数学建模中统计学常用方法
数学建模各种分析方法
现代统计学1.因子分析(Factor Analysis)因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息.运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。
2.主成分分析主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的.主成分分析一般很少单独使用:a,了解数据。
(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。
(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。
因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific fact or)之间也不相关,共同因子和特殊因子之间也不相关.4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。
5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。
数学建模10种常用算法
数学建模10种常用算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处参数估计C.F.20世纪60年代,随着电子计算机的。
参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。
数学建模中的统计方法介绍
维度归约
• 维度归约使用数据编码或变换,以便得到 原数据的归约或“压缩”表示。分为无损 和有损两种。
• 主要方法:
– 串压缩:无损,但只允许有限的数据操作。 – 小波变换(DWT):有损,适合高维数据。 – 主成分分析(PCA):有损,能更好地处理稀
* Smoothing by bin boundaries: - Bin 1: 4, 4, 4, 15 - Bin 2: 21, 21, 25, 25 - Bin 3: 26, 26, 26, 34
同济大学 数学系
• 回归:用一个函数(回归函数)拟合数据来光滑 数据。 –线性回归 –多元线性回归
• 聚类:将类似的值聚集为簇。检测离群点
–反映了每个数与均值相比平均相差的数值
同济大学 数学系
18
度量数据的离散程度…
• 盒图boxplot,也称箱线图 • 从下到上五条线分别表示最小值、下四分
位数Q1 、中位数、上四分位数Q3和最大值 • 盒的长度等于IRQ • 中位数用盒内的横线表示 • 盒外的两条线(胡须) 分别延伸到最小和
最大观测值。
同济大学 数学系
局部回归(Loess)曲线 • 添加一条光滑曲线到散布图
同济大学 数学系
数据清理
•现实世界的数据一般是不完整的、有噪 声的和不一致的。 •数据清理的任务:
填充缺失的值,光滑噪声并识别离群 点,纠正数据中的不一致。
同济大学 数学系
缺失值
• 忽略元组 • 人工填写空缺值 • 使用一个全局常量填充空缺值 • 使用属性的平均值填充空缺值 • 使用与给定元组属同一类的所有样本的平均
• 含噪声的
– 包含错误或存在偏离期望的离群值。
• 不一致的
数学建模 数理统计方法
数理统计方法数理统计的任务是以概率论为基础,根据试验的数据,对研究对象的客观规律性作出合理的估计与推断。
§1 数理统计的基本概念在数理统计中,我们把研究对象的全体称为总体,而把组成总体的每个基本单元称为个体。
要了解总体的规律性,必须对其中的个体进行统计、观测,一是对全部个体逐一进行观测,这样做当然对总体有充分的了解,但实际上这种方法往往是行不通的,而且也很不经济;二是随机抽样观测,即从总体X 中随机抽取n 个个体12(,,,)n X X X 进行观测,然后根据样本12(,,,)n X X X 来推断总体的性质或规律性,这在实际中是常用的方法。
由于样本是随机抽样的,可以认为来自总体X 中一个样本12(,,,)n X X X 是一组相互独立且与总体X 同分布的随机变量。
n 称为样本容量,样本12(,,,)n X X X 的观测值记为12(,,,)n x x x ,样本12(,,,)n X X X 的不含任何未知参数的函数12(,,,)n f X X X 称为统计量。
下述统计量11n i i X X n ==∑,2211()1n i i S X X n ==--∑,S =分别称为样本均值、样本方差、样本标准差。
根据样本的观测值12(,,,)n x x x ,可以绘出样本的频率直方图和累积频率直方图,方法如下:① 适当选取12min{,,,}n a x x x ≤,12max{,,,}n b x x x ≥,将[,]a b 等分为m 个小区间,称()/d b a m =-为组距;② 计算12,,,n x x x 在各个小区间出现的频率/,1,2,,i i p m n i m ==; ③ 计算样本的频率函数()p x 和累积频率函数()F x :120,,,,,2,(),(1),0,,m x a p a x a d p a d x a d p x p a m d x a md x b a md ≤⎧⎪<≤+⎪⎪+<≤+⎪=⎨⎪⎪+-<≤+⎪>=+⎪⎩112120,,,,,2,(),(1),1,.m x a p a x a d p p a d x a d F x p p p a m d x a md x b a md ≤⎧⎪<≤+⎪⎪++<≤+⎪=⎨⎪⎪++++-<≤+⎪>=+⎪⎩④ 画出样本的频率函数()p x 和累积频率函数()F x 的图形可以得到样本的频率直方图和累积频率直方图。
