人教版初一数学有理数的乘方知识点
初一数学有理数的乘方
(1)–3 ;
2
(4)8 ÷(-2) ×(-2.5) =2.5
3
(2) 3 × 2 ;
解:原式=3 ×8 =24
3
3
(3)(3 × 2) ;
解:原=6
3
=216
练习册 P36 11 (1)~(4)
作业:练习册 P35 P36 13、14题除外
1、(±5 )2 =25
2 、( 2 =4 ) ±2 5 2 25 3、( ± ) = 6 36 4 、(
乘方与绝对值 1、都具有非负性 2、都考虑±
0
)2 =0 )2 =-16
±4
5× 、(
6、- (
)2 =-16
例2 计算:
解:原式=-(3×3) =-9 解:原式=8 ÷(-8)×(-2.5)
也就是
a×a×……×a = a n n个
n
其中, an读作a的n次幂( a的n次方)a叫做幂的底数, n叫做幂的指数,an读作a的n次幂(或a的n次方)。
幂
a
指数
底数
(1次方可省略不写,2次方又叫平方,3次方又叫立方。)
7
7
底数
7
指数
-3
10
-3
-3
10
(3)请你说说下列各数表示什么?它们一样吗? ( 1) 23 与 32 2 32 3 ( 2) ( ) 与 4 4 (3) (-5)4 与 -54
对于分数的乘方,负数的乘方,书写时一定 要注意小括号。
例1 计算: (1) 53
(3)(-4)3
2 5 (5) (- ) 3
2301 (7)(-1)
(2)05
(4) (-2)4
12 (6)(1 ) 2
初一数学第6讲:有理数的乘方(教师版)
第六讲有理数的乘方一、有理数乘方1.乘方的定义(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;2.有理数的乘方法则(1)正数的任何次幂都是正数.(2)负数的奇次幂是负数.负数的偶次幂是正数.注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n或(a-b)n=(b-a)n .二、科学记数法把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.三、近似数的精确位一个近似数,四舍五入到哪一位,就说这个近似数的精确到那一位.四、有效数字从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.1.区分乘方与幂的不同2.熟练掌握科学计数法表示数的方法例1.﹣12的值是()A.1B.﹣1 C.2D.﹣2考点:有理数的乘方.分析:根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.解答:解:原式=﹣1,故选;B.点评:本题考查了有理数的乘方,注意底数是1.例2.(﹣2)3的值为()A.﹣6 B.6C.﹣8 D.8考点:有理数的乘方.专题:计算题.分析:根据有理数乘方的法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:(﹣2)3=﹣8,故选C.点评:本题考查了有理数的乘方法则,解题时牢记法则是关键,此题比较简单,易于掌握.例3.据统计,2014年河南省机动车保有量突破280万辆,对数据“280万”的理解错误的是()A.精确到万位B.有三个有效数字C.这是一个精确数D.用科学记数法表示为2.80×106考点:近似数和有效数字.分析:根据近似数、有效数字的意义和科学记数法的计数方法逐一分析得出答案即可.解答:解:A、280万精确到万位是正确的,此选项不合题意;B、280万有三个有效数字是正确的,此选项不合题意;C、280万是一个近似数,不是精确数,此选项符合题意;D、280万用科学记数法表示为2.80×106是正确的,此选项不合题意.故选:C.点评:此题考查近似数与有效数字,以及科学计数法,掌握基本概念和方法是解决问题的关键.例4.据国家统计局初步核算,2012年全年国内生产总值519322亿元,请用科学记数法表示519322亿元正确的是()A.5.19322×105元B.519322×105元C.5.19322×108元D.5.19322×1013元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于519322亿有14位,所以可以确定n=14﹣1=13.解答:解:519322亿=51 932 200 000 000=5.19322×1013.故选D.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.例5.一种病毒长度约为0.000056mm,用科学记数法表示这个数为()A.5.6×10﹣6B.5.6×10﹣5C.0.56×10﹣5D.56×10﹣6考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000056=5.6×10﹣5.故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.例6.用科学记数法表示数5.8×10﹣5,它应该等于()A.0.005 8 B.0.000 58 C.0.000 058 D.0.O00 005 8考点:科学记数法—原数.分析:把5.8的小数点向右移动5个位,即可得到.解答:解:5.8×10﹣5=0.000 058.故选:C.点评:本题主要考查了用科学记数法表示的数化成一般的数的方法,用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向后移几位.A档1.计算:32=.考点:有理数的乘方.分析:此题比较简单,直接利用平方的定义即可求出结果.解答:解:32=9.故填空答案:9.点评:此题只要利用平方的定义即可.2.﹣32=.考点:有理数的乘方.分析:﹣32即32的相反数.解答:解:﹣32=﹣9.点评:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.乘方的意义就是多少个某个数字的乘积.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.3.计算:﹣22﹣(﹣2)2=.考点:有理数的乘方.分析:利用有理数的乘方运算法则得出即可.解答:解:﹣22﹣(﹣2)2=﹣4﹣4=﹣8.故答案为:﹣8.点评:此题主要考查了有理数的乘方运算法则,注意运算符号.4.近似数8.6×105精确到位.考点:近似数和有效数字.分析:根据近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.解答:解:近似数8.6×105精确到万位;故答案为:万.点评:此题考查了近似数和有效数字,最后一位所在的位置就是精确度.5.近似数3.06精确到位.考点:近似数和有效数字.分析:精确到哪一位就是看这个近似数的最后一位的数字在什么位.解答:解:近似数3.06精确到百分位.故答案为:百分.点评:本题考查近似数与有效数字,精确度由所得近似数的最后一位有效数字在该数中的位置决定.B档6.近似数1.02×105精确到了位.考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:近似数1.02×105精确到了千位.故答案为千.点评:本题考查了近似数与有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.7.由四舍五入得到的近似数0.5600的有效数字的个数是,精确度是.考点:近似数和有效数字.分析:根据有效数字的定义和近似数的精确度求解.解答:解:近似数0.5600的有效数字是5、6、0、0,精确度为精确到0.0001.故答案为4,精确到0.0001.点评:本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.8.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6 700 000=6.7×106,则n=6,故答案为:6.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.嫦娥三号是嫦娥绕月探月工程计划中嫦娥系列的第三颗人造绕月探月卫星.将于2013年下半年择机发射.奔向距地球1500000km的深空.用科学记数法表示1500000为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1 500 000=1.5×106,故答案为:1.5×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.截至2013年12月31日,余额宝规模已达到1853亿元,这个数据用科学记数法可表示为元.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1853亿有12位,所以可以确定n=12﹣1=11.解答:解:1853亿=185 300 000 000=1.853×1011.故答案为:1.853×1011.