IRFTS9342TRPBF;中文规格书,Datasheet资料
IRFR220NTRPBF中文资料
Units
mJ A mJ
Thermal Resistance
Parameter
RθJC RθJA RθJA Junction-to-Case Junction-to-Ambient (PCB mount)* Junction-to-Ambient Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time
RDS(on) , Drain-to-Source On Resistance (Normalized)
I D , Drain-to-Source Current (A)
TJ = 25 ° C
10
3.0 2.5
TJ = 175 ° C
2.0 1.5
1
1.0
0.5 0.0 -60 -40 -20
0.1 4.0
Notes through are on page 10
1
11/29/00
元器件交易网
IRFR/U220N
Static @ TJ = 25°C (unless otherwise specified)
Parameter Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage V(BR)DSS IDSS IGSS Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units Conditions 200 ––– ––– V VGS = 0V, I D = 250µA ––– 0.23 ––– V/°C Reference to 25°C, ID = 1mA ––– ––– 600 mΩ VGS = 10V, I D = 2.9A 2.0 ––– 4.0 V VDS = VGS , ID = 250µA ––– ––– 25 VDS = 200V, VGS = 0V µA ––– ––– 250 VDS = 160V, VGS = 0V, T J = 150°C ––– ––– 100 VGS = 20V nA ––– ––– -100 VGS = -20V
IRLML2244TRPBF;中文规格书,Datasheet资料
1/24/111ORDERING INFORMATION:See detailed ordering and shipping information on the last page of this data sheet.Notes through are on page 10Features and BenefitsBenefitsApplication(s)• System/Load Switchresults in ⇒IRLML2244TRPbFIRLML2244TRPbF 3Fig 2. Typical Output CharacteristicsFig 1. Typical Output CharacteristicsFig 4. Normalized On-ResistanceVs. Temperature-V DS , Drain-to-Source Voltage (V)0.1110100-V DS , Drain-to-Source Voltage (V)-I D , D r a i n -t o -S o u r c e C u r r e n t (A )T J , Junction Temperature (°C)R D S (o n ) , D r a i n -t o -S o u r c e O n R e s i s t a n c eIRLML2244TRPbFFig 6. Typical Gate Charge Vs.Gate-to-Source VoltageFig 5. Typical Capacitance Vs.Drain-to-Source Voltage Fig 8. Maximum Safe Operating AreaFig 7. Typical Source-Drain DiodeForward Voltage110100-V DS , Drain-to-Source Voltage (V)10100100010000C , C a p a c i t a n c e (p F )-V SD , Source-to-Drain Voltage (V)0.1110100-I S D , R e v e r s e D r a i n C u r r e n t (A )110100-V DS , Drain-to-Source Voltage (V)0.010.1110100-I D , D r a i n -t o -S o u r c e C u r r e n t (A)048121620Q G, Total Gate Charge (nC)2468101214-V G S , G a t e -t o -S o u r c e V o l t a g e (V )IRLML2244TRPbF 5Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-AmbientFig 9. Maximum Drain Current Vs.Ambient TemperatureFig 10b. Switching Time WaveformsFig 10a. Switching Time Test Circuit255075100125150T A , Ambient Temperature (°C)012345-I D , D r a i n C u r r e n t (A)t 1 , Rectangular Pulse Duration (sec)R DV DDV DSV t t t tFig 13. Typical On-Resistance Vs. DrainCurrentFig 12. Typical On-Resistance Vs. GateVoltageFig 14b. Gate Charge Test CircuitFig 14a. Basic Gate Charge Waveform 24681012-V GS, Gate -to -Source Voltage (V)20406080100120R D S (o n ), D r a i n -t o -S o u r c e O n R e s i s t a n c e (m Ω)5101520253035-I D , Drain Current (A)04080120160200R D S (o n ), D r a i n -t o -S o u r c e O n R e s i s t a n c e (m Ω)Vgs = -4.5VIdQgs1Qgs2Qgd Qgodr 0 7Fig 15. Typical Threshold Voltage Vs.Junction TemperatureFig 16. Typical Power Vs. TimeT J , Temperature ( °C )-V G S (t h ), G a t e t h r e s h o l d V o l t a g e (V )Time (sec)P o w e r (W )IRLML2244TRPbFMicro3 (SOT-23/TO-236AB) Part Marking InformationMicro3 (SOT-23) Package OutlineDimensions are shown in millimeters (inches)Note: For the most current drawing please refer to IR website at: /package/cF =DA T E C E =X = D =C =B =A =W = (1-26) IF PRECEDED BY LAST DIG IT O F C ALENDA R YEA RH =G =KH G F E D C B 200620032002200520042008200720102009J Y 51292830C B D52ZNote: A line a bove the work we e k(a s s how n he re ) indic a tes Le a d - Fre e.I =J = IRLML2030L = IRLML0060M = IRLML0040K = IRLML0100N = IRLML2060P = IRLML9301R = IRLML9303C u HALOG PAIRLML2244TRPbF 9Micro3™ Tape & Reel InformationDimensions are shown in millimeters (inches)2.05 ( .080 )1.95 ( .077 )TRFEED DIRECTION4.1 ( .161 )3.9 ( .154 )1.6 ( .062 )1.5 ( .060 )1.85 ( .072 )1.65 ( .065 )3.55 ( .139 )3.45 ( .136 )1.1 ( .043 )0.9 ( .036 )4.1 ( .161 )3.9 ( .154 )0.35 ( .013 )0.25 ( .010 )8.3 ( .326 )7.9 ( .312 )1.32 ( .051 )1.12 ( .045 )9.90 ( .390 )8.40 ( .331 )178.00( 7.008 ) MAX.NOTES:1. CONTROLLING DIMENSION : MILLIMETER.2. OUTLINE CONFORMS TO EIA-481 & EIA-541.Note: For the most current drawing please refer to IR website at: /package/IRLML2244TRPbFData and specifications subject to change without notice.IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105TAC Fax: (310) 252-7903Visit us at for sales contact information .01/2011Qualification standards can be found at International Rectifier’s web site /product-info/reliabilityHigher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: /whoto-call/salesrep/Applicable version of JEDEC standard at the time of product release.Notes:Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400μs; duty cycle ≤ 2%. Surface mounted on 1 in square Cu board Refer to application note #AN-994.Qualification information †分销商库存信息: IRIRLML2244TRPBF。
IRF8852TRPBF;中文规格书,Datasheet资料
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
3
/
IRF8852PbF
PD - 96246
IRF8852PbF
l l l l l l
Ultra Low On-Resistance Dual N-Channel MOSFET Very Small SOIC Package Low Profile (< 1.1mm) Available in Tape & Reel Lead-Free
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
100
1000 OPERATION IN THIS AREA LIMITED BY R DS(on)
10
TJ = 150°C
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
Conditions
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 7.8A mΩ VGS = 4.5V, ID = 6.2A V VDS = VGS, ID = 25µA
e e
µA nA S nC nC Ω
VDS = 20V, VGS = 0V VDS = 20V, VGS = 0V, TJ = 70°C VGS = 20V VGS = -20V VDS = 10V, ID = 7.8A ID = 7.8A,VDS= 13V, VGS = 4.5V ID = 7.8A VDS = 13V VGS = 10V VDD = 13V, VGS = 10V ID = 1.0A RD =13 Ω RG =30 Ω VGS = 0V VDS = 20V ƒ = 1.0MHz Max. 6.5 7.8 Units mJ A
IRGP4086PBF;中文规格书,Datasheet资料
tf
Fall time
td(on)
Turn-On delay time
tr
Rise time
— 65 —
— 30 —
IC = 25A, VCC = 196V
— 33 — ns RG = 10Ω, L=200μH, LS= 200nH
td(off) tf tst
EPULSE
Turn-Off delay time Fall time Shoot Through Blocking Time
2
/
240
VGE = 18V
200
VGE = 15V
VGE = 12V
160
VGE = 10V VGE = 8.0V
120
VGE = 6.0V
ICE (A)
80
40
0
0
4
8
12
16
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
––– 29 ––– ––– 65 ––– ––– 22 ––– — 36 — — 31 — — 112 —
S VCE = 25V, ICE = 25A nC VCE = 200V, IC = 25A, VGE = 15Ve
IC = 25A, VCC = 196V ns RG = 10Ω, L=200μH, LS= 200nH
Parameter Thermal Resistance Junction-to-Case-(each IGBT) d Case-to-Sink (flat, greased surface) Junction-to-Ambient (typical socket mount) d Weight
IR3553MTRPBF;中文规格书,Datasheet资料
FEATURES∙ Peak efficiency up to 93.2% at 1.2V∙ Integrated driver, control MOSFET, synchronous MOSFET and Schottky diode ∙ Input voltage (VIN) operating range up to 15V ∙ Output voltage range from 0.25V up to 3.3V ∙ Output current capability of 40A DC ∙ Operation up to 1.0MHz∙ Integrated current sense amplifier ∙ VCC under voltage lockout ∙ Thermal flag∙ Body-Braking® load transient support ∙ Diode-emulation high efficiency mode∙ Compatible with 3.3V PWM logic and VCC tolerant ∙ Compliant with Intel DrMOS V4.0∙ PCB footprint compatible with IR3550 and IR3551 ∙ Efficient dual sided cooling∙ Small 4mm x 6mm x 0.9mm PQFN package ∙ Lead free RoHS compliant packageAPPLICATIONS∙ Voltage Regulators for CPUs, GPUs, and DDR memory arrays ∙ High current, low profile DC-DC convertersDESCRIPTIONThe IR3553 integrated PowIRstage® is a synchronous buck gate driver co-packed with a control MOSFET and a synchronous MOSFET with integrated Schottky diode. It is optimized internally for PCB layout, heat transfer and driver/MOSFET timing. Custom designed gate driver and MOSFET combination enables higher efficiency at lower output voltages required by cutting edge CPU, GPU and DDR memory designs.Up to 1.0MHz switching frequency enables high performance transient response, allowing miniaturization of output inductors, as well as input and output capacitors while maintaining industry leading efficiency. The IR3553’s superior efficiency enables smallest size and lower solution cost. The IR3553 PCB footprint is compatible with the IR3550 (60A) and the IR3551 (50A).Integrated current sense amplifier achieves superior current sense accuracy and signal to noise ratio vs. best-in-class controller based Inductor DCR sense methods. The IR3553 incorporates the Body- Braking® feature which enables reduction of output capacitors. Synchronous diode emulation mode in the IR3553 removes the zero-current detection burden from the PWM controller and increases system light-load efficiency.The IR3553 is optimized specifically for CPU core power delivery in server applications. The ability to meet the stringent requirements of the server market also makes the IR3553 ideally suited to powering GPU and DDR memory designs and other high current applications.PINOUT DIAGRAMFigure 3: IR3553 Pin Diagram, Top ViewORDERING INFORMATIONTYPICAL APPLICATION DIAGRAMIOUTVCC BBRK#REFINVOUTFigure 4: Application Circuit with Current Sense AmplifierTYPICAL APPLICATION DIAGRAM (CONTINUED)VCC BBRK#VOUTFigure 5: Application Circuit without Current Sense AmplifierFUNCTIONAL BLOCK DIAGRAMPHSFLT#REFINPWM VIN SWSW SW SW SWSW TGND BOOST IOUT VCCBBRK#GATEL CSIN+LGNDPGNDFigure 6: IR3553 Functional Block DiagramPIN DESCRIPTIONSABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied.Note:1. Maximum BOOST – SW = 8V.2. Maximum VIN – SW = 25V.3. All the maximum voltage ratings are referenced to PGND (Pins 12 and 13).Note:1. Thermal Resistance (θJA) is measured with the component mounted on a high effective thermal conductivity test board in free air.Refer to International Rectifier Application Note AN-994 for details.ELECTRICAL SPECIFICATIONSThe electrical characteristics involve the spread of values guaranteed within the recommended operating conditions. Typical values represent the median values, which are related to 25°C.RECOMMENDED OPERATING CONDITIONS FOR RELIABLE OPERATION WITH MARGINELECTRICAL CHARACTERISTICSNotes1. Guaranteed by design but not tested in production2.V IN=12V, V OUT=1.2V, ƒSW = 300kHz, L=210nH (0.2mΩ), VCC=6.8V, C IN=47uF x 4, C OUT =470uF x3, 400LFM airflow, no heat sink, 25°Cambient temperature, and 8-layer PCB of 3.7” (L) x 2.6” (W). PWM controller loss and inductor loss are not included.3. V IN=12V, V OUT=1.2V, ƒSW = 400kHz, L=150nH (0.29mΩ), VCC=7V, C IN=47uF x 4, C OUT =470uF x3, no airflow, no heat sink, 25°C ambienttemperature, and 8-layer PCB of 3.7” (L) x 2.6” (W). PWM controller loss and inductor loss are not included.TYPICAL OPERATING CHARACTERISTICSCircuit of Figure 32, V IN =12V, V OUT =1.2V, ƒSW = 400kHz, L=150nH (0.29m Ω), VCC=7V, T AMBIENT = 25°C, no heat sink, no air flow, 8-layer PCB board of 3.7” (L) x 2.6” (W), no PWM controller loss, no inductor loss, unless specified otherwise.TYPICAL OPERATING CHARACTERISTICS (CONTINUED)Circuit of Figure 32, V IN =12V, V OUT =1.2V, ƒSW = 400kHz, L=150nH (0.29m Ω), VCC=7V, T AMBIENT = 25°C, no heat sink, no air flow, 8-layer PCB board of 3.7” (L) x 2.6” (W), no PWM controller loss, no inductor loss, unless specified otherwise.Figure 13: Normalized Power Loss vs. VCC Voltage Figure 14: Power Loss vs. Output Inductor Figure 15: VCC Current vs. Switching FrequencyFigure 16: Switching Waveform, I OUT = 0AFigure 17: Switching Waveform, I OUT = 40AFigure 18: PWM to SW Delays, I OUT = 10APWM 2V/divSW 5V/div40ns/divPWM 5V/divSW 5V/divGATEL 10V/div400ns/divPWM 5V/divSW 5V/divGATEL 10V/div400ns/div分销商库存信息: IRIR3553MTRPBF。
IR3082AMPBF;IR3082AMTRPBF;中文规格书,Datasheet资料
98 90 1.04 -5 0.25 -5 -54.5 90 6 1.4 0.3 0.5 200 30 -10 1.2 0.2 1 -2
109 101 1.22 0 0.45 1.5 -51.5 100 10 400 3.2 0.7 0.9 300 125 -1 2.3 1.8 6 10 -0.3 6.3 1.27 1.21 55 0
ABSOLUTE MAXIMUM RATINGS
Stresses beyond those listed below may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Operating Junction Temperature…………….. 0 to 150 C o o Storage Temperature Range…………………..-65 C to 150 C ESD Rating………………………………………HBM Class 1B JEDEC standard MSL Rating………………………………………2 o Reflow Temperature…………………………….260 C
VCC VBIAS EAOUT FB VDRP IIN
15 14 13 12 11 RDRP1 RDRP CDRP RCP CCP
RMPOUT VBIAS EA
IR1155STRPBF;IR1155SPBF;中文规格书,Datasheet资料
