广东省深圳市育才中学2018-2019高三第三次月考数学试卷(图片版,无答案)
数列的基本运算大题
数列的基本运算大题【三年真题重温】1. 【2019⋅新课标全国理】已知{a n }为等比数列,a 4+a 7=2,a 5⋅a 6=-8,则a1+a 10=()A 、7B 、5C 、-5D 、-72. 【2019⋅新课标全国文】等比数列{a n }的前n 项和为S n ,若S 3+3S2=0,则公比q =_______3. 【2019⋅新课标全国理】数列{a n }满足a n +1+(-1) n a n =2n -1,则{a n }的前60项和为4. 【2019⋅新课标全国文】数列{a n }满足a n +1+(-1) n a n =2n -1,则{an }的前60项和为(A )3690 (B )3660 (C )1845 (D )18305. 【2019⋅新课标全国理,17】等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6.(Ⅰ) 求数列{a n }的通项公式;(Ⅱ) 设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{1的前n 项和. b n11,公比q =. 336. 【2019 新课标全国文,17】已知等比数列{a }中,a 2=(Ⅰ) S n 为{a n }的前n 项和,证明:S n =1-a n; 2(Ⅱ) 设b n =log 3a 1+log 3a 2+⋅⋅⋅+log 3a n ,求数列b n 的通项公式. 7. 【2019 新课标全国理,17】设数列{a n }满足a 1=2, a n +1-a n =322n -1 (1)求数列{a n }的通项公式;(2)令b n =na n ,求数列的前n 项和S n【新题预测演练】1. 【广东省揭阳市2019届高三3月第一次高考模拟】已知等差数列{a n }满足,a 1>0,5a 8=8a 13,则前n 项和S n 取最大值时,n 的值为A.20B.21C.22D.232. 【东北三省三校2019届高三3月第一次联合模拟考试】已知数列{a n }是等差数列,且a 1+a 4+a 7=2π,则tan(a 3+a 5) 的值为()AB .C .3D .-33. 【上海市奉贤2019届高三一模】已知S n 是等差数列{a n }(n ∈N *)的前n 项和,且S 6>S 7>S 5,有下列四个命题,假命题的是( ) ...(A)公差d 0的n 的个数有11个(B)在所有S n a 7na a +(-1) a n =2n -1,则数列n 4. 【惠州市2019届高三第三次调研考试】数列{} 中,n +1{a n }前12项和等于()A .76B .78C . 80D .82 5. 【2019-2019学年江西省南昌市调研考试】已知等比数列a n }公比为q ,其前n 项和为{S n ,若S 3, S 9, S 6成等差数列,则q 3等于()A. -111B.1C. -或1D. -1或 2226. 【2019年长春市高中毕业班第一次调研测试】在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n+1=324,则n = A. 11 B. 12 C. 14 D. 16 7. 【广东省华附、省实、广雅、深中2019届高三上学期期末四校联考】在正项等比数列{a n }中,a 1和a 19为方程x 2-10x+16=0的两根,则a 8a 10a 12=( ) (A)16 (B)32 (C)64 (D)2568. 【2019届贵州天柱民中、锦屏中学、黎平一中、黄平民中四校联考】若数列{a n }的通项为a n =2,则其前n 项和S n 为()n (n +2)A .1-1311311311- B.-- C.-- D.-n +22n n +12n n +22n +1n +29. 【云南玉溪一中2019届第四次月考试卷】设等差数列{a n }的前n 项和为S n , 且满足S 15>0, S 16a 1a 2a 15A .S 6S S S B . 7 C . 9 D . 8 a 6a 7a 9a 810. 【广东省惠州市2019届高三第三次调研考试】数列{a n } 中,a n +1+(-1) n a n =2n -1,则数列{a n }前12项和等于()A .76B .78C . 80D .82 11. 【2019年浙江省高考测试卷】设数列{a n }()A .若a n 2=4n , n ∈N *,则{a n }为等比数列2*B .若a n ∙a n +2=a n ,则{a n }为等比数列, n ∈N +1C .若a m ∙a n =2m +n , m , n ∈N *,则{a n }为等比数列D .若a n ∙a n+3=a n +1∙a n +2, n ∈N *,则{a n }为等比数列12. 【上海市青浦2019届高三一模】已知函数f (x ) 是定义在R 上的单调增函数且为奇函数,数列{a n }是等差数列,则f (a 1) +f (a 2) +f (a 3) + +f (a 2019) +f (a 2019) a 1007>0,的值……………………()A . 恒为正数 D . 可正可负B . 恒为负数C . 恒为013. 【天津市新华中学2019届高三上学期第三次月考数学试卷】设数列{a n }满足a n +1=3a n +2n ,(n∈N ﹡) ,且a 1=1,则数列{a n }的通项公式为14. 【北京市石景山区2019届高三上学期期末理】在等比数列{a n }中,a 1=则公比q = ,a 1+a 2+a 3+L 15. 【2019年秋湖北省部分重点中学期中联考】设{a n }是集合{2s +2t | 0≤s <t ,且s ,t ∈Z }中所有的数从小到大排列成的数列,即a 1=3,a 2=5,a 3=6,a 4=9,a 5=10,a 6=12……,将数列{a n }中各项按照上小下大,左小右大的原则排成如下等腰直角三角形1, a 4=-4,2数表:35 69 10 12 ………… ……则第四行四个数分别为;且a 2019=(用2s +2t 形式表示). 16. 【安徽省黄山市2019届高中毕业班第一次质量检测】已知数列{a n }满足a 1=1,a n =log n (n +1) (n ≥2,n ∈N *) . 定义:使乘积a 1⋅a 2⋅…⋅a k为正整数的k (k ∈N ) 叫做“简易数”. 则在[1,2019]内所有“简易数”的和为 .17. 【东北三省三校2019届高三3月第一次联合模拟考试】(本小题满分12分)已知数列{a n }的前n 项和S n 满足S n =2a n +(-1) n (n ∈N *) (1)求数列{a n }的前三项a 1,a 2,a 3;(2)求证:数列{a n +*2(-1) n }为等比数列,并求出{a n }的通项公式。
2023-2024学年广东省广州大学附中高一(下)第三次月考数学试卷+答案解析
2023-2024学年广东省广州大学附中高一(下)第三次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知,,则()A.B.C. D.2.已知复数满足,则()A.B. C.D.3.某高校组织大学生知识竞赛,共设有5个版块的试题,分别是“中华古诗词”“社会主义核心价值观”“科学实践观”“中国近代史”及“创新发展能力”.某参赛队从中任选2个版块作答,则“创新发展能力”版块被该队选中的概率为()A.B. C.D.4.已知平面向量,其中,且与和与的夹角相等,则()A. B.1C.D.25.若,则()A. B.C.D.6.已知的外接圆的圆心为O ,半径为1,,在上的投影向量为,则()A.B.C.1D.7.为调查某地区中学生每天睡眠时间,采用样本量比例分配的分层随机抽样,现抽取初中生800人,其每天睡眠时间均值为9小时,方差为1,抽取高中生1200人,其每天睡眠时间均值为8小时,方差为,则估计该地区中学生每天睡眠时间的方差为()A.B.C.D.8.已知三棱锥的四个顶点在球O 的球面上,,是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,,则球O 的体积为()A.B.C.D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.下列说法正确的是()A.数据1,3,5,7,9,11,13的第60百分位数为9B.为了了解某地参加计算机水平测试的5000名学生的成绩,从中抽取了200名学生进行调查分析.在这个问题中,被抽取的200名学生是样本C.用简单随机抽样的方法从51个个体中抽取2个个体,则每个个体被抽到的概率都是D.若样本数据,,⋯,的平均数为2,则,,⋯,的平均数为810.已知函数,若函数的部分图象如图所示,则关于函数,下列结论正确的是()A.函数的图象关于直线对称B.函数的图象关于点对称C.函数在区间上的减区间为D.函数的图象可由函数的图象向左平移个单位长度得到11.如图,在菱形ABCD中,,,将沿对角线BD翻折到位置,则在翻折的过程中,下列说法正确的()A.存在某个位置,使得B.存在某个位置,使得C.存在某个位置,使得P,B,C,D四点落在半径为的球面上D.存在某个位置,使得点B到平面PDC的距离为三、填空题:本题共3小题,每小题5分,共15分。
重庆市育才中学校2022-2023学年高一下学期3月月考数学试题(解析版)
重庆市育才中学校高2025届2022-2023学年(下)3月月考数学试题本试卷为第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.第I 卷一、选择题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知平面向量()()()1,0,1,,2,1a b k c ==-=,若()2a b c+ ∥,则k =()A.1B.1- C.14-D.14【答案】C 【解析】【分析】求出2a b + 的坐标,根据()2a b c + ∥,列出方程,计算可得.【详解】因为()()1,0,1,a b k ==-,所以()()()1,021,12,2a k k b =+-=-+,因为()2//a b c +,()2,1c = ,所以()11220k -⨯-⨯=,解得14k =-故选:C.2.已知α是第二象限角,则点tan ,sin22P αα⎛⎫⎪⎝⎭位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】已知α是第二象限角,求2α和2α终边所在位置,判断tan 2α和sin 2α的符号,确定点tan,sin22P αα⎛⎫⎪⎝⎭所在象限.【详解】α是第二象限角,则()π2ππ2πZ 2k k k α+<<+∈,()ππππZ 422k k k α+<<+∈,2α的终边在一三象限,tan 02α>,()π4π22π4πZ k k k α+<<+∈,2α的终边在三四象限和y 轴非负半轴,sin 20α<,则点tan ,sin22P αα⎛⎫⎪⎝⎭位于第四象限.故选:D3.如图,60C 是一种碳原子簇,它是由60个碳原子构成的,其结构是以正五边形和正六边形面组成的凸32面体,这60个C 原子在空间进行排列时,形成一个化学键最稳定的空间排列位置,恰好与足球表面格的排列一致,因此也叫足球烯.根据杂化轨道的正交归一条件,两个等性杂化轨道的最大值之间的夹角()0180θθ<≤满足:233153cos cos cos cos 02222αβθγθδθθ⎛⎫⎛⎫++-+-= ⎪ ⎪⎝⎭⎝⎭,式中,,,αβγδ分别为杂化轨道中,,,s p d f 轨道所占的百分数.60C 中的杂化轨道为等性杂化轨道,且无,d f 轨道参与杂化,碳原子杂化轨道理论计算值为 2.28sp ,它表示参与杂化的,s p 轨道数之比为1:2.28,由此可计算得一个60C 中的凸32面体结构中的五边形个数和两个等性杂化轨道的最大值之间的夹角的余弦值分别为()A.2520,57-B.2520,57C.2512,57-D.2512,57【答案】C 【解析】【分析】设60C 中的凸32面体结构中共有x 个五边形,y 个六边形,列方程即可求解,x y ,再根据所给公式求出cos θ.【详解】设一个60C 中的凸32面体结构中共有x 个五边形,y 个六边形,因为每个顶点都是三个面的公共顶点,所以56603x y+=,又因为32x y +=,解得12,20x y ==,所以共有12个正五边形;又因为1 2.28,,03.28 3.28αβγδ====,所以1 2.28cos 03.28 3.28θ+=,解得25cos 57θ=-,故选:C.4.已知175sin cos ,π,π134ααα⎛⎫+=-∈ ⎪⎝⎭,则sin cos αα-=()A.213 B.213-C.713D.713-【答案】C 【解析】【分析】根据5π,π4α⎛⎫∈ ⎪⎝⎭,sin cos αα>,运用同角关系计算.【详解】()2222222171717sin cos ,sin ,sin cos 2sin cos 131313αααααααα+=-∴+=++=,21202sin cos 13αα=,()222224949sin cos 2sin cos ,sin cos 1313αααααα+-=-=,5π7π,,sin cos ,sin cos 0,sin cos 413ααααααα⎛⎫∈--= ⎪⎝⎭>>;故选:C.5.已知非零向量,a b满足()()()()7,2211a b a b a b a b -⊥-+⊥- ,则sin ,a b =()A.35B.45C.513D.1213【答案】A 【解析】【分析】由已知向量的垂直,根据数量积为0,列方程组求解.【详解】()()7a b a b -⊥- ,则()()227870a b a b a a b b -⋅-=-⋅+=,①()()2211a b a b +⊥- ,则有()()22221127220a b a b aa b b +⋅-=-⋅-=,②78⨯⨯①-②,得2292250a b -= ,则有5a b = ,代入①式,2222540cos ,70b b a b b -+=,解得4cos ,5a b = ,由[],0,π∈ a b ,得3sin ,5a b =.故选:A6.已知 1.5241,log 3,sin 12a b c ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A.a b c <<B.b c a <<C.c a b <<D.a c b<<【答案】D 【解析】【分析】通过和中间数13,24比大小即可.【详解】 1.51212a ⎛⎫⎪⎝<=⎭;443log 3log 4b =>=;2221ππ3=sin sin 1sin 2434c <=<=;所以a c b <<故选:D7.如图,在梯形ABCD 中,112AD DC AB ===且,AB AD P ⊥为以A 为圆心AD 为半径的14圆弧上的一动点,则()PD PB PC ⋅+ 的最小值为()A.3-B.3-C.3-D.3-【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算及三角函数的性质求解.【详解】以A 为原点,AB 为x 轴,AD 为y 轴,建立如图所示的平面直角坐标系,则有()0,0A ,()2,0B ,()1,1C ,()0,1D ,设()πcos ,sin 02P ⎛⎫≤≤⎪⎝⎭ααα,得()cos ,1sin PD =-- αα,()2cos ,sin PB =-- αα,()1cos ,1sin PC =--αα,则()()()cos ,1sin 32cos ,12sin PD PB PC ⋅+=--⋅--αααα222cos 3cos 2sin 3sin 1=-+-+ααααπ34⎛⎫=-+ ⎪⎝⎭α由π02α≤≤,当π4α=时,()PD PB PC ⋅+ 有最小值3-.故选:B8.设函数()()2sin 1(0)f x x ωϕω=+->,若对任意实数(),f x ϕ在区间[]0,π上至少有3个零点,至多有4个零点,则ω的取值范围是()A.810,33⎡⎫⎪⎢⎣⎭B.10,43⎡⎫⎪⎢⎣⎭C.144,3⎡⎫⎪⎢⎣⎭D.1416,33⎡⎫⎪⎢⎣⎭【答案】B 【解析】【分析】由题可转化为研究函数2sin 1y x ω=-在任意一个长度为π的区间上的零点问题,求出函数2sin 1y x ω=-在y 轴右侧靠近坐标原点处的零点,得到相邻四个零点之间的最大距离,相邻五个零点之间的距离,结合条件列式即得.【详解】因为ϕ为任意实数,故函数()f x 的图象可以任意平移,从而研究函数()f x 在区间[]0,π上的零点问题,即研究函数2sin 1y x ω=-在任意一个长度为π0π-=的区间上的零点问题,令2sin 1y x ω=-0=,得1sin 2x ω=,则它在y 轴右侧靠近坐标原点处的零点分别为π6ω,5π6ω,13π6ω,17π6ω,25π6ω,L ,则它们相邻两个零点之间的距离分别为2π3ω,4π3ω,2π3ω,4π3ω,L,故相邻四个零点之间的最大距离为10π3ω,相邻五个零点之间的距离为4πω,所以要使函数()f x 在区间[]0,π上至少有3个零点,至多有4个零点,则需相邻四个零点之间的最大距离不大于π,相邻五个零点之间的距离大于π,即10ππ34ππωω⎧≤⎪⎪⎨⎪>⎪⎩,解得1043ω≤<.故选:B.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知在同一平面内的向量,,a b均为非零向量,则下列说法中正确的有()A.若,a b b c∥∥,则a c∥B.若a c a b ⋅=⋅ ,则b c= C.()()a b c a b c⋅⋅=⋅⋅ D .若a b 且a c ⊥,则()c a b ⋅+= 【答案】AD 【解析】【分析】平面向量共线的传递性判断A ,由向量数量积的定义可判断B ,根据数量积及共线向量的概念可判断C ,根据向量垂直及向量数量积的概念可判断D.【详解】对A ,在同一平面内的向量,,a b c 均为非零向量,若//a b 且//b c ,则//a c ,即A 正确;对B ,若a c a b ⋅=⋅ ,则cos ,cos ,a c a c a b a b ⋅=⋅ ,又0a ≠ ,所以cos ,cos ,b a b c c =,因为,b c 与a 的夹角不一定相等,所以b c =不一定成立,即B 错误;对C ,因为()a b c ⋅⋅ 与c 共线,()a b c ⋅⋅与a 共线,所以()()a b c a b c ⋅⋅=⋅⋅ 不一定成立,即C 错误;对D ,若//a b 且a c ⊥ ,则c b ⊥ ,()0c a b c a c b ⋅+=⋅+⋅= ,即D 正确.故选:AD .10.函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列说法中正确的有()A.2ω=B.7π,012⎛⎫-⎪⎝⎭为函数()f x 的一个对称中心点C.117π,π63⎡⎤⎢⎥⎣⎦为函数()f x 的一个递增区间D.可将函数cos2x 向右平移1π6个单位得到()f x 【答案】ABD 【解析】【分析】根据函数图像可求出A 、ω、ϕ的值,可得()f x 的解析式,利用三角函数的性质对各选项进行判断可得答案.【详解】由题可得得,1A =,2ππ2π36T ⎛⎫=⨯-=⎪⎝⎭,则2π2πω==,故A 正确;又π16f ⎛⎫= ⎪⎝⎭,所以ππ22π(Z)62k k ϕ⨯+=+∈,又π2ϕ<,所以π6ϕ=,所以()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,对于B ,当7π12=-x 时,7π7ππsin 2012126f ⎛⎫⎛⎫-=-⨯+= ⎪ ⎪⎝⎭⎝⎭,所以函数图象关于点7π,012⎛⎫- ⎪⎝⎭对称,故B 正确;对于C ,由πππ2π22π,Z 262k x k k -+≤+≤+∈,可得ππππ,Z 36k x k k -+≤≤+∈,令2k =,可得5π13π36x ≤≤,所以117π,π63⎡⎤⎢⎥⎣⎦不是函数()f x 一个递增区间,故C 错误;对于D ,将函数cos2x 向右平移1π6个单位得到()πππππcos2cos 2sin 2sin 263326y x x f x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故D 正确.故选:ABD.11.已知()(),f x g x 分别是定义在R 上的奇函数和偶函数,且()()e x f x g x +=,则下列说法中正确的有()A.()01g = B.22()()1f xg x -=C.()()()22f x f x g x =⋅ D.若()()20f m f m ++>,则1m >-【答案】ACD 【解析】【分析】()(),f x g x 分别是定义在R 上的奇函数和偶函数,由()()e x f x g x +=可得()()e xf xg x --+=,可解出e e ()2x x g x -+=,e e ()2x xf x --=,再逐个验证选项即可.【详解】函数()(),f x g x 分别是定义在R 上的奇函数和偶函数,且满足()()e xf xg x +=可得()()e x f x g x --+-=,即()()e x f x g x --+=,与()()e x f x g x +=联立,可得e e ()2x xg x -+=,e e ()2x x f x --=,()00e e 20122g +===,A 选项正确;2222e e e e 22()()1224x x x xf xg x --⎛⎫⎛⎫-+---=-==- ⎪ ⎪⎝⎭⎝⎭,故B 选项错误;()22e e 22x xf x --=,()()22e e e e e e 22222x x x x x xf xg x ----+-⋅=⨯⋅=,()()()22f x f x g x =⋅,C 选项正确;函数e e ()2x xf x --=是定义在R 上的奇函数,且在R 上单调递增,若()()20f m f m ++>,则()()()2f m f m f m +>-=-,有2m m +>-,所以1m >-,D 选项正确.故选∶ACD .12.已知两个不相等的非零向量,a b,两组向量12345,,,,x x x x x 和12345,,,,y y y y y 均由3个a和2个b 排列而成,记1122334455min ,S x y x y x y x y x y S =⋅+⋅+⋅+⋅+⋅ 表示S 所有可能取值中的最小值,则下列命题正确的是()A.S 有3个不同的值B.22min 22S a a b b=+⋅+ C.若//a b ,则min S 与b 无关D.若2min ||2||,4||a b S b == ,则a b⊥ 【答案】AD 【解析】【分析】求出S 的三种结果,得出min S ,对选项进行分析得出答案.【详解】2(,134.5i i x y i =,,,)均由3个a和2个b排列而成,所以1122334455S x y x y x y x y x y =⋅+⋅+⋅+⋅+⋅ 可能情况有三种︰22132S a b =+ ;2222S a a b b =+⋅+ ;234S a b a =⋅+ ,故A 选项正确;()222221223220S S S S a b a b a b a b a b-=-=+-⋅≥+-=-≥.则S 中最小为234S a b a =⋅+ ,即2min 4S a b a =⋅+ ,B 选项错误;若//a b 则2min 4S a b a =⋅+ 与b 有关,故C 选项错误;若2a b = ,222min 4444S a b a a b b b =⋅+=⋅+= ,有0a b ⋅= ,则a b ⊥ ,D 选项正确.故选:AD .第II 卷三、填空题:本大题共4小题,每小题5分,共20分.13.已知点(1,2)A ,点(4,5)B ,若2AP PB =,则点P 的坐标是________.【答案】P (3,4)【解析】【详解】试题分析:设(),P x y ,代入2AP PB= 得()()1,224,53,3x y x y x y --=--∴==()3,3P ∴考点:向量的坐标运算14.已知()2023πsin 2023π2sin 2αα⎛⎫-=+⎪⎝⎭,则2sin2cos αα+=__________.【答案】35-##-0.6【解析】【分析】利用诱导公式化简可得tan 2α=,然后根据二倍角公式及同角关系式转化为齐次式即得.【详解】由()2023πsin 2023π2sin 2αα⎛⎫-=+ ⎪⎝⎭,得sin 2cos αα=-,则cos 0α≠,所以tan 2α=-,所以22222cos 2sin cos 12tan 143sin2cos sin cos tan 1415ααααααααα++-+====-+++.故答案为:35-.15.写出一个同时满足下列三个条件的函数()f x =__________.①()f x 不是常数函数②()1f x +为奇函数③()()22f x f x +=-【答案】cos 2x π(答案不唯一).【解析】【分析】写出符合要求的三角函数即可【详解】分析函数的性质,可考虑三角函数,函数的对称轴为2x =,对称中心()1,0,周期可以为4,()10f =,函数解析式可以为()πcos2f x x =(答案不唯一).故答案为:πcos2x (答案不唯一).16.已知函数()11ππcos2cos ,,2222f x x x x ⎡⎤=--∈-⎢⎥⎣⎦(1)()f x 的值域为__________.(2)设()()3sin 4cos g x a x x =+,若对任意的1ππ,22x ⎡⎤∈-⎢⎥⎣⎦,总存在[]20,πx ∈,使得()()12f x g x =,则实数a 的取值范围为__________.【答案】①.5,14⎡⎤--⎢⎥⎣⎦②.15,,416∞∞⎛⎤⎡⎫--⋃+ ⎪⎥⎢⎝⎦⎣⎭【解析】【分析】利用倍角公式化简函数解析式,由定义域求函数值域;由题意,()g x 的值域包含()f x 的值域,分类讨论解不等式即可.【详解】()221115cos2cos cos cos 1cos 2224f x x x x x x ⎛⎫=--=--=-- ⎪⎝⎭,由,22ππx ⎡⎤∈-⎢⎥⎣⎦,有[]cos 0,1x ∈,则当1cos 2x =时,()f x 有最小值54-,当cos 0x =或cos 1x =时,()f x 有最大值1-,所以()f x 的值域为5,14⎡⎤--⎢⎥⎣⎦.()15,14f x ⎡⎤∈--⎢⎥⎣⎦,()()()3sin 4cos 5sin g x a x x a x ϕ=+=+,其中3cos 5ϕ=,4sin 5ϕ=,π0,2ϕ⎛⎫∈ ⎪⎝⎭,[]20,πx ∈,[]2,π+x ϕϕϕ+∈,因为对任意的1ππ,22x ⎡⎤∈-⎢⎥⎣⎦,总存在[]20,πx ∈,使得()()12f x g x =,所以()1f x 的值域是()2g x 的值域的子集,0a =时()0g x =不合题意,0a >时,当π+x ϕϕ+=,()g x 有最小值,则有()455sin 545+4πa a a ϕ⎛⎫=⨯-=-≤- ⎪⎝⎭,解得516a ≥,此时π2x ϕ+=时,()g x 有最大值50a >,0a <时,当π2x ϕ+=,()g x 有最小值,则有π55sin 524a a =≤-,解得14a -≤,此时π+x ϕϕ+=时,()g x 有最大值40a ->,则实数a 的取值范围为15,,416∞∞⎛⎤⎡⎫--⋃+ ⎪⎥⎢⎝⎦⎣⎭.