初中数学北师大版八年级下册第四章因式分解计算专题
(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试(答案解析)(2)
一、选择题1.下列等式中,从左到右的变形正确的是( )A .()22242x x x ++=+B .()()2444x x x -=+-C .()222244x y x xy y +=++D .()()2x 2x 3x 6+-=- 2.下列各式中能用完全平方公式分解因式的是( ) A .2444x x ++B .244x x -++C .4244x x -+D .291216x x ++ 3.在下列多项式中,不能用平方差公式因式分解的是( ) A .229x y - B .21m -+ C .2216a b -+ D .21x -- 4.下列因式分解正确的是A .4m 2-4m +1=4m (m -1)B .a 3b 2-a 2b +a 2=a 2(ab 2-b )C .x 2-7x -10=(x -2)(x -5)D .10x 2y -5xy 2=5xy (2x -y ) 5.对于任何实数m 、n ,多项式2261036m n m n +--+的值总是( ) A .非负数B .0C .大于2D .不小于2 6.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( ) A .-2B .2C .-50D .50 7.因式分解x ﹣4x 3的最后结果是( ) A .x (1﹣2x )2B .x (2x ﹣1)(2x+1)C .x (1﹣2x )(2x+1)D .x (1﹣4x 2)8.下列各式由左边到右边的变形中,属于因式分解的是( ) A .()222x y x y +=+B .()24444x x x x -+=-+C .()()2111x x x +-=-D .()210 5521x x x x -=- 9.下列多项式分解因式正确的是( )A .a 2﹣2a ﹣3=a (a ﹣2)﹣3B .3ax 2﹣6ax =3(ax 2﹣2ax )C .m 3﹣m =m (m ﹣1)(m +1)D .x 2+2xy ﹣y 2=(x ﹣y )210.下列因式分解错误的是( )A .a 2﹣a +1=a (a ﹣1)+1B .a 2﹣b 2=(a +b )(a ﹣b )C .﹣a 2+9b 2=﹣(a +3b )(a ﹣3b )D .a 2﹣4ab +4b 2=(a ﹣2b )211.下列各式由左到右的变形中,属于分解因式的是( )A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D .a (m +n )=am +an12.下列因式分解结果正确的是( )A .x 2+3x +2=x (x +3)+2B .4x 2﹣9=(4x +3)(4x ﹣3)C .a 2﹣2a +1=(a +1)2D .x 2﹣5x +6=(x ﹣2)(x ﹣3)二、填空题13.因式分解:316m m -=________.14.因式分解:41x -=______.15.若6x y +=,3xy =-,则2222x y xy +=_____.16.若m+n=1,mn=-6,则22m n mn +代数式的值是____________________;17.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x 4﹣y 4,因式分解的结果是(x ﹣y )(x+y )(x 2+y 2),若取x=9,y=9时,则各个因式的值是:(x ﹣y )=0,(x+y )=18,(x 2+y 2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x 3﹣xy 2,取x=27,y=3时,用上述方法产生的密码是:_____(写出一个即可).18.分解因式:a 2﹣a ﹣6=________________.19.已知2,350ab b a =--=,则代数式223a b ab ab -+的值为_______________________.20.分解因式:mn 2﹣4mn+4m =_____.三、解答题21.(1)因式分解:328a a -.(2)如图,//AB CD ,40A ∠=︒,45D ∠=︒,求1∠和2∠的度数.22.因式分解:(1)382a a -(2)()()24129x y x y +-+-23.下面是小华同学分解因式229()4()a x y b y x -+-的过程,请认真阅读,并回答下列问题.解:原式229()4()a x y b x y =-+-① 22()(94)x y a b =-+②2()(32)x y a b =-+③任务一:以上解答过程从第 步开始出现错误.任务二:请你写出正确的解答过程.24.(1)分解因式:244am am a ++(2)计算:(-2)(2)(2)x x x y x y ++-25.分解因式:(1)3218a b ab -;(2)244ab ab a -+.26.(阅读材料)把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在代数式求值、解方程、最值问题中都有着广泛的应用.例如:①用配方法因式分解:a 2+6a +8.原式=a 2+6a +9-1=(a +3) 2-1=(a +3-1)( a +3+1)=(a +2)(a +4)②求x 2+6x +11的最小值.解:x 2+6x +11=x 2+6x +9+2=(x +3) 2+2;由于(x +3) 2≥0,所以(x +3) 2+2≥2,即x 2+6x +11的最小值为2.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+4a + ;(2)用配方法因式分解:a 2-12a +35;(3)用配方法因式分解:x 4+4;(4)求4x 2+4x +3的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分别对各选项进行变形,然后对照进行判断即可得到答案.