第12周高三文科数学小测卷

合集下载

九师联盟2024届高三教学质量监测10月联考(全国卷)文科数学试题及参考答案

九师联盟2024届高三教学质量监测10月联考(全国卷)文科数学试题及参考答案

九师联盟2024届高三教学质量监测10月联考(全国卷)文科数学试题及参考答案一、选择题:本题12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知()0sin ,0<∈∃θπθ,:p ,则p ⌝为()A .()0sin ,0≥∈∃θπθ,B .()0sin ,0<∉∃θπθ,C .()0sin ,0<∉∀θπθ,D .()0sin ,0≥∈∀θπθ,2.设集合(){}3ln -==x y x A ,{}1-≤=x x B ,则()=B A C R ()A .{}31≤≤-x xB .{}31≤<-x xC .{}31<≤-x x D .{}31<<-x x 3.已知()m P ,1是角θ的终边上一点,2tan -=θ,则=θsin ()A .552-B .55-C .55D .5524.已知平面向量b a ,和实数λ,则“b aλ=”是“b a 与共线”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件5.扇子是引风用品,夏令营必备之物.我国传统扇文化源远流长,是中华文化的一个组成部分.历史上最早的扇子是一种礼仪工具,后来慢慢演变为纳凉、娱乐、观赏的生活用品和工艺品.扇子的种类较多,受大众喜爱的有团扇和折扇.如图1是一把折扇,是用竹木做扇骨,用特殊纸或凌娟做扇面而制成的.完全打开后的折扇为扇形(如图2),若图2中θ=∠AOB ,D C ,分别在OB OA ,上,m BD AC ==,弧AB 的长为l ,则该折扇的扇面ABDC 的面积为()A .()2θ-l m B .()2m l m θ-C .()22θ-l m D .()22m l m θ-6.已知6.023-⎪⎭⎫⎝⎛=a ,41log 31=b ,9.032⎪⎭⎫⎝⎛=c ,则()A .ac b >>B .ba c >>C .ca b >>D .bc a >>7.已知316sin =⎪⎭⎫ ⎝⎛-πα,则=⎪⎭⎫ ⎝⎛+62sin πα()A .322B .32C .922D .978.已知函数()12++-=ax x x f 在[]2,1上的最大值也是其在[]2,1上的极大值,则a 的取值范围是()A .[)∞+,2B .[)∞+,4C .[]4,2D .()4,29.已知函数()21sin cos sin 32-+=x x x x f ,若将其图象向左平移()0>ϕϕ个单位长度得到的图象关于原点对称,则ϕ的最小值为()A .12πB .6πC .3πD .2π10.如图,已知两个单位向量OB OA ,和向量OC ,2=OC .OA 与OC 的夹角为θ,且102cos =θ,OB 与OC 的夹角为4π,若()R y x OB y OA x OC ∈+=,,则=-y x ()A .1-B .21-C .21D .111.在ABC ∆中,D 为BC 上一点,CAD BAD ∠=∠,若221===AB AD AC ,则=BC ()A .22B .32C .23D .5212.已知函数()x f 的定义域为R ,若R x ∈∀,()()04=-++x f x f ,且()1+x f 为偶函数,()11-=f ,则()=2023f ()A .1B .1-C .2D .2-二、填空题:本题共4小题,每小题5分,共20分.13.函数()()xa x x f 21log ++=(0>a ,且1≠a )的图象过定点.14.已知向量b a ,满足4,5==b a,b a 与的夹角为120°,若()()b a b a k +⊥-2,则=k .15.已知函数()xe x xf 1-=,则曲线()x f y =在点()()0,0f 处的切线方程为.16.函数xx xx y cos sin 2cos sin --=的值域为.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知()x x a sin ,cos 22= ,⎪⎭⎫ ⎝⎛=x b cos 3,21 ,()b a x f ⋅=.(1)求函数()x f 的最小正周期和单调递减区间;(2)在ABC ∆中,π127=+B A ,()1=A f ,32=BC ,求边AC 的长.18.(12分)已知函数()()x m x f x-+=1log 3(0>m ,且1≠m )是偶函数.(1)求m 的值;(2)若关于x 的不等式()()()0333321≤+⎥⎦⎤⎢⎣⎡+-⋅-a xx x f 在R 上有解,求实数a 的最大整数值.19.(12分)已知αsin 是方程06752=--x x 的根.(1)求()()⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛--⋅-⋅⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛--απαπαπαπαππα2cos 2cos tan 2cos 23cos 23sin 的值;(2)若α是第四象限角,⎪⎭⎫ ⎝⎛<<=⎪⎭⎫ ⎝⎛-201356sin πβπβ,求⎪⎭⎫ ⎝⎛+-6sin πβα的值.20.(12分)已知函数()()R a x x a x f ∈-=ln .(1)讨论()x f 的单调性;(2)若()x f 在⎥⎦⎤⎢⎣⎡2,1e e上有2个零点,求a 的取值范围.21.(12分)南京玄武湖称“金陵明珠”,是我国仅存的皇家园林湖泊.在玄武湖的一角有大片的荷花,每到夏季,荷花飘香,令人陶醉.夏天的一个傍晚,小胡和朋友游玄武湖,发现观赏荷花只能在岸边,无法深入其中,影响观赏荷花的乐趣,于是他便有了一个愿景:若在玄武湖一个盛开荷花的一角(该处岸边近似半圆形,如图所示)设计一些栈道和一个观景台,观景台P 在半圆形的中轴线OC 上(图中OC 与直径AB 垂直,P 与C O ,不重合),通过栈道把AB PC PB P A ,,,连接起来,使人行在其中,犹如置身花海之感.已知m AB 200=,θ=∠P AB ,栈道总长度为函数()θf .(1)求()θf ;(2)若栈道的造价为每米5万元,试确定观景台P 的位置,使实现该愿景的建造费用最小(观景台的建造费用忽略不计),并求出实现该愿景的建造费用的最小值.22.(12分)在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,,S 为ABC ∆的面积,且()222c b S a -+=.(1)求A tan 的值;(2)若8=a ,证明:5816≤+<c b .参考答案一、选择题1.D解析:由含有量词的命题的否定的特点知p ⌝为()0sin ,0≥∈∀θπθ,.2.B 解析:由题意得{}3>=x x A ,{}31>-≤=x x x B A 或 ,则()=B A C R {}31≤<-x x .3.A解析:由三角函数的定义知2tan -==m θ,∴55252sin -=-=θ.4.A 解析:若b a λ=,由共线向量定理知b a 与共线,知“b aλ=”是“b a 与共线”的充分条件;若b a 与共线,如()()0,02,1==b a ,,则b a λ=不成立,故“b aλ=”不是“b a 与共线”的必要条件.综上,“b aλ=”是“b a 与共线”的充分不必要条件.5.D解析:由弧长公式可知,OA l ⋅=θ,∴θlOA =,则m lOC -=θ,∴该折扇的扇面的面积为:=⎪⎭⎫ ⎝⎛-⋅-⋅22121m l l l θθθ()22m l m θ-.6.C 解析:9.06.06.00323223231⎪⎭⎫⎝⎛>⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛=-,即c a >>1,又14log 41log 331>=,∴c a b >>.7.D解析:976sin 2162cos 262sin 62sin 2=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛+παπαππαπα.8.D解析:()x a x f 2-=',令()0='x f ,得2a x =,由题意得()2,12∈a,∴()4,2∈a .9.A解析:∵()⎪⎭⎫ ⎝⎛-=-=-+=62sin 2cos 212sin 2321sin cos sin 32πx x x x x x x f ,将其图象向左平移()0>ϕϕ个单位长度得到函数⎪⎭⎫⎝⎛-+=622sin πϕx y 的图象,∵⎪⎭⎫ ⎝⎛-+=622sin πϕx y 的图象关于原点对称,∴()Z k k ∈=-ππϕ62,即()Z k k ∈+=212ππϕ,由于0>ϕ,当0=k 时,ϕ取得最小值12π.10.B 解析:由[]πθθ,,0102cos ∈=,得10271021sin 2=⎪⎪⎭⎫ ⎝⎛-=θ,∴534cos -=⎪⎭⎫ ⎝⎛+πθ,由题意得14cos21=⨯=⋅πOC OB ,51cos 21=⨯=⋅θOC OA ,53-=⋅OB OA ,在OB y OA x OC +=两边分别点乘OB OA ,,得5153=-=⋅y x OC OA ,153=+-=⋅y x OC OB ,两式联立并解得⎪⎪⎩⎪⎪⎨⎧==4745y x ,∴21-=-y x .11.C 解析:设θ=∠BAC ,由CAD BAD ABC S S S +=∆∆,得2sin 212sin 21sin 21θθθAD AC AD AB AC AB ⋅+⋅=⋅,即2sin 2sin 2sin 2θθθ+=,∴2sin 32cos 2sin 4θθθ=,∵()πθ,0∈,∴02sin ≠θ,∴432cos =θ.∴811cos 2cos 2=-=θθ,∴1881242416cos 2222=⨯⨯⨯-+=⋅-+=θAC AB AC AB BC ,∴23=BC .12.A ∵()1+x f 为偶函数,即()()11+=+-x f x f ,∴()()x f x f -=2,又由()()04=-++x f x f ,∴()()()x f x f x f -=--=+22,∴()()x f x f =+4,故()x f 为周期函数且4是一个周期,∴()()()1132023=-==f f f .二、填空题13.()1,0解析:当0=x 时,a 在()()∞+,11,0 上无论取何值,()x f 的值总为1,故函数()x f 的图象过定点()1,0.14.54解析:由题意可得102145120cos -=⎪⎭⎫⎝⎛-⨯⨯=︒=⋅b a b a .由()()b a b a k+⊥-2,得()()()()02101622522222=--⨯-=⋅-+-=+⋅-k k b a k b ak b a b a k,解得54=k .15.012=--y x 解析:()()()x x xx exe e x e xf -=--='212,∴()20='f ,又()10-=f ,故所求切线方程为()()021-=--x y ,即012=--y x .16.⎥⎦⎤⎢⎣⎡-522522,解析:令x x t cos sin -=,则()2221cos sin 2≤≤--=t t x x ,∴232tty +=()22≤≤-t ,当0=t 时,0=y ,当22≤≤-t ,且0≠t 时,tt y 32+=,令tt u 3+=,已知u 的值域为⎪⎪⎭⎫⎢⎣⎡∞+⎥⎦⎤ ⎝⎛-∞-,,522522 ,∴tt y 32+=的取值范围为⎦⎤⎝⎛⎪⎪⎭⎫⎢⎣⎡-52200522,, .综上所述,所求函数的值域为⎦⎤⎢⎣⎡-522522,.三、解答题17.解:(1)由题意得()2162sin 2sin 232cos 2121cos sin 3cos 2+⎪⎭⎫ ⎝⎛+=++=+=πx x x x x x x f ,∴()x f 的最小正周期ππ==22T ,令()Z k k x k ∈+≤+≤+πππππ2236222,解得()Z k k x k ∈+≤≤+ππππ326,∴()x f 的单调递减区间为()Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ326,.(2)由(1)知()12162sin =+⎪⎭⎫ ⎝⎛+=πA A f ,∴2162sin =⎪⎭⎫ ⎝⎛+πA ,又()π,0∈A ,∴⎪⎭⎫ ⎝⎛∈+613662πππ,A ,∴6562ππ=+A ,∴3π=A .∵π127=+B A ,∴4π=B ,由正弦定理得ABCB AC sin sin =,∴22232232sin sin =⨯==A B BC AC .18.解:(1)∵()x f 为偶函数,∴()()x f x f -=对任意的R x ∈恒成立,即()()x m x m x x-+=++-1log 1log 33对任意的R x ∈恒成立,又()()()m x m m m mm mxx x xx x333333log 1log log 1log 1log 1log -+=-+=+=+-,∴()()x m x m x m xx-+=+-+1log log 1log 333对任意的R x ∈恒成立,即()02log 3=-m x 对任意的R x ∈恒成立,必须02log 3=-m ,即9=m ,故9=m .(2)由(1)知,()()x x f x-+=19log 3,故()()x x x x f x 3133319log 3+==-+.设()()()233≥+=-t t x x ,则23132++=x x t ,即23132-=+t x x ,∴圆原问题等价于关于t 的不等式013212≤-+-a t t 在[)∞+,2上有解,∴max21321⎪⎭⎫⎝⎛--≤t t a ,又()[)+∞∈+--=--=,2,211321132122t t t t y ,∴当3=t 时,211max =y ,∴211≤a ,故实数a 的最大整数值为5.19.解:(1)由αsin 是方程06752=--x x 的根,得53sin -=α或2sin =α(舍),原式()()αααααππαsin sin tan cos 23cos 23sin -⋅-⋅⋅⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛+-=()()αααααααααααcos sin cos sin cos cos sin tan cos sin cos 2-=⎪⎭⎫⎝⎛-⨯=---=.由53sin -=α,∴α是第三象限或第四象限角,若α是第三象限角,则54cos -=α,此时54cos =-α;若α是第四象限角,则54cos =α,此时54cos -=-α.故所求式子的值为54或54-.(2)由(1)知,当α是第四象限角时,53sin -=α,54cos =α,由⎪⎭⎫ ⎝⎛<<=⎪⎭⎫ ⎝⎛-201356sin πβπβ,得13126cos =⎪⎭⎫ ⎝⎛-πβ,∴⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛+-6sin cos 6cos sin 6sin 6sin πβαπβαπβαπβα655613554131253-=⨯-⨯-=.20.解:(1)函数()x f 的的定义域为()+∞,0,且()()01>-=-='x xxa x a x f .当0≤a 时,()0<'x f 在()+∞,0上恒成立,故()x f 在()+∞,0上单调递减;当0>a 时,令()()00>>'x x f ,得a x <<0,令()0<'x f ,得a x >,∴()x f 在()a ,0上单调递增,在()+∞,a 上单调递减.综上所述,当0≤a 时,()x f 在()+∞,0上单调递减;当0>a 时,()x f 在()a ,0上单调递增,在()+∞,a 上单调递减.(2)若0=a ,()x x f -=,在⎥⎦⎤⎢⎣⎡2,1e e上无零点,不合题意;若0≠a ,由()0=x f ,得xxa ln 1=,令()x x x g ln =,则直线a y 1=与函数()x g 在⎥⎦⎤⎢⎣⎡2,1e e 上的图象有两个交点,()2ln 1x x x g -=',当e x e <<1时,()0>'x g ,当2e x e <<时,()0<'x g ,∴()x g 在⎥⎦⎤⎢⎣⎡e e ,1上单调递增,在[]2,e e 上单调递减.∴()()ee g x g 1max==,又()2221e eg e e g =-=⎪⎭⎫ ⎝⎛,,∴要使直线a y 1=与函数()x g 在⎥⎦⎤⎢⎣⎡2,1e e 上的图象有两个交点,则e a e 1122<≤,∴22e a e ≤<,即实数a 的取值范围为⎥⎦⎤ ⎝⎛22e e ,.21.解:(1)由题意知θ=∠P AB ,40πθ<<,AB OC ⊥,100==OB OA ,则θcos 100==PB P A ,θtan 100=PO ,∴θtan 100100-=PC ,∴()200tan 100100cos 200+-+=+++=θθθAB PC PB P A f ⎪⎭⎫ ⎝⎛<<⎪⎭⎫ ⎝⎛+-=403cos sin 2100πθθθ.(2)建造栈道的费用()()⎪⎭⎫⎝⎛+-==3cos sin 25005θθθθf F ,()θθθ2cos 1sin 2500-⨯='F ,令()0='θF ,得21sin =θ,又40πθ<<,∴6πθ=.当60πθ<<时,()0<'θF ,当46πθπ<<时,()0>'θF ,∴()θF 在⎪⎭⎫ ⎝⎛60π,上单调递减,在⎪⎭⎫⎝⎛46ππ,上单调递增,∴()()335006min +=⎪⎭⎫⎝⎛=πθF F ,此时331001006tan 100100-=-=πPC ,故观景台位于离岸边半圆弧中点距离⎪⎪⎭⎫⎝⎛-33100100米时,建造费用()33500+万元.22.解:(1)∵ABC ∆的面积为A bc S sin 21=,()222c b a S --=,∴bc c b a A bc 2sin 222+--=,由余弦定理得A bc c b a cos 2222-=--,∴A bc bc A bc cos 22sin --,∵0≠bc ,∴2cos 2sin =+A A ,11又⎪⎭⎫ ⎝⎛∈20π,A ,1cos sin 22=+A A ,∴2sin 12sin 2=-+A A ,化简得0sin 4sin 52=-A A ,解得54sin =A 或0sin =A (不合题意,舍去).∵⎪⎭⎫⎝⎛∈20π,A ,∴53sin 1cos 2=-=A A ,34cos sin tan ==A A A .(2)证明:由正弦定理,得10548sin sin sin ====A a C c B b ,∴()B A C c B b +===sin 10sin 10sin 10,,∴()()ϕ+=+=++=+B B B B A B c b sin 58cos 8sin 16sin 10sin 10,其中ϕ为锐角,且552cos 55sin ==ϕϕ,.∵⎪⎭⎫⎝⎛∈20π,A ,⎪⎭⎫ ⎝⎛∈20πϕ,,∴22πϕπ<-<-A ,又ϕsin sin >A ,∴ϕ>A ,∴20πϕ<-<A ,∴220πϕπ<+-<A ,又⎪⎪⎩⎪⎪⎨⎧<<<<2020ππB C ,即⎪⎪⎩⎪⎪⎨⎧<<<--<2020πππB B A ,∴⎪⎪⎩⎪⎪⎨⎧<<-<<-202πππB A B A ,∴22ππ<<-B A .∴ϕπϕϕπ+<+<+-22B A ,∵函数x y sin =在⎪⎭⎫⎝⎛20π,上单调递增,在⎪⎭⎫⎝⎛ππ,2上单调递减,且()A A A A sin sin cos cos cos 2sin ϕϕϕϕπ+=-=⎪⎭⎫ ⎝⎛+-552545553552=⨯+⨯=552cos 2sin ==⎪⎭⎫ ⎝⎛+ϕϕπ,∴()58sin 585258≤+<⨯ϕB ,即5816≤+<c b .。