故答案为:5,14⎡⎤--⎢⎥⎣⎦;15,,416∞∞⎛⎤⎡⎫--⋃+ ⎪⎥⎢⎝⎦⎣⎭.四、解答题:本大题6个小题,共70分,解答时应写出必要的文字说明、演算步骤或推理过程,并答在答题卡相应的位置上.17.已知平面向量,,a b c满足()()π2,0,1,,R ,,3a b c a tb t a b ===-∈= .(1)求b 在a上的投影向量的坐标;(2)当c最小时,求b 与c 的夹角.【答案】(1)1,02⎛⎫⎪⎝⎭(2)π2【解析】【分析】(1)利用投影向量的公式计算即可;(2)c a tb =- ,两边同时平方,c 最小时,求得1t =,b与c的夹角即b 与a b -的夹角,利用向量数量积计算即可.【小问1详解】由题意,||2,||1a b == ,设a e a =,b 在a 上的投影向量为11cos ,122b e a b e e ⋅⋅=⨯= ,所以b 在a 上的投影向量的坐标为1,02⎛⎫⎪⎝⎭.【小问2详解】c ====≥(1t =时等号成立),则c 最小时,c a b =- ,所以()22cos ,cos ,0b a b b a b b a a b b b c b a b b a b b a b⋅-⋅-⋅-====⋅-⋅-⋅-,因为0,π,b c ≤≤ 所以当c 最小时,b 与c 的夹角的大小为π2.法二:()ππ13332,0,cos ,sin ,,,332222a b c a b ⎛⎫⎛⎛⎫==±=±=-= ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,13332222cos ,0b c b c b c⎛⎛⨯+±⨯ ⋅==⋅ ,得所求夹角为π2.18.如图,在平面直角坐标系xOy 中,角α的终边与单位圆的交点为()11,A x y ,角π6α+终边与单位圆的交点为()22,B x y .(1)若π0,2α⎛⎫∈ ⎪⎝⎭,求12x y +的取值范围;(2)若点B 的坐标为1,33⎛⎫- ⎪ ⎪⎝⎭,求点A 的坐标.【答案】(1)32⎛⎝(2)1,66A ⎛⎫+ ⎪ ⎪⎝⎭.【解析】【分析】(1)由三角函数定义求点,A B 的坐标,根据三角恒等变换用α表示12x y +,结合正弦函数性质求其取值范围;(2)由三角函数定义可得π1π22cos ,sin 6363αα⎛⎫⎛⎫+=-+=⎪ ⎪⎝⎭⎝⎭,根据两角差正弦和余弦公式求cos ,sin αα可得点A 的坐标.【小问1详解】由题意()ππcos ,sin ,cos ,sin 66A B αααα⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以12π1cos sin cos 622x y ααααα⎛⎫+=++=++ ⎪⎝⎭1213πsin cos 223x y ααα⎫⎛⎫+=+=+⎪ ⎪⎪⎝⎭⎭,由π0,2α⎛⎫∈ ⎪⎝⎭,可得ππ5336π,α⎛⎫+∈ ⎪⎝⎭,所以π1sin ,132α⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,所以12x y +的取值范围是2⎛ ⎝.【小问2详解】由1,33B ⎛⎫- ⎪ ⎪⎝⎭,得π1π22cos ,sin 6363αα⎛⎫⎛⎫+=-+= ⎪ ⎪⎝⎭⎝⎭,ππππππcos cos cos cos sin sin 666666αααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,11cos 32α⎛⎫=-=⎪⎝⎭ππππππsin sin sin cos cos sin 666666αααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,11sin 332α⎛⎫=-⨯= ⎪⎝⎭所以点A 的坐标为1,66⎛⎫⎪ ⎪⎝⎭.19.已知平面向量,OM ON 不共线,由平面向量基本定理知,对于该平面内的任意向量OP,都存在唯一的有序实数对(),x y ,使得OP xOM yON =+.(1)证明:,,P M N 三点共线的充要条件是1x y +=;(2)如图,ABC 的重心G 是三条中线,,AD BE CF 的交点,证明:重心为中线的三等分点.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据共线向量基本定理结合充要条件的概念即得;(2)根据向量共线定理及推论可得()1AG y AB y AE =-+ ,AG AD λ=,进而23AG AD =,即证;或利用平面几何知识即得.【小问1详解】证明:必要性,,,P M N 三点共线,不妨设MP yMN =,可得()OP OM y ON OM -=- ,()1OP y OM yON =-+,又OP xOM yON =+ ,所以1x y =-,得1x y +=,得证;充分性:,1OP xOM yON x y =++=,()1OP y OM yON ∴=-+,即()OP OM y ON OM -=- ,MP yMN ∴= ,又MP 与MN有公共点M ,所以,,P M N 三点共线;所以,,P M N 三点共线的充要条件是1x y +=;【小问2详解】法一(向量法)ABC 的重心G 是三条中线,,AD BE CF 的交点,可设()1AG y AB y AE =-+ ,111222AD AB AC AB AE =+=+,因为,,A G D 三点共线,可设AG AD λ=,则()1y AB y AE -+ 2AB AE λλ=+,所以12y y λλ⎧-=⎪⎨⎪=⎩,解得23y λ==,所以23AG AD =,G ∴为AD 的三等分点,同理可证G 为,BE CF 的三等分点,∴重心为中线的三等分点.法二(几何法):连接EF ,,E F 为,AC AB的中点,1//,2EF BC EF BC ∴=,12EF FG EG BC GC GB ∴===,所以13FG EG FC EB ==,同理可得13EG DG EB DA ==,所以重心为中线的三等分点.20.已知向量cos ,sin ,cos ,sin 22222x x x x x a b ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭ ,函数()f x a b =⋅ .(1)求函数()f x 的单调增区间和对称轴;(2)若关于x 的方程()0f x m -=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解,记为,αβ.①求实数m 的取值范围;②证明:()2cos 12m αβ-=-.【答案】(1)ππ22,2,Z 33ππk k k ⎡⎤-+∈⎢⎥⎣⎦,对称轴为3ππ,Zx k k =+∈(2)①)2;②证明见解析【解析】【分析】(1)根据向量点乘和三角函数恒等变换公式化简()f x ,利用整体代入法计算出单调增区间和对称轴;(2)根据()f x 范围求实数m 的取值范围;根据,αβ是()0f x m -=两个不同解可知()()f f αβ=,根据图象可得2π23αβα-=-,利用倍角公式计算即可.【小问1详解】()πcos cos sin sin cos 2sin222226x x x x x f x x x x ⎛⎫⎛⎫⎛⎫=++-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令πππ2ππ2π2π,,2π2π,Z 26233k x k k Z k x k k -≤+≤+∈-≤≤+∈此时函数()f x 单调递增,∴函数()f x 单调递增区间为ππ22,2,Z 33ππk k k ⎡⎤-+∈⎢⎥⎣⎦.令πππ62x k +=+得()ππ,Z 3x k k =+∈,所以函数()f x 的对称轴为()ππ,Z 3x k k =+∈;【小问2详解】①π0,2x ⎡⎤∈⎢⎥⎣⎦ ,ππ2π,663x ⎡⎤∴+∈⎢⎥⎣⎦,由图象分析得()f x m =,有两个不同的解,则3ππsin 1,2sin 2266x x ⎛⎫⎛⎫≤+<≤+< ⎪ ⎪⎝⎭⎝⎭,)2m ∴∈.②因为,αβ是方程π2sin 6x m ⎛⎫+= ⎪⎝⎭的两个根,所以ππ2sin ,2sin 66m m αβ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭,由图象分析得,2π2π2π,,2333αββααβα+==--=-,()2222πππcos cos 2cos 22sin 121133622m m αβααα⎛⎫⎛⎫⎛⎫⎛⎫-=-=-+=+-=⨯-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.21.已知R a ∈,函数()()22log 3f x x x a =-+.(1)若函数()f x 的图象经过点()3,1,求不等式()1f x <的解集;(2)设2a >,若对任意[]3,4t ∈,函数()f x 在区间[],1t t +上的最大值与最小值的差不超过1,求a 的取值范围.【答案】(1){01xx <<∣或23}x <<;(2)[)4,+∞.【解析】【分析】(1)将点()3,1代入()()22log 3f x x x a =-+可求出a ,然后根据函数的单调性即得;(2)由复合函数的单调性知()()22log 3f x x x a =-+在区间[],1t t +上单调递增,进而得到最大值与最小值,再由题可得252a t t ≥-+-对任意[]3,4t ∈恒成立,构造新函数,求最值可得出答案.【小问1详解】由题可得()()223log 3331f a =-⨯+=,解得2a =,即()()22log 32f x x x =-+由()()222log 321log 2f x x x =-+<=,可得22320322x x x x ⎧-+>⎨-+<⎩,解得01x <<或23x <<,所以不等式()1f x <的解集为{01x x <<∣或23}x <<;【小问2详解】因为()()22log 3f x x x a =-+是复合函数,设()23p x x x a =-+,()2log ()f x p x =,因为[]3,4t ∈,()23p x x x a =-+在区间[],1t t +单调递增,()2log ()f x p x =单调递增,故函数()f x 在区间[],1t t +上单调递增,又2a >,所以()223390p x x x a a a =-+>-+=>,所以()()max min ()1,()f x f t f x f t =+=,由题意,()()11f t f t +-≤,即()()2222log (1)31log 23t t a t t a ⎡⎤+-++≤-+⎣⎦,对任意[]3,4t ∈恒成立,故()()22(1)3123t t a t t a +-++≤-+,对任意[]3,4t ∈恒成立,整理得:252a t t ≥-+-,令()252g t t t =-+-,[]3,4t ∈,只需max ()g t a ≤即可,因为()252g t t t =-+-的对称轴为52t =,图象是开口向下的抛物线,故()252g t t t =-+-在[]3,4t ∈上单调递减,故()max ()34g t g ==,所以4a ≥,即a 的取值范围是[)4,+∞.22.设n 次多项式()()1211210,0nn n n n n T x a x a xa x a x a a --=+++++≠ ,若其满足()cos cos n T n θθ=,则称这些多项式()n T x 为切比雪夫多项式.例如:由2cos22cos 1θθ=-可得切比雪夫多项式()2221T x x =-.(1)求切比雪夫多项式()3T x ;(2)求sin18 的值;(3)已知方程38610x x --=在()1,1-上有三个不同的根,记为123,,x x x ,求证:1230x x x ++=.【答案】(1)()3343T x x x=-(2)51sin184-=(3)证明见解析【解析】【分析】(1)根据两角和余弦公式和二倍角余弦公式利用cos θ表示cos3θ,由此可得()3T x ;(2)由诱导公式可得cos54sin36= ,根据(1)和二倍角正弦公式和平方关系可求sin18 ;(3)方法一:由已知314302x x --=,设cos x θ=,由(1)可求θ,再根据两角和差余弦公式证明1230x x x ++=;方法二:由已知()()()3123143402x x x x x x x x --=---=,根据整式性质可得1230x x x ++=.【小问1详解】因为()cos3cos 2cos2cos sin2sin θθθθθθθ=+=-所以()()2232cos32cos 1cos 2sin cos 2cos cos 21cos cos θθθθθθθθθ=--=---所以3cos34cos 3cos θθθ=-,所以()3343T x x x =-;【小问2详解】因为cos54sin36= ,所以34cos 183cos182sin18cos18-= ,又cos180> ,所以24cos 1832sin18-= ,所以()241sin 1832sin18--=即24sin 182sin1810+-= ,因为sin180> ,解得1sin18,4-=(14-舍去);【小问3详解】由题意,314302x x --=,法一:设cos x θ=,代入方程得到3114cos 3cos 0cos322θθθ--=⇒=,解三角方程得ππ32π,32π,Z 33k k k θθ=+=-+∈,不妨取123π5π7π,,999θθθ===,123π5π7ππ4π2πcoscos cos cos cos cos 999999x x x ⎛⎫++=++=-+ ⎪⎝⎭,而4π2π3ππ3πππcoscos cos cos cos 9999999⎛⎫⎛⎫+=++-= ⎪ ⎪⎝⎭⎝⎭,综上1230x x x ++=.法二:令()()()3123143402x x x x x x x x --=---=即()()323123122313123144302x x x x x x x x x x x x x x x x x ⎡⎤-+++++-=--=⎣⎦依据多项式系数对应相等得到1230x x x ++=.综上1230x x x ++=.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.第21页/共21页。
2024届重庆育才中学高三下学期3月联考(文理)数学试题
2024届重庆育才中学高三下学期3月联考(文理)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.△ABC 中,AB =3,BC 13=,AC =4,则△ABC 的面积是( )A .33B .332C .3D .322.函数的图象可能是下面的图象( )A .B .C .D .3.在101()2x x-的展开式中,4x 的系数为( ) A .-120B .120C .-15D .154.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+ B .221y x =+ C .221x y =-D .221y x =-5.已知向量,a b 满足||1,||3a b ==,且a 与b 的夹角为6π,则()(2)a b a b +⋅-=( ) A .12B .32-C .12-D .326.已知正三角形ABC 的边长为2,D 为边BC 的中点,E 、F 分别为边AB 、AC 上的动点,并满足2AE CF =,则DE DF ⋅的取值范围是( ) A .11[,]216- B .1(,]16-∞ C .1[,0]2-D .(,0]-∞7.已知抛物线2:2(0)C y px p =>的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点(设点A 位于第一象限),过点A ,B 分别作抛物线C 的准线的垂线,垂足分别为点1A ,1B ,抛物线C 的准线交x 轴于点K ,若11||2||A KB K =,则直线l 的斜率为 A .1B .2C .22D .38.若实数,x y 满足不等式组2,36,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则3x y +的最小值等于( )A .4B .5C .6D .79.定义在R 上的奇函数()f x 满足()()330f x f x --+-=,若()11f =,()22f =-,则()()()()1232020f f f f ++++=( )A .1-B .0C .1D .210.已知函数()ln f x x =,()()23g x m x n =++,若()0,x ∀∈+∞总有()()f x g x ≤恒成立.记()23m n +的最小值为(),F m n ,则(),F m n 的最大值为( )A .1B .1eC .21eD .31e11.已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为( )A .22B .23C .4D .2612.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,,l α⊄,l β⊄则 ( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l二、填空题:本题共4小题,每小题5分,共20分。
深圳市育才中学2024年高三高考数学试题系列模拟卷(1)
深圳市育才中学2024年高三高考数学试题系列模拟卷(1)注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A .3-B .2-C .1-D .12.若复数z 满足(1)34i z i +=+,则z 的虚部为( )A .5B .52C .52-D .-53.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .4.已知函数,其中04?,?04b c ≤≤≤≤,记函数满足条件:(2)12{(2)4f f ≤-≤为事件A ,则事件A发生的概率为 A .14B .58C .38D .125.已知向量(1,4)a =,(2,)b m =-,若||||a b a b +=-,则m =( )A .12-B .12C .-8D .86.设抛物线2:2(0)C y px p =>的焦点为F ,抛物线C 与圆22:(3)3C x y +-='交于M ,N 两点,若||6MN =,则MNF 的面积为( )A .28B .38C .328D .3247.已知变量x ,y 间存在线性相关关系,其数据如下表,回归直线方程为 2.10.5ˆ8y x =+,则表中数据m 的值为( )变量x 01 2 3 变量y m35.57A .0.9B .0.85C .0.75D .0.58.已知函数21,0()2ln(1),0x x x f x x x ⎧-+<⎪=⎨⎪+≥⎩,若函数()()g x f x kx =-有三个零点,则实数k 的取值范围是( ) A .112⎡⎤⎢⎥⎣⎦, B .112⎛⎫ ⎪⎝⎭, C .(0,1)D .12⎛⎫+∞ ⎪⎝⎭, 9.已知1111143579π≈-+-+-,如图是求π的近似值的一个程序框图,则图中空白框中应填入A .121i n =-- B .12i i =-+ C .(1)21ni n -=+D .(1)2ni i -=+10.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( ).A .收入最高值与收入最低值的比是3:1B .结余最高的月份是7月份C .1与2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元11.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为( ) A .B .C .D .12.已知双曲线2222:1x y C a b-=(0a >,0b >),以点P (,0b )为圆心,a 为半径作圆P ,圆P 与双曲线C 的一条渐近线交于M ,N 两点,若90MPN ∠=︒,则C 的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。
广东省深圳实验学校2025届高三数学11月月考试题
广东省深圳试验学校2025届高三数学11月月考试题本试卷共6页,22小题,满分150分。
考试用时120分钟。
留意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
2.作答选择题时,选项出每小题答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如须要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必需用黑色字迹的钢笔或签字笔作答,答案必需写在答题卡各题目定区域内相应位置上;如须要改动,先划掉原来的答案,然后再写上新答案;不准运用铅笔和涂改液。
不按以上要求作答无效。
4.考生必需保证答题卡的整齐。
考试结束后,将试卷和答题卡一并交回。
一、单项选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合要求。
1.设集合2{|20}A x x x =+-<,{|03}B x x =<<,则A B =A .{|23}x x -<<B .{|01}x x <<C .{|13}x x -<<D .{|02}x x <<2.已知i 是虚数单位,z 是复数,若(13i)2i z +=-,则复数z 的虚部为A .7i 10B .710-C .710D .7i 10-3.在△ABC 中,“sin cos A B =”是“π2C =”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件4.函数2()ln(1)f x x kx =+-的图象不行能是A .B .C .D .5.已知圆22440x y x y a +-++=截直线40x y +-=所得弦的长度小于6,则实数a 的取值范围为A .(817,817)+B .(817,8)C .(9,)-+∞D .(9,8)-6.621(2)x x x ⎛⎫+- ⎪⎝⎭的绽开式中的常数项是A .5-B .15C .20D .25-7.已知双曲线2222:1(0,0)x y C a b a b-=>>的实轴长为16,左焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM MF ⊥,O 为坐标原点,若△OMF 的面积为16,则双曲线C 的离心率为A 33B 5C 35 8.已知函数1()221xf x x =+++,若不等式(41)(2)5x x f m f m ⋅++-≥对随意的0x > 恒成立,则实数m 的最小值为 A 122B 21C .212D .212-二、多项选择题:本大题共4小题,每小题5分,共20分。
2018-2019年度育才中学高三数学10月期中考试卷
绝密★启用前育才中学2018-2019学年度高三数学10期中考卷考试时间:120分钟;命题人:卢月明审题人:熊宁辉一、选择题(本题共10个小题,共40分,每小题4分,选项有且只有一个正确)1.设集合,,,则()A. B. C. D.2.双曲线的焦点坐标是()A. ()B. (C. ()D. ()3.已知, 则复数()A. B. C. D.4.四棱锥的三视图如图所示,则四棱锥的体积为()A. B. C. D.5.函数的大致图象为()A. B. C. D.6.设,是两条不重合的直线,,是两个不同的平面,有下列四个命题:①若,,则;②若,,,则;③若,,,则;④若,,,则.则正确的命题为()A. ①②③B. ②③C. ③④D. ②④7.设 , 是双曲线:( , )的左,右焦点,是坐标原点。
过作C 的一条渐近线的垂线,垂足为P。
若,则的离心率为()A. B. 2 C. D.8.线段AB 的两端在直二面角α-l -β的两个面内,并与这两个面都成30°角,则异面直线AB 与l 所成的角是( )(第8题图)(第9题图)A. 30°B. 45°C. 60°D. 75°9.如上图所示,两个非共线向量 、 的夹角为θ,N 为OB 中点,M 为OA 上靠近A 的三等分点,点C 在直线MN 上,且 =x +y (x 、y ∈R ),则x 2+y 2的最小值为( ) A.B.C.D.10.设 是等比数列 的前 项和, ,若 ,则 的最小值为( ) A.B.C. 20D.二、填空题(本题共7个小题,共35分,每小题5分)11.已知 ,,则________.12.若 满足不等式 , 则 的最大值为________.13.已知圆 的方程为 ,则圆上的点到直线 的距离的最小值为________.14.已知等差数列 的前n 项和为 ,若 ,则 ________.15.已知函数 ,若 在区间 上单调,则实数 的取值范围为________. 16. 中, 边上的高 ,角 所对的边分别是 ,则的取值范围是________. 17.已知椭圆C:的离心率为, 过右焦点F 且斜率为k (k >0)的直线与C 相交于A 、B 两点,若 , 则k=________ 三、解答题(共5题;每题15分,共75分)18.已知向量,, ,设函数 . (Ⅰ)求 的最小正周期;(Ⅱ)求 在上的最大值和最小值. 30301x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩3AFFB =19.如图的空间几何体中,四边形是边长为2的正方形,,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.20.已知数列的前项和为.(1)求数列的通项公式;(2)令,求数列的前项和;(3)令,问是否存在正整数使得成等差数列?若存在,求出的值,若不存在,请说明理由.21.过椭圆:右焦点的直线交于,两点,且椭圆的长轴长为短轴长的倍.(1)求的方程;(2),为上的两点,若四边形的对角线分别为,,且,求四边形面积的最大值.22.已知函数.(1)若曲线与直线相切,求实数的值;(2)若函数有两个零点,,证明.答案解析部分一、单选题1.【答案】C2.【答案】C3.【答案】A4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】B9.【答案】A 10.【答案】C二、填空题11.【答案】12.【答案】11 13.【答案】14.【答案】15.【答案】∞∞16.【答案】17.【答案】三、解答题18.【答案】解:(Ⅰ),最小正周期为.(Ⅱ)当时,,由图象可知时单调递增,时单调递减,所以当,即时,取最小值;当,即时,取最大值119.【答案】解:(1)证明:等腰梯形中∠,故在中,,所以平面………6分(Ⅱ)作于,以为轴建立如图的空间直角坐标系,则:………2分求得平面的法向量为………5分又,所以2cos,BF n<>=………8分即与平面所成角的正弦值等于………9分也可以用等体积法或直接法等20.【答案】(1)解:当时满足上式,故.(2)解:, ①, ②由①-②得:,(3)解:假设存在使得为等差数列,则,由且则为奇整数,(舍去)或,又由则代入*式得,故存在使得为等差数列21.【答案】(1)解:由题意知解得,,所以的方程为:………5分(2)解:联立方程组,解得、,求得.………3分依题意可设直线的方程为:,与线段相交,联立方程组消去得:,………6分设,,则,四边形的面积,………9分当时,最大,最大值为.所以四边形的面积最大值为………10分22.【答案】(1)解:由,得′,设切点横坐标为,依题意得,解得(2)解:不妨设,由,得,即,所以,设,则,,设,则′,即函数在∞上递增,所以,从而,即。