数学建模常用统计方法
数学建模常用统计方法1.1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为 y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1) 回归方程的显著性检验(可以通过sas和spss来解决)(2) 回归系数的显著性检验(可以通过sas和spss来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。
4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系;(2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)这种模型的的特点是直观,容易理解。
这体现在:动态聚类图可以很直观地体现出来~当然,这只是直观的一个方面~2、分类聚类有两种类型:(1) Q型聚类:即对样本聚类;(2) R型聚类:即对变量聚类;聚类方法:(1) 最短距离法(2) 最长距离法(3) 中间距离法(4) 重心法(5) 类平均法(6) 可变类平均法(7) 可变法(8) 利差平均和法在具体做题中,适当选取方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
还需要注意的是:如果总体样本的显著性差异不是特别大的时候,使用的时候也要注意~4、方法步骤(1)首先把每个样本自成一类;2)选取适当的衡量标准,得到衡量矩阵,比如说:距离矩阵或相似性矩阵,找到矩阵中最小的元素,将该元素对应的两个类归为一类, (4)重复第2步,直到只剩下一个类; (4)重复第2步,直到只剩下一个类;补充:聚类分析是一种无监督的分类,下面将介绍有监督的“分类”。
统计中常用的统计方法
统计学是一门研究数据收集、分析、解释和展示的学科。
在统计学中,有许多常用的统计方法用于分析数据、揭示数据间的关系和得出结论。
以下是一些统计学中常用的统计方法:
1. 描述统计方法:用于总结和描述数据的基本特征,包括均值、中位数、众数、标准差、方差等。
常见的描述统计方法有频数分布、直方图、箱线图等。
2. 推论统计方法:基于样本数据推断总体参数的方法,包括参数估计和假设检验。
常见的推论统计方法有置信区间估计、单样本t 检验、双样本t 检验、方差分析、卡方检验等。
3. 相关分析方法:用于研究变量之间的相关性或关联程度的方法。
常见的相关分析方法有皮尔逊相关系数、斯皮尔曼等级相关系数、点二列相关系数等。
4. 回归分析方法:用于研究自变量与因变量之间关系的方法。
常见的回归分析方法有线性回归、多元线性回归、逻辑回归等。
5. 方差分析方法:用于分析两个或多个总体均值是否相等的统计方法。
常见的方差分析方法有单因素方差分析、多因素
方差分析等。
6. 聚类分析方法:用于将数据集中的观测值分成不同的组别的方法。
常见的聚类分析方法有K均值聚类、层次聚类等。
7. 因子分析方法:用于研究变量间存在的潜在结构、简化数据的方法。
常见的因子分析方法有主成分分析、因子分析等。
这些是统计学中常用的一些统计方法,它们在不同情境下有着不同的应用和适用范围。
在实际应用中,根据所面临的具体问题和数据特点,选择适当的统计方法是十分重要的。
数学建模之统计学基本概念与方法
非线性回归分析
总结词
非线性回归分析是研究非线性关系的统计方法。
计算公式
非线性回归分析采用各种非线性函数形式,如多项式、指 数、对数等,来描述因变量与自变量之间的非线性关系。
详细描述
非线性回归分析通过建立非线性模型,分析因变量与自变 量之间的非线性关系,并预测因变量的取值。它主要应用 于探索非线性关系和复杂数据模式。
根据样本数据对原假设进行拒绝或接受。
ABCD
假设检验的步骤
提出假设、构造检验统计量、确定临界值、做出 决策。
假设检验的局限性
依赖于样本数据和假设的合理性。
常见假设检验方法及应用
t检验
用于比较两组平均值是否有显著差异,常用于样本均数与总体均数的 比较。
方差分析
用于比较多个总体均数是否有显著差异,常用于实验设计中的多因素 比较。
区间估计
根据样本数据推断未知参数或 总体参数可能落在某一区间内 的概率。
置信区间
在一定置信水平下,估计参数 可能取值范围的区间。
误差范围
区间估计的精度,通常用标准 误差或置信区间宽度来表示。
假设检验的基本原理
假设检验的基本思想
根据样本数据对未知参数或总体分布提出假设, 然后通过统计方法检验该假设是否成立。
为什么学习数学建模?
数学建模是现代科学研究和工程应用中不可或缺的工具,它 有助于解决实际问题。
学习数学建模有助于提高分析问题和解决问题的能力,培养 创新思维和团队协作能力。
为什么学习数学建模?