高三文科数学模拟试题含答案

高三文科数学模拟试题含答案

高三文科数学模拟试题含答案高三文科数学模拟试题本试卷共150分,考试时间120分钟。

第Ⅰ卷(选择题,共50分)一、选择题(共10小题,每小题5分,共50分。

在每小题中,只有一项是符合题目要求的)1.复数3+ i的虚部是()。

A。

2.B。

-1.C。

2i。

D。

-i2.已知集合A={-3,-2,0,1,2},集合B={x|x+2<0},则A∩(CRB) =()。

A。

{-3,-2,0}。

B。

{0,1,2}。

C。

{-2,0,1,2}。

D。

{-3,-2,0,1,2}3.已知向量a=(2,1),b=(1,x),若2a-b与a+3b共线,则x=()。

A。

2.B。

11/22.C。

-1.D。

-24.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为()。

A。

4π/3.B。

π。

C。

3π/2.D。

2π5.将函数f(x)=sin2x的图像向右平移π/6个单位,得到函数g(x)的图像,则它的一个对称中心是()。

A。

(π/6,0)。

B。

(π/3,0)。

C。

(π/2,0)。

D。

(π,0)6.执行如图所示的程序框图,输出的s值为()。

开始是否输出结束A。

-10.B。

-3.C。

4.D。

57.已知圆C:x^2+2x+y^2=1的一条斜率为1的切线l1,若与l1垂直的直线l2平分该圆,则直线l2的方程为()。

A。

x-y+1=0.B。

x-y-1=0.C。

x+y-1=0.D。

x+y+1=08.在等差数列{an}中,an>0,且a1+a2+⋯+a10=30,则a5⋅a6的最大值是()。

A。

4.B。

6.C。

9.D。

369.已知变量x,y满足约束条件2x-y≤2,x-y+1≥0,设z=x^2+y^2,则z的最小值是()。

A。

1.B。

2.C。

11.D。

3210.定义在R上的奇函数f(x),当x≥0时,f(x)=2,当x<0时,f(x)=1-|x-3|,则函数F(x)=f(x)-a(0<a<1)的所有零点之和为()。

陕西省2025届高三数学第一次模拟联考试卷文含解析

陕西省2025届高三数学第一次模拟联考试卷文含解析

陕西省2025届高三第一次模拟联考文科数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|-1≤x<2},B={x|0≤x≤3},则A∩B=()A. B. C. D.【答案】B【解析】【分析】利用集合的交集的定义,干脆运算,即可求解.【详解】由题意,集合A={x|-1≤x<2},B={x|0≤x≤3},∴A∩B={x|0≤x<2}.故选:B.【点睛】本题主要考查了集合的交集运算,其中解答中熟记集合的交集定义和精确运算是解答的关键,着重考查了运算与求解实力,属于基础题.2.复数i(1+2i)的模是()A. B. C. D.【答案】D【解析】【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式,即可求解.【详解】由题意,依据复数的运算可得,所以复数的模为,故选D.【点睛】本题主要考查了复数代数形式的乘除运算,考查复数模的求法,其中解答中熟记复数的运算,以及复数模的计算公式是解答的关键,着重考查了运算与求解实力,属于基础题。

3.若抛物线y2=2px的焦点坐标为(2,0),则准线方程为()A. B. C. D.【答案】A【解析】【分析】抛物线y2=2px的焦点坐标为(2,0),求得的值,即可求解其准线方程.【详解】由题意,抛物线y2=2px的焦点坐标为(2,0),∴,解得p=4,则准线方程为:x=-2.故选:A.【点睛】本题主要考查了抛物线的标准方程及其性质,其中解答中熟记抛物线的标准方程,及其简洁的几何性质,合理计算是解答的关键,着重考查了运算与求解实力,属于基础题.4.一个空间几何体的三视图如图所示,则该几何体的表面积为()A. 64B.C. 80D.【答案】B【解析】【分析】依据三视图画出几何体的直观图,推断几何体的形态以及对应数据,代入公式计算即可.【详解】几何体的直观图是:是放倒的三棱柱,底面是等腰三角形,底面长为4,高为4的三角形,棱柱的高为4,所求表面积:.故选:B.【点睛】本题主要考查了几何体的三视图,以及几何体的体积计算,其中解答中推断几何体的形态与对应数据是解题的关键,着重考查了推理与计算实力,属于基础题。

2023届呼市高三年级质量普查调研考试—段考(文科数学)试卷真题+参考答案+详细解析

2023届呼市高三年级质量普查调研考试—段考(文科数学)试卷真题+参考答案+详细解析

2023届呼和浩特市高三年级质量普查调研考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、考生号、座位号涂写在答题卡上.本试卷满分150分,考试时间120分钟.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|24}x A x =>,集合{1,2,3,4}B =,那么集合(A B = )A .{2}B .{1,2}C .{2,3,4}D .{3,4}2.若(1)1i z -=,则下列说法正确的是( )A .复数zB .1z i =-C .复数z 的虚部为i -D .复数z 在复平面内对应的点在第二象限 3.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边经过点(5,)P m -,且12sin 13α=-,则1cos2(sin 2αα-= )A .512B .512-C .125D .125-4.已知||2a =,||1b =,(2)()1a b a b +-=,则a 与b 的夹角为( ) A .6π B .4π C .2π D .34π 5.设123a -=,131()2b -=,21log 3c =,则( )A .a c b <<B .c a b <<C .b c a <<D .a b c <<6.数列{}n a 中,如果472n a n =-,则n S 取最大值时,n 等于( ) A .23B .24C .25D .267.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,点A 是其渐近线上的一点,若||AF 的最小值为3a ,则该双曲线的离心率为( )A .10B .22C .3D .38.小明同学学以致用,欲测量学校教学楼的高度,他采用了如图所示的方式来进行测量,小明同学在运动场上选取相距20米的C ,D 两观测点,且C ,D 与教学楼底部B 在同一水平面上,在C ,D 两观测点处测得教学楼顶部A 的仰角分别为45︒,30︒,并测得120BCD ∠=︒,则教学楼AB 的高度是( )A .20米B .202米C .153米D .25米9.已知函数[]y x =称为高斯函数,其中不超过实数x 的最大整数称为x 的整数部分,记作[]x ,如图,则输出的S 值为( )A .42B .43C .44D .4510.曲线sin 2cos y x x =+在点(,2)π-处的切线方程为( ) A .20x y π---= B .2220x y π---= C .2220x y π+-+=D .20x y π+-+=11.已知函数2()23f x x mx m =--,则“2m >”是“()0f x <对[1,3]x ∈恒成立”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件12.定义在R 上的函数()y f x =的图象关于点3(,0)4-成中心对称,对任意的实数x 都有3()()2f x f x =-+,且(1)1f -=,(0)2f =-,则(1)(2)(3)(2021)f f f f ++++的值为( )A .2B .1C .1-D .2-第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~21题为必考题,每个试题考生都必须作答;第22题~第23题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分,共20分.13.若实数x ,y 满足10101x y x y x -+⎧⎪++⎨⎪⎩,则2z x y =-的最大值是 .14.已知圆C 与圆2210100x y x y +++=相切于原点,且过点(0,4)A -,则圆C 的标准方程为 . 15.函数()2sin()(0f x x ωϕω=+>,||)2πϕ<的部分图象如图所示,则下列关于()f x 的结论正确的序号为 .①()f x 的最小正周期为π; ②()f x 的图象关于直线6x π=对称;③若1x ,2(,)63x ππ∈-且12()()f x f x =,则12()3f x x +=;④()f x 的图象向左平移(0)θθ>个单位得到()g x 的图象,若()g x 图象的一个对称中心是(,0)6π,则θ的最小值为6π.16.如图,已知P 是半径为1圆心角为23π的一段圆弧AB 上的一点,若2AC CB =,则PA PC ⋅的取值范围是 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)如图,在梯形ABCD 中,//AB CD ,34BCD π∠=,10BD =,2CD =.(1)求sin CBD ∠的值;(2)若ABD ∆的面积为4,求AD 的长.18.(12分)已知数列{}n a 满足112323(1)22(*)n n a a a na n n N ++++⋯+=-⋅+∈. (1)求数列{}n a 的通项公式; (2)设1(1)(1)n n n n a b a a +=++,数列{}n b 的前n 项和为n S ,求证:13n S <.19.(12分)用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的12,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x 单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数()f x . (1)试规定(0)f 的值,并解释其实际意义;(2)试根据假定写出函数()f x 应该满足的条件和具有的性质(至少3条); (3)设21()1f x x=+.现有(0)a a >单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.20.(12分)已知函数()2x f x xe ax a =-+. (1)当12a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求实数a 的取值范围.21.(12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,椭圆的右焦点F 与抛物线24y x =的焦点重合.(1)求椭圆C 的方程;(2)A ,B 是椭圆的左,右顶点,过点F 且斜率不为0的直线交椭圆C 于点M ,N ,直线AM 与直线4x =交于点P ,记PA ,PF ,BN 的斜率分别为1k ,2k ,3k ,1322k k k +是否为定值?并说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l的参数方程为3x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C的方程为ρθ=. (1)求圆C 的参数方程;(2)设圆C 与直线l 交于点A ,B ,求弦长||AB 的长.23.[选修4-5:不等式选讲](10分)已知0m ,函数()2|1||2|f x x x m =--+的最大值为4. (1)求实数m 的值;(2)若实数a ,b ,c 满足2a b c m -+=,求222a b c ++的最小值.2023届呼和浩特市高三年级质量普查调研考试文科数学参考答案及评分标准【选择题&填空题答案速查】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|24}x A x =>,集合{1,2,3,4}B =,那么集合(A B = )A .{2}B .{1,2}C .{2,3,4}D .{3,4}【解析】{|24}{|2}x A x x x =>=>,{1,2,3,4}B =,{3,4}AB ∴=.故选:D .【评注】本题考查描述法、列举法的定义,以及交集的运算. 2.若(1)1i z -=,则下列说法正确的是( )A .复数zB .1z i =-C .复数z 的虚部为i -D .复数z 在复平面内对应的点在第二象限【评注】本题考查的知识要点:复数的运算,复数的共轭运算,复数的模,复数表示的几何意义,主要考查学生的运算能力和数学思维能力,属于基础题.3.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边经过点(5,)P m -,且12sin 13α=-,则1cos2(sin 2αα-= )A .512B .512-C .125D .125-【解析】因为角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边经过点(5,)P m -,且【评注】本题考查了任意角的三角函数的定义,二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.4.已知||2a =,||1b =,(2)()1a b a b +-=,则a 与b 的夹角为( ) A .6π B .4π C .2π D .34π (2)()1a b a b +-=,2221a a b b +-=,||2a =,||1b =,解1a b =,所2,2||||a b a b a b >==,又因为,[0,]a b π<>∈,故a 与b 的夹角为【评注】本题考查向量的数量积的求法,是基本知识的考查. 5.设123a -=,131()2b -=,21log 3c =,则( )A .a c b <<B .c a b <<C .b c a <<D .a b c <<【解析】03a <=【评注】本题考查数值大小的比较,注意中间量的应用,基本知识的考查. 6.数列{}n a 中,如果472n a n =-,则n S 取最大值时,n 等于( ) A .23B .24C .25D .26法一(邻项变号法),145a =>数列{}n a ,结合二次函数的性质可得前23项的和最大【评注】本题主要考查了等差数列的前n 项的和,解题的关键是判断出数列中正数的项.7.已知双曲线22221(0,0)x y a b ab-=>>的右焦点为F ,点A 是其渐近线上的一点,若||AF 的最小值为3a ,则该双曲线的离心率为( )A B .C .3D【解析】由题可知,双曲线渐近线为0bx ay ±=,则右焦点(,0)F c 到渐近线的距离为【评注】本题考查双曲线的简单性质的应用及焦渐距、离心率的求解,考查计算能力.8.小明同学学以致用,欲测量学校教学楼的高度,他采用了如图所示的方式来进行测量,小明同学在运动场上选取相距20米的C ,D 两观测点,且C ,D 与教学楼底部B 在同一水平面上,在C ,D 两观测点处测得教学楼顶部A 的仰角分别为45︒,30︒,并测得120BCD ∠=︒,则教学楼AB 的高度是( )A .20米B .C .米D .25米【评注】本题考查了解三角形、余弦定理的应用问题,也考查了推理能力与计算能力,属中档题. 9.已知函数[]y x =称为高斯函数,其中不超过实数x 的最大整数称为x 的整数部分,记作[]x ,如图,则输出的S 值为( )A .42B .43C .44D .45【解析】当03i <<时,3log 0i =;39i <时,3log 1i =;927i <时,3log 2i =;27i =时,3log 3i =,所以61182345S =⨯+⨯+=.故选:D .【评注】本题考查了程序框图的运行过程与累加求和问题,是基础题. 10.曲线sin 2cos y x x =+在点(,2)π-处的切线方程为( )A .20x y π---=B .2220x y π---=C .2220x y π+-+=D .20x y π+-+=【解析】sin 2cos y x x =+,cos 2sin y x x ∴'=-,∴曲线sin 2cos y x x =+在点(,2)π-处的切线的斜率1k =-, ∴曲线sin 2cos y x x =+在点(,2)π-处的切线的方程2()y x π+=--,即20x y π+-+=.故选:D .【评注】本题主要考查利用导数研究曲线上某点切线方程、直线方程的应用等基础知识,考查运算求解能力,属于基础题.11.已知函数2()23f x x mx m =--,则“2m >”是“()0f x <对[1,3]x ∈恒成立”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件【解析】若()0f x <对[1,3]x ∈恒成立,则(1)240(3)1860f m f m =-<⎧⎨=-<⎩,解得3m >,2m >不能推出3m >,充分性不成立, 3m >能推出2m >,必要性成立,故“2m >”是“()0f x <对[1,3]x ∈恒成立”的必要不充分条件.故选:C . 【评注】本题主要考查充分条件、必要条件的定义,属于基础题.12.定义在R 上的函数()y f x =的图象关于点3(,0)4-成中心对称,对任意的实数x 都有3()()2f x f x =-+,且(1)1f -=,(0)2f =-,则(1)(2)(3)(2021)f f f f ++++的值为( )A .2B .1C .1-D .2-2(2021)f ++【评注】本题考查函数的周期性与对称性的综合应用,注意分析函数的周期,属于基础题.第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~21题为必考题,每个试题考生都必须作答;第22题~第23题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分,共20分.13.若实数x ,y 满足10101x y x y x -+⎧⎪++⎨⎪⎩,则2z x y =-的最大值是 4 .【解析】由约束条件作出可行域如图,联立110x x y =⎧⎨++=⎩,解得(1,2)A -,由2z x y =-,得2y x z =-,由图可知,当直线2y x z =-过A 时,直线在y 轴上的截距最小,z 有最大值为21(2)4⨯--=.故答案为:4. 【评注】本题考查简单的线性规划,考查数形结合思想,是基础题.14.已知圆C 与圆2210100x y x y +++=相切于原点,且过点(0,4)A -,则圆C 的标准方程为22(2)(2)8x y +++= .【解析】圆C 的标准方程为:222()()x a y b r -+-=,其圆心为(,)C a b ,半径为(0)r r >,【评注】此题考查了直线与圆相交的性质,涉及的知识有圆的标准方程,垂径定理,勾股定理,两圆相切的性质,属于中档题.15.函数()2sin()(0f x x ωϕω=+>,||)2πϕ<的部分图象如图所示,则下列关于()f x 的结论正确的序号为①③④ .①()f x 的最小正周期为π; ②()f x 的图象关于直线6x π=对称;③若1x ,2(,)63x ππ∈-且12()()f x f x =,则12()f x x +=④()f x 的图象向左平移(0)θθ>个单位得到()g x 的图象,若()g x 图象的一个对称中心是(,0)6π,则θ的最小值为6π.【评注】本题考查了三角函数的图象,重点考查了三角函数的性质,属基础题. 16.如图,已知P 是半径为1圆心角为23π的一段圆弧AB 上的一点,若2AC CB =,则PA PC ⋅的取值范围是 [1 .【解析】建立如图所示的平面直角坐标系,203πθ,则1(2PA PC ⋅=-1(cos )(cos 226θ+203πθ,则,即PA PC ⋅的取值范围是,故答案为:【评注】本题考查了平面向量数量积的坐标运算,属基础题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)如图,在梯形ABCD 中,//AB CD ,34BCD π∠=,BD =CD =(1)求sin CBD ∠的值;(2)若ABD ∆的面积为4,求AD 的长.【评注】本题主要考查了正弦定理,余弦定理及和差角公式在求解三角形中的应用,属于中档题.18.(12分)已知数列{}n a 满足112323(1)22(*)n n a a a na n n N ++++⋯+=-⋅+∈. (1)求数列{}n a 的通项公式; (2)设1(1)(1)n n n n a b a a +=++,数列{}n b 的前n 项和为n S ,求证:13n S <.)解:122a a ++2n 时,有223a a ++两式相减得:(1)2na n =-⋅2n , 1n =时,有2=也适合上式,)证明:由(121n =-+11113<+.【评注】本题主要考查数列通项公式的求法及裂项相消法在数列求和及不等式证明中的应用,属于中档题. 19.(12分)用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的12,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用x 单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数()f x . (1)试规定(0)f 的值,并解释其实际意义;(2)试根据假定写出函数()f x 应该满足的条件和具有的性质(至少3条); (3)设21()1f x x =+.现有(0)a a >单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.)1x .设仅清洗一次,222((1)(a a a =+洗方法具有相同的效果;当【评注】本小题主要考查函数模型的选择与应用、不等式的解示及比较法比较大小等,属于基础题.考查根据实际问题建立数学模型,以及运用函数的知识解决实际问题的能力.20.(12分)已知函数()2x f x xe ax a =-+. (1)当12a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求实数a 的取值范围. 上单调递增,)(1,)+∞.【评注】本题考查了函数的单调性、最值问题,隐零点的虚设与代换,考查导数的应用,属于难题.21.(12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,椭圆的右焦点F与抛物线24y x =的焦点重合.(1)求椭圆C 的方程;(2)A ,B 是椭圆的左,右顶点,过点F 且斜率不为0的直线交椭圆C 于点M ,N ,直线AM 与直线4x =交于点P ,记PA ,PF ,BN 的斜率分别为1k ,2k ,3k ,1322k k k +是否为定值?并说明理由.【评注】本题考查求椭圆的方程及椭圆的性质的应用,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy中,直线l的参数方程为3xy⎧=⎪⎪⎨⎪=⎪⎩(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρθ=.(1)求圆C的参数方程;(2)设圆C与直线l交于点A,B,求弦长||AB的长.【评注】本题考查极坐标方程与直角坐标方程的转化方法,直线的参数方程的几何意义等,重点考查学生对基础概念的理解和计算能力,属于中档题.23.[选修4-5:不等式选讲](10分)已知0m,函数()2|1||2|f x x x m=--+的最大值为4.(1)求实数m的值;(2)若实数a,b,c满足2a b c m-+=,求222a b c++的最小值.||(22)x-m,()|2|f x m∴+=()2maxf x m∴=,又(f x(2)根据柯西不等式得:](2a b-+,2a b-+223c,当121a b c==-,即13a=,时取等号,22a b∴+的最小值为【评注】本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题.。

