2)10.如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步,能近似刻画小亮到出发点M的距离y与x之间关系的函数图象是()二. 填空题(每小题3分,共24分)11.将直线y=-2x+3向下平移2个单位得到的直线为。
八年级数学(下)第十九章《一次函数》单元测试卷含答案
八年级数学(下)第十九章《一次函数》单元测试卷一、选择题(每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)米)和行驶时间t(小时)的关系的是()C2.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误..的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时3.在函数12yx=-+中,自变量x的取值范围是()A.2x≠B.2x-≤C.2x≠-D.2x-≥4.如果函数y=ax+b(a<0,b<O)和y=kx(k>0)的图象交于点P,那么点P应该位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限5.已知一次函数(1)y a x b=-+的图象如图所示,那么a的取值范围是()A、a>1B、a<1C、a>0D、a<06.函数y=x-2+31-x中自变量x的取值范围是( )A.x≤2 B.x=3 C.x<2且x≠3 D.x≤2且x≠3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的/分O xy解析式为( )A .2--=x yB .6--=x yC .10+-=x yD .1--=x y 8.下列四个点中,有三个点在同一条直线上,不在这条直线上的点是( ) A .(31)--,B .(11),C .(32),D .(43),9.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <10. 2007年我国铁路进行了第六次大提速,一列火车由甲市匀速驶往相距600千米的乙市,火车的速度是200千米/小时,火车离乙市的距离S (单位:千米)随行驶时间t (单位:小时)变化的函数关系用图象表示正确的是( )二、填空题(每题3分,共30)11.已知一次函数y kx b =+的图象经过点(02)A -,,(10)B ,,则b = ,k = . 12.函数34x y x -=-的自变量x 的取值范围是 . 13.某函数的图象经过(1、-1),且函数y 的值随自变量的值增大而增大,请你写出一个符合上述条件的函数关系式:14.若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y __ _____。
人教版初中数学八年级下册 第十九章《一次函数》检测题(含答案)(含答案)
第十九章《一次函数》测试题一、选择题(每小题只有一个正确答案)1.下列函数中是正比例函数的是( )A .8y x =B .28y =C .2(1)y x =-D .y = 2.下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长C 与它的半径r3.下列说法中错误的是( )A .一次函数是正比例函数B .正比例函数是一次函数C .函数y =|x |+3不是一次函数D .在y =kx +b (k 、b 都是不为零的常数)中, y -b 与x 成正比例4.一次函数y =-x -1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.函数y =kx -2中,y 随x 的增大而减小,则它的图象可以是( )6.如图1,一次函数的图象经过A 、B 两点,则这个一次函数的解析式为( )A .322y x =-B .122y x =-C .122y x =+D .322y x =+7.若函数y =kx +b (k 、b 都是不为零的常数)的图象如图2所示,那么当y >0时,x 的取值范围为( )A .x >1B .x >2C .x <1D .x <28.已知一次函数y =kx -k ,若y 随x 的增大而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限二、填空题9.正比例函数12y x =-中,y 值随x 的增大而 .10.已知y=(k-1)x+k2-1是正比例函数,则k=11.若y+3与x成正比例,且x=2时,y=5,则x=5时,y= .12.直线y=7x+5,过点(,0),(0,).13.已知直线y=ax-2经过点(-3,-8)和12b⎛⎫⎪⎝⎭,两点,那么a= ,b= .14.写出经过点(1,2)的一次函数的解析式为(写出一个即可).15.在同一坐标系内函数112y x=+,112y x=-,12y x=的图象有什么特点.16.下表中,y是x三、简答题17.某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.18.已知一次函数y=kx+b的图象经过A(2,4)、B(0,2)两点,且与x轴相交于C点.(1)求直线的解析式.(2)求△AOC的面积.19、已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.20、如图3,在边长为2的正方形ABCD 的一边BC 上的点P 从B 点运动到C 点,设PB =x ,梯形APCD 的面积为S .(1)写出S 与x 的函数关系式;(2)求自变量x 的取值范围;(3)画出函数图象.21、小芳同学在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y (元)与售出西瓜x (千克)之间的函数关系式.(2)小芳从批发市场共购进多少千克西瓜?(3)小芳这次卖瓜赚了多少钱?参考答案:一、1.D 2.D3.A 4.A 5.D 6.A 7.D 8.B二、9.减小 10.1-11.17 12.57-,5 13.2,1- 14.略(答案不惟一) 15.三条直线互相平行16.22y x =+,表格从左到右依次填2-,0,4三、17.y x =-(答案不惟一)18.(1)2y x =+(2)419.(1)正比例函数的解析式为y x =-.一次函数的解析式为4y x =+(2)图略;(3)420.(1)4S x =-;(2)02x <<;(3)图略21.(1)8(040)5y x x =≤≤; (2)50千克;(3)36元。
