05Grid视觉云Solution
正泰电器 (CHINT ELECTRIC) POWGRID-S 系列 低压配电及控制箱说明书
CHINT CN C46POWGRID-S系列低压配电及控制箱在全球能源发展面临资源紧张、环境污染、气候变化三大难题的背景下,能源格局优化成必然趋势。
正泰积极推进“一云两网”战略布局,持续分阶段推进大数据、物联网、人工智能与制造业的深度融合,着力打造平台型企业,引领行业发展新风向。
正泰云正泰云是智慧科技与数据应用的载体,连接企业内部制造与经营管理数据,实现企业对内与对外的数字化应用与服务。
正泰能源物联网 EIoT 正泰能源物联网是以用户为中心的多能互补的智慧能源体系,为政府、工商业及终端用户提供一揽子能源解决方案,业务涵盖智慧能效、智慧电力、智能家居、智慧新能源等。
正泰工业物联网 IIoT 正泰工业物联网是以企业数字化转型为核心的智能制造体系,构建形成灵活、高效、智慧的工业体系,业务涵盖智能制造、智慧工业、智慧水务、智慧供热等。
智慧能源解决方案提供商顺应现代能源、智能制造和数字化技术融合发展大趋势,正泰以“一云两网”为发展战略,将“正泰云”作为智慧科技和数据应用的载体,实现企业对内与对外的数字化应用与服务;依托工业物联网(IIoT)构建正泰智能制造体系,践行电气行业智能化应用;依托能源物联网(EIoT)构建正泰智慧能源体系,开拓区域能源物联网模式。
围绕能源“供给-存储-输变-配售-消费”体系,正泰以新能源、能源配售、大数据、能源增值服务为核心业务,以光伏设备、储能、输配电、低压电器、智能终端、软件开发、控制自动化为支柱业务,打造平台型企业,构筑区域智慧能源综合运营管理生态圈,为公共机构、工商业及终端用户提供一揽子能源解决方案。
正泰集团,始创于1984年,是全球知名的智慧能源解决方案提供商。
集团积极布局智能电气、绿色能源、工控与自动化、智能家居等产业板块,形成了集“发电、储电、输电、变电、配电、售电、用电”为一体的全产业链优势。
业务遍及140多个国家和地区,全球员工超3万名,年营业收入超893亿元,连续20年上榜中国企业500强。
飞马 LIDAR 数据后处理软件_智点云使用说明书
2.5.3 多边形选择......................................................................................................32
2.5.4 减选.................................................................................................................. 33
1.3
软件启动.................................................................................................................... 9
2 飞马 LIDAR 数据后处理软件功能介绍..................................... 9
2.2.2 缩小.................................................................................................................. 16
2.2.3 旋转.................................................................................................................. 17
2.5.7 保存裁切..........................................................................................................35
c1flexgrid 手册
C1FlexGrid 是一款功能强大的表格控件,它提供了丰富的功能,使得在 Web 应用程序中实现表格的显示、编辑和操作变得更加简单。
C1FlexGrid 提供了创建表格、设置属性、数据绑定、格式化单元格和事件处理等功能。
用户可以通过简单的拖拽操作来创建表格,并使用内置的属性窗口来设置表格的外观和行为。
此外,C1FlexGrid 还支持数据绑定,可以将数据源绑定到表格中,实现数据的动态显示和编辑。
C1FlexGrid 的应用场景非常广泛,可以用于各种需要展示和编辑表格数据的 Web 应用程序。
例如,它可以用于实现数据库管理、报表生成、数据分析等应用。
总的来说,C1FlexGrid 是一款非常优秀的表格控件,它具有丰富的功能和灵活的定制能力,可以满足各种不同的需求。
无论是初学者还是专业开发者,都可以通过C1FlexGrid 来快速构建出高质量的 Web 应用程序。
AXIS F4105-LRE 小匿名球机视觉传感器说明书
DatasheetAXIS F4105-LRE Dome SensorDiscreet mini dome sensor with IRIdeal for various indoor and outdoor surveillance scenarios,this discreet dome sensor unit is designed for use with AXIS F91main units to ensure lower installation and configuration costs.It connects to the main unit using cables up to30 m(98ft).It offers an110ºfield of view for wide area coverage.Plus,it supports a wide range of exchangeable M12lens options with different field of view.This robust sensor can withstand shock and vibrations and includes SMA connectors to ensure ruggedized installations.Additionally,with IR illumination,it delivers great image usability even in complete darkness.