江西省九江市第三中学2021届高三上学期12月18日周考数学文科卷

江西省九江市第三中学2021届高三上学期12月18日周考数学文科卷

2020-2021学年度九江三中高三上学期周考数学文科卷一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足(1-2i )z =2+i ,则z 的虚部为A .1B .iC .-iD .-12.已知集合A ={x|log 2x <1},集合B ={x|-1≤x≤1},则A∩B =A .[-1,1]B .[-1,2)C .(0,1]D .(-∞,2)3.命题“(0,)x ∀∈+∞,1sin x x x ≥+”的否定是 A .(0,)x ∀∈+∞,1sin x x x <+ B .(0,)x ∃∈+∞,1sin x x x≥+ C .(0,)x ∃∈+∞,1sin x x x <+ D .(,0)x ∃∈-∞,1sin x x x<+ 4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(50)()1e t KI t --=+,其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(参考数据ln19≈3)A .60B .62C .66D .635.已知数列{a n }满足111n n a a -=+(n≥2,n ∈N *),若453a =,则a 1= A .1 B .32 C .2 D .856.将函数f (x )=sin (ωx +φ)(ω>0,0<φ<π)的图象上所有的点向右平移3π个单位长度得到正弦曲线,则3f π⎛⎫ ⎪⎝⎭的值为 A .12 B.2 C .12- D.2-7.已知△ABC 是边长为2的等边三角形,且AE EB =,2AD DC =,则BD CE ⋅=A .-3B .-2C .-1D .38.已知函数f (x )是定义域为R 的奇函数,当x≥0时,f (x )=-e x +1.记a =-2f (-2),b =f (1),3c =f (3),则a ,b ,c 的大小关系是A .b <a <cB .a <c <bC .c <b <aD .c <a <b9.在公比为q 等比数列{a n }中,S n 是数列{a n }的前n 项和,若a 1=1,a 5=27a 2,则下列说法错误的是( )A .q =3B .数列{S n +2}是等比数列C .S 5=121D .2lga n =lga n-2+lga n +2(n≥3)10l 过抛物线C :y 2=2px (p >0)的焦点F ,若l 与圆M :(x-2)2+y 2=12相切,则p =( ).A .12B .8C .10D .611.已知点F 1、F 2是椭圆x2+2y 2=2的两个焦点,点P 是该椭圆上的一个动点,那么12PF PF +的最小值是( )A .0B .1C .2D .12.在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且411i i p -=∑,则下面四种情形中,对应样本的标准差最大的一组是( )A .p 1=p 4=0.1,p 2=p 3=0.4B .p 1=p 4=0.4,p 2=p 3=0.1C .p 1=p 4=0.2,p 2=p 3=0.3D .p 1=p 4=0.3,p 2=p 3=0.2二、填空题:本题共4小题.13.已知向量a ,b 的夹角为60°,||2a =,||2b =,则||________a b +=.14.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是________. 15.设圆C :x 2+y 2-2x-2y-6=0,直线l 过点(0,3),且与圆C 交于A ,B 两点,|AB|=4,则直线l 的方程为________16.定义在R 上函数f (x )满足1(1)()2f x f x +=,且当x ∈[0,1)时,f (x )=1-|2x-1|.若当x ∈[m ,+∞)时,1()16f x ≤,则m 的最小值等于________. 三、解答题:本题共6小题,解答应写出文字说明、证明过程或演算步骤. 17.各项均正的数列{a n }前n 项和为S n ,S n 是a n 与1n a 的等差中项. (Ⅰ)证明:2{}n S 为等差数列,并求S n ;(Ⅱ)设11n n nb S S +=+,数列{b n }的前n 项和为T n ,求满足T n 5的最小正整数n 的值. 18.如图,PA 垂直于矩形ABCD 所在的平面,AD =PA =2,CD =,E 、F 分别是AB 、PD 的中点.(Ⅰ)求证:平面PCE ⊥平面PCD ;(Ⅱ)求四面体PEFC 的体积.19.成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在[80,100]评定为“优”,奖励3面小红旗;得分在[60,80)评定为“良”,奖励2面小红旗;得分在[40,60)评定为“中”,奖励1面小红旗;得分在[20,40)评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如图:(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;(2)学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.20.已知椭圆2222:1x y C a b+=(a >b >0F 1(-c ,0),F 2(c ,0)分别为椭圆的左、右焦点,点4(,)3c 在椭圆上.(1)求C 的方程;(2)若直线y =k (x-1)与椭圆C 相交于A ,B 两点,试问:在x 轴上是否在点D ,当k 变化时,总有∠ODA =∠ODB ?若存在求出点D 的坐标,若不存在,请说明理由.21.设函数2()2x k f x e x x =--. (Ⅰ)若k =0,求f (x )的最小值;(Ⅱ)若当x≥0时f (x )≥1,求实数k 的取值范围.请考生在第22,23,题中任选一题做答.22.选修4-4:坐标系与参数方程已知圆O :x 2+y 2=4,将圆O 上每一点的横坐标保持不变,纵坐标变为原来的12,得到曲线C .(I )写出曲线C 的参数方程;(II )设直线l :x-2y +2=0与曲线C 相交于A ,B 两点,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线m 过线段AB 的中点,且倾斜角是直线的倾斜角的2倍,求直线m 的极坐标方程.23.选修4-5:不等式选讲已知函数f (x )=|ax-2|,不等式f (x )≤4的解集为{x|-2≤x≤6}.(1)求实数a 的值;(2)设g (x )=f (x )+f (x +3),若存在x ∈R ,使g (x )-tx≤2成立,求实数t 的取值范围.。

十一学校高三十二月月考 数学试卷(文科) .docx

十一学校高三十二月月考 数学试卷(文科) .docx

高中数学学习材料马鸣风萧萧*整理制作2016届十一学校高三十二月月考 数学试卷(文科)满分:150分 时间:120分钟 2015.12.11一、选择题:(本题共8道小题,每一小题只有一个正确答案,每小题5分满分共40分) 1.已知集合{|(1)(2)0},{|lg 0}A x x x B x x =+->=≥,则集合AB =( )(A ){|2}x x > (B ){|1}x x <- (C ){|12}x x << (D ){|12}x x ≤< 2.“1k =”是“直线1:20l kx y ++=与直线2:0l x ky k +-=平行”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件3. 已知0x >,0y >,且21x y +=,则xy 的最大值是( ) (A )14 (B )18(C )4 (D )8 4.抛物线21(0)2x y a a=≠的焦点坐标是( ) (A )(,0)2a(B )(,0)2a 或(,0)2a -(C )10)8a (, (D )10)8a (,或10)8a-(,5. 右图是某个三棱锥的三视图,其中主视图是等边三角形,左视图是直角三角形,俯视图是等腰直角三角形,则该三棱锥的侧面积为是() (A )33(B )314+(C )310+ (D )37+6.过点(2,0)M 作圆221x y +=的两条切线,MA MB (,A B 为切点),则MA MB ⋅=( ) (A )12- (B )32- (C )12(D )32命题人 杨春艳1主视图左视图俯视图7.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点的个数( )(A )0 (B )2 (C )3 (D )48. 在平面直角坐标系xOy 中,记不等式组002x y x y y ≥≤+⎧⎪-≤⎨⎪⎩所表示的平面区域为D ,在映射:u x yT v x y =+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v ,则由点(,)u v 所形成的平面区域的面积为( ) (A )2 (B )4 (C )8 (D )16 二、填空题:(本题共6道小题,每小题5分满分共30分) 9. 设复数z 满足32iz i =-+,则z 的共轭复数z =______10.已知直线1:360l x y +-=与直线2:0,(0,02)l kx y m k m -+=><<,12,l l 与两坐标轴围成的四边形有一个外接圆,则k =11.已知椭圆22221(0)x y a b a b +=>>的离心率是13,则双曲线22221x y a b -=的两条渐近线方程为______.12.在锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且4,5a b ==,并且53ABCS=,则边c 的长度为________13.已知过定点(1,0)-的动圆与直线1x =相切,则此动圆圆心轨迹方程是_________.14.已知点(3,4)P 和圆22:(2)4C x y -+=,,A B 是圆C 上的两个动点,且||23AB =,则圆心到直线AB 的距离d =________;()OP OA OB ⋅+(O 为坐标原点)的取值范围是________.三、解答题:(本题共6道小题,每小题都要求写出必要的详细解答步骤,满分共80分)15.(本小题满分12分)设数列{}n a 的前n 项和为22nn n S a =-,(Ⅰ)求14,a a (Ⅱ)证明:2n n a ⎧⎫⎨⎬⎩⎭是等差数列;(Ⅲ)求{}n a 的前n 项和S n .16.(本小题满分13分)已知函数()4cos sin()(0)4f x x x πωωω=⋅+>的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求()f x 在区间[0,]2π的单调区间.17.(本小题满分13分)在平面直角坐标系xoy 中,直线12:24,:1l y x l y x =-=-,设圆C 的半径为1,圆心在1l 上. (Ⅰ)若圆心C 也在直线2l 上,①求圆C 的方程;②过点(20)A ,作圆C 的切线,求切线的方程; (Ⅱ)若圆在直线2l 截得的弦长为2,求圆C 的方程.18.(本小题满分14分)如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PA AC ⊥,AB BC ⊥.设D ,E 分别为PA ,AC 中点.(Ⅰ)求证:DE ∥平面PBC ;(Ⅱ)求证:BC ⊥平面PAB ;(Ⅲ)试问在线段AB 上是否存在点F ,使得过三点 D ,E ,F 的平面内的任一条直线都与平面PBC 平行?若存在,指出点F 的位置并证明;若不存在,请说明理由.19.(本小题满分14分)已知函数32()ln ,()2f x x x g x x ax x ==+-+DE B A P C D E B A P C(Ⅰ)如果函数()g x 的单调减区间为1(,1)3-,求函数()g x 的解析式; (Ⅱ)在(Ⅰ)的条件下,求函数()g x 的图像过点(1,1)P 的切线方程;(Ⅲ)对任意的(0,)x ∈+∞,若不等式2()()2f x g x '≤+恒成立,求实数a 的取值范围.20.(本小题满分14分)已知椭圆的焦点在x 轴上,一个顶点为(0,1),离心率为e =25, 过椭圆的右焦点F 的与坐标轴不垂直的直线l 交椭圆于A ,B 两点. (Ⅰ)求椭圆的方程;(Ⅱ)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C ,B ,N 三点共线? 若存在,求出定点的坐标;若不存在,说明理由;(Ⅲ)设(,0)M m 是线段OF (O 为坐标原点)上的一个动点,且()MA MB AB +⊥ , 求m 的取值范围.1-8 D A B C D D B C 9)23i - 10) 3 11)223y x =±12)2113)24y x =- 14)1;[2,22]14.2OA OB OM += (M 是AB 的中点)|CM|=1,M 的轨迹是以C(2,0)为圆心,1为半径的圆 法一:OP OM ⋅ 的几何意义是OM 在OP 的投影OM 1与||OP 的积.当MM 1与OP 垂直时,OM 1达到最大与最小,(就是向直线做垂线,垂足为C 1,|OC 1|加减半径)法二:M 的轨迹方程为:22(2)1x y -+=令2cos sin x y θθ=+⎧⎨=⎩所以()2OP OA OB OP OM ⋅+=⋅2(3,4)(2cos ,sin )θθ=⋅+=12+(6cos 8sin )θθ+ 最大值22,最小值215.解:(1)因为1111,22a S a S ==+,所以112,2a S ==2n = 时,222222,6;S a a =-= 3n = 时,33328,16;S a a =-=4n = 时,444216,40;S a a =-=…………………………4分(2)由题设 22n n n S a =- 11122n n n S a +++=-以上两式相减:11222nn n n a a a ++=--即:122nn n a a +-=,1122n n n n a a ++-=12 (常数)所以是首项为1,公差为12 的等差数列. …………………………8分(3)由(2)111(1)(1)222n n a n n =+-=+,即()112n n a n -=+⋅ 所以12(1)222n n nn S n n -=+-=⋅ . …………………………12分16.解:(Ⅰ)f (x )=4cos ωx sin (ωx +π4)=22sin ωx cos ωx +22cos 2ωx=2(sin 2ωx +cos 2ωx )+2=2sin (2ωx +π4)+2.…………………………4分因为f (x )的最小正周期为π,且ω>0,从而2π2ω=π,故ω=1. …………………………6分(Ⅱ)由(Ⅰ)知,f (x )=2sin (2x +π4)+2.若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增;当π2≤2x +π4≤5π4,即π8≤x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间[0,π8]上单调递增,区间[π8,π2]上单调递减.…………………………13分17.解:(Ⅰ)①由题设,圆心C 是直线24,1y x y x =-=-的交点,解得点(3,2)C .所以圆的方程是22(3)(2)1x x -+-= …………………………3分② 由题可知,若切线的斜率不存在,直线2x =是圆C 的切线 若切线的斜率存在,设为k ,设切线方程为(2)y k x =-, 所以2|322|11k k k --=+,解得34k =,即3460x y --=. 综上所求切线方程为2y =和3460x y --=. …………………………7分(Ⅱ)因为圆心在直线1l 上,所以设圆心C 的坐标为(,24)a a -因为圆在直线2l 截得的弦长为2,∴半弦长为22,且半径为1, 所以圆心C 到直线2l 的距离为2221()22-=即|241|222a a -+-=, …………………………10分 所以|3|1a -=,截得42a a ==或,所以圆心分别为4,4,(2,0)() 所以所求圆C 的方程为22(4)(4)1x y -+-=或22(2)1x y -+=……………………13分 18. 解:(Ⅰ)因为点E 是AC 中点,点D 为PA 的中点,所以DE ∥PC .又因为DE ⊄面PBC ,PC ⊂面PBC ,所以DE ∥平面PBC . ………….4分(Ⅱ)因为平面PAC ⊥面ABC , 平面PAC 平面ABC =AC ,又PA ⊂平面PAC ,PA AC ⊥,所以PA ⊥面ABC . 所以PA BC ⊥.又因为AB BC ⊥,且PA AB=A ,所以BC ⊥面PAB . ……….9分(Ⅲ)当点F 是线段AB 中点时,过点D ,E ,F 的平面内的任一条直线都与平面PBC 平行.取AB 中点F ,连EF ,连DF . 由(Ⅰ)可知DE ∥平面PBC .因为点E 是AC 中点,点F 为AB 的中点,D E P所以EF ∥BC .又因为EF ⊄平面PBC ,BC ⊂平面PBC , 所以EF ∥平面PBC . 又因为DE EF =E ,所以平面DEF ∥平面PBC ,所以平面DEF 内的任一条直线都与平面PBC 平行.……….14分19. 解:(Ⅰ)2()3210g x x ax '=+-<的解集是1(,1)3-,所以将1x =代入方程23210x ax +-=1a ∴=-,32()2g x x x x ∴=--+ …………………………4分(Ⅱ)2()321g x x x '=--,设切点为00(,)x y 所以切线的斜率为2000()321k g x x x '==-- 又因为切线过点(1,1),所以切线方程为2001(21)(1)y x x x -=--- …………………………6分因为切点在切线上也在曲线上所以3200002000021(21)(1)y x x x y x x x ⎧=--+⎪⎨-=---⎪⎩ 所以000001,21x x y y ==⎧⎧⎨⎨==⎩⎩ 所以切线方程为1y = 或20x y +-= …………………………9分 (Ⅲ)22ln 3212x x x ax ≤+-+在(0,)x ∈+∞上恒成立31ln 22a x x x ∴≥--…………………………11分 设31()ln 22x h x x x =--,22131(1)(31)()222x x h x x x x -+'∴=-+=- 令1()0,1,3h x x x '=∴==-(舍)当01x <<时,()0h x '>,当1x >时,()0h x '<1x ∴=时,()h x 取得最大值,max ()2h x =- 2a ∴≥-a ∴的取值范围是[)2,-+∞ …………………………14分20.解:(Ⅰ)由已知b =1,由e =25 得22245a b a -=,所以25,a = 椭圆的方程为2215x y += ………3分 (Ⅱ)右焦点为F (2,0) ………………4分 设直线l 的方程为(2),(0)y k x k =-≠由2255(2)x y y k x ⎧+=⎨=-⎩ 得2222(15)202050k x k x k +-+-= ………………6分 0∆> 恒成立设1122(),(,)A x y B x y ,由根与系数的关系21222122201520515k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩………………7分因为点C 与点A 关于x 轴对称,所以11(,)C x y -,假设存在0(,0)N x 满足题意,022011(,),(,)BN x x y CN x x y =--=- 因为C ,B ,N 三点共线,所以//BN CN所以021201()()x x y y x x -=-- ,即1202112()y y x x y x y +=+ ,因此1221012(2)(2)(2)(2)k x x k x x x k x k x -+-=-+- 12121222()4x x x x x x -+=+- 2222222052022151520415k k k k k k-⋅-⋅++=-+ =52 所以存在定点5(,0)2N ,使得C ,B ,N 三点共线 ………………10分(Ⅲ)由已知02m ≤≤,而1122(,)(,)MA MB x m y x m y +=-+-=1212(2,)x x m y y +-+2121(,)AB x x y y =--,因为()MA MB AB +⊥所以1212(2,)x x m y y +-+2121(,)0x x y y ⋅--=, ………………12分即12211212(2)()((2)(2))((2)(2))0x x m x x k x k x k x k x +--+-+----= ,因为12x x ≠ 所以2212(1)()240k x x m k ++--= ,22815k m k=+ 即2085m k m =>-,所以805m << .即当805m <<时()MA MB AB +⊥.………………14分。