人教版八年级数学下册第十九章 一次函数复习测试题(含答案)
八年级数学下册第十九单元一次函数复习测试题一、选择题1.变量x与y之间的关系是y=2x﹣3,当因变量y=6时,自变量x的值是()A.9B.15C.4.5D.1.52.在函数y=中,自变量x的取值范围是()A.x≤﹣3B.x≥﹣3C.x<﹣3D.x>﹣33.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣x上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3<y1<y24.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是()A.B.C.D.5.若函数y=kx(k≠0)的值随自变量的增大而增大,则函数y=x+2k的图象大致是()A.B.C.D.6.如图,在平面直角坐标系中,OABC的顶点A在x轴上,定点B的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC分割成面积相等的两部分,则直线的表达式()A.y=3x﹣2B.y=x﹣C.y=x﹣1D.y=3x﹣37.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④8.速度分别为100km/h和akm/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:①a=60;②b=2;③c=b+;④若s=60,则b=.其中说法正确的是()A.①②③B.②③④C.①②④D.①③④9.如图,已知直线l:,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为()A.(0,128)B.(0,256)C.(0,512)D.(0,1024)10.如图,等边三角形和正方形的边长均为a,点B,C,D,E在同一直线上,点C与点D 重合.△ABC以每秒1个单位长度的速度沿BE向右匀速运动.当点C与点E重合时停止运动.设△ABC的运动时间为t秒,△ABC与正方形DEFG重叠部分的面积为S,则下列图象中,能表示S与t的函数关系的图象大致是()A.B.C.D.二、填空题1.某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)0123y(升)100928476由表格中y与t的关系可知,当汽车行驶小时,油箱的余油量为0.2.若点(a,3)在函数y=2x﹣3的图象上,a的值是.3.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,则∠AOC的角平分线所在直线的函数关系式为.4. 一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为____.三、解答题1.已知y与x+2成正比,当x=4时,y=4.(1)求y与x之间的函数关系式;(2)若点(a,3)在这个函数图象上,求a的值.2.已知一次函数y=kx+b的图象如图所示(1)求k、b的值;(2)在平面直角坐标系内画出函数y=bx+k的图象;(3)利用(2)中你所画的图象,写出0<x<1时,y的取值范围.3.已知正比例函数y=kx图象经过点(3,﹣6),求:(1)这个函数的解析式;(2)判断点A(4,﹣2)是否在这个函数图象上;(3)图象上两点B(x1,y1)、C(x2,y2),如果x1>x2,比较y1,y2的大小.4.如图,在平面直角坐标系中,A(4,0),B(0,2),C(4,4).已知四边形ABCD 为菱形,其中AB与BC为一组邻边.(1)请在图中作出菱形ABCD,并求出菱形ABCD的面积;(2)过点A的直线l:y=x+b与线段CD相交于点E,请在图中作出直线l的图象,并求出△ADE的面积.5.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)我们认为骑单车的速度超过300米/分就超过了安全限度.问:在整个上学途中哪个时间段小明的汽车速度最快,速度在安全限度内吗?6.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△PAB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.7.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为w(元),求w与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元(不用说理)参考答案与试题解析一.选择题1.C.2.B.3.A.4.B.5.A.6.C.7.A.8.D.9.B.10.C.二.填空题1.12.5.2.3.3.y=x.4.y=100x-40三.解答题1.