>Up to60fps at1080p and180fps at720p>110ºfield of view>IR illumination>For sterile environments>Exchangeable M12lensesAXIS F4105-LRE Dome Sensor CameraImage sensor1/2.8”(effective)progressive scan RGB CMOSLens 2.8mm,F1.6For1080p:Horizontal field of view:110°Vertical field of view:60°For720p:Horizontal field of view:70°Vertical field of view:39°Day and night Automatically removable infrared-cut filterMinimum illumination Color:0.3lux at50IRE,F2.0 0lux with IR illumination onShutter speed With AXIS F9111:1080p,25/30fps:1/20000s to1.5s1080p,50/60fps:1/27000s to1sHDTV720p,175/180fps:1/32500s to0.5sWith AXIS F9104-B,F9114and F9114-B:1080p,25/30fps:1/20000s to1.5sHDTV720p,50/60fps:1/32500s to0.5sCamera angle adjustment Pan:±180°Tilt:120°Rotation:±90°Resolution Maximum1920x1080HDTV1080pWDR WDR–Forensic CaptureGeneralCasing IK10-,IP66-,IP67-,and IP6K9K-rated plastic casingPolycarbonate clear domeColor:white NCS S1002-BMounting Mounting bracket with junction box holes(single-gang) Sustainability PVC and BFR/CFR freePower Typical1.9W,max4.16WConnectors SMA connectorIR illumination IR with power-efficient,long-life940nm IR LEDsTwo individually adjustable IR LEDsRange of reach10m(33ft)or more depending on the sceneOperating conditions With IR illumination off-30°C to55°C(-22°F to131°F)With IR illumination on-30°C to45°C(-22°F to113°F)Maximum temperature according to NEMA TS2(2.2.7):74°C(165°F)Start-up temperature:-40°C(-40°F)Humidity10–100%RH(condensing)Storageconditions-40°C to65°C(-40°F to149°F)Humidity5–95%RH(non-condensing)Approvals EMCECE R10rev.06,EN50498,EN55035,EN55032Class B,EN50121-4,EN50121-3-2,EN61000-6-1,EN61000-6-2,FCC Part15Subpart B Class B,ICES-3(B)/NMB-3(B),IEC62236-4,KS C9835,KS C9832Class B,RCM AS/NZS CISPR32Class B,VCCI Class BSafetyCAN/CSA C22.2No.62368-1ed.3,IEC/EN/UL62368-1ed.3,IEC/EN62471risk group exempt,IS13252,NFPA130,UN ECE R118EnvironmentEN50155:2017Class OT2/ST2,IEC60068-2-27,IEC60068-2-64,IEC60721-3-5Class5M3,IEC/EN62262IK10,IEC60529IP66,IEC60529IP67,ISO20653IP6K9K,NEMA250Type4XDimensions Depth:83mm(3.3in)ø112mm(4.4in)55mm(2.2in)Cable length:116mm(4.55in)Weight240g(0.53lb)RequiredhardwareAXIS TU6004CL2Cable SMA-FAKRA or AXIS TU6005PlenumCable SMA-FAKRAAXIS F91Main UnitIncludedaccessoriesInstallation Guide,lens toolOptionalaccessoriesLensesLens M122.1mm F1.8IR:horizontal field of view151°Lens M123.6mm F1.8IR:horizontal field of view88°Lens M126mm,F1.9IR:horizontal field of view58°Lens M128mm F1.8IR:horizontal field of view42°OtherAXIS T94D02S Curved Mount BracketFor more accessories,see Warranty5-year warranty,see /warranty©2022-2023Axis Communications AB.AXIS COMMUNICATIONS,AXIS,ARTPEC and VAPIX are registered trademarks ofAxis AB in various jurisdictions.All other trademarks are the property of their respective owners.We reserve the right tointroduce modifications without notice.T10175868/EN/M6.2/2307。
视觉系统在机器人折弯单元中的应用研究
第58卷1工业机器人视觉系统简介工业机器人视觉系统主要由照明光源、工业相机、镜头、相机控制器等组成(图像采集及处理)。
其中照明光源的作用是增加被检测物体在镜头下的曝光度,从而获得清晰的成像轮廓;工业相机的本质是通过相机处理将光信号转化为电信号,从而输出成像;镜头的作用是将被检测物体的空间信息投影到相机;相机控制器的功能是对相机拍照进行控制,同时对相机输出的成像进行数据处理,输出坐标。
工业相机和镜头通过组合形成了2D 与3D 两种不同的成像输出模式。
2D 即二维,可以拍摄到物体的平面图像,输出X ,Y 两个坐标。
3D 即三维,可以拍摄到物体的立体图像,输出X ,Y ,Z 三个坐标。
3D 相机实质上使用了双镜头,将我们看到有差异的物体进行一个整合。
所以3D 相机又称为深度相机,就是通过该相机能检测出拍摄空间的景深距离。
3D 相机与2D 相机的最大区别在于,3D 相机可以获取真实立体的图像,而2D 相机只能获取像平面图像信息。
当只需要知道物体的二维图像时选用2D 相机,如板料防呆,防混;当物体在高度方向也会发生变化时,则需要选用3D 相机,如拆垛定位,精确抓取等。
如图1所示为2D 与3D 的成像对比。
机器人视觉系统的优点有:①检测安全可靠,与被观测的对象无接触;②检测范围广,所能检测的对象广泛,可用于各行各业;③生产效率高,可以快速获取被检测物体的大量信息并自动处理,易于工控集成,提高系统自动化程度;④检测精度高,可达丝级精度甚至更高,满足自动化需求。
2视觉系统在机器人折弯单元中的搭建如图2所示,标准型式的机器人折弯单元主要由折弯机、工业机器人及其行走轴、进出料台、重力对中台、翻面架,外围防护装置和控制系统等部分组成,可以完成自动拆垛、定位、折弯、工件翻身、码垛等功能。
机器人折弯单元可以搭建视觉系统,用于板料的视觉识别和定位。