数学建模是现代科学研究和工程应用中不可或缺的工具,它 有助于解决实际问题。
学习数学建模有助于提高分析问题和解决问题的能力,培养 创新思维和团队协作能力。
正态分布
统计学的方法
统计学的方法当提到统计学的方法时,有许多不同的技术和工具可供选择。
以下是50条关于统计学方法的示例,并附有详细描述:1. 描述性统计:描述性统计是一种用于总结和描述数据集的方法。
它包括平均数、中位数、众数、标准差等指标。
2. 推论统计:推论统计是一种从样本数据中得出总体结论的方法。
通过采样方法和假设检验来进行推论。
3. 参数估计:使用统计方法估计总体参数的值,如总体均值、总体比例等。
4. 假设检验:用于检验总体参数假设的统计方法,包括单样本、双样本和多样本假设检验。
5. 方差分析:用于比较三个或三个以上组别的均值是否有显著差异的统计方法。
6. 相关分析:检验两个或多个变量之间关系的统计方法,包括皮尔逊相关系数、斯皮尔曼相关系数等。
7. 回归分析:用于探索和建立变量之间关系的统计方法,包括线性回归、逻辑回归、多元回归等。
8. 生存分析:用于分析时间至事件发生的统计方法,包括生存曲线、生存函数、危险比等。
9. 聚类分析:将数据集中的观测分为不同的群组的统计方法,如K均值聚类、层次聚类等。
10. 因子分析:用于识别数据集中潜在变量和构建变量之间关系的统计方法。
11. 主成分分析:用于减少数据维度和识别主要变量的统计方法。
12. 时间序列分析:用于分析时间序列数据的统计方法,如季节性调整、趋势分析等。
13. 贝叶斯统计:一种基于贝叶斯定理的统计推断方法,通过先验概率和样本信息来获得后验概率。
14. 非参数统计:一种不依赖于总体概率分布的统计方法,适用于数据分布未知或不满足正态分布假设的情况。
15. 实证贝叶斯方法:一种结合贝叶斯统计和计算机模拟的方法,用于复杂模型的推断。
16. Bootstrap方法:通过重复抽样构建总体的分布,从而进行参数估计和假设检验。
17. 蒙特卡洛模拟:一种使用随机抽样技术进行数值模拟的方法,通常用于计算复杂的积分或求解概率分布。
18. 马尔可夫链蒙特卡洛:一种用于从复杂分布中抽样的随机模拟方法。
数学建模中的统计学ppt课件
它反映了总体 方差的信息
样本标准差:
S
1 n 1
n i1
(Xi
X
)2
.
样本k阶原点矩 :
样本k阶中心矩 :
Ak
1 n
n i1
X
k i
它反映了总体k 阶矩的信息
M k
1 n
n
(Xi
i1
X )k
它反映了总体k 阶 中心矩的信息
Байду номын сангаас
X
为样本1阶原点矩A1,样本二阶中心矩M
记为
2
Sn2 =
1 n
总体分布 的实际情
H 0 成立
况(未知) H 0 不成立
判断正确 犯第 II 类错误
犯第 I 类错误 判断正确
断言:在座的各位平均身高是170cm。
要检验这句话正确与否,我们可以采用单 正态总体的均值检验。
设总体 X ~ N(, 2 ) ,( X1, X 2,, X n )为取自
该总体的一组样本
y
y
y f (x)
Y f (X)
x
0
x0
(b) 统计关系
例 2 城镇居民的收入与消费支出之间有很大的关 联,居民的收入提高了,消费也随之潇洒,但居民的 收入不能完全确定消费,人们的消费支出受到不同年 龄段的消费习惯的影响,也受到不同消费理念的影响。
因此居民的收入 x 与消费支出 y 就呈现出某种不确定
yˆ 33.73 0.516x (单位:英寸)
这1078对夫妇平均身高为 x 68 英寸,而
子代平均身高 y 69英寸
尽管“回归”这个名称的由来具有其 特定的含义,人们在研究大量的问题中变
量 x 与 y 之间的关系并不总是具有“回归” 的含义,但用这个名词来研究 x 与 y 之间
数学建模统计模型
数学建模统计模型
数学建模是指利用数学方法和技巧对实际问题进行抽象和建立数学模型,从而求解或预测问题的过程。
数学建模可以应用于各个领域,如物理学、经济学、工程学等,在解决实际问题中具有重要的作用。
统计模型是指利用统计学的理论和方法对数据进行分析和建模的过程。
统计模型可以描述和预测数据的变化和规律,从而提供对实际问题的认识和解决方案。
统计模型包括描述性统计模型和推断性统计模型,前者用于对数据进行总结和描述,后者用于对数据进行推断和预测。
数学建模和统计模型在解决实际问题时常常相互结合。
数学建模可以通过建立数学模型抽象和简化实际问题,而统计模型可以通过对数据的分析和建模验证和改进数学模型。