Feb 28, 2011IR1155SPROGRAMMABLE FREQUENCY, ONE CYCLE CONTROL PFC ICFeaturesDescription Package• PFC IC with IR proprietary “One Cycle Control” • Continuous conduction mode boost type PFC • Programmable switching frequency (48k-200kHz) • Average current mode control • Output overvoltage protection • Open loop protection • Cycle by cycle peak current limit • VCC under voltage lockout• Programmable soft start • Micropower startup • User initiated micropower “Sleep Mode”• OVP/EN pin internal filtering for higher noise immunity • 1.5A peak gate drive• Latch immunity and ESD protection The μPFC IR1155 power factor correction IC, based on IR proprietary "OneCycle Control" (OCC) technique, provides for high PF, low THD and excellent DC Bus regulation while enabling drastic reduction in component count, PCB area and design time as compared to traditional solutions. The IC is designed to operate in continuous conduction mode Boost PFC converters with average current mode control over 85-264VAC input line voltage range. Switching frequency can be programmed to anywhere between 48kHz to 200kHz based on the specific application requirement. In addition, IR1155 offers several advanced system-enabling and protective features such as dedicated pin for over voltage protection, cycle by cycle peak current limitation, open loop protection, V CCUVLO, soft-start and micropower startup/sleep-mode with IC current consumption less than 200µA. The sleep mode, invoked by pulling the OVP/EN pin low, enables compliance with standby power requirements mandated by regulations such as Energy Star, Green Power, Blue Angel etc.Qualification InformationIndustrialQualification Level Comments: This family of ICs has passed JEDEC’s Industrialqualification. IR’s Consumer qualification level is granted byextension of the higher Industrial level.Moisture Sensitivity LevelMSL2 260°C(per IPC/JEDEC J-STD-020)Machine ModelClass A(per JEDEC standard JESD22-A115)ESDHuman Body ModelClass 1B (passes 500V)(per EIA/JEDEC standard EIA/JESD22-A114)IC Latch-Up Test Class I, Level A (per JESD78)RoHS Compliant YesAbsolute Maximum RatingsParameter Symbol Min. Max. Units RemarksVCC Voltage V CC -0.3 20 VFREQ Voltage V FREQ -0.3 6.5 VISNS Voltage V ISNS -10 0.3 VVFB, OVP Voltage V FB, V OVP -0.3 6.5 VCOMP Voltage V COMP -0.3 6.5 VGATE Voltage V GATE -0.3 18 VISNS Current I ISNS -2 2 mAJunction Temperature T J -40 150 °CStorage Temperature T S -55 150 °CThermal ResistanceJunction to AmbientRθJA128 °C/WPackage Power Dissipation P D976 mWT AMB = 25°CRecommended Operating ConditionsRecommended operating conditions for reliable operation with marginParameter SymbolMin.Typ.Max.UnitsRemarks Supply Voltage V CC12 19 VJunction Temperature T J -25 125 °CSwitching Frequency F SW 48 200 kHzElectrical CharacteristicsThe electrical characteristics involve the spread of values guaranteed within the specified supply voltage and junction temperature range T J from –25 °C to 125°C. Typical values represent the median values, which are related to 25°C. If not otherwise stated, a supply voltage of V CC =15V is assumed for test condition . Supply SectionParameter Symbol Min. Typ. Max. Units Remarks VCC Turn On ThresholdV CC ON 10.65 11.3 11.95 V VCC Turn OffThreshold (Under Voltage Lock Out) V CC UVLO 9.2 9.8 10.4 V VCC Turn On/Off Hysteresis V CC HYST 1.5VOperating CurrentI CC 10 13 mA C load =1nF, F SW =181kHz6 8 mAStandby Mode (Inactive Gate, Inactive Internal Oscillator)V FB <V OLPSee State Transition Diagram Startup CurrentI CCSTART175 uA V CC =V CC ON - 0.1VSleep CurrentI SLEEP 125 200 uASleep Mode (Inactive Gate,Inactive Oscillator)- V OVP <V SLEEP,OFFSee State Transition Diagram Sleep ModeThreshold (Enable)V SLEEP,ON0.80 0.90 1.00 VIC Enable threshold,Bias on OVP pinSleep ModeThreshold (Disable)V SLEEP,OFF 0.53 0.60 0.67VIC Disable threshold, Bias on OVP pinOscillator SectionParameter SymbolMin.Typ.Max.UnitsRemarks Switching Frequency F SW 48 200kHz200khz:C=430pFapprox.48kHz: C=2nF approx. Oscillator Charge Current I OSC(CHG)200 µAOscillator DischargeCurrentI OSC(DCHG) 6.6 mAOscillator Peak V OSC PK 4 VOscillator Valley V OSC VAL 2 V5 %C=2nF,T A = 25°CInitial Accuracy F SW ACC8 %C=500pF,T A = 25°C Voltage Stability V STAB 0.2 1 % 14V < V CC < 19V Temperature Stability T STAB 2 %-25°C≤ T J≤ 125°CTotal Variation F VT 10 %Line&Temperature Maximum Duty Cycle D MAX94 99 %Minimum Duty Cycle D MIN0 %PulseSkippingProtection SectionParameter SymbolMin.Typ.Max.UnitsRemarksOpen Loop Protection (OLP) V FB Threshold V OLP 17 19 21 %V REF Bias on VFB pinOutput Over Voltage Protection (OVP) V OVP 104.5 106.5 108.5 %V REF Bias on OVP/EN pinOutput Over Voltage Protection (OVP) Reset V OVP(RST) 100.2 102.2 104.2 %V REF Bias on OVP/EN pinPeak Current LimitProtection (IPK LMT) I SNSVoltage ThresholdV ISNS-0.85 -0.77 -0.69 V Bias on ISNS pin OVP Input Bias Current I OVP(Bias)-0.2 µAInternal Voltage Reference SectionVoltage Error Amplifier SectionParameter Symbol Min. Typ. Max. Units Remarks Transconductance g m 35 50 65 µS 30 44 58 T AMB = 25°C Source CurrentI OVEA(SRC)20 44 90µA -25°C ≤T AMB ≤ 125°C -57 -43 -30 T AMB = 25°C Sink Current I OVEA(SNK)-90 -43 -20µA -25°C ≤T AMB ≤ 125°CSoft Start Delay Time t SS35 msec R GAIN = 1k Ω, C ZERO = 0.33uF,C POLE = 0.01uF V COMP Voltage (Fault) V COMP FLT 1 1.4 V@ 100µA steady statecurrentEffective V COMP Voltage V COMP EFF 4.6 4.9 5.2 V VFB Input Bias Current I IB(Bias)-0.2 µA V FB =4.9VOutput Low Voltage V OL 0.25 V Output High Voltage V OH 5 5.4 V V COMP Start Voltage V COMP START240 340 460 mVParameter Symbol Min. Typ. Max. Units Remarks Reference Voltage V REF 4.9 5 5.1 V T A = 25°C Line Regulation R REG1020mV14 V < V CC < 19V Temp Stability T STAB 0.4 % -25°C ≤ T AMB ≤ 125°C Total VariationΔV TOT4.855.1VLine & TemperatureCurrent Amplifier SectionUnitsRemarksMax.Parameter SymbolMin.Typ.DC Gain g DC 3.1 V/VCorner Frequency f C 5 kHz - Average current mode, Note 1Note1Input Offset Voltage V IO 4 16 mVI SNS Bias Current I ISNS(Bias) -57 -13 µABlanking Time T BLANK220 370 520 nsGate Driver SectionUnitsMax.Remarks Parameter SymbolMin.Typ.Gate Low Voltage V GLO 0.8 VI GATE=200mAclamp12 13 14 VGateInternalGate High Voltage V GTHV CC = 11.5V10 VRise Time t r20 nsC LOAD = 1nFFall Time t f20 nsC LOAD = 1nFC LOAD = 10nF, Note 1Output Peak Current I OPK 1.5 AGate Voltage @ Fault V G fault 0.08I GATE = 20mAVNote 1 – Guaranteed by design, but Not tested in productionLead Assignments & DefinitionsBlock DiagramVFBCOMPOVPNote: Soft-Start & Normal modes are essentially the same (differentiation above is for purpose of clarity only)VCC Undervoltage LockoutV o l t a g e o n V C C p i nTiming DiagramsOutput Protection分销商库存信息:IRIR1155STRPBF IR1155SPBF。
唯特利公司产品说明书-无环扣温度计接口924型
如需产品安装、维护或支持信息,请参考文档末的信息。
4 – 8英寸/DN100 – DN20010英寸/DN250及以上尺寸专利设计1.0 产品描述供货尺寸• 4 – 8英寸/DN100 – DN200(感温泡长度为6英寸/150毫米)• 10英寸/DN250及以上尺寸(感温泡长度为6英寸/150毫米)最大工作压力• 300 psi/2068 kPa/21 bar功能• 兼具温度计套管和无环扣机械接口的特点,可提供方便快捷的连接• 配备 NPT (标准)、UNEF (可选)或BSPP (可选)出口连接 • 非常适用于感温泡长度为6英寸/150毫米的各种工业玻璃温度计• 采用流线型探头,可减小主管内部的摩擦损失• 插入流体内部的长度为3英寸/80毫米• 允许2 ½英寸/73毫米的隔热保温套层出口连接:(请指定选择) 配备¾英寸内螺纹NPT 连接配备1 ¼英寸 – 18 UNEF 内螺纹连接配备¾英寸内螺纹BSPP 连接(仅用于欧洲地区)2.0 认证/列名产品的设计和制造依照Victaulic (唯特利)质量管理体系进行(根据ISO-9001:2008获得LPCB 认证)。
Victaulic (唯特利)无环扣温度计接口 924型11.06-CHI系统编号位置提交人日期规格部分段落批准人日期3.0 规格 – 材料本体和螺母:符合ASTM A536之65-45-12等级要求的球墨铸铁。
本体和螺母涂层:黑色醇酸树脂瓷漆。
套环:ASTM A569热轧、酸洗及油处理钢,按照ASTM B633 FE/ZN 5, finish Type III进行电镀锌。
底座/衬垫:(请指定选择1)“E”级EPDM(三元乙丙橡胶)EPDM(三元乙丙橡胶)(绿色条纹色码)。
温度范围:–30°F至+230°F/–34°C至+110°C。
可用于指定温度范围内的热水系统,以及多种稀酸、无油空气和众多化工应用场合。
ir2117strpbf规格书
ir2117strpbf规格书【实用版】目录1.产品概述2.主要特性3.规格参数4.应用领域5.环境要求6.安全信息7.结构说明8.工作原理9.测试方法10.维护与保养正文1.产品概述ir2117strpbf 是一种高性能、低成本的电子元器件,具有出色的稳定性和可靠性。
它广泛应用于各种电子设备和系统中,为设备提供稳定的电源和信号传输功能。
2.主要特性ir2117strpbf 具有以下主要特性:- 高稳定性:在恶劣的工作环境下,仍能保持稳定的工作性能。
- 低失真:信号传输过程中失真度低,保证了信号的完整性和准确性。
- 宽工作温度范围:能在 -40℃至 +125℃的温度范围内正常工作。
- 抗干扰能力强:能有效抵抗各种电磁干扰,保证设备的正常运行。
3.规格参数ir2117strpbf 的规格参数如下:- 电压范围:3.3V-5V- 电流范围:50mA-100mA- 工作温度范围:-40℃至 +125℃- 存储温度范围:-40℃至 +125℃- 抗静电能力:±15KV- 封装形式:SOP-84.应用领域ir2117strpbf 广泛应用于以下领域:- 电子消费品:如电视机、收音机、音响设备等。
- 通讯设备:如手机、电话机、传真机等。
- 计算机及周边设备:如电脑、路由器、打印机等。
- 工业控制设备:如工控机、可编程控制器等。
5.环境要求为了保证 ir2117strpbf 的正常工作和延长使用寿命,应满足以下环境要求:- 避免阳光直射和潮湿环境。
- 避免暴露在高温、低温、高湿度的环境中。
- 避免与腐蚀性物质接触。
- 避免强烈的机械振动和冲击。
6.安全信息在操作和使用 ir2117strpbf 时,请注意以下安全信息:- 请勿用湿手触摸或操作设备。
- 请勿在未断电的情况下拆卸设备。
- 请确保设备接地良好,以防止静电损伤。
- 如有异常现象,请立即停止使用并联系专业人员处理。
7.结构说明ir2117strpbf 的结构说明如下:- 引脚 1:电源正极(VCC)- 引脚 2:电源负极(GND)- 引脚 3:输出信号(OUT)- 引脚 4:控制信号(CTRL)- 引脚 5:公共地(GND)- 引脚 6:公共地(GND)- 引脚 7:公共地(GND)- 引脚 8:输出信号(OUT)8.工作原理ir2117strpbf 的工作原理如下:当控制信号(CTRL)为高电平时,输出信号(OUT)跟随输入信号;当控制信号为低电平时,输出信号呈高阻态。
IR1153STRPBF;IR1153SPBF;中文规格书,Datasheet资料
Feb 21, 2011IR1153SFIXED 22.2kHz FREQUENCY, µPFC ONE CYCLE CONTROLIC WITH BROWN-OUT PROTECTIONFeaturesDescription Package• PFC IC with IR proprietary “One Cycle Control” • Continuous conduction mode boost type PFC • Fixed 22.2kHz switching frequency • Average current mode control • Input line sensed brownout protection • Output overvoltage protection • Open loop protection • Cycle by cycle peak current limit• VCC under voltage lockout • Programmable soft start • Micropower startup • User initiated micropower “Sleep Mode” • 750mA peak gate drive• Latch immunity and ESD protection The μPFC IR1153 power factor correction IC, based on IR proprietary"One Cycle Control" (OCC) technique, provides for high PF, low THD and excellent DC Bus regulation while enabling drastic reduction incomponent count, PCB area and design time as compared to traditional solutions. The IC is designed to operate in continuous conduction mode Boost PFC converters with average current mode control at a fixed 22.2kHz switching frequency. The IR1153 features include input-line sensed brown-out protection, dedicated pin for over voltage protection, cycle by cycle peak current limit, open loop protection, VCC UVLO, soft-start and micropower startup current of less than 75µA. In addition, for standby power requirements, the IC can be driven into a micropower sleep mode by pulling the OVP/EN pin low where the current consumption is less than 75uA. IR1153 is available in SO-8 package.Qualification InformationIndustrialQualification Level Comments: This family of ICs has passed JEDEC’s Industrial qualification.IR’s Consumer qualification level is granted by extension of the higherIndustrial level.Moisture Sensitivity LevelMSL2 260°C(per IPC/JEDEC J-STD-020)Machine ModelClass A(per JEDEC standard JESD22-A115)ESDHuman Body ModelClass 1A(per EIA/JEDEC standard EIA/JESD22-A114)IC Latch-Up Test Class I, Level A (per JESD78)RoHS Compliant YesAbsolute Maximum RatingsStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. All voltages are absolute voltages referenced to COM. Thermal resistance and power dissipation are measured under board mounted and still air conditions.Parameters Symbol Min.Max.Units Remarks V CC Voltage V CC-0.3 20 V Not internally clampedISNS voltage V ISNS -10 0.3 VISNS Current I ISNS -2 2 mAV FB voltage V FB-0.3 6.5 VV OVP voltage V OVP -0.3 6.5 VV BOP voltage V BOP -0.3 9 VCOMP voltage V COMP -0.3 6.5 VGate Voltage V GATE-0.3 18 VJunction Temperature OperatingRange T J -40 150 °CStorage Temperature T S -55 150 °CThermal Resistance RθJA128 °C/WSOIC-8Package Power Dissipation P D 976 mWT AMB=25°C SOIC-8Electrical CharacteristicsThe electrical characteristics involve the spread of values guaranteed within the specified supply voltage and junction temperature range T J from – 25° C to 125°C. Typical values represent the median values, which are related to 25°C. If not otherwise stated, a supply voltage of V CC =15V is assumed for test condition.Supply SectionParameters SymbolMin.Typ.Max.Units Remarks Supply Voltage OperatingRangeV CC14 17 VV CC Turn On Threshold V CC ON 12.2 13.1 14 VV CC Turn Off Threshold(Under Voltage Lock Out)V CC UVLO 9.4 10.1 10.8 VV CC Turn On/Off Hysteresis V CC HYST 2.4 3 3.6 V7 mA C LOAD =1nF8 mA C LOAD =4.7nFOperating Current I CC3.5 5 mA OVP Mode, Inactive gateStart-up Current I CC START26 75 µA V CC=V CC ON - 0.2VSleep current I SLEEP 26 75 µAPinOVP/EN=V SLEEP-0.2VSleep Mode Threshold V SLEEP0.5 0.8 V Bias on OVP/EN pinOscillator SectionParameters SymbolMin.Typ.Max.Units Remarks20.2 22.2 24.2 T AMB=25°CFixed Oscillator Frequency f SW18.3 25 kHz -25°C < T AMB < 125°CMaximum Duty Cycle D MAX9399 % V COMP=5VMinimum Duty Cycle D MIN0 % Pulse SkippingProtection SectionParameters SymbolMin.Typ.Max.Units RemarksOpen Loop Protection (OLP)Threshold V OLP 17 19 21%V REFBias on VFB pinOutput OvervoltageProtection (OVP) Threshold V OVP 104 106 108%V REFBias on OVP/EN pinOutput Overvoltage Protection Reset Threshold V OVP(RST) 101 103 105%V REFBias on OVP/EN pinOVP