2025届吉林省长春市高三第一次调研测试数学试卷含解析

2025届吉林省长春市高三第一次调研测试数学试卷含解析

2025届吉林省长春市高三第一次调研测试数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知01a b <<<,则( )A .()()111bba a ->- B .()()211b ba a ->- C .()()11ab a b +>+ D .()()11a ba b ->-2.已知数列{}n a 的前n 项和为n S ,11a =,22a =且对于任意1n >,*n N ∈满足()1121n n n S S S +-+=+,则( ) A .47a =B .16240S =C .1019a =D .20381S =3.已知F 为抛物线2:8C y x =的焦点,点()1,A m 在C 上,若直线AF 与C 的另一个交点为B ,则AB =( )A .12B .10C .9D .84.已知111M dx x =+⎰,20cos N xdx π=⎰,由程序框图输出的S 为( )A .1B .0C .2πD .ln 25.下列函数中,在区间()0,∞+上为减函数的是( )A .1y x =+B .21y x =-C .12xy ⎛⎫= ⎪⎝⎭D .2log y x =6.已知函数()f x 的导函数为()f x ',记()()1f x f x '=,()()21f x f x '=,…,()()1n n f x f x +'=(n ∈N *). 若()sin f x x x =,则()()20192021f x f x += ( )A .2cos x -B .2sin x -C .2cos xD .2sin x7.设函数()()f x x R ∈满足()(),(2)()f x f x f x f x -=+=,则()y f x =的图像可能是A .B .C .D .8.若复数z 满足i 2i z -=,则z =( ) A .2B .3C .2D .59.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 10.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )A .B .C .D .11.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A 3B .51)C .5D .412.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( ) A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆二、填空题:本题共4小题,每小题5分,共20分。

陕西省西安市第一中学2023-2024学年高三考前模拟考试文科数学试题

陕西省西安市第一中学2023-2024学年高三考前模拟考试文科数学试题

陕西省西安市第一中学2023-2024学年高三考前模拟考试文科数学试题一、单选题1.已知集合{}17A x x =-<<,{}09B x x =<<,则A B ⋃=( ) A .()1,0- B .()1,9-C .()0,7D .()0,92.若复数z =z =( ) ABC .5D .103.已知直线0Ax By C ++=与直线23y x =-垂直,则( ) A .20A B =-≠ B .20A B =≠ C .20B A =-≠D .20B A =≠4.若0,a b ≥∈R,则化简2log 322+ ) A .3a b ++ B .3a b ++ C .2a b ++D .2a b ++5.若从小到大排列的样本数据3,5,7,8,9,x 的平均数与极差相等,则x =( ) A .10B .11C .12D .136.若x ,y 满足约束条件0,30,20,x x y x y ≥⎧⎪+-≤⎨⎪-≤⎩则2z x y =+得取值范围是( )A .[]0,3B .[)3,+∞C .[]0,5D .[)5,+∞7.已知圆柱的底面直径为2,它的两个底面的圆周都在同一个表面积为20π的球面上,该圆柱的体积为( ) A .8πB .6πC .5πD .4π8.已知函数()()cos 2210f x x x ωωω=+>的最小正周期为π,则()f x 的图象的一个对称中心为( )A .π,012⎛⎫- ⎪⎝⎭B .π,012⎛⎫ ⎪⎝⎭C .π,112⎛⎫- ⎪⎝⎭D .π,112⎛⎫ ⎪⎝⎭9.小李到长途客运站准备乘坐客车去某地,有甲、乙两个公司的客车可以选择,已知甲公司的下一趟客车将在15分钟内的某个时刻发车,乙公司的下一趟客车将在20分钟内的某个时刻发车,则他等车时间不超过8分钟的概率为( )A .35B .1625C .1825 D .4510.若函数()33f x x x a =-+在区间()0,2内有两个零点,则实数a 的取值范围是( )A .()0,2B .()2,+∞C .()0,1D .()1,+∞11.如图所示,在六面体ABEDC 中,22CB CD CA ===,AB DE BE AD ===BD AE ==CE =( )A .1B .3 C.D .412.已知双曲线22:1169x y C -=的左、右顶点分别为12,,A A P 是C 右支上一点,直线12,PA PA 与直线2x =的交点分别为,M N ,记12,PA A PMN V V 的外接圆半径分别为12,R R ,则12R R 的最大值为( )ABCD二、填空题13.已知椭圆C :()222104x y a a +=>的焦距为C 的离心率为.14.已知向量(),a m m =r,m ∈R ,()0,2b =r ,则a b +r r 的最小值为.15.已知函数()31log sin 21ax x f x x -=⋅+的图象关于y 轴对称但不关于坐标原点对称,则实数=a .16.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a =()3cos B c b A =-,则ABC V 面积的最大值为.三、解答题17.某高科技公司组织大型招聘会,全部应聘人员的笔试成绩统计如图所示:(1)求m 的值,并估计全部应聘人员笔试成绩的中位数;(2)该公司2020—2024年每年招聘的新员工人数逐年增加,且这五年招聘的新员工总人数为500,若用这五年的数据求出每年招聘的新员工人数y 关于年份代码x (x =年份-2019)的线性回归方程为$2y bx =-,请根据此回归模型预测该公司2026年招聘的新员工人数是否会超过250.18.记n S 为等差数列{}n a 的前n 项和,已知315S =,535S =. (1)求{}n a 的通项公式; (2)设2nn na b =,求数列{}n b 的前n 项和n T . 19.已知四棱锥S ABCD -如图所示,其中四边形ABCD 为梯形,SAB △为等边三角形,且AD ⊥平面SAB ,BC ⊥平面SAB ,M 为棱SC 的中点,22SB BC AD ===.(1)求证://DM 平面SAB ; (2)求点M 到平面SAD 的距离.20.已知1,14P ⎛⎫ ⎪⎝⎭为抛物线C :()220y px p =>上的一点,直线x my n =+交C 于A ,B 两点,且直线PA ,PB 的斜率之积为2. (1)求C 的准线方程;(2)求34m n ⎛⎫- ⎪⎝⎭的最小值.21.已知函数()2e 2xx f x a =++.(1)若4a =-,求()f x 的极值;(2)若0a >,不相等的实数,m n 满足()()228f m f n m n +=++,求证:0m n +<.22.已知平面直角坐标系xOy 中,直线l 的参数方程为12,22x t y t =+⎧⎨=-⎩(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=. (1)求l 的极坐标方程以及C 的参数方程;(2)已知直线m 的倾斜角为锐角α,m 与l 交于点M ,m 与C 交于O ,N 两点,若3OM ON ⋅=,求α.23.已知函数()263f x x x =-++. (1)求不等式()10f x >的解集;(2)记()f x 的最小值为m ,若a ,b ,c 为正数且1a b c ++=,。

2021-2022年高三上学期12月月考数学试卷(文科)含解析

2021-2022年高三上学期12月月考数学试卷(文科)含解析

2021年高三上学期12月月考数学试卷(文科)含解析一、选择题(每小题5分,共计50分)1.设i是虚数单位,复数( )A.3﹣2i B.3+2i C.2﹣3i D.2+3i2.集合A={x|x2﹣a≥0},B={x|x<2},若C R A⊆B,则实数a的取值范围是( ) A.(﹣∞,4] B.[0,4] C.(﹣∞,4)D.(0,4)3.已知a0=20.5,b=log32,c=log20.1,则( )A.a<b<c B.c<a<b C.c<b<a D.b<c<a4.下列四个结论:①若x>0,则x>sinx恒成立;②命题“若x﹣sinx=0则x=0”的逆命题为“若x≠0则x﹣sinx≠0”;③“命题p或q为真”是“命题p且q为真”的充分不必要条件;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”.其中正确结论的个数是( )A.1个B.2个C.3个D.4个5.直线x+my+1=0与不等式组表示的平面区域有公共点,则实数m的取值范围是( )A.[,]B.[﹣,﹣]C.[,3] D.[﹣3,﹣]6.已知某几何体的三视图,则该几何体的体积是( )A.12 B.24 C.36 D.487.设0<a<1,则函数y=的图象大致为( )A.B.C.D.8.已知向量=(0,sinx),=(1,2cosx),函数f(x)=•,g(x)=2+2﹣,则f(x)的图象可由g(x)的图象经过怎样的变换得到( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度9.已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(,),则sinx0的值为( )A. B. C. D.10.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是( )A.(0,)B.(,e)C.(0,]D.[,)二、解答题(每小题5分共计25分)11.已知sinα﹣cosα=,α∈(0,π),tanα=__________.12.已知平面向量=(1,2),=(﹣2,m),且⊥,则2+3=__________.13.函数y=lg(1﹣)+的定义域是__________.14.设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且的值为__________.15.给出下列四个命题:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;②a、b、c是空间中的三条直线,a∥b的充要条件是a⊥c且b⊥c;③命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题;④对任意实数x,有f(﹣x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.其中的真命题是__________.(写出所有真命题的编号)三、解答题:16.已知函数f(x)=sinωxcosωx﹣cos2ωx﹣(ω>0,x∈R)的图象上相邻两个最高点的距离为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,sinB=3sinA,求a,b的值.17.已知数列{a n}前n项和S n满足:2S n+a n=1(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,数列{b n}的前n项和为T n,求证:T n<.18.已知函数.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值,并求出相应的x的值.19.如图正方形ABCD的边长为ABCD的边长为,四边形BDEF是平行四边形,BD与AC 交于点G,O为GC的中点,平面ABCD.(I)求证:AE∥平面BCF;(Ⅱ)若,求证CF⊥平面AEF.20.(13分)已知函数f(x)=lnx﹣mx,m∈R(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≤﹣2m+1在[1,+∞)上恒成立,求实数m的取值范围.21.(14分)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.xx山东省潍坊市寿光五中高三(上)12月月考数学试卷(文科)一、选择题(每小题5分,共计50分)1.设i是虚数单位,复数( )A.3﹣2i B.3+2i C.2﹣3i D.2+3i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用复数的运算法则即可得出.【解答】解:复数===3﹣2i,故选:A.【点评】本题考查了复数的运算法则,属于基础题.2.集合A={x|x2﹣a≥0},B={x|x<2},若C R A⊆B,则实数a的取值范围是( )A.(﹣∞,4]B.[0,4]C.(﹣∞,4)D.(0,4)【考点】补集及其运算;集合的包含关系判断及应用.【专题】集合.【分析】根据集合的补集关系进行求解即可.【解答】解:∵A={x|x2﹣a≥0}={x|x2≥a},∴C R A={x|x2≤a},若a<0,则C R A=∅,满足C R A⊆B,若a≥0,则C R A={x|x2<a}={x|﹣<x<},若C R A⊆B,则≤2,解得0≤a≤4,综上a≤4,故选:A【点评】本题主要考查集合的基本运算和集合关系的应用,注意分类讨论.3.已知a0=20.5,b=log32,c=log20.1,则( )A.a<b<c B.c<a<b C.c<b<a D.b<c<a【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用指数函数和对数函数的单调性即可得出.【解答】解:∵a=20.5>20=1,0<b=log32<log33=1,c=log20.1<log21=0.∴c<b<a.故选:C.【点评】本题考查了指数函数和对数函数的单调性,属于基础题.4.下列四个结论:①若x>0,则x>sinx恒成立;②命题“若x﹣sinx=0则x=0”的逆命题为“若x≠0则x﹣sinx≠0”;③“命题p或q为真”是“命题p且q为真”的充分不必要条件;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”.其中正确结论的个数是( )A.1个B.2个C.3个D.4个【考点】命题的真假判断与应用.【专题】规律型;探究型;构造法;导数的概念及应用;简易逻辑.【分析】令f(x)=x﹣sinx,利用导数分析其单调性,可判断①;写出原命题的逆命题,可判断②;根据充要条件的定义,可判断③;写出原命题的否定,可判断④.【解答】解:令f(x)=x﹣sinx,则f′(x)=1﹣cosx≥0恒成立,故f(x)=x﹣sinx在R上为增函数,故x>0时,f(x)>f(0)=0,即x>sinx恒成立,故①正确;命题“若x﹣sinx=0,则x=0”的逆命题为“若x=0,则x﹣sinx=0”,故②错误;“命题p或q为真”时,“命题p且q为真”不一定成立,“命题p且q为真”时,“命题p或q为真”成立,故“命题p或q为真”是“命题p且q为真”的必要不充分条件,故③错误;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”,故正确.其中正确结论的个数是2个,故选:B【点评】本题考查的知识点是全称命题的否定,四种命题,复合命题,函数的单调性,难度中档.5.直线x+my+1=0与不等式组表示的平面区域有公共点,则实数m的取值范围是( )A.[,]B.[﹣,﹣]C.[,3] D.[﹣3,﹣]【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.【解答】解:即直线x+my+1=0过定点D(﹣1,0)作出不等式组对应的平面区域如图:当m=0时,直线为x=﹣1,此时直线和平面区域没有公共点,故m≠0,x+my+1=0的斜截式方程为y=x,斜率k=,要使直线和平面区域有公共点,则直线x+my+1=0的斜率k>0,即k=>0,即m<0,满足k CD≤k<k AB,此时AB的斜率k AB=2,由解得,即C(2,1),CD的斜率k CD==,由,解得,即A(2,4),AD的斜率k AD==,即≤k≤,则≤≤,解得﹣3≤m≤﹣,故选:D.【点评】本题主要考查线性规划以及斜率的应用,利用数形结合是解决本题的关键.6.已知某几何体的三视图,则该几何体的体积是( )A.12 B.24 C.36 D.48【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】利用三视图判断几何体的形状,通过三视图是数据,求出几何体的体积即可.【解答】解:三视图复原的几何体是底面为边长4、3的矩形,高为3的棱锥,高所在棱垂直底面矩形的一个得到,所以棱锥的体积为:=12.故选:A.【点评】本题主要考查关于“几何体的三视图”与“几何体的直观图”的相互转化的掌握情况,同时考查空间想象能力.7.设0<a<1,则函数y=的图象大致为( )A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】利用0<a<1,判断a x,x>0时的范围,以及x<0时的范围,然后求解a x﹣1的范围,倒数的范围,即可判断函数的图象.【解答】解:因为0<a<1,x>0时,0<a x<1,﹣1<a x﹣1<0,<﹣1,x<0时,a x>1,a x﹣1>0,>0,观察函数的图象可知:B满足题意.故选:B.【点评】本题考查指数函数的图象,解题时要认真审题,仔细解答,注意合理地进行等价转化,注意函数的值域以及指数函数的性质.8.已知向量=(0,sinx),=(1,2cosx),函数f(x)=•,g(x)=2+2﹣,则f(x)的图象可由g(x)的图象经过怎样的变换得到( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换;平面向量数量积的运算.【专题】平面向量及应用.【分析】由题意利用两个向量的数量积公式、诱导公式可得函数f(x)=sin2x,g(x)=sin2(x+),再根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:由题意可得函数f(x)=•=(2sinxcosx)=sin2x,g(x)=2+2﹣=sin2x+1+4cos2x﹣=3cos2x﹣=cos2x=sin(2x+)=sin2(x+),故把g(x)的图象向右平移个单位长度,可得f(x)的图象,故选:B.【点评】本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.9.已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(,),则sinx0的值为( )A. B. C. D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,求出函数的解析式.再由f (x0)=3求出sin(x0+ )的值,可得cos(x0+ )的值,再由两角差的正弦公式求得sinx0 =sin[(x0+ )﹣]的值.【解答】解:由函数的图象可得A=5,且=,解得ω=1再由五点法作图可得1•+φ=,解得φ=.故函数的解析式为f(x)=5sin(x+ ).再由f (x0)=3,x0∈(,),可得5sin(1•x0+ )=3,解得sin(x0+ )=,故有cos(x0+ )=﹣,sinx0 =sin[(x0+ )﹣]=sin(x0+ )cos﹣cos(x0+ )sin=﹣(﹣)=.故选A.【点评】本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,两角差的正弦公式的应用,属于中档题.10.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是( )A.(0,)B.(,e)C.(0,]D.[,)【考点】根的存在性及根的个数判断;函数零点的判定定理.【专题】函数的性质及应用.【分析】首先,画出函数f(x)=|lnx|的图象,然后,借助于图象,结合在区间(0,3]上有三个零点,进行判断.【解答】解:函数f(x)=|lnx|的图象如图示:当a≤0时,显然,不合乎题意,当a>0时,如图示,当x∈(0,1]时,存在一个零点,当x>1时,f(x)=lnx,可得g(x)=lnx﹣ax,(x∈(1,3])g′(x)==,若g′(x)<0,可得x>,g(x)为减函数,若g′(x)>0,可得x<,g(x)为增函数,此时f(x)必须在[1,3]上有两个零点,∴解得,,在区间(0,3]上有三个零点时,,故选D.【点评】本题重点考查函数的零点,属于中档题,难度中等.二、解答题(每小题5分共计25分)11.已知sinα﹣cosα=,α∈(0,π),tanα=﹣1.【考点】同角三角函数间的基本关系.【专题】计算题;三角函数的求值.【分析】已知等式左边提取,利用两角和与差的正弦函数公式化简,求出sin(α﹣)的值为1,由α的范围,利用特殊角的三角函数值求出α的度数,即可求出tanα的值.【解答】解:∵sinα﹣cosα=sin(α﹣)=,∴sin(α﹣)=1,∵α∈(0,π),∴α﹣=,即α=,则tanα=﹣1.【点评】此题考查了同角三角函数间的基本关系,特殊角的三角函数值,以及两角和与差的正弦函数公式,熟练掌握公式及基本关系是解本题的关键.12.已知平面向量=(1,2),=(﹣2,m),且⊥,则2+3=(﹣4,7).【考点】平面向量的坐标运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】由向量=(1,2),=(﹣2,m),且⊥,求出m的值,则2+3的答案可求.【解答】解:∵向量=(1,2),=(﹣2,m),且⊥,∴﹣2+2m=0,解得m=1,则2+3=2×(1,2)+3×(﹣2,1)=(﹣4,7).故答案为:(﹣4,7).【点评】本题考查了平面向量数量积的运算,考查了平面向量的坐标运算,是基础题.13.函数y=lg(1﹣)+的定义域是[log23,+∞).【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据函数成立的条件,即可求出函数的定义域.【解答】解:要使函数有意义,则,即,∴x≥log23,即函数的定义域为[log23,+∞),故答案为:[log23,+∞)【点评】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础.14.设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且的值为.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积.【专题】空间位置关系与距离.【分析】设两个圆柱的底面半径分别为R,r,高分别为H,h,由=,得=,由它们的侧面积相等,得=,由此能求出.【解答】解:设两个圆柱的底面半径分别为R,r,高分别为H,h,∵=,∴=,∵它们的侧面积相等,∴=1,∴=,∴==()2×=.故答案为:.【点评】本题考查两个圆柱的体积的比值的求法,是中档题,解题时要注意圆柱的体积和侧面积计算公式的合理运用.15.给出下列四个命题:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;②a、b、c是空间中的三条直线,a∥b的充要条件是a⊥c且b⊥c;③命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题;④对任意实数x,有f(﹣x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.其中的真命题是①④.(写出所有真命题的编号)【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】①利用命题的否定即可判断出;②由a⊥c且b⊥c可得a∥b或相交或为异面直线,另一方面由a∥b,推不出a⊥c,b⊥c,即可判断出;③在△ABC中,A>B⇔a>b,由正弦定理可得:,可得sinA>sinB.④利用偶函数的性质即可得出.【解答】解:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”,正确;②a、b、c是空间中的三条直线,由a⊥c且b⊥c可得a∥b或相交或为异面直线,由a∥b,推不出a⊥c,b⊥c,因此“a⊥c且b⊥c”是a∥b的既不充分也不必要条件,因此②不正确;③在△ABC中,由A>B⇔a>b,由正弦定理可得:,因此sinA>sinB.可知逆命题为真命题,因此不正确;④对任意实数x,有f(﹣x)=f(x),可知函数f(x)是偶函数.由当x>0时,f′(x)>0,则当x<0时,f′(x)<0.正确.综上可知:只有①④正确.故答案为:①④.【点评】本题综合考查了空间中的线线位置关系、三角形的边角关系、函数的奇偶性单调性、简易逻辑等基础知识与基本技能方法,属于基础题.三、解答题:16.已知函数f(x)=sinωxcosωx﹣cos2ωx﹣(ω>0,x∈R)的图象上相邻两个最高点的距离为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,sinB=3sinA,求a,b的值.【考点】余弦定理;两角和与差的正弦函数;正弦函数的单调性.【专题】解三角形.【分析】(Ⅰ)f(x)解析式利用二倍角的正弦、余弦函数公式化简,整理为一个角的正弦函数,根据题意确定出ω的值,确定出f(x)解析式,利用正弦函数的单调性求出函数f(x)的单调递增区间即可;(Ⅱ)由f(C)=0,求出C的度数,利用正弦定理化简sinB=3sinA,由余弦定理表示出cosC,把各自的值代入求出a与b的值即可.【解答】解:f(x)=sin2ωx﹣(1+cos2ωx)﹣=sin(2ωx﹣)﹣1,∵f (x )图象上相邻两个最高点的距离为π,∴=π,即ω=1,则f (x )=sin (2x ﹣)﹣1,(Ⅰ)令﹣+2k π≤2x ﹣≤+2k π,k ∈Z ,得到﹣+k π≤x ≤k π+,k ∈Z ,则函数f (x )的单调递增区间为[﹣+k π,k π+],k ∈Z ;(Ⅱ)由f (C )=0,得到f (C )=sin (2C ﹣)﹣1=0,即sin (2x ﹣)=1,∴2C ﹣=,即C=,由正弦定理=得:b=,把sinB=3sinA 代入得:b=3a ,由余弦定理及c=得:cosC===,整理得:10a 2﹣7=3a 2,解得:a=1,则b=3.【点评】此题考查了正弦、余弦定理,以及二倍角的正弦、余弦函数公式,熟练掌握定理是解本题的关键.17.已知数列{a n }前n 项和S n 满足:2S n +a n =1(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =,数列{b n }的前n 项和为T n ,求证:T n <.【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】(I )利用递推式可得:.再利用等比数列的通项公式即可得出;(II )由(I )可得b n ==,;利用“裂项求和”即可得出数列{b n }的前n 项和为T n ,进而得到证明.【解答】(I )解:∵2S n +a n =1,∴当n ≥2时,2S n ﹣1+a n ﹣1=1,∴2a n +a n ﹣a n ﹣1=0,化为.当n=1时,2a 1+a 1=1,∴a 1=.∴数列{a n }是等比数列,首项与公比都为.∴.(II )证明:b n = ===,∴数列{b n }的前n 项和为T n =++…+=.∴T n <.【点评】本题考查了递推式的应用、等比数列的通项公式、“裂项求和”、不等式的证明,考查了推理能力与计算能力,属于中档题.18.已知函数.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值,并求出相应的x的值.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【专题】三角函数的图像与性质.【分析】(1)利用三角函数的倍角公式和诱导公式化简函数f(x),然后直接由周期公式求周期;(2)通过函数的图象的平移求解函数g(x)的解析式为g(x)=,由x的范围求出的范围,从而求得函数g(x)的最值,并得到相应的x的值.【解答】解:(1)由,得==.∴f(x)的最小正周期为π;(2)∵将f(x)的图象向右平移个单位,得到函数g(x)的图象,∴=.∵x∈[0,)时,,∴当,即时,g(x)取得最大值2;当,即x=0时,g(x)取得最小值.【点评】本题考查了三角函数的倍角公式及诱导公式,考查了三角函数的图象平移,训练了三角函数的最值得求法,是中档题.19.如图正方形ABCD的边长为ABCD的边长为,四边形BDEF是平行四边形,BD与AC 交于点G,O为GC的中点,平面ABCD.(I)求证:AE∥平面BCF;(Ⅱ)若,求证CF⊥平面AEF.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题;数形结合;数形结合法;空间位置关系与距离.【分析】(I)利用正方形,平行四边形的性质可得AD∥BC,DE∥BF,可证平面ADE∥平面BCF,即可证明AE∥平面BCF…5分(Ⅱ)由已知可证AC2=AF2+CF2,由勾股定理可得CF⊥AF,又FO⊥平面ABCD,可得FO⊥BD,又AC⊥BD,即可证明BD⊥平面AFC,结合EF∥BD,即可证明EF⊥CF,从而可证CF⊥平面AEF.【解答】证明:(I)∵四边形ABCD为正方形,四边形BDEF是平行四边形,∴AD∥BC,DE∥BF,∵AD∩DE=D,BC∩BF=B,∴平面ADE∥平面BCF,又∵AE⊂平面ADE,∴AE∥平面BCF…5分(Ⅱ)∵正方形ABCD边长为2,∴对角线AC=4,又∵O为GC中点,∴AO=3,OC=1又∵FO⊥平面ABCD,且FO=,∴AF2=AO2+OF2=9+3=12,CF2=OC2+OF2=1+3=4,又AC2=16,∴AC2=AF2+CF2,∴CF⊥AF,又FO⊥平面ABCD,BD⊂平面ABCD,∴FO⊥BD又∵AC⊥BD∴BD⊥平面AFC,又∵EF∥BD,∴EF⊥平面AFC∴EF⊥CF,又EF∩AF=F∴CF⊥平面AEF…12分【点评】本题主要考查了直线与平面垂直的判定,直线与平面平行的判定,考查了空间想象能力和推理论证能力,属于中档题.20.(13分)已知函数f(x)=lnx﹣mx,m∈R(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≤﹣2m+1在[1,+∞)上恒成立,求实数m的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】导数的概念及应用;导数的综合应用.【分析】(1)先对原函数求导数,然后通过解导数大于零或小于零的不等式得到原函数的单调区间;(2)先将原不等式归零化简,然后通过求函数的最值解决问题,只需利用导数研究函数的单调性即可,注意分类讨论.【解答】解:由题意可得,函数f(x)的定义域为(0,+∞),f′(x)=.(1)当m≤0时,f′(x)>0,此时函数f(x)在(0,+∞)上单调递增,当m>0时,令f′(x)>0,解得,令f′(x)<0,解得.所以当m≤0时,此时函数f(x)在(0,+∞)上单调递增;当m>0时,函数f(x)的单调递增区间为(0,),单调减区间为().(2)因为在[1,+∞)上恒成立.即在[1,+∞)上恒成立,令g(x)=,则,(1)当,即时,若,则g′(x)<0,g(x)是减函数,所以g(x)<g(1)=0,即g(x)≥0在[1,+∞)上不恒成立;(2)当,即时,若x>1,则g′(x)>0,g(x)是增函数,所以g(x)>g(1)=0,即,故当x≥1时,f(x)恒成立.综上所述,所求的正实数m的取值范围是.【点评】本题考查了利用导数研究函数的单调性的思路,以及不等式恒成立问题转化为函数的最值问题来解的基本思想.21.(14分)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.【考点】基本不等式在最值问题中的应用.【专题】不等式的解法及应用.【分析】(1)根据产品的利润=销售额﹣产品的成本建立函数关系;(2)利用基本不等式可求出该函数的最值,注意等号成立的条件.【解答】解:(1)由题意知,,将代入化简得:(0≤x≤a).…(2),当且仅当,即x=1时,上式取等号.…当a≥1时,促销费用投入1万元时,厂家的利润最大;当a<1时,在[0,a]上单调递增,所以x=a时,函数有最大值.即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元,厂家的利润最大.…【点评】本题主要考查了函数模型的选择与应用,以及基本不等式在最值问题中的应用,同时考查了计算能力,属于中档题.。