【详解】解:A 、()22241+3x x x ++=+,原选项变形错误,故不符合题意;B 、()()2422x x x -=+-,原选项变形错误,故不符合题意;C 、()222244x y x xy y +=++,原选项变形正确,故符合题意;D 、2(2)(3)6x x x x +=---,原选项变形错误,故不符合题意;故选:C .【点睛】此题主要考查了整式的乘法和因式分解,熟练掌握运算法则是解答此题的关键.2.C解析:C【分析】利用完全平方公式逐项进行判定即可.【详解】解:A. 2444x x ++,无法因式分解,故不符合题意;B. 244x x -++,无法因式分解,故不符合题意;C. ()2422442x x x -+=-,符合题意;D. 291216x x ++,无法因式分解,故不符合题意.故答案为C.【点睛】本题主要考查了运用完全公式法分解因式,熟练掌握完全平方公式是解答本题关键. 3.D解析:D【分析】根据平方差公式有: 229x y -==(x +3y )(x−3y );21m -+=m 2-1=(m+1)(m−1);2216a b -+=b 2−16a 2=(b +4a )(b−4a );而−x 2−1=−(x 2+1),不能用平方差公式分解.【详解】A.229x y -==(x +3y )(x−3y );B.21m -+=m 2-1=(m+1)(m−1);C.2216a b -+=b 2−16a 2=(b +4a )(b−4a );而−x 2−1=−(x 2+1),不能用平方差公式分解.故选:D .【点睛】本题考查了平方差公式:a 2−b 2=(a +b )(a−b ),熟练掌握此公式是解答此题的关键. 4.D解析:D【分析】A 、利用完全平方公式分解;B 、利用提取公因式a 2进行因式分解;C 、利用十字相乘法进行因式分解;D 、利用提取公因式5xy 进行因式分解.【详解】A 、4m 2-4m+1=(2m-1)2,故本选项错误;B 、a 3b 2-a 2b+a 2=a 2(ab 2-b+1),故本选项错误;C 、(x-2)(x-5)=x 2-7x+10,故本选项错误;D 、10x 2y-5xy 2=xy (10x-5y )=5xy (2x-y ),故本选项正确;故选D .【点睛】本题考查了因式分解,要想灵活运用各种方法进行因式分解,需要熟练掌握各种方法的公式和法则;分解因式中常出现错误的有两种:①丢项:整项全部提取后要剩1,分解因式后项数不变;②有些结果没有分解到最后,如最后一个选项需要一次性将公因式提完整或进行多次因式分解,分解因式一定要彻底.5.D解析:D【分析】利用完全平方公式把原式变形,根据偶次方的非负性解答即可.【详解】解:2261036m n m n +--+226910252m m n n =-++-++22(3)(5)2m n =-+-+,2(3)0m -,2(5)0n -,22(3)(5)22m n ∴-+-+,∴多项式2261036m n m n +--+的值总是不小于2,故选:D .【点睛】本题考查了完全平方公式的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.6.A解析:A【解析】试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.7.C解析:C【分析】原式提取公因式,再利用平方差公式分解即可.【详解】原式=x (1﹣4x 2)=x (1+2x )(1﹣2x ).故选C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.8.D解析:D【分析】直接利用因式分解的定义逐一分析即可得出答案.【详解】A.()222x y x y +=+属于整式乘法运算,不符合因式分解的定义,故此选项不符合题意,B.()24444x x x x -+=-+,右边不是整式的积的形式,不符合因式分解的定义,故此选项不符合题意,C.()()2111x x x +-=-属于整式乘法运算,不符合因式分解的定义,故此选项不符合题意,D.()210 5521x x x x -=-属于因式分解,符合题意. 故选:D .【点睛】本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.9.C解析:C【分析】直接利用十字相乘法以及公式法分别分解因式得出答案.【详解】A 、a 2﹣2a ﹣3=a (a ﹣2)﹣3,不符合因式分解的定义,故此选项错误;B 、3ax 2﹣6ax =3ax (x ﹣2),故此选项错误;C 、m 3﹣m =m (m ﹣1)(m +1),正确;D 、x 2+2xy ﹣y 2,无法运用完全平方公式分解因式,故此选项错误;故选:C .【点睛】此题主要考查了十字相乘法以及提取公因式法、公式法分解因式,正确应用公式是解题关键.10.A解析:A【分析】直接利用公式法以及提取公因式法分解因式得出答案.【详解】A .a 2﹣a +1=a (a ﹣1)+1,不符合因式分解的定义,故此选项正确;B .a 2﹣b 2=(a +b )(a ﹣b ),正确,不符合题意;C .﹣a 2+9b 2=﹣(a +3b )(a ﹣3b ),正确,不合题意;D .a 2﹣4ab +4b 2=(a ﹣2b )2,正确,不合题意.故选:A .【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键. 11.B解析:B【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.12.D解析:D【分析】根据因式分解的方法进行计算即可判断.【详解】A .因为x 2+3x +2=(x +1)(x +2),故A 错误;B .因为4x 2﹣9=(2x +3)(2x ﹣3),故B 错误;C .因为a 2﹣2a +1=(a ﹣1)2,故C 错误;D .因为x 2﹣5x +6=(x ﹣2)(x ﹣3),故D 正确.故选:D .【点睛】本题考查了因式分解-十字相乘法、公式法,解决本题的关键是掌握因式分解的方法.