机器人折弯单元控制系统主要由折弯机系统、机器人系统、视觉系统、PLC 逻辑控制系统以及其他外部设备等组成。
OpenStack云平台实践及案例
·· ·
补充:OpenStack部署方案
部署示意
Compute Node
nova-compute
Controller Node
dashboard
nova-compute
Network Node
neutron-server
keystone/mysql ovs/lbaas
HA(A+A) mysql rabbitmq haproxy controller (scheduler) Network (l3/dhcp/met a/agent)
x86服务器:
IBM Flex System一体化刀箱 IBM X3850四路服务器
·· ·
软件和方案
Openstack开源云管理软件 RHEL/KVM开源虚拟化 Sahara/Hadoop集群管理软件 GPFS并行文件系统 实施服务
存储
SVC存储虚拟化 SVC IO的增强 Openstack对SVC存储的支持 SVC的远程容灾 DS3500扩展盘柜
·· ·
OpenStack Practice Cases as known
• • • • • • • • • • • • • • • • • • • • • easystack: 未上线 99cloud:单集群, 十多个物理节点;几十多台VM awcloud:单集群, 150多个物理节点;2000多台VM unitedstack:单集群, 30多个物理节点;3000多台VM 鹏博士:单集群, 100多个物理节点;3000多台VM 东软:/cn/ , 和阿里云合作 锐捷网络:/ 浪潮,锐捷合作方案 顺联软件科技:/ 单集群,200多台VM 华胜天成:/ ,单集群,10多台物理服务器,500多台VM 华三通信:/portal/ , VFC融合产品 中标软件:/index.php?styleid=2 , 普华基础软件股份有限公司: i-VirtualCloud产品 数码港:http://www.cyberport.hk/zh_cn/ ,单集群,10多台物理服务器,200多台VM 山石网科:/about-us ,FWaaS(Firewall as a Service) 云络科技(ChinaNetCloud): 单集群,20多物理服务器,200多台VM 博隆兴中(BloomBase): VDI单集群,1000多台VM 格睿信息(国产桌面虚拟化):VDI单集群,3000多台VM 趣游(游戏):/ ,lightcloud, 单集群,800多台VM 微科思创(教育云管理平台):/ 嘉值科技:/ , VDI单集群,1000多台VM 云动科技:/en/index.aspx ,OpenStack实训云
lenet5模型结构
lenet5模型结构Lenet-5模型是一种经典的卷积神经网络,由Yann LeCun于1998年提出,被广泛应用于手写数字识别任务。
它的结构包括卷积层、池化层和全连接层,具有较强的特征提取和分类能力。
Lenet-5模型的整体结构可以分为7个主要的层次:输入层、C1层、S2层、C3层、S4层、F5层和输出层。
下面将对每个层次的功能和作用进行介绍。
1. 输入层:Lenet-5模型的输入层接收手写数字图片作为输入。
手写数字图片的大小为32×32像素,黑白图像。
每个像素的灰度值范围在0到255之间。
2. C1层:C1层是卷积层,使用6个5×5的卷积核对输入图像进行卷积操作,得到6个特征图。
每个卷积核与输入图像的一个局部区域进行卷积操作,通过滑动窗口的方式遍历整个输入图像。
卷积操作可以提取图像的局部特征。
3. S2层:S2层是池化层,使用2×2的池化核对C1层的特征图进行下采样操作,得到6个下采样后的特征图。
池化操作能够降低特征图的维度,减少后续计算量,并保持特征的位置不变性。
4. C3层:C3层是卷积层,使用16个5×5的卷积核对S2层的特征图进行卷积操作,得到16个特征图。
与C1层类似,C3层的卷积操作也是通过滑动窗口的方式实现的。
5. S4层:S4层是池化层,使用2×2的池化核对C3层的特征图进行下采样操作,得到16个下采样后的特征图。
6. F5层:F5层是全连接层,将S4层的特征图展开成一维向量,并与权重矩阵相乘得到长度为120的特征向量。
F5层可以综合全局特征,并将其输入到输出层进行分类。
7. 输出层:输出层是全连接层,将F5层的特征向量与权重矩阵相乘,并经过softmax函数得到最终的分类结果。
在手写数字识别任务中,输出层有10个神经元,分别对应数字0到9。
Lenet-5模型通过卷积和池化操作,能够提取图像的局部特征,并通过全连接层将特征综合起来进行分类。
grid使用方法
grid使用方法在英文中,"grid"可以指代多个不同的概念和用法。
以下是一些常见的"grid"使用方法:1. 网格布局(Grid Layout):这是一种用于网页设计的CSS 布局模块。
它允许开发人员创建复杂的网格系统,用于排列和定位网页上的元素。
使用grid属性可定义行和列,并使用grid-template-areas属性将元素放置在不同的区域中。
示例代码:```css.container {display: grid;grid-template-columns: 1fr 1fr 1fr;grid-template-rows: 100px 100px;}.item {grid-area: 1 / 1 / 2 / 3; /* 指定元素放置在第一行第一列到第二行第三列的区域中 */}```2. 网格系统(Grid System):这是用于创建网页布局的一种设计模式。
它将网页分成均匀的行和列,并允许元素在这些行和列中进行布局。
比较流行的网格系统包括Bootstrap和Foundation。
示例代码(使用Bootstrap):```html<div class="container"><div class="row"><div class="col-md-4">Column 1</div><div class="col-md-4">Column 2</div><div class="col-md-4">Column 3</div></div></div>```3. 网格数据结构(Grid Data Structure):这是一种在计算机科学中常用的数据结构,用于存储和管理二维数据。
AutoGrid5 高级功能
用同样的方法依次调入第二排静叶,第二排动叶……
Step2.设置叶片参数,定义动叶间隙
依次设置每一排叶片参数:(叶 片数、转速、Rotor/Stator, Axial/Centrifugal)。 定义动叶间隙。
Step3.生成默认拓扑结构
激活所有叶片排,选取相应的Grid Level及第一层网格大小,生成默认拓扑结构。
Step 2: Link Blade & Endwall
同时选中压力面和吸力面,Link to Blade Leading & Trailing Edge
将右侧的分布复制,粘贴给左侧。
用同样的方法调整 row4右侧的网格分布( Copy left distribution, Paste right distribution )。
Step5.调整B2B网格
除了第一排叶片和最后一排叶片需要单独调整外,对于中间位置 的叶片,其静叶几何相似,动叶几何也相似,只需要调整一排静 叶和一排动叶,将其网格拓扑结构复制给其他即可。此操作在级 数较多时,可大大缩短调整网格的时间。
Step3.调整叶轮通道网格
生成默认拓扑结构
Set Default Topology
展向网格控制
B2B网格控制
网格数目、分布、网格类型、等Z线的添加等….