2024年广东省深圳市南山实验教育集团麒麟中学初三三模数学试题含答案解析
2024年广东省深圳市南山实验教育集团麒麟中学中考三模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2024-的相反数是()A.2024B.12024-C.2024-D.12024【答案】A【分析】此题考查了相反数,只有符号不同的两个数叫做互为相反数,根据定义进行解答即可.【详解】解:2024-的相反数是2024故选:A2.如图的展开图中,能围成三棱柱的是()A.B.C.D.【答案】D【分析】一般三棱柱展开后,侧面是三个长方形,上下底各是一个三角形,进而得出答案.【详解】解:把选项中的平面展开图经过折叠后.A选项展开图能围成四棱锥.B选项展开图能围成圆柱体.C选项展开图能围成圆锥因此A、B、C都不能围成三棱柱.D选项展开图能围成三棱柱.【点睛】此题主要考查了几何图形初步,涉及到三棱柱表面展开图,需注意上、下两底面应在侧面展开图长方形的两侧,其中具备一定的空间想象能力是解决本题的关键.3.下列运算正确的是( )A .623a a a ÷=B .()325a a =C .235ab ab += D .2322a a a ⋅=【答案】D【分析】本题考查了同底数幂的除法及乘法、幂的乘方及合并同类项,根据同底数幂的除法及乘法、幂的乘方及合并同类项的运算法则逐一判断即可求解,熟练掌握其运算法则是解题的关键.【详解】解:A 、624a a a ÷=,则错误,故不符合题意;B 、()326a a =,则错误,故不符合题意;C 、2a 与3b 不能合并,则错误,故不符合题意;D 、2322a a a ⋅=,则正确,故符合题意,故选D .4.学校歌咏比赛,共有11位评委分别给出参赛选手的原始评分,评定参赛选手的成绩时,从11个原始评分中去掉一个最高分、一个最低分,得到9个有效评分.9个有效评分与11个原始评分相比,一定不变的特征数据是( )A .平均数B .中位数C .众数D .方差【答案】B【分析】根据题意,由数据的数字特征的定义,分析可得答案.【详解】解:根据题意,从11个原始评分中去掉1个最高分、1个最低分,得到9个有效评分,9个有效评分,与11个原始评分相比,最中间的一个数不变,即中位数不变,不变的特征数据是:中位数.故选:B .【点睛】此题考查了数据分析初步,涉及到平均数、众数、中位数以及方差,熟知相关数据特征代表的意义是解决本题的关键.5.平面直角坐标系xOy 中,点()5,2A -关于x 轴对称的点B 的坐标是( )A .()5,2--B .()5,2-C .()5,2-D .()5,2【分析】关于x 轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数,根据规律解答即可.【详解】解:在平面直角坐标系xOy 中,点()5,2A -关于x 轴对称的点B 的坐标是()5,2--.故选:A .【点睛】本题考查的是关于x 轴对称的两个点的坐标关系,掌握“关于x 轴对称的两个点的坐标特点:横坐标不变,纵坐标互为相反数.”是解题的关键.6.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x 吨,则所列方程正确的是( )A .75505x x =-B .75505x x =-C .75505x x =+D .75505x x =+7.如图,在ABC 中,按以下步骤作图:①分别以点A ,B 为圆心,大于12AB 长为半径作弧,两弧交于M ,N 两点;②作直线MN 交AC 于点D ,连接BD .若BD BC =,36A ∠=︒,则C ∠的度数为( )A .72B .68C .75D .80【答案】A 【分析】由作图法可得MN 是AB 的垂直平分线;利用等腰三角形等边对等角的性质,可得∠A =∠DBA =36°,进而求得∠BDC ,最后由三角形内角和为180°便可解答.【详解】解:由作法得MN 垂直平分AB ,∴DA DB =,∴36DBA A ∠=∠=︒,∴363672BDC A DBC ∠=∠+∠=︒+︒=︒,∵BD BC =,∴72C BDC ∠=∠=︒,故选:A .【点睛】本题考查了垂直平分线的作法和性质,等腰三角形的性质,外角的性质,三角形的内角和定理;解题的关键是掌握等腰三角形的性质.8.图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),图2为其示意图,摄像头A 的仰角、俯角均为15︒,高度OA 为165cm .人笔直站在离摄像头水平距离100cm 的点B 处,若此人要能被摄像头识别,其身高不能超过( )(参考数据:sin150.26cos150.97tan150.27︒≈︒≈︒≈,,)A .165cmB .184cmC .192cmD .219cm【答案】C 【分析】本题考查了解直角三角形的应用,过点B 作BC AF ⊥,垂足为C ,延长BC 交AD 于点E , 由题意得165cm OA BC ==,100cm AC OB ==,在Rt ACE 中,利用解直角三角形得27cm EC ≈,则利用EB EC CB =+进而可求解,根据题意构造直角三角是的关键.【详解】解:过点B 作BC AF ⊥,垂足为C ,延长BC 交AD 于点E ,如图:由题意得:165cm OA BC ==,100cm AC OB ==,在Rt ACE 中,15EAC ∠=︒,()tan151000.2727cm EC AC ∴=⋅︒≈⨯=,()27165192cm EB EC CB ∴=+=+=,∴若此人要能被摄像头识别,其身高不能超过192cm ,故选C .9.月亮门是中国古典园林、住宅中常见的圆弧形洞门(如图1),因圆形如月而得名.月亮门因其寓意美好且形态优美,被广泛使用.图2是小智同学家中的月亮门示意图,经测量,水平跨径AB 为1.8米,水平木条BD 和铅锤木条CD 长都为0.3米,点C 恰好落在O 上,则此月亮门的半径为( )A .1.8米B .1.6米C .1.5米D .1.4米则10.92AN NB AB ===米, CD AB ⊥,∴90CDN ∠=︒,∴四边形CDNM 是矩形,10.如图,在ABCD Y 中,E 为AB 延长线上一点,F 为AD 上一点,DEF C ∠=∠.若4DE =,73AF =,则BC 的长是( )A .163B .92C .6D .214【答案】A【分析】先利用平行四边形的性质结合已知证得DFE DEA △△∽,利用相似三角形的性质得到2DE DF AD =⋅,进而求出AD 的长,最后求出BC 问题得解.∵四边形ABCD 是平行四边形,∴AD BC =,A C ∠=∠.∵DEF C ∠=∠,∴DEF A ∠=∠.∵EDF ADE ∠=∠,二、填空题11.因式分解:322x x -=.【答案】2(2)x x -【分析】提公因式2x ,即可解答.【详解】解:32222x x x x -=-()故答案为:22x x -()【点睛】本题考查了提公因式法进行因式分解,解决本题的关键是熟记提公因式法.12.在一个不透明的袋子中装有2个红球和3个蓝球,每个球除颜色外都相同,任意摸出一个球,则摸出红球的概率是 .13.如图,在55⨯的正方形网格中,每个小正方形的边长均为1,ABC 的顶点均在格点(网格线的交点)上,则tan B 的值为 .14.如图,在Rt ABC △中,AC BC =,点A ,B 均落在坐标轴上且1OA =,点C 的坐标为33(,)22,将ABC 向上平移得到A B C ''' ,若点B '、C '恰好都在反比例函数(0)k y x x =>的图象上,则k 的值是 .【答案】9【分析】作CN y ⊥轴于点N ,BM CN ⊥与M ,证明ANC CMB ≌△△,求出CM 的长度,进而求出点B 的坐标,设ABC 向上平移m 个单位,用m 表示出C '和B ',根据两点都在反比例函数图象上,即可求出k 的值.【详解】解:作直线CN y ⊥轴于点N ,直线BM CN ⊥与M ,∴90N M ∠=∠=︒,在Rt ABC △中,90ACB ∠=︒,∴BCM ACN CAN ACN ∠+∠=∠+∠∴BCM CAN ∠=∠,∵AC BC =,∴ANC CMB≌△△32CN BM ∴==,AN CM =,∵90N M NOB ∠=∠=∠=︒,掌握反比例函数的性质以及平移的知识.15.如图,在ABC 中,AB AC =,3tan 4B =,点D 为BC 上一动点,连接AD ,将ABD △沿AD 翻折得到ADE V ,DE 交AC 于点G ,GE DG <,且:3:1AG CG =,则AGEADG S S =三角形三角形 .∵AM BD ⊥于点M ,【点睛】本题考查解直角三角形,折叠的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等知识,正确作出辅助线并利用勾股定理列出方程是解题的关键.三、解答题16.计算:02134532π--︒--+()(.17.先化简,再求值:22(2111)1x x x x x -+-÷+-,其中3x =.18.疫情防控工作需要,深圳市某学校为积极响应市政府加强防疫宣传的号召,组织了一次“疫情防控知识”专题网上学习.并进行了一次全校2000名学生都参加的网上测试.阅卷后,教务处随机抽取了100份答卷进行分析统计,发现这100份答卷中考试成绩(x 分)的最低分为51分,最高分为满分100分,并绘制了尚不完整的统计图表,请根据图表提供的信息,解答下列问题:分数段(分)频数(人)频率5161x ≤<a 0.16171x ≤<180.187181x ≤<b n 8191x ≤<350.3591101x ≤<120.12合计1001(1)填空:=a ______;b =______;n =______;(2)将频数分布直方图补充完整;(3)在绘制的扇形统计图中,8191x ≤<这一分数段对应的扇形,其圆心角的度数为______°;(4)该校对成绩为91100x ≤≤的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1∶3∶6,请你估算全校获得二等奖的学生人数.【答案】(1)10a =,25b =,0.25n =;(2)见解析;(3)126;(4)72人【分析】(1)根据频数分布表可直接进行求解;(2)由(1)可直接进行求解;(3)由题意可直接进行求解;(4)由题意可得获得二等奖所占百分比,然后问题可求解.【详解】(1)解:1000.110a =⨯=,1001018351225b =----=,251000.25n =÷=.19.如图,点I 是ABC 的内心,BI 的延长线与ABC 的外接圆O 交于点D ,与AC 交于点E ,延长CD 、BA 相交于点F ,ADF ∠的平分线交AF 于点G .(1)求证:DG CA ∥;(2)若4DE =,5BE =,求BI 的长.【答案】(1)证明过程见解析(2)3【分析】(1)根据三角形内心的性质得24∠∠=,再利用圆内接四边形的性质得ADF ABC ∠=∠,则12∠=∠,从而得到13∠=∠,即可得出结论;(2)证明DAE DBA △∽△,利用相似比得到6AD =,则6DI =,再计算BD DI -即可.【详解】(1)证明:∵点I 是ABC 的内心,(2)解;∵37∠=∠,ADE BDA ∠=∠,∴DAE DBA △∽△,∴=AD DE DB DA ,即49AD AD=,∴6AD =,∵点I 是ABC 的内心,20.港珠澳大桥是一座连接香港、珠海和澳门的桥隧工程.根据规定,内地货车载重后总质量超过49吨的禁止通行,现有一辆自重6吨的货车,要运输若干套某种设备,每套设备由1个A 部件和3个B 部件组成,这种设备必须成套运输,已知2个A 部件和1个B 部件的总质量为2吨,4个A部件和3个B部件的质量相等.(1)求1个A部件和1个B部件的质量各为多少吨?(2)该货车要从珠海运输这种成套设备经由港珠澳大桥到香港,一次最多可运输多少套这种设备?21.【项目式学习】项目主题:安全用电,防患未然.项目背景:近年来,随着电动自行车保有量不断增多,火灾风险持续上升,据悉,约80%的火灾都在充电时发生,某校九年级数学创新小组,开展以“安全用电,防患未然”为主题的项目式学习,对电动自行车充电车棚的消防设备进行研究.(1)图1悬挂的是8公斤干粉灭火器,图2为其喷射截面示意图,在AOB 中,OA OB =,喷射角60AOB ∠=︒,地面有效保护直径AB 为O 距离地面的高度OC 为________米;任务二:模型构建由于干粉灭火器只能扑灭明火,并不能扑灭电池内部的燃烧,在火灾发生时需要大量的水持续给电池降温,才能保证电池内部自燃熄灭,不会复燃.学校考虑给新建的电动自行车充电车棚安装消防喷淋头.(2)如图3,喷淋头喷洒的水柱最外层的形状为抛物线.已知学校的停车棚左侧靠墙建造,其截面示意图为矩形OABC ,创新小组以点O 为坐标原点,墙面OA 所在直线为y 轴,建立如图4所示的平面直角坐标系.他们查阅资料后,提议消防喷淋头M 安装在离地高度为3米,距离墙面水平距离为2米处,即3OA =米,2AM =米,水喷射到墙面D 处,且1OD =米.①求该水柱外层所在抛物线的函数解析式;②按照此安装方式,喷淋头M的地面有效保护直径OE为_______米;任务三:问题解决(3)已知充电车棚宽度OC为7米,电动车电池的离地高度为0.2米,创新小组想在喷淋头M的同一水平线AB上加装一个喷淋头N,使消防喷淋头喷洒的水柱可以覆盖所有电动车电池,喷淋头N距离喷淋头M至少________米.22.【教材呈现】(1)如图1,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,点A 为公共顶点,90BAC G ∠∠==︒,若ABC 固定不动,将AFG 绕点A 旋转,边AF ,AG 与边BC 分别交于点D ,E (点D 不与点B 重合,点E 不与点C 重合),则结论2BE CD AB ⋅=是否成立 (填“成立”或“不成立”);【类比引申】(2)如图2,在正方形ABCD 中,EAF ∠为BAD ∠内的一个动角,两边分别与BD ,BC 交于点E ,F ,且满足EAF ADB ∠∠=,求证:ADE ACF ∽;【拓展延伸】(3)如图3,菱形ABCD 的边长为12cm ,120BAD ∠=︒,EAF ∠的两边分别与BD ,BC 相交于点E ,F ,且满足EAF ADB ∠∠=,若9cm BF =,则线段DE 的长为 cm .∴45B C FAG ∠=∠=∠=︒∵45DAC CAE ∠∠=+︒,∴DAC AEB ∠∠=,又∵B C ∠∠=,∴CAD ACB ∠∠∠==∵EAF ADB ∠∠=,∴45EAF CAD ∠∠==∴CAF CAE ∠∠∠+=又∵四边形ABCD 为菱形,且∴CAD ACB ADC ∠∠∠==∴1302MDA ADC ∠∠==︒,∴30MAD MDA ∠∠==︒,。
广东省深圳外国语学校2024-2025学年高三上学期第二次月考数学试题(含答案)
深圳外国语学校2024-2025学年度高三第一学期第二次月考数学试题试卷共4页,卷面满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合,则( )A.B.C.D.2.已知命题,则命题的否定为( )A. B.C. D.3.设函数在区间上单调递减,则实数的取值范围是( )A. B. C.D.4.函数的图象大致为()A. B.C. D.5.设正实数满足,则当取得最小值时,的最大值为( )A.1B.2C.3D.46.已知函数的定义域为是偶函数,是奇函数,则的值为{{},21x A xy B y y ====+∣∣A B ⋂=(]1,2(]0,1[]1,2[]0,2:1,1p x x ∀>>p 1,1x x ∀><1,1x x ∀≤>1,1x x ∃>≤1,1x x ∃≤≤()()3x x a f x -=30,2⎛⎫⎪⎝⎭a (),1∞--[)3,0-(]0,1[)3,∞+()1cos ex x xf x -=a b c 、、2240a ab b c -+-=c ab 236a b c+-()f x (),e xy f x =+R ()3e xy f x =-()ln3f( )A.B.3C.D.7.已知三倍角公式,则的值所在的区间是( )A. B. C. D.8.已知函数,若对于任意的实数与至少有一个为正数,则实数的取值范围是( )A.B.C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的是()A.若函数定义域为,则函数的定义域为B.若定义域为的函数值域为,则函数的值域为C.函数与的图象关于直线对称D.成立的一个必要条件是10.若,则下列不等式一定成立的是( )A. B.C. D.11.已知定义在上的偶函数和奇函数满足,则( )A.的图象关于点对称B.是以8为周期的周期函数C.D.三、填空题:本题共3小题,每小题5分,共15分.731031133sin33sin 4sin ααα=-sin10 11,43⎛⎫⎪⎝⎭11,54⎛⎫ ⎪⎝⎭11,65⎛⎫ ⎪⎝⎭11,76⎛⎫ ⎪⎝⎭()()()22241,f x mx m x g x mx =--+=(),x f x ()g x m ()0,2()0,8[)2,8(),0∞-()f x []1,3()21f x +[]0,1R ()f x []1,5()21f x +[]0,215xy ⎛⎫= ⎪⎝⎭5log y x =-y x =a b >1a b ->log 1a b >a b <1ab a b+>+11a b a b ->-11a b a b+<+R ()f x ()g x ()()21f x g x ++-=()f x ()2,1()f x ()()8g x g x +=20241(42)2025k f k =-=∑12.已知函数,则__________.13.已知函数且,若函数的值域是,则实数的取值范围是__________.14.若,则的最大值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设函数(1)求曲线在点处的切线方程;(2)设,若函数有三个不同零点,求c 的取值范围.16.(本小题满分15分)记的角的对边分别为,已知.(1)求;(2)若点是边上一点,且,求的值.17.(本小题满分15分)如图,四棱锥中,底面是边长为2的菱形,,已知为棱的中点,在底面的投影为线段的中点,是棱上一点.(1)若,求证:平面;(2)若,确定点的位置,并求二面角的余弦值.18.(本小题满分17分)已知函数.(1)函数与的图像关于对称,求的解析式;()cos2f x x =066lim x f x f xππ∆→⎛⎫⎛⎫+∆-⎪ ⎪⎝⎭⎝⎭=∆()223,2(06log ,2a x x x f x a x x ⎧-++≤=>⎨+>⎩1)a ≠()f x (],4∞-a ()e 1xa xb ≥++()1a b +()32.f x x ax bx c =+++().y f x =()()0,0f 4a b ==()f x ABC V ,,A B C ,,a b c sin sin sin A B Cb c a b-=++A D BC ,2AB AD CD BD ⊥=sin ADB ∠P ABCD -ABCD π3ABC ∠=E AD P H EC M PC 2CM MP =PE ∥MBD ,PB EM PC EC ⊥=M B EM C --()()()2ln 1cos 2g x x x =--+--()f x ()g x 1x =-()f x(2)在定义域内恒成立,求a 的值;(3)求证:,.19.(本小题满分17分)设集合,其中.若集合的任意两个不同的非空子集,都满足集合的所有元素之和与集合的元素之和不相等,则称集合具有性质.(1)试分别判断在集合与是否具有性质P ,不必说明理由;(2)已知集合具有性质P .①记,求证:对于任意正整数,都有;②令,,求证:;(3)在(2)的条件下,求的最大值.()1f x ax -≤2111ln 42nk n f k =+⎛⎫-< ⎪⎝⎭∑*n ∈N {}()12,,,3n S a a a n =≥ *,1,2,,i a i n ∈=N S A B 、A B S P {}11,2,3,4S ={}21,2,4,8S ={}12,,,n S a a a = 121kik i aa a a ==+++∑L k n ≤121kk i i a =≥-∑12i i i d a -=-1kk ii D d==∑0k D ≥12111na a a +++深圳外国语学校2025届高三第二次月考数学答案一、选择题:题号1234567891011答案ACDADDCBACBDABC二、填空题12. 13.14.三、解答题15.解:(1)由,得.因为,,所以曲线在点处的切线方程为.(2)当时,,所以.令,得,解得或.与在区间上的情况如下:所以,当且时,⎫⎪⎪⎭e2()32f x x ax bx c =+++()232f x x ax b =++'()0f c =()0f b '=()y f x =()()0,0f y bx c =+4a b ==()3244f x x x x c =+++()2384f x x x =++'()0f x '=23840x x ++=2x =-23x =-()f x ()f x '(),-∞+∞x(),2-∞-2-22,3⎛⎫-- ⎪⎝⎭23-2,3⎛⎫-+∞ ⎪⎝⎭()f x '+0-0+()f x Zc]3227c -Z0c >32027c -<存在,,,使得.由的单调性知,当且仅当时,函数有三个不同零点.16.(1)由及正弦定理得,整理得,所以由余弦定理得:因为,所以.(2),记,则.在中,.①在中,由正弦定理得.②由①②及得,解得.由,解得.17.(1)设,因为底面是边长为2的菱形,所以,对角线BD 平分,又为棱的中点,所以,在中,根据角平分线性质定理得,又,所以,所以,,平面,且平面平面.()14,2x ∈--222,3x ⎛⎫∈--⎪⎝⎭32,03x ⎛⎫∈- ⎪⎝⎭()()()1230f x f x f x ===()f x 320,27c ⎛⎫∈ ⎪⎝⎭()3244f x x x x c =+++sin sin sin A B C b c a b -=++a b cb c a b-=++222a b c bc =++2221cos ,22b c a A bc +-==-()0,πA ∈2π3A =π6DAC BAC BAD ∠=∠-∠=ADB α∠=π6C DAC αα∠=-∠=-Rt ABD V cos AD BD α=ADC V ππsinsin 66AD CDα=⎛⎫- ⎪⎝⎭2CD BD =cos 2ππsin sin 66αα=⎛⎫- ⎪⎝⎭4=tan α=22πtan cos 1,0,2αααα⎛⎫=+=∈ ⎪⎝⎭sin α=sin ADB ∠=BD CE N ⋂=ABCD CD AB =ADC ∠E AD 2CD AB DE ==ADC V 2CN CDNE DE==2CM MP =2CM MP =2CN CMNE MP==MN ∴∥PE PE ⊄MBD MN ⊂,MBD PE ∴∥MBD(2)平面,且平面,,因为,所以,在中,,,所以是等边三角形,又为棱的中点,所以,平面,平面,所以平面平面,又平面平面,平面ABCD ,平面,又平面,,又,平面,平面,且平面,.因为P 在底面的投影H 为线段的中点,所以,又所以为等边三角形,故为中点,所以在底面上的投影为的中点.在中,,,以为原点,分别以为轴,以过点且与平面垂直的直线为轴建立空间直角坐标系,所以,,设是平面的一个法向量,则,令,则,即,平面,是平面的一个法向量,PH ⊥ ABCD BC ⊂ABCD PHBC ∴⊥π3ABC∠=2π3BCD ∠=ACD V CD AB =π3ABC ∠=ACD V E AD BC CE ⊥PH ⊥ ABCD PH⊂PCE PCE ⊥ABCD PCE ⋂ABCD =CE BC ⊂BC ∴⊥PEC EM ⊂PEC BC EM ∴⊥PB EM ⊥ ,,PB BC B PB BC ⋂=⊂PBC EM ∴⊥PBC PC ⊂PBC EM PC ∴⊥EC PC PE =PC CE =PCE V MPC M ABCD CH CDE V CE ===3,2CEAD PH ⊥== C ,CB CE ,x y C ABCD z ()()()30,0,0,2,0,0,,4C B E M ⎛⎫⎪ ⎪⎝⎭()32,,4EB ME ⎛⎫∴==- ⎪ ⎪⎝⎭(),,n x y z = EBM 0203004n EB x n ME y z ⎧⋅=⇒=⎪⎨⋅=⇒-=⎪⎩ 2y =x z ==2,n =BC ⊥ PEC ()2,0,0CB ∴=PEC因为二面角是一个锐角,所以二面角18.(1)依题意,设图像上任意一点坐标为,则其关于对称的点在图像上,则,则,故,;(2)令,,则在在恒成立,又,且在上是连续函数,则为的一个极大值点,,,下证当时,在恒成立,令,,当,,在上单调递增,当,,在上单调递减,故,在上恒成立,又,则时,恒成立,综上,.(3)由(2)可知:,则,即,则,又由(2)可知:在上恒成立,则在上恒成立且当且仅当时取等,令,,则,cos ,n CB n CB n CB⋅∴===⋅B EMC --B EM C --()f x ()00,x y 1x =-()002,x y --()g x 000()(2)y f x g x ==--0000()(2)2ln(1)cos f x g x x x =--=++0(1)x >-()()2ln 1cos f x x x =++()1x >-()()()12ln 1cos 1h x f x ax x x ax =--=++--()1x >-()0h x ≤(1,)x ∈-+∞()00h =()h x (1,)x ∈-+∞0x =()h x 2()sin 1h x x a x '=--+(0)202h a a '=-=⇒=2a =()0h x ≤(1,)x ∈-+∞()ln(1)x x x ϕ=+-1()111x x x x ϕ'=-=-++()1,0x ∈-()0x ϕ'>()x ϕ()1,0-(0,)x ∈+∞()0x ϕ'<()x ϕ()0,∞+()()00x ϕϕ≤=()ln 1x x ≤+(1,)-+∞cos 1x ≤2a =()()()()12ln 1cos 10h x f x ax x x x ⎡⎤=--=+-+-⎦≤⎣2a =()12f x x -≤11111222f k k ⎛⎫⎛⎫--≤-⎪ ⎪⎝⎭⎝⎭1122f k k⎛⎫-≤ ⎪⎝⎭211111122122nk n f k n n n =+⎛⎫⎛⎫-≤+++ ⎪ ⎪++⎝⎭⎝⎭∑ ()ln 1x x ≤+()1,-+∞ln 1x x ≤-()0,∞+1x =(0,1)1nx n =∈+*N n ∈1ln1111n n n n n -<-=+++即,则,综上,,即证19.(1)对于集合,因为,故集合的元素和相等,故不具有性质.对于,其共有15个非空子集:,,各集合的和分别为:,,它们彼此相异,故具有性质.(2)①因为具有性质,故对于任意的,也具有性质,否则有两个非空子集,它们的元素和相等,而也是的子集,故不具有性质,矛盾.注意到共有个非空子集,每个子集的元素和相异,且子集的和最大为,最小为,故.②因为,故,由①可得,故.(3)不妨设,设,则,由(2)可得,且.而11ln ln ln(1)ln 11n n n n n n n +<-==+-++111ln(1)ln ln(2)ln(1)ln(2)ln(21)122n n n n n n n n n+++<+-++-+++--++ ln(2)ln ln 2n n =-=21112ln 2ln 42nk n f k =+⎛⎫-<= ⎪⎝⎭∑{}11,2,3,4S =1423+=+{}{}1,4,2,31S P {}21,2,4,8S ={}{}{}{}{}{}{}{}{}{}8,,,,,,1,2481,21,41,82,42,,,84,{}{}{}{}{}1,2,41,2,81,4,82,4,81,2,4,8,,,,59610121,2,4,8,3,,,,,7,11,13,14,152S P {}12,,,n a a a P k {}12,,,k a a a P {}12,,,k a a a ,A B ,A B {}12,,,n a a a {}12,,,n a a a P {}12,,,k a a a 21k -12k a a a +++ 1a 1221kk a a a +++≥- 12i i i d a -=-()112122k k k D a a a -=+++-+++ ()1221k k a aa =+++-- ()12210kk a a a +++--> 0k D ≥12n a a a <<< 1121112122111112112222n n n n n n a a a a a a a a a ---⎛⎫+++-+++=+++ ⎪--⎝⎭- 112i i ic a -=10i i c c +->12i i i d a -=-10kk ii D d==≥∑112112211222122n n n n n n a a a c d c d c d a a a ---+++=+++-- ()()()112213321n n n c D c D D c D D c D D -=+-+-++-,故,当且仅当时等号成立,即此时任意的正整数,即故此时时等号成立,故的最大值为.()()()121232110n n n n n c c D c c D c c D c D --=-+-++-+≥ 111211*********n n n a a a --+++≤+++=- 120n D D D ==== k 1221kk a a a ++=-1111,222kk k k a a --==-=12k k a -=12111n a a a +++ 1122n --。