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.C档11.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6;故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.人的眼睛可以看见的红光的波长是0.000077cm,请把这个数用科学记数法表示,其结果是cm.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000077=7.7×10﹣5,故答案为:7.7×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.用小数表示1.027×10﹣6=0.000001027.考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.027×10﹣6中1.027的小数点向左移动6位就可以得到.解答:解:原式=0.000001027,故答案为0.000001027.点评:本题考查了科学记数法,写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.14.我国第六次人口普查公布全国人口数约为137054万,将这个数精确到亿位,结果为.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于137054万有10位,所以可以确定n=10﹣1=9.解答:解:我国第六次人口普查公布全国人口数约为137054万,将这个数精确到亿位,结果为1.3×109,故答案为:1.3×109.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.15.2015年3月10日,苹果公司宣布Apple Watch从4月10日起开始预售,价格从2588元﹣126800元不等,将126800元精确到千位,结果为.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于126800有6位,所以可以确定n=6﹣1=5.解答:解:将126800元精确到千位,结果为1.27×105;故答案为:1.27×105.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.1.用科学记数法表示0.0000216,结果是(保留两位有效数字).考点:科学记数法与有效数字.分析:根据科学记数法的表示方法,有效数字的意义,可得答案.解答:解:0.0000216=2.2×10﹣5,故答案为:2.2×10﹣5.点评:本题考查了科学记数法与有效数字,数字的前面有几个零,科学计数法中10的指数就是负几.2.计算:=.考点:有理数的乘方.分析:直接利用乘方的意义和计算方法计算得出答案即可.解答:解:﹣(﹣)2=﹣.故答案为:﹣.点评:此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.3.计算(﹣1)2012﹣(﹣1)2011的值是.考点:有理数的乘方.分析:根据﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1解答.解答:解:(﹣1)2012﹣(﹣1)2011,=1﹣(﹣1),=1+1,=2.故答案为:2.点评:本题考查了有理数的乘方,熟记﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1是解题的关键.4.中央电视台统计显示,南京青奥会开幕式直播有超过2亿观众通过央视收看,2亿用科学记数法可记为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2亿=200000000用科学记数法表示为:2×108.故答案为:2×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.光的速度为300000千米/秒,太阳光从太阳照到地球约需500秒,地球与太阳距离是米(用科学记数法).考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:300000×500=150000000千米=1.5×1014米.故答案为1.5×1014.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.1.计算:﹣24+(﹣2)4=.考点:有理数的乘方.专题:计算题.分析:此题比较简单,直接利用幂的定义就可以求出结果.解答:解:﹣24+(﹣2)4=﹣16+16=0.故填空答案:0.点评:此题主要考查了乘方的定义,其中的规律:①负数的奇数次幂是负数,负数的偶数次幂是正数;②﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.2.在近似数6.48中,精确到位,有个有效数字.考点:近似数和有效数字.分析:近似数精确到哪一位,应当看末位数字实际在哪一位,最后一位是什么位就是精确到哪一位;一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.解答:解:近似数6.48中,最后一位是百分位,因而是精确到百分位,有6,4,8共3个有效数字.故答案是百分和3.点评:本题主要考查了近似数与有效数字的确定方法,精确到哪一位,即对下一位的数字进行四舍五入.有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.3.用四舍五入法把3.0987精确到0.01的结果是.考点:近似数和有效数字.分析:精确到哪位,就是对它后边的一位进行四舍五入.解答:解:把3.0987精确到0.01,即对千分位的数字进行四舍五入,是3.10.故答案为:3.10.点评:精确到哪一位,即对下一位的数字进行四舍五入.这里对千分位的8入了后,百分位的是9,满了10后要进1.4.数2.30×103精确到位.考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:2.30×103精确到十位.故答案为十.点评:本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.5.2014年我国的国内生产总值(GPD)达到636000亿元,请将636000用科学记数法表示,记为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将636000用科学记数法表示为6.36×105.故答案为:6.36×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.人的眼睛可以看见的红光的波长是0.000077cm,请把这个数用科学记数法表示,其结果是cm.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000077=7.7×10﹣5,故答案为:7.7×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.写出下列用科学记数法表示的数的原来的数:2.35×10﹣2=.考点:科学记数法—原数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.因而把这个数还原,就是把2的小数点向左移动2位.解答:解:2.35×10﹣2=0.0235.故答案为:0.0235.点评:本题考查写出用科学记数法表示的原数.将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.8.我国现有约7849万名共青团员,用科学记数法(保留两个有效数字)表示为名.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7849万有8位,所以可以确定n=8﹣1=7.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:7849万=7.849×107≈7.8×107,故答案为7.8×107.点评:本题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.课程顾问签字: 教学主管签字:。
数学人教版七年级上册1.5.1有理数的乘方.5.1有理数的乘方教学设计与反思
目标检测
1、在46中,底数是,指数,
2、(-4)7读做;
3、(-4)12的结果是数(填“正”或“负”);
4、计算:=;
5、计算:(-1)2n+(-1)2n+1=;
课后作业
教材p47立完成,师生共同订正
通过练习使学生对这节课的知识得以巩固,加深理解
对折3次可裁成8张,即2×2×2张;
问题(1):
若对折10次可裁成几张?请用一个算式表示(不用算出结果)
2×2×2×2×2×2×2×2×2×2
有10个2相乘
若对折100次,算式中有几个2相乘?