二、填空题13.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解解析:m (m+4)(m-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:316m m=m (m 2-16)=m (m+4)(m-4),故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.14.【分析】两次运用平方差公式进行因式分解即可得到答案【详解】解:=(x2-1)(x2+1)=故答案为:【点睛】本题考查了运用平方差公式分解因式熟练掌握因式分解的方法是解本题的关键解析:()()()2111x x x +-+. 【分析】两次运用平方差公式进行因式分解即可得到答案.【详解】解:41x -=(x 2-1)(x 2+1)=()()()2111x x x +-+. 故答案为:()()()2111x x x +-+. 【点睛】本题考查了运用平方差公式分解因式,熟练掌握因式分解的方法是解本题的关键. 15.【分析】先将原式因式分解得再整体代入即可求出结果【详解】解:∵∴原式故答案是:【点睛】本题考查因式分解解题的关键是熟练运用因式分解和整体代入的思想求值解析:36-【分析】先将原式因式分解得()2xy x y +,再整体代入即可求出结果.【详解】解:()22222x y xy xy x y +=+, ∵6x y +=,3xy =-,∴原式()23636=⨯-⨯=-.故答案是:36-.【点睛】本题考查因式分解,解题的关键是熟练运用因式分解和整体代入的思想求值.16.-6【分析】利用提公因式法因式分解再把m+n=1mn=-6代入计算即可【详解】解:∵m+n=1mn=-6∴m2n+mn2=mn (m+n )=(-6)×1=-6故答案为:-6【点睛】本题主要考查了因式分解析:-6【分析】利用提公因式法因式分解,再把m+n=1,mn=-6代入计算即可.【详解】解:∵m+n=1,mn=-6,∴m2n+mn2=mn(m+n)=(-6)×1=-6.故答案为:-6.【点睛】本题主要考查了因式分解的应用,熟练掌握提公因式法因式分解是解答本题的关键.17.(答案不唯一)【分析】将多项式4x3-xy2提取x后再利用平方差公式分解因式将x与y的值分别代入每一个因式中计算得到各自的结果根据阅读材料中取密码的方法即可得出所求的密码【详解】4x3-xy2=x(解析:(答案不唯一)【分析】将多项式4x3-xy2,提取x后再利用平方差公式分解因式,将x与y的值分别代入每一个因式中计算得到各自的结果,根据阅读材料中取密码的方法,即可得出所求的密码.【详解】4x3-xy2=x(4x2-y2)=x(2x+y)(2x-y),∴当取x=10,y=10时,各个因式的值是:x=10,2x+y=30,2x-y=10,∴用上述方法产生的密码是:103010,101030或301010,故答案为103010,101030或301010.【点睛】本题考查了因式分解的应用,涉及了提公因式法及平方差公式分解因式,属于阅读型的新定义题,其中根据阅读材料得出取密码的方法是解本题的关键.18.(a+2)(a﹣3)【分析】利用十字相乘法分解即可【详解】解:原式=(a+2)(a-3)故答案是:(a+2)(a-3)【点睛】此题考查了利用十字相乘法因式分解熟练掌握因式分解的方法是解本题的关键解析:(a+2)(a﹣3)【分析】利用十字相乘法分解即可.【详解】解:原式=(a+2)(a-3).故答案是:(a+2)(a-3).【点睛】此题考查了利用十字相乘法因式分解,熟练掌握因式分解的方法是解本题的关键.19.-8【分析】直接提取公因式将原式变形进而整体代入已知得出答案【详解】∵∵∴又∴原式=2×(-4)=-8故答案为:-8【点睛】本题主要考查了代数式求值以及提取公因式法分解因式正确将原式变形是解题关键解析:-8【分析】直接提取公因式将原式变形进而整体代入已知得出答案.【详解】∵223a b ab ab -+(31)ab a b =-+,∵350b a --=,∴35a b -=-,又2ab =,∴原式=2×(-4)=-8.故答案为:-8.【点睛】本题主要考查了代数式求值以及提取公因式法分解因式,正确将原式变形是解题关键. 20.m (n ﹣2)2【分析】首先提取公因式m 再利用完全平方公式分解因式即可【详解】解:mn2﹣4mn+4m =m (n2﹣4n+4)=m (n ﹣2)2故答案为:m (n ﹣2)2【点睛】此题主要考查了提取公因式法以解析:m (n ﹣2)2【分析】首先提取公因式m ,再利用完全平方公式分解因式即可.【详解】解:mn 2﹣4mn+4m=m (n 2﹣4n+4)=m (n ﹣2)2.故答案为:m (n ﹣2)2.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.三、解答题21.(1)2(2)(2)a a a +-;(2)140∠=︒,285∠=︒.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2) 根据平行线的性质,可以得到∠1和∠A 的关系,从而可以得到∠1的度数,再根据∠2=∠1+∠D ,即可求得∠2的度数.【详解】解:(1)原式()2242(2)(2)a a a a a =-=+-. (2)//AB CD ,140A ∴∠=∠=︒,45D ∠=︒,2185D ∴∠=∠+∠=︒.【点睛】此题考查了提公因式法与公式法的综合运用,以及平行线的性质,解答第2小题的关键是明确题意,利用平行线的性质和三角形外角和内角的关系解答.22.(1)()()22121a a a +-;(2)()2332x y -+ 【分析】(1)首先提取公因式2a ,再利用平方差公式分解因式得出答案;(2)原式利用完全平方公式分解即可.【详解】解:(1)8a 3-2ab 2=2a (4a 2-1)=2a (2a+1)(2a-1),(2)原式=[3(x-y )+2]2=(3x-3y+2)2.