2022-2023学年宁夏银川市回民中学高三下学期开学考试数学(文科)试卷(解析版)

2022-2023学年宁夏银川市回民中学高三下学期开学考试数学(文科)试卷(解析版)

2022-2023学年高三下学期开学考试数学(文科)试卷一、单选题(本大题共12小题,共60.0分。

在每小题列出的选项中,选出符合题目的一项)1. 设集合A={x|−2<x<4},B={2,3,4,5},则A∩B=( )A. {2,3,4}B. {3,4}C. {2,3}D. {2}2. 已知a,b∈R,i是虚数单位,若(a+i)(1+i)=bi,则a+bi=( )A. −1+2iB. 1+2iC. 1−2iD. 1+i3. 已知向量a⃗,b⃗均为单位向量,若它们的夹角是60°,则|a⃗−3b⃗|等于( )A. √7B. √10C. √13D. 44. 已知在△ABC中,cos(A−π6)=−13,那么sin(A+π6)+cosA等于( )A. −√33B. √33C. −2√33D. 2√335. 根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与MN最接近的是(参考数据:lg3≈0.48)( )A. 1033B. 1053C. 1073D. 10936. 函数f(x)=12x2−xsin x的大致图象可能是( )A. B. C. D.7. 已知为等比数列,,,则A. B. C. D. 8. 如图,正方体ABCD−A1B1C1D1的棱长为2,线段D1B1上有两个动点E、F,且EF=√2,则下列结论中错误的是( )A. AA1//平面BEFB. 三棱锥E−FAB的体积为定值C. 二面角A−EF−C的余弦值为13D. 当EF⃗⃗⃗⃗⃗ =2FB1⃗⃗⃗⃗⃗⃗⃗⃗ 时,点A到E的距离为√69. “湖畔波澜飞,耕耘战鼓催”,合肥一六八中学的一草一木都见证了同学们的成长.某同学为了测量澜飞湖两侧C,D两点间的距离,除了观测点C,D外,他又选了两个观测点P1,P2,且P1P2=a,已经测得两个角∠P1P2D=α,∠P2P1D=β,由于条件不足,需要再观测新的角,则利用已知观测数据和下面三组新观测的角的其中一组,就可以求出C,D间距离的有组( )①∠DP1C和∠DCP1;②∠P1P2C和∠P1CP2;③∠P1DC和∠DCP1A. 0B. 1C. 2D. 310. 定义在R上的函数f(x)满足:f′(x)>1−f(x),f(0)=6,f′(x)是f(x)的导函数,则不等式e x f(x)>e x+5(其中e为自然对数的底数)的解集为( )A. (0,+∞)B. (−∞,0)∪(3,+∞)C. (−∞,0)∪(1,+∞)D. (3,+∞)11. 已知椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别是F1,F2,焦距为2c,若直线y=√3(x+c)与椭圆交于M点,且满足∠MF1F2=2∠MF2F1,则椭圆的离心率是( )A. √22B. √3−1C. √3−12D. √3212. 已知侧棱长为2√3的正四棱锥各顶点都在同一球面上.若该球的表面积为36π,则该正四棱锥的体积为 A.163B.8√23C. 83D.323二、填空题(本大题共4小题,共20.0分)13. 设等差数列{a n }的前n 项为S n ,若a 3=8,S 4=26,则公差d =________. 14. 已知实数x ,y 满足约束条件{x −2≥02x +y −7≤0x −y −2≤0,则z =3x +4y 的最大值是______.15. 已知f(x)是定义在R 上的偶函数,且f(x +4)=f(x −2).若当x ∈[−3,0]时,f(x)=6−x ,则f(919)= .16. 已知点M(1,2),点P 是双曲线C :x 29−y216=1左支上的动点,F 2为其右焦点,N 是圆D :(x +5)2+y 2=1的动点,则|PM|−|PN|的最小值为 .三、解答题(本大题共6小题,共70.0分。