网格光顺控制
……
Step4.间隙网格控制
间隙展向网格控制。
AutoGrid会自动调 整叶片展向网格分 布,以使有间隙的 叶片排和无间隙的 叶片排在交接面上 分布保持一致。
Step4.调整展向网格
这时,row4(有叶顶间隙)和他相邻的叶片排的分布会发生变化。 为了使得其分布一致,需要手工调整。
OpenText NetIQ产品说明说明书
Case StudyAt a Glance IndustryChallengeCreate a seamless end-user experience and streamline backend services while moving business-critical solutions to AWS cloud environmentProducts and ServicesNetIQ Identity Manager NetIQ Access Manager NetIQ Identity GovernanceNetIQ Advanced AuthenticationSuccess Highlights• E nriched functionality and seamless access across hybrid environment • Reduced business complexity with seamless end-user experience • Introduced Cloud Bridge for full bi-directional communication in hybrid environment • Increased scalability, flexibility, and cost-predictability with AWS deploymentOpenTextNetIQ supports global digital transformation totransparently bridge business-critical solutions hosted on premises and in AWS cloud environment.Who is OpenText?OpenText™ is one of the world’s largest enterprise software providers. It delivers mission-critical technology and supporting services that help thousands of customers worldwide manage core IT elements of their business so they can run and transform— at the same time. Cyberscurity is an OpenT ext™ line of business.Digital Transformation Drives Move to a SaaS Application ModelOpenText, like many of its customers, is a large organization grown significantly through acquisition. This strategy brought a plethora of tools used in different divisions. T o standardize its corporate identity management, OpenText trusts its own suite of identity and access solutions, under the NetIQ banner. NetIQ Identity Manager by OpenText™ and Access Manager by OpenText™ wereIT-managed in an on-premises environment and evolved more recently to include NetIQ Advanced Authentication by OpenText™ for multi-factor authentication as well as effective website protection.The merger between Micro Focus and HPE Software tripled the size of the organization and introduced new challenges around data hygiene, audit compliance, and security in general. At the same time, there was a definite market move towards a preference forSaaS-based solutions, to relieve the burden and cost of maintaining an on-premises IT environment. Jon Bultmeyer, CTO,Cybersecurity, runs the engineering teams involved in building Cybersecurity SaaS offerings. He works closely with other OpenText teams on the customer delivery model as well as the internal delivery of SaaS versions. He explains: “We found that we were lagging a little in version-currency, just because of the workload involved in an upgrade. To secure, run, and operate a large-scale identity management operation for over 12,000 staff is labor-intensive and time-consuming. This seemed a good opportunity to embrace the digital transformation at the heart of Micro Focus (now part of OpenText) and move our identity and access architecture to an AWS-hosted cloud environment.”“Cloud Bridge really streamlines the transition to SaaS and gives us the observability we need to ensure effective data flows between different systems.”Jon Bultmeyer CTOCyberResOpenTextIntroduce New Functionality and Comprehensive Access Reviewsin Hybrid EnvironmentOpenText took a wider view and introduced the SaaS Center of Excellence (CoE) organization, headed up by David Gahan, Senior Director, Cybersecurity SaaS. Rather than just make a ‘like for like’ move, the team chose to enhance the platform with NetIQ Identity Governance by OpenText™,as well as expanding the NetIQ Advanced Authentication by OpenText™ capability into a SaaS model. Pivoting from a ‘governance first’ principle with a focus on application access reviews, the project aimed to move via automated application access and approval to fully automated application access request and enablement.The full solution would provide seamless connectivity to the company’s key applications: Salesforce to manage customer interactions and order processing; Workday as an integrated HR solution; and NetSuite, which manages business finances and operational support, as well as other business-critical applications. It would also provide the capability to conduct certification reviews. This automated process builds a comprehensive directory of who has access to what. Periodically, all process and solution owners are asked to review their access list for accuracy. Job roles determine the level of access to specific solutions required for individuals. This ‘least privilege’ principle ensures that only colleagues with the right access level can configure the finance platform, for instance, or reach confidential personnel data in Workday.The project was part of the corporate digital transformation and as such had an executive spotlight on it, coupled with a tight delivery deadline of no more than 12 months. Cloud Bridge: Managing FullyIntegrated Identity Governancein a Hybrid EnvironmentOpenText’s own Professional Services skillsand their specific expertise in building thesesystems for Cybersecurity customers wasinvaluable. The SaaS CoE team workedon creating the SaaS infrastructure, andBultmeyer’s engineering teams werebuilding the SaaS applications. Meanwhile,Professional Services implemented NetIQIdentity Governance on premises to kickstartthe application integration, which relied onmany interconnected parts. Because theday-to-day business running takes ultimatepriority, this was a ‘run and