解:(1)设y=k(x+2),∵当x=4时,y=4,∴k(4+2)=4,∴k=,∴y与x之间的函数关系式为y=(x+2)=x+;(2)∵点(a,3)在这个函数图象上,∴a+=3,∴a=2.5.2.解:(1)A(0,﹣2),B(1,0).将A(0,﹣2),B(1,0)两点代入y=kx+b中,得b=﹣2,k﹣2=0,k=2.(2)对于函数y=﹣2x+2,列表:x01y20图象如下:(3)由图象可得:当0<x<1时,y的取值范围为:0<y<2.3.解:(1)∵正比例函数y=kx经过点(3,﹣6),∴﹣6=3•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x;(2)将x=4代入y=﹣2x得:y=﹣8≠﹣2,∴点A(4,﹣2)不在这个函数图象上;(3)∵k=﹣2<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.4.解:(1)∵点A的坐标为(4,0),点B的坐标为(0,2),点C的坐标为(4,4),∴点D的坐标为(4+4﹣0,0+4﹣2),即(8,2).作出菱形ABCD,如图所示.S菱形ABCD=AC•BD=×8×4=16.(2)将A(4,0)代入y=x+b,得:0=×4+b,∴b=﹣6.∵点C的坐标为(4,4),点D的坐标为(8,2),∴直线CD的解析式为y=﹣x+6.联立直线l与直线CD的解析式成方程组,得:,解得:,∴点E的坐标为(6,3),∴S△ADE=×2×3+×(3+2)×2﹣×4×2=4.5.解:(1)由图象可得,小明家到学校的路程是1500米,故答案为:1500;(2)小明在书店停留了12﹣8=4(分钟),故答案为:4;(3)本次上学途中,小明一共行驶了:1500+(1200﹣600)×2=2700(米),一共用了14分钟,故答案为:2700,14;(4)当时间在0~6分钟内时,速度为:1200÷6=200米/分钟,当时间在6~8分钟内时,速度为:(1200﹣600)÷(8﹣6)=300米/分钟,当时间在12~14分钟内时,速度为:(1500﹣600)÷(14﹣12)=450米/分钟,∵450>300,∴在整个上学途中12~14分钟时间段小明的汽车速度最快,速度不在安全限度.6.解:(1)令x=0得:y=4,∴B(0,4).∴OB=4令y=0得:0=﹣x+4,解得:x=3,∴A(3,0).∴OA=3.在Rt△OAB中,AB==5.∴OC=OA+AC=3+5=8,∴C(8,0).设OD=x,则CD=DB=x+4.在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,∴D(0,﹣6).(3)∵S△PAB=S△OCD,∴S△PAB=××6×8=12.∵点Py轴上,S△PAB=12,∴BP•OA=12,即×3BP=12,解得:BP=8,∴P点的坐标为(0,12)或(0,﹣4).7.解:(1)当1≤x≤10时,设AB的解析式为:y=kx+b,把A(1,300),B(10,120)代入得:,解得:,∴AB:y=﹣20x+320(1≤x≤10),当10<x≤30时,同理可得BC:y=14x﹣20,综上所述,y与x之间的函数表达式为:;(2)当1≤x≤10时,w=(10﹣6)(﹣20x+320)=﹣80x+1280,当w=1040元,﹣80x+1280=1040,x=3,∵﹣80<0,∴w随x的增大而减小,∴日销售利润不超过1040元的天数:3,4,5,6,7,8,9,10,一共8天;当10<x≤30时,w=(10﹣6)(14x﹣20)=56x﹣80,56x﹣80=1040,x=20,∵56>0,∴w随x的增大而增大,∴日销售利润不超过1040元的天数:11,12,13,14,15,16,17,18,19,20,一共10天;综上所述,日销售利润不超过1040元的天数共有18天;(3)当5≤x≤10时,当x=5时,w大=﹣80×5+1280=880,当10<x≤17时,当x=17时,w大=56×17﹣80=872,∴若5≤x≤17,第5天的日销售利润最大,最大日销售利润是880元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页,共 8 页
A. ??→ ??→ ??
B. ??→ ??→ ??????? C. ??→ ??→ ???????? D. ??→ ??→ ??
5. 下列函数中,自变量 x 的取值范围为 ??< 1的是 ( ?? )
1
A. ??= 1-??
1
B. ??= 1 - ??
C. ??= 1 - ??
解集为
.
13. 直线
与
的位置关系为
;
14. 函数
是 y 关于 x 的正比例函数,则 ?? = ______.
三、解答题
第 3 页,共 8 页
15. 已知一次函数
的图象过点 ??(3 ,0) ,??( — 1 ,2) ,
(1) 求直线 AB 的解析式;
(2) 在给出的直角坐标系中,画出
和
程组
的解.
的图象,并根据图象写出方
1
D. ??= 1-??
6. 若存在过点 ??(0,0) 的直线 l 与曲线 ??( ??) = ??3 - 3??2 + 2 ??和??= ??2 + ??都相切,则 a 的值为 ( )
A. 1
B.
1 64
C. 1 或-
1 64
D.
1
或
1 64
7. 已知函数 ??( ??) 是定义在 (0, + ∞)上的函数,对任意两个不相等的正数 ??1 , ??2 ,都有
16. 求下列函数中当 ??= 4时的函数值:
(1) ??= - 4 ??2;
1
(2) ??=
;
3 ??-2
(3) ??= ??- 4 .
第 4 页,共 8 页
17. 如图是一辆汽车的速度随时间变化而变化的图象,回答下面的问题:
(1) 汽车从出发到最后停止共经过了多长时间?最高速度是多少? (2) ??,??两点分别表示什么? (3) 说一说速度是怎样随时间变化而变化的.