在这个积中有100个2相乘。这么长的算式有简单的记法吗?
问题(2):
2个a相加可记为:a+a=a×2
边长为a的正方形的面积可记为:
七、教学评价设计
在探索法则的教学环节中,教师放手学生操作,把课堂还给学生,真正体现学生的主体地位,教师起到一个引导者、合作者、组织者的作用,学生在合作交流与自主探索的过程中归纳出有理数乘方的符号法则。在练习设计中,设置不同难度的计算题,让不同的学生都得到训练,得到提高。为了使学生真正掌握重难点,熟练的进行有理数的乘方运算,设计了一定的试题教学,难点得以突破,学生的能力得到提高,同时培养了学生集体合作的意识。
a×a=a2
3个a相加可记为:a+a+a=a×3
棱长为a的正方体的体积可记为:
a×a×a=a3
4个a相加可记为:a+a+a+a=a×4
那么4个a相乘可记为:
a×a×a×a=a4
n个a相加可记为:a+a+…+a=a×n
n个a相乘可记为:a×a×…×a=an
初一数学_有理数的乘方
3 81 (2)、 4 256
4
(4)、(5×2)
2
36
3
1000
(5)、(-2) ×(-3) (6)、(-2) ÷ 2
3 2
2
-2
应用
细胞分裂问题:
某种细胞每过30分钟便由1 个分裂成 2 个。经过 3 小时, 这种细胞由1个能分裂成多 少个?
分析: <一次>1个细胞30分后:2(个) <二次 >1个小时后: 2×2=4(个)
例2 计算: (1)–3 ;
=-9 解:原式=-(3×3)
2
(4)8 ÷(-2) ×(-2.5) =2.5
3
解:原式=8 ÷(-8)×(-2.5
思考:通过以上计算,
对于乘除和乘方的混合运算, 你觉得有怎样的运算顺序?
(2) 3 × 2 ;
解:原式=3
3
×8=24
3
(3)(3 × 2) ;
解:原式 3 =6 =216
先算乘方,后算乘除; 如果遇到括号就先进行括
减 差
乘 积
除 商
乘方 幂
请你说说下列各数表示什么?它们一样吗?
(1)23 与 32
(2)
32 ( ) 4
3 与 4
2
(3) (-5)4 与 -54
对于分数的乘方,负数的乘方,书写时一定要注意小括号。
运用新知 体会成功:
3 -125 (1)、(-5) 3 40 (3)、5×2
3 3个2相乘我们可以记作:2
8个2相乘可以记作: 28
5 5
已知正方形的边长 是5,求它的面积。
5
已知正方体的边 长是5,求它的体积。 5 × 5 × 5=125 =53
人教版初一数学各章重难点
初一上册重点知识第一章:有理数1.本章的知识点有:负数,数轴,相反数,绝对值,加法法则,减法法则,乘法法则,除法法则,乘方,乘方的相关符号法则,科学记数法,有效数字等相关知识点。
2. 本章的难点是:绝对值的性质(难题常从这里处出)学生一般理解不够透彻,运用得灵活度不够。
3.有理数的运算不难,但易错,不容易得分。
易错处:(1)加法法则;(2)在去括号与添括号中变号问题易错(符号易错);(3)乘法中也是符号易错,除法常忘记变倒数:(4)乘方部分易和乘法混:如:(-2)3=-6,(×)(-1)2010与-12010;(5)科学记数法与有效数字(中考必考)精确位数易错,但较简单。
同时很多老师和学生很容易忽略掉的知识点是:加法法则(很多学生因为加法法则没学好导致第二章整式只考二三十分,这是我在教学过程中悟出来的)。
本章在预习过程中所需的课时是6-8次课,即12-16小时。
第二章:整式1.本章的知识点有:单项式,多项式,同类项,合并同类项及相关知识点。
2.本章的易错点是:(1)单项式和多项式的次数问题;(2)含参数的多项式;(3)单项式的相关概念与方程结合;(4)同类项概念与参数结合;(5)整式的加减法运算(中考必考5分)化简求值对熟练程度和准确度要求较高,初学时易错(符号变换问题)较难的是那种一眼看不出个所以然的,一般都把握不好。
(整体代入是基本思想)本章在预习过程中所需的课时是2-4次课,即4-8小时。
第三章:一元一次方程:1.重点在于思维的转换和数学模型的建立。
对于本章的概念理解即可,稍难一些的是含有参数的方程求参数值;2.解一元一次方程中较难的是绝对值方程;列方程解应用题(较难),几种常见的类型有①和差倍分、②行程问题、③工程问题、④数位问题、⑤商品销售中的盈亏问题、⑥比例问题、⑦生活中的投资决策问题、⑧体育比赛中的积分问题。
小学学过奥数的一般都没有问题。
这一章所有学生都觉得很难的是与商品销售有关的应用题。
最新七年级有理数的乘方知识点总结文字版资料
精品文档精品文档有理数的乘方知识点总结第1课时我们知道,边长为2 cm 的正方形的面积是2×2=4(cm 2);棱长为2 cm 的正方体的体积是 2×2×2=8(cm 3).2×2,2×2×2 都是相同因数的乘法.为了简便,我们将它们分别记作22,23.22读作“2的平方”(或“2的二次方”),23 读作“2的立方”(或“2 的三次方”).同样:(-2)×(-2)×(-2)×(-2)记作(-2)4,读作“-2的四次方”.假设正方形的边长和正方体的棱长为a ,那么正方形的面积是a·a ,记作a 2,读作a 的平方(或a 的二次方),表示2个相同的数相乘;正方体的体积是a·a·a ,记作a 3,读作a 的立方(或a 的三次方),表示3个相同的数相乘.这里的2和3,我们都可以看成是“站在肩膀上的数”.我们发现,a 2与a 3都与乘法运算有关,它们都是求相同因数的积的运算,本节课我们就学习这种新的运算——乘方.一般地,n 个相同的因数a 相乘,记作n a ,读做“a 的n 次方”.求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数,当a n 看作a 的n 次方的结果时,也可读作“a 的n 次幂”.例如,在94中,底数是9,指数是4,94读作“9的4次方”,或“9的4次幂”.