湖南省高三下学期模拟考试(文科)数学试卷-附含答案解析

湖南省高三下学期模拟考试(文科)数学试卷-附含答案解析

湖南省高三下学期模拟考试(文科)数学试卷-附含答案解析班级:___________姓名:___________考号:___________一、单选题1.已知集合{}{}1,0,1,|1A B x N x =-=∈<,则A B ⋃=( ) A .{}0B .{}1,0-C .{1,-0,1}D .(),1-∞2.设m 、n 是两条不同的直线,α和β是两个不同的平面,则下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥n C .m ⊥α,n ⊂β且m ⊥n ,则α⊥βD .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β3.已知角α的终边经过点()sin150,cos30A ,则tan α=( )A B .C D .4.在中国传统佳节元宵节中赏花灯是常见的活动.某单位拟举办庆祝元宵的活动,购买了A ,B ,C 三种类型的花灯,其中A 种花灯4个,B 种花灯5个,C 种花灯1个,现从中随机抽取4个花灯,则A ,B ,C 三种花灯各至少被抽取一个的情况种数为( ) A .30B .70C .40D .845.已知函数()32233f x x ax x =-++是定义在R 上的奇函数,则函数()f x 的图像在点()()2,2f --处的切线的斜率为( ) A .27-B .25-C .23-D .21-6.如图为陕西博物馆收藏的国宝——唐金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.222:1(0)y C x b b-=>的右支与y 轴及平行于x 轴的两条直线围成的曲边四边形ABMN 绕y 轴旋转一周得到的几何体,若P 为C 右支上的一点,F 为C 的左焦点,则PF 与P 到C 的一条渐近线的距离之和的最小值为( )A .2B .3C .4D .57.已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为( )A .3B .4C .5D .68.已知函数()log ,03,40a x x f x x x >⎧=⎨+-≤<⎩(0a >且1a ≠).若函数()f x 的图象上有且只有两个点关于原点对称,则a 的取值范围是( ) A .10,4⎛⎫⎪⎝⎭B .()10,1,4⎛⎫⋃+∞ ⎪⎝⎭C .()1,11,4⎛⎫⋃+∞ ⎪⎝⎭D .()()0,11,4⋃二、多选题9.某中学为了解高三男生的体能情况,通过随机抽样,获得了200名男生的100米体能测试成绩(单位:秒),将数据按照分成9组,制成了如图所示的频率分布直方图.由直方图推断,下列选项正确的是( ) A .直方图中a 的值为0.38B .由直方图估计本校高三男生100米体能测试成绩的众数为13.75秒C .由直方图估计本校高三男生100米体能测试成绩不大于13秒的人数为54D .由直方图估计本校高三男生100米体能测试成绩的中位数为13.7秒10.已知狄利克雷函数()1,0,x f x x ⎧=⎨⎩是有理数是无理数,则下列结论正确的是( )A .()f x 的值域为[]0,1B .()f x 定义域为RC .()()1f x f x +=D .()f x 是奇函数11.已知拋物线2:2(0)C x py p =>的焦点F 与圆22:(2)1M x y ++=上点的距离的最小值为2,过点F 的动直线l 与抛物线C 交于,A B 两点,以,A B 为切点的抛物线的两条切线的交点为P ,则下列结论正确的是( ) A .2p =B .当l 与M 相切时,则l 的斜率是C .点P 在定直线上D .以AB 为直径的圆与直线1y =-相切12.已知正方体1111ABCD A B C D -的棱长为1,,M N 分别为1,BB AB 的中点.下列说法正确的是( )A .点M 到平面1ANDB .正方体1111ABCD A BCD - C .面1AND 截正方体1111ABCD A B C D -外接球所得圆的面积为34πD .以顶点A三、填空题13.已知角α终边与单位圆相交于点43,55P ⎛⎫- ⎪⎝⎭,则化简()()()()sin 3sin sin 2cos 4παπααπαπ+---+--得___________. 14.若512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式的常数项为________.15.若函数21()ln 22f x a x x bx =++在区间[1,2]上单调递增,则4a b +的最小值是__________. 16.定义x 是与实数x 的距离最近的整数(当x 为两相邻整数的算术平均值时,则x 取较大整数),如451,2,22,2.5333====‖‖‖‖,令函数()K x x =,数列{}n a 的通项公式为n a =其前n 项和为n S ,则4S =__________;2023S =__________.四、解答题17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足sin sin 1sin sin sin sin A b BB C b A c B+=++(1)求角C ;(2)CD 是ACB ∠的角平分线,若CD =,ABC的面积为c 的值. 18.记n S 为数列{}n a 的前n 项和,已知11,(1)n S a n n ⎧⎫=⎨⎬+⎩⎭的公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a ++⋅⋅⋅+< 19.如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,平面PAD ⊥平面ABCD ,PAD 是斜边PA的长为E ,F 分别是棱PA ,PC 的中点,M 是棱BC 上一点(1)求证:平面DFM ⊥平面PBC ;(2)若直线MF 与平面ABCD EDM 与平面DMF 夹角的余弦值. 20.国家发改委和住建部等六部门发布通知提到:2025年,农村生活垃圾无害化处理水平将明显提升.现阶段我国生活垃圾有填埋、焚烧、堆肥等三种处理方式,随着我国生态文明建设的不断深入,焚烧处理已逐渐成为主要方式.根据国家统计局公布的数据,对2013-2020年全国生活垃圾焚烧无害化处理厂的个数y (单位:座)进行统计,得到如下表格:(1)根据表格中的数据,可用一元线性回归模型刻画变量y 与变量x 之间的线性相关关系,请用相关系数加以说明(精确到0.01);(2)求出y 关于x 的经验回归方程,并预测2022年全国生活垃圾焚烧无害化处理厂的个数;(3)对于2035年全国生活垃圾焚烧无害化处理厂的个数,还能用(2)所求的经验回归方程预测吗?请简要说明理由.参考公式:相关系数()()niix x y y r --=∑ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为()()()121ˆˆˆ,nii i nii xx y y bay bx xx ==--==--∑∑ 参考数据:88882211112292,204,730348,12041i iii i i i i i y x y x y ========∑∑∑∑257385.84=≈ 21.已知函数()f x ax =(1)当1a =-时,则证明:当1x ≥x .(2)当0a =时,则对任意的1x ≥都有()22x m mf x x -≥-成立,求m 的取值范围.22.已知函数()()ln 1f x x ax =+-在12x =-处的切线的斜率为1.(1)求a 的值及()f x 的最大值. (2)证明:()1111ln 123n n++++>+()*N n ∈ (3)若()()e xg x b x =-,若()()f x g x ≤恒成立,求实数b 的取值范围.参考答案与解析1.C【分析】首先简化集合B ,然后根据并集的定义得结果. 【详解】B={x ∈N|x <1}={0}A ∪B={-1,0,1}∪{0}={-1,0,1}. 故选C .【点睛】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键. 2.B【分析】A. 利用空间直线的位置关系判断;B.利用线面垂直的性质定理判断;C.利用平面与平面的位置关系判断;D.利用平面与平面的位置关系判断.故选:B 3.C【分析】根据三角函数的定义直接求得答案.【详解】由题意可知12A ⎛ ⎝⎭则tan 2α=故选:C. 4.B【解析】由题可得,,A B C 三种花灯各至少被抽取一个的情况共有两种,列式计算即可. 【详解】由题意可知,,A B C 三种花灯各至少被抽取一个的情况共有两种:A 种花灯选2个,B 种花灯选1个,C 种花灯选1个; A 种花灯选1个,B 种花灯选2个,C 种花灯选1个.故不同的抽取方法有211121451451304070C C C C C C +=+=(种).故选:B. 5.D【分析】先由奇函数的性质求a ,再由导数的几何意义求切线的斜率.【详解】因为函数()32233f x x ax x =-++是定义在R 上的奇函数所以()()f x f x -=-,即()()()3232233233x a x x x ax x -+-+=----所以3232233233x ax x x ax x -+--= 所以0a =所以()323f x x x =-+,故()263f x x '=-+所以()221f '=-所以函数()f x 的图像在点()()2,2f --处的切线的斜率为21-. 故选:D. 6.C【分析】根据双曲线的离心率求得双曲线C 的方程,求得双曲线右焦点到渐近线的距离,结合双曲线的定义求得所求的最小值.【详解】由题意可知1,ca e c a====2224,2b c a b =-=∴= 双曲线方程为22:14y C x -=,一条渐近线方程为20x y -=焦点)2F 到渐近线20x y -=的距离为2==d 22PF a PF =+,2PF 与P 到C 的一条渐近线的距离之和的最小值为2d =所以PF 与P 到C 的一条渐近线的距离之和的最小值为224a +=. 故选:C 7.C【分析】根据三角函数的性质,利用整体思想,由单调区间与周期的关系,根据零点与对称轴之间的距离,表示所求参数,逐个检验取值,可得答案.【详解】由f (x )在186ππ⎛⎫⎪⎝⎭,上单调,即12618T ππ≥-,可得29T π≥,则ω≤9;∵4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴根据三角函数的图象可知零点与对称轴之间距离为:()1214T k ⨯-,k ∈N *.要求ω最大,则周期最小,∴()12142k T π-⨯=,则T 221k π=-;∴ω=2k ﹣1;当9ω=时,则由2πϕ≤,则4πϕ=-,可得()cos 94f x x π⎛⎫=- ⎪⎝⎭易知()f x 在5,1836ππ⎛⎫ ⎪⎝⎭上单减,在5,366ππ⎛⎫⎪⎝⎭上递增,不合题意; 当7ω=时,则由2πϕ≤,则4πϕ=,可得()cos 74f x x π⎛⎫=+ ⎪⎝⎭易知()f x 在3,1828ππ⎛⎫⎪⎝⎭上单减,在3,286ππ⎛⎫ ⎪⎝⎭上递增,不合题意;当5ω=时,则由2πϕ≤,则4πϕ=-,可得()cos 54f x x π⎛⎫=- ⎪⎝⎭易知()f x 在,186ππ⎛⎫⎪⎝⎭上单减,符合题意;故选:C . 8.C【分析】根据原点对称的性质,求出当40x -≤<时函数关于原点对称的函数,条件转化为函数()log a f x x =与|3|,(04)y x x =--+≤≤只有一个交点,作出两个函数的图象,利用数形结合的方法,再结合对数函数的性质进行求解即可【详解】当40x -≤<时,则函数|3|y x =+关于原点对称的函数为|3|y x -=-+,即|3|,(04)y x x =--+≤≤ 若函数()f x 的图象上有且只有两个点关于原点对称,则等价于函数()log a f x x =与|3|,(04)y x x =--+≤≤只有一个交点,作出两个函数的图象如图:若1a >时,则()log a f x x =与函数|3|,(04)y x x =--+≤≤有唯一的交点,满足条件; 当4x =时,则|43|1y =--+=-若01a <<时,则要使()log a f x x =与函数|3|,(04)y x x =--+≤≤有唯一的交点则要满足(4)1f <-,即1log 41log a a a -<-=解得故114a <<; 综上a 的取值范围是()1,11,4⎛⎫⋃+∞ ⎪⎝⎭故选:C 9.BC【分析】A :根据频率直方图中,所有小矩形的面积之和为1,进行求解判断即可; B :根据众数的定义,结合频率直方图进行判断即可; C :根据直方图,结合题意进行判断即可;D :根据中位数的定义,结合结合频率直方图进行判断即可. 【详解】A :因为频率直方图中,所有小矩形的面积之和为1所以(0.080.160.30.520.30.120.080.04)0.510.4a a ++++++++⨯=⇒= 因此本选项说法不正确;B :分布在[)13.5,14小组的矩形面积最大,因此众数出现在这个小组内,因此估计众数为13.51413.752+=,因此本选项说法正确; C :高三男生100米体能测试成绩不大于13秒的小组有:频率之和为:(0.080.160.3)0.50.27++⨯=因此估计估计本校高三男生100米体能测试成绩不大于13秒的人数为0.2720054⨯=,所以本选项说法正确;D :设中位数为b ,因此有(0.080.160.30.4)0.50.52(13.5)0.513.56b b +++⨯+-=⇒≈ 所以本选项说法不正确 故选:BC 10.BC【分析】根据函数的解析式逐个判定即可. 【详解】对A, ()f x 的值域为{}0,1,故A 错误. 对B, ()f x 定义域为R .故B 正确.对C,当x 是有理数时1x +也为有理数,当x 是无理数时1x +也为无理数故()()1f x f x +=成立.故C 正确. 对D, 因为()01f =,故D 错误. 故选:BC【点睛】本题主要考查了新定义函数性质的判定,属于基础题. 11.ACD【分析】根据题意求出p 的值,判断A ;根据直线和圆相切求出直线的斜率,判断B ;设直线方程,联立抛物线方程,可得根与系数的关系,求出以,A B 为切点的抛物线的两条切线的方程,结合根与系数的关系求得点P 坐标,判断C ;求出弦AB 的长以及弦AB 的中点到抛物线准线的距离,即可判断D.【详解】对于A ,由题意拋物线2:2(0)C x py p =>的焦点F 与圆22:(2)1M x y ++=上点的距离的最小值为2 即F 与圆上的点(0,1)-的距离为2,则||1,2OF p =∴=,A 正确;对于B ,过点(0,1)F 的动直线l 与M 相切时,则斜率必存在,设l 的方程为1y kx =+1=,解得k =B 错误;对于C ,设1122,,(()A x y B x y ),,由24x y =可得12y x '=联立214y kx x y =+⎧⎨=⎩ 消掉x 得2440x kx --= 216(1)0k ∆=+>所以12124,4x x k x x +==-设在点,A B 的切线斜率分别为12,k k ,则1212,22x x k k == 所以抛物线在点A 点的切线方程为111()2x y y x x -=-,即21124x x y x =-①同理可得在点B 的切线方程为 22224x x y x =-②由①②可得1222P x x x k +==,将122P x x x +=代入①得1214p x xy ==-所以P 点坐标为(21)k -,,即点P 在定直线1y =-上,C 正确;对于D ,由题意知12||42AB x x p k =++=+ AB 的中点的横坐标为124222x x kk +== 可得AB 的中点到抛物线准线1y =-的距离为121||2k AB +=则以线段AB 为直径的圆与抛物线C 的准线相切,故D 正确 故选:ACD 12.BCD【分析】A 选项由等体积法11M AND D AMN V V --=求得点M 到平面1AND 的距离即可;B 选项由外接球的直径为体对角线即可判断;C 选项由面1AND 经过外接球球心求得其外接圆圆心,即可求解;D 选项将球面与正方体的表面相交所得的曲线分为两类,按照弧长公式计算即可.【详解】1111211112,2242228AND ANM AD S S =⨯⨯==⨯⨯=,设M 到平面1AND 的距离为d ,由11M AND D AMN V V --=,即1111133AND ANM d S D A S ⨯⨯=⨯⨯,解得4d =,故A 错误;正方体1111ABCD A B C D -=外接球的体积为343π⨯=⎝⎭故B 正确;易得面1AND 经过正方体1111ABCD A B C D -其圆的面积为34π,故C 正确; 如图球面与正方体的六个面都相交,所得的交线分为两类:一类在顶点A 所在的三个面上,即面11AA B B 、面ABCD 和面11AA D D 上;另一类在不过顶点A 的三个面上,即面11BB C C 、面11CC D D 和面1111D C B A 上.在面11AA B B 上,交线为弧EF 且在过球心A 的大圆上因为1A E ==,则16A AE π∠=,同理6BAF π∠=,所以6EAF π∠=,故弧EF 的长为6π=,而这样的弧共有三条. 在面11BB C C 上,交线为弧FG 且在距球心为1的平面与球面相交所得的小圆上,此时,则小圆的圆心为B ,半径为1BF A E ==所以弧FG 2π=,这样的弧也有三条.于是,所得的曲线长33=D 正确. 故选:BCD. 13.34-##0.75-【分析】根据任意角三角函数的概念,可得3tan 4α=-,再利用诱导公式对原式化简,可得原式等于tan α,由此即可求出结果.【详解】因为角α终边与单位圆相交于点43,55P ⎛⎫- ⎪⎝⎭,所以3tan 4α=-又()()()()()()()()sin 2sin sin 3sin sin 2cos 4sin 2cos 4ππαπαπαπααπαπαπαπ⎡⎤⎡⎤++-++--⎣⎦⎣⎦=-+---++()()sin sin sin sin tan sin cos sin cos πααααααααα+-===--所以()()()()sin 3sin 3sin 2cos 44παπααπαπ+--=--+--.故答案为:34-14.40【分析】由1()(2)n a x x x x +-的展开式中的各项系数的和为2,令x =1,求得1a =,写出51(2)x x-的展开式的通项,分别乘以x ,1x再令x 的指数为0求得r 值,则展开式中的常数项可求. 【详解】解:由1()(2)n a x x xx+-的展开式中的各项系数的和为2 令1x =,得5(1)12a +=,得1a =. ∴5111()(2)()(2)n a x x x x xxxx+-=+-51(2)x x-的通项55521551(2)()(1)2,0,1,2,3,4,5r r r r r r r r T C x C x x r ---+=-=-⋅⋅⋅=.∴511()(2)x x x x+-的展开式中的通项有5625(1)2r r r r C x ---⋅⋅⋅和5425(1)2r r r r C x ---⋅⋅⋅.令420r -=,得2r =,则展开式中的常数项为2325(1)280C -⋅⋅=; 令620r -=,得3r =,则展开式中的常数项为3235(1)240C -⋅⋅=- 所以该展开式的常数项为80-40=40. 故答案为:40. 15.-4【分析】对函数求导可得:22()x bx af x x++'=,函数()f x 在区间[1,2]上单调递增等价于()f x '在区间[1,2]上大于等于零恒成立,即220x bx a ++≥在区间[1,2]上恒成立,利用二次函数的图像讨论出a ,b 的关系,再结合线性规划即可得到4a b +的最小值. 【详解】 函数21()ln 22f x a x x bx =++在区间[1,2]上单调递增 ∴22()20a x bx af x x b x x ++'=++=≥在区间[1,2]上恒成立,即220x bx a ++≥在区间[1,2]上恒成立,令2()2h x x bx a =++,其对称轴:x b =-当1b -≤,即1b ≥-时,则220x bx a ++≥在区间[1,2]上恒成立等价于:1(1)210b h a b ≥-⎧⎨=++≥⎩ 由线性规划可得:min (4)14(1)3a b +=+⨯-=-当2b -≥,即2b ≤-时,则220x bx a ++≥在区间[1,2]上恒成立等价于:2(2)440b h a b ≤-⎧⎨=++≥⎩ 由线性规划可得:min (4)44(2)4a b +=+⨯-=-当12b <-<,即21b -<<-时,则220x bx a ++≥在区间[1,2]上恒成立等价于:221()0b h b a b -<<-⎧⎨-=-≥⎩ 则244a b b b +≥+,由于24b b +在21b -<<-上的范围为(4,3)--,则443a b -<+<-综上所述4a b +的最小值是-4.【点睛】本题考查导数与函数单调性、线性规划、函数与不等式等知识,考查学生综合运用数学知识的能力,运算能力以及逻辑思维能力,属于难题. 16. 3400345【分析】根据数列新定义可知数列n a =()11111111111111,1,(,,,),(,,,,,),,(,,,)2222333333n nn,且满足第n 组有2n 个数,且每组中所有数之和为122n n⨯=,即可求解. 【详解】因为()()123411111,1,,,2122a a a a K K ======== 所以41111322S =+++=;根据()K x x =以此类推,将n a =()11111111111111,1,(,,,),(,,,,,),,(,,,)2222333333n nn第n 组有2n 个数,且每组中所有数之和为122n n⨯=设2023a =1n +组中则(22)20232n n+≤,可得(1)2023n n +≤解得44n ≤ 所以(20231140032444345452023S K=+=⨯+⨯=故答案为:3 40034517.(1)3C π=;(2)c =【分析】(1)先由正弦定理得21a b b c ba cb+=++,化简整理得222a b c ab +-=,再由余弦定理求得cos C ,即可求解;(2)先由面积求得8ab =,再由角平分线得AD b BD a=,结合平面向量得a bCD CA CB a b a b =+++,平方整理求得6a b +=,再由(1)中222a b c ab +-=即可求出c 的值.【详解】(1)由正弦定理得21a b b c ba cb+=++,即1a b b c a c +=++,整理得()()()()a a c b b c a c b c +++=++ 化简得222a b c ab +-=,由余弦定理得2221cos 22a b c C ab +-==,又()0,C π∈,则3C π=;(2)由面积公式得11sin 22ab C ab ==,解得8ab =,又CD 是ACB ∠的角平分线,则1sin261sin 26ACD BCDCA CD SCA AD SCB BD CB CD ππ⋅⋅⋅===⋅⋅⋅ 即AD b BD a =,则()b b a b CD CA AD CA AB CA CB CA CA CB a b a b a b a b=+=+=+-=+++++ 所以()()()2222222222a b a ab b CD CA CB CA CA CB CB a b a b a b a b a b ⎛⎫=+=+⋅+ ⎪++⎝⎭+++,即()()()2222222162132a b ab a b ab a b a b a b =+⋅⋅++++ 整理得()2221633a b a b =+,又8ab =,解得6a b +=,则()222220a b a b ab +=+-= 由(1)知22220812c a b ab =+-=-=,则c =.18.(1)2n a n =;(2)证明见解析.【分析】(1)利用题意建立等式求出n S ,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出通项即可;(2)先将2221111123n+++⋅⋅⋅+放大为11111223(1)n n +++⋅⋅⋅+⨯⨯-,然后裂项求和即可. 【详解】(1)因为11a =,所以11122S =⨯ 又因为(1)n S n n ⎧⎫⎨⎬+⎩⎭是公差为13的等差数列,所以11(1)(1)23n S n n n =+-+ 所以1(1)(21)6n S n n n =++.当2n ≥时,则21,1n n n a S S n n -=-==时,则11a =也满足上式.所以{}n a 的通项公式是2n a n =;(2)当1n =时,则1112a =<,不等式成立; 当2n ≥时,则22212111111111111231223(1)n a a a n n n++⋅⋅⋅+=+++⋅⋅⋅+<+++⋅⋅⋅+⨯⨯- 11111111222231n n n ⎛⎫⎛⎫⎛⎫=+-+-+⋅⋅⋅+-=-< ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.19.(1)证明见解析【分析】(1)根据面面垂直的性质定理可得PD ⊥平面ABCD ,从而PD BC ⊥,又BC CD ⊥,由线面垂直的判定定理得BC ⊥平面PCD ,则BC DF ⊥,又DF ⊥PC ,得DF ⊥平面PBC ,根据面面垂直的判定定理即可证得结论;(2)取CD 的中点N ,则//NF PD ,112NF PD ==结合(1)得NF ⊥平面ABCD ,结合线面角的定义得FMN ∠是直线MF 与平面ABCD 所成角,求得MN ,MC ,建立空间直角坐标系,分别求出平面EDM 、DMF 的法向量,利用空间向量夹角公式进行求解即可.【详解】(1)因为PAD 是斜边PA的长为PD DA ⊥ 2PD DA == 又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD DA =,PD ⊂平面PAD ∴PD ⊥平面ABCD ,又BC ⊂平面ABCD ,∴PD BC ⊥又BC CD ⊥,PD CD D ⋂=和,PD CD ⊂平面PCD ,∴BC ⊥平面PCD 因为DF ⊂平面PCD ,∴BC DF ⊥∵PD DC =,F 是棱PC 的中点,∴DF ⊥PC又⋂=PC CB C ,,PC CB ⊂平面PBC ,∴DF ⊥平面PBC . 又DF ⊂平面DFM ,∴平面DFM ⊥平面PBC . (2)如图,取CD 的中点N ,连接MN ,NF则//NF PD 112NF PD == 由(1)知PD ⊥平面ABCD ,∴NF ⊥平面ABCD ∴FMN ∠是直线MF 与平面ABCD 所成角 ∴1tan FMN MN ∠==∴MN 23MC =以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立空间直角坐标系设平面EDM 的法向量为(),,m a b c =,平面DMF 的法向量为(),,n x y z = 则02023DE m a cDM m a b⎧=⋅=+⎪⎨=⋅=+⎪⎩,令3a =-,则()3,1,3m =- 有02023DF n y zDM n x y ⎧=⋅=+⎪⎨=⋅=+⎪⎩,令3x =-,则()3,1,1n =--∴cos 19m n m n m n⋅⋅===⋅∴平面EDM 与平面DMF . 20.(1)答案见解析(2)ˆ41.12101.46yx =+ 513 (3)答案见解析【分析】(1)根据相关系数的公式,即可代入求值,根据相关系数的大小即可作出判断 (2)利用最小二乘法即可计算求解(3)根据相关关系不是确定的函数关系,而受多因素影响,即可求解. 【详解】(1)1234567892292573,8282x y +++++++====相关系数()()88niii ix x y y x y x yr ---⋅==∑∑957312041817270.9820.585.84-⨯⨯=≈≈⨯因为y 与x 的相关系数0.98r =,接近1,所以y 与x 的线性相关程度很高,可用线性回归模型拟合y 与x 的关系.(2)()()()8118222118ˆ8n iii ii i niii i x x y y x y x ybx x xx====---⋅==--∑∑∑∑957312041817272241.12814220484-⨯⨯==≈-⨯ 5739ˆˆ41.12101.4622ay bx =-≈-⨯= 所以y 与x 的线性回归方程为ˆ41.12101.46yx =+ 又2022年对应的年份代码10x =,当10x =时,则41.1210101.46512.6513ˆ6y=⨯+=≈ 所以预测2022年全国生活垃圾焚烧无害化处理厂的个数为513.(3)对于2035年全国生活垃圾焚烧无害化处理厂的个数,不能由(2)所求的线性回归方程预测,理由如下(说出一点即可):①线性回归方程具有时效性,不能预测较远情况;②全国生活垃圾焚烧无害化处理厂的个数有可能达到上限,一段时间内不再新建; ③受国家政策的影响,可能产生新的生活垃圾无害化处理方式. 21.(1)证明见解析. (2)[2,1]-【分析】(1)方法1:由分析法可证得结果. 方法2:换元法求()f x 的最大值即可证得结果.(2)设出不等号两边的函数,转化为对任意的1x ≥都有()()g x h x ≥成立,对参数分类讨论,分别研究两个函数的单调性、最值即可. 【详解】(1)方法1:∵1x ≥ ∴2(1)0x -≥ ∴原命题得证. 方法2:对称轴1t =,()h t 在[1,)+∞上单调递减 ∴max ()(1)0h t h ==∴()0h t ≤,即:当1x ≥时,则()0f x ≤恒成立即:当1x ≥x .(2)当0a =时,则()f x =即:对任意的1x ≥都有22x m x -≥成立令22()g x x m =-, ()h x x = 即:对任意的1x ≥都有()()g x h x ≥成立 当1x =时,则211m m -≥-,故21m -≤≤. ①当20m -≤≤时,则()g x 在[1,)+∞上单调递增∴2min ()(1)1g x g m ==-,∴2()1g x m ≥-()h x 在[1,)+∞上单调递减,∴max ()(1)1h x h m ==-,∴()1h x m ≤-此时2min max ()()20g x h x m m -=--≥∴min max ()()g x h x ≥即()()g x h x ≥,故20m -≤≤符合.②当01m <≤时,则由(1)知1x ∀≥x ≤恒成立∴1x ∀≥ mx x ≤∴1x ∀≥,0x ≤ 即:1x ∀≥ ()0≤h x又∵()g x 在[1,)+∞上单调递增,∴2min ()(1)1g x g m ==-,∴2()10g x m ≥-≥∴1x ∀≥ ()()g x h x ≥ ∴01m <≤符合. 综述:21m -≤≤【点睛】对于x D ∀∈,()()f x g x ≥恒成立求参数,可以先取特殊值确定参数的初步范围,再利用下面的两种方法.方法1:当x D ∈时,则min [()()]0f x g x -≥; 方法2:当x D ∈时,则min max ()()f x g x ≥. 求最值的方法:方法1:分离参数求最值;方法2:分类讨论研究函数的最值.22.(1)1a = max (0)f x =;(2)证明见解析;(3)[)0,∞+【分析】(1)由题意可得112f ⎛⎫'-= ⎪⎝⎭,可求出a 的值,然后利用导数求出函数的单调区间,从而可求出函数的最大值;(2)由(1)得()ln 1x x +≤,令()1N x k k *=∈,则有11ln 1k k ⎛⎫>+ ⎪⎝⎭,然后利用累加法可证得结论; (3)由于()()00,0f g b ==,所以()()f x g x ≤恒成立,则0b ≥,然后分0b =和0b >两种情况讨论即可.【详解】(1)函数的定义域为()()11,,1f x a x'-+∞=-+. 由已知得112f ⎛⎫'-= ⎪⎝⎭,得11112a -=⎛⎫+- ⎪⎝⎭,解得1a =. 此时()()()1ln 1,111x f x x x f x x x-'=+-=-=++. 当10x -<<时,则()0f x '>,当0x <时,则()0f x '<所以()f x 在(1,0)-上单调递增,()f x 在(0,)+∞单调递减所以()max ()00f x f ==;(2)由(1)得()ln 1x x +≤,当且仅当0x =时,则等号成立 令()1N x k k *=∈,则11ln 1k k ⎛⎫>+ ⎪⎝⎭ 所以()()1ln 1ln 1,2,3,,k k k n k >+-=将上述n 个不等式依次相加,得()1111ln 123n n++++>+; (3)因为()()00,0f g b ==,若()()f x g x ≤恒成立,则0b ≥①0b =时,则显然成立②0b >时,则由()()e x g x b x =-,得()()e 1x g x b '=-.当()1,0-时,则()()0,g x g x '<单减,当()0,x ∈+∞时,则()()0,g x g x '>单增所以()g x 在0x =处取得极小值,即最小值()()min ()00g x g b f x ==>≥,即()()f x g x ≤恒成立综合①②可知实数b 的取值范围为[)0,∞+.【点睛】关键点点睛:此题考查导数的综合应用,考查利用导数求函数的最值,考查利用导数证明不等式,考查利用导数解决不等式恒成立问题,第(3)问解题的关键是先由()()00,0f g b ==,从而可得0b ≥,然后分情况讨论即可得答案,考查数转化思想,属于较难题.。