Input Bias Current I OVP(Bias)-0.2 µABrown-out Protection(BOP) ThresholdV BOP0.66 0.76 0.86 V Bias on BOP pin Brown-out ProtectionEnable ThresholdV BOP(EN) 1.46 1.56 1.66 V Bias on BOP pin BOP Input Bias Current I BOP(Bias)-0.2 µAPeak Current LimitProtection ISNS Voltage Threshold (IPK LIMIT) V ISNS(PK)-0.58 -0.51 -0.44 V Bias on ISNS pinInternal Voltage Reference SectionParameters Symbol Min. Typ. Max. Units RemarksReference Voltage V REF 4.9 5 5.1 V Regulation Voltage on VFB pin,T AMB =25°C Line Regulation R REG 10 20 mV 14V < V CC < 17VTemp Stability T STAB0.4 % -25°C < T AMB < 125°C, Note 1 Total VariationΔV TOT4.835.12 V Line & TemperatureVoltage Error Amplifier SectionParameters Symbol Min. Typ. Max. Units RemarksTransconductance g m 35 49 59 µS30 44 58 T AMB =25°C Source Current (Normal Mode) I OVEA(SRC)17 80 µA-25°C < T AMB < 125°C-58 -44 -30 T AMB =25°CSink Current (Normal Mode) I OVEA(SNK)-80 -17 µA -25°C < T AMB < 125°C Soft Start Delay Time (calculated) t SS 35 msecR GAIN =8k Ω, C ZERO =0.33μF,C POLE =2nF V COMP Voltage (Fault) V COMP FLT 1 1.5 V @100uA steady stateEffective V COMP voltageV COMP EFF 4.7 4.9 5.1 VVFB Input Bias Current I FB(Bias) -0.2 µAOutput Low Voltage V OL 0.25 VOutput High Voltage V OH 5 5.45 VV COMP Start VoltageV COMP START210 325 435 mVCurrent Amplifier SectionMax.Units RemarksTyp.Min.Parameters SymbolDC Gain g DC 5.65 V/V2 kHz Average Current Mode, Note 1 Corner Frequency fCInput Offset Voltage V IO 4 16 mV Note 1ISNS Input Bias Current I ISNS(Bias)-57-13 µA170 320 470 nsBlanking Time TBLANKGate Driver SectionMax.Units Remarks Parameters SymbolMin.Typ.Gate Low Voltage V GLO 0.8 V I GATE = 200mA13.1 14.1 15.1 V CC=17V, Internally Clamped Gate High Voltage V GTH9.5 V V CC=11.5VnsC LOAD = 1nF, VCC=15V25Rise Time t rC LOAD = 4.7nF, VCC=15Vns6035C LOAD = 1nF, VCC=15VnsFall Time t fC LOAD = 4.7nF, VCC=15Vns65Output Peak Current I OPK750 mA C LOAD = 4.7nF, VCC=15V, Note 1 Gate Voltage at Fault V G fault0.08 V I GATE = 20mANote 1: Guaranteed by design, but not tested in productionBlock DiagramLead Assignments & DefinitionsIRS1144IR1153IR1144SIR1153 General DescriptionThe μPFC IR1153 IC is intended for power factor correction in continuous conduction mode Boost PFC converters operating at fixed switching frequency with average current mode control. The IC operates based on IR's proprietary "One Cycle Control" (OCC) PFC algorithm based on the concept of resettable integrator.Theory of OperationThe OCC algorithm based on the resettable integrator concept works using two loops - a slow outer voltage loop and a fast inner current loop. The outer voltage loop monitors the VFB pin and generates an error signal which controls the amplitude of the input current admitted into the PFC converter. In this way, the outer voltage loop maintains output voltage regulation. The voltage loop bandwidth is kept low enough to not track the 2xf AC ripple in the output voltage and thus generates an almost DC error signal under steady state conditions.The inner current loop maintains the sinusoidal profile of the input current and thus is responsible for power factor correction. The information about the sinusoidal variation in input voltage is inherently available in the input line current (or boost inductor current). Thus there is no need to sense the input voltage to generate a current reference. The current loop employs the boost inductor current information to generate PWM signals with a proportional sinusoidal variation. This controls the shape of the input current to be proportional to and in phase with the input voltage. Average current mode operation is envisaged by filtering the switching frequency ripple from the current sense signal using an appropriately sized on-chip RC filter. This filter also contributes to the bandwidth of the current control loop. Thus the filter bandwidth has to be high enough to track the 120Hz rectified, sinusoidal current waveform and also filter out the switching frequency ripple in the inductor current. In IR1153 this averaging function can effectively filter high ripple current ratios (as high as 40% at maximum input current) to accommodate designs with small boost inductances.The IC determines the boost converter instantaneous duty cycle based on the resettable integrator concept. The required signals are the voltage feedback loop error signal V m (which is the V COMP pin voltage minus a DC offset of V COMP,START) and the current sense signal V ISNS. The resettable integrator generates a cycle-by-cycle, saw-tooth signal called the PWM Ramp which has an amplitude V m and period 1/f SW hence a slope of V m*f SW. The current sense signal is amplified by the current amplifier by a factor g DC and fed into the summing node where it is subtracted from V m to generate the summer voltage (= V m–g DC*V ISNS). The summer voltage is compared with the PWM ramp by the PWM comparator of the IC to determine the gate drive duty cycle. The instantaneous duty is mathematically given by:D = (V m - g DC.V ISNS)/V mAssuming steady state condition where the voltage feedback loop is well regulated (V m & V OUT are DC signals) & hence instantaneous duty cycle follows the boost-converter equation (D = 1 – V IN(t)/V OUT), the control equation can be re-written as:V m = g DC.V ISNS/(V IN(t)/V OUT)Further, recognizing that V ISNS = I L(t).R SNS and re-arranging yields:g DC.I L(t).R SNS = V m V IN(t)/V OUTSince V m, V OUT & g DC are constant terms:I L(t) α V IN(t)Thus the inductor current follows the input voltage waveform & by definition power factor correction is achieved.Feature setFixed Frequency OperationThe IC is programmed to operate at a fixed frequency of 22.2kHz (Typ). Internalization of the oscillator offers excellent noise immunity even in the noisy PFC environment while integration of the oscillator into the OCC core of the IC eliminates need for digital calibration circuits. Both these factors render the gate drive jitter free thus contributing to elimination of audible noise in PFC magnetics.IC Supply Circuit & Low start-up currentThe IR1153 UVLO circuit maintains the IC in UVLO mode during start-up if VCC pin voltage is less than the VCC turn-on threshold, V CC,ON and current consumption is less than 75uA. Should VCC pin voltage should drop below V CC,UVLO during normal operation, the IC is pushed back into UVLO mode and VCC pin has to exceed V CC,ON again for normal operation. There is no internal voltage clamping of the VCC pin.User initiated Micropower Sleep modeThe IC can be actively pushed into a micropower Sleep Mode where current consumption is less than 75uA by pulling OVP/EN pin below the Sleep threshold, V SLEEP even while VCC is above V CC,ON. This allows the user to disable PFC during application stand-by situations in order to meet stand-by regulations. Since V SLEEP is less than 1V, even logic level signals can be employed.IR1153SIR1153 General DescriptionProgrammable Soft StartThe soft start process controls the rate of rise of the voltage feedback loop error signal thus providing a linear increase of the RMS input current that the PFC converter will admit. The soft start time is essentially controlled by voltage error amplifier compensation components selected and is therefore user programmable to some degree based on desired voltage feedback loop crossover frequency.Gate Drive CapabilityThe gate drive output stage of the IC is a totem pole driver with 750mA peak current drive capability. The gate drive is internally clamped at 14.1V (Typ). Gate drive buffer circuits (especially cost-effective base-followers) can be easily driven with the GATE pin of the IC to suit any system power level.System Protection FeaturesIR1153 protection features include Brown-out protection (BOP), Open-loop protection (OLP), Overvoltage protection (OVP), Cycle-by-cycle peak current limit (IPK LIMIT), Soft-current limit and VCC under voltage lock-out (UVLO).- BOP is based on direct input line sensing using a resistor divider/RC filter network. If BOP pin falls below the Brown-out protection threshold V BOP, a Brown-out situation is immediately detected the following response is executed - the gate drive pulse is disabled, VCOMP is actively discharged and IC is pushed into Stand-by Mode. The IC re-enters normal operation only after BOP pin exceeds V BOP(EN). During start-up the IC is held in Stand-by Mode until this pin exceeds V BOP(EN).- OLP is activated whenever the VFB pin voltage falls below V OLP threshold. Once open loop is detected the following response is immediately executed - the gate drive is immediately disabled, VCOMP is actively discharged and the IC is pushed into Stand-by mode. There is no voltage hysteresis associated with this feature. During start-up the IC is held in Stand-by Mode until VFB exceeds V OLP. - The OVP pin is a dedicated pin for overvoltage protection that safeguards the system even if there is a break in the VFB feedback loop due to resistor divider failure etc. An overvoltage fault is triggered when OVP pin voltage exceeds the V OVP threshold of 106%VREF. The response of the IC is to immediately terminate the gate drive output and hold it in that state. The gate drive is re-enabled only after OVP pin voltage drops below V OVP(RST) threshold of 103% VREF. The exact voltage level at which overvoltage protection is triggered can be programmed by the user by carefully designing the OVP pin resistor divider. Itis recommended NOT to set the OVP voltage trigger limit less than 106% of DC bus voltage, since this can endanger the situation where the OVP reset limit will be less than the DC bus voltage regulation point – in this condition the voltage loop can become unstable.- Soft-current limit is an output voltage fold-back type protection feature encountered when the PFC converter input current exceeds to a point where the V m voltage saturates. As mentioned earlier, the amplitude of input current is directly proportional to V m, the error voltage of the feedback loop. V m is clamped to a certain maximum voltage inside the IC (given by V COMP,EFF parameter in datasheet). If the input current causes the V m voltage to saturate at its maximum value, then any further increase in input current will cause the duty cycle to droop which immediately forces the V OUT voltage of the PFC converter to fold-back. Since the highest current is at the peak of the AC sinusoid, the droop in duty cycle commences at the peak of the AC sinusoid when the soft-current limit is encountered. In most converters, the design of the current sense resistor is performed based on soft-current limit (i.e. V m saturation) and at the system condition which demands highest input current (minimum V AC & maximum P OUT).