一个数可以看作这个数本身的一次方,例如,5就是51,指数1通常省略不写.因为a n 就是n 个a 相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算. 在书写乘方时,要注意底数的表示方法.当底数为负数、分数或含运算关系的式子时,应加括号后再写指数.如:“-5的平方”应写成(-5)2,而不要写成-52;“32的立方”应写(32)3,“a 2的五次幂”应写成(2a )5,“π+3的4次方”应写成(π+3)4. 到目前为止,已经学习过五种运算,它们是:运 算:加、减、乘、除、乘方;运算结果:和、差、积、商、幂.负数的幂的正负有什么规律?发现:当指数是奇数时,负数的幂是负数.当指数是偶数时,负数的幂是正数.依据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数.显然,正数的任何次幂都是正数,0的任何正整数次幂都是0.做有理数的混合运算时,应注意以下顺序:精品文档1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.第2课时观察10的乘方有如下的特点:102=100,103=1 000,104=10 000,……一般地,10的n 次幂等于10…0(在1的后面有n个0),所以可以利用10的乘方表示一些大数,例如567 000 000=5.67×100 000 000=5.67×108,读作“5.67乘10的8次方(幂)”.这样不仅可以使书写简短,同时还便于读数.像上面这样,把一个大于10的数表示成a×10n的形式(其中a大于或等于1且小于10,n是正整数),使用的是科学记数法.对于小于-10的数也可以类似表示.例如:-567 000 000=-5.67×108.例用科学记数法表示下列各数.1 000 000,57 000 000,-123 000 000 000.分析:就是要求把这些数写成一个大于或等于1且小于10的数和10n的乘积的形式.解:1 000 000=106,57 000 000=5.7×107,-123 000 000 000=-1.23×1011.例用科学记数法表示下列各数.(1)10 000 (2)400 000 (3)157 000 000 (4)2 100 000 000.解:(1)10 000=104,(2)400 000=4×105,(3)157 000 000=1.57×108,(4)2 100 000 000=2.1×109.说明:1.当把一个数写成a×10n的形式,要注意a大于或等于1且小于10,且n是正整数.2.当a等于1时,可省略不写.精品文档精品文档精品文档 3.由上面的例题可知,整数的位数减1就是n ,如:400 000是6位数,故5 n .。
人教版初一数学知识点总结
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容。
第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数。
4。
绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5。
有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数-大数<0。
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1⇔a、b互为倒数;若ab=—1⇔ a、b互为负倒数.7。
有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。
8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac 。
初一数学有理数的乘方
初一数学有理数的乘方 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN有理数的乘方(1)教师寄语:“数学是一切知识中的最高形式”一、【学习目标】1、请理解有理数乘方的意义。
2、请掌握有理数乘方的运算。
二、【学习重点、难点】1、【重点】有理数乘方的运算。
2、【难点】有理数乘方运算的法则。
三、【课堂必记知识】1、n个a相乘,a﹒a﹒…a=a n,求n个相同因数的积的运算,叫做乘方。
其中a是底数,乘方的结果叫做幂。
n叫做指数。
a n既表示乘方运算,读作a的n次方;也表示乘方的结果幂﹒,所以也可以读作a的n次幂。
指数底数 a n幂2、正数的任何次幂都是正数;负数的奇次幂为负数,负数的偶次幂为正数,0的任何次幂都是0.四、【课前预习】请你试一试:1、边长为a的正方形面积是a﹒a,记作a2,读作a的平方(或二次方);棱长为a的正方体的体积是a﹒a﹒a,记作a3,读作a的立方(或三次方)n个a相乘,a﹒a﹒…a=a n,其中a表示因数,n表示因数的个数。
【总结】、求n个相同因数的积的运算,叫做乘方。
其中a是底数,乘方的结果叫做幂。
n叫做指数。
a n既表示乘方运算,读作a的n次方;也表示乘方的结果幂﹒,所以也可以读作a 的n次幂。
指数底数 a n幂2、试一试:(1)比较75和57有何不同。
(2)比较(-7)5和75有何不同。
3、你能判断下列各式的正负吗?试总结规律。
25,(-2)5,(-2)6,26,(-3)5,(-3)6,(-5)7,(-5)8,03003,018【总结】正数的任何次幂都是;负数的奇次幂为,负数的偶次幂为,0的任何次幂都是。