通过数学建模和统计模型的应用,可以提高问题的分析和解决的准确性和可靠性。
统计学的所有方法和工具
统计学的所有方法和工具统计学是一门研究和应用数据收集、分析和解释的学科。
以下是统计学中常用的方法和工具:1. 描述统计:用于描述和总结数据的方法,包括平均数、中位数、众数、标准差、方差等。
2. 探索性数据分析(EDA):一种分析数据的方法,主要通过图表和统计指标来探索数据的特征和关系。
3. 概率:用于描述事件发生的可能性的数学方法。
概率理论是统计学的基础,包括概率分布、概率密度函数、概率质量函数等。
4. 抽样和抽样分布:用于从总体中获取样本并推断总体特征的方法。
常用的抽样方法包括随机抽样、系统抽样、分层抽样等。
5. 假设检验:用于判断统计推断的方法。
假设检验可用于比较两个群体的均值、检验某个参数是否符合设定的期望值等。
6. 回归分析:用于建立变量之间关系的方法。
线性回归、多元回归、逻辑回归等是常用的回归分析方法。
7. 方差分析:用于比较多个群体间差异的方法。
通过方差分析可以判断不同处理条件下受试者之间的差异是否显著。
8. 实验设计:用于优化实验条件和减少误差的方法。
常见的实验设计方法有完全随机设计、随机区组设计、拉丁方设计等。
9. 时间序列分析:用于分析时间序列数据的方法。
常用的时间序列分析方法包括自回归滑动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)等。
10. 数据挖掘:用于发现数据中隐藏模式和关联的方法。
常用的数据挖掘技术包括聚类分析、关联规则挖掘、分类与预测等。
11. 统计软件:用于统计分析和数据可视化的工具。
常用的统计软件包括SPSS、R、Python上的NumPy和pandas库等。
请注意,此列表并不是详尽无遗,统计学的方法和工具非常广泛和丰富,还有其他许多特定领域的方法和工具。
数学建模中的统计学
(
x )2
;
ak
1 n
n i1
xik
k 1,2,
mk
1 n
n i1
( xi
x )k
k 1,2,
sn2
1 n
n i1
( xi
x )2
,
sn =
1 n
n i1
( xi
x )2
精选ppt课件
10
在正态分布中σ代表标准差,μ代表均值x=μ即 为图像的对称轴 三σ原则即为 数值分布在(μ—σ,μ+σ)中的概率为0.6826 数值分布在(μ—2σ,μ+2σ)中的概率为0.9544 数值分布在(μ—3σ,μ+3σ)中的概率为0.9974
一元线性回归方程为:
y 0.73x 356
精选ppt课件
31
“回归”名称的由来,统计史上一 般归功于英国生物学家兼统计学家F. 高尔顿(F.Galton,1822-1911)及他的 学生现代统计学家的奠基者之一K. 皮尔逊(K.Pearson).
精选ppt课件
32
他们在研究父母身高与其子女身高的遗传
y 1000x
精选ppt课件
25
变量之间具有密切关联 而又不能由一个或某一些变 量唯一确定另外一个变量的 关系称为变量之间的相关关 系.
精选ppt课件
26
y
y
y f (x)
Y f (X)
x
0
x0
(b) 统计关系
精选ppt课件
27
例 2 城镇居民的收入与消费支出之间有很大的关 联,居民的收入提高了,消费也随之潇洒,但居民的 收入不能完全确定消费,人们的消费支出受到不同年 龄段的消费习惯的影响,也受到不同消费理念的影响。
数学建模 之 统计学基本概念与方法
既然“ 三个小球中包含两个黑球 ” 是已经 发生了的随机事件,因此使得这个事件发生 概率取最大的那个值就是未知参数 p 最有 可能的取值 。
即 p 的极大似然估计就是 3/5 。
□
三. 假设检验
(一). 假设检验的思想
它是如下的一种统计推断: 对于一个统计模型,我们提出一个假设, 根据抽取到的样本,来作出是接受还是拒绝 这个假设。 小概率事件在一次试验中不应该发生。
2. 样本 (sample)
从总体中取出一个个体,称为从 总体中得到一个样本。
由于各种原因与实际条件的限制, 不可能得到一个总体中所有个体的数据。 即样本总是总体的一小部分。
但同时在直观上又认为、或者希望做到: 抽取出的每个个体 (样本) 都充分蕴涵总体信息。 统计学的目的就是从样本去得出总体的信息。
1. 如何得到样本 ?
抽样调查
不同家庭背景学生的比例应该各占多少? 样本容量应该取多少才合适?被调查者拒绝调 查怎么办?
2. 如何确定总体的分布 ?