【点睛】本题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.23.①;见解析【分析】根据提公因式法和平方差公式进行因式分解.【详解】解:在小华同学的解答中,对原式进行变形,从第①步开始出现错误,故答案为:①正确过程如下:229()4()a x y b y x -+-229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握提公因式技巧和平方差公式的公式结构正确计算是解题关键.24.(1)()22a m + ;(2)22224x x y --【分析】(1)先提公因式a ,再根据完全平方公式分解因式;(2)先根据整式乘法、乘法公式展开括号,然后再合并同类项即可得到答案.【详解】(1)解:244am am a ++ ()244a m m =++()22a m =+; (2)(2)(2)(2)x x x y x y -++-22224x x x y =-+-22224x x y =--.【点睛】此题考查因式分解及整式的混合运算,掌握多项式的因式分解的方法,整式的乘法计算法则、合并同类项计算法则是解题的关键.25.(1)2(3)(3)ab a a +-;(2)2(21)a b -.【分析】(1)先提取公因式2ab 、然后再运用平方差公式分解即可;(2)先提取公因式a 、然后再运用完全平方公式分解即可.【详解】(1)3218a b ab -()229ab a =-;2(3)(3)ab a a =+-(2)244ab ab a -+()2441a b b =-+2(21)a b =-.【点睛】本题主要考查了因式分解,灵活运用提取公因式法和公式法分解因式是解答本题的关键. 26.(1)4;(2) ()()57a a --;(3) ()()222222x x x x ++-+;(4)2.【分析】(1)由2224___222,a a a a ++=+•⨯+ 从而可得答案;(2)由22221235266635a a a a -+=-•⨯+-+化为两数的平方差,再利用平方差公式分解,从而可得答案;(3)由()242222422222x x x x +=+••+-••化为两数的平方差,再利用平方差公式分解即可;(4)由 ()22224432221113x x x x ++=+⨯•+-+化为一个非负数与一个常数的和,再利用非负数的性质求解最小值即可.【详解】解:(1)()22442,a a a ++=+ 故答案为:4.(2)22221235266635a a a a -+=-•⨯+-+()2261a =-- ()()6161a a =-+--()()57.a a =--(3)()242222422222x x x x +=+••+-•• ()()22222x x =+-()()222222.x x x x =++-+(4)()22224432221113x x x x ++=+⨯•+-+ ()2212x =++ ()2210,x +≥()22122,x ∴++≥ 2443x x ∴++的最小值是2.【点睛】本题考查的是配方法的应用,同时考查了完全平方公式与平方差公式,掌握用配方法分解因式,求最值是解题的关键.。
北师大版八年级下册 第四章 因式分解(包含答案)
第四章因式分解一、选择题1.下列从左到右的变形中,是分解因式的有()①(x+1)(x-2)=x2-x-2;②-x2+9=(3+x)(3-x);③ab-a+b-1=(a+1)(b-1);④a2-4+a=(a+2)(a-2)+a;).⑤(y+1)(y-3)=-(3-y)(y+1);⑥a2+1=a(a+1aA.1个B.2个C.3个D.4个答案B②③是分解因式.2.下面分解因式正确的是()A.x3-x=x(x-1)B.3xy+6y=y(3x+6)C.a2-2a-1=(a-1)2D.1-b2=(1+b)(1-b)答案D A的结果错误,B没分解彻底,C的左右两边不相等,只有D选项正确.3.下列多项式中能用平方差公式分解因式的是()A.a2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+9答案D A,C的两个平方项同号,B中两项提公因式5m后不是两式平方差的形式,只有D选项能用平方差公式.4.下列各组多项式中没有公因式的是()A.3x-2与6x2-4xB.3(a-b)2与11(b-a)3C.mx-my与ny-nxD.ab-ac与ab-bc答案 D ab-ac=a(b-c),ab-bc=b(a-c),两个多项式没有公因式.5.若x 2+2(m-3)x+16是完全平方式,则m 的值等于( ) A.-5 B.3 C.7 D.7或-1答案 D 因为x 2+2(m-3)x+16是完全平方式,所以m-3=±4,所以m=7或-1.6.若a 2+b 2+4a-2b+5=0,则a+b a -b 的值为( ) A.3 B.13 C.-3 D.-13答案 B 由a 2+b 2+4a-2b+5=0得(a+2)2+(b-1)2=0,所以a=-2,b=1.所以a+b a -b =-2+1-2-1=13. 7.212-1可以被5~10之间的某些整数整除,它们是( ) A.7 B.9 C.6和7 D.7和9答案 D 212-1=(26+1)(26-1)=(26+1)(23+1)(23-1)=(26+1)×9×7,故有两个整数符合题意,即7和9.8.多项式x 2-4x+m 分解因式的结果是(x+3)(x-n),则m n 等于 ( ) A.3 B.-3 C.-13 D.13答案 B 由题意得x 2-4x+m=(x+3)(x-n), 即x 2-4x+m=x 2+(3-n)x-3n, 所以{3-n =-4,-3n =m,解得{n =7,m =-21,所以m n =-217=-3. 9.若xy=1,则(x+y)2-(x-y)2等于( ) A.-4 B.4 C.2 D.-2答案 B 当xy=1时,(x+y)2-(x-y)2=4xy=4,故选B. 10.已知1-x n =(1+x 2)(1-x)(1+x),则n 的值是( )A.2B.4C.6D.8答案 B (1+x 2)(1-x)(1+x)=(1+x 2)(1-x 2)=1-x 4=1-x n ,所以n=4.