五、【课堂练习】请你做一做1、计算:26 (-3)3 (-3)4 110 (-1)5六、【课后练习】1、某种细菌在培养过程中,细菌每半小时分裂一次(由一个分裂成两个),经过两个小时,这种细菌有1个可分裂成( )A. 8个B. 16个C.4个D.32个2、一根长1m 的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次剪后盛下的绳子长度为( )A .(21)3B .(21)5C .(21)6 D.(21)123、下列说法正确的是( )A.一个数的平方一定大于这个数B.一个数的平方一定不小于这个数C. 一个数的平方不可能是负数D.一个数的平方小于它的绝对值七、【拓展练习】已知(a-2)2+|b-5|=0,求(-a )3×(-b)2八、【进步与收获】有理数的乘方(2)教师寄语:“合理安排时间,就等于节约时间。
七年级数学2.7有理数的乘方知识点解读有理数的乘方
知识点解读:有理数的乘方同学们,一张普通白纸的厚度只有0.01厘米,但是当你把这一张普通的白纸连续对折30次后,你知道有多厚吗?它的厚度竟然超过珠穆朗玛峰!你相信吗?通过对有理数乘方的学习,我们就会知道其中的奥妙了。
知识点一:有理数乘方的意义一般地,n 个相同的因数a 相乘,即n a a a ⋅⋅⋅个,记作a n ,读作a 的n 次方.求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a n 中,a 叫做底数,n 叫做指数,当a n 看作a 的n 次方的结果时,也可读作a 的n 次幂。
知识点二:如何进行乘方运算1.乘方和加、减、乘、除一样,也是一种运算,是乘法运算的特殊情况。
a n 就是表示n 个a 相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;2.幂的符号法则:负数的奇次幂是负的,负数的偶次幂是正的,即(-a )2n =a 2n ,(-a )2n+1=-a 2n+1(n 是正整数),a 2n ≥0,即任何有理数的偶次幂是非负数;正数的任何次幂是正的; 0的任何次幂都是0;3.一个数可以看作这个数本身的一次方,如5就是51,通常指数为1时可以省略不写。
4.有理数的混合运算时,应注意的运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.例1 计算:(1)(-3)4;(2)(-8)3;(3)(-13)4 分析:根据乘方的意义可直接用乘法来求出各乘方的值。
解:(1)(-3)4=(-3) (-3) (-3) (-3)=81.(2)(-8)3=(-8) (-8) (-8)=-512.(3)(-13)4=(-13)(-13)(-13)(-13)=181. 说明:这里应特别注意“-”号问题,计算时也可以先根据符号法则确定其结果的符号,然后直接计算正数的乘方。
例2 计算(-0.125)12×813的值.分析:直接计算(-0.125)12与813有一定的难度,但观察发现0.125×8=1,于是提醒我们利用乘方的意义和乘法的运算律就能比较容易地求值了。
七年级初一数学2.7有理数的乘方学习导航
《有理数的乘方》学习导航有理数的乘方是有理数乘法运算的延续和拓展,是继续学习整式运算、方程、函数等初中数学知识的基础,也是中考命题的热点。
其内容主要包括乘方运算和科学记数法。
一、学习目标:1、知道乘方运算与乘法运算的关系,会进行有理数的乘方;2、知道底数、指数和幂的概念,会求有理数的正整数幂;3、会用科学记数法表示较大的数; 二、知识点归纳: 1、乘方运算(1)求相同因数的积的运算叫做乘方,乘方运算的结果叫幂n 个a 相乘a a a a ⨯⨯⨯⨯ 记作n a ,读作a 的n 次方,或a 的n 次幂,在na 中,a 叫底数,n 叫指数,指数n 应写在底数a 的右上角,要比a 稍微小一点,na 叫做幂。
(2)内容解读:①幂的指数与底数不具有交换性,即不能把52写成25,52表示5个2相乘,其结果为32,而25表示2个5相乘,其结果为25,②指数是1表示只有1个因数,即a a =1,所以指数1通常省略不写,反过来,任何一个数也都可以看作是这个数本身的1次方。
③当底数是负数或分数时,一定要用括号把整个底数括起来,例如,3)52(就不能写成523;3)52(表示3个52相乘,其结果应为1258;而523分母为5,而分子为32,其结果应为58;同样4)2(-也不能写成42-,4)2(-表示4个2-相乘,其结果应为16;而42-则表示42的相反数,其结果应为16-④正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数, ⑤一个数的二次方也称为这数的平方,一个数的三次方也称为这个数的立方 (3)链接中考①(05年福州市中考题)32表示( )(A )、222⨯⨯;(B )、32⨯;(C )、33⨯;(D )、222++;②(05年连云港市中考题)与算式222333++的运算结果相等的是( ) (A )、33;(B )、32;(C )、63;(D )、83;③(05年四川内江市中考题)某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,那么这个过程要经过( )(A)、1小时;(B )、2小时;(C )、3小时;(D )、4小时;④(05年福建南安市中考题) ,2433,813,273,93,3354321======那么20053的个位数字是解析:①根据乘方运算的意义,22223⨯⨯=,故应选(A )②根据幂的运算法则,3222327999333==++=++,故应选(A )③这种细菌每半小时分裂一次,每分裂一次,都可由一个分裂为两个,那么由1个分裂为16个需经4次,故应选(B )④通过观察可以发现其规律,底数为3,k 为整数,幂143+k 的个位数字为3,幂243+k 的个位数字为9,幂343+k 的个位数字为7,幂k43的个位数字为1,而145012005+⨯=,所以幂20053的个位数字为32、科学记数法(1)一个大于10的数,可以写成na 10⨯的形式,其中1≤a <10,n 是正整数,这种记数法称为科学记数法(2)内容解读:将一个大于10的数,用科学记数法表示为na 10⨯时,a 一定要遵循1≤a <10的规定,例若将231000写成4101.23⨯时,由于a 为23.1>10,所以这种表示就不是科学记数法,10的指数n 应为这个数的整数位数减1。