(整理版)广州育才中学高三数学各类题型综合训练系列2
抽象函数1. 函数y = f (x )(x ∈R ,x ≠0)对任意的非零实数1x ,2x ,恒有f (1x 2x )=f (1x )+f (2x ),试判断f (x )的奇偶性。
2 定义在[-2,2]上的偶函数,f (x )在区间[0,2]上单调递减,假设f (1-m )<f (m ),求实数m 的取值范围3. 设f(x)是R 上的奇函数,且f(x+3) =-f(x),求f(1998)的值。
4. 设函数f 〔x 〕对任意⎥⎦⎤⎢⎣⎡∈21,0,21x x 都有f 〔)21x x +=f 〔)()21x f x ⋅,f 〔1〕=2,求f 〔);41(),21f5. f 〔x 〕是定义在R 上的函数,且满足:f 〔x+2〕[1-f 〔x 〕]=1+f 〔x 〕,f 〔1〕=1997,求f 〔〕的值。
6. 设f 〔x 〕是定义R 在上的函数,对任意x ,y ∈R ,有 f 〔x+y 〕+f 〔x-y 〕=2f 〔x 〕f 〔y 〕且f 〔0〕≠0.〔1〕求证f 〔0〕=1;〔2〕求证:y=f 〔x 〕为偶函数.7. 定义在R 上的偶函数y=f(x)的一个递增区间为〔2,6〕,试判断〔4,8〕是y=f(2-x)的递增区间还是递减区间?8. 设f 〔x 〕是定义在R 上的奇函数,且对任意a ,b ,当a+b ≠0,都有ba b f a f ++)()(>0〔1〕.假设a >b ,试比拟f 〔a 〕与f 〔b 〕的大小;〔2〕.假设f 〔k )293()3--+⋅x x x f <0对x ∈[-1,1]恒成立,求实数k 的取值范围。
()f x 是定义在〔-∞,3]上的减函数,22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的取值范围。
10.函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+. (1)求证: ()f x 是奇函数;(2)假设(3),(24)f a a f -=试用表示.11.()f x 是定义在R 上的不恒为零的函数,且对于任意的,,a b R ∈都满足:()()()f a b af b bf a •=+.(1)求(0),(1)f f 的值;(2)判断()f x 的奇偶性,并证明你的结论;(3)假设(2)2f =,*(2)()n n f u n N n-=∈,求数列{n u }的前n 项和n s .12.定义域为R 的函数()f x 满足22(()))()f f x x x f x x x -+=-+. (1)假设(2)3,(1);(0),();f f f a f a ==求又求(2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式.13.函数()f x 的定义域为R,对任意实数,m n 都有1()()()2f m n f m f n +=++,且1()02f =,当12x >时, ()f x >0. (1)求(1)f ;(2)求和(1)(2)(3)...()f f f f n ++++*()n N ∈; (3)判断函数()f x 的单调性,并证明.14.函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任意,x y R ∈,有()[()]y f xy f x =;③1()13f >.(1)求(0)f 的值;(2)求证: ()f x 在R 上是单调减函数;(3)假设0a b c >>>且2b ac =,求证:()()2()f a f c f b +>.15.函数()f x 的定义域为R,对任意实数,m n 都有()()()f m n f m f n +=•,且当0x >时,0()1f x <<.(1)证明:(0)1,0f x =<且时,f(x)>1; (2)证明: ()f x 在R 上单调递减;(3)设A=22{(,)()()(1)}x y f x f y f •>,B={(,)(2)1,x y f ax y a R -+=∈},假设A B =Φ,试确定a 的取值范围.16.函数()f x 是定义在R 上的增函数,设F ()()()x f x f a x =--. (1)用函数单调性的定义证明:()F x 是R 上的增函数;(2)证明:函数y =()F x 的图象关于点(,0)2a成中心对称图形.17.函数()f x 是定义域为R 的奇函数,且它的图象关于直线1x =对称. (1)求(0)f 的值;(2)证明: 函数()f x 是周期函数;(3)假设()(01),f x x x =<≤求当x R ∈时,函数()f x 的解析式,并画出满足条件的函数()f x 至少一个周期的图象.18.函数()f x 对于x>0有意义,且满足条件(2)1,()()(),()f f xy f x f y f x ==+是减函数。
[已校验]2019年09月育才中学九年级月考试卷及答案
2019年09月育才中学九年级月考一.选择题(共10小题)1.(2012•长清区校级模拟)若将抛物线y=2x2向右平移3个单位,再向上平移5个单位,则得到的抛物线是() A.y=2(x+3)2-5 B.y=2(x-3)2+5C.y=2(x-3)2-5 D.y=2(x+3)2+52.(2015•徐州)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球3.(2014秋•拱墅区校级期中)下列命题中,正确的是()A.圆内接四边形的对角相等B.长度相等的两条弧叫做等弧C.平分弦的直径垂直于这条弦D.弦所对的两条弧的中点连线垂直平分弦,且过圆心4.(2013秋•淮阴区校级期中)二次函数y=ax2+bx+c(a为常数,a≠0)的图象如图,一元二次方程ax2+bx+c=2根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断5.(2019•扬州一模)⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为() A.3B.4C.6D.86.(2014秋•拱墅区校级期中)△ABC为⊙O的内接三角形,若∠AOC=150°,是∠ABC的度数是() A.75°B.150°或30°C.30°D.75°或105°7.(2011•丛台区校级自主招生)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,点P是直径MN上一个动点,则P A+PB的最小值为()A.B.C.1D.28.(2017秋•西湖区期末)已知:点A (0,4),B (0,-6),C 为x 轴正半轴上一点,且满足∠ACB =45°,则( )A .△ABC 外接圆的圆心在OC 上B .∠BAC =60°C .△ABC 外接圆的半径等于5D .OC =129.(2018秋•临海市期末)已知二次函数解析式为y =(x-m )2-(x-m ),且该函数图象的顶点坐标为(p ,q ),则下列说法中错误的是( )A .图像与x 轴必有两个交点B .q =41C .二次函数的图像在x 轴上所截得的长度为1D .若m =2时,则二次函数的图像在2≤x ≤6上随x 的增大而增大10.(2013秋•上城区校级期中)如图,⊙O 过四边形ABCD 的四个顶点,已知∠ABC =90°,BD 平分∠ABC ,则:①AD =CD ,②BD =AB +CB ,③点O 是∠ADC 平分线上的点,④AB 2+BC 2=2CD 2,上述结论中正确的个数为( )A .4个B .3个C .2个D .1个二.填空题(共6小题)11.将抛物线y =2(x -3)2-1关于x 轴对称的抛物线解析式为 .12.有五条线段,长度分别为1,3,5,7,9,从中任意取三条,一定能构成三角形的概率是 .13.(2018秋•九龙坡区校级月考)已知二次函数y =-x 2+2x -2,当-2≤x ≤2时,函数值y 的取值范围是 .14.(2016•闵行区一模)在Rt △ABC 中,∠C =90°,AC =12,BC =5,以点A 为圆心作⊙A ,要使B 、C 两点中的一点在圆外,另一点在圆内,那么⊙A 的半径长r 的取值范围为 .15.某宾馆有120间标准房,当每间标准房定价为100元/天时,每天都客满,市场调查表明单间房价每提高10元/天,日均入住数减少6间,若有旅客入住的标准房,宾馆需支出的基本费用为每间20元/天,设每个房间房价增加x元/天,宾馆一天的获利为w元,则w关于x的函数关系式为.16.(2018•广汉市模拟)如图,抛物线y1=a(x+2)2-3与y2=(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=;③当x=0时,y2-y1=6;④AB+AC=10;⑤y1最小-y2最小=-4.其中正确结论的个数是:.三.解答题(共7小题)17.(2016秋•拱墅区校级期末)4件同型号的产品中,有1件不合格品和3件合格品(1)从这4件产品中随即抽取2件进行检测,列表或画树状图,求抽到都是合格品的概率.(2)在这4件产品中加入x件合格品后,进行如下试验:随即抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.9,则可以推算出x的值大约是多少?18.(2013•阜新)如图,在平面直角坐标系中,点A、B的坐标分别为A(-4,0),B(-1,4),将△AOB绕点O顺时针旋转90°(1)画出旋转后的△A’OB’;(2)写出点B关于原点O的对称点的坐标;(3)求出点B到点B’所经过的路径长;(4)用直尺和圆规作出△A’OB’的外接圆(保留作图痕迹,不写作法).19.(2010秋•伊通县期末)如图所示,有一座拱桥圆弧形,它的跨度AB为60米,拱高为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,试通过计算说明是否需要采取紧急措施?20.(2016秋•嵊州市期末)如图,△ABC中,AB=AC,以AB为直径的⊙O交AC,BC分别于点E,D两点,连结ED,BE.(1)求证:=.(2)若BC=6.AB=5,求BE的长.21.(2011•鄂州自主招生)【附加题】已知二次函数y=x2+2(m+1)x-m+1.(1)随着m的变化,该二次函数图象的顶点P是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.(2)如果直线y=x+1经过二次函数y=x2+2(m+1)x-m+1图象的顶点P,求此时m的值.22.(2011秋•慈溪市期末)如图,BC是⊙O的弦,OD⊥BC于E,交于D,点A是优弧上的动点(不与B,C重合),BC=,ED=2.(1)求⊙O的半径;(2)求图中阴影部分面积的最大值.23.(2016秋•上城区期末)如图,在平面直角坐标系xOy中,Rt△ABC的直角顶点C在抛物线y=ax2+bx上运动,斜边AB垂直于y轴,且AB=8,∠ABC=60°,当Rt△ABC的斜边AB落在x轴上时,B点坐标是(-3,0),A点恰在抛物线y=ax2+bx上(1)求AB边上的高线CD的长;(2)求抛物线解析式;(3)Rt△ABC在运动过程中有可能被y轴分成两部分,当这两部分的面积之比为1:2时,求顶点C的坐标.2019年09月育才中学九年级月考参考答案与试题解析一.选择题(共10小题)1.(2012•长清区校级模拟)若将抛物线y=2x2向右平移3个单位,再向上平移5个单位,则得到的抛物线是() A.y=2(x+3)2-5B.y=2(x-3)2+5C.y=2(x-3)2-5D.y=2(x+3)2+5【解答】解:抛物线y=2x2的顶点坐标为(0,0),∵向右平移3个单位,再向上平移5个单位,∴平移后的顶点坐标为(3,5),∴平移后的抛物线解析式为y=2(x-3)2+5.故选:B.2.(2015•徐州)一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球【解答】解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选:A.3.(2014秋•拱墅区校级期中)下列命题中,正确的是()A.圆内接四边形的对角相等B.长度相等的两条弧叫做等弧C.平分弦的直径垂直于这条弦D.弦所对的两条弧的中点连线垂直平分弦,且过圆心【解答】解:A、圆内接四边形的对角互补,所以A错误;B、在同圆或等圆中长度相等的两条弧叫做等弧,所以B错误;C、平分弦(非直径)的直径垂直于这条弦,所以C选项错误;D、弦所对的两条弧的中点的连线垂直平分弦,且过圆心,正确;故选:D.4.(2013秋•淮阴区校级期中)二次函数y=ax2+bx+c(a为常数,a≠0)的图象如图,一元二次方程ax2+bx+c=2根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断【解答】解:∵函数的顶点的纵坐标为2,∴直线y=2与函数图象只有一个交点,∴y=ax2+bx+c-2,相当于函数y=ax2+bx+c的图象向下平移2个单位,∴方程ax2+bx+c-2=0有两个相等的实数根,.故选:A.5.(2019•扬州一模)⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为() A.3B.4C.6D.8【解答】解:∵⊙O的半径与这个正n边形的边长相等,∴这个多边形的中心角=60°,∴=60°,∴n=6,故选:C.6.(2014秋•拱墅区校级期中)△ABC为⊙O的内接三角形,若∠AOC=150°,是∠ABC的度数是() A.75°B.150°或30°C.30°D.75°或105°【解答】解:如图,∵∠AOC=150°,∴∠ABC=∠AOC=×150°=75°,∵∠ABC+∠AB’C=180°,∴∠AB’C=180°-∠ABC=180°-75°=105°.∴∠ABC的度数是:75°或105°.故选:D.中点,点P是直径MN上一个动点,则P A+PB的最小值为()A.B.C.1D.2【解答】解:过A作关于直线MN的对称点A’,连接A’B,由轴对称的性质可知A’B即为P A+PB的最小值,连接OB,OA’,AA’,∵AA’关于直线MN对称,∴=,∵∠AMN=30°,∴∠A’ON=60°,∠BON=30°,∴∠A’OB=90°,在Rt△A’OB中,OB=OA’=1,∴A’B===,即P A+PB的最小值.故选:B.8.(2017秋•西湖区期末)已知:点A(0,4),B(0,-6),C为x轴正半轴上一点,且满足∠ACB=45°,则()A.△ABC外接圆的圆心在OC上B.∠BAC=60°C.△ABC外接圆的半径等于5D.OC=12【解答】解:设线段BA的中点为E,∴AB =10,E (0,-1).如图所示,过点E 在第四象限作EP ⊥BA ,且EP =AB =5,则易知△PBA 为等腰直角三角形,∠BP A =90°,P A =PB =5;以点P 为圆心,P A (或PB )长为半径作⊙P ,与y 轴的正半轴交于点C ,∵∠BCA 为⊙P 的圆周角,∴∠BCA =∠BP A =45°,即则点C 即为所求.过点P 作PF ⊥x 轴于点F ,则OF =PE =5,PF =OE =1,在Rt △PFC 中,PF =1,PC =5, 由勾股定理得:CF ==7,∴OC =OF +CF =5+7=12,故选:D .9.(2018秋•临海市期末)已知二次函数解析式为y =(x-m )2-(x-m ),且该函数图象的顶点坐标为(p ,q ),则下列说法中错误的是( )A .图像与x 轴必有两个交点B .q =41C .二次函数的图像在x 轴上所截得的长度为1D .若m =2时,则二次函数的图像在2≤x ≤6上随x 的增大而增大选:D .10.(2013秋•上城区校级期中)如图,⊙O 过四边形ABCD 的四个顶点,已知∠ABC =90°,BD 平分∠ABC ,则:①AD =CD ,②BD =AB +CB ,③点O 是∠ADC 平分线上的点,④AB 2+BC 2=2CD 2,上述结论中正确的个数为( )A.4个B.3个C.2个D.1个【解答】解:∵∠ABC=90°,BD平分∠ABC,∴∠ABD=∠CBD=45°,∴=,∴AD=CD,故①正确;连接AC,∵∠ABC=90°,∴点O在AC上,AC为⊙O的直径,又∵AD=CD,∴点O是∠ADC平分线上的点,故③正确;在Rt△ABC中,AB2+BC2=AC2,在Rt△ACD中,AC2=AD2+CD2=2CD2,∴AB2+BC2=2CD2,故④正确;∵点B的位置不确定,通过旋转△DAB,证明BD=AB+CB.∴BD=AB+CB无法求出,故②错误;综上所述,正确的结论有①③④.故选:B.二.填空题(共6小题)11.将抛物线y=2(x-3)2-1沿x轴翻折,所得到的抛物线解析式是y=-2(x-3)2+1.答案为:y=-2(x-3)2+1.12.(2009春•大丰市期末)有五条线段,长度分别为1,3,5,7,9,从中任意取三条,一定能构成三角形的概率是.【解答】解:显然共有1,3,5;1,3,7;1,3,9;1,5,7;1,5,9;1,7,9;3,5,7;3,5,9;3,7,9;5,7,9.共10种情况.根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.其中能构成三角形的有3,5,7;3,7,9;5,7,9.三种情况,故概率是.13.(2018秋•九龙坡区校级月考)已知二次函数y =-x 2+2x -2,当-2≤x ≤2时,函数值y 的取值范围是 -10≤y ≤-1 .【解答】解:由二次函数y =-x 2+2x -2=-(x -1)2-1可知:抛物线开口向下,顶点为(1,-1),∴函数有最大值y =-1,∵当x =-2时,y =-10,当x =2时,y =-2,∴当-2≤x ≤2时,y 的取值范围是-10≤y ≤-1,故答案为:-10≤y ≤-1.14.(2016•闵行区一模)在Rt △ABC 中,∠C =90°,AC =12,BC =5,以点A 为圆心作⊙A ,要使B 、C 两点中的一点在圆外,另一点在圆内,那么⊙A 的半径长r 的取值范围为 12<r <13 .【解答】解:如果以点A 为圆心作圆,使点C 在圆A 内,则r >12,点B 在圆A 外,则r <13,因而圆A 半径r 的取值范围为12<r <13.故答案为12<r <13.15.15.某宾馆有120间标准房,当每间标准房定价为100元/天时,每天都客满,市场调查表明单间房价每提高10元/天,日均入住数减少6间,若有旅客入住的标准房,宾馆需支出的基本费用为每间20元/天,设每个房间房价增加x 元/天,宾馆一天的获利为w 元,则w 关于x 的函数关系式为 .答案为:y =(80+x )(120-53x ). 16.(2018•广汉市模拟)如图,抛物线y 1=a (x +2)2-3与y 2=(x -3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论:①无论x 取何值,y 2的值总是正数;②a =;③当x =0时,y 2-y 1=6;④AB +AC =10;⑤y 1最小-y 2最小=-4. 其中正确结论的个数是: 4 .【解答】解:∵(x -3)2≥0,∴y 2=(x -3)2+1>0,∴无论x取何值,y2的值总是正数,①正确;∵抛物线y1=a(x+2)2-3与y2=(x-3)2+1交于点A(1,3),∴3=9a-3,∴a=,②正确;当x=0时,y1=-,y2=,当x=0时,y2-y1=,③错误;当y=3时,y1=(x+2)2-3=3,解得x=-5或1,y2=(x-3)2+1=3,解得x=1或5,即AB+AC=10,④正确;y1=a(x+2)2-3最小值为-3,y2=(x-3)2+1最小值为1,y1最小-y2最小=-4,⑤正确,综上正确的有①②④⑤,故答案为4.三.解答题(共7小题)17.(2016秋•拱墅区校级期末)4件同型号的产品中,有1件不合格品和3件合格品(1)从这4件产品中随即抽取2件进行检测,列表或画树状图,求抽到都是合格品的概率.(2)在这4件产品中加入x件合格品后,进行如下试验:随即抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.9,则可以推算出x的值大约是多少?【解答】解:(1)将不合格记为A,3件合格的记为B1、B2、B3共12种情况,其中两个B的有6种,∴P(B,B)==,即抽到都是合格品的概率为;(2)∵大量重复试验后发现,抽到合格品的频率稳定在0.9,∴抽到合格品的概率等于0.9,根据题意得:x+3=0.9(4+x),解得:x=6.18.(2013•阜新)如图,在平面直角坐标系中,点A、B的坐标分别为A(-4,0),B(-1,4),将△AOB绕点O顺时针旋转90°(1)画出旋转后的△A’OB’;(2)写出点B关于原点O的对称点的坐标;(3)求出点B到点B’所经过的路径长;(4)用直尺和圆规作出△A’OB’的外接圆(保留作图痕迹,不写作法).【解答】解:(1)如图所示:(2)点B(-1,4)关于原点O的对称点的坐标为(1,-4);(3)∵OB==,∠BOB’=90°,∴点B到点B’所经过的路径长为:=π;(4)如图所示:19.(2010秋•伊通县期末)如图所示,有一座拱桥圆弧形,它的跨度AB为60米,拱高为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,试通过计算说明是否需要采取紧急措施?【解答】解:设O为弧AB所在圆的圆心,连接OA’,OA.设圆的半径是R米,则ON=(R-4)米,OM=(R-18)米.根据垂径定理,得AM=AB=30米,在直角三角形AOM中,∵AO=R米,AM=30米,OM=(R-18)米,根据勾股定理,得:R2=(R-18)2+900,解得:R=34.在直角三角形A’ON中,根据勾股定理得A’N==16米.根据垂径定理,得:A’B’=2A’N=32>30.∴不用采取紧急措施.20.(2016秋•嵊州市期末)如图,△ABC中,AB=AC,以AB为直径的⊙O交AC,BC分别于点E,D两点,连结ED,BE.(1)求证:=.(2)若BC=6.AB=5,求BE的长.【解答】(1)证明:连接AD,∵AB为⊙O的直径,∴AD⊥BC,∵AB=AC,∴CD=BD,∵A、E、D、B四点共圆,∴∠CED=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠CED,∴DE=DC,∴DE=BD,∴=;(2)解:连接OD交BE于H,作OF⊥BD于F,BD=BC=3,AB=5,又勾股定理得,AD==4,∵AD⊥BC,OF⊥BD,∴OF∥AD,又OA=OB,∴OF=AD=2,则××BH=×3×2,解得,BH=,∵=,∴BE=2BH=.21.(2011•鄂州自主招生)【附加题】已知二次函数y=x2+2(m+1)x-m+1.(1)随着m的变化,该二次函数图象的顶点P是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.(2)如果直线y=x+1经过二次函数y=x2+2(m+1)x-m+1图象的顶点P,求此时m的值.【解答】解:(1)该二次函数图象的顶点P是在某条抛物线上求该抛物线的函数表达式如下:利用配方,得y=(x+m+1)2-m2-3m,顶点坐标是P(-m-1,-m2-3m).方法一:分别取m=0,-1,1,得到三个顶点坐标是P1(-1,0)、P2(0,2)、P3(-2,-4),过这三个顶点的二次函数的表达式是y=-x2+x+2.将顶点坐标P(-m-1,-m2-3m)代入y=-x2+x+2的左右两边,左边=-m2-3m,右边=-(-m-1)2+(-m-1)+2=-m2-3m,∴左边=右边.即无论m取何值,顶点P都在抛物线y=-x2+x+2上.即所求抛物线的函数表达式是y=-x2+x+2.方法二:令-m-1=x,则m=-x-1,将其代入-m2-3m,得-(-x-1)2-3(-x-1)=-x2+x+2.即所求抛物线的函数表达式是y=-x2+x+2上.(2)如果顶点P(-m-1,-m2-3m)在直线y=x+1上,则-m2-3m=-m-1+1,即m2=-2m,∴m=0或m=-2,∴当直线y=x+1经过二次函数y=x2+2(m+1)x-m+1图象的顶点P时,m的值是-2或0.22.(2011秋•慈溪市期末)如图,BC是⊙O的弦,OD⊥BC于E,交于D,点A是优弧上的动点(不与B,C重合),BC=,ED=2.(1)求⊙O的半径;(2)求图中阴影部分面积的最大值.【解答】解:(1)连OB,如图,∵OD⊥BC,∴BE=BC=×4=2,设⊙O的半径为R,则OE=R-DE=R-2,在Rt△OEB中,OB2=OE2+BE2,即R2=(2)2+(R-2)2,∴R=4;(2)如图∵弓形BD的面积不变,当△ABD的面积最大时,阴影部分的面积最大,即点AD在线段BD的中垂线上时阴影部分面积的最大值,∵OB=4,OE=4-2=2,∴∠OBE=30°,∴∠BOD=60°,可求出此时BD边上的高为:4+2,∴S ABD=×4×(4+2)=8+4,∴等边△OBD的面积=×42=4,∵扇形OBD的面积==π,∴弓形BD的面积=π-4,∴阴影部分面积的最大值=△ABD的面积+弓形BD的面积=8+4-4+π=8+π.23.(2016秋•上城区期末)如图,在平面直角坐标系xOy中,Rt△ABC的直角顶点C在抛物线y=ax2+bx上运动,斜边AB垂直于y轴,且AB=8,∠ABC=60°,当Rt△ABC的斜边AB落在x轴上时,B点坐标是(-3,0),A点恰在抛物线y=ax2+bx上(1)求AB边上的高线CD的长;(2)求抛物线解析式;(3)Rt△ABC在运动过程中有可能被y轴分成两部分,当这两部分的面积之比为1:2时,求顶点C的坐标.【解答】解:(1)过点C作CD⊥AB于D,在Rt△ABC中,AB=8,∠ABC=60°,∴∠A=30°,∴BC=AB=4,AC=4,在Rt△BCD中,∠ABC=60°,∴∠ABC=60°,∴∠BCD=30°,∵BC=4,∴BD=2,CD=2,即:AB边上的高线CD的长为2;(2)由(1)知,BD=2,∵AB=8,B(-3,0),∴A(5,0),∴C的横坐标为-1,∴C(-1,2),∵A(5,0),C(-1,2)恰在抛物线y=ax2+bx上,∴,∴,∴抛物线解析式为y=,(3)由(1)知,BC=4,AC=4,∴S△ABC=BC•AC=8,∴S△ABC=,由(1)知,BD=2,CD=2,∴S△BCD=BD•CD=2,∴S△ABC>S△BCD,∵Rt△ABC在运动过程中有可能被y轴分成两部分,当这两部分的面积之比为1:2时,y轴只能和AC、AB相交,设△ABC的边AC、AB与y轴相交于E,F,在Rt△AEF中,∠A=30°,∴EF=AFtan30°=AF,∴S△AEF=AF•EF=AF2,①当S△AEF=S△ABC=,∴AF2=,∴AF=4,∵AD=AB-BD=6,∴C点的横坐标为-2,∵点C在抛物线y=上,∴点C的纵坐标为=,∴C(-2,),②当S△AEF=S△ABC=,∴AF2=,∴AF=4,∵AD=AB-BD=6,∴C点的横坐标为4-6,∵点C在抛物线y=上,∴点C的纵坐标为=,∴C(4-6,).即:满足条件的点C的坐标为,.第21页。