根据经验或者是所讨论的问题的实际背景, 总体的分布类型一般可以事先确定下来。 这里的总体是这所大学的学生月支出费用, 我们不妨认为学生月支出费用是一个服从正态 分布的随机变量。
女士品茶
有一种饮料由 Tea 和 Milk 混合而成, 按照顺序的不同,分为 TM、 MT 两种, 有位女士声称她有能力品尝出是 TM 还是MT 。 为了检验她的说法是否可信,准备 8 杯饮料, TM 和 MT 各一半,并且把这一点告诉她。 现在随机的让这位女士品尝,指出哪些是 TM , 最终的结果是她全部说对了。
回归与相关分析
数理统计学重要应用之一
讨论数值变量之间的效应关系问题 一元线性回归 比如说,想了解儿子身高与父亲身高之间的关系。 在每个被调查的家庭中同时获得这两个变量的 观察值,分析它们是否有某种(函数)关系,… 多元线性回归 例如,钢的去碳量与不同矿石、融化时间、 炼钢重要的内容之一
数学建模中统计学常用方法
1、1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象与某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归与非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1) 回归方程的显著性检验(可以通过sas与spss来解决)(2)回归系数的显著性检验(可以通过sas与spss来解决)检验就是很多学生在建模中不注意的地方,好的检验结果可以体现出您模型的优劣,就是完整论文的体现,所以这点大家一定要注意。
4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系;(2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)这种模型的的特点就是直观,容易理解。
这体现在:动态聚类图可以很直观地体现出来!当然,这只就是直观的一个方面!2、分类聚类有两种类型:(1) Q型聚类:即对样本聚类;(2) R型聚类:即对变量聚类;聚类方法:(1) 最短距离法(2) 最长距离法(3) 中间距离法(4) 重心法(5) 类平均法(6) 可变类平均法(7) 可变法(8)利差平均与法在具体做题中,适当选取方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不就是很容易,这时需要根据背景知识与相关的其她方法辅助处理。
还需要注意的就是:如果总体样本的显著性差异不就是特别大的时候,使用的时候也要注意!4、方法步骤(1)首先把每个样本自成一类;2)选取适当的衡量标准,得到衡量矩阵,比如说:距离矩阵或相似性矩阵,找到矩阵中最小的元素,将该元素对应的两个类归为一类,(4)重复第2步,直到只剩下一个类;(4)重复第2步,直到只剩下一个类;补充:聚类分析就是一种无监督的分类,下面将介绍有监督的“分类”。
数学建模中统计学常用方法
1。
1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过sas和spss来解决)(2)回归系数的显著性检验(可以通过sas和spss来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意.4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系;(2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)这种模型的的特点是直观,容易理解。
这体现在:动态聚类图可以很直观地体现出来!当然,这只是直观的一个方面!2、分类聚类有两种类型:(1) Q型聚类:即对样本聚类;(2) R型聚类:即对变量聚类;聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4) 重心法(5)类平均法(6)可变类平均法(7) 可变法(8)利差平均和法在具体做题中,适当选取方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
还需要注意的是:如果总体样本的显著性差异不是特别大的时候,使用的时候也要注意!4、方法步骤(1)首先把每个样本自成一类;2)选取适当的衡量标准,得到衡量矩阵,比如说:距离矩阵或相似性矩阵,找到矩阵中最小的元素,将该元素对应的两个类归为一类,(4)重复第2步,直到只剩下一个类;(4)重复第2步,直到只剩下一个类;补充:聚类分析是一种无监督的分类,下面将介绍有监督的“分类”。
统计学中检验方法、建模方法
统计学中检验方法、建模方法一、检验方法。
哎呀呀,统计学里的检验方法就像是给数据做个小体检呢。