二、填空题11.因式分解:x 2-36= .答案 (x+6)(x-6)解析 根据平方差公式,得x 2-36=x 2-62=(x+6)(x-6). 12.分解因式:m 3n-4mn= .答案 mn(m+2)(m-2)解析 m 3n-4mn=mn(m 2-4)=mn(m+2)(m-2).13.分解因式:-2x 2y+12xy-18y= .答案 -2y(x-3)2解析 先提取公因式,再用完全平方公式分解因式.-2x 2y+12xy-18y=-2y(x 2-6x+9)=-2y(x-3)2.14.分解因式:(a-b)2-4b 2= .答案 (a+b)(a-3b)解析 (a-b)2-4b 2=(a-b+2b)(a-b-2b)=(a+b)(a-3b).15.已知长方形的面积为9a 2-16,若一边长为3a+4,则与它相邻的边长为 . 答案 3a-4解析 S 长方形=9a 2-16=(3a+4)(3a-4),∴所求边长为3a-4. 16.因式分解:m(x-y)+n(x-y)= .答案 (x-y)(m+n)解析 m(x-y)+n(x-y)=(x-y)(m+n).17.计算:100992+198+1= .答案 1100解析 100992+198+1=100992+2×99+1=100(99+1)2=1001002=1100. 18.如图所示,在边长为a 的正方形中剪去一个边长为b 的小正方形(a>b),把剩下的部分剪拼成一个梯形,通过计算这两个图形阴影部分的面积,可以验证公式 .答案 a 2-b 2=(a+b)(a-b)解析 在题图中,左图:S 阴影=a 2-b 2;右图:S 阴影=(2b+2a)(a -b)2=(a+b)(a-b), ∴ a 2-b 2=(a+b)(a-b).三、解答题19.把下列各式分解因式.(1)8a3b2-12ab3c+6a3b2c;(2)5x(x-y)2+10(y-x)3;(3)(a+b)2-9(a-b)2;(4)-4ax2+8axy-4ay2;(5)(x2+2)2-22(x2+2)+121.答案(1)原式=2ab2(4a2-6bc+3a2c).(2)原式=5x(y-x)2+10(y-x)3=5(y-x)2[x+2(y-x)]=5(y-x)2(2y-x).(3)原式=[a+b+3(a-b)][a+b-3(a-b)]=(4a-2b)(-2a+4b)=4(2a-b)(2b-a).(4)原式=-4a(x2-2xy+y2)=-4a(x-y)2.(5)原式=(x2+2-11)2=(x2-9)2=(x+3)2(x-3)2.20.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程: 解:设x2-4x=y,则原式=(y+2)(y+6)+4=y2+8y+16=(y+4)2=(x 2-4x+4)2.回答下列问题: (1)该同学分解因式的结果是否彻底: (填“彻底”或“不彻底”),若不彻底,请直接写出分解因式的最后结果: ;(2)请你模仿以上方法尝试对多项式(x 2-2x)(x 2-2x+2)+1进行因式分解. 答案(1)不彻底;(x-2)4. (2)设x 2-2x=y,则(x 2-2x)(x 2-2x+2)+1=y(y+2)+1=y 2+2y+1=(y+1)2=(x 2-2x+1)2=(x-1)4. 21.(1)一个等腰三角形的两边长a,b 满足条件:9a 2-b 2=-13,3a+b=13,求这个等腰三角形的周长; (2)已知a,b,c 分别是△ABC 的三边长.①判断(a-c)2-b 2的正负; ②若a,b,c 满足a 2+c 2+2b(b-a-c)=0,判断△ABC 的形状. 答案 (1)因为9a 2-b 2=-13, 所以(3a+b)(3a-b)=-13,因为3a+b=13,所以3a-b=-1,由{3a +b =13,3a -b =-1,得{a =2,b =7.当a 为腰长时,2+2<7,不能构成三角形;当b 为腰长时,三角形的周长为7+7+2=16.综上,这个等腰三角形的周长为16.(2)①(a-c)2-b2=(a-c+b)(a-c-b).因为a,b,c分别是△ABC的三边长,所以a+b>c,b+c>a,所以a-c+b>0,a-c-b<0,所以(a-c+b)(a-c-b)<0,即(a-c)2-b2<0.②由a2+c2+2b(b-a-c)=0,得a2+c2+2b2-2ab-2bc=0,即(a2-2ab+b2)+(b2-2bc+c2)=0,即(a-b)2+(b-c)2=0,所以a=b,b=c,所以a=b=c,所以△ABC为等边三角形.22.如果一个正整数能表示成两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4、12、20这三个数都是神秘数.(1)28和2 012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k和2k+2(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?答案(1)是.理由:28=2×14=(8-6)×(8+6)=82-62,2 012=2×1006=(504-502)×(504+502)=5042-5022,所以这两个数都是神秘数.(2)是.理由:(2k+2)2-(2k)2=4(2k+1),因此由2k+2和2k构造的神秘数是4的倍数.(3)不是.理由:由(2)知神秘数可表示为4的倍数,但一定不是8的倍数.设两个连续奇数为2k+1和2k-1(k取正整数),因为(2k+1)2-(2k-1)2=8k,8k是8的倍数,所以两个连续奇数的平方差一定不是神秘数.。
北师大版数学八年级下册第四章因式分解 测试题附答案
B.m2-2mn+n2=(m-n)2
C.x2y-xy2=xy(x-y)
D.x2-y2=(x-y)(x+y)
3.如果多项式4a2-(b-c)2=M(2a-b+c),那么M表示的多项式应为( )
A.2a-b+cB.2a-b-c
C.2a+b-cD.2a+b+c
4.若a2+8ab+m2是一个完全平方式,则m应是( )
故选:B.