第1章 - 专题3 - 有理数的乘方
一帆教育2015年秋季班培优讲义(初一数学)专题三 有理数的乘方知识点一:乘方的性质及运用注释:①一个数可以看作是这个数本身的一次方,指数是“1”通常省略不写;②在有理数的乘方中,底数是因数,指数是相同因数的个数,指数是整数;③指数是“2”是读作平方,指数是“3”是读作立方;④底数是负数或者分数时要加括号。
注意:()45-和45-1A.()113-=- 2.(2015·湖州)(2)3.计算:(1) -32×(-注释:0次幂都等于1注意:①()na -4.计算:()=-465.(2015·自贡)如果a 的倒数是1,那么2016a ( )A .1B .1-C .2014D .2014-知识点三:有理数的混合运算6.计算:(1) -10+8÷(-2)2-(-4)×(-3) (2) 4×(-3)2-5×(-2)3+67.(2015·台湾) 算式(-3)4 -72 -2(-2)3的值是()A.-138B.-122C.24D.408.已知a=-(-1)2,b=-(-2),c=-|-3|,求ac-a b+c b的值;注释:移动n位即可。
9.(2015·宜昌)约为4400000000A.44×10810(1)3.618×103(3)-8×10411碳_________吨.12.学成绩为87分;⑤小亮身高1.53m.其中是准确数的有_________,是近似数的有_________.13.用四舍五入法按要求对0.05049分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0505(精确到0.0001) 14.用四舍五入法,按括号中的要求对下列各数取近似数.(1)2.009(精确到0.01);(2)46850000(精确到万分位);(3)4.762×107(精确到万分位);(4)14亿(精确到十万分位).能力提升1.若|a-1|与(b+2)2互为相反数,试求a2016+(a+b)2015的值. 2.计算:(1)(-2)33.已知4.比较大小:((1) 9.532×10105(1)2.715(精确到百分位);(2)0.1395(精确到0.001);(3)123410000(精确到万位);(4)3.01×105(精确到百位)家庭作业 学员姓名:__________ 家长签字:__________ 成绩__________1.(1)已知x 2=(-3)2,则x=_______;若x=-32,则x=_______.(2)已知(x+2)2+|y-3|=0,则x y =_______2.计算: (1) -×[(-)÷(0.75-1)+(-2)5] (2) ( - )÷(-)+(-2)2×|34-1|3.已知(x-3)2与|y+5|互为相反数,求|2-x|+(y-5)2-xy 的值;4.根据威海市旅游局统计,今年五一小长假期间,我市各旅游景点门票收入约2300万元,数据“2300万”用科学记数法表示为_______.5.近似数3.50的准确值a 的取值范围是( )A.3.40≤a≤3.60B.3.495≤a <3.505C.3.49≤a≤3.605D.3.500≤a <3.60。
人教版初一数学知识点总结
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;不一定是负数,也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ 0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若1⇔ 、b 互为倒数;若-1⇔ 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律: ;(2)加法的结合律:()().9.有理数减法法则:减去一个数,等于加上这个数的相反数;即().10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:;(2)乘法的结合律:()();(3)乘法的分配律:a () .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: ()或(a )()n , 当n 为正偶数时: ()n 或 ()()n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
七年级数学上册有理数的乘方知识点分析人教版
有理数的乘方【知识梳理】1.乘方的有关概念.(1)求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂.a 叫底数,n 叫指数,a n 读作:a 的n 次幂(a 的n 次方).(2)乘方的意义:a n 表示n 个a 相乘.n a n a a a a a =⨯⨯⨯⨯个(3)写法的注意:当底数是负数或分数时,底数一定要打括号,不然意义就全变了. 如:(32-)2=(32-)×(32-),表示两个32-相乘. 而322-=322⨯-,表示2个2相乘的积除以3的相反数. 2.a n 与-a n 的区别.(1)a n 表示n 个a 相乘,底数是a ,指数是n ,读作:a 的n 次方.(2)-a n 表示n 个a 乘积的相反数,底数是a ,指数是n ,读作:a 的n 次方的相反数. 如:(-2)3底数是-2,指数是3,读作(-2)的3次方,表示3个(-2)相乘. (-2)3=(-2)×(-2)×(-2)=-8.-23底数是2,指数是3,读作2的3次方的相反数.-23=-(2×2×2)=-8. 注:(-2)3与-23的结果虽然都是-8,但表示的含义并不同.3.乘方运算的符号规律.(1)正数的任何次幂都是正数.(2)负数的奇次幂是负数.(3)负数的偶次幂是正数.(4)0的奇数次幂,偶次幂都是0.所以,任何数的偶次幂都是正数或0.4.乘方如何运算?乘方运算就是根据乘方的意义把它转化为乘法进行计算.如:33=333=27.5.把一个大于 10 的数记成 a10n的形式,其中 a 是整数数位只有一位的数,这种记数法叫做科学记数法。