transform’ scenariowith a hybrid approach. Key business systemsmoved in phases to the SaaS environmentwhile others remained on premises fornow. It is a challenge to integrate identitygovernance between on-premises and SaaS-based systems, and Cybersecurity wantedfully automated event-driven integration—they recognized that the manual process ofeither CSV file transfers or site-to-site VPNconnections that are offered by some marketalternatives can cause firewall complexities.As this, again, is not a challenge that isunique to OpenText, Bultmeyer’s teamturned its attention to creating the OpenTextCloud Bridge, as he explains: “Cloud Bridgeis a singular communication bridge for allour Cybersecurity SaaS solutions. It allowssecure bi-directional communication betweenon-premises and SaaS systems via a Dockercontainer. There are no special rules whenconfiguring the Cloud Bridge agent,so communication between on-premisesand cloud-based systems can be up andrunning within just an hour. There is just asingle location to monitor, so any issuesare resolved quickly. Cloud Bridge reallystreamlines the transition to SaaS and gives usthe observability we need to ensure effectivedata flows between different systems.”Reduced Business ComplexityWhile Navigating COVID-19Working PracticesOnce the CoE SaaS infrastructure wasoperational, the Professional Services teamtransitioned the on-premises NetIQ IdentityGovernance implementation to the AWSenvironment. The identity governanceenvironment now includes end-to-endintegrated workflows between key systems,integrated password management, singlesign-on, full visibility through Cloud Bridge,and advanced analytics leveraging OpenText™Vertica™ capabilities. Gahan says: “Leveragingour own NetIQ [by OpenText] solutions in aSaaS environment has allowed us to createa seamless end-user experience wherewe were once living in a world made up ofdifferent islands of access. The solutions ouremployees use to service our customers’needs and our own internal needs have beenstandardized, drastically reducing businesscomplexity across the board. It’s given usterrific backend benefits as well by helpingsimplify and standardize the concepts ofidentity and access acrossall of our business units.”“The project timelines coincided with theCOVID-19 pandemic, which presented uswith the same challenges our customersexperienced around the world,” addsBultmeyer. “Suddenly we could no longergather around a whiteboard to brainstorm,and we had to quickly adjust to workingremotely. Thankfully, this didn’t deter ourdetermination, and many teams—includingour Micro Focus (now part of OpenText) ITteam, the dedicated project implementationteam, our product management teams,backline engineering teams, the newlyformed CoE team, and our Customer Successteams—worked seamlessly together toadjust the implementation and manage anyproblems we encountered along the way.”2Enriched Functionalityand Cost Predictability in Flexible AWS DeploymentGahan spearheads the SaaS CoE, a new global organization dedicated to supporting SaaS customers. Leveraging expertise on defining governance policies, designingthe solution, and configuring this in a SaaS environment, the team created a truly hybrid identity governance platform where the end user does not know, nor need to care, whether the data they access resides on-premises or in the cloud. “And this is just how it should be,” Gahan says. “Our end users now benefit from much richer functionality such as seamless multi-factor authentication and sophisticated access review processes, drastically reducing manual processes.”Bultmeyer concludes: “NetIQ [by OpenText™] solutions have simplified our identity governance and shortened our communication lines. We were excited to leverage our strategic partnership with AWS, giving us a scalable and cost-predictable model as we grow, and allowing us to roll out additional functionality much faster than we otherwise could have done.”“NetIQ [by OpenText™] solutions have simplified our identitygovernance and shortened our communication lines.We were excited to leverage our strategic partnership withAWS, giving us a scalable and cost-predictable model aswe grow, and allowing us to roll out additional functionalitymuch faster than we otherwise could have done.”Jon BultmeyerCTOCyberResOpenText Cybersecurity provides comprehensive security solutions for companies and partners of all sizes. From prevention, detection and response to recovery, investigation and compliance, our unified end-to-end platform helps customers build cyber resilience via a holistic security portfolio. Powered by actionable insights from our real-time and contextual threat intelligence, OpenText Cybersecurity customers benefit from high efficacy products, a compliant experience and simplified security to help manage business risk.768-000087-003 | O | 11/23 | © 2023 Open Text。
Grid-EYE 人数统计软件手册说明书