【点睛】
本题考查了因式分解的应用,三角形中三边之间的关系.(a+c-b)[a-(b+c)]是一个正数与负数的积,所以小于0.
9.3(a-b)(a+b)
【解析】
【分析】
原式提取3,再利用平方差公式分解即可.
【详解】
原式=3(a2-b2)=3(a+b)(a-b),
故答案为:3(a-b)(a+b)
(2)已知x2+2y2-2xy+6y+9=0,求xy的值;
(3)已知△ABC的三边长a,b,c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长.
18.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).
【详解】
A、a3-a= a(a+1)(a-1),故错误;
B、m2-2mn+n2=(m-n)2,正确;
C、x2y-xy2=xy(x-y),正确;
D、x2-y2=(x-y)(x+y),正确.
故选:A.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
3.C
初中数学北师大版八年级下册第四章 因式分解3.公式法-章节测试习题(3)
章节测试题1.【答题】把x2y-y分解因式,正确的是()A. y(x2-1)B. y(x+1)C. y(x-1)D. y(x+1)(x-1)【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:原式选D.2.【答题】已知a-b=3,则的值是()A. 4B. 6C. 9D. 12【答案】C【分析】先分解因式,再代入求值即可.【解答】∵a-b=3,∴=(a+b)(a-b)-6b=(a+b)(a-b)-6b=3(a+b) -6b=3a+3b-6b=3(a-b)=3×3=9.选C.3.【答题】下列多项式,能用完全平方公式分解因式的是()A. -x2-2x-1B. x2-2x-1C. x2+xy+y2D. x2+4【答案】A【分析】能用完全平方公式分解因式的式子的特点是:有三项,其中两个平方项的符号必须相同,第三项为两平方项底数乘积的2倍.【解答】解:A、-x2-2x-1=-(x2+2x+1)=-(x+1)2,能用完全平方公式分解因式,故此选项正确;B、x2-2x-1不符合能用完全平方公式分解因式的式子的特点,故此选项错误;C、x2+xy+y2不符合能用完全平方公式分解因式的式子的特点,故此选项错误;D、x2+4不符合能用完全平方公式分解因式的式子的特点,故此选项错误.选A.4.【答题】下列多项式中,在有理数范围内能够分解因式的是()A. ﹣5B. +5x+3C. 0.25﹣16D. +9【答案】C【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:0.25x2-16y2=(0.5x)2-(4y)2=(0.5x+4y)( 0.5x-4y),所以在有理数范围内能够分解因式的是C,选C.5.【答题】把多项式x3-2x2+x分解因式结果正确的是()A. x(x2-2x)B. x2(x-2)C. x(x+1)(x-1)D. x(x-1)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:x3-2x2+x=x(x2-2x+1)=x(x-1)2选D.6.【答题】下列分解因式正确的是()A. x3﹣x=x(x2﹣1)B. x2+y2=(x+y)(x﹣y)C. (a+4)(a﹣4)=a2﹣16D. m2+m+=(m+)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:A、x3﹣x=x(x+1)(x-1),故此选项错误;B、x2+y2不能够进行因式分解,故错选项错误;C、是整式的乘法,不是因式分解,故此选项错误;D、正确.选D.7.【答题】把代数式x3﹣4x2+4x分解因式,结果正确的是()A. x(x2﹣4x+4)B. x(x﹣4)2C. x(x+2)(x﹣2)D. x(x﹣2)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】原式=x(x2﹣4x+4)=x(x﹣2)2,选D.8.【答题】下列各式中,能用完全平方公式分解因式的是()A. 16x2+1B. x2+2x-1C. a2+2ab+4b2D. x2-x+【答案】D【分析】根据完全平方公式因式分解.【解答】解: A. 16x2+1只有两项,不能用完全平方公式分解;B. x2+2x-1,不能用完全平方公式分解;C. a2+2ab+4b2,不能用完全平方公式分解;D. x2-x+=,能用完全平方公式分解.选D.9.【答题】分解因式结果正确的是()A.B.C.D.【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:选D.10.【答题】把代数式3x3-12x2+12x分解因式,结果正确的是()A. 3x(x2-4x+4)B. 3x(x-4)2C. 3x(x+2)(x-2)D. 3x(x-2)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】3x3-12x2+12x=3x(x2-4x+4)=3x(x-2)2选D.11.【答题】2 0152-2 015一定能被()整除A. 2 010B. 2 012C. 2 013D. 2 014【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解析:2 0152-2 015=2 015×(2 015-1)=2 015×2 014,所以一定能被2 014整除.选D.12.【答题】下列因式分解正确的是().A.B.C.D.【答案】C【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】A选项中,因为,所以本选项分解错误;B选项中,因为,所以本选项错误;C选项中,因为,所以本选项正确;D选项中,因为,所以本选项错误;选C.13.