高中高三数学上学期周测试卷 文(1.28,含解析)-人教版高三全册数学试题

高中高三数学上学期周测试卷 文(1.28,含解析)-人教版高三全册数学试题

2014-2015学年某某省某某高中高三(上)周测数学试卷(文科)(1.28)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题P:∀x>0,x3>0,那么¬P是()A.∃x≤0,x3≤0 B.∀x>0,x3≤0 C.∃x>0,x3≤0 D.∀x<0,x3≤0 2.已知集合M={x|x﹣2<0},N={x|x<a},若M⊆N,则实数a的取值X围是()A.[2,+∞)B.D.(﹣∞,0]3.设i是虚数单位,若复数是纯虚数,则m的值为()A.﹣3 B.﹣1 C.1 D.34.已知点P(a,b)是抛物线x2=20y上一点,焦点为F,|PF|=25,则|ab|=()A.100 B.200 C.360 D.4005.(5分)为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是()A.5,10,15,20,25 B.2,4,6,8,10C.1,2,3,4,5 D.7,17,27,37,476.(5分)(2015某某一模)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()A.B.C.D.7.如图所示的程序框图中,若f(x)=x2﹣x+1,g(x)=x+4,且h(x)≥m恒成立,则m 的最大值是()A.0 B.1 C.3 D.48.已知点P(x,y)的坐标满足条件,则x2+y2的最大值为()A.17 B.18 C.20 D.219.(5分)已知定义在R上的函数f(x)满足f(﹣3)=f(5)=1,f'(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示.则不等式f(x)<1的解集是()A.(﹣3,0)B.(﹣3,5)C.(0,5)D.(﹣∞,﹣3)∪(5,+∞)10.已知函数f(x)=Asin(πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则的值为()A.﹣1 B.C.D.211.(5分)(2015某某二模)设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+1的某一个对称中心,并利用对称中心的上述定义,可得到f(﹣2015)+f(﹣2014)+f(﹣2013)+…+f(2014)+f(2015)=()A.0 B.2014 C.4028 D.403112.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X围为()A.[3,6] B.[4,6] C.D.[2,4]二、填空题:每小题5分,共20分.13.(5分)已知数列{a n}是等比数列,若a4=,a6=6,则a10=.14.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数是.15.(5分)(2015某某二模)已知体积为的正三棱锥V﹣ABC的外接球的球心为O,满足,则该三棱锥外接球的体积为.16.(5分)(2015某某模拟)给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是.三、解答题:本大题共6道题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)(2015某某一模)在△ABC中,角A、B、C的对边分别为a,b,c,且满足,2bsinA=a,BC边上中线AM的长为.(Ⅰ)求角A和角B的大小;(Ⅱ)求△ABC的面积.18.(12分)(2014秋禅城区校级期中)年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:健康指数 2 1 0 ﹣160岁至79岁的人数120 133 32 1580岁及以上的人数9 18 14 9其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,﹣1代表“生活不能自理”.(Ⅰ)随机访问该小区一位80岁以下的老龄人,该老龄人生活能够自理的概率是多少?(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.19.(12分)(2016凉山州模拟)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.20.(12分)(2015某某一模)已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.21.(12分)(2014秋涪城区校级月考)已知函数f(x)=e x﹣ax﹣1(e为自然对数的底数),a>0.(Ⅰ)若函数f(x)恰有一个零点,证明:a a=e a﹣1;(Ⅱ)若f(x)≥0对任意x∈R恒成立,某某数a的取值集合.请考生在第22、23、24三题中任选一题作答,如果多做.则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.【选修4-1:几何证明选讲】22.(10分)(2016某某一模)如图所示,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,AB=5,求弦DE的长.【选修4-4:坐标系与参数方程】23.(2015某某一模)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t 为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.【选修4-5:不等式选讲】24.(2015某某一模)已知函数f(x)=m﹣|x﹣1|﹣2|x+1|.(Ⅰ)当m=5时,求不等式f(x)>2的解集;(Ⅱ)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,某某数m的取值X围.2014-2015学年某某省某某高中高三(上)周测数学试卷(文科)(1.28)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题P:∀x>0,x3>0,那么¬P是()A.∃x≤0,x3≤0 B.∀x>0,x3≤0 C.∃x>0,x3≤0 D.∀x<0,x3≤0 【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题P:∀x>0,x3>0,那么¬P是∃x>0,x3≤0.故选:C.【点评】本题考查命题的否定特称命题与全称命题的否定关系,基本知识的考查.2.已知集合M={x|x﹣2<0},N={x|x<a},若M⊆N,则实数a的取值X围是()A.[2,+∞)B.D.(﹣∞,0]【分析】解出集合M,根据子集的概念即可求得实数a的取值X围.【解答】解:M={x|x<2};∵M⊆N;∴a≥2;∴a的取值X围是[2,+∞).故选A.【点评】考查子集的概念,描述法表示集合,可借助数轴求解.3.设i是虚数单位,若复数是纯虚数,则m的值为()A.﹣3 B.﹣1 C.1 D.3【分析】利用复数代数形式的乘除运算化简,然后由实部等于0求得m的值.【解答】解:∵为纯虚数,∴m+3=0,即m=﹣3.故选:A.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.4.已知点P(a,b)是抛物线x2=20y上一点,焦点为F,|PF|=25,则|ab|=()A.100 B.200 C.360 D.400【分析】根据抛物线的定义,把到焦点的距离转化为到准线的距离,从而求出b,进而求ab 的值.【解答】解:根据抛物线是定义,准线方程为:y=﹣5,|PF|=b+5=25,∴b=20,又点P(a,b)是抛物线x2=20y上一点,∴a2=20×20,∴a=±20,∴|ab|=400,故选D.【点评】本题主要考查抛物线的定义,抛物线上的点到焦点的距离与到准线的距离相等.5.(5分)为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是()A.5,10,15,20,25 B.2,4,6,8,10C.1,2,3,4,5 D.7,17,27,37,47【分析】根据系统抽样的定义求出样本间隔进行判断即可.【解答】解:要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,则样本间隔为50÷5=10,则只有7,17,27,37,47满足条件.,故选:D.【点评】本题主要考查系统抽样的应用,根据条件求出样本间隔是解决本题的关键.比较基础.6.(5分)(2015某某一模)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()A.B.C.D.【分析】由三视图的作法规则,长对正,宽相等,对四个选项进行比对,找出错误选项.【解答】解:本题中给出了正视图与左视图,故可以根据正视图与俯视图长对正,左视图与俯视图宽相等来找出正确选项A中的视图满足三视图的作法规则;B中的视图满足三视图的作法规则;C中的视图不满足三视图的作法规则中的宽相等,故其为错误选项;D中的视图满足三视图的作法规则;故选C【点评】本题考查三视图的作法,解题的关键是掌握住三视图的作法规则即长对正,宽相等,高平齐,利用这些规则即可选出正确选项.7.如图所示的程序框图中,若f(x)=x2﹣x+1,g(x)=x+4,且h(x)≥m恒成立,则m 的最大值是()A.0 B.1 C.3 D.4【分析】由已知中的程序框图可得该程序的功能是计算并输出分段函数:h(x)=的值,数形结合求出h(x)的最小值,可得答案.【解答】解:由已知中的程序框图可得该程序的功能是:计算并输出分段函数:h(x)=的值,在同一坐标系,画出f(x)=x2﹣x+1,g(x)=x+4的图象如下图所示:由图可知:当x=﹣1时,h(x)取最小值3,又∵h(x)≥m恒成立,∴m的最大值是3,故选:C【点评】本题考查的知识点是程序框图,分段函数的应用,函数恒成立,难度中档.8.已知点P(x,y)的坐标满足条件,则x2+y2的最大值为()A.17 B.18 C.20 D.21【分析】作出不等式组对应的平面区域,利用数形结合即可得到结论.【解答】解:设z=x2+y2,则z的几何意义为区域内的点到原点的距离的平方,作出不等式组对应的平面区域如图:由图象可知,则OC的距离最大,由,解得,即C(3,3),则z=x2+y2=9+9=18,故选:B【点评】本题主要考查线性规划的应用,结合数形结合是解决本题的关键.9.(5分)已知定义在R上的函数f(x)满足f(﹣3)=f(5)=1,f'(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示.则不等式f(x)<1的解集是()A.(﹣3,0)B.(﹣3,5)C.(0,5)D.(﹣∞,﹣3)∪(5,+∞)【分析】由图象可以判断出f(x)的单调性情况,由f(﹣3)与f(5)的取值,即可得出答案.【解答】解:由f′(x)的图象可得,f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,又由题意可得,f(﹣3)=f(5)=1,∴f(x)<1的解集是(﹣3,5),故选:B.【点评】本题考查导函数图象与函数单调性的关系,考查学生灵活转化题目条件的能力,属于中档题.10.已知函数f(x)=Asin(πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则的值为()A.﹣1 B.C.D.2【分析】根据三角函数的图象和性质,求出函数的周期,利用向量的基本运算和向量的数量积定义即可得到结论.【解答】解:∵函数f(x)=sin(2πx+φ)的周期T==2,则BC==1,则C点是一个对称中心,则根据向量的平行四边形法则可知: =2, =∴=2=2||2=2×12=2.故选:D.【点评】本题主要考查向量的数量积运算,利用三角函数的图象和性质是解决本题的关键.11.(5分)(2015某某二模)设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+1的某一个对称中心,并利用对称中心的上述定义,可得到f(﹣2015)+f(﹣2014)+f(﹣2013)+…+f(2014)+f(2015)=()A.0 B.2014 C.4028 D.4031【分析】函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,1),即x1+x2=0时,总有f (x1)+f(x2)=2,再利用倒序相加,即可得到结论【解答】解:∵f(x)=x3+sinx+1,∴f′(x)=3x2﹣cosx,f''(x)=6x+sinx又∵f''(0)=0而f(x)+f(﹣x)=x3+sinx+1+﹣x3﹣sinx+1=2,函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,1),即x1+x2=0时,总有f(x1)+f(x2)=2,∴f(﹣2015)+f(﹣2014)+f(﹣2013)+…+f(2014)+f(2015)=2×2015+f(0)=4030+1=4031.故选:D.【点评】本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=0时,总有f (x1)+f(x2)=2,是解题的关键.12.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X围为()A.[3,6] B.[4,6] C.D.[2,4]【分析】通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将=2(b ﹣1)2+4,0≤b≤2,求出X围即可.【解答】解:以C为坐标原点,CA为x轴建立平面坐标系,则A(3,0),B(0,3),∴AB所在直线的方程为: =1,则y=3﹣x,设N(a,3﹣a),M(b,3﹣b),且0≤a≤3,0≤b≤3不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤2,∴=(a,3﹣a)(b,3﹣b)=2ab﹣3(a+b)+9,=2(b2﹣2b+3)=2(b﹣1)2+4,0≤b≤2,∴当b=0或b=2时有最大值6;当b=1时有最小值4.∴的取值X围为[4,6]故选B.【点评】熟练掌握通过建立直角坐标系、数量积的坐标运算是解题的关键.二、填空题:每小题5分,共20分.13.(5分)已知数列{a n}是等比数列,若a4=,a6=6,则a10= 96 .【分析】由已知求出等比数列的公比的平方,再代入等比数列的通项公式求得a10.【解答】解:在等比数列{a n}中,∵a4=,a6=6,∴,∴.故答案为:96.【点评】本题考查了等比数列的通项公式,是基础的计算题.14.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15人,则该班的学生人数是50 .【分析】由已知中的频率分布直方图,我们可以求出成绩低于60分的频率,结合已知中的低于60分的人数是15人,结合频数=频率×总体容量,即可得到总体容量.【解答】解:∵成绩低于60分有第一、二组数据,在频率分布直方图中,对应矩形的高分别为0.005,0.01,每组数据的组距为20则成绩低于60分的频率P=(0.005+0.010)×20=0.3,又∵低于60分的人数是15人,则该班的学生人数是=50.故答案为:50【点评】本题考查的知识点是频率分布直方图,结合已知中的频率分布直方图,结合频率=矩形的高×组距,求出满足条件的事件发生的频率是解答本题的关键.15.(5分)(2015某某二模)已知体积为的正三棱锥V﹣ABC的外接球的球心为O,满足,则该三棱锥外接球的体积为.【分析】由题意球的三角形ABC的位置,以及形状,利用球的体积,求出球的半径,求出棱锥的底面边长,利用棱锥的体积求出该三棱锥外接球的体积即可.【解答】解:正三棱锥D﹣ABC的外接球的球心O满足,说明三角形ABC在球O的大圆上,并且为正三角形,设球的半径为:R,棱锥的底面正三角形ABC的高为:底面三角形ABC的边长为: R正三棱锥的体积为:××(R)2×R=解得R3=4,则该三棱锥外接球的体积为=.故答案为:.【点评】本题考查球的内接体问题,球的体积,棱锥的体积,考查空间想象能力,转化思想,计算能力,是中档题.16.(5分)(2015某某模拟)给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是②③④.【分析】根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.【解答】解:对于①,若α是方程()x+sinx﹣1=0的一个解,则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,此时α<0,因此该方程存在小于0的实数解,得①不正确;对于②,原方程等价于()x﹣1=﹣sinx,当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1且用无穷多个x满足﹣sinx=﹣1,因此函数y=()x﹣1与y=﹣sinx的图象在[0,+∞)上有无穷多个交点因此方程()x+sinx﹣1=0有无数个实数解,故②正确;对于③,当x<0时,由于x≤﹣1时()x﹣1≥1,函数y=()x﹣1与y=﹣sinx的图象不可能有交点当﹣1<x<0时,存在唯一的x满足()x=1﹣sinx,因此该方程在(﹣∞,0)内有且只有一个实数解,得③正确;对于④,由上面的分析知,当x≤﹣1时()x﹣1≥1,而﹣sinx≤1且x=﹣1不是方程的解∴函数y=()x﹣1与y=﹣sinx的图象在(﹣∞,﹣1]上不可能有交点因此只要x0是该方程的实数解,则x0>﹣1.故答案为:②③④【点评】本题给出含有指数式和三角函数式的方程,讨论方程解的情况.着重考查了指数函数的单调性、三角函数的周期性和有界性、函数的值域求法等知识,属于中档题.三、解答题:本大题共6道题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)(2015某某一模)在△ABC中,角A、B、C的对边分别为a,b,c,且满足,2bsinA=a,BC边上中线AM的长为.(Ⅰ)求角A和角B的大小;(Ⅱ)求△ABC的面积.【分析】(Ⅰ)利用余弦定理表示出cosA,将已知等式变形后代入求出cosA的值,确定出角A的度数,将2bsinA=a利用正弦定理化简求出sinB的值,即可确定出角B的大小;(Ⅱ)由A=B,利用等角对等边得到AC=BC,设AC=BC=x,利用余弦定理列出关于x的方程,求出方程的解得到x的值,确定出AC与BC的长,再由sinC的值,利用三角形面积公式即可求出三角形ABC面积.【解答】解:(Ⅰ)由a2﹣b2﹣c2+bc=0得:a2﹣b2﹣c2=﹣bc,即b2+c2﹣a2=bc,∴由余弦定理得:cosA==,∵A为三角形内角,∴A=,由2bsinA=a,利用正弦定理化简得:2sinBsinA=sinA,即sinB=,则B=;(Ⅱ)由A=B,得到AC=BC=x,可得C=,由余弦定理得AM2=x2+﹣2x(﹣)=14,解得:x=2,则S△ABC=ACBCsinC=×2×2×=2.【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.18.(12分)(2014秋禅城区校级期中)年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:健康指数 2 1 0 ﹣160岁至79岁的人数120 133 32 1580岁及以上的人数9 18 14 9其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,﹣1代表“生活不能自理”.(Ⅰ)随机访问该小区一位80岁以下的老龄人,该老龄人生活能够自理的概率是多少?(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.【分析】(Ⅰ)求出该小区80岁以下的老龄人数,即可求解老龄人生活能够自理的概率.(Ⅱ)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.写出5人中抽取3人的基本事件总数,被访问的3位老龄人中恰有1位老龄人的个数,即可求解健康指数不大于0的概率.【解答】解:(Ⅰ)解:该社区80岁以下的老龄人共有120+133+32+15=300人,…(1分)其中生活能够自理的人有120+133+32=285人,…(2分)记“随机访问该小区一位80岁以下的老龄人,该老人生活能够自理”为事件A,则P(A)==.…(4分)(Ⅱ)根据表中数据可知,社区健康指数大于0的老龄人共有280人,不大于0的老龄人共有70人,…(5分)所以,按照分层抽样,被抽取的5位老龄人中,有位为健康指数大于0的,依次记为:a,b,c,d,有一位健康指数不大于0的,记为e.…(7分)从这5人中抽取3人的基本事件有:(a,b,c)(a,b,d)(a,b,e)(a,c,d)(a,c,e)(a,d,e)(b,c,d)(b,c,e)(b,d,e)(c,d,e)共10种,…(9分)其中恰有1位老龄人的健康指数不大于0的事件有:(a,b,e)(a,c,e)(a,d,e)(b,c,e)(b,d,e)(c,d,e)共6种,…(10分)记“被访问的3位老龄人中恰有1位老龄人的健康指数不大于0”为事件B,则P(B)=…(12分)【点评】本题考查分层抽样,古典概型概率公式的应用,基本知识的考查.19.(12分)(2016凉山州模拟)如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.(Ⅰ)证明:PA∥平面BMQ;(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.【分析】(1)连结AC交BQ于N,连结MN,只要证明MN∥PA,利用线面平行的判定定理可证;(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离.【解答】解:(1)连结AC交BQ于N,连结MN,因为∠ADC=90°,Q为AD的中点,所以N 为AC的中点.…(2分)当M为PC的中点,即PM=MC时,MN为△PAC的中位线,故MN∥PA,又MN⊂平面BMQ,所以PA∥平面BMQ.…(5分)(2)由(1)可知,PA∥平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离,所以V P﹣BMQ=V A﹣BMQ=V M﹣ABQ,取CD的中点K,连结MK,所以MK∥PD,,…(7分)又PD⊥底面ABCD,所以MK⊥底面ABCD.又,PD=CD=2,所以AQ=1,BQ=2,,…(10分)所以V P﹣BMQ=V A﹣BMQ=V M﹣ABQ=.,…(11分)则点P到平面BMQ的距离d=…(12分)【点评】本题考查了线面平行的判定定理的运用以及利用三棱锥的体积求点到直线的距离.20.(12分)(2015某某一模)已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ACBD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.【分析】(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.【解答】解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.,,所以,,==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.(12分)(2014秋涪城区校级月考)已知函数f(x)=e x﹣ax﹣1(e为自然对数的底数),a>0.(Ⅰ)若函数f(x)恰有一个零点,证明:a a=e a﹣1;(Ⅱ)若f(x)≥0对任意x∈R恒成立,某某数a的取值集合.【分析】(Ⅰ)求出函数的导数,通过导数为0,判断函数的单调性,利用函数的最小值证明a a=e a﹣1;(Ⅱ)利用(Ⅰ)函数的最小值,结合f(x)≥0对任意x∈R恒成立,构造函数,求出新函数的最小值利用恒成立,某某数a的取值集合.【解答】(Ⅰ)证明:由f(x)=e x﹣ax﹣1,得f'(x)=e x﹣a.…(1分)由f'(x)>0,即e x﹣a>0,解得x>lna,同理由f'(x)<0解得x<lna,∴f(x)在(﹣∞,lna)上是减函数,在(lna,+∞)上是增函数,于是f(x)在x=lna取得最小值.又∵函数f(x)恰有一个零点,则f(x)min=f(lna)=0,…(4分)即e lna﹣alna﹣1=0.…(5分)化简得:a﹣alna﹣1=0,即alna=a﹣1,于是lna a=a﹣1,∴a a=e a﹣1.…(6分)(Ⅱ)解:由(Ⅰ)知,f(x)在x=lna取得最小值f(lna),由题意得f(lna)≥0,即a﹣alna﹣1≥0,…(8分)令h(a)=a﹣alna﹣1,则h'(a)=﹣lna,由h'(a)>0可得0<a<1,由h'(a)<0可得a>1.∴h(a)在(0,1)上单调递增,在(1,+∞)上单调递减,即h(a)max=h(1)=0,∴当0<a<1或a>1时,h(a)<0,∴要使得f(x)≥0对任意x∈R恒成立,a=1.∴a的取值集合为{1}…(13分)【点评】本题考查函数的导数的应用,函数的最值的求法,考查逻辑推理能力,构造新函数是解题本题的关键.请考生在第22、23、24三题中任选一题作答,如果多做.则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.【选修4-1:几何证明选讲】22.(10分)(2016某某一模)如图所示,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,AB=5,求弦DE的长.【分析】(Ⅰ)由已知PG=PD,得到∠PDG=∠PGD,由切割弦定理得到∠PDA=∠DBA,进一步得到∠EGA=∠DBA,从而∠PFA=∠BDA.最后可得∠BDA=90°,说明AB为圆的直径;(Ⅱ)连接BC,DC.由AB是直径得到∠BDA=∠ACB=90°,然后由Rt△BDA≌Rt△ACB,得到∠DAB=∠CBA.再由∠DCB=∠DAB可推得DC∥AB.进一步得到ED为直径,则ED长可求.【解答】(Ⅰ)证明:∵PG=PD,∴∠PDG=∠PGD,由于PD为切线,故∠PDA=∠DBA,又∵∠EGA=∠PGD,∴∠EGA=∠DBA,∴∠DBA+∠BAD=∠EGA+∠BAD,从而∠PFA=∠BDA.又AF⊥EP,∴∠PFA=90°,则∠BDA=90°,故AB为圆的直径.(Ⅱ)解:连接BC,DC.由于AB是直径,故∠BDA=∠ACB=90°.在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而得Rt△BDA≌Rt△ACB,于是∠DAB=∠CBA.又∵∠DCB=∠DAB,∴∠DCB=∠CBA,故DC∥AB.∵AB⊥EP,∴DC⊥EP,∠DCE为直角,∴ED为直径,又由(1)知AB为圆的直径,∴DE=AB=5.【点评】本题考查了直线和圆的位置关系,考查了圆的切割线定理的应用,是中档题.【选修4-4:坐标系与参数方程】23.(2015某某一模)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t 为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.【分析】(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入即可得出.(II)把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d,再利用弦长公式可得|AB|=2,利用三角形的面积计算公式即可得出.【解答】解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2.∴圆心坐标为(1,﹣1),∴圆心极坐标为;(Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程:,∴圆心到直线l的距离,∴|AB|=2==,点P直线AB距离的最大值为,.【点评】本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.(2015某某一模)已知函数f(x)=m﹣|x﹣1|﹣2|x+1|.(Ⅰ)当m=5时,求不等式f(x)>2的解集;(Ⅱ)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,某某数m的取值X围.【分析】(Ⅰ)当m=5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由二次函数y=x2+2x+3=(x+1)2+2在x=﹣1取得最小值2,f(x)在x=﹣1处取得最大值m﹣2,故有m﹣2≥2,由此求得m的X围.【解答】解:(Ⅰ)当m=5时,,由f(x)>2可得①,或②,或③.解①求得﹣<x<﹣1,解②求得﹣1≤x<0,解③求得x∈∅,易得不等式即4﹣3x>2 解集为.(2)由二次函数y=x2+2x+3=(x+1)2+2,该函数在x=﹣1取得最小值2,因为在x=﹣1处取得最大值m﹣2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m﹣2≥2,求得m≥4..【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解;还考查了函数的恒成立问题,体现了转化的数学思想,属于中档题.。