Grid-EYE People Counting SoftwareManualTable of contentIntroduction (2)Mounting the Evaluation Board (2)Software Installation (3)Software Handling (7)Main window (7)Count line option window (8)IntroductionThis user manual is aimed at giving the customers an overview of the installation of the Grid-EYE People Counting software, the needed usb driver and the handling of this software for tracking and counting people. The software can be used with the Grid-EYE Evaluation Kit with both generations of the Grid-EYE sensor. There is an option in the software where the used sensor can be chosen. A special Firmware for the evaluation kit is not needed.Mounting the Evaluation BoardFor this demonstration the evaluation board must be mounted in a way that the sensor is looking from above on the persons. It was tested with a mounting height up to 5 meters. This is not the limit of the algorithm. The maximum mounting Height is influenced by the filter and threshold setup. This Setup is fixed in this software.Software InstallationPlease follow these steps for the installation of the software.1.Double click the Installation file.2.Click on next.3.Choose the installation folder.4.Click on next.5.Wait until the installation of the software is finished.6.After this procedure the usb driver installation part will start automatically. Click on next.7.The Driver is an unsigned driver. Because of this security information will be displayed.Please click on Install this driver anyway.8.After the driver installation click on finish and close on the installation windows.Software HandlingMain windowLegend:1.Counter values and the number of persons within the sensor field.2.The reset button will reset the whole algorithm.3.In the communication area the com port of your Grid-EYE Evaluation Board has to be chosen.The com ports can also be connected, disconnected and refreshed.4.In the temperature range field can be set the boundary temperatures for calculating thecolors of the thermal image. If the automatic range field is checked in, it will automaticallychoose the minimum and maximum temperatures and will display it in the min and maxtemp fields.5.If the show temperatures field is checked in, the pixel temperatures will be displayed in thethermal image.6.The count line option gives the possibility to setup lines in the people count image. If aperson cross that line, the counter values will increase according to which direction the line is crossed.7.With the interpolation level options the thermal image can be interpolated. It is possible tocreate interpolated thermal images with a resolution of 15 x 15, 29 x 29, 57 x 57, 113 x 113and 225 x 225 pixels.8.Gives the option to flip the images. Changing these fields leads to a reset of the peoplecounting algorithms.9.The Software can be used for both generations of the Grid-EYE sensor. Please note that theperformance of the software is better with the generation 2 Grid-EYE sensor.10.The object detection image gives information about detected objects. Black pixels are objectpixels. Red pixel areas are indicating a detected person.11.The thermal image is the result of the filtered raw data of the Grid-EYE sensor.12.The people tracking and counting window shows the results of the tracking and countingalgorithms in form of a bubble for each detected person.13.The Bubbles are detected persons.14.The smaller bubbles show the tracked motion history.Count line option window1.The Preview Image shows a preview for the actual counting line setup.2. A counting line has a start point and an end point. Both are described by an x coordinate anda y coordinate. The boundaries for the coordinates are 0 and 3840. Up to three counting linescan be used.3.The previewed counting line.4.Pressing the apply button will transfer the chosen counting line options to the main window.This option will be saved and if the application is closed and then reopened the last chosenline option will be used.5. A line setup can be saved by pressing the save button.6. A saved line setup can be load by pressing the load button.。
lenet5应用实例
lenet5应用实例
LeNet-5是一种经典的卷积神经网络架构,最初由Yann LeCun 等人在1998年提出,用于手写数字识别任务。
它被广泛应用于数字识别、图像分类等领域。
下面我将从多个角度给出LeNet-5的应用实例。
1. 手写数字识别,LeNet-5最初是为了解决手写数字识别问题而设计的。
它在MNIST数据集上取得了很好的效果,成为了早期数字识别任务的经典模型。
LeNet-5的应用实例包括自动识别支票上的手写数字、银行卡上的卡号识别等。
2. 物体识别,除了手写数字识别外,LeNet-5也被应用于物体识别任务。
通过对图像进行卷积和池化操作,LeNet-5可以有效地提取图像特征,从而用于识别不同类别的物体,例如交通标志、人脸识别等。
3. 文字识别,LeNet-5的卷积结构也使得它适用于文字识别任务。
例如,可以将LeNet-5应用于识别车牌上的文字、自动识别手写的地址信息等。
4. 医学图像分析,LeNet-5也被应用于医学图像分析领域,例如X光片的识别、病理图像的分析等。
通过LeNet-5对医学图像进行特征提取和分类,可以帮助医生进行疾病诊断和治疗。
5. 智能驾驶,LeNet-5的应用还延伸到智能驾驶领域,例如通过LeNet-5对道路标志、行人、车辆等进行识别,以实现自动驾驶和交通管理等功能。
总之,LeNet-5作为卷积神经网络的先驱之一,在数字识别、物体识别、文字识别、医学图像分析、智能驾驶等领域都有着广泛的应用实例。
其经典的网络结构和有效的特征提取能力使得它成为了深度学习领域的重要里程碑之一。
lenet5的数据运算流程
lenet5的数据运算流程
LeNet-5模型的数据运算流程大致如下:
1.输入层:输入一张图像,通常是手写体识别的图像,尺寸一般为32x32。
在输入层,会对图像进行预处理,使其尺寸统一为32x32。
2.卷积层:卷积层包含多个卷积核(滤波器),每个卷积核可以提取图像上的不同特征。
将输入图像通过卷积核进行卷积操作,以提取特征。
卷积操作完成后,一般会进行一次激活函数操作,如Sigmoid 函数,为神经元引入非线性因素,使得神经网络可以任意逼近任何非线性函数。
3.池化层:池化层用于对卷积层提取的特征进行降采样,一般有两种操作:最大池化与平均池化。
池化操作可以减小特征图的尺寸,降低模型的复杂度,同时提高模型的鲁棒性。
4.全连接层:全连接层用于将前面提取的特征进行整合,输出最终的分类结果。
在LeNet-5模型中,全连接层包含多个神经元,每个神经元都与前一层的所有神经元相连。
总的来说,LeNet-5模型的数据运算流程包括输入层的预处理、卷积层的特征提取、池化层的降采样和全连接层的分类输出。
通过这个过程,模型可以对输入的图像进行分类和识别。
视觉测量系统简易模式产品说明书
Renton, Washington
NoteM: Aalsl oinnfo, rOmhaiotion
regarding
our
products,
and
in
particular
the
Houston, Texas illustrations, drawings,
dimensional
and
performance
© 2014 Mitutoyo America Corporation, Aurora IL
1.5M 0614-07 Printed in USA, August 2014
O1-n8e88N-uMmITbUeTrOtoYOSe(r1v-e88Y8o-u64B8WH(eC-uote8ntrs8eptteo6rforr9asrtdv)ei,HllMeea,adsNqsuoaarrctthehrusCs)aertotslina
Plymouth, Michigan
Mason, Ohio
Transmitted light: Green LEDOnteeleNceunmtribceilrlutmoinSaetriovne; YCou-axBiaeltLteigrht: White LED; Ring light: quadrant white LED 1-888-MITUTOYO (1-8280±81-6ºC48-8869)
• Alignment of workpiece is automatically located via pattern recognition.
• Provides quick results of features (GO/NG/PASS/FAIL).