2023年广东省深圳市南山区育才三中中考三模数学试题(含答案解析)
2023年广东省深圳市南山区育才三中中考三模数学试题学校:___________姓名:___________班级:___________考号:___________....A .60︒B .7.使分式2xx -意义的x A .2x =B .8.袋子里有8个红球,m 个白球,A .20︒B .3010.如图,在矩形ABCD 中,点F 恰好落在边BC 上,连接A .6B .二、填空题11.因式分解:22ax ay =﹣________________.12.如图、在□ABCD 中,AB=5,AD=3,AE 平分∠DAB 交BC 的延长线于点F,则CF=_________.13.正六边形的一个内角是正n 边形一个外角的5倍,则n 等于__14.在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF 将矩形窗框ABCD 分为上下两部分,其中E 为边AB 的黄金分割点,即2BE AE AB =⋅.已知AB 为2米,则线段BE 的长为______米.三、解答题(1)尺规作图:求作AB 的中点O ,连作法);(2)从条件①、条件②这两个条件中选择一个作为已知条件,求条件①:AOC 和BOD 的面积为S 条件②:BOC 和AOC 的周长为C 20.冬天是吃羊肉的好时节.白萝卜炖羊肉,不仅鲜美可口,对慢性支气管炎、脾虚积食等病症有补益效果.所以一到冬天,购进了大量羊腿和羊排.顾客甲买了了2斤羊腿,1斤羊排,一共花了116(1)羊腿和羊排的售价分别是每斤多少元?(2)第二天进货时,超市老板根据前一天的销售情况,决定购进羊腿和羊排共羊腿的重量不少于120斤,若在售价不变的情况下,每斤羊腿可盈利盈利8元,问超市老板应该如何进货才能使得这批羊肉卖完时获利最大?最大利润是多少?21.图象对于探究函数性质有非常重要的作用,函数13y x =的图象,经历分析表达式、列表、描点、连线过程得到函数图象如图所示:x …﹣3﹣2﹣1013y x=…963参考答案:故选C .【点睛】本题考查了同底数幂的乘法法则,积的乘方的运算法则,单项式除以单项式的运算法则,完全平方和公式,掌握对应法则是解题的关键.5.D【分析】利用对顶角的性质、实数的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A 、如果12∠=∠,23∠∠=,那么13∠=∠,正确,是真命题,不符合题意;B 、对顶角相等,正确,是真命题,不符合题意;C 、如果一个数能被4整除,那么它也能被2整除,正确,是真命题,不符合题意;D 、两直线平行,内错角相等,故原命题错误,是假命题,符合题意.故选:D .【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、实数的性质、平行线的性质,难度不大.6.C【分析】根据平行线性质及三角形内角和定理及等边三角形性质即可求出2∠对顶角的度数,即可得到答案.【详解】解:∵ABC ∆是等边三角形,∴60A ∠=︒,∵12l l ∥,150∠=︒,∴1350∠=∠=︒,∴4180370A ∠=︒-∠-∠=︒,∴270Ð=°,故选C .【点睛】本题考查平行线性质,等边三角形性质,三角形内角和定理及对顶角相等,解题的关键是根据等边三角形得到60A ∠=︒.【点睛】本题考查矩形的性质、正确作出辅助线是解题的关键.11.()()a x y x y +-【分析】首先提取公因式a 【详解】解:22ax ay a -=故答案为:()()a x y x y +-【点睛】此题主要考查了提取公因式法以及公式法分解因式,键.12.2【详解】试题分析:根据角平分线的性质可得:∠得:∠DAE=∠F ,∠DEA=DE=AD=3可得:CE=2,则考点:(1)、角平分线的性质;13.15【分析】先根据多边形的内角和定理求出正六边形的内角为=︒⨯-(3)C所占圆心角度数360(125%⨯+=.(4)20000(25%60%)17000∴点O 即为所求点的位置.(2)解:条件①:AOC 和BOD 的面积为理由如下,∵ABC 是直角三角形,90ACB ∠=︒∴12AO CO BO AB ===,如图所示,过点C 作CE AB ⊥于E ,∴112AOC S S AO CE == △,212BOD S S ==△∵12:3:5S S =,∴35CE BD =,∵,CE AB BD AB ⊥⊥,∴CE BD ∥,则35CE CO BD DO ==,设3CO x =,5DO x =,∴3CO BO x ==,在Rt BOD 中,22(5BD DO BO x =-=∴44cos 55BD x BDC DO x ∠===;条件②:BOC 和AOC 的周长为1C 和C 如下,∵ABC 是直角三角形,CO 是中线,∴AO CO BO ==,1BOC C C BC CO BO ==++△,2AOC C C =△∴()BC CO BO AC CO AO BC ++-++=-∴2BC AC =,设AC x =,则2BC x =,【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.21.(1)(2,0)(2)见解析,最小值为8(3)①(m,2);②-2或3【分析】(1)由图象可得A(2,0);(2)通过观察图象可得;(3)①观察图象可知最低点P的坐标;②分三种情况讨论求得即可.【详解】(1)解:由图象可得A(2,0),故答案为:(2,0);(2)解:将函数y2=3|x﹣2|的图象再向上平移2个单位可以得到新的函数y3=3|x﹣2|+2,如图:当x≥4时,y3取到最小值,最小值为8;(3)解:拓展应用:将函数y3的图象继续平移得到y4=3|x﹣m|+2,其最低点为点P.①最低点P的坐标为(m,2),故答案为(m,2);②若m<﹣1,当x=﹣1时,y4有最小值5,∴3×|﹣1﹣m|+2=5∴m=0(舍),或m=﹣2。
2024-2025学年重庆市育才中学数学九年级第一学期开学质量检测模拟试题【含答案】
2024-2025学年重庆市育才中学数学九年级第一学期开学质量检测模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若x >y ,则下列不等式中不一定成立的是()A .x ﹣1>y ﹣1B .2x >2y C .x +1>y +1D .x 2>y 22、(4分)如图,在平面直角坐标系中,直线y=23x -23与矩形ABCD 的边OC 、BC 分别交于点E 、F ,已知OA=3,OC=4,则△CEF 的面积是()A .6B .3C .12D .3、(4分)下列命题的逆命题不正确的是()A .若22a b =,则a b =B .两直线平行,内错角相等C .等腰三角形的两个底角相等D .对顶角相等4、(4分)下列函数中,y 随x 的增大而减小的有()①y =﹣2x+1;②y =6﹣x ;③y =-13x +;④y =(1)x .A .1个B .2个C .3个D .4个5、(4分)下列长度的三条线段能组成直角三角形的是()A .2,3,4B .3,4,5C .4,5,6D .5,6,76、(4分)小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A .3个B .4个C .5个D .无数个7、(4分)已知菱形的边长等于2cm ,菱形的一条对角线也是长2cm ,则另一条对角线长是()A .4cm B .cm C cm D .3cm 8、(4分)某校九年级()1班全体学生2016年初中毕业体育考试的成绩统计如表:成绩(分)15192224252830人数(人)2566876根据表中的信息判断,下列结论中错误的是()A .该班一共有40名同学B .该班学生这次考试成绩的众数是25分C .该班学生这次考试成绩的中位数是25分D .该班学生这次考试成绩的平均数是25分二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知a +b =0目a ≠0,则20202019a b a +=_____.10、(4分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m ,其行走路线如图所示,第1次移动到1A ,第2次移动到2A ……,第n 次移动到n A ,机器人移动第2018次即停止,则22018OA A △的面积是______.11、(4分)已知正n 边形的一个外角是45°,则n =____________12、(4分)若从一个多边形的一个顶点出发可引5条对角线,则它是______边形.13、(4分)在平行四边形ABCD 中,若∠A =70°,则∠C 的度数为_________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,直线l 1:y=12x-4分别与x 轴,y 轴交于A ,B 两点,与直线l 2交于点C (-2,m ).点D 是直线l 2与y 轴的交点,将点A 向上平移3个单位,再向左平移8个单位恰好能与点D 重合.(1)求直线l 2的解析式;(2)已知点E (n ,-2)是直线l 1上一点,将直线l 2沿x 轴向右平移.在平移过程中,当直线l 2与线段BE 有交点时,求平移距离d 的取值范围.15、(8分)在平面直角坐标系xOy 中,直线4y x =+与x 轴交于点A ,与过点B (0,2)且平行于x 轴的直线l 交于点C ,点A 关于直线l 的对称点为点D .(1)求点C 、D 的坐标;(2)将直线4y x =+在直线l 上方的部分和线段CD 记为一个新的图象G .若直线12y x b =-+与图象G 有两个公共点,结合函数图象,求b 的取值范围.16、(8分)如图,BD 是平行四边形ABCD 的对角线,//AE CF ,分别交BD 于点,E F .求证:AE CF =.17、(10分)阅读可以增进人们的知识也能陶治人们的情操。
广东省深圳市南山区2024年中考三模英语试题(育才等12校联考)(含答案 无听力部分))
2023-2024学年第二学期初三年级第三次质量检测英语说明:1 答题前,请将姓名、准考证号和座位号用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好。
2 全卷共4页。
考试时间70分钟,满分75分。
3 作答选择题时,选出每小题答案后,用2B铅笔把答题卡对应题目答案标号的信息点框涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
作答非选择题时,用黑色字迹的钢笔或签字笔将答案写在答题卡指定区域内。
写在本试卷或草稿纸上,其答案一律无效。
4. 考试结束后,请将答题卡交回。
第一部分选择题(共50 分)Ⅰ. 完形填空(10分)阅读下面短文,从短文后所给的A、B、C、D 四个选项中,选出能填入相应空白处的最佳选项。
(共10 小题, 每小题1 分)This is a story about a storm in Moscow. It happened several years ago. It was my first time that I had seen such a 1 storm.It was a sunny day in July, and I was at home watching TV. The window was open 2 the weather was so hot. Suddenly, I felt a strong wind from outside. I looked out of the window and saw a black sky and trees 3 over because of the strong wind. I tried to 4 the window. but the wind made me fall down. I was afraid that the glass might break. I stood up and tried to close the window again、5 ,I made it.Then I looked outside. I found that the big tree in front of my house was going to fall to the ground and its 6 had broken off. There was frequent(频繁的) thunder and lightning. I started to 7 all the appliances as quickly as possible.After a while, the wind stopped, but it began to hail (下冰雹). After about ten minutes,everything stopped, and the Sun came out again. How 8 the weather was! A few minutes later,the phone began to ring. It was my friend. We asked each other how it was and how we felt after the storm.In the streets, many trees died because of the 9 . For a few days, people helped clean parks and gardens. Some people's cars were damaged by trees' falling branches on them. The 10 tells me that in the face of natural disasters, human beings are insignificant(微不足道的). We can't stop them, but we must protect ourselves from them.( )1. A. terrible B. little C. gentle D. common( )2. A. so B. because C. but D. though( )3. A. coming B. taking C. blowing D. getting( )4. A. break B. clean C. change D. close( )5. A. Luckily B. Recently C. Loudly D. Probably( )6. A. patterns B. branches C tools D. signs( )7. A. switch off B turn on C. turn down D. pick up( )8. A. hard B. similar C. usual D. strange( )9. A. trick B. accident C. storm D. fire( )10 A. expression B. experience C. challenge D. exchangeⅡ. 阅读理解(40分)第一节阅读下列短文,从下面每小题所给的A、B、C、D 四个选项中,选出最佳选项。
2023-2024学年北京市育才学校高三(上)期中数学试卷【答案版】
2023-2024学年北京市育才学校高三(上)期中数学试卷一、选择题:本大题共10小题,每小题4分,共40分.1.已知集合A ={x |x 2﹣3x +2<0},B ={x |x ≥1},则A ∪B =( ) A .(﹣∞,2]B .(1,+∞)C .(1,2)D .[1,+∞)2.下列函数在其定义域内既是奇函数又是增函数的是( ) A .y =lgxB .y =x 3C .y =sin xD .y =x 123.已知向量a →=(x +1,2),b →=(﹣1,x ).若a →与b →垂直,则|b →|=( ) A .1B .√2C .2D .44.已知直线m ⊥平面α,n 表示直线,β表示平面,有以下四个结论:①α⊥β⇒m ∥β;②m ∥n ,n ⊂β⇒α⊥β;③n ∥α⇒m ⊥n ;④若β与m 相交,则β与α相交.其中正确的结论的个数是( ) A .4B .3C .2D .15.△ABC 中,“∠A =π4”是“sinA =√22”的( )条件.A .充分而不必要B .必要而不充分C .充分且必要D .既不充分也不必要6.函数y =2sin (ωx +φ)在一个周期内的图象如图所示,则此函数的解析式是( )A .y =2sin (2x −π4) B .y =2sin (2x +π4)C .y =2sin (x +3π8) D .y =2sin (x2+7π16)7.设数列{a n }是首项为1公比为3的等比数列,把{a n }中的每一项都减去2后,得到一个新数列{b n },{b n }的前n 项和为S n ,对任意的n ∈N *,下列结论正确的是( ) A .b n +1=3b n ,且S n =12(3n ﹣1)B .b n +1=3b n ﹣2,且S n =12(3n ﹣1)C .b n +1=3b n +4,且S n =12(3n ﹣1)﹣2n D .b n +1=3b n ﹣4,且S n =12(3n ﹣1)﹣2n8.已知向量a →=(sinθ,cosθ),b →=(3,4),若a →∥b →,则tan2θ等于( )A .247B .67C .−2425D .−2479.在直角梯形ABCD 中,已知BC ∥AD ,AB ⊥AD ,AB =4,BC =2,AD =4,若P 为CD 的中点,则PA →⋅PB →的值为( ) A .﹣5B .﹣4C .4D .510.“开车不喝酒,喝酒不开车”.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg /mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09mg /mL ,那么,一个喝了少量酒后的驾驶员,至少经过( )小时,才能开车?(精确到1小时)(参考数据:lg 2≈0.3,lg 3≈0.5) A .3B .4C .5D .6二、填空题:本大题共5小题,每小题5分,共25分.11.记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则a n = .12.已知平面向量a →,b →满足a →•(a →+b →)=3,且|a →|=2,|b →|=1,则向量a →与b →的夹角为 . 13.从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥A ﹣BCD ,则它的体积与正方体体积的比为 ;它的表面积与正方体表面积的比为 .14.将函数y =3sin (2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 .15.已知函数f(x)={−x 2−3x ,x <0,f(x −3),x ≥0,以下结论正确的序号是 .①f (x )在区间[7,9]上是增函数 ②f (﹣2)+f (2022)=2③若函数y =f (x )﹣b 在(﹣∞,6)上有6个零点x i (i =1,2,3,4,5,6),则6个零点的和∑ 6i=1x i =9 ④若方程f (x )=kx +1恰有3个实根,则k ∈(−1,−13)三、解答题:本大题共6小题,共85分.16.(13分)在△ABC中,bsinA=acos(B−π6).(Ⅰ)求B;(Ⅱ)若c=5,_____.求a.从①b=7,②C=π4这两个条件中任选一个,补充在上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分.17.(13分)已知等差数列{a n}满足a1=1,a2+a4=10.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等比数列{b n},b1﹣a1=0,b2+a2=0,求{b n}的通项公式;(Ⅲ)若c n=a n+b an,求数列{c n}的前n项和.18.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形.且P A⊥平面ABCD,M,N分别为PB,PD的中点.(Ⅰ)求证:MN∥平面ABCD;(Ⅱ)若P A=AB=2,求CN与平面PBD所成角的正弦值.19.(15分)为了增强学生的冬奥会知识,弘扬奥林匹克精神,北京市多所中小学校开展了模拟冬奥会各项比赛的活动.为了了解学生在越野滑轮和旱地冰壶两项中的参与情况,在北京市中小学学校中随机抽取了10所学校,10所学校的参与人数如下:(Ⅰ)现从这10所学校中随机选取2所学校进行调查.求选出的2所学校参与越野滑轮人数都超过40人的概率;(Ⅱ)现有一名旱地冰壶教练在这10所学校中随机选取2所学校进行指导,记X为教练选中参加旱地冰壶人数在30人以上的学校个数,求X的分布列和数学期望;(Ⅲ)某校聘请了一名越野滑轮教练,对高山滑降、转弯、八字登坡滑行这3个动作进行技术指导.规定:这3个动作中至少有2个动作达到“优”,总考核记为“优”.在指导前,该校甲同学3个动作中每个动作达到“优”的概率为0.1.在指导后的考核中,甲同学总考核成绩为“优”.能否认为甲同学在指导后总考核达到“优”的概率发生了变化?请说明理由.20.(15分)已知函数f(x)=lnx﹣ax+1,a∈R是常数.(Ⅰ)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;(Ⅱ)证明:函数y=f(x)(x≠1)的图象在直线l的下方;(Ⅲ)讨论函数y=f(x)零点的个数.21.(15分)在一个有穷数列的每相邻两项之间插入这两项的和,形成新的数列,我们把这样的操作称为该数列的一次“Z拓展”.如数列1,2第1次“Z拓展”后得到数列1,3,2,第2次“Z拓展”后得到数列1,4,3,5,2.设数列a,b,c经过第n次“Z拓展”后所得数列的项数记为P n,所有项的和记为S n.(Ⅰ)求P1,P2;(Ⅱ)若P n≥2020,求n的最小值;(Ⅲ)是否存在实数a,b,c,使得数列{S n}为等比数列?若存在,求a,b,c满足的条件;若不存在,说明理由.2023-2024学年北京市育才学校高三(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.1.已知集合A ={x |x 2﹣3x +2<0},B ={x |x ≥1},则A ∪B =( ) A .(﹣∞,2]B .(1,+∞)C .(1,2)D .[1,+∞)解:A ={x |1<x <2},B ={x |x ≥1};∴A ∪B ={x |x ≥1}=[1,+∞). 故选:D .2.下列函数在其定义域内既是奇函数又是增函数的是( ) A .y =lgxB .y =x 3C .y =sin xD .y =x 12解:根据题意,依次分析选项:对于A ,y =lgx ,为对数函数,不是奇函数,不符合题意; 对于B ,y =x 3,为幂函数,既是奇函数又是增函数,符合题意; 对于C ,y =sin x ,为正弦函数,在其定义域上不是增函数,不符合题意; 对于D ,y =x 12=√x ,其定义域为[0,+∞),不是奇函数,不符合题意;故选:B .3.