- Cycle-by-cycle peak current limit protection instantaneously turns-off the gate output whenever the ISNS pin voltage exceeds V ISNS(PK) threshold in magnitude. The gate drive is held in the low state as long as the overcurrent condition persists. The gate drive is re-enabled when the magnitude of ISNS pin voltage falls below the V ISNS(PK) threshold. This protection feature incorporates a leading edge blanking circuit to improve noise immunity.IR1153S IR1153 Pin DescriptionPin COM: This is ground potential pin of the IC. All internal devices are referenced to this point. Pin COMP: External circuitry from this pin to ground compensates the system voltage loop and programs the soft start time. The COMP pin is essentially the output of the voltage error amplifier. The voltage loop error signal V m used in the control algorithm is derived from V COMP (V m =V COMP–V COMP,START). V COMP is actively discharged using an internal resistance to below V COMP,START threshold whenever the IC is pushed into Stand-by mode (BOP or OLP condition) or UVLO/Sleep mode. The gate drive output and logic functions of the IC are inactive if VCOMP is less than V COMP,START. Also during start-up, the VCOMP voltage has to be less than V COMP,START in order to commence operation (i.e. a pre-bias on VCOMP will not allow IC to commence operation).Pin ISNS: ISNS pin is tied to the input of the current sense amplifier of the IC. The voltage at this pin, which provides the current sense information to the IC, has to be a negative voltage wrt the COM pin. Also since the IC is based on average current mode, the entire inductor current information is necessary. A current sense resistor, located below system ground along the return path to the bridge rectifier, is the preferred current sensing method. ISNS pin is also the inverting input to the cycle-by-cycle peak current limit comparator. Whenever V ISNS exceeds V ISNS(PK) threshold in magnitude, the gate drive is instantaneously disabled. Any external filtering of the ISNS pin must be performed carefully in order to ensure that the integrity of the current sense signal is maintained for cycle-by-cycle peak current limit protection.Pin BOP (Brown-out Protection): This pin is used to sense the rectified AC input line voltage through a resistor divider/capacitor network which is in effect a voltage division and averaging network, representing a scaled down signal of the average rectified input voltage (average DC voltage + 2xf AC ripple). During start-up the BOP pin voltage has to exceed V BOP(EN) in order to enable the IC to exit Stand-by mode and enter normal operation. A Brown-out situation is detected whenever the pin voltage falls below V BOP and the IC is pushed into Stand-by mode. Subsequently the pin has to exceed V BOP(EN) for the IC to exit Stand-by and resume normal operation.Pin OVP/EN: The OVP/EN pin is connected to the non-inverting input of the OVP(OVP) overvoltage comparator shown in the block diagram and thus is used to detect output overvoltage situations. The output voltage information is communicated to the OVP pin using a resistive divider. This pin also serves the second purpose of an ENABLE pin. The OVP/EN pin can be used to activate the IC into “micropower sleep” mode by pulling the voltage on this pin below the V SLEEP threshold.Pin VFB: The converter output voltage is sensed via a resistive divider and fed into this pin. VFB pin is the inverting input of the output voltage error amplifier. The non-inverting input of this amplifier is connected to an internal 5V reference. The impedance of the divider string must be low enough that it does not introduce substantial error due to the input bias currents of the amplifier, yet high enough to minimize power dissipation. Typical value of external divider total impedance will be around 2MΩ. VFB pin is also the inverting input to the Open Loop comparator. The IC is held in Stand-by Mode whenever VFB pin voltage is below V OLP threshold.Pin VCC: This is the supply voltage pin of the IC and sense node for the undervoltage lock out circuit. It is possible to turn off the IC by pulling this pin below the minimum turn off threshold voltage, V CC(UVLO) without damage to the IC. This pin is not internally clamped.Pin GATE: This is the gate drive output of the IC. It provides a drive current of ±0.75A peak with matched rise and fall times. The gate drive output of the IC is clamped at 14.1V(Typ).分销商库存信息:IRIR1153STRPBF IR1153SPBF。
IRLML9303TRPBF;中文规格书,Datasheet资料
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED
14.0 ID= -2.3A
-V GS, Gate-to-Source Voltage (V)
C rss = C gd
12.0 10.0 8.0 6.0 4.0 2.0 0.0 VDS= -24V VDS= -15V
Min. Typ. Max. Units
––– ––– ––– ––– ––– ––– ––– ––– 12 5.3 -1.3 A -12 -1.2 18 8.0 V ns nC
Conditions
MOSFET symbol showing the integral reverse
G S D
Ã
p-n junction diode. TJ = 25°C, IS = -1.3A, VGS = 0V TJ = 25°C, VR = -24V, IF=-1.3A di/dt = 100A/μs
Parameter
Drain-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Maximum Power Dissipation Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Junction and Storage Temperature Range
PD - 97519B
IRLML9303TRPbF
VDS VGS Max RDS(on) max
IRFR场效应管
IRFR-IRHM器件索引∙IRFR3410(Power MOSFET)∙IRFR3411(HEXFET Power MOSFET)∙IRFR3412(SMPS MOSFET)∙IRFR3418(HEXFET Power MOSFET)∙IRFR3504(AUTOMOTIVE MOSFET)∙IRFR3504PbF(AUTOMOTIVE MOSFET)∙IRFR3505(AUTOMOTIVE MOSFET)∙IRFR3518(HEXFET Power MOSFET)∙IRFR3704(Power MOSFET(Vdss=20V, Rds(on)max=9.5mohm, Id=75A ))∙IRFR3704Z(HEXFET Power MOSFET)∙IRFR3706(Power MOSFET(Vdss=20V, Rds(on)max=9.0mohm, Id=75A ))∙IRFR3707(Power MOSFET(Vdss=30V, Rds(on)max=13mohm, Id=61A ))∙IRFR3707Z(HEXFET Power MOSFET)∙IRFR3707ZPBF(HEXFET Power MOSFET)∙IRFR3708(Power MOSFET(Vdss=30V, Rds(on)max=12.5mohm, Id=61A ))∙IRFR3709Z(HEXFET Power MOSFET)∙IRFR3710Z(Specifically designed for Automotive applications, this HEXFET Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resi)∙IRFR3711(Power MOSFET(Vdss=20V, Rds(on)max=6.5mohm, Id=110A ))∙IRFR3910(Power MOSFET(Vdss=100V, Rds=0.115ohm, Id=16A))∙IRFR3911(SMPS MOSFET)∙IRFR410(1.5A, 500V, 7.000 Ohm, N-Channel Power MOSFETs)∙IRFR4104(Power MOSFET(Vdss=40V, Rds(on)=5.5mohm, Id=42A))∙IRFR4105(Power MOSFET(Vdss=55V, Rds(on)=0.045ohm, Id=27A ))∙IRFR4105Z(Power MOSFET(Vds=55V, Rds(on)=24.5mohm, Id=30A))∙IRFR410B(500V N-Channel MOSFET)∙IRFR420(Power MOSFET(Vdss=500V, Rds(on)=3.0ohm, Id=2.4A))∙IRFR420(2.5A, 500V, 3.000 Ohm, N-Channel Power MOSFETs)∙IRFR420A(SMPS MOSFET)∙IRFR420B(500V N-Channel MOSFET)∙IRFR430A(SMPS MOSFET)∙IRFR430B(500V N-Channel MOSFET)∙IRFR48Z(AUTOMOTIVE MOSFET)∙IRFR48ZPBF(AUTOMOTIVE MOSFET)∙IRFR5305(Power MOSFET(Vdss=-55V, Rds(on)=0.065ohm, Id=-31A))∙IRFR5410(Power MOSFET(Vdss=-100V, Rds(on)=0.205ohm, Id=-13A))∙IRFR5505(Power MOSFET(Vdss=-55V, Rds(on)=0.11ohm, Id=-18A))∙IRFR6215(Power MOSFET(Vdss=-150V, Rds(on)=0.295ohm, Id=-13A))∙IRFR9010(P-CHANNEL POWER MOSFETS)∙IRFR9014(Power MOSFET(Vdss=-60V, Rds(on)=0.50ohm, Id=-5.1A))∙IRFR9014TRL(HEXFET Power MOSFET)∙IRFR9020(REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS)∙IRFR9024(P-Channel Enhancement Mode Field Effect Transistor)∙IRFR9024(Power MOSFET(Vdss=-60V, Rds(on)=0.28ohm, Id=-8.8A))∙IRFR9024N(Power MOSFET(Vdss=-55V, Rds(on)=0.175ohm, Id=-11A))∙IRFR9110(3.1A, 100V, 1.200 Ohm, P-Channel Power MOSFETs)∙IRFR9110TRL(Power MOSFET(Vdss=-100V, Rds(on)=1.2ohm, Id=-3.1A))∙IRFR9120(Power MOSFET(Vdss=-100V, Rds(on)=0.60ohm, Id=-5.6A))∙IRFR9120(5.6A, 100V, 0.600 Ohm, P-Channel Power MOSFETs)∙IRFR9120N(Power MOSFET(Vdss=-100V, Rds(on)=0.48ohm, Id=-6.6A))∙IRFR9210(Power MOSFET(Vdss=-200V, Rds(on)=3.0ohm, Id=-1.9A))∙IRFR9214(Power MOSFET(Vdss=-250V, Rds(on)=3.0ohm, Id=-2.7A))∙IRFR9220(3.6A, 200V, 1.500 Ohm, P-Channel Power MOSFETs)∙IRFR9220(Power MOSFET(Vdss=-200V, Rds(on)=1.5ohm, Id=-3.6A))∙IRFR9310(Power MOSFET(Vdss=-400V, Rds(on)=7.0ohm, Id=-1.8A))∙IRFR9N20D(Power MOSFET(Vdss=200V, Rds(on)max=0.38ohm, Id=9.4A))∙IRFRC20(Power MOSFET(Vdss=600V, Rds(on)=4.4ohm, Id=2.0A))∙IRFS11N50A(SMPS MOSFET)∙IRFS140A(Advanced Power MOSFET)∙IRFS150A(Advanced Power MOSFET)∙IRFS240B(200V N-Channel MOSFET)∙IRFS244B(250V N-Channel MOSFET)∙IRFS250(200V N-Channel MOSFET)∙IRFS254B(250V N-Channel MOSFET)∙IRFS3306PBF(High Efficiency Synchronous Rectification in SMPS)∙IRFS340A(Advanced Power Mosfet)∙IRFS340B(400V N-Channel MOSFET)∙IRFS350A(Advanced Power MOSFET)∙IRFS4227PBF(PDP SWITCH)∙IRFS440A(Advanced Powre MOSFET)∙IRFS440B(500V N-Channel MOSFET)∙IRFS450(500V N-Channel MOSFET)∙IRFS510(Advanced Power MOSFET)∙IRFS520A(Advanced Power MOSFET)∙IRFS530(Advanced Power MOSFET)∙IRFS540(Advanced Power MOSFET)∙IRFS550A(Advanced Power MOSFET)∙IRFS610A(Advenced Power MOSFET (N-CHANNEL))∙IRFS630A(Advanced Power MOSFET)∙IRFS634A(Advanced Power MOSEFT)∙IRFS640(Improved inductive ruggedness)∙IRFS640(200V N-Channel MOSFET)∙IRFS640A(Rugged Gate Oxide Technology)∙IRFS650A(Advanced Power MOSFET)∙IRFS650B(200V N-Channel MOSFET)∙IRFS720(400V N-Channel MOSFET)∙IRFS730A(Advanced Power MOSFET)∙IRFS750(Advanced Power MOSFET)∙IRFS820A(Advanced Power MOSFET)∙IRFS840(500V N-Channel MOSFET)∙IRFS840A(Advanced Power MOSFET)∙IRFS9N60A(SMPS MOSFET)∙IRFSL11N50A(HEXFET Power MOSFET)∙IRFSL9N60A(SMPS MOSFET)∙IRFU1N60A(SMPS MOSFET)∙IRFU3504Z(AUTOMOTIVE MOSFET)∙IRFU9210N(HEXFET Power MOSFET)∙IRFV064(HEXFET TRANSISTOR, N-CHANNEL)∙IRFV260(TRANSISTOR N-CHANNEL(Vdss=200V, Rds(on)=0.060ohm, Id=45A*))∙IRFV360(REPETITIVE AVALANCHE RATED AND dv/dt RATED HEXFET TRANSISTOR)∙IRFV460(REPETITIVE AVALANCHE RATED AND dv/dt RATED)∙IRFW510A(Advanced Power MOSFET)∙IRFW710(400V N-Channel MOSFET)∙IRFW720(400V N-Channel MOSFET)∙IRFW730(400V N-Channel MOSFET)∙IRFW740(400V N-Channel MOSFET)∙IRFW840(500V N-Channel MOSFET)∙IRFWI530A(Advanced Power MOSFET)∙IRFY044(N-CHANNEL POWER MOSFET FOR HI.REL APPLICATIONS)∙IRFY044C(N-CHANNEL POWER MOSFET FOR HI.REL APPLICATIONS)∙IRFY044CM(POWER MOSFET N-CHANNEL(BVdss=60V, Rds(on)=0.040ohm, Id=16A*))∙IRFY120(N-CHANNEL POWER MOSFET FOR HI.REL APPLICATIONS)∙IRFY130(N-CHANNEL POWER MOSFET FOR HI.REL APPLICATIONS)∙IRFY130CM(POWER MOSFET N-CHANNEL(BVdss=100V, Rds(on)=0.18ohm, Id=14.4A))∙IRFY1310M-T257(N-CHANNEL POWER MOSFET FOR HI-REL APPLICATIONS)∙IRFY140(N-CHANNEL POWER MOSFET FOR HI-REL APPLICATIONS)∙IRFY140C(N-CHANNEL POWER MOSFET FOR HI.REL APPLICATIONS)∙IRFY140CM(POWER MOSFET N-CHANNEL(BVdss=100V, Rds(on)=0.077ohm, Id=16*A))∙IRFY230(N?CHANNEL POWER MOSFET FOR HI?REL APPLICATIONS)∙IRFY240(N-CHANNEL POWER MOSFET FOR HI-REL APPLICATIONS)∙IRFY240CM(POWER MOSFET N-CHANNEL(BVdss=200V, Rds(on)=0.18ohm, Id=16A))∙IRFY330(N-Channel MOSFET in a Hermetically sealed TO257AB Metal Package)∙IRFY340(N-CHANNEL POWER MOSFET FOR HI-REL APPLICATIONS)∙IRFY340CM(POWER MOSFET N-CHANNEL(BVdss=400V, Rds(on)=0.55ohm, Id=8.7A))∙IRFY430(N-CHANNEL POWER MOSFET FOR HI-REL APPLICATIONS)∙IRFY430CM(POWER MOSFET N-CHANNEL(BVdss=500V, Rd(on)=1.5ohm, Id=4.5A))∙IRFY430M-T257(N-CHANNEL POWER MOSFET FOR HI-REL APPLICATIONS)∙IRFY440CM(POWER MOSFET N-CHANNEL(BVdss=500V, Rds(on)=0.85ohm, Id=7.0A))∙IRFY9120(P-Channel MOSFET in a Hermetically sealed TO257AB Metal Package)∙IRFY9130(P-CHANNEL POWER MOSFET FOR HI-REL APPLICATIONS)∙IRFY9130CM(POWER MOSFET P-CHANNEL(BVdss=-100V, Rds(on)=0.3ohm, Id=-11.2A))∙IRFY9140(P-CHANNEL POWER MOSFET FOR HI-REL APPLICATIONS)∙IRFY9140C(P-CHANNEL POWER MOSFET FOR HI-REL APPLICATIONS)∙IRFY9140CM(POWER MOSFET P-CHANNEL(BVdss=-100V, Rds(on)=0.2ohm, Id=-15.8A))∙IRFY9230(P-CHANNEL POWER MOSFET FOR HI-REL APPLICATIONS)∙IRFY9240(POWER MOSFET P-CHANNEL(BVdss=-200V, Rds(on)=0.51ohm, Id=-9.4A))∙IRFZ10(HEXFETR POWER MOSFET)∙IRFZ14(HEXFET Power MOSFET)∙IRFZ20(HEXFET TRANSISTORS)∙IRFZ24L(HEXFET Power MOSFET)∙IRFZ24N(Power MOSFET (Vdss=55V, Rds(on)=0.07ohm, Id=17A))∙IRFZ24N(N-channel enhancement mode TrenchMOS transistor)∙IRFZ24NL(Power MOSFET(Vdss=55V, Rds(on)=0.07ohm, Id=17A))∙IRFZ24NLPBF(HEXFET Power MOSFET)∙IRFZ24V(Power MOSFET(Vdss=60V, Rds(on)=60mohm, Id=17A))∙IRFZ34(Power MOSFET(Vdss=55V, Rds(on)=0.040ohm, Id=26A))∙IRFZ34E(HEXFET POWER MOSFET)∙IRFZ34L(HEXFET Power MOSFET)∙IRFZ34NLPbF(HEXFET Power MOSFET)∙IRFZ34NS(HEXFET㈢ Power MOSFET)∙IRFZ34VL(Advanced Process Technology)∙IRFZ34VLPbF(HEXFET Power MOSFET)∙IRFZ40(N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS)∙IRFZ40(N-CHANNEL POWER MOSFETS)∙IRFZ42(Power Field Effect Transistors)∙IRFZ44(Power MOSFET(Vdss=55V, Rds(on)=17.5mohm, Id=49A))∙IRFZ44(N-channel enhancement mode TrenchMOS transistor)∙IRFZ44E(Power MOSFET(Vdss=60V, Rds(on)=0.023ohm, Id=48A))∙IRFZ44EL(Power MOSFET(Vdss=60V, Rds(on)=0.023ohm, Id=48A))∙IRFZ44L(HEXFET Power MOSFET)∙IRFZ44NL(Power MOSFET(Vdss=55V, Rds(on)=0.0175ohm, Id=49A))∙IRFZ44NPBF(HEXFET-R Power MOSFET)∙IRFZ44NS(N-channel enhancement mode TrenchMOS transistor)∙IRFZ44R(Power MOSFET(Vdss=60V, Rds(on)=0.028ohm, Id=50*A))∙IRFZ44V(Power MOSFET(Vdss=60V, Rds(on)=16.5mw, Id=55A))∙IRFZ44VPBF(Ultra Low On-Resistance)∙IRFZ44VS(Power MOSFET(Vdss=60V, Rds(on)=16.5mohm, Id=55A))∙IRFZ44VZL(Power MOSFET(Vdss=60V, Rds(on)=12mohm, Id=57A))∙IRFZ44Z(Power MOSFET(Vdss=55V, Rds(on)=13.9mohm, Id=51A))∙IRFZ46(Power MOSFET(Vdss=50V, Rds(on)=0.024ohm, Id=50*A))∙IRFZ46N(Power MOSFET(Vdss=55V, Rds(on)=16.5mohm, Id=53A))∙IRFZ46NL(HEXFET POWER MOSFET)∙IRFZ46S(HEXFET Power MOSFET)∙IRFZ46ZS(AUTOMOTIVE MOSFET)∙IRFZ48(Power MOSFET(Vdss=60V, Rds(on)=0.018ohm, Id=50*A))∙IRFZ48(N-channel enhancement mode TrenchMOS transistor)∙IRFZ48L(HEXFET Power MOSFET)∙IRFZ48NL(Advanced Process Technology)∙IRFZ48V(Power MOSFET(Vdss=60V, Rds(on)=12mohm, Id=72A))∙IRFZ48VS(Power MOSFET(Vdss=60V, Rds(on)=12mohm, Id=72A))∙IRFZ48Z(AUTOMOTIVE MOSFET)∙IRFZ48ZLPBF(AUTOMOTIVE MOSFET)∙IRG4BC10K(Short Circuit Rated UltraFast IGBT)∙IRG4BC10KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.2.39V, @Vge=15V, Ic=5.0A))∙IRG4BC10S(INSULATED GATE BIPOLAR TRANSISTOR Standard Speed