最常见的就是t检验啦。
比如说你想看看两组人的身高有没有显著差别,t检验就派上用场了。
它就像一个小裁判,判断这两组数据之间的差异是真的有意义呢,还是只是偶然出现的。
还有卡方检验哦。
这个就很有趣啦,要是你想知道不同性别的人对某种颜色的喜好有没有区别,卡方检验就像个小侦探,在数据里找线索,看性别和颜色喜好之间是不是存在某种联系。
如果计算出来的结果比较特殊,那就说明这两者之间可能有点故事哦。
方差分析也不能少呀。
当你有好几组数据的时候,比如不同班级学生的考试成绩,方差分析就像个大管家,看看这几个班级的成绩差异到底是因为班级本身的不同,还是只是随机的波动呢。
它能把总变异分解成不同的部分,让我们清楚地知道是哪里出了状况。
二、建模方法。
说到建模方法,那更是超级酷呢。
线性回归模型就像搭积木一样。
你有一堆自变量,像年龄、收入这些,还有一个因变量,比如消费金额。
线性回归就试着找到一条线,让这些自变量和因变量之间的关系最合理。
就好像给它们牵红线,让它们的关系清晰明了。
决策树模型就像是在做选择游戏。
从树根开始,根据不同的条件进行分支,最后到达树叶,也就是结果。
比如说判断一个人会不会买某个产品,决策树会根据这个人的年龄、性别、消费习惯等因素一步一步做出判断,最后给出答案。
聚类分析就像是给数据开派对,把相似的数据聚在一起。
想象一下,你有一群小动物的数据,聚类分析就能把长得像、习性像的小动物分到一个小圈子里。
这样我们就能更好地了解数据的结构啦。
统计学里的这些检验方法和建模方法就像是我们探索数据世界的小工具,每一个都有它独特的魅力,能让我们从数据里发现好多有趣的秘密呢。
列举统计学的方法
统计学的方法有很多种,以下列举了一些常见的方法:
描述性统计:描述数据的基本特征,如平均数、中位数、众数、标准差等,以及数据的分布情况。
参数估计:通过样本数据估计总体参数,如总体均值、总体比例等。
常用的方法有矩估计、最小二乘法、最大似然估计等。
假设检验:根据样本数据对某一假设进行检验,判断该假设是否成立。
常见的假设检验方法有t检验、方差分析、卡方检验等。
相关分析:研究两个或多个变量之间的相关关系,常用的方法有线性相关分析、秩相关分析等。
回归分析:研究一个因变量与一个或多个自变量之间的线性或非线性关系,常用的方法有多元线性回归分析、岭回归分析、套索回归分析等。
聚类分析:将相似的对象归为一类,常用的方法有K-均值聚类、层次聚类等。
主成分分析:将多个变量简化为少数几个综合变量,这些综合变量能够尽可能地保留原始变量的信息。
时间序列分析:研究时间序列数据的特征和规律,如季节性、周期性等,常用的方法有移动平均法、指数平滑法、ARIMA模型等。
方差分析:研究多个因素对某一指标的影响,判断各因素对指标是否有显著影响。
常用的方法有单因素方差分析、多因素方差分析等。
判别分析:根据已知分类的样本数据,建立判别函数,将未知分
类的对象进行分类。
常用的方法有贝叶斯判别分析、线性判别分析等。
以上列举的只是统计学中的一部分方法,实际上还有很多其他的方法和技术可以根据具体问题选择使用。
数学建模常用统计方法介绍
数学建模常用的随机数学方法:
概率基础方法(分布,数字特征等)
随机模拟法(蒙特卡洛方法,MCM)
统计基础方法(统计描述,统计推断等) 回归分析法 方差分析方法 聚类分析方法
判别分析方法
主成分分析方法
数学建模常用的随机数学方法:
马尔可夫(MARKOV)过程方法 时间序列分析方法 排队论方法 存储论方法 决策论方法
统计方法(判别分析)
判别分析—在已知研究对象分成若干类型,并已取 得各种类型的一批已知样品的观测数据,在此基础 上根据某些准则建立判别式,然后对未知类型的样 品进行判别分类。 距离判别法—首先根据已知分类的数据,分别计算 各类的重心,计算新个体到每类的距离,确定最短 的距离(欧氏距离、马氏距离) Fisher判别法—利用已知类别个体的指标构造判别 式(同类差别较小、不同类差别较大),按照判别 式的值判断新个体的类别 Bayes判别法—计算新给样品属于各总体的条件概率, 比较概率的大小,然后将新样品判归为来自概率最 大的总体
聚类分析
系统聚类法是聚类分析中应用最为广泛 的一种方法,它的基本原理是:首先将 一定数量的样品或指标各自看成一类, 然后根据样品(或指标)的亲疏程度, 将亲疏程度最高的两类进行合并。然后 考虑合并后的类与其他类之间的亲疏程 度,再进行合并。重复这一过程,直至 将所有的样品(或指标)合并为一类。
系统聚类分析用到的函数
判别分析