已知向量a →=(x +1,2),b →=(﹣1,x ).若a →与b →垂直,则|b →|=( ) A .1B .√2C .2D .4解:∵向量a →=(x +1,2),b →=(﹣1,x ),a →与b →垂直 ∴a →•b →=x ﹣1=0解得x =1,则b →=(﹣1,1),∴|b →|=√2 故选:B .4.已知直线m ⊥平面α,n 表示直线,β表示平面,有以下四个结论:①α⊥β⇒m ∥β;②m ∥n ,n ⊂β⇒α⊥β;③n ∥α⇒m ⊥n ;④若β与m 相交,则β与α相交.其中正确的结论的个数是( ) A .4B .3C .2D .1解:对于①,α⊥β⇒m ∥β或m ⊂β,故①错误;对于②,m ∥n ,m ⊥α⇒n ⊥α,又n ⊂β,所以α⊥β,故②正确; 对于③,m ⊥α,n ∥α⇒m ⊥n ,故③正确;对于④,若β与m 相交,则β与α相交或平行,故④错误. 故正确的结论的个数是2. 故选:C .5.△ABC 中,“∠A =π4”是“sinA =√22”的( )条件. A .充分而不必要 B .必要而不充分C .充分且必要D .既不充分也不必要解:∵A =π4,∴sinA =√22,故“A =π4“是”“sinA =√22“的充分条件; ∵sin A =√22,∴A =π4或A =3π4,故“A =π4“不是“sinA =√22“的必要条件. 故选:A .6.函数y =2sin (ωx +φ)在一个周期内的图象如图所示,则此函数的解析式是( )A .y =2sin (2x −π4)B .y =2sin (2x +π4)C .y =2sin (x +3π8)D .y =2sin (x2+7π16)解:由图象可知,T2=5π8−π8=π2,所以T =π, 由T =2πω,得ω=2, 所以y =2sin (2x +φ). ∵点(π8,2)在函数图象上,∴2=2sin (2×π8+φ), ∴φ=2k π+π4(k ∈Z ), 解得φ=π4,所以解析式为y =2sin (2x +π4). 故选:B .7.设数列{a n }是首项为1公比为3的等比数列,把{a n }中的每一项都减去2后,得到一个新数列{b n },{b n }的前n 项和为S n ,对任意的n ∈N *,下列结论正确的是( ) A .b n +1=3b n ,且S n =12(3n ﹣1)B .b n +1=3b n ﹣2,且S n =12(3n ﹣1)C .b n +1=3b n +4,且S n =12(3n ﹣1)﹣2n D .b n +1=3b n ﹣4,且S n =12(3n ﹣1)﹣2n解:因为数列{a n }是首项为1公比为3的等比数列,所以数列{a n }的通项公式a n =3n ﹣1,则依题意得,数列{b n }的通项公式为b n =3n ﹣1﹣2,∴b n +1=3n ﹣2,3b n =3(3n ﹣1﹣2)=3n ﹣6,∴b n +1=3b n +4.{b n }的前n 项和为:S n =(1﹣2)+(31﹣2)+(32﹣2)+(33﹣2)++(3n ﹣1﹣2)=(1+31+32+33++3n ﹣1)﹣2n =(1−3n)1−3−2n=12(3n ﹣1)﹣2n . 故选:C .8.已知向量a →=(sinθ,cosθ),b →=(3,4),若a →∥b →,则tan2θ等于( ) A .247B .67C .−2425D .−247解:∵向量a →=(sinθ,cosθ),b →=(3,4), 由a →∥b →可得4sin θ=3cos θ, ∴tan θ=sinθcosθ=34,则tan2θ=2tanθ1−tan 2θ=34×21−916=247. 故选:A .9.在直角梯形ABCD 中,已知BC ∥AD ,AB ⊥AD ,AB =4,BC =2,AD =4,若P 为CD 的中点,则PA →⋅PB →的值为( ) A .﹣5B .﹣4C .4D .5解:由题意可得 DA →=2CB →,PD →=−PC →,|PD →|=|PC →|=12√16+4=√5,∴tan ∠PDA =2,cos ∠PDA =√55.∴PA →⋅PB →=(PD →+DA →)•(PC →+CB →)=(PD →+2CB →)•(−PD →+CB →) =−PD →2−PD →⋅CB →+2CB →2=−5﹣2×√5×cos (π﹣∠PDA )+2×4 =﹣5﹣2×√5×(−√55)+8=5, 故选:D .10.“开车不喝酒,喝酒不开车”.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3mg /mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09mg /mL ,那么,一个喝了少量酒后的驾驶员,至少经过( )小时,才能开车?(精确到1小时)(参考数据:lg 2≈0.3,lg 3≈0.5) A .3B .4C .5D .6解:设x 小时后,该驾驶员血液中的酒精含量不超过0.09mg /mL , 则0.3(1﹣25%)x ≤0.09,即(34)x ≤0.3,∴xlg 34≤lg310=lg 3﹣1≈﹣0.5,∴x ≥−0.5lg3−2lg2≈−0.50.5−0.6=5, 故至少经过5小时,才能开车. 故选:C .二、填空题:本大题共5小题,每小题5分,共25分.11.记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则a n = 2n ﹣5 . 解:设公差为d ,则由条件有{S 4=4a 1+6d =0a 5=a 1+4d =5,解得{a 1=−3d =2.所以a n =a 1+(n ﹣1)d =2n ﹣5. 故答案为:2n ﹣5.12.已知平面向量a →,b →满足a →•(a →+b →)=3,且|a →|=2,|b →|=1,则向量a →与b →的夹角为 2π3.解:设向量a →与b →的夹角为θ,θ∈[0,π] 由a →•(a →+b →)=3可得a →2+a →⋅b →=3, 代入数据可得22+2×1×cos θ=3, 解之可得cos θ=−12, 故可得θ=2π3 故答案为:2π313.从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥A ﹣BCD ,则它的体积与正方体体积的比为13;它的表面积与正方体表面积的比为√33.解:设正方体的棱长为1,则正三棱锥A ﹣BCD 的棱长为√2,∴正方体的体积为1,正三棱锥A ﹣BCD 的体积为1﹣4×13×12×1×1×1=13, ∴正三棱锥A ﹣BCD 的体积与正方体体积的比为131=13;∵正三棱锥A ﹣BCD 的表面积为4×12×√2×√2×√32=2√3,而正方体表面积为6×1×1=6,∴正三棱锥A ﹣BCD 的表面积与正方体表面积的比为2√36=√33. 故答案为:13;√33.14.将函数y =3sin (2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 x =−5π24 .解:因为函数y =3sin (2x +π4)的图象向右平移π6个单位长度可得g (x )=f (x −π6)=3sin (2x −π3+π4)=3sin (2x −π12), 则y =g (x )的对称轴为2x −π12=π2+k π,k ∈Z , 即x =7π24+kπ2,k ∈Z , 当k =0时,x =7π24, 当k =﹣1时,x =−5π24,所以平移后的图象中与y 轴最近的对称轴的方程是x =−5π24, 故答案为:x =−5π24,15.已知函数f(x)={−x 2−3x ,x <0,f(x −3),x ≥0,以下结论正确的序号是 ②③ .①f (x )在区间[7,9]上是增函数 ②f (﹣2)+f (2022)=2③若函数y =f (x )﹣b 在(﹣∞,6)上有6个零点x i (i =1,2,3,4,5,6),则6个零点的和∑ 6i=1x i =9 ④若方程f (x )=kx +1恰有3个实根,则k ∈(−1,−13) 解:由题意可知,当x ≥﹣3时,f (x )是以3为周期的函数, 故f (x )在[7,9]上的单调性与f (x )在[﹣2,0]上的单调性相同,而当x <0时,f(x)=−(x +32)2+94,f (x )在﹣2,0]上不单调,故①错误; f (2022)=f (﹣3)=0,f (﹣2)=2,故f (﹣2)+f (2022)=2,故②正确; 作出y =f (x )的函数图象如图所示:由于y =f (x )﹣b 在(﹣∞,6)上有6个零点,故直线y =b 与y =f (x )在(﹣∞,6)上有6个交点,不妨设x i <x i +1,i =1,2,3,4,5,由图象可知x 1,x 2关于直线x =−32对称,x 3,x 4关于直线x =32对称,x 5,x 6关于直线x =92对称, 则∑ 6i=1x i =−32×2+32×2+92×2=9,故③正确;若直线y =kx +1经过点(3,0),则若直线y =kx +1经过点(3,0),则k =−13; 若直线y =kx +1与y =﹣x 2﹣3x (x <0)相切,消元可得x2+(3+k)x+1=0,Δ=(3+k)2﹣4=0,解得k=﹣1或k=﹣5,当k=﹣1时,x=﹣1,当k=﹣5时,x=1(舍去),故k=﹣1;若直线y=kx+1与y=f(x)在(0,3)上的图象相切,由对称性可得k=1.方程f(x)=kx+1恰有3个实根,故直线y=kx+1与y=f(x)的图象有3个交点,则−1<k<−13或k=1,故④错误.故答案为:②③.三、解答题:本大题共6小题,共85分.16.(13分)在△ABC中,bsinA=acos(B−π6).(Ⅰ)求B;(Ⅱ)若c=5,_____.求a.从①b=7,②C=π4这两个条件中任选一个,补充在上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分.解:(Ⅰ)在△ABC中,由正弦定理得asinA =bsinB,得b sin A=a sin B,又b sin A=a cos(B−π6).∴a sin B=a cos(B−π6),即sin B=cos(B−π6)=cos B cosπ6+sin B sinπ6=√32cos B+12sin B,整理可得:sin B=√3cos B,∴tan B=√3,又B∈(0,π),∴B=π3.(Ⅱ)若选①b=7,则在△ABC中,由余弦定理b2=a2+c2﹣2ac cos B,可得a2﹣5a﹣24=0,解得a=8,或a=﹣3(舍去),可得a=8.若选②C=π4,则sin A=sin(B+C)=sinπ3cosπ4+cosπ3sinπ4=√6+√24,由正弦定理asinA =csinC,可得√6+√24=√22,解得a=5√3+52.综上所述:若选①a=8;若选②a=5+5√35.17.(13分)已知等差数列{a n}满足a1=1,a2+a4=10.(Ⅰ)求{a n}的通项公式;(Ⅱ)若等比数列{b n},b1﹣a1=0,b2+a2=0,求{b n}的通项公式;(Ⅲ)若c n=a n+b an,求数列{c n}的前n项和.解:(Ⅰ)设等差数列{a n}的公差为d,由a1=1,a2+a4=10,可得1+d+1+3d=10,解得d=2,则a n=1+2(n﹣1)=2n﹣1:(Ⅱ)设等比数列{b n}的公比为q,由b1﹣a1=0,b2+a2=0,可得b1=1,b2=q=﹣3,则b n=(﹣3)n﹣1;(Ⅲ)c n=a n+b an=(2n﹣1)+(﹣3)2n﹣2=(2n﹣1)+9n﹣1,则数列{c n}的前n项和为(1+3+...+2n﹣1)+(1+9+...+9n﹣1)=12n(1+2n﹣1)+1−9n1−9=n2+9n−18.18.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形.且P A⊥平面ABCD,M,N分别为PB,PD的中点.(Ⅰ)求证:MN∥平面ABCD;(Ⅱ)若P A=AB=2,求CN与平面PBD所成角的正弦值.解:(Ⅰ)证明:在四棱锥P﹣ABCD中,M,N分别为PB,PD的中点.取PC中点Q,连结QM,QN,则QM∥BC,QN∥CD,∵QM∩QN=Q,BC∩CD=C,∴平面ABCD ∥平面QMN ,∵MN ⊂平面PMN ,∴MN ∥平面ABCD .(Ⅱ)∵底面ABCD 为正方形.P A ⊥平面ABCD ,P A =AB =2,∴以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系, 则C (2,2,0),N (0,1,1),P (0,0,2),B (2,0,0),D (0,2,0), CN →=(﹣2,﹣1,1),PB →=(2,0,﹣2),PD →=(0,2,﹣2), 设平面PBD 的法向量n →=(x ,y ,z ),则{n →⋅PB →=2x −2z =0n →⋅PD →=2y −2z =0,取x =1,得n →=(1,1,1), 设CN 与平面PBD 所成角为θ,则CN 与平面PBD 所成角的正弦值为:sin θ=|CN →⋅n →||CN →|⋅|n →|=2√6⋅√3=√23. 19.(15分)为了增强学生的冬奥会知识,弘扬奥林匹克精神,北京市多所中小学校开展了模拟冬奥会各项比赛的活动.为了了解学生在越野滑轮和旱地冰壶两项中的参与情况,在北京市中小学学校中随机抽取了10所学校,10所学校的参与人数如下:(Ⅰ)现从这10所学校中随机选取2所学校进行调查.求选出的2所学校参与越野滑轮人数都超过40人的概率;(Ⅱ)现有一名旱地冰壶教练在这10所学校中随机选取2所学校进行指导,记X 为教练选中参加旱地冰壶人数在30人以上的学校个数,求X 的分布列和数学期望;(Ⅲ)某校聘请了一名越野滑轮教练,对高山滑降、转弯、八字登坡滑行这3个动作进行技术指导.规定:这3个动作中至少有2个动作达到“优”,总考核记为“优”.在指导前,该校甲同学3个动作中每个动作达到“优”的概率为0.1.在指导后的考核中,甲同学总考核成绩为“优”.能否认为甲同学在指导后总考核达到“优”的概率发生了变化?请说明理由.解:(Ⅰ)记“选出的两所学校参与越野滑轮人数都超过40人”为事件S ,现从这10所学校中随机选取2所学校进行调查,可得基本事件总数为∁102.参与越野滑轮人数超过40人的学校共4所,随机选择2所学校共C42=6种,所以P(S)=C42C102=4×3210×92=215.(Ⅱ)X的所有可能取值为0,1,2,参加旱地冰壶人数在30人以上的学校共4所.P(X=0)=C40⋅C62C102=13,P(X=1)=C41⋅C61C102=815,P(X=2)=C42⋅C60C102=215.X的分布列为:E(X)=0×13+1×815+2×215=45.(Ⅲ)答案不唯一.答案示例1:可以认为甲同学在指导后总考核为“优”的概率发生了变化.理由如下:指导前,甲同学总考核为“优”的概率为:C32⋅0.12⋅0.9+C33⋅0.13=0.028.指导前,甲同学总考核为“优”的概率非常小,一旦发生,就有理由认为指导后总考核达到“优”的概率发生了变化.答案示例2:无法确定.理由如下:指导前,甲同学总考核为“优”的概率为:C32⋅0.12⋅0.9+C33⋅0.13=0.028.虽然概率非常小,但是也可能发生,所以,无法确定总考核达到“优”的概率发生了变化.20.(15分)已知函数f(x)=lnx﹣ax+1,a∈R是常数.(Ⅰ)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程;(Ⅱ)证明:函数y=f(x)(x≠1)的图象在直线l的下方;(Ⅲ)讨论函数y=f(x)零点的个数.解:(Ⅰ)函数的定义域为(0,+∞),函数的导数为f′(x)=1x−a,f(1)=﹣a+1,所以切线斜率k=f'(1)=1﹣a,所以切线l的方程为y﹣(1﹣a)=(1﹣a)(x﹣1),即y=(1﹣a)x.(Ⅱ)令F(x)=f(x)﹣(1﹣a)x=lnx﹣x+1,x>0,则F'(x)=1x−1=1−xx=0,解得x=1.F(1)<0,所以∀x>0且x≠1,F(x)<0,所以f(x)<(1﹣a)x,即函数y =f (x )(x ≠1)的图象在直线l 的下方. (Ⅲ)令f (x )=lnx ﹣ax +1=0,则a =1+lnxx. 令 g (x )=1+lnx x ,则g '(x )=1−(1+lnx)x 2=−lnxx 2, 则g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 当x =1时,g (x )的最大值为g (1)=1.所以若a >1,则f (x )无零点;若f (x )有零点,则a ≤1.若a =1,f (x )=lnx ﹣ax +1=0,由(Ⅰ)知f (x )有且仅有一个零点x =1.若a ≤0,f (x )=lnx ﹣ax +1单调递增,由幂函数与对数函数单调性比较,知f (x )有且仅有一个零点(或:直线y =ax ﹣1与曲线y =lnx 有一个交点). 若0<a <1,解f '(x )=1x −a =0,得x =1a ,由函数的单调性得知f (x )在x =1a 处取最大值,f (1a)=ln 1a>0,由幂函数与对数函数单调性比较知,当x 充分大时f (x )<0,即f (x )在单调递减区间(1a,+∞)有且仅有一个零点;又因为f (1e )=−a e<0=−ae<0,所以f (x )在单调递增区间(0,1a)有且仅有一个零点.综上所述,当a >1时,f (x )无零点; 当a =1或a ≤0时,f (x )有且仅有一个零点; 当0<a <1时,f (x )有两个零点.…(13分)21.(15分)在一个有穷数列的每相邻两项之间插入这两项的和,形成新的数列,我们把这样的操作称为该数列的一次“Z 拓展”.如数列1,2第1次“Z 拓展”后得到数列1,3,2,第2次“Z 拓展”后得到数列1,4,3,5,2.设数列a ,b ,c 经过第n 次“Z 拓展”后所得数列的项数记为P n ,所有项的和记为S n .(Ⅰ)求P 1,P 2;(Ⅱ)若P n ≥2020,求n 的最小值;(Ⅲ)是否存在实数a ,b ,c ,使得数列{S n }为等比数列?若存在,求a ,b ,c 满足的条件;若不存在,说明理由.解:(Ⅰ)因原数列有3项,经第1次拓展后的项数P 1=3+2=5; 经第2次拓展后的项数P 2=5+4=9.(Ⅱ)因数列每一次拓展是在原数列的相邻两项中增加一项,由数列经第n 次拓展后的项数为P n ,则经第n +1次拓展后增加的项数为P n ﹣1, 所以P n +1=P n +(P n ﹣1)=2P n ﹣1所以P n +1﹣1=2P n ﹣2=2(P n ﹣1),由(Ⅰ)知P 1﹣1=4,P n −1=4⋅2n−1=2n+1 所以P n =2n+1+1,由P n =2n+1+1≥2020,即2n +1≥2019,解得n ≥10 所以n 的最小值为10.(Ⅲ)设第n 次拓展后数列的各项为a ,a 1,a 2,a 3,…,a m ,c 所以S n =a +a 1+a 2+a 3+…+a m +c因数列每一次拓展是在原数列的相邻两项中增加这两项的和,所以S n +1=a +(a +a 1)+a 1+(a 1+a 2)+a 2+(a 2+a 3)+…+a m +(a m +c )+c 即S n +1=2a +3a 1+3a 2+…+3a m +2c 所以S n +1=3S n ﹣(a +c ),S n+1−a+c 2=3(S n −a+c2) 得S n −a+c2=(S 1−a+c2)⋅3n−1由S 1=2a +3b +2c ,则S n =(b +a+c2)⋅3n +a+c2若使S n 为等比数列,则{a+c 2=0b +a+c 2≠0或{b +a+c2=0a+c 2≠0所以,a ,b ,c 满足的条件为{a +c =0b ≠0或者{2b +a +c =0b ≠0.。
2023年广东省深圳市蛇口育才教育集团育才三中中考二模数学试题和答案详解
2023年广东省深圳市蛇口育才教育集团育才三中中考二模数学试题和答案详细解析(题后)一、单选题1. -6的绝对值是()A.-6B.6C.- D.2. 某几何体的表面展开图如图所示,那么这个几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥3. 据报道,2022年中国半导体投资中,芯片设计产业成为主力,投资规模超5600亿元.其中,5600亿用科学记数法表示为()A.B.C.D.4. 下列运算正确的是()A.B.C.D.5. 将一副三角板按如图所示的位置摆放在直尺上,则的度数为()A.B.C.D.6. 剪纸艺术是中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为,其关于y轴对称的点F的坐标为,则的值为()A.B.0C.1D.7. 《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A.B.C.D.8. 下列说法正确的是()A.五边形的外角和是B.对角线相等且互相垂直的四边形是正方形C.因式分解是正确的D.关于x的方程有两个不相等的实数根9. 如图,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形N的边长为定值n,小正方形B,C的边长分别为b,c.已知,当角变化时,则b与c满足的关系式是()A.B.C.D.10.如图,直线l:分别与x轴、y轴交于点A、B.点P为直线l在第一象限的点.作的外接圆,延长交于点D,当的面积最小时,则的半径长为()A.B.2C.D.3二、填空题11. 若分式有意义,则x满足的条件是________.12. 学校招募校园广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率________.13. 如图所示,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为,看这栋楼底部C处的俯角为,热气球A处与楼的水平距离为150米,则这栋楼的高度为________米.14. 如图,在平面直角坐标系中,菱形的顶点A在x轴上,顶点C在反比例函数的图象上,且.若将该菱形向下平移2个单位后,顶点B恰好落在此反比例函数的图象上,则k的值为________.15. 如图,在中,,,,点M、N分别在、上,连接,将沿翻折,使点C的对应点P落在的延长线上,若平分,则长为________.三、解答题16. 计算:.17.先化简,再求值:,其中.18. 为了解双减背景下学生每天完成作业的时间情况,某中学对n名学生每天完成作业时间进行抽样调查,根据时间(单位:分钟)分成,,,.五个组,并将调查结果绘制成如图所示的两幅不完整的统计图.根据以上信息,回答下列问题:(1)________,________,扇形统计图中A的圆心角度数为________;(2)补全条形统计图,学生每天完成作业时间的中位数落在________组;(3)若全校共有2000名学生,请估计该校每天完成作业时间不低于120分钟的学生有多少人?19. 端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?20. 如图,△ABC为⊙O的内接三角形,且AB为⊙O的直径,DE与⊙O相切于点D,交AB的延长线于点E,连接OD交BC于点F,连接AD、CD,∠E=∠ADC.(1)求证:AD平分∠BAC;(2)若CF=2DF,AC=6,求⊙O的半径r.21. 在平面直角坐标系中,对于点和点,给出如下定义:若,则称点Q为点P的限变点,例如:点的限变点的坐标是,点的限变点的坐标是.(1)①点的限变点的坐标是________;②以下三个选项中的点是反比例函数图象上某一个点的限变点的是()A. B. C.(2)若点P在一次函数的图象上,请在下图平面直角坐标系中,画出点P的限变点Q的函数图象,并根据图象点Q的纵坐标的取值范围为________.(3)我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休”.若点P在关于x的二次函数的图象上,其限变点Q的纵坐标的取值范围是或,其中,令,求s关于t的函数解析式.22. 已知正方形,将边绕点顺时针旋转至线段,的平分线所在直线与直线相交于点.(1)如图1,当为锐角时,请先用“尺规作图”作出的平分线(保留作图痕迹,不写作法),再依题意补全图形,求证:;(2)在(1)的条件下,①的度数为________;②连接,猜想线段和之间的数量关系,并证明;(3)若正方形的边长,当以点,,,为顶点的四边形是平行四边形时,请直接写出线段BE的长度.答案详解1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.。
广东省深圳市深圳实验学校2023-2024学年上学期九年级四部月考数学试卷(11月)(含答案)