IGBT(Vces=600V, Vce(on)typ.1.10V, @Vge=15V, Ic=2.0A))∙IRG4BC10SD-S(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.10V, @Vge=15V,Ic=2.0A))∙IRG4BC10UD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=2.15V, @Vge=15V, Ic=5.0A))∙IRG4BC15MD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.88V, @Vge=15V, Ic=8.6A))∙IRG4BC15UD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=2.02V, @Vge=15V, Ic=7.8A))∙IRG4BC15UD-L(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=2.02V, @Vge=15V,Ic=7.8A))∙IRG4BC20F(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.66V, @Vge=15V, Ic=9.0A))∙IRG4BC20FD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.66V, @Vge=15V, Ic=9.0A))∙IRG4BC20FD-STRL(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.66V, @Vge=15V, Ic=9.0A))∙IRG4BC20K(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.27V, @Vge=15V, Ic=9.0A))∙IRG4BC20KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=2.27V, @Vge=15V, Ic=9.0A))∙IRG4BC20KD-S(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=2.27V, @Vge=15V,Ic=9.0A))∙IRG4BC20K-S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.27V, @Vge=15V, Ic=9.0A))∙IRG4BC20MD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.85V, @Vge=15V, Ic=11A))∙IRG4BC20MD-S(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.85V, @Vge=15V,Ic=11A))∙IRG4BC20S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.4V, @Vge=15V, Ic=10A))∙IRG4BC20SD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.4V, @Vge=15V, Ic=10A))∙IRG4BC20SD-S(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.4V, @Vge=15V, Ic=10A))∙IRG4BC20U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.85V, @Vge=15V, Ic=6.5A))∙IRG4BC20UD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.85V, @Vge=15V, Ic=6.5A))∙IRG4BC20UD-S(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.85V, @Vge=15V,Ic=6.5A))∙IRG4BC20W(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.16V, @Vge=15V, Ic=6.5A))∙IRG4BC20WS(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.16V, @Vge=15V, Ic=6.5A))∙IRG4BC30(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.59V, @Vge=15V, Ic=17A))∙IRG4BC30(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.59V, @Vge=15V, Ic=17A))∙IRG4BC30(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.21V, @Vge=15V, Ic=16A))∙IRG4BC30KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=2.21V, @Vge=15V, Ic=16A))∙IRG4BC30KD-STRR(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=2.21V, @Vge=15V, Ic=16A))∙IRG4BC30K-S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.21V, @Vge=15V, Ic=16A))∙IRG4BC30S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.4V, @Vge=15V, Ic=18A))∙IRG4BC30S-S(INSULATED GATE BIPOLAR TRANSISTOR Standard Speed IGBT(Vces=600V, Vce(on)typ.=1.4V, @Vge=15V, Ic=18A))∙IRG4BC30U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.95V, @Vge=15V, Ic=12A))∙IRG4BC30UD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.95V, @Vge=15V, Ic=12A))∙IRG4BC30U-S(INSULATED GATE BIPOLAR TRANSISTOR UltraFast Speed IGBT(Vces=600V, Vce(on)typ. = 1.95V, @Vge=15V, Ic=12A))∙IRG4BC30U-SPBF(INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4BC30W(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)max.=2.70V, @Vge=15V, Ic=12A))∙IRG4BC30WS(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.10V, @Vge=15V, Ic=12A))∙IRG4BC30W-S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.10V, @Vge=15V, Ic=12A))∙IRG4BC30W-SPBF(INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4BC40F(INSULATED GATE BIPOLAR TRANSISOR(Vces=600V, Vce(on)typ.=1.50V, @Vge=15V, Ic=27A))∙IRG4BC40K(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.1V, @Vge=15V, Ic=25A))∙IRG4BC40S(INSULATED GATE BIPOLAR TRANSISTOR Standard Speed IGBT(Vces=600V, Vce(on)typ.=1.32V, @Vge=15V, Ic=31A))∙IRG4BC40U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.72V, @Vge=15V, Ic=20A))∙IRG4BC40W(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.05V, @Vge=15V, Ic=20A))∙IRG4BH20K-L(INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4BH20K-S(INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4CC71KB(IRG4CC71KB IGBT Die in Wafer Form)∙IRG4IBC10UD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRG4IBC20FD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRG4IBC20FDPBF(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRG4IBC20KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRG4IBC20UD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRG4IBC20W(INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4IBC30F(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRG4IBC30KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRG4IBC30S(INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4IBC30UD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙irg4ibc30w(INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4IBC30WPBF(INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4MC50F(INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4MC50U(INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4P254S(INSULATED GATE BIPOLAR TRANSISOR)∙IRG4PC30(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.59V, @Vge=15V, Ic=17A))∙IRG4PC30FD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.59V, @Vge=15V, Ic=17A))∙IRG4PC30K(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.21V, @Vge=15V, Ic=16A))∙IRG4PC30KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=2.21V, @Vge=15V, Ic=16A))∙IRG4PC30S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.4V, @Vge=15V, Ic=18A))∙IRG4PC30U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.95V, @Vge=15V, Ic=12A))∙IRG4PC30UD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.95V, @Vge=15V, Ic=12A))∙IRG4PC30W(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)max.=2.70V, @Vge=15V, Ic=12A))∙IRG4PC40(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.05V, @Vge=15V, Ic=20A))∙IRG4PC40(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.50V, @Vge=15V, Ic=27A))∙IRG4PC40(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.32V, @Vge=15V, Ic=31A))∙IRG4PC40(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.50V, @Vge=15V, Ic=27A))∙IRG4PC40K(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.1V, @Vge=15V, Ic=25A))∙IRG4PC40KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=2.1V, @Vge=15V, Ic=25A))∙IRG4PC40U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.1.72V, @Vge=15V, Ic=20A))∙IRG4PC40UD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE( Vces=600V, Vce(on)typ.=1.72V, @Vge=15V, Ic=20A))∙IRG4PC50F(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.45V, @Vge=15V, Ic=39A))∙IRG4PC50FD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.45V, @Vge=15V, Ic=39A))∙IRG4PC50K(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V,Vce(on)typ.=1.84V, @Vge=15V, Ic=30A))∙IRG4PC50KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.84V, @Vge=15V, Ic=30A))∙IRG4PC50S(INSULATED GATE BIPOLAR TANSISTOR(Vces=600V, Vce(on)typ.=1.28V, @Vge=15V, Ic=41A))∙IRG4PC50U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.65V, @Vge=15V, Ic=27A))∙IRG4PC50UD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.65V, @Vge=15V, Ic=27A))∙IRG4PC50W(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)max.=2.30V, @Vge=15V, Ic=27A))∙IRG4PC60F(INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4PC60U( INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4PF50W(INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4PF50WD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRG4PF50WPBF(INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4PH20(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, Vce(on)typ.=3.17V, @Vge=15V, Ic=5.0A))∙IRG4PH20KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=1200V, Vce(on)typ.=3.17V, @Vge=15V,Ic=5.0A))∙IRG4PH30(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, Vce(on)typ.=3.10V, @Vge=15V, Ic=10A))∙IRG4PH30(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=1200V, Vce(on)typ.=3.10V, @Vge=15V, Ic=10A))∙IRG4PH40K(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, Vce(on)typ.=2.74V, @Vge=15V, Ic=15A))∙IRG4PH40KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=1200V, Vce(on)typ.=2.47V, @Vge=15V, Ic=15A))∙IRG4PH40U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, Vce(on)typ.=2.43V, @Vge=15V, Ic=21A))∙IRG4PH40UD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=1200V, Vce(on)typ.=2.43V, @Vge=15V, Ic=21A))∙IRG4PH40UD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRG4PH40UD2-E(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRG4PH40UD2-EP(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRG4PH40UD2PBF(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRG4PH50(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=1200V, Vce(on)typ.=2.78V, @Vge=15V, Ic=24A))∙IRG4PH50K(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, Vce(on)typ.=2.77V, @Vge=15V, Ic=24A))∙IRG4PH50KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=1200V, Vce(on)typ.=2.77V, @Vge=15V, Ic=24A))∙IRG4PH50S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, Vce(on)typ.=1.47V, @Vge=15V, Ic=33A))∙IRG4PH50U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, Vce(on)typ.=2.78V, @Vge=15V, Ic=24A))∙IRG4PSC71K(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V,Vce(on)typ.=1.83V, @Vge=15V, Ic=60A))∙IRG4PSC71KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.83V, @Vge=15V, Ic=60A))∙IRG4PSC71U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.67V, @Vge=15V, Ic=60A))∙IRG4PSC71UD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.67V, @Vge=15V, Ic=60A))∙IRG4PSH71(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, Vce(on)typ.=2.97V, @Vge=15V, Ic=42A))∙IRG4PSH71(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=1200V, Vce(on)typ.=2.97V, @Vge=15V, Ic=42A))∙IRG4PSH71U(INSULATED GATE BIPOLAR TRANSISTOR)∙IRG4RC10(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.39V, @Vge=15V, Ic=5.0A))∙IRG4RC10(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=2.39V, @Vge=15V, Ic=5.0A))∙IRG4RC10(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.10V, @Vge=15V, IC=2.0A))∙IRG4RC10SD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=1.10V, @Vge=15V, Ic=2.0A))∙IRG4RC10U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=2.15V, @Vge=15V, Ic=5.0A))∙IRG4RC10UD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, Vce(on)typ.=2.15V, @Vge=15V, Ic=5.0A))∙IRG4RC20F(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, Vce(on)typ.=1.82V, @Vge=15V, Ic=12A))∙IRG4ZC70UD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRG4ZH50KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGB10B60KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGB14C40L(IGBT with on-chip Gate-Emitter and Gate-Collector clamps)∙IRGB15B60KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGB20B60PD1(SMPS IGBT)∙IRGB30B60K(INSULATED GATE BIPOLAR TRANSISTOR)∙IRGB4055PBF(Advanced Trench IGBT Technology)∙IRGB420(INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=7.5A))∙IRGB420UD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=500V, @Vge=15V,Ic=7.5A))∙IRGB430(INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=15A))∙IRGB430UD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=500V, @Vge=15V, Ic=15A))∙IRGB440U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=22A))∙IRGB5B120KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGB6B60K(INSULATED GATE BIPOLAR TRANSISTOR)∙IRGB6B60KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGB8B60K(INSULATED GATE BIPOLAR TRANSISTOR)∙IRGBC20(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=9.0A))∙IRGBC20FD2(IRGBC20FD2)∙IRGBC20K(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=6.0A))∙IRGBC20KD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, @Vge=15V, Ic=6.0A))∙IRGBC20K-S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=6.0A))∙IRGBC20M(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=8.0A))∙IRGBC20MD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=600V, @Vge=15V, Ic=8.0A))∙IRGBC20MD2-S(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, @Vge=15V, Ic=8.0A))∙IRGBC20M-S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=8.0A))∙IRGBC20S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=10A))∙IRGBC20SD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, @Vge=15V, Ic=10A))∙IRGBC20U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=6.5A))∙IRGBC20UD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, @Vge=15V, Ic=6.5A))∙IRGBC30(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=17A))∙IRGBC30FD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=600V, @Vge=15V, Ic=31A))∙IRGBC30K(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=14A))∙IRGBC30K-S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=14A))∙IRGBC30M(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=16A))∙IRGBC30MD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=600V, @Vge=15V, Ic=16A))∙IRGBC30MD2-S(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, @Vge=15V, Ic=16A))∙IRGBC30M-S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=16A))∙IRGBC30S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=18A))∙IRGBC30U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=12A))∙IRGBC30UD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, @Vge=15V, Ic=12A))∙IRGBC40(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=25A))∙IRGBC40(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=27A))∙IRGBC40M-S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=24A))∙IRGBC40S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=31A))∙IRGBC40U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=20A))∙IRGBF20(INSULATED