【答题】把2x-4x分解因式,结果正确的是()A. (x+2)(x-2)B. 2x(x-2)C. 2(x-2x)D. x(2x-4)【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】2x2-4x=2(x2-2x)=2x(x-2).选B.14.【答题】计算:2-(-2) 的结果是()A. 2B. 3×2C. -2D. ()【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】22014-(-2)2015=22014+22015=22014(1+2)=3×22014.选B.15.【答题】下列多项式① x²+xy-y²② -x²+2xy-y²③ xy+x²+y²④1-x+ x其中能用完全平方公式分解因式的是()A. ①②B. ①③C. ①④D. ②④【答案】D【分析】根据完全平方公式分解因式.【解答】①③均不能用完全平方公式分解;②-x2+2xy-y2=-(x2-2xy+y2)=-(x-y)2,能用完全平方公式分解,正确;④1-x+=(x2-4x+4)=(x-2)2,能用完全平方公式分解.选D.16.【答题】下列各式是完全平方公式的是()A. 16x²-4xy+y²B. m²+mn+n²C. 9a²-24ab+16b²D. c²+2cd+c²【答案】C【分析】根据完全平方式解答即可.【解答】A.16x²-4xy+y²,不能分解成两个因式的乘积,故本选项错误;B.m²+mn+n²不能分解成两个因式的乘积,故本选项错误;C.9a²-24ab+16b²=(3a-4b)2,故本选项正确;D.c²+2cd+c²不能分解成两个因式的乘积,故本选项错误.选C.17.【答题】下列各式中,能用平方差公式分解因式的是()A.B.C.D.【答案】C【分析】根据平方差公式分解因式解答即可.【解答】平方差公式为:a2-b2=(a+b)(a-b),C选项-x2+4y2= -(x2-4y2)= -(x+2y)(x-2y).方法总结:平方差公式:a2-b2=(a+b)(a-b).18.【答题】一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是()A. 4x2-4x+1=(2x-1)2B. x3-x=x(x2-1)C. x2y-xy2=xy(x-y)D. x2-y2=(x+y)(x-y)【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】B选项中,(x2-1)仍能继续运用平方差公式,最后结果应为x(x+1)(x-1);选B.19.【答题】把8a3-8a2+2a进行因式分解,结果正确的是()A. 2a(4a2-4a+1)B. 8a2(a-1)C. 2a(2a+1)2D. 2a(2a-1)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】8a3-8a2+2a=2a(4a2-4a+1)=2a(2a-1)2.选D.20.【答题】下列各式不能用公式法分解因式的是()A.B.C.D.【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】选项A能用平方差公式分解因式;选项C、D能用完全平方公式因式分解;选项B不能因式分解,选B.。
北师大版八年级下册 第4章 因式分解 单元练习卷 含解析
第4章因式分解一.选择题(共5小题)1.若多项式x2+bx+c因式分解后的一个因式是(x+1),则b﹣c的值是()A.﹣1 B.1 C.0 D.﹣22.把多项式a2﹣4a分解因式的正确结果是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣43.下列式子中,属于2x3+x2﹣13x+6的因式是()A.x+2 B.x﹣3 C.2x﹣1 D.2x+14.下多项式中,在实数范围内能分解因式的是()A.x2﹣x+1 B.x2﹣2x+2 C.x2﹣3x+3 D.x2﹣5x+5.5.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于()A.﹣1 B.﹣1或﹣11 C.1 D.1或11二.填空题(共5小题)6.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.7.若对于一切实数x,等式x2﹣px+q=(x+1)(x﹣2)均成立,则p2﹣4q的值是.8.已知x2﹣2x﹣1=0,则3x2﹣6x=;则2x3﹣7x2+4x﹣2019=.9.定义一种运算:〈a,b〉=ab+2a+3b,例如:〈﹣2,1〉=﹣2﹣4+3=﹣3.则〈a,b〉+6要进行因式分解的结果为;如果x,y都是整数,且〈x,y〉=1,那么x+y的值为.10.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x =9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).三.解答题(共7小题)11.把下列各式因式分解:(1)8x2yz﹣4xy(2)(x2+4)2﹣16x2.12.因为x2+2x﹣3=(x+3)(x﹣1),这说明多项式x2+2x﹣3有一个因式为x﹣1,我们把x=1代入此多项式发现x=1能使多项式x2+2x﹣3的值为0.利用上述阅读材料求解:(1)若x﹣3是多项式x2+kx+12的一个因式,求k的值;(2)若(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式,试求m,n的值.(3)在(2)的条件下,把多项式x3+mx2+12x+n因式分解.13.