2022年高考文科数学模拟测试试题、参考答案及评分细则

2022年高考文科数学模拟测试试题、参考答案及评分细则

2022年高考文科数学模拟测试试题注意事项:1.本试卷分为选择题和非选择题两部分,共7页。

2.答卷前,考生务必将自己的姓名、座号、准考证号分别填写在答题卡及答题纸上。

3.选择题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试卷上。

4.考试结束后,将答题卡和答题纸一并交回。

第Ⅰ卷 选择题(共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={}0,1,2,N={}2,x x a a M =∈,则集合M N =( )A 、{}0B 、{}0,1C 、{}1,2D 、{}0,22.函数44y sin x cos x =+的最小正周期是( ) A .2π B.4π C. 2π D. 4π3.若A 、B 、C 是锐角三角形ABC 的三个内角,向量p =(sinA ,cosA),q =(sinB ,−cosB),则p 与q 的夹角为( )A .锐角B .直角C .钝角D .以上都不对4.已知抛物线2x y =,则它的准线方程为( )A .14x =B .14x =-C .14y =D .14y =-5. 在等差数列{}n a 中,公差d=1,417a a 8+=,则24620a a a a ++++的值为( )A .40B .45C .50D .556.若P 为双曲线221916x y -=右支上一点,P 到右准线的距离为65,则点P 到双曲线左焦点的距离为( )A .1B .2C .6D .87.记函数xy 12-=+的反函数为y=g(x),则g(5)等于( )A .2B .-2C .-4D .48.某校高一、高二年级各有300人,高三年级有400人,现采用分层抽样抽取容量为50人的样本,那么高三年级应出人数为( )A .16B .40C .20D .259.a 2b 0=≠,且关于x 的方程2x a x a b 0++⋅=有实根,则a 与b 夹角的取值范围是( )A 、0,6π⎡⎤⎢⎥⎣⎦ B 、,3ππ⎡⎤⎢⎥⎣⎦ C 、2,33ππ⎡⎤⎢⎥⎣⎦ D 、,6ππ⎡⎤⎢⎥⎣⎦10.若实数x,y 满足x 2y 2x y 2≤⎧⎪≤⎨⎪+≥⎩,则x+2y 的最小值和最大值分别为( )A .2,6B .2,5C .3,6D .3,511.在正三棱柱111ABC A B C -中,若2AB =,11AA =,则点A 到平面1A BC 的距离为( )12、非零向量b OB a OA ==,,若点B 关于OA 所在直线的对称点为1B ,则向量1OB OB +为( )A、)(2a b a ⋅ B、)(a b a ⋅ C、a b a )(2⋅ D、a b a )(⋅第Ⅱ卷 非选择题(共90分)二.填空题(4×4′=16分):13.1212sin cos ππ-= ;14.已知n 为等差数列−4,−2,0,…,中的第8项,则二项式2(nx 展开式中的常数项是 ;15.若一个圆的圆心在抛物线24y x =的焦点上,且此圆与直线10x y ++=相切,则这个圆的方程是 ;16.已知m 、n 为直线,α,β为平面,给出下列命题:①//m n m n αα⊥⎧⇒⎨⊥⎩ ②//m m n n ββ⊥⎧⇒⎨⊥⎩ ③//m m ααββ⊥⎧⇒⎨⊥⎩ ④////m n m n αβαβ⊂⎧⎪⊂⇒⎨⎪⎩其中的正确命题序号是:三.解答题(满分74分):17(本题12分).已知(53cos ,cos )a x x =,(sin ,2cos )b x x =,记函数2()f x a b b =•+(1)求函数()f x 的最小正周期及最值; (2)当64x ππ≤≤时,求函数()f x 的值域.18(本题12分).甲、乙两人同时参加一次面试,已知在备选的10道试题中,甲能答对其中的6道,乙能答对其中的8道,规定每次考试都从备选题中随机抽出3道题进行测试,至少答对2道题才算通过。

河南省濮阳市第一高级中学2023届高三模拟质量检测文科数学试题

河南省濮阳市第一高级中学2023届高三模拟质量检测文科数学试题

河南省濮阳市第一高级中学2023届高三模拟质量检测文
科数学试题
学校:___________姓名:___________班级:___________考号:___________
总下载量y(万次)的数据,如下表:
.D
【分析】依题意可得()
f x的周期式,从而得到函数()
f x的图象
(]
Î-上的交点个数,数形
2,6
【详解】解:因为()
f x是定义在
则由图象可知两个函数的图象的交点个数为4个,即方程()()2
log 20f x x -+=的零点个数为4
个.故选:D.
8.B
【分析】先根据条件画出可行域,设z ax by =+,再利用几何意义求最值,将最大值转化为y 轴上的截距,只需求出直线z ax by =+,过可行域内的点(4,6)时取得最大值,从而得到一个关于a ,b 的等式,最后利用基本不等式求最小值即可.
【详解】解:不等式表示的平面区域如图所示阴影部分,
当直线0,0()ax by z a b +=>>过直线20x y -+=与直线360x y --=的交点(4,6)时,目标函数(0,0)z ax by a b =+>>取得最大2,
即231a b +=,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12周高三文科数学小测卷
知识点:三角函数、解三角形、向量
姓名: 班别: 学号: 成绩:
一、选择题(每小题5分,共35分)
1. 已知向量n ⋅=+==||),,2(),1,1(若,则n=( )
A .-3
B .-1
C .1
D .3
2. 已知tan 2α=,则22sin 1sin 2αα
+=( ) A .53 B .134- C .135 D .134
3. 已知函数x x f y sin )(=的一部分图象如右图所示,则函数)(x f 的表达式可以是( )
A .x sin 2
B .x cos 2
C .x sin 2-
D .x cos 2-
4. 两个非零向量a ,b 互相垂直,给出下列各式:
①a ·b =0;②a +b =a -b ;③|a +b|=|a -b |;④|a |2+|b |2=(a +b 2);
⑤(a +b )·(a -b )=0. 其中正确的式子有( )
A .2个
B .3个
C .4个
D .5个
5. 若把函数)(x f y =的图象沿x 轴向左平移4
π个单位,沿y 轴向下平移1个单位,然后再把图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数x y sin =的图象,则)(x f y =的解析式为( )
A .1)42sin(+-
=πx y B .1)22sin(+-=πx y C .1)421sin(-+=πx y D .1)2
21sin(-+=πx y 6. 已知向量1(1sin ,1),(,1sin ),2
θθ=-=+a b 且//a b ,则锐角θ等于( ) (A) 30︒ (B) 045 (C)60︒ (D) 75︒
7. 已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a b - |的最大值、最小值分别是( ) A.42、0 B.4、22 C. 4、0 D. 16、0
二、填空题(第小题5分,共20分)
8. 已知32tan(),tan(),tan()6765
αβαβππ-
=+=+则= . 9. 在△ABC 中,3=⋅,其面积23=S ,则角B 等于 . 10. 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若7,8,9a b c ===,则AC 边上的中线长为 .
11. 给出下面4个命题:
(1)x y tan =在第一象限是增函数;
(2)奇函数的图象一定过原点;
(3) "a>b>1"是"log a b<2"的充分但不必要条件.其中正确的
命题的序号是______.(把你认为正确的命题的序号都填上)
三、解答题(12分)
12. 已知向量(2sin ,cos )42x x m = ,(cos 4
x n = ,函数()f x m n =⋅ (1)求()f x 的最小正周期;
(2)若0x ≤≤π,求()f x 的最大值和最小值.
答案
1—7 DDDAB BC 8.1 9.4
3π 10.7 11.(3)
12. 解:(1)()2sin cos sin 2sin()4422223x x x x x x f x π===+
-------4分
()f x 的最小正周期4T π=.-------6分
(2) 0x π≤≤ 53236x πππ∴≤+≤ ,当232x ππ+=,即3x π=时,()f x 有最大值2; -------8分 当5236x ππ
+=,即x π=时,()f x 有最小值1 . --------12分。

相关文档
最新文档