GATE BIPOLAR TRANSISTOR(Vce=900V, @Vge=15V, Ic=5.3A))∙IRGBF30(INSULATED GATE BIPOLAR TRANSISTOR(Vces=900V, @Vge=15V, Ic=11A))∙IRGI4065PBF(PDP TRENCH IGBT)∙IRGIB10B60KD1(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGIB15B60KD1(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGIB6B60KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGIB7B60KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGIH50F(INSULATED GATE BIPOLAR TRANSISTOR)∙IRGKIN050M12(CHOPPER LOW SIDE SWITCH IGBT INTAPAK)∙IRGMC30F(INSULATED GATE BIPOLAR TRANSISTOR)∙IRGMC30U(INSULATED GATE BIPOLAR TRANSISTOR)∙IRGMVC50U(INSULATED GATE BIPOLAR TRANSISTOR WITH ON-BOARD REVERSE DIODE)∙IRGP20B120UD-E(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGP20B120U-E(INSULATED GATE BIPOLAR TRANSISTOR)∙IRGP20B60PD(WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGP30B120KD-E(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGP30B60KD-E(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGP35B60PD(WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGP4050(PDP Switch)∙IRGP420U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=7.5A))∙IRGP430U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=15A))∙IRGP430UD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=500V, @Vge=15V, Ic=15A))∙IRGP440U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=22A))∙IRGP440UD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=500V, @Vge=15V, Ic=22A))∙IRGP450U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=500V, @Vge=15V, Ic=33A))∙IRGP450UD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=500V, @Vge=15V, Ic=33A))∙IRGP50B60PD1(SMPS IGBT)∙IRGPC20F(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=9.0A))∙IRGPC20M(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=8.0A))∙IRGPC20MD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=600V, @Vge=15V, Ic=8.0A))∙IRGPC20U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=6.5A))∙IRGPC30F(INSULATED GATE BIPOLAR TRANSISTOR)∙IRGPC30FD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=600V, @Vge=15V, Ic=17A))∙IRGPC30K(INSULATED GATE BIPOLAR TRANSISTOR)∙IRGPC30M(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=16A))∙IRGPC30MD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=600V, @Vge=15V, Ic=16A))∙IRGPC30S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=18A))∙IRGPC30U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=12A))∙IRGPC30UD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, @Vge=15V, Ic=12A))∙IRGPC40(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=27A))∙IRGPC40FD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=600V, @Vge=15V, Ic=27A))∙IRGPC40M(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=24A))∙IRGPC40MD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=600V, @Vge=15V, Ic=24A))∙IRGPC40S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=31A))∙IRGPC40U(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=20A))∙IRGPC40UD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE(Vces=600V, @Vge=15V, Ic=20A))∙IRGPC50F(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=39A))∙IRGPC50FD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=600V, @Vge=15V,Ic=39A))∙IRGPC50KD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGPC50M(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=35A))∙IRGPC50MD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=600V, @Vge=15V, Ic=35A))∙IRGPC50S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=600V, @Vge=15V, Ic=41A))∙IRGPC50UD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=600V, @Vge=15V, Ic=27A))∙IRGPF20F(INSULATED GATE BIPOLAR TRANSISTOR(Vces=900V, @Vge=15V, Ic=5.3A))∙IRGPF30F(INSULATED GATE BIPOLAR TRANSISTOR(Vces=900V, @Vge=15V, Ic=11A))∙IRGPF40F(INSULATED GATE BIPOLAR TRANSISTOR(Vces=900V,@Vge=15V, Ic=17A))∙IRGPF50F(INSULATED GATE BIPOLAR TRANSISTOR(Vces=900V, @Vge=15V, Ic=28A))∙IRGPH20(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, @Vge=15V, Ic=6.6A))∙IRGPH20(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, @Vge=15V, Ic=4.5A))∙IRGPH30MD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=1200V, @Vge=15V, Ic=9.0A))∙IRGPH30S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, @Vge=15V, Ic=13A))∙IRGPH40(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, @Vge=15V, Ic=17A))∙IRGPH40FD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=1200V, @Vge=15V, Ic=17A))∙IRGPH40M(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, @Vge=15V, Ic=18A))∙IRGPH40MD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=1200V, @Vge=15V, Ic=18A))∙IRGPH40S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, @Vge=15V, Ic=20A))∙IRGPH50(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, @Vge=15V, Ic=25A))∙IRGPH50FD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=1200V, @Vge=15V, Ic=25A))∙IRGPH50M(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, @Vge=15V, Ic=23A))∙IRGPH50MD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY(Vces=1200V, @Vge=15V, Ic=23A))∙IRGPH50S(INSULATED GATE BIPOLAR TRANSISTOR(Vces=1200V, @Vge=15V, Ic=33A))∙IRGPS40B120U(INSULATED GATE BIPOLAR TRANSISTOR)∙IRGPS60B120KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGR3B60KD2(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGS10B60KD(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRGS4B60KD1(INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE)∙IRH3054(RADIATION HARDENED POWER MOSFET THRU-HOLE)。
IRF7342QTRPBF;中文规格书,Datasheet资料
®08/03/10DescriptionIRF7342QPbF 1ParameterMax.UnitsV DSDrain- Source Voltage-55V I D @ T C = 25°C Continuous Drain Current, V GS @ 10V -3.4I D @ T C = 70°C Continuous Drain Current, V GS @ 10V -2.7A I DMPulsed Drain Current -27P D @T C = 25°C Power Dissipation 2.0P D @T C = 70°C Power Dissipation 1.3Linear Derating Factor 0.016W/°C V GS Gate-to-Source Voltage± 20V V GSM Gate-to-Source Voltage Single Pulse tp<10µs 30V E AS Single Pulse Avalanche Energy 114dv/dt Peak Diode Recovery dv/dt5.0V/ns T J, T STGJunction and Storage Temperature Range-55 to + 150°CParameterTyp.Max.UnitsR θJAMaximum Junction-to-Ambient–––62.5°C/WThermal ResistanceAbsolute Maximum RatingsW SO-8l Advanced Process Technology l Ultra Low On-Resistance l Dual P Channel MOSFET l Surface Mountl Available in Tape & Reell 150°C Operating Temperature lLead-FreeThese HEXFET ® Power MOSFET's in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these HEXFET Power MOSFET's are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.The efficient SO-8 package provides enhanced thermal characteristics and dual MOSFET die capability making it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available in Tape & Reel.PD - 96109AIRF7342QPbFParameterMin.Typ.Max.Units Conditions V (BR)DSSDrain-to-Source Breakdown Voltage -55––––––V V GS = 0V, I D = -250µA∆V (BR)DSS /∆T JBreakdown Voltage Temp. Coefficient –––-0.054–––V/°C Reference to 25°C, I D = -1mA –––0.0950.105V GS = -10V, I D = -3.4A–––0.1500.170V GS = -4.5V, I D = -2.7A V GS(th)Gate Threshold Voltage -1.0––––––V V DS = V GS , I D = -250µA g fs Forward Transconductance 3.3––––––S V DS = -10V, I D= -3.1A ––––––-2.0V DS = -55V, V GS = 0V––––––-25V DS = -55V, V GS = 0V, T J = 55°C Gate-to-Source Forward Leakage ––––––-100V GS = -20VGate-to-Source Reverse Leakage ––––––100V GS = 20V Q g Total Gate Charge–––2638I D = -3.1A Q gs Gate-to-Source Charge––– 3.0 4.5nC V DS = -44V Q gd Gate-to-Drain ("Miller") Charge –––8.413V GS = -10V, See Fig. 10 t d(on)Turn-On Delay Time –––1422V DD = -28V t rRise Time–––1015I D = -1.0At d(off)Turn-Off Delay Time –––4364R G = 6.0Ωt f Fall Time–––2232R D = 16Ω, C iss Input Capacitance –––690–––V GS = 0V C oss Output Capacitance–––210–––pF V DS = -25V C rssReverse Transfer Capacitance–––86–––ƒ = 1.0MHz, See Fig. 9Electrical Characteristics @ T J = 25°C (unless otherwise specified)I GSS µAΩR DS(on)Static Drain-to-Source On-Resistance I DSS Drain-to-Source Leakage Current nAnsRepetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) I SD ≤ -3.4A, di/dt ≤ -150A/µs, V DD ≤ V (BR)DSS , T J ≤ 150°CNotes:Starting T J = 25°C, L = 20mHR G = 25Ω, I AS = -3.4A. (See Figure 8)Pulse width ≤ 300µs; duty cycle ≤ 2%.When mounted on 1 inch square copper board, t<10 secIRF7342QPbF 3Forward VoltageIRF7342QPbFVs. TemperatureFig 8. Maximum Avalanche EnergyVs. Drain CurrentCurrentFig 7. Typical On-Resistance Vs. Gate VoltageR D S (o n ) , D r a i n -t o -S o u r c e O n R e s i s t a n c e ( Ω )0.050.150.250.350.452581114GS-V , Gate-to-Source Voltage (V)IRF7342QPbF 5Gate-to-Source VoltageDrain-to-Source Voltage Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-AmbientIRF7342QPbFSO-8 Package OutlineIRF7342QPbF 7330.00(12.992) MAX.14.40 ( .566 )12.40 ( .488 )NOTES :1. CONTROLLING DIMENSION : MILLIMETER.2. OUTLINE CONFORMS TO EIA-481 & EIA-541.FEED DIRECTIONTERMINAL NUMBER 112.3 ( .484 )11.7 ( .461 )8.1 ( .318 )7.9 ( .312 )NOTES:1. CONTROLLING DIMENSION : MILLIMETER.2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).3. OUTLINE CONFORMS TO EIA-481 & EIA-541.SO-8 Tape and ReelDimensions are shown in millimeters (inches)IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105TAC Fax: (310) 252-7903Visit us at for sales contact information .08/2010Data and specifications subject to change without notice.This product has been designed and qualified for the Industrial market.Qualification Standards can be found on IR’s Web site.分销商库存信息: IRIRF7342QTRPBF。
IRLTS2242TRPBF;中文规格书,Datasheet资料
Min. Typ. Max. Units
-20 ––– ––– ––– -0.4 ––– ––– ––– ––– ––– 8.5 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 9.4 26 45 ––– -3.8 ––– ––– ––– ––– ––– 12 1.5 4.3 17 5.8 18 81 68 905 280 200 ––– ––– 32 55
Diode Characteristics
Parameter
IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
/
3
IRLTS2242PbF
100
1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100μsec 1msec 10msec 0.1 Tc = 25°C Tj = 150°C Single Pulse 0.1 1 DC
d d
VDS = -16V, VGS = 0V VDS = -16V, VGS = 0V, TJ = 125°C VGS = -12V VGS = 12V VDS = -10V, ID = -5.5A VDS = -10V VGS = -4.5V ID = -5.5A VDD = -10V, VGS = -4.5V ID = -5.5A RG = 6.8 VGS = 0V VDS = -10V ƒ = 1.0KHz
IRF9952QTRPBF;中文规格书,Datasheet资料
P-Ch -1.3 A
N-Ch 16
ISM
Pulsed Source Current (Body Diode)
P-Ch ward Voltage
N-Ch 0.82 1.2 P-Ch -0.82 -1.2
V
TJ = 25°C, IS = 1.25A, VGS = 0V TJ = 25°C, IS = -1.25A, VGS = 0V
RDS(ON)
Static Drain-to-Source On-Resistance
VGS(th) gfs
Gate Threshold Voltage Forward Transconductance
IDSS
IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss
N-Ch 6.2 12
P-Ch N-Ch P-Ch N-Ch P-Ch N-Ch P-Ch
9.7 19 8.8 18 14 28 13 26 20 40 3.0 6.0 6.9 14
ns
N-Channel
VDD = 10V, ID = 1.0A, RG = 6.0Ω, RD = 10Ω
Symbol
VDS VGS
ID
IDM IS
PD
EAS IAR EAR dv/dt TJ, TSTG
Maximum
N-Channel P-Channel
30
± 20
3.5
-2.3
2.8
-1.8
16
-10
1.7
-1.3
2.0
1.3
44
57
2.0
-1.3
IR3721MTRPBF;中文规格书,Datasheet资料