深圳实验学校2023-2024学年第一学期九年级四部月考数学试卷(11月)一.选择题(每题3分,共30分)1.下列光线所形成的投影不是中心投影的是( )A .太阳光线B .台灯的光线C .手电筒的光线D .路灯的光线2.若2a =3b ,则的值为( )A .B .C .D .3.下列说法中,错误的是( )A .菱形的对角线互相垂直B .对角线相等的四边形是矩形C .平行四边形的对角线互相平分D .对角线互相垂直平分的四边形是菱形4.如图,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,下列结论正确的是( )A .sin C =B .sinC =C .sin C =D .sin C =5.若点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y=的图象上,若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 36.老师设计了接力游戏,用合作的方式完成配方法解一元二次方程,规则:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后解出方程.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有甲B .甲和乙C .甲和丙D .丙和丁7.在同一平面直角坐标系中,一次函数y =cx +a 与二次函数y =ax 2+bx +c 的图象可能是( )1xA .B .C .D .8.如图,点A 、B 、C 均在4×4的正方形网格的格点上,则tan ∠BAC =( )A .B .C .D .9.将图1中两个三角形按图2所示的方式摆放,其中四边形ABCD 为矩形,连接PQ ,甲、乙两人有如下结论:甲:若四边形ABCD 是边长为1的正方形,则四边形PQMN 必是正方形;乙:若四边形PQMN 为正方形,则四边形ABCD 必是边长为1的正方形.下列判断正确的是( )A .甲正确,乙不正确B .甲不正确,乙正确C .甲、乙都不正确D .甲、乙都正确10.如图,在△ABC 中,D 、E 是BC 边的三等分点,BF 是AC 边的中线,AD 、AE 分别与BF 交于点G 、H ,若S △ABC =1,则△AGH 的面积为( )A.B .C .D .二.填空题(每题3分,共15分)H GFEDCBA31032011.如图,在△ABC中,∠ACB=90°,∠A=54°,D是AB的中点,则∠BCD= °.12.当今大数据时代,“二维码”广泛应用于我们的日常生活中,某兴趣小组从对二维码开展数学实验活动.如图,在边长为2cm的正方形区域内通过计算机随机掷点,经过大量重复实验,发现点落在区域内黑色部分的频率稳定在0.7左右,据此可以估计这个区域内白色部分的总面积约为 cm2.13.已知a,b是关于x的一元二次方程x2﹣3x﹣1=0两个实数根,则a2+b2= .14.在一个长为,宽为3的长方形草地上,如图摆放着一根三棱柱的木块,它的侧棱EF平行于AD,且棱长大于场地宽AD,木块的主视图为等腰直角三角形,且底边上的高为1,一只蚂蚁从点A处到C处需要走的最短路程是 .15.如图所示,△ABC为等边三角形,点A的坐标为(0,4),点B在x轴上,点C在反比例函数y=的图象上,则点B的坐标为 .三.解答题(共55分)16.(6分)计算:(﹣1)2023+2sin45°﹣cos30°+sin60°+tan260°.17.(6分)2022年冬奥会在北京举办.现有如图所示“2022•北京冬梦之约”的四枚邮票供小明选择,依次记为A,B,C,D,背面完全相同.将这四枚邮票背面朝上,洗匀放好.(1)小明从中随机抽取一枚,恰好抽到是B(冰墩墩)概率是 .(2)小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B(冰墩墩)和C(雪容融)的概率.18.(8分)如图,在平面直角坐标系中,△AOB的三个顶点的坐标分别为A(6,3),O(0,0),B (0,6).(1)以原点O为位似中心,在第一象限内将△AOB缩小得到△A1OB1,相似比为,请画出△A1OB1;(2)直接写出点A1的坐标( , );(3)求出△A1OB1的面积.19.(8分)某超市销售一种饮料,进价为每箱48元,规定售价不低于进价.现在的售价为每箱60元,每月可销售60箱.现为了减少库存,决定对该饮料降价销售,市场调查发现:若这种饮料的售价每降价1元,则每月的销量将增加10箱.(1)若该超市预计12月份要获得770元的利润,则每箱饮料售价应定为多少元?(2)该超市能否每月获得880元的利润?若能,求出售价为多少元?若不能,请说明理由.20.(9分)定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x 称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)①点A(1,3)的“坐标差”为 ;②抛物线y=﹣x2+3x+3的“特征值”为 ;(2)某二次函数y=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.①直接写出m= ;(用含c的式子表示)②求此二次函数的表达式.21.(9分)根据以下素材,探索完成任务.探究遮阳伞下的影子长度素材1图1是某款自动旋转遮阳伞,伞面完全张开时张角呈180°,图2是其侧面示意图.已知支架AB长为2.5米,且垂直于地面BC,悬托架AE=DE=0.5米,点E固定在伞面上,且伞面直径DF是DE的4倍.当伞面完全张开时,点D,E,F始终共线.为实现遮阳效果最佳,伞面装有接收器可以根据太阳光线的角度变化,自动调整手柄D沿着AB移动,以保证太阳光线与DF始终垂直.素材2 某地区某天下午不同时间的太阳高度角α(太阳光线与地面的夹角)参照表:时刻12点13点14点15点16点17点太阳高度(度)907560453015参考数据:.素材3小明坐在露营椅上的高度(头顶到地面的距离)约为1米,如图2,小明坐的位置记为点Q .问题解决任务1确定影子长度某一时刻测得BD =1.7米.请求出此时影子GH 的长度任务2判断是否照射到这天14点,小明坐在离支架3米处的Q 点,请判断此时小明是否会被太阳光照射到?任务3探究合理范围小明打算在这天14:00﹣15:00露营休息,为保证小明全程不被太阳光照射到,请计算BQ 的取值范围.22.(9分)如图,在菱形ABCD 中,AB =10,sin B =,点E 从点B 出发沿折线B ﹣C ﹣D 向终点D运动.过点E 作点E 所在的边(BC 或CD )的垂线,交菱形其它的边于点F ,在EF 的右侧作矩形EFGH .(1)如图1,点G 在AC 上.求证:FA =FG .(2)若EF =FG ,当EF 过AC 中点时,求AG 的长.(3)已知FG =8,设点E 的运动路程为s .当s 满足什么条件时,以G ,C ,H 为顶点的三角形与△BEF 相似(包括全等)?参考答案与试题解析一.选择题(共10小题)1.下列光线所形成的投影不是中心投影的是( )A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有A选项得到的投影为平行投影.故选:A.2.若2a=3b,则的值为( )A.B.C.D.【解答】解:∵2a=3b,∴=,∴=1+=1+=,故选:A.3.下列说法中,错误的是( )A.菱形的对角线互相垂直B.对角线相等的四边形是矩形C.平行四边形的对角线互相平分D.对角线互相垂直平分的四边形是菱形【解答】解:A、菱形的对角线互相垂直,故不符合题意;B、对角线相等的平行四边形是矩形,故符合题意;C、平行四边形的对角线互相平分,故不符合题意;D、对角线互相垂直平分的四边形是菱形,故不符合题意;故选:B.4.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,下列结论正确的是( )A.sin C=B.sin C=C.sin C=D.sin C=【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ADC中,cos C=,tan C=,故A、B不符合题意;在Rt △BAC 中,sin C =,故C 符合题意;∵∠B +∠BAD =90°,∠B +∠C =90°,∴∠C =∠BAD ,在Rt △BAD 中,cos ∠BAD =,∴cos C =cos ∠BAD =,故D 不符合题意;故选:C .5.若点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y=的图象上,若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 3【解答】解:∵反比例函数y =的图象分布在第一、三象限,∴在每一象限y 随x 的增大而减小,∵x 1<x 2<0<x 3,∴C 点在第一象限,A 、B 点在第三象限,∴y 2<y 1<y 3.故选:D .6.老师设计了接力游戏,用合作的方式完成配方法解一元二次方程,规则:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后解出方程.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有甲B .甲和乙C .甲和丙D .丙和丁【解答】解:x 2+2x ﹣3=0,x 2+2x +1=3+1,(x +1)2=4,x +1=±2,x +1=2或x +1=﹣2,x 1=1,x 2=﹣3,∴接力中,自己负责的一步出现错误的是甲和丙,故选:C .7.在同一平面直角坐标系中,一次函数y =cx +a 与二次函数y =ax 2+bx +c 的图象可能是( )1x1xA.B.C.D.【解答】解:A、由抛物线y=ax2+x+c,可知图象开口向下,交y轴的正半轴,可知a<0,c>0,由直线y=cx+a可知,图象过二,三,四象限c<0,a<0,故此选项不符合题意;B、由抛物线y=ax2+bx+c,可知图象开口向上,交y轴的负半轴,可知a>0,c<0,由直线y=cx+a 可知,图象过一,二,四象限,c<0,a>0,故此选项符合题意;C、由抛物线y=ax2+bx+c,可知图象开口向下,交y轴的负半轴,可知a<0,c<0,由直线y=cx+a 可知,图象过一,二,三象限,c>0,a>0,故此选项不符合题意;D、由抛物线y=ax2+bx+c,可知图象开口向上,交y轴的正半轴,可知a>0,c>0,由直线y=cx+a 可知,图象过一,三,四象限,c>0,a<0,故此选项不符合题意;故选:B.8.如图,点A、B、C均在4×4的正方形网格的格点上,则tan∠BAC=( )A.B.C.D.【解答】解:如图,过点B作BD⊥AC,垂足为D.由格点三角形可知:AC==4,AB==2.∵S△ABC=×4×4﹣×4×2=8﹣4=4,S△ABC=AC•BD=×4×BD=2BD.∴2BD=4,∴BD=.∴AD===3.∴tan∠BAC===.故选:A.9.将图1中两个三角形按图2所示的方式摆放,其中四边形ABCD为矩形,连接PQ,甲、乙两人有如下结论:甲:若四边形ABCD是边长为1的正方形,则四边形PQMN必是正方形;乙:若四边形PQMN为正方形,则四边形ABCD必是边长为1的正方形.下列判断正确的是( )A.甲正确,乙不正确B.甲不正确,乙正确C.甲、乙都不正确D.甲、乙都正确【解答】解:∵四边形ABCD是边长为1的正方形,∴AB=BC=CD=AD=1,∠BAD=90°,∴AQ=4﹣1=3,AP=3+1=4,∠PAQ=90°,∴PQ2=AQ2+AP2=25,∴PQ=5,同理MN=5,∴四边形PQMN是菱形,在△QMD和△PQA中,,∴△QMD≌△PQA(SSS),∴∠MQD=∠APQ,∵∠AQP+∠QPA=90°,∴∠AQP+∠MQD=90°,∴∠MQP=90°,则四边形PQMN必是正方形;∴甲正确;若四边形PQMN为正方形,则PQ=PN=MN=MQ=5,且∠QMD+∠MQD=∠QAP=∠AQP+∠QPA =90°,在△QMD和△PQA中,,∴△QMD≌△PQA(ASA),∴QD=AP=4,同理QD =AP =MC =BN =4,又∵BP =MD =AQ =3,∴QD ﹣AD =PA ﹣AB ,∴AB =AD =1,同理AB =CD =AD =BC =1,即四边形ABCD 为菱形,∵∠DAB =180°﹣∠QAP =90°,则四边形ABCD 必是边长为1的正方形,∴乙正确,故选:D .10.如图,在△ABC 中,D 、E 是BC 边的三等分点,BF 是AC 边的中线,AD 、AE 分别与BF 交于点G 、H ,若S △ABC =1,则△AGH 的面积为( )A.B .C .D .【解答】解:如图,过F 作PF ∥BC ,交AE 于P ,过H 作HQ ∥BC ,交AD 于Q ,易得FH :HG :GB =2:3:5,∵AF =FC ,∴S △ABF =S △ABC =,∴S △AGH =S △ABF =×=.故选:C .二.填空题(共5小题)11.如图,在△ABC 中,∠ACB =90°,∠A =54°,D 是AB 的中点,则∠BCD = 36 °.H GFE D CB APQ HG FE D C B A310320【解答】解:在△ABC中,∠ACB=90°,∠A=54°,∴∠B=36°,∵D为线段AB的中点,∴CD=BD,∴∠BCD=∠B=36°.故答案为:36.12.当今大数据时代,“二维码”广泛应用于我们的日常生活中,某兴趣小组从对二维码开展数学实验活动.如图,在边长为2cm的正方形区域内通过计算机随机掷点,经过大量重复实验,发现点落在区域内黑色部分的频率稳定在0.7左右,据此可以估计这个区域内白色部分的总面积约为 1.2cm2 .【解答】解:根据题意,估计这个区域内白色部分的总面积约为2×2×(1﹣0.7)=1.2(cm2),故答案为:1.2cm2.13.已知a,b是关于x的一元二次方程x2﹣3x﹣1=0两个实数根,则a2+b2= 11 .【解答】解:根据题意知:a+b=3,ab=﹣1,a2+b2=(a+b)2﹣2ab=32﹣2×(﹣1)=9+2=11.故答案为:11.14.在一个长为,宽为3的长方形草地上,如图摆放着一根三棱柱的木块,它的侧棱EF平行于AD,且棱长大于场地宽AD,木块的主视图为等腰直角三角形,且底边上的高为1,一只蚂蚁从点A处到C处需要走的最短路程是 .【解答】解:由题意可知,将木块展开,相当于是AB+等腰直角三角形的两腰,∴长为8﹣2++﹣2=6;宽为3.于是最短路径为=3,故答案为:3.15.如图所示,△ABC为等边三角形,点A的坐标为(0,4),点B在x轴上,点C在反比例函数y=的图象上,则点B的坐标为 (2,0)或(﹣,0) .【解答】解:如图,作CD⊥AB于D,CG⊥x轴于G,过D点作EF∥OB,交y轴于E,交CG于F,∵△ABC是等边三角形,CD⊥BC,∴BD=AD,设点C的坐标为(x,),点B的坐标为(a,0),∵A(0,4),∴AB的中点D的坐标为(,2);∵CD⊥AB,∴∠ADE+∠CDF=90°,∵∠ADE+∠DAE=90°,∴∠DAE=∠CDF,∵∠AED=∠CFD=90°,∴△AED∽△DFC,∴,即=tan60°,整理,可得x﹣=2①,2+a=②,由①②整理得,a2+4a﹣33=0解得a1=2,a2=﹣(舍去),∴B(2,0),故答案为(2,0).三.解答题(共7小题)16.计算:(﹣1)2023+2sin45°﹣cos30°+sin60°+tan260°.【解答】解:(﹣1)2023+2sin45°﹣cos30°+sin60°+tan260°=﹣1+2×﹣++()2=﹣1++3=2+.17.2022年冬奥会在北京举办.现有如图所示“2022•北京冬梦之约”的四枚邮票供小明选择,依次记为A,B,C,D,背面完全相同.将这四枚邮票背面朝上,洗匀放好.(1)小明从中随机抽取一枚,恰好抽到是B(冰墩墩)概率是 .(2)小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B(冰墩墩)和C(雪容融)的概率.【解答】解:(1)由题意可知,共有四种等可能的情况,∴P(抽到是B)=.故答案为:.(2)根据题意画树状图,如图所示,从上图可以看出,共有12种等可能的情况,其中小颖同学抽到的两枚邮票恰好是B(冰墩墩)和C (雪容融)的情况有2种.∴小颖同学抽到的两枚邮票恰好是B(冰墩墩)和C(雪容融)的概率为:P==.18.如图,在平面直角坐标系中,△AOB的三个顶点的坐标分别为A(6,3),O(0,0),B(0,6).(1)以原点O为位似中心,在第一象限内将△AOB缩小得到△A1OB1,相似比为,请画出△A1OB1;(2)直接写出点A1的坐标( 3 , );(3)求出△A1OB1的面积.【解答】解:(1)如图,△A1OB1即为所求.(2)∵以原点O为位似中心,将△AOB缩小得到△A1OB1,相似比为,A(6,3),∴点A1的坐标为(3,).故答案为:3;.(3)△A1OB1的面积为.19.某超市销售一种饮料,进价为每箱48元,规定售价不低于进价.现在的售价为每箱60元,每月可销售60箱.现为了减少库存,决定对该饮料降价销售,市场调查发现:若这种饮料的售价每降价1元,则每月的销量将增加10箱.(1)若该超市预计12月份要获得770元的利润,则每箱饮料售价应定为多少元?(2)该超市能否每月获得880元的利润?若能,求出售价为多少元?若不能,请说明理由.【解答】解:(1)设每箱饮料降价x元,由题意得:(60﹣x﹣48)×(60+10x)=770,整理得:x2﹣6x+5=0,解得:x1=5,x2=1(不符合题意,舍去),∴60﹣x=60﹣5=55,答:每箱饮料售价应定为55元;(2)该超市不能每月获得880元的利润,理由如下:设每箱饮料降价y元,由题意得:(60﹣y﹣48)×(60+10y)=880,整理得:y2﹣6y+16=0,∵Δ=(﹣6)2﹣4×1×16=36﹣64<0,∴此方程无解,∴该超市不能每月获得880元的利润.20.定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为P 点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1):①点A(1,3)的“坐标差”为 2 ;②抛物线y=﹣x2+3x+3的“特征值”为 4 ;(2)某二次函数y=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.①直接写出m= ﹣c ;(用含c的式子表示)②求此二次函数的表达式.【解答】解:(1)①3﹣1=2,故答案为:2;②∵y=﹣x2+3x+3,∴y﹣x=﹣x2+3x+3﹣x=﹣x2+2x+3=﹣(x﹣1)2+4,∴y﹣x的最大值是4,∴抛物线y=﹣x2+3x+3的“特征值”为4;故答案为:4;(2)①由题知C(0,c),∵点B与点C的“坐标差”相等,∴c﹣0=0﹣m,∴m=﹣c,故答案为:﹣c;②由①知点B的坐标为(﹣c,0),将B点坐标代入抛物线解析式,得﹣c2﹣bc+c=0,∴c=1﹣b,∵二次函数y=﹣x2+bx+c(c≠0)的“特征值”为﹣1,∴y﹣x=﹣x2+(b﹣1)x+1﹣b的最大值为﹣1,∴,解得:b=3,∴c=﹣2,∴二次函数的表达式为y=﹣x2+3x﹣2.21.根据以下素材,探索完成任务.探究遮阳伞下的影子长度素材1图1是某款自动旋转遮阳伞,伞面完全张开时张角呈180°,图2是其侧面示意图.已知支架AB长为2.5米,且垂直于地面BC,悬托架AE=DE=0.5米,点E固定在伞面上,且伞面直径DF是DE的4倍.当伞面完全张开时,点D,E,F始终共线.为实现遮阳效果最佳,伞面装有接收器可以根据太阳光线的角度变化,自动调整手柄D沿着AB移动,以保证太阳光线与DF始终垂直.素材2 某地区某天下午不同时间的太阳高度角α(太阳光线与地面的夹角)参照表:时刻12点13点14点15点16点17点太阳高度(度)907560453015参考数据:.素材3小明坐在露营椅上的高度(头顶到地面的距离)约为1米,如图2,小明坐的位置记为点Q.问题解决任务1确定影子长度某一时刻测得BD=1.7米.请求出此时影子GH的长度任务2判断是否照射到这天14点,小明坐在离支架3米处的Q点,请判断此时小明是否会被太阳光照射到?任务3探究合理范围小明打算在这天14:00﹣15:00露营休息,为保证小明全程不被太阳光照射到,请计算BQ的取值范围.【解答】解:任务1:如图2,过点E作El⊥AB于点I,过点G作GJ⊥FH于点J ∵BD=1.7米,AB=2.5米,∴AD=0.8米,∵AE=DE=0.5米,∴米,∴,∵∠FDG=∠DGJ=90°,∴sin∠α=sin∠IDE,四边形DGJF为矩形,∴GJ=DF=2米.在Rt△GJH中,米;任务2:方法1:如图2,过点Q作PQ⊥BC交HF于点P.由(1)知,∠IDE=∠α=∠DGB,∵∠α=60°∴在Rt△lDE中,米,米,∴BD=2米.在Rt△DBG中,米,在Rt△GHH中,米,在Rt△PQH中,当PQ=1时,米,∴小明刚好被照射到时离B点的距离为,∴小明会被照射到.方法2:如图2,过点Q作PQ⊥BC交FH于点P,与方法1同理得,得米,∴QH=BH﹣BQ=()米,在Rt△PQH中,,∴小明会被照射到.任务3:当tanα=45°时,,当tanα=60°时,,∴.22.如图,在菱形ABCD中,AB=10,sin B=,点E从点B出发沿折线B﹣C﹣D向终点D运动.过点E作点E所在的边(BC或CD)的垂线,交菱形其它的边于点F,在EF的右侧作矩形EFGH.(1)如图1,点G在AC上.求证:FA=FG.(2)若EF=FG,当EF过AC中点时,求AG的长.(3)已知FG=8,设点E的运动路程为s.当s满足什么条件时,以G,C,H为顶点的三角形与△BEF相似(包括全等)?【解答】解:(1)如图1中,∵四边形ABCD是菱形,∴BA=BC,∴∠BAC=∠BCA,∵FG∥BC.∴∠AGF=∠ACB,∴∠AGF=∠FAG,∴FA=FG;(2)设AC的中点为O.①如图2中,当点E在BC上时,过点A作AM⊥CB于点M.在Rt△ABM中,AM=AB•sin B=10×=6,∴BM===8,∴FG=EF=AM=6,CM=BC﹣BM=2,∵OA=OC,OE∥AM,∴CE=EM=CM=1,∴AF=EM=1,∴AG=AF+FG=7.②如图3中,当点E在CD上时,过点A作AN⊥CD于N.同法FG=EF=AN=6,CN=2,AF=EN=CN,∴AG=FG﹣AF=6﹣1=5,综上所述,满足条件的AG的长为5或7;(3)过点A作AM⊥BC于点M,AN⊥CD于点N.①当点E在线段BM上时,0<s≤8,设EF=3x,则BE=4x,GH=EF=3x.a、若点H点C的左侧,s+8<10,即0<s<2,如图4,CH=BC﹣BH=10﹣(4x+8)=2﹣4x,由△GHC∽△FEB,可得=,即=,经检验x=是分式方程的解,∴s=4x=1.由△GHC∽△BEF,可得=,即=,∴=,解得x=,∴s=4x=.b、若点H在点C的右侧,s+8>10,即2<s≤8,如图5,CH=BH﹣BC=(4x+8)﹣10=4x﹣2,由△GHC∽△FEB,可得=,即=,∴=,方程无解,由△GHC∽△BEF,可得=,即=,∴=,解得x=,∴s=4x=.②当点E在线段MC上时,8<s≤10,如图6,EF=6,EH=8,BE=s,∴BH=BE+EH=s+8,CH=BH﹣BC=s﹣2,由△GHC∽△FEB,可得=,即=,由△GHC∽△BEF,可得=,即=,∴=,解得s=1±(舍弃)③当点E在线段CN上时,10<s≤12,如图7,过点C作CJ⊥AB于点J,在Rt△BJC中,BC=10,CJ=6,BJ=8,∵EH=BJ=8,JF=CE,∴BJ+JF=EH+CE,即CH=BF,∴△GHC≌△EFB,符合题意,此时10<s≤12.④当点E在线段DN上时,12<s<20,∵∠EFB>90°,∴△GHC与△BEF不相似.综上所述.满足条件的s的值为1或或或10≤s≤12.。
2024年广东省深圳市33校联考中考一模数学试题及答案
深圳市2024年初三年级3月质量检测数学(33校联考)一、选择题(每题3分,共30分)1. 2024的倒数是( )A 2024− B. 2024 C. 12024− D. 120242. 2023年“亚运+双节”让杭州火出圈,相关数据显示,国庆期间杭州共接待游客约13000000人次,将数据13000000用科学记数法表示为( )A. 61.310×B. 71.310×C. 80.1310×D. 61310× 3. 第19届亚运会于9月23日至10月8日在杭州成功举办,下列图形中是轴对称图形的是( )A. B. C. D. 4. 右图是我们生活中常用的“空心卷纸”,其主视图为( )A. B. C. D. 5. “立身以立学为先,立学以读书为本”为了鼓励全民阅读,某校图书馆开展阅读活动,自阅读活动开展以来,进馆阅读人次逐月增加,第一个月进馆200人次,前三个月累计进馆728人次,若进馆人次的月增长率相同,求进馆人次的月增长率.设进馆人次的月增长率为x ,依题意可列方程( )A. ()22001728x +=B. ()()220012001728x x +++=C. ()22001728x x ++=D. ()()220020012001728x x ++++= 6. 下列计算正确的是( )A. 236326a a a ⋅=B. 020=C. ()236416x x =D. 2139−=− 7. 对一组数据:4,6,4,6,8−,描述正确的是( ).A. 中位数是4−B. 平均数是5C. 众数是6D. 方差是78. 如图,ABC 与DEF 位似,点O 为位似中心,2AD AO =,若ABC 的周长是5,则DEF 的周长是( )A. 10B. 15C. 20D. 259. A ,B 两地相距60千米,一艘轮船从A 地顺流航行至 B 地所用时间比从B 地逆流航行至A 地所用时间少45分钟, 已知船在静水中航行的速度为20千米/时.若设水流速度为x 千米/时(20x <), 则可列方程为( ) A. 6060320204x x −=−+ B.6060320204x x −=+− C. 6060452020x x −=+− D. 6060452020x x −=−+ 10. 如图,在正方形ABCD 中,BPC △是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ;BD 与CF 相交于点H .给出下列结论:①12AE FC =;②15PDE ∠=°;③PBC PCD S S =△△12DHC BHC S S =△△;⑤2DE PF FC =⋅.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题(共5小题)11. 实数范围内分解因式:2318a −=_____. 12. 在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:①△(a ,b )=(﹣a ,b );②○(a ,b )=(﹣a ,﹣b );③Ω(a ,b )=(a ,﹣b ),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于在_______________.13. 如图,A 是反比例函数k y x=的图象上一点,过点A 作AB y ⊥轴于点B ,点C 在x 轴上,且2ABC S ∆=,则k 的值为_____.14. 如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧,与OA OB 、分别于点C 、D ,再分别以点C 、D 为圆心,以大于12CD 为半径画弧,两弧相交于点E ,过OE 上一点M 作MN OA ∥,与OB 相交于点N ,50MOB ∠=°,则AOM ∠=______.15. 如图,在直角坐标系中,已知A (4,0),点B 为y 轴正半轴上一动点,连接AB ,以AB 为一边向下作等边△ABC ,连接OC ,则OC 的最小值为_______.三.解答题(共55分)16. ()101220246cos304π− −−−+−−° .17. 化简求值:22112242x x x x x x ++− ÷− −−,其中x 为数据4,5,6,5,3,2的众数. 18. 某校为了调查本校学生对航空航天知识知晓情况.开展了航空航天知识竞赛,从参赛学生中,随机抽取若干名学生的成绩进行统计,得到如下不完整的统计图表:成绩/分频数/人 频率 6070x ≤<10 0.1 7080x ≤<15 b 8090x ≤< a 0.3590100x ≤≤ 40c请根据图表信息解答下列问题:(1)求a ,b ,c 的值;(2)补全频数直方图;(3)某班有2名男生和1名女生的成绩都为100分,若从这3名学生中随机抽取2名学生参加演讲,用列表或画树状图的方法,求抽取的2名学生恰好为1男1女的概率.19. 如图,O 是ABC 的外接圆,直径BD 与AC 交于点E ,点F 在BC 的延长线上,连接DF ,F BAC ∠=∠.(1)求证:DF 是O 的切线;的(2)从以下三个选项中选一个作为条件,使DF AC ∥成立,并说明理由;①AB AC =;② AD DC=;③CAD ABD ∠=∠; 你选的条件是:______.20. 