判别分析是利用原有的分类信息,得到体 现这种分类的函数关系式(称之为判别 函数,一般是与分类相关的若干个指标 的线性关系式),然后利用该函数去判 断未知样品属于哪一类。 对于给定的数据,用classify函数进行线性 判别分析,用mahal函数计算马氏距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过sas和spss来解决)(2)回归系数的显著性检验(可以通过sas和spss来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。
4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系;(2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)这种模型的的特点是直观,容易理解。
这体现在:动态聚类图可以很直观地体现出来!当然,这只是直观的一个方面!2、分类聚类有两种类型:(1)Q型聚类:即对样本聚类;(2)R型聚类:即对变量聚类;聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(7)可变法(8)利差平均和法在具体做题中,适当选取方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
还需要注意的是:如果总体样本的显著性差异不是特别大的时候,使用的时候也要注意!4、方法步骤(1)首先把每个样本自成一类;2)选取适当的衡量标准,得到衡量矩阵,比如说:距离矩阵或相似性矩阵,找到矩阵中最小的元素,将该元素对应的两个类归为一类,(4)重复第2步,直到只剩下一个类;(4)重复第2步,直到只剩下一个类;补充:聚类分析是一种无监督的分类,下面将介绍有监督的“分类”。
我简单说明下,无监督学习和有监督学习是什么无监督学习:发现的知识是未知的有监督学习是对一个已知模型做优化,而无监督学习是从数据中挖掘模型他们在分类中应用比较广泛(非数值分类)如果是数值分类就是预测了,这点要注意1.3数据分类1、方法概述数据分类是一种典型的有监督的机器学习方法,其目的是从一组已知类别的数据中发现分类模型,以预测新数据的未知类别。
这里需要说明的是:预测和分类是有区别的,预测是对数据的预测,而分类是类别的预测。
2、类别方法:(1)神经网路(2)决策树(这里不再阐述,有兴趣的同学,可以参考数据挖掘和数据仓库相关书籍)3、注意事项1》神经网路适用于下列情况的分类:(1)数据量比较小,缺少足够的样本建立数学模型;(2)数据的结构难以用传统的统计方法来描述(3)分类模型难以表示为传统的统计模型这里主要介绍以上三点,其他的情况大家可以自己总结!2》神经网路的优点:分类准确度高,并行分布处理能力强,对噪声数据有较强的鲁棒性和容错能力能够充分逼近复杂的非线性关系,具备联想记忆的功能等。
3》神经网路缺点:需要大量的参数,不能观察中间学习过程,输出结果较难解释,会影响到结果的可信度,需要较长的学习时间,当数据量较大的时候,学习速度会制约其应用。
4、步骤这里只做简略说明,具体步骤,大家可以查阅《神经网路》《数据挖掘》等相关书籍(1)初始化全系数(2)输入训练样本(3)计算实际输出值(4)计算实际输出值和期望输出值之间的误差(5)用误差去修改权系数(6)判断是否满足终止条件,如果满足终止,否则进入第二步.4判别分析1、概述其是基于已知类别的训练样本,对未知类别的样本判别的一种统计方法,也是一种有监督的学习方法,是分类的一个子方法!具体是:在研究已经过分类的样本基础上,根据某些判别分析方法建立判别式,然后对未知分类的样本进行分类!2、分类根据判别分析方法的不同,可分为下面几类:(1)距离判别法(2)Fisher判别法(3)Bayes判别法(4)逐步判别法关于这几类的方法的介绍,大家可以参考《多元统计学》,其中比较常用的是bayes判别法和逐步判别法3、注意事项:判别分析主要针对的是有监督学习的分类问题。
共有四种方法,这里重点注意其优缺点:\(1)距离判别方法简单容易理解,但是它将总体等概率看待,没有差异性;(2)Bayes判别法有效地解决了距离判别法的不足,即:其考虑了先验概率——所以通常这种方法在实际中应用比较多!(3)在进行判别分析之前,应首先检验各类均值是不是有差异(因为判别分析要求给定的样本数据必须有明显的差异),如果检验后某两个总体的差异不明显,应将这两个总体合为一个总体,再由剩下的互不相同的总体重现建立判别分析函数。
(4)这里说明下Fisher判别法和bayes判别法的使用要求:两者对总体的数据的分布要求不同,具体的,Fisher 要求对数据分布没有特殊要求,而bayes则要求数据分布是多元正态分布,但实际中却没有这么严格!(5)这种方法可以利用spss,sas等软件来轻松实现4、方法步骤这里以bayes判别法为例简要讲述,具体的方法和软件实现,可以去数学中国网站下载或者参考《多元统计学》(1)计算各类中变量的均值xj及均值向量xh,各变量的总均值xi及均值向量x(2)计算类内协方差及其逆矩阵(3)计算bayes判别函数中,各个变量的系数及常数项并写出判别函数(4)计算类内协方差矩阵及各总协方差矩阵做多个变量的全体判别效果的检验(5)做各个变量的判别能力检验(6)判别样本应属于的类别1.5主成分分析1、概述主成分分析是一种降维数的数学方法,具体就是,通过降维技术奖多个变量化为少数几个主成分的统计分析方法。