Power Monitor IC withAnalog OutputFEATURESAccurate TruePower TMmonitor • 2.5% static accuracy• Minimizes dynamic errors Minimizes power dissipation• 5mV - 150mV full scale current range Versatile• Monitors power or current• Single buck or multiphase converters • Inductor DCR or resistive shunt sensing Simple add-on to existing converters 10 pin 3x3 DFN lead free package RoHS compliantDESCRIPTIONThe IR3721 is a versatile power or current monitor ICfor low-voltage DC-DC converters. The IR3721 monitors the inductor current in buck or multiphase converters using either a current sensing resistor or the inductor’s winding resistance (DCR). The output (DI) is a pulse code modulated signal whose duty ratio is proportional to the inductor current. An analog voltage that is proportional to power is realized by connecting V K to V O and connecting an RC filter to DI.The IR3721 uses Patent Pending TruePower TMtechnology to accurately capture highly dynamic power waveforms typical of microprocessor loads.TYPICAL APPLICATION CIRCUITORDERING INFORMATIONDevice Package Order Quantity IR3721MTRPBF 10 lead DFN (3x3 mm body) 3000 piece reel * IR3721MPBF 10 lead DFN (3x3 mm body) 121 piece tube* Samples onlyABSOLUTE MAXIMUM RATINGSAbsolute Maximum Ratings (Referenced to GND) VDD:.................................................................3.9V All other Analog and Digital pins......................3.9VOperating Junction Temperature....-10°C to 150°C Storage Temperature Range..........-65°C to 150°C ESD Rating............HBM Class 2 JEDEC Standard MSL Rating..................................................Level 2 Reflow Temperature.....................................260°CStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ELECTRICAL SPECIFICATIONSUnless otherwise specified, these specifications apply: VDD = 3.3V ± 5%, 0o C ≤ T J ≤ 125o C, 0.5 ≤ Vo ≤ 1.8 V, and operation in the typical application circuit. See notes following table.NOTES: 1. Guaranteed by designPARAMETER TEST CONDITION MIN TYP MAX UNITBIAS SUPPLYVDD Turn-on Threshold, VDD UP 3.10 V VDD Turn-off Threshold, VDD DN 2.4 V VDD UVLO Hysteresis DI output low when off 75 mV VDD Operating Current, ICC 350 450 μA VOLTAGE REFERENCE V RT Voltage R T = 25.5k Ω 1.452 1.493 1.535 V R T resistance range Note 1 25.5 k Ω ΔΣ CONVERTERVo common mode range 0.5 1.8 V Duty Ratio Accuracy V DCR =20 mV, V O =1V, R T =25.5k Ω, R CS1+R CS2=600 Ω T j =65°C, Note 12.5 %Duty Ratio Accuracy V DCR =20 mV, V O =1V,R T =25.5k Ω, R CS1+R CS2=600 Ω, Note 14 % Sampling frequency, f CLK 435 512 589 kHz Comparator Offset -0.5 +0.5 mV CS pin input current, I CS DI output low -250 +250 nA DIGITAL OUTPUT VK pin voltage range 0.5 1.8 V DI source resistance 1250 2000 3000 ΩBLOCK DIAGRAMVOVGNDIC PIN DESCRIPTIONDESCRIPTIONLEVELI/ONAME NUMBERAnalog Current sensing input, connect through resistor to sensing nodeVCS 1Analog Current sensing reference connect to output voltageVO 2Analog R T thermistor network from this pin to GND programs thermal monitor VRT 3GND 4 Bias return and signal referencesupplybias3.3VVDD 5ICGND 6 Connect to pin 4GND7 Connect to pin 4Analog Power Monitor output; connect to output filterDI 8VK 9 1.8V Connect to fixed voltage or VO, multiplied by DI to become analog output VDD10 3.3V Connect to pin 5BASE PAD Connect to pin 4IC PIN FUNCTIONSVDD PINSThese pins provide operational bias current to circuits internal to the IR3721. Bypass them with a high quality ceramic capacitor to the GND pins.GND PINSThese pins return operational bias current to system ground. VO is measured with respect to GND. The GND pin sinks reference current established by the external resistor R T.VO PINSince this pin measures DCR voltage drop it is critical that it be Kelvin connected to the buck inductor output. Power accuracy may be degraded if the voltage at this pin is below VO min.VCS PINA switched current source internal to the IR3721 maintains the average voltage of this pin equal to the voltage of the VO pin. The average current into this pin is therefore proportional to buck inductor current. VRT PINA voltage reference internal to the IR3721 drives the V RT pin while the pin current is monitored and used to set the amplitude of the current monitor switched current source I REF. Connect this pin to GND through a precision resistor network R T. This network may include provision for canceling the positive temperature coefficient of the buck inductor’s DC resistance (DCR).VK PINThe voltage of the VK pin is used to modulate the amplitude of the DI pin. This is one of the terms used to determine the product of the multiplier output. If VK is connected to a fixed voltage then the output of the multiplier is proportional to current. If VK is connected to the buck converter output voltage then the output of the DI driven RC filter is proportional to power.DI PINThe Dl pin output has a duty ratio proportional to the current into VCS, and an amplitude equal to the voltage at the VK pin. The DI pin is intended to drive an external low pass filter. The output of this filter is the product of the current and voltage terms.FUNCTIONAL DESCRIPTIONPlease refer to the Functional Description Diagram below. Power flow from the buck converter inductor is the product of output voltage times the current I L flowing through the inductor.Power is measured with the aid of InternationalRectifier’s proprietary TruePower™ circuit. Current is converted to a duty ratio that appears at the DI pin. The duty ratio of the DI pin isΤ⋅)+(⋅=R T 2CS 1CS L RATIO DUTY V RR R DCR I DI Equation 1The full-scale current that can be measured corresponds to a duty ratio of one.The amplitude of the DI pin is the voltage appearing at pin VK. If a fixed voltage is applied to VK then the output of the RC filter driven by DI will be proportional to inductor current I L .If VO is applied to V K as shown in the figure then the output of the DI driven RC network will beproportional to power. The full-scale voltage that can be measured is established on the chip to be 1.8V.The full scale power P FS that can be measured is the product of full-scale voltage and full scale current.Figure 1 Functional Description DiagramTHERMAL COMPENSATION FOR INDUCTOR DCR CURRENT SENSINGThe positive temperature coefficient of the inductor DCR can be compensated if R T varies inversely proportional to the DCR. DCR of a copper coil, as a function of temperature, is approximated by)⋅)(+(⋅)(=)(Cu R R TCR T T T DCR T DCR -1Equation 2T R is some reference temperature, usually 25 °C, and TCR Cu is the resistive temperature coefficient ofcopper, usually assumed to be 0.39 %/°C near room temperature. Note that equation 2 is linearly increasing with temperature and has an offset of DCR(T R ) at the reference temperature.If R T incorporates a negative temperature coefficient thermistor then temperature effects of DCR can be minimized. Consider a circuit of two resistors and a thermistor as shown below.RpFigure 2 R T NetworkIf Rth is an NTC thermistor then the value of the network will decrease as temperature increases. Unfortunately, most thermistors exhibit far more variation with temperature than copper wire. One equation used to model thermistors is⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⋅)(=)(0110TT th th e T R T R - βEquation 3where R th (T) is the thermistor resistance at some temperature T, R th (T 0) is the thermistor resistance at the reference temperature T 0, and β is the material constant provided by the thermistor manufacturer. Kelvin degrees are used in the exponential term of equation 3. If R S is large and R P is small, thecurvature of the equivalent network resistance can be reduced from the curvature of the thermistor alone. Although the exponential equation 3 can nevercompensate linear equation 2 at all temperatures, a spreadsheet can be constructed to minimize error over the temperature interval of interest. Theequivalent resistance R T of the network shown as a function of temperature is)(++=)(T R R R T R th p s T 111Equation 4using R th (T) from equation 3.Equation 2 may be rewritten as a new function of temperature using equations 2 and 4 as follows:())(+⋅)(=)(ΤT DCR R R T R V T I 2CS 1CS T R FS Equation 5With Rs and Rp as additional free variables, use a spreadsheet to solve equation 5 for the desired full scale current while minimizing the I FS (T) variation over temperature.TYPICAL 2-PHASE DCR SENSING APPLICATIONThe IR3721 is capable of monitoring power in a multiphase converter. A Two Phase DCR Sensing Circuit is shown below. The voltage output of any phase is equal to that of any and every other phase because they are electrically connected and monitored at VO as before.Output current is the sum of the two inductor currents (I L1 + I L2). Superposition is used to derive the transfer function for multiphase sensing. The voltage on R CS2 due to I L1 is)||(+)||(⋅⋅3213211CS CS CS CS CS L R R R R R DCR ILikewise, the voltage on RCS2 due to IL2 is)||(+)||(⋅⋅1231222CS CS CS CS CS L R R R R R DCR IThe current through R CS2 due to both inductor currents is I CS . From the two equations above323121122311CS CS CS CS CS CS CS L CS L CS R R R R R R R DCR I R DCR I I +++=The duty ratio of DI isREFTCS DUTYRATIO V R I DI ⋅=If DCR1=DCR2, and RCS1=RCS3, then I CS can be simplified to211212CS CS L L CS R R DCR I I I +⋅)+(=and the DI duty ratio simplifies toΤ⋅)+(⋅⋅)+(=R 2CS 1CS T2L 1L DUTYRATIO V R 2R R DCR I I DIFull scale current occurs when DI duty ratio becomes one.Figure 3 Two Phase DCR Sensing CircuitRESISTOR SENSING APPLICATIONThe Resistor Sensing Circuit shown below is an example of resistive current sensing. Because the voltage on the shunt resistor is directly proportional to the current I L through the inductor, R CS2 and C CS2 do not need to match the L / DCR time constant. Because the value of the shunt resistance does not change with temperature as the inductor DCR does, R T can be a fixed resistor.IFigure 4 Resistor Sensing CircuitCOMPONENT SELECTION GUIDELINES Use a 0.1 μF, 6.3V, X7R ceramic bypass capacitorfrom VDD to GND and from VK to GND.Filter the DI output with an RC filter to give a stable analog representation of the current or power. Some of the DI source resistance of this filter is internal to the IR3721 and specified in the electrical specifications table. Add twenty thousand to fifty thousand additional ohms externally to minimize resistance variation. As the DI source resistance increases beyond these guidelines, the voltage measurement error caused by non-ideal voltmeter conductance will increase.Select a filter capacitor that limits 512 kHz sampling frequency ripple to an acceptable value. Sampling frequency ripple will appear as an error, but can be reduced 20 dB for each decade that the filter corner frequency is below 512 kHz. Select a capacitor value that achieves the desired balance between low sampling frequency ripple and adequate bandwidth. Resistor current sensingFor resistor current sensing select a precision resistor for R T inside the R T resistance range limits specified in the Electrical Specifications table, such as 25.5kΩand 1% tolerance.Next, select a shunt resistor that will provide the most current sensing voltage while also considering the allowable power dissipation limitations. The DI output will saturate to the VK voltage when full scale current I FS flows through this shunt. Recommended maximum current sensing voltage range is 5 to 150 mV. Maximum sensing voltages less than 5 mV will cause comparator input offset voltage errors to dominate, and voltages larger than 150 mV will cause comparator leakage current, I CS, errors to dominate. Select R CS2 to be the next higher standard value resistor from (R SHUNT·I FS·R T) / V RT in order to accommodate full scale current I FS.Bypass VCS to VO with capacitor C CS2. The value of this capacitor limits the bandwidth, but is required because it is the integrator of the delta sigma modulator. Consider selecting the value of C CS2 to place a filter corner frequency at 5 kHz, which will reduce sampling ripple by 40 dB.DCR current sensingSelect an R T network resistance between 20kΩ and 45.3kΩ. Consider the R T network of Figure 5 for DCR current sensing.26.1 kΩ, 1%15.0 kΩ, 1%2.00 kΩ, 1%Murata ThermistorNCP15WB473F03RC47 kΩ, 1%Figure 5 R T networkThe resistance of the network above at 25°C, R T(25), is 37.58kΩ. Over temperature R T(T) is multiplied by copper resistance, DCR(25)·(1+(T-25)·0.0039), divided by (DCR(25)·( R T(25)) to normalize the results, and plotted as nominal error in Figure 6.Figure 6 Nominal error vs. TemperatureNote that the error due to temperature compensation at 25°C is zero, assuming ideal R T components. At other temperatures the results are over or under reported by the factor in percent indicated.Proceed to calculate R SUM, defined as the sum ofR CS1 plus R CS2, as follows.R SUM=I FS·DCR(25) ·R T(25) / V RTAgain, I FS is full scale current and V RT is the reference voltage establishing the current in R T.Estimate the capacitance C CS1 with the following equation.SUMCS R DCR LC ⋅)(⋅>2541Choose a standard capacitor value larger than indicated by the right hand side of the inequality above.Calculate the equivalent resistance R eq .R eq = L / (DCR(25) ·C CS1)We now have two equations, R SUM = R CS1 + R CS2 and Req = (R CS1 · R CS2) / (R CS1 + R CS2). Calculate R CS1 and R CS2 using the following two equations.⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛⋅+⋅=2R R 411R R SUM eq SUM CS1- and⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛⋅⋅=2R R 411R R SUM eq SUM 2CS --Use the next higher standard 1% value than indicated in the equations above. This will insure that full scale current can be measured.Bypass VCS to VO with capacitor C CS2. The value of this capacitor limits the bandwidth, but is required because it is the integrator of the delta sigmamodulator. Consider selecting the value of C CS2 to place a filter corner frequency at 5 kHz, which will reduce sampling ripple by 40 dB.分销商库存信息: IRIR3721MTRPBF。