第 5 页,共 8 页
18. 求下列函数中自变量的取值范围.
(1) ??= - 3 ??+ 5 ; (2) ??= 3??;
??-4
(3) ??= 2??- 4;
??
(4) ??= ?+?3 ; (5) ??= ??- 1 + 3 6 - 2??.
第 6 页,共 8 页
【答案】
1. D
2. B
3. B
??
2.
在同一坐标系中,函数
??=
???与? ??=
-
2
??的图象大致是
( ??
)
A.
B.
C.
D.
1
3.
已知函数 ??( ??) = ln(
1 + 9 ??2 -
3??) + 1,则 ??(lg2)
+ ??(lg ) = (
2
)
A. - 1B. 2C. 0D. 1
4. 一个寻宝游戏的寻宝通道如图 1 所示,通道由在同一平面内的 ???,? ???,? ???,? ???,? ???,? ???组? 成 .为记录寻宝者的进行路线, 在 BC 的中点 M 处放 置了一台定位仪器, 设寻宝者行进的时间为 x,寻宝者与定位仪器之间的距离为 y, 若寻宝者匀速行进,且表示 y 与 x 的函数关系的图象大致如图 2 所示,则寻宝者的 行进路线可能为 ( )
(3) 在 0 到 10 分速度在逐渐增大;在 10 到 15 分速度保持不变;在 15 到 20 分时速度在 逐渐增加;在 20 分到 25 分时速度保持不变;在 25 分到 35 分时速度在逐渐减小.
18. 解: (1) ??的取值范围为全体实数;
(2) 解不等式 ??- 4 ≠ 0,得 ??≠ 4,故 x 的取值范围为 ??≠ 4;
9. 下列曲线中表示 y 是 x 的函数的是 (?? )
第 2 页,共 8 页
A.
B.
C.
D.
二、填空题
10. 已知正比例函数 增大或减小 ) .
,点 (2 , - 3) 在函数上, 则 随 的增大而
(
11. 将函数
的图象向上平移 2 个单位,所得函数图象的解析式为 ___________.
12. 如图,函数 ??= 2 ??和 ??= ???+? 4的图象相交于点 ??( ??,3) ,则不等式 2??≥ ???+? 4的
(3) 解不等式 2??- 4 ≥ 0,得 ??≥ 2 ,故 x 的取值范围为 ??≥ 2;
(4) 解不等式 ??+ 3 > 0,得 ??> - 3,故 x 的取值范围为 ??> - 3 ;
(5) 解不等式组
??6-
1 2
≥0 ??≥
0
得
1
≤ ??≤ 3 ,故
x
的取值范围为
1 ≤ ??≤ 3.
第 8 页,共 8 页
第十九章《一次函数》单元检测题
一、选择题 1. 把多项式 3 ??( ??- ??) - 2( ??- ??)2 分解因式的结果是 ( ?? )
A. ( ??- ??)(3 ??- 2??- 2 ??) C. ( ??- ??)(3 ??+ 2 ??- 2 ??)
B. ( ??- ??)(3 ??- 2 ??+ 2??) D. ( ??- ??)(3 ??+ 2 ??- 2 ??)
4. C
5. D
6. B
7. B
8. D
9. C
10. 减小
11. ??= 3??+ 2
12. ??≥
13. 平行
14. 1
15. 解: (1) 根据题意得
,解得
,
所以直线 AB 的解析式为 ??= - ??+ ; (2) 画出函数 ??= ??和函数 ??= - ??+ 的图象,它们的交点坐标为 (1 ,1) ,
所以方程组
的解为
.
第 7 页,共 8 页
16. 解: (1) ??= - 4 ×4 2 = - 64;
(2) ??=
1 3×4- 2
=
1;
10
(3) ??= 4 - 4 = 0 .
17. 解: (1) 汽车从出发到最后停止共经过了 35 分钟,最高速度是 90 千米 / 时;
(2) ??点表示 10 分时的速度为 60???/??,??点表示 30 分时的速度是 30 ???/??;
,记 ??=
??(2 0.2 )
2 0.2 , ??=
??(0.2 2)
0.2 2 , ??=
??(log 2 5) ,则 (
log 2 5
)
A. ??< ??< ??
B. ??< ??< ??
C. ??< ??< ??
D. ??< ??< ??
8. 下列对函数的认识正确的是 ( ?? )
A. 若 y 是 x 的函数,那么 x 也是 y 的函数 B. 两个变量之间的函数关系一定能用数学式子表达 C. 若 y 是 x 的函数,则当 y 取一个值时,一定有唯一的 x 值与它对应 D. 一个人的身高也可以看作他年龄的函数