QIPAK Simple Mode
gradio用法 -回复
gradio用法-回复Gradio是一个用于构建交互式的机器学习界面的Python库。
它提供了一个简单而强大的方式,让开发者能够在几行代码中创建一个交互式UI,使用户能够轻松地使用和调试机器学习模型。
本文将从介绍Gradio库开始,逐步回答关于Gradio的用法和功能。
以中括号内的内容为主题,文章将涵盖以下主要章节:1. 什么是Gradio?2. 如何安装Gradio?3. 创建一个简单的交互式界面4. 添加输入组件5. 添加输出组件6. 自定义界面布局7. 内置布局选项8. 高级功能:模型调试和解释性9. 使用Gradio进行部署10. 结论什么是Gradio?Gradio是一个用于构建交互式机器学习界面的Python库。
它的设计目的是简化机器学习模型的使用和调试过程,使用户能够以直观且易于理解的方式与模型进行交互。
Gradio具有易于学习和应用的特点,可以在几行代码中创建一个功能强大的交互式UI。
如何安装Gradio?Gradio可以通过pip包管理器进行安装。
在命令行中运行以下命令,即可安装Gradio:pip install gradio创建一个简单的交互式界面使用Gradio创建交互式界面非常简单。
以下是一个简单的示例,展示了如何创建一个接受用户输入并显示输出的界面:pythonimport gradio as grdef greet(name):return "Hello, " + name + "!"iface = gr.Interface(fn=greet, inputs="text", outputs="text") unch()在这个例子中,我们定义了一个名为`greet`的函数,它接受一个字符串作为输入,并返回一个包含问候语的字符串。
使用`gr.Interface`来创建一个界面对象,并指定输入和输出的类型为文本。
lenet5原理
lenet5原理
LeNet-5是一种经典的卷积神经网络架构,主要用于手写数字和字符的识别任务。
它由两个卷积层、两个池化层和三个全连接层组成。
其原理如下:
1.卷积层:LeNet-5的第一层和第二层是卷积层。
在卷积操作中,网络利用一系列的过滤器来提取输入图像中的特征。
在第一层,过滤器大小为5×5,并且有6个不同的过滤器。
在第二层,过滤器大小仍为5×5,但是现在有16个不同的过滤器。
通过这些过滤器,LeNet-5可以提取图像中的局部特征。
2.池化层:LeNet-5的第三层和第四层是池化层,用于对卷积层的输出进行下采样。
在这里,网络通过选择最大值或者平均值等方法来降低输入的分辨率,并且减少计算量,同时保留特征。
3.全连接层:LeNet-5的最后三层都是全连接层,用于对池化层的输出进行分类,这些层与传统的神经网络相似。
在这里,每个节点都与前一层中的所有节点相连接。
最后一层输出一个长度为10的向量,其中每个元素表示输入图像属于哪个数字的概率。
以上就是LeNet-5的原理,通过卷积、池化和全连接层的组合,网络可以自动学习图像中的特征,并对它们进行分类和识别。
c1flexgrid 手册
c1flexgrid 手册摘要:1.c1flexgrid 简介2.c1flexgrid 的特点和优势3.c1flexgrid 的使用教程4.c1flexgrid 的应用案例5.c1flexgrid 的发展前景正文:c1flexgrid 是一款非常实用的网格布局系统,可以帮助用户轻松地创建复杂的页面布局。
它具有多种特点和优势,可以极大地提高用户的工作效率。
下面,我们将详细介绍c1flexgrid 的各个方面。
首先,我们来看看c1flexgrid 的简介。
c1flexgrid 是一款基于CSS Flexbox 布局的网格布局系统,可以帮助用户轻松地创建复杂的页面布局。
它具有灵活性高、易用性强、兼容性好等特点,可以满足不同用户的需求。
接下来,我们来看看c1flexgrid 的特点和优势。
c1flexgrid 具有以下几个方面的特点和优势:1.灵活性高:c1flexgrid 采用Flexbox 布局,可以轻松地创建复杂的页面布局,满足不同用户的需求。
2.易用性强:c1flexgrid 提供了丰富的API 和预设样式,用户只需要简单地调用API 或者使用预设样式,就可以轻松地创建专业的页面布局。
3.兼容性好:c1flexgrid 支持多种浏览器,包括Chrome、Firefox、Safari 等主流浏览器,可以满足不同用户的需求。
然后,我们来看看c1flexgrid 的使用教程。
c1flexgrid 的使用非常简单,用户只需要按照以下几个步骤,就可以轻松地创建专业的页面布局:1.引入c1flexgrid 的CSS 文件和JavaScript 文件。
2.创建一个容器元素,设置相应的属性,例如:`data-c1flexgrid`、`data-c1flexgrid-columns`、`data-c1flexgrid-rows` 等。
3.调用c1flexgrid 的API,例如:`c1flexgrid.create()`,就可以创建一个专业的页面布局。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XenMobile
ShareFile
+
+
Management Software Virtual Machines
Game 11 应用 应用 1 Game 22 应用 应用 2 应用 3 应用 3 应用 3 应用 4 应用 4 应用 4 应用 5 应用 5 应用 5 应用 6 应用 6 应用 6 应用 7 应用 7 应用 7 应用 8 应用 8 应用 8 应用 9 9 应用 9 应用 Game 10 应10 用 10 应用 Game 11 应11 用 11 应用 Game 12 应12 用 12
设计人员
• • • •
NVIDIA Quadro GPU 的全部体验 无与伦比的图形和计算性能 专业软件的认证 支持所有的 API (OpenGL, DirectX, CUDA等)
• 从数据中心交付
• 能源效率 • 高用户密度
数据中心管理者
GRID K2
1 x K2 = 2 x Quadro K5000
NAS存储器
GRID K1 云桌面方案
12 用户 VDI 服务器 3 GRID K1 (12 NVIDIA GPUs)
双Intel SB 8核CPU 2U 服务器 (32 HT cores, 每用户2 HT cores) 96GB 系统内存 (每用户12 GB) 800W 电源
每机柜228 用户 19 个节点 每节点12 用户 每机柜15KW
SuperCloud 视觉云计算解决方案
1
SuperCloud GPU产品
WorkStastion
Server
Cloud
GeForce® Quadro® Tesla®
Intel MIC® Tesla® AMD FirePro®
GRID™
2
GPU-加速的云计算
3
From Super Phones to Super Cars
Resource Manager
NVIDIA USM
State NVIDIA VGX GPU