IRF7706TRPBF;中文规格书,Datasheet资料
100us 10 1ms
1
TJ = 25 ° C
0.1 0.2
V GS = 0 V
0.5 0.8 1.1 1.4
-VSD ,Source-to-Drain Voltage (V)
1 0.1
TC = 25 °C TJ = 150 °C Single Pulse
1 10
Source-Drain Ratings and Characteristics
IS
ISM
VSD trr Qrr
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss
Min. -30 ––– ––– -1.0 6.9 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100
100
-ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY RDS(on)
10
TJ = 150 ° C
-I ID , Drain Current (A)
D
S
IRF公司MOSFET选型
Part Part Status Package VBRDSS (V)VGs Max (V)Circuit RDS(on) Max RDS(on) Max Qg Typ (nC) IRF7424PBF-Active SO-8-3020Discrete13.522.075IRF7205PBF-Active SO-8-3020Discrete70.0130.027IRF6216PBF-Active SO-8-15020Discrete240.033IRF7420PBF-Active SO-8-128Discrete14.038IRF6217PBF-Active SO-8-15020Discrete2400.06IRF9310PBF-Active SO-8-3020Discrete 4.6 6.8110IRLMS6702P Active TSOP-6 (Micr-2012Discrete200.0 5.8 Active Micro 3/ SOT-2012Discrete135.0 2.9IRLML2246TRActive Micro 3/ SOT-128Discrete50.010.0 IRLML6401TRActive Micro 3/ SOT-2012Discrete65.08.0IRLML6402TRActive Micro 3/ SOT-3020Discrete98.0165.09.5IRLML5203TRActive Micro 3/ SOT-2012Discrete600.0 2.4IRLML6302TRActive Micro 3/ SOT-3020Discrete600.01000.0 3.4IRLML5103TRIRF7410PBF-Active SO-8-128Discrete7.091.0IRF7425PBF-Active SO-8-2012Discrete8.287.0IRF7416PBF-Active SO-8-3020Discrete20.035.061.0IRF7404PBF-Active SO-8-2012Discrete40.032.7IRF7406PBF-Active SO-8-3020Discrete45.070.039.3 IRFHM9391Active and Pr PQFN 3.3 x 3-3025Discrete14.622.532.0IRF4905S Active D2-Pak-5520Discrete20.0120.0IRF9540NS Active D2-Pak-10020Discrete117.064.7IRF5210S Active D2-Pak-10020Discrete60.0120.0IRFH9310Active and Pr PQFN 5 x 6 A-3020Discrete 4.67.158.0 IRFTS9342Active and Pr TSOP-6 (Micr-3020Discrete40.066.012.0IRLTS2242Active and Pr TSOP-6 (Micr-2012Discrete-32.012.0IRF9383M Active and Pr DirectFET MX-3020Discrete 2.9 4.8130.0IRFU6215Active I-Pak-15020Discrete58044IRFU5410Active I-Pak-10020Discrete20538.7IRFU9024N Active I-Pak-5520Discrete17512.7IRFU9120N Active I-Pak-10020Discrete48018IRLU9343Active I-Pak-5520Discrete10517031IRFU5505Active I-Pak-5520Discrete110.021.3IRFU5305Active I-Pak-5520Discrete6542IRLHS2242Active and Pr PQFN 2 x 2-2012Discrete31.012.0 IRLML2244Active and Pr Micro 3/ SOT-2012Discrete54.0 6.9IRLML2246Active and Pr Micro 3/ SOT-2012Discrete135.0 2.9IRFHS9301Active and Pr PQFN 2 x 2-3020Discrete37.065.0 6.9IRFHM9331Active PQFN 3 x 3-3025Discrete14.616.0IRF9392Active and Pr SO-8-3025Discrete17.514.0IRF9332Active and Pr SO-8-3020Discrete17.528.114.0IRF9333Active and Pr SO-8-3020Discrete19.432.514.0IRF9388Active and Pr SO-8-3025Discrete11.918.0IRF9335Active and Pr SO-8-3020Discrete59.0110.0 4.7IRF9393Active and Pr SO-8-3025Discrete19.414.0 IRLML9301Active and Pr Micro 3/ SOT-3020Discrete64.0103.0 4.8IRF9328Active and Pr SO-8-3020Discrete11.919.718.0 IRLML9303Active and Pr Micro 3/ SOT-3020Discrete165.0270.0 2.0IRF9321Active and Pr SO-8-3020Discrete7.211.234.0IRF9317Active and Pr SO-8-3020Discrete 6.610.231.0IRF9310Active and Pr SO-8-3020Discrete 4.6 6.858.0IRF7240Active SO-8-4020Discrete15.025.073.0 IRF6218S Active D2-Pak-15020Discrete150.021.0 IRF7526D1Active Micro 8-3020with Schottky200.0400.07.5 IRF7416Q Active SO-8-3020Discrete20.035.061.0 IRF7425Active SO-8-2012Discrete8.287.0 IRF7410Active SO-8-128Discrete7.091.0 IRF9540NLActive TO-262-10020Discrete117.064.7 IRF5210L Active TO-262-10020Discrete60.0120.0 IRF5803Active TSOP-6 (Micr-4020Discrete112.0190.025.0 IRF5805Active TSOP-6 (Micr-3020Discrete98.0165.011.0 IRF5806Active TSOP-6 (Micr-2020Discrete86.08.3 IRF4905L Active TO-262-5520Discrete20.0120.0 IRF6216Active SO-8-15020Discrete240.033.0 IRF7726Active Micro 8-3020Discrete26.040.046.0 IRF7416Active SO-8-3020Discrete20.035.061.0 IRF9Z34NS Active D2-Pak-5520Discrete100.023.3 IRF9520NS Active D2-Pak-10020Discrete480.018.0 IRF6215S Active D2-Pak-15020Discrete290.044.0 IRF5305S Active D2-Pak-5520Discrete60.042.0 IRF9Z24NS Active D2-Pak-5520Discrete175.012.7 IRF9530NS Active D2-Pak-10020Discrete200.038.7 IRF9Z34NLActive TO-262-5520Discrete100.023.3 IRF7524D1Active Micro 8-2012with Schottky270.0 5.4 IRF7606Active Micro 8-3020Discrete90.0150.020.0 IRLMS5703Active TSOP-6 (Micr-3020Discrete200.0400.07.2 IRLMS6702Active TSOP-6 (Micr-2012Discrete200.0 5.8 IRF7406Active SO-8-3020Discrete45.070.039.3 IRF7241Active SO-8-4020Discrete41.070.053.0 IRLR9343Active D-Pak-5520Discrete105.0170.031.0 IRFR9024N Active D-Pak-5520Discrete175.012.7 IRFR5305Active D-Pak-5520Discrete65.042.0 IRF7420Active SO-8-128Discrete14.038.0 IRF5803D2Active SO-8-4020with Schottky112.0190.025.0 IRF7204Active SO-8-2012Discrete60.0100.025.0 IRF7205Active SO-8-3020Discrete70.0130.027.0 IRF7404Active SO-8-2012Discrete40.033.3 IRFR5410Active D-Pak-10020Discrete205.038.7 IRFR9120N Active D-Pak-10020Discrete480.018.0 IRFR6215Active D-Pak-15020Discrete580.044.0 IRF6217Active SO-8-15020Discrete2400.0 6.0 IRF7424Active SO-8-3020Discrete13.522.075.0 IRF7321D2Active SO-8-3020with Schottky62.098.023.0 IRFR5505Active D-Pak-5520Discrete110.021.3 SI4435DY Active SO-8-3020Discrete20.035.040.0 IRF7342D2Active SO-8-5520with Schottky105.0170.026.0 IRLIB9343Active TO-220 FullP-5520Discrete105.0170.031.0 IRFP9140N Active TO-247AC-10020Discrete117.064.7 IRLML5203Active Micro 3/ SOT-3020Discrete98.0165.09.5 IRLML5103Active Micro 3/ SOT-3020Discrete600.01000.0 3.4 IRLML6302Active Micro 3/ SOT-2012Discrete600.0 2.4 IRLML6402Active Micro 3/ SOT-2012Discrete65.08.0IRLML6401Active Micro 3/ SOT-128Discrete50.010.0 IRF6218Active TO-220AB-15020Discrete150.021.0 IRF5210Active TO-220AB-10020Discrete60.0120.0 IRF9520N Active TO-220AB-10020Discrete480.018.0 IRF9Z34N Active TO-220AB-5520Discrete100.023.3 IRF9530N Active TO-220AB-10020Discrete200.038.7 IRF9Z24N Active TO-220AB-5520Discrete175.012.7 IRF9540N Active TO-220AB-10020Discrete117.064.7 IRF4905Active TO-220AB-5520Discrete20.0120.0 IRF6215Active TO-220AB-15020Discrete290.044.0 IRF5305Active TO-220AB-5520Discrete60.042.0 IRFY9120Active TO-257AA-10020DiscreteID @ TC = 25Rth(JC) (K/W Q ual Level MSL Power Dissipa50 (JA)Industrial150 (JA)Industrial150 (JA)Industrial150 (JA)Industrial150 (JA)Industrial150 (JA)Industrial175 (JA)Industrial1100 (JA)Industrial175 (JA)Industrial175 (JA)Industrial1100 (JA)Industrial1230 (JA)Industrial1230 (JA)Industrial150 (JA)Industrial150 (JA)Industrial150 (JA)Industrial150 (JA)Industrial150 (JA)Industrial1-3833 3.8Consumer1-741700.75Industrial1-23 3.8 1.1Industrial1-401700.75Industrial1-40 1.6Consumer262.5 (JA)Consumer162.5 (JA)Consumer1113 1.1Consumer1-9110 1.4Industrial-8.266 1.9Industrial-838 3.3Industrial-4.139 3.2Industrial-1479 1.9Industrial-1857 2.2Industrial-1889 1.4Industrial-159.613Industrial1100 (JA)Consumer1100 (JA)Consumer1-1313Industrial1-24 6.0Consumer150 (JA)Consumer150 (JA)Consumer150 (JA)Consumer150 (JA)Consumer150 (JA)Consumer150 (JA)Consumer1100 (JA)Consumer150 (JA)Consumer1100 (JA)Consumer150 (JA)Consumer150 (JA)Consumer150 (JA)Consumer150 (JA)Consumer1 -272500.61Industrial1100 (JA)Consumer150 (JA)Automotive150 (JA)Consumer150 (JA)Consumer1 -23140 1.1Industrial-402000.75Industrial62.5 (JA)Consumer262.5 (JA)Consumer2 -4.0 2.062.5 (JA)Consumer2 -742000.75Industrial20Consumer170 (JA)Consumer150 (JA)Consumer1 1968 2.2Industrial1 -6.8 3.8 3.1Industrial1 -13110 1.4Industrial1 -31110 1.4Industrial1 -1245 3.3Industrial1 -14 3.8 1.9Industrial1 -1968 2.2Industrial100 (JA)Consumer170 (JA)Consumer175 (JA)Consumer175 (JA)Consumer150 (JA)Consumer150 (JA)Consumer1 -2079 1.9Industrial1 1138 3.3Industrial1 -2889 1.4Industrial150 (JA)Consumer162.5 (JA)Consumer150 (JA)Consumer150 (JA)Consumer150 (JA)Consumer1 1366 1.9Industrial1 -6.539 3.2Industrial1 13110 1.4Industrial120Consumer150 (JA)Consumer162.5 (JA)Consumer1 -1857 2.2Industrial150 (JA)Consumer162.5 (JA)Consumer1 -1433 3.84Industrial-21120 1.3Industrial100 (JA)Consumer1230 (JA)Consumer1230 (JA)Consumer1100 (JA)Consumer1100 (JA)Consumer1 -272500.61Industrial-402000.75Industrial-6.848 3.1Industrial-1756 2.7Industrial-1479 1.9Industrial-1245 3.3Industrial-23140 1.1Industrial-742000.75Industrial-13110 1.4Industrial-31110 1.4Industrial-5.3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IRFTS9342PbF
HEXFET ® Power MOSFET
Notes through are on page 2
Applications
l Battery operated DC motor inverter MOSFET l
System/Load Switch
Features and Benefits
results in ⇒PD - 96411A
IRFTS9342PbF
Notes:
Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400μs; duty cycle ≤ 2%.
When mounted on 1 inch square copper board.
Static @ T = 25°C (unless otherwise specified)
IRFTS9342PbF
Fig 4. Normalized On-Resistance vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage T J , Junction Temperature (°C)
R D S (o n ) , D r a i n -t o -S o u r c e O n R e s i s t a n c e 1
10
100
-V DS , Drain-to-Source Voltage (V)
10
100
1000
10000
C , C a p a c i t a n c e (p F )
0246810121416
Q G Total Gate Charge (nC)
0.0
2.04.06.08.010.012.014.0-V G S , G a t e -t o -S o u r c e V o l t a g e (V )
DS -V DS , Drain-to-Source Voltage (V)
0.1
1
10
100
-I D , D r a i n -t o -S o u r c e C u r r e n t (A )
IRFTS9342PbF
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 8. Maximum Safe Operating Area
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 10. Threshold Voltage vs. Temperature
25
50
75
100
125
150
T A , Ambient Temperature (°C)
012345
6-I D , D r a i n C u r r e n t (A
)
0.01
0.1
1
10100
V DS , Drain-to-Source Voltage (V)
0.01
0.1
1
10100
1000
I D , D r a i n -t o -S o u r c e C u r r e n t (A
)
0.1
1
10
100
-I S D , R e v e r s e D r a i n C u r r e n t (A )
T J , Temperature ( °C )
-V G S (t h ), G a t e t h r e s h o l d V o l t a g e (V )
IRFTS9342PbF
Fig 12. On-Resistance vs. Gate Voltage
Fig 14. Maximum Avalanche Energy vs. Drain Current Fig 15. Typical Power vs. Time
* Reverse Polarity of D.U.T for P-Channel
* V GS = 5V for Logic Level Devices
®2
4
6
8
10
12
14
16
18
20
-V GS, Gate -to -Source Voltage (V)
25
50
75
100125150
Starting T J , Junction Temperature (°C)
020406080100120E A S , S i n g l e P u l s e A v a l a n c h e E n e r g y (m J )
Time (sec)
P o w e r (W )
IRFTS9342PbF
Fig 17a. Gate Charge Test Circuit
Fig 17b. Gate Charge Waveform
Fig 18b. Unclamped Inductive Waveforms
Fig 18a. Unclamped Inductive Test Circuit
Fig 19b. Switching Time Waveforms
Fig 19a. Switching Time Test Circuit
Id
Qgs1
Qgs2Qgd Qgodr
V DD
R D
V DD
I AS
V DS
V GS
t t t t
Note: For the most current drawing please refer to IR website at: /package/
WW = (27-52) IF PRECEDED BY A LETTER
YEA R Y Z
52W WORK WEEK 26Z
F = IRF5801(a s show n here) indica tes Lead-F ree.
Note: A line above the w ork w eek G = IRF5803D = IRF5851E = IRF5852I = IRF 5805C = IRF5850N = IRF 5802
K = IRF5810J = IRF5806H = IRF 5804S = Not a pplicable R = IRFTS 9342TRPBF T = IRLT S2242TRPBF
IRFTS9342PbF
TSOP-6 Tape and Reel Information
† Qualification standards can be found at International Rectifier’s web site /product-info/reliability
†† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: /whoto-call/salesrep/
†††
Applicable version of JEDEC standard at the time of product release.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at for sales contact information . 02/2012
Data and specifications subject to change without notice.
8mm
FEED DIRECTION
4mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481 & EIA-541.
9.90 ( .390 )8.40 ( .331 )
178.00( 7.008 ) MAX.
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Qualification information †
分销商库存信息: IR
IRFTS9342TRPBF。