注意:一个数的科学记数法中,10 的指数比原数的整数位数少 1,如原数有 8 位整数,指数就是7。
【重点难点】有理数乘方的意义及乘方的运算。
【典例解析】例1、计算:(1)35;(2)(—2)4;(3)—24;(4)—(—4)2(5)3×52.解:(1)35=3×3×3×3×3=243;(2)(—2)4=(—2)×(—2)×(—2)×(—2)=16;(3)—24=—2×2×2×2=—16;(4)—(—4)2=—(—4)×(—4)×(—4)×(—4)=—256;(5)3×52=3×5×5=75.说明:计算乘方,一定要分清底数和指数,特别注意(2)、(3)两小题的区别.例2、计算:(1)3×23(2)(2×3)3 (3)(-32)3解:(1)3×23=3×2×2×2=24 (2)(2×3)3=63=6×6×6=216 (3)(-32)3=(-6)3=(-6)(-6)(-6)=-216注意:运算顺序是:先算乘方,再算乘除,最后算加减,如果有括号的,要先算括号里面的。
七级数学上册 1.5 有理数的乘方《近似数》知识点解读素材 (新版)新人教版
《近似数》知识点解读知识讲解:准确数是与实际完全符合的数,如班级的人数,一个单位的车辆数等.近似数是与实际非常接近的数,但与实际数还有差别.如我国有12亿人口,地球半径为6.37×106m等.相关概念:有效数字:是指从该数字左边第一个非0的数字到该数字末尾的数字个数(有点绕口)。
举几个例子:3一共有1个有效数字,0.0003有一个有效数字,0.1500有4个有效数字,1.9×103有两个有效数字(不要被103迷惑,只需要看1.9的有效数字就可以了,10n看作是一个单位)。
精确度:即数字末尾数字的单位。
比如说:9800.8精确到十分位(又叫做小数点后面一位),80万精确到万位。
9×105精确到10万位(总共就9一个数字,10n看作是一个单位,就和多少万是一个概念)。
请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样. ()2.近似数4千万与近似数4000万的精确度一样. ()3.近似数660万,它精确到万位.有三个有效数字. ()4.用四舍五入法得近似数6.40和6.4是相等的. ()5.近似数3.7x10的二次与近似数370的精确度一样. ()满意回答1.错。
前者精确到十分位(小数点后面一位),后者精确到个位数。
2.错。
4千万精确到千万位,4000万精确到万位。
3.对。
4.错。
值虽然相等,但是取之范围和精确度不同.5.错。
3.7x10^2精确到十位,370精确到个位.典型例题:例1判断下列各数,哪些是准确数,哪些是近似数:(1)初一(2)班有43名学生,数学期末考试的平均成绩是82.5分;(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;(3)通过计算,直径为10cm的圆的周长是31.4cm;(4)检查一双没洗过的手,发现带有各种细菌80000万个;(5)1999年我国国民经济增长7.8%.解:(1)43是准确数.因为43是质数,求平均数时不一定除得尽,所以82.5一般是近似数;(2)一万二千是近似数;(3)10是准确数,因为3.14是π的近似值,所以31.4是近似数;(4)80000万是近似数;(5)1999是准确数,7.8%是近似数.说明:1.在近似数的计算中,分清准确数和近似数是很重要的,它是决定我们用近似计算法则进行计算,还是用一般方法进行计算的依据.2.产生近似数的主要原因:(1)“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等;(2)用测量工具测出的量一般都是近似数,如长度、重量、时间等等;(3)不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;(4)由于不必要知道准确数而产生近似数.例2下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?(1)38200;(2)0.040;(3)20.05000;(4)4×104分析:对于一个四舍五入得到的近似数,如果是整数,如38200,就精确到个位;如果有一位小数,就精确到十分位;两位小数,就精确到百分位;象0.040有三位小数就精确到千分位;像20.05000就精确到十万分位;而4×104=40000,只有一个有效数字4,则精确到万位.有效数字的个数应按照定义计算.解:(1)38200精确到个位,有五个有效数字3、8、2、0、0.(2)0.040精确到千分位(即精确到0.001)有两个有效数字4、0.(3)20.05000精确到十万分位(即精确到0.00001),有七个有效数字2、0、0、5、0、0、0.(4)4×104精确到万位,有一个有效数字4.说明:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零.如20.05000的有效数字是2、0、0、5、0、0、0七个.而20.05的有效数字是2、0、0、5四个.因为20.05000精确到0.00001,而20.05精确到0.01,精确度不一样,有效数字也不同,所以右边的三个0不能随意去掉.