在建模中,主要用于降维,系统评估,回归分析,加权分析等等。
2、分类(无)3、注意事项在应用主成分分析时候,应该注意:(1)综合指标彼此独立或者不想(2)每个综合指标所反映的各个样本的总信息量等于对应特征向量的特征值。
通常要选取的综合指标的特征值贡献率之和应为80%以上(3)其在应用上侧重于信息贡献影响力的综合评价(4)当主成分因子负荷的符号有正也有负的时候,综合评价的函数意义就不明确!4、方法步骤大家可以参考《多元统计学》这本书籍,在这里就不做阐述,也可以从数学中国网站的统计学板块下载!1.6 因子分析1、概述其是也是将变量总和为数量较少的几个因子,是降维的一种数学技术!它和主成分分析的最大区别是:其是一种探索性分析方法,即:通过用最少个数的几个不可观察的变量来说明出现在可观察变量中的相关模型(有点类似于前面讲述的分类和聚类的区别,大家好好体会下)它提供了一种有效的利用数学模型来解释事物之间的关系,体现出数据挖掘的一点精神!2、分类因子分析是R型,即对变量研究3、注意事项(1)其不是对研究总体的变量的降维,而是根据原始变量信息构造新的变量,作为共同因子,这点区别于主成分分析(2)它通过旋转可以使得因子变量具有可解释性(这块可能不容易理解,大家可以去找因子分析的相关书籍查阅,搞清楚这块,对于你解释模型会起到很大的作用)(3)这里说明下,因子分析和主成分分析的区别和联系<1>两者都是降维数学技术,前者是后者的推广和发展<2>主成分分析只是一般的变量替换,其始终是基于原始变量研究数据的模型规律;而因子分析则是通过挖掘出新的少数变量,来研究的一种方法,有点像数据挖掘中的未知关联关则发现!4、方法步骤(略)大家可以去论坛上下载相关电子资源,也可以参考《多元统计学》1.7残差分析1、概述在实际问题中,由于观察人员的粗心或偶然因素的干扰。
常会使我们所得到的数据不完全可靠, 即出现异常数据。
有时即使通过相关系数或F检验证实回归方程可靠,也不能排除数据存在上述问题。
残差分析的目的就在于解决这一问题。
所谓残差是指实际观察值与回归估计值的差。
2、分类无3、应用(1)通过残差分析来排除异常数据(2)通过残差分析来检验模型的可靠性还有很多应用,大家在使用过程中据情况选取,灵活应用!1.8典型相关分析1、概述前面介绍的方法主要是一个变量和多个变量之间的关系,而典型相关分析研究的是多个变量和多个变量之间的关系,或者是一组变量和一组变量之间关系!其可以揭示两组变量之间的关系,从而供大家研究两个现象之间的关系。
例如:蔬菜的产出水平和影响产出水平的变量之间的关系!2、分类多对多的变量关系研究!3、注意事项(1)其可以很好地解决组合相关性的问题(2)其还局限于两组变量的研究,而且要求这两组变量都是连续变量且需服从多元正态分布1.9时间序列1、概述时间序列预测法是一种定量分析方法,它是在时间序列变量分析的基础上,运用一定的数学方法建立预测模型,使时间趋势向外延伸,从而预测未来市场的发展变化趋势,确定变量预测值。
其基本特点是:假定事物的过去趋势会延伸到未来;预测所依据的数据具有不规则性;撇开市场发展之间的因果关系。
2、分类时间序列的变动形态一般分为四种:长期趋势变动,季节变动,循环变动,不规则变动。
方法分类:(1)平均数预测(简单算术平均法,加权算术平均法,几何平均数法)(2)移动平均数预测(一次移动平均法,二次移动平均法)(3)指数平滑法预测(一次,二次,三次指数平滑法)(4)趋势法预测(分割平均法,最小二乘法,三点法)(5)季节变动法(简单平均法,季节比例法)3.注意事项(1)季节变动法预测需要筹集至少三年以上的资料(2)移动平均法在短期预测中较准确,长期预测中效果较差;(3)移动平均可以消除或减少时间序列数据受偶然性因素干扰而产生的随机变动影响。
(4)一次移动平均法适用于具有明显线性趋势的时间序列数据的预测;一次移动平均法只能用来对下一期进行预测,不能用于长期预测,必须选择合理的移动跨期,跨期越大对预测的平滑影响也越大,移动平均数滞后于实际数据的偏差也越大。
跨期太小则又不能有效消除偶然因素的影响。
跨期取值可在3~20间选取。
(5)二次移动平均法与一次移动平均法相比,其优点是大大减少了滞后偏差,使预测准确性提高;二次移动平均只适用于短期预测。
而且只用于的情形。
6)最小二乘法即适用于直线趋势的预测,也适用于曲线趋势的预测。
还有一些注意事项,这里就不再一一罗列4.方法步骤(略)。