GPU MMU
Graphics Commands
Per-VM Dedicated Per-VM Channels Per-VM Remote Display
DedicatePer-VM Channel Dedicate Channel Dedicate Channel
应用服务器 应用虚拟化服务器环境 XenApp XenServer XenDesktop
桌面/终端
所有指定应用全部集中在数据中心 简便安装、管理、支持 到达终端的应用与数据从一开始就是被集中管理的
桌面虚拟化系统的架构
桌面的存储和执行(包括操作系统、应 用程序和用户数据)都集中在数据中心 的虚拟机上
NVIDIA-® GRID™ Software plus vGPU HyperVisor NVIDIA-® GRID™
GPU 1 GPU 2 GPU 3 GPU 4 GPU 5Βιβλιοθήκη NVIDIA-® GRID™
GPU 6 GPU 7 GPU 8 GPU 9
NVIDIA-® GRID™
GPU 10 GPU 11 GPU 12
NVIDIA Driver
NVIDIA Driver
State
KEPLER GPU
Virtual GPU
Virtual GPU
Virtual GPU
Virtual GPU
Virtual GPU
Virtual GPU
Virtual GPU
Virtual GPU
Virtual GPU
Virtual GPU
Power User Knowledge Worker
NVIDIA GRID 产品规格
GRID K1 GPU数目 总的CUDA核数 总的内存容量 最大功耗 板卡长 板卡高 板卡宽 显示接口 电源接口 PCIe 接口 散热方式 4 x GK107 GPUs 768 16 GB DDR3 130 W 10.5” 4.4” Dual slot None 6-pin connector x16 Gen3 (Gen2 compatible) Passive GRID K2 2 x GK104 GPUs 3072 8 GB GDDR5 225 W 10.5” 4.4” Dual slot None 8-pin connector x16 Gen3 (Gen2 compatible) Passive
Implementation Details
User
NVIDIA GRID
Hypervisor
Virtual Desktop Agent
XenDesktop 5.6 FP1
(with HDX 3D Pro)
Recommended Configuration
8 Users 4 GRID VGX K2 Boards
物理服务器
2×6CPU/64GB内存
FlexCast: VDI专属桌面模式
终端设备 终端设备 终端设备 终端设备 终端设备 每用户独占一台虚拟机 H D X H D X H D X H D X H D X
Win7/XP 虚拟机
Win7/XP 虚拟机
Win7/XP 虚拟机
。。。
Win7/XP 虚拟机
VDI
VIRTUAL MACHINE VIRTUAL DESKTOPS
NVIDIA GRID Enabled Virtual Desktop
NVIDIA Driver
NVIDIA GRID ENABLED Hypervisor
NVIDIA GRID GPU
Grid K2 的特点
• 拥有Quadro 的所有功能
6
NVIDIA® Grid 架构
Hypervisor
GPU Hypervisor
Virtual Machine
Guest OS
Hypervisor Device Emulation Framework
Apps
Virtual GPU Manager
Virtual Desktop
Remote Protocol
Virtual GPU
Virtual GPU
ICA/HDX 高清显示协议
Citrix ICA/HDX 高清交付协议
虚拟应用/桌面
虚拟化支撑新型业务体系架构 – 把数据中心转变成“电视台”:安全、便捷、节能、随需而动
C/S客户端元件 B/S应用 桌面操作系统 服务器端元件 网络应用 订制化应用
数据中心
DESIGNER
(CATIA, CS6, Inventor)
POWER USER
(PLM, Med Img, Showcase)
Virtual Desktop
(Virtualized GPU)
KNOWLEDGE WORKER
(MS Office, Photoshop)
GRID K2 for Designer/Engineers
用户界面使用远程协议(例如ICA和RDP) 传输到用户的终端设备上
Desktop Workload (OS, Apps, Data)
FlexCast: 共享桌面模式
终端设备 终端设备 。。。 终端设备 终端设备 终端设备 。。。 终端设备 20 ~40个用户共享一台虚 拟机
H D X
H D X
H D X
2 x GK104 Kepler GPUs 2 x 1536 CUDA Cores 2 x 4GB GDDR5 225 W Total
SPECviewperf 11 标准测试
GRID K2 性能
GRID K2 (VM2) GRID K2 (VM1)
K5000
TEST SYSTEM: Cisco C240 M3 | Xeon E-2690 @ 2.90GHZ | DDR3 Registered | 1333Mhz | Intel C600 series chipset (QPI 8GT/s)
NAS存储器
VIRTUAL MACHINE
Guest OS Apps
VIRTUAL MACHINE
Guest OS Apps
HYPERVISOR
NVIDIA GRID Hypervisor
State
Virtual Desktop
Remote Protocol
Virtual Desktop
Remote Protocol
。。。
H D X
H D X
H D X
Citrix XenApp + 应用程序 Windows2008 Server 虚拟机
Citrix XenApp + 应用程序 Windows2008 Server 虚拟机
每虚拟机2~4vCPU/ 4~10GB内存
服务器虚拟化Hypervisor层
支持XenServer/MS HyperV/ESX
4
Designer
Task Worker
GRID Powered VDI
真正的云计算体验
任何设备、任何时候、任何地方
Power User
Knowledge Worker
5
云互动
使用NVIDIA GRID, 游戏玩家可以从 任何设备访问云端的各种视觉应用。 包含图形成像、视频编解码、云游戏 等。
1
关于Citrix GPU解决方案小结
GPU pass-through
优点: 性能最好,对于OpenGL,CUDA,DirectX各种协议支持良好, 即使同为GPU透传方案,基于领先HDX 3D技术,我们的也比友商效果好
不足: 总价高,每台服务器最多插入4块物理K2显卡,或者3块K1显卡(透传8块显卡)