某经销商销售一种成本价为10元/kg 的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg ;如图,在销售过程中发现销悬()kg y 与售价x (元/kg )之间满足一次函数关系.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)设销售这种商品每天所获得利润为W 元,求W 与x 之间的函数关系式,并求出该商品售价定为多少元/kg 时,才能使经销商所获利润最大?最大利润是多少?21. 如图1,一灌溉车正为绿化带浇水,喷水口H 离地竖直高度为 1.2h =米.建立如图2所示的平面直角坐标系,可以把灌溉车喷出水的上、下边缘抽象为两条抛物线的部分图象,把绿化带横截面抽象为矩形DEFG ,其水平宽度2DE =米,竖直高度0.7EF =米,下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A 离喷水口的水平距离为2米,高出喷水口04.米,灌溉车到绿化带的距离OD 为d 米.(1)求上边缘抛物线喷出水的最大射程OC ;(2)求下边缘抛物线与x 轴交点B 的坐标;(3)若 3.2d =米,灌溉车行驶时喷出的水______(填“能”或“不能”)浇灌到整个绿化带. 22. 在矩形ABCD 中,点E 是射线BC 上一动点,连接AE ,过点B 作BF AE ⊥于点G ,交直线CD 于点F .的(1)当矩形ABCD 是正方形时,以点F 为直角顶点在正方形ABCD 的外部作等腰直角三角形CFH ,连接EH .①如图1,若点E 在线段BC 上,则线段AE 与EH 之间的数量关系是________,位置关系是_________; ②如图2,若点E 在线段BC 延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;(2)如图3,若点E 在线段BC 上,以BE 和BF 为邻边作BEHF ,M 是BH 中点,连接GM ,3AB =,2BC =,求GM 的最小值.的深圳市2024年初三年级3月质量检测数学(33校联考)一、选择题(每题3分,共30分)1. 2024的倒数是( )A. 2024−B. 2024C. 12024−D. 12024【答案】D【解析】【分析】本题主要考查了求一个数的倒数,根据乘积为1的两个数互为倒数进行求解即可. 【详解】解:∵1202412024×=, ∴2024的倒数是12024, 故选∶D .2. 2023年“亚运+双节”让杭州火出圈,相关数据显示,国庆期间杭州共接待游客约13000000人次,将数据13000000用科学记数法表示为( )A. 61.310×B. 71.310×C. 80.1310×D. 61310×【答案】B【解析】【分析】本题考查了科学记数法表示较大的数,熟练掌握其定义是解题的关键.将一个数表示成10n a ×的形式,其中110a ≤<,n 为整数,这种记数方法叫做科学记数法,据此即可得到答案. 【详解】13000000=71.310×故选:B .3. 第19届亚运会于9月23日至10月8日在杭州成功举办,下列图形中是轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的定义逐项判断即可.【详解】解:A ,不是轴对称图形,不合题意;B ,是轴对称图形,符合题意;C ,不是轴对称图形,不合题意;D ,不是轴对称图形,不合题意;故选B .【点睛】本题考查轴对称图形的识别,解题的关键是掌握轴对称图形的定义.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.4. 右图是我们生活中常用的“空心卷纸”,其主视图为( )A. B. C. D.【答案】C【解析】【分析】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.看不见的棱要用虚线表示.找到从前面看所得到的图形即可.【详解】解:卷纸的主视图应是:,故选:C .5. “立身以立学为先,立学以读书为本”为了鼓励全民阅读,某校图书馆开展阅读活动,自阅读活动开展以来,进馆阅读人次逐月增加,第一个月进馆200人次,前三个月累计进馆728人次,若进馆人次的月增长率相同,求进馆人次的月增长率.设进馆人次的月增长率为x ,依题意可列方程( )A. ()22001728x +=B. ()()220012001728x x +++=C. ()22001728x x++=D. ()()220020012001728x x ++++= 【答案】D【解析】【分析】本题考查了一元二次方程的应用,解题的关键是先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于728,列方程即可.【详解】解:设进馆人次的月增长率为x ,依题意可列方程为()()220020012001728x x ++++=, 故选D .6. 下列计算正确的是( )A. 236326a a a ⋅=B. 020=C. ()236416x x =D. 2139−=− 【答案】C【解析】【分析】本题主要考查单项式乘以单项式,积的乘方与幂的乘方,零指数幂和负整数指数幂,运用相关运算法则进行计算即可判断出正确结果.【详解】解:A. 235326a a a ⋅=,故选项A 计算错误,不符合题意;B. 021=,故选项B 计算错误,不符合题意;C. ()236416x x =,计算正确,故C 符合题意; D. 2139−=,故选项D 计算错误,不符合题意; 故选:C .7. 对一组数据:4,6,4,6,8−,描述正确的是( )A. 中位数是4−B. 平均数是5C. 众数是6D. 方差是7【答案】C【解析】【分析】本题主要考查了求方差,中位数,平均数和众数,根据方差,中位数,平均数和众数的定义进行求解判断即可. 【详解】解:把这组数据从小到大排列为44,6,6,8−,,处在最中间的数为6, ∴中位数为6,故A 不符合题意;∵数字6出现的次数最多,∴众数是6,故C 符合题意; 平均数为4466845−++++=,故B 不符合题意;方差为()()()()222244442648417.65−−+−+−+−=,故D 不符合题意; 故选:C . 8. 如图,ABC 与DEF 位似,点O 为位似中心,2AD AO =,若ABC 周长是5,则DEF 的周长是( )A. 10B. 15C. 20D. 25【答案】B【解析】 【分析】根据位似变换的概念得到ABC DEF ∽△△,AB DE ∥,根据相似三角形的性质求出AB DE ,再根据相似三角形的周长比等于相似比计算即可.【详解】解:∵ABC 与DEF 位似,2AD AO =,∴ABC DEF ∽△△,AB DE ∥, ∴ABO DEO ∽,∴13ABOA DE OD ==, ∴ABC 的周长:DEF 的周长1:3=,∵ABC 的周长是5,∴DEF 的周长是15.故选:B .【点睛】本题考查位似变换,相似三角形的判定和性质.掌握相似三角形的周长比等于相似比是解题的关键.9. A ,B 两地相距60千米,一艘轮船从A 地顺流航行至 B 地所用时间比从B 地逆流航行至A 地所用时间少45分钟, 已知船在静水中航行的速度为20千米/时.若设水流速度为x 千米/时(20x <), 则可列方程为( )A. 6060320204x x −=−+B. 6060320204x x −=+− 的C. 6060452020x x −=+−D. 6060452020x x−=−+ 【答案】A【解析】【分析】本题考查分式方程的应用,根据时间的关系列方程是解题的关键.顺流的速度=静水速度+水流速度,逆水速度=静水速度-水流速度,根据路程、速度、时间的关系表示出船顺流所用的时间和逆流所用的时间,根据时间的关系建立分式方程即可.详解】解:由题意可得,6060320204x x −=−+, 故选:A .10. 如图,在正方形ABCD 中,BPC △是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ;BD 与CF 相交于点H .给出下列结论:①12AE FC =;②15PDE ∠=°;③PBC PCD S S =△△12DHC BHC S S =△△;⑤2DE PF FC =⋅.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】 【分析】由BPC △是等边三角形,得12AE BE =,而BE FC =,故①正确;由PC BC CD ==,906030PCD ∠=°−°=°,可判定②正确;过点D 作DM CP ⊥于M ,过点P 作PN BC ⊥于N ,则30DCM ∠=°,30CPN ∠=,可推出12DM CD =,PN =,则PBC PCD S S = ,判定③正确;由FE BC ∥可得FDH CBH ∽,进而得到DH FD BH BC=,得到DHC BHC S DH S BH = ,又因为F 不是AD 中点,故12DHC BHC S S ≠ ,可判定④错误;由PED DEB ∽,得PE ED ED BE=,则2ED PE BE =⋅,可【判定⑤正确.【详解】解:BPC 为等边三角形,PB PC ∴=,60PBC PCB ∠=∠=°,四边形ABCD 是正方形∴FE BC ∥,90ABC ∠=°,FEP CPB ∴△∽△,又PB PC = ,PE PF ∴=,FC EB ∴=,60PBC ∠=° ,90ABC ∠=°,30ABE ∴∠=°,在Rt ABE 中,30ABE ∠=°,12B AE E ∴=, 又BE FC = ,12AE FC ∴=,故①正确; PC BC CD == ,906030PCD ∠=°−°=°,18030752DPC PDC °−°∴∠=∠==°, 907515PDE ADC PDC ∴∠=∠−∠=°−°=°,故②正确;过点D 作DM CP ⊥于M ,过点P 作PN BC ⊥于N ,由题意可得30DCM ∠=°,30CPN ∠=, 12DM CD ∴=,PN =,∴PBC PCD S S = ,故③正确;FE BC ∥,FDH CBH ∴△∽△, ∴DH FD BH BC=, 又BHC △与DHC 同高, ∴DHC BHC S DH S BH= , 又 DH FD BH BC=,F 不是AD 中点, ∴12DHFD BH BC =≠, ∴12DHC BHC S S ≠ ,故④错误; 180180607545EPD EPF DPC ADB ∠=°−∠−∠=°−°−°=°=∠ ,PED PED ∠=∠,PED DEB ∴△∽△, ∴PE ED ED BE=, 2ED PE BE ∴=⋅,又PE PF = ,BE FC =,2DE PF FC ∴=⋅,故⑤正确,综上所述:正确的结论有4个,故选:D .【点睛】本题考查了正方形的性质、等边三角形性质、锐角三角函数、相似三角形的判定及性质,掌握以上基础知识,作出合适的辅助线是解本题的关键.二、填空题(共5小题)11. 在实数范围内分解因式:2318a −=_____.【答案】(3a a +【解析】【分析】本题主要考查了因式分解,掌握提取公因式法和公式法进行因式分解是解题的关键. 先提取公因数3,再运用平方差公式进行分解即可.【详解】解:()(22318363a a a a −=−=.故答案为(3a a +.12. 在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:①△(a ,b )=(﹣a ,b );②○(a ,b )=(﹣a ,﹣b );③Ω(a ,b )=(a ,﹣b ),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于_______________.【答案】(﹣3,4).【解析】【详解】解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4故答案为(﹣3,4).13. 如图,A 是反比例函数k y x=的图象上一点,过点A 作AB y ⊥轴于点B ,点C 在x 轴上,且2ABC S ∆=,则k 的值为_____.【答案】4−【解析】【分析】此题考查了求反比例函数的比例系数,设点A 的坐标为(,)x y ,利用2ABC S ∆=得到4xy =−,即可得到答案.【详解】解:设点A 的坐标为(,)x y ,点A 在第二象限,0x ∴<,0y >,111||||2222ABC S AB OB x y xy ∆∴=⋅=⋅=−=, 4xy ∴=−,A 是反比例函数k y x=的图象上一点,4k xy ∴==−,故答案为:4−.14. 如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧,与OA OB 、分别于点C 、D ,再分别以点C 、D 为圆心,以大于12CD 为半径画弧,两弧相交于点E ,过OE 上一点M 作MN OA ∥,与OB 相交于点N ,50MOB ∠=°,则AOM ∠=______.【答案】25度##25°【解析】【分析】通过两直线平行,同位角相等,再利用角平分线定义求解即可.【详解】∵MN OA ,∴50AOB MNB ∠=∠=°,由题意可知:OM 平分AOB ∠, ∴1252AOM MOB AOB ∠=∠=∠=°. 故答案为:25°.【点睛】本题考查了基本作图,作已知角的角平分线及其定义和平行线的性质,解此题的关键是熟练掌握基本作图和平行线的性质及角平分线定义的应用.15. 如图,在直角坐标系中,已知A (4,0),点B 为y 轴正半轴上一动点,连接AB ,以AB 为一边向下作等边△ABC ,连接OC ,则OC 的最小值为_______.【答案】2【解析】【分析】以OA为对称轴,构造等边三角形ADF,作直线DC,交x轴于点E,先确定点C在直线DE上运动,根据垂线段最短计算即可.【详解】如图,以OA为对称轴,构造等边三角形ADF,作直线DC,交x轴于点E,∵△ABC,△ADF都是等边三角形,∴AB=AC,AF=AD,∠F AC+∠BAF=∠F AC+∠CAD=60°,∴AB=AC,AF=AD,∠BAF=∠CAD,∴△BAF≌△CAD,∴∠BF A=∠CDA=120°,∴∠ODE=∠ODA=60°,∴∠OED=30°,∴OE=OA=4,∴点C在直线DE上运动,∴当OC⊥DE时,OC最小,此时OC =12OE =2,故答案为:2.【点睛】本题考查了等边三角形的性质和判断,三角形的全等判定和性质,垂线段最短,熟练掌握三角形全等和垂线段最短原理是解题的关键. 三.解答题(共55分)16. ()101220246cos304π− −−−+−−° .【答案】3−【解析】【分析】本题考查了锐角三角函数的运算,实数的运算,解题的关键是掌握特殊的锐角三角函数值.先算锐角三角函数、绝对值、零指数幂和负整数指数幂,再算加减即可.【详解】解:原式2416=++−241=++−3=−17. 化简求值:22112242x x x x x x ++− ÷− −−,其中x 为数据4,5,6,5,3,2的众数. 【答案】122x x +−,34【解析】【分析】本题考查分式的化简求值,众数.先根据分式混合运算法则进行化简,根据众数的定义求出x 的值,最后代入计算即可. 【详解】解:22112242x x x x x x ++− ÷− −−()()221212222x x x x x x +−−+÷−− ()()()()2111222x x x x x ++−÷−− ()()()()2122211x x x x x +−⋅−+−122x x +=−, 4,5,6,5,3,2的众数为5,将5x =代入,得: 原式5132524+=×−. 18. 某校为了调查本校学生对航空航天知识的知晓情况.开展了航空航天知识竞赛,从参赛学生中,随机抽取若干名学生的成绩进行统计,得到如下不完整的统计图表:成绩/分频数/人 频率 6070x ≤<10 0.1 7080x ≤<15 b 8090x ≤< a 0.3590100x ≤≤ 40c请根据图表信息解答下列问题:(1)求a ,b ,c 的值;(2)补全频数直方图;(3)某班有2名男生和1名女生的成绩都为100分,若从这3名学生中随机抽取2名学生参加演讲,用列表或画树状图的方法,求抽取的2名学生恰好为1男1女的概率.【答案】(1)35a =,0.15b =,0.4c =.(2)见解析 (3)23【解析】【分析】(1)根据6070x ≤<的人数和频率可求抽取总人数,再由频率的定义求出a 、b 、c 即可; (2)由(1)中a 的值,补全频数分布直方图即可;(3)画树状图,共有6种等可能的结果,其中选出的2名学生恰好为一名男生、一名女生的结果有4种,再由概率公式求解即可.【小问1详解】解:由题意得:抽取学生总数100.1100÷=(人), 1000.3535a =×=,151000.15b =÷=,401000.4c ÷==.【小问2详解】解:补全频数分布直方图如图:【小问3详解】画树状图如下:共有6种等可能的结果,其中选出的2名学生恰好为一名男生、一名女生的结果有4种,∴选出的2名学生恰好为一名男生、一名女生的概率为4263=. 【点睛】此题考查的是用树状图法求概率以及频数分布表和频数分布直方图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19. 如图,O 是ABC 的外接圆,直径BD 与AC 交于点E ,点F 在BC 的延长线上,连接DF ,F BAC ∠=∠.(1)求证:DF 是O 的切线;(2)从以下三个选项中选一个作为条件,使DF AC ∥成立,并说明理由;①AB AC =;② AD DC=;③CAD ABD ∠=∠; 你选的条件是:______.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查切线的判定,圆周角定理,直角三角形两锐角互余,理解并掌握相关图形的性质定理是解决问题的关键.(1)由直径所对圆周角为直角可知90BAC DAC ∠+∠=°,结合圆周定理可知DAC DBC ∠=∠,由F BAC ∠=∠,可知90F DBC ∠+∠=°,进而可知B D D F ⊥,即可证明结论;(2)若选②,由等弧所对圆周角相等可知ABD DBF ∠=∠,结合(1)证ADB F ∠=∠,由圆周角定理可知ADB BCA ∠=∠,证得F BCA ∠=∠,进而可得结论;若选③由同弧所对圆周角相等可知CAD DBC ∠=∠,结合CAD ABD ∠=∠,可知ABD DBC ∠=∠,得 AD DC=,同②,可证DF AC ∥. 【小问1详解】证明:∵BD 是O 的直径,∴90BAD ∠=°,∴90BAC DAC ∠+∠=°,∵ CDCD =, ∴DAC DBC ∠=∠,又∵F BAC ∠=∠,∴90F DBC ∠+∠=°,则90BDF ∠=°,∴B D D F ⊥,∴DF 是O 的切线;【小问2详解】若选② AD DC=; ∵ AD DC=, ∴ABD DBF ∠=∠,由(1)可知:9090ABD ADBDBF F ∠+∠=°=∠+∠=°, ∴ADB F ∠=∠,由圆周角定理可知ADB BCA ∠=∠,∴F BCA ∠=∠,∴DF AC ∥;若选③CAD ABD ∠=∠;∵ CDCD =, ∴CAD DBC ∠=∠,∵CAD ABD ∠=∠,∴ABD DBC ∠=∠,∴ AD DC=, 同②,可知DF AC ∥;20. 某经销商销售一种成本价为10元/kg 的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg ;如图,在销售过程中发现销悬()kg y 与售价x (元/kg )之间满足一次函数关系.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)设销售这种商品每天所获得的利润为W 元,求W 与x 之间的函数关系式,并求出该商品售价定为多少元/kg 时,才能使经销商所获利润最大?最大利润是多少?【答案】(1)y 与x 的之间的函数解析式为:260y x =−+,自变量x 的取值范围为:1018x ≤≤; (2)W 与x 之间的函数关系式为:22(20)200W x =−−+;当该商品销售单价定为18元时,才能使经销商所获利润最大;最大利润是192元.【解析】【分析】考查一次函数、二次函数的应用,求出相应的函数关系式和自变量的取值范围是解决问题的关键,在求二次函数的最值时,注意自变量的取值范围,容易出错.(1)根据一次函数过(12,36),(14,32)可求出函数关系式,然后验证其它数据否符合关系式,进而确定函数关系式,(2)先求出总利润W 与x 的函数关系式,再依据函数的增减性和自变量的取值范围确定何时获得最大利润,但应注意抛物线的对称轴,不能使用顶点式直接求.【小问1详解】解:设y 与x 的解析式为y kx b =+,把(12,36),(17,26)代入, 得:12361726k b k b += +=, 解得:260k b =− =, ∴y 与x 的之间的函数解析式为:260y x =−+,自变量x 的取值范围为:1018x ≤≤;【小问2详解】解:2(10)(260)280600W x x x x =−−+=−+−22(20)200x =−−+20a =−< ,抛物线开口向下,对称轴20x ,在对称轴的左侧,y 随x 的增大而增大,1018x ≤≤ ,∴当18x =时,W 最大22 (1820) 200192=−−+=元答:W 与x 之间的函数关系式为22(20)200W x =−−+,当该商品销售单价定为18元时,才能使经销商所获利润最大,最大利润是192元.21. 如图1,一灌溉车正为绿化带浇水,喷水口H 离地竖直高度为 1.2h =米.建立如图2所示的平面直角坐标系,可以把灌溉车喷出水的上、下边缘抽象为两条抛物线的部分图象,把绿化带横截面抽象为矩形DEFG ,其水平宽度2DE =米,竖直高度0.7EF =米,下边缘抛物线是由上边缘抛物线向左平移得到,是为上边缘抛物线最高点A 离喷水口的水平距离为2米,高出喷水口04.米,灌溉车到绿化带的距离OD 为d 米.(1)求上边缘抛物线喷出水的最大射程OC ;(2)求下边缘抛物线与x 轴交点B 的坐标;(3)若 3.2d =米,灌溉车行驶时喷出的水______(填“能”或“不能”)浇灌到整个绿化带.【答案】(1)上边缘抛物线喷出水的最大射程OC 为6m ;(2)()2,0B ;(3)不能.【解析】【分析】(1)求得上边缘的抛物线解析式,即可求解;(2)根据二次函数的性质,确定平移的单位,求得下边缘抛物线解析式,即可求解;(3)根据题意,求得点F 的坐标,判断上边缘抛物线能否经过点F 即可;【小问1详解】解:由题意可得:()0,1.2H ,()2,1.6A且上边缘抛物线的顶点为A ,故设抛物线解析式为:()22 1.6y a x =−+将()0,1.2H 代入可得:110a =− 即上边缘的抛物线为:()212 1.610y x =−−+ 将0y =代入可得:()212 1.6010x −−+= 解得:12x =−(舍去)或26x =即6m OC =上边缘抛物线喷出水的最大射程OC 为6m ;【小问2详解】由(1)可得,()0,1.2H 上边缘抛物线为:()212 1.610y x =−−+,可得对称轴为:2x = 点H 关于对称轴对称的点为:()4,1.2下边缘抛物线是由上边缘抛物线向左平移得到,可得上边缘抛物线向左平移4个单位,得到下边缘抛物线,即下边缘的抛物线解析式为:()212 1.610y x =−++ 将0y =代入可得:()212 1.6010x −++= 解得:16x =−(舍去)或22x =即点()2,0B ;【小问3详解】∵2 3.26<<, ∴绿化带的左边部分可以灌溉到,由题意可得:()5.2,0.7F将 5.2x =代入到()212 1.610y x =−−+可得:()21 5.22 1.60.5760.710y =−−+=< 因此灌溉车行驶时喷出的水不能浇灌到整个绿化带.【点睛】此题考查了二次函数的应用,涉及了待定系数法求解析式,与x 轴交点等问题,解题的关键是理解题意,正确求得解析式.22. 在矩形ABCD 中,点E 是射线BC 上一动点,连接AE ,过点B 作BF AE ⊥于点G ,交直线CD 于点F .(1)当矩形ABCD 是正方形时,以点F 为直角顶点在正方形ABCD 的外部作等腰直角三角形CFH ,连接EH.①如图1,若点E在线段BC上,则线段AE与EH之间的数量关系是________,位置关系是_________;②如图2,若点E在线段BC的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;,M是BH中点,连接GM,(2)如图3,若点E在线段BC上,以BE和BF为邻边作BEHFBC=,求GM的最小值.AB=,23【答案】(1)①相等;垂直;②成立,理由见解析;(2【解析】【分析】(1)①证明△ABE≌△BCF,得到BE=CF,AE=BF,再证明四边形BEHF为平行四边形,从而可得结果;②根据(1)中同样的证明方法求证即可;(2)说明C、E、G、F四点共圆,得出GM的最小值为圆M半径的最小值,设BE=x,证明△ABE∽△BCF,得到CF,再利用勾股定理表示出GM的最小值.【详解】解:(1)①∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°,即∠BAE+∠AEB=90°,∵AE⊥BF,∴∠CBF+∠AEB=90°,∴∠CBF=∠BAE,又AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵△FCH为等腰直角三角形,∴FC=FH=BE,FH⊥FC,而CD⊥BC,∴FH∥BC,∴四边形BEHF为平行四边形,∴BF∥EH且BF=EH,∴AE=EH,AE⊥EH,故答案为:相等;垂直;②成立,理由是:当点E 在线段BC 的延长线上时,同理可得:△ABE ≌△BCF (AAS ),∴BE=CF ,AE=BF ,∵△FCH 等腰直角三角形,∴FC=FH=BE ,FH ⊥FC ,而CD ⊥BC ,∴FH ∥BC ,∴四边形BEHF 为平行四边形,∴BF ∥EH 且BF=EH ,∴AE=EH ,AE ⊥EH ;(2)∵∠EGF=∠BCD=90°,∴C 、E 、G 、F 四点共圆,∵四边形BCHF 是平行四边形,M 为BH 中点,∴M 也是EF 中点,∴M 是四边形BCHF 外接圆圆心,则GM 的最小值为圆M 半径的最小值,∵AB=3,BC=2,设BE=x ,则CE=2-x ,同(1)可得:∠CBF=∠BAE ,又∵∠ABE=∠BCF=90°,∴△ABE ∽△BCF , ∴AB BE BC CF=,即32x CF =, ∴CF=23x , ∴设y=213449x x −+, 为当x=1813时,y取最小值1613,∴EF,故GM【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,二次函数的最值,圆的性质,难度较大,找出图形中的全等以及相似三角形是解题的关键.。