(2)对有效数字,如0.040,4左边的两个0不是有效数字,4右边的0是有效数字.(3)近似数40000与4×104有区别,40000表示精确到个位,有五个有效数字4、0、0、0、0,而4×104表示精确到万位,有1个有效数字4.例3下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?(1)70万;(2)9.03万;(3)1.8亿;(4)6.40×105.分析:因为这四个数都是近似数,所以(1)的有效数字是2个:7、0,0不是个位,而是“万”位;(2)的有效数字是3个:9、0、3,3不是百分位,而是“百”位;(3)的有效数字是2个:1、8,8不是十分位,而是“千万”位;(4)的有效数字是3个:6、4、0,0不是百分位,而是“千”位.解:(1)70万. 精确到万位,有2个有效数字7、0;(2)9.03万.精确到百位,有3个有效数字9、0、3;(3)1.8亿.精确到千万位,有2个有效数字1、8;(4)6.40×105.精确到千位,有3个有效数字6、4、0.说明:较大的数取近似值时,常用×万,×亿等等来表示,这里的“×”表示这个近似数的有效数字,而它精确到的位数不一定是“万”或“亿”.对于不熟练的学生,应当写出原数之后再判断精确到哪一位,例如9.03万=90300,因为“3”在百位上,所以9.03万精确到百位.例4 用四舍五入法,按括号里的要求对下列各数取近似值.(1)1.5982(精确到0.01); (2)0.03049(保留两个有效数字);(3)3.3074(精确到个位); (4)81.661(保留三个有效数字).分析:四舍五入是指要精确到的那一位后面紧跟的一位,如果比5小则舍,如果比5大或等于5则进1,与再后面各位数字的大小无关.(1)1.5982要精确到0.01即百分位,只看它后面的一位即千分位的数字,是8>5,应当进1,所以近似值为1.60.(2)0.03049保留两个有效数字,3左边的0不算,从3开始,两个有效数字是3、0,再看第三个数字是4<5,应当舍,所以近似值为0.030.(3)、(4)同上.解:(1)1.5982≈1.60;(2)0.03049≈0.030;(3)3.3074≈3;(4)81.661≈81.7.说明:1.60与0.030的最后一个0都不能随便去掉.1.60是表示精确到0.01,而1.6表示精确到0.1.对0.030,最后一个0也是表示精确度的,表示精确到千分位,而0.03只精确到百分位.例5用四舍五入法,按括号里的要求对下列各数取近似值,并说出它的精确度(或有效数字).(1)26074(精确到千位); (2)7049(保留2个有效数字);(3)26074000000(精确到亿位) ;(4)704.9(保留3个有效数字).分析:根据题目的要求:(1)26074≈26000;(2)7049≈7000;(3)26074000000≈26100000000;(4)704.9≈705.(1)、(2)、(3)题的近似值中看不出它们的精确度,所以必须用科学记数法表示.解:(1)26074=2.6074×104≈2.6×104,精确到千位,有2个有效数字2、6.(2)7049=7.049×103≈7.0×103,精确到百位,有两个有效数字7、0.(3)26074000000=2.6074×1010≈2.61×1010,精确到亿位,有三个有效数字2、6、1.(4)704.9≈705,精确到个位,有三个有效数字7、0、5.说明:求整数的近似数时,应注意以下两点:(1)近似数的位数一般都与已知数的位数相同;(2)当近似数不是精确到个位,或有效数字的个数小于整数的位数时,一般用科学记数法表示这个近似数.因为形如a×10n(1≤a<10,n为正整数=的数可以体现出整数的精确度.反馈练习:1. 由四舍五入得到的近似数0.600的有效数字是()A. 1个B. 2个C. 3个D. 4个2. 用四舍五入法取近似值,3.1415926精确到百分位的近似值是_________,精确到千分位近似值是________.3. 用四舍五入法取近似值,0.01249精确到0.001的近似数是_________,保留三个有效数字的近似数是___________.4. 用四舍五入法取近似值,396.7精确到十位的近似数是______________;保留两个有效数字的近似数是____________.5. 用四舍五入法得到的近似值0.380精确到_____位,48.68万精确到___位.答案:1. C 2. 3.14,3.142. 3. 0.012,0.0125.4. 400,4.0×102.5. 千分,百.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初一数学有理数的乘方知识点
鉴于数学知识点的重要性,小编为您提供了这篇人教版初一数学有理数的乘方知识点,希望对同学们的数学有所帮助。
1.5.1乘方
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数混合运算的运算顺序:
⑴先乘方,再乘除,最后加减;
⑵同级运算,从左到右进行;
⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
1.5.2科学记数法
把一个大于10的数表示成a10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
用科学记数法表示一个n位整数,其中10的指数是n-1。
1.5.3近似数和有效数字
接近实际数目,但与实际数目还有差别的数叫做近似数。
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。
对于用科学记数法表示的数a10n,规定它的有效数字就是a 中的有效数字。
这篇人教版初一数学有理数的乘方知识点是小编精心为同学们准备的,祝大家学习愉快!。