先阅读材料,再回答问题:分解因式:(a﹣b)2﹣2(a﹣b)+1解:设a﹣b=M,则原式=M2﹣2M+1=(M﹣1)2再将a﹣b=M还原,得到:原式=(a﹣b﹣1)2上述解题中用到的是“整体思想”,它是数学中常用的一种思想,请你用整体思想解决下列问题:(1)分解因式:(x+y)(x+y﹣4)+4(2)若a为正整数,则(a﹣1)(a﹣2)(a﹣3)(a﹣4)+1为整数的平方,试说明理由.14.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x ﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.15.阅读题:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:在实数范围内分解因式:4a2+4a﹣1.16.阅读理解应用待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解:x3﹣1.因为x3﹣1为三次多项式,若能因式分解,则可以分解成一个一次多顶式和一个二次多项式的乘积.故我们可以猜想x3﹣1可以分解成(x﹣1)(x2+ax+b),展开等式右边得:x3+(a﹣1)x2+(b﹣a)x﹣b,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:a ﹣1=0,b﹣a=0,﹣b=﹣1可以求出a=1,b=1.所以x3﹣1=(x﹣1)(x2+x+1).(1)若x取任意值,等式x2+2x+3=x2+(3﹣a)x+s恒成立,则a=;(2)已知多项式x3+2x+3有因式x+1,请用待定系数法求出该多项式的另一因式;(3)请判断多项式x4+x2+1是否能分解成的两个整系数二次多项式的乘积,并说明理由.17.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.参考答案与试题解析一.选择题(共5小题)1.【分析】根据多项式x2+bx+c因式分解后的一个因式是(x+1),即可得到当x+1=0,即x=﹣1时,x2+bx+c=0,即1﹣b+c=0,即可得到b﹣c的值.【解答】解:∵多项式x2+bx+c因式分解后的一个因式是(x+1),∴当x+1=0,即x=﹣1时,x2+bx+c=0,即1﹣b+c=0,∴b﹣c=1,故选:B.2.【分析】根据提公因式法的分解方法分解即可.【解答】解:a2﹣4a=a(a﹣4).故选:A.3.【分析】将2x3+x2﹣13x+6利用分组分解法分解因式,注意首先拆项可得:2x3+x2﹣10x ﹣3x+6,然后将前三项作为一组,后两项作为一组分解即可求得答案.【解答】解:∵2x3+x2﹣13x+6=2x3+x2﹣10x﹣3x+6=x(2x2+x﹣10)﹣3(x﹣2)=x(2x+5)(x﹣2)﹣3(x﹣2)=(x﹣2)(2x2+5x﹣3)=(x﹣2)(2x﹣1)(x+3),∴2x3+x2﹣13x+6的因式是:(x﹣2),(2x﹣1),(x+3).故选:C.4.【分析】求出各项中根的判别式的值,根的判别式的值大于等于0即为在实数范围内能分解因式.【解答】解:A、∵a=1,b=﹣1,c=1,∴△=1﹣4=﹣3<0,本选项不合题意;B、∵a=1,b=﹣2,c=2,∴△=4﹣8=﹣4<0,本选项不合题意;C、∵a=1,b=﹣3,c=3,∴△=9﹣12=﹣3<0,本选项不合题意;D、∵a=1,b=﹣5,c=5,∴△=25﹣20=5>0,本选项符合题意;故选:D.5.【分析】根据因式分解的分组分解法即可求解.【解答】解:a2﹣ab﹣ac+bc=11(a2﹣ab)﹣(ac﹣bc)=11a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.二.填空题(共5小题)6.【分析】设另一个因式为x+a,(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,根据题意得出﹣m=﹣3+a,n=﹣3a,求出m、n后代入即可.【解答】解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.7.【分析】根据十字相乘法的分解方法和特点可知:﹣p=1﹣2,q=1×(﹣2),即可求得p、q的值,代入求值即可.【解答】解:由题意得:﹣p=1﹣2,q=1×(﹣2),∴p=1,q=﹣2,∴p2﹣4q=1﹣4×(﹣2)=1+8=9.故答案为:9.8.【分析】根据因式分解的提公因式法分解因式,利用整体代入的方法即可求得第一个空的解;分解第二个因式后把﹣7x写成﹣4x﹣3x再重新组合,进行提公因式,最后整体代入即可求得第二个空的解.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,2x2﹣4x=2,∴3x2﹣6x=3(x2﹣2x)=3.2x3﹣7x2+4x﹣2019=x(2x2﹣7x)+4x﹣2019=x(2x2﹣4x﹣3x)+4x﹣2019=x(2﹣3x)+4x﹣2019=2x﹣3x2+4x﹣2019=﹣3x2+6x﹣2019=﹣3(x2﹣2x)﹣2019=﹣3×1﹣2019=﹣2022.故答案为:3,﹣2022.9.【分析】由已知可得〈a,b〉+6=ab+2a+3b+6,再分组分解;由〈x,y〉=xy+2x+3y=1,将式子变形为xy+2x+3y+6=7,进行分组分解得到(x+2)(y+3)=7,再由x,y都是整数,分别得到+2=1,y+3=7或x+2=﹣1,y+3=﹣7,即可求解.【解答】解:〈a,b〉+6=ab+2a+3b+6=a(b+2)+3(b+2);〈x,y〉=xy+2x+3y=1,∵xy+2x+3y+6=7,∴(x+2)(y+3)=7,∵x,y都是整数,∴x+2=1,y+3=7或x+2=﹣1,y+3=﹣7,∴x=﹣1,y=4或x=﹣3,y=﹣10,∴x+y=3或x+y=﹣13;故答案为(b+2)(a+3);3或﹣13.10.【分析】9x3﹣xy2=x(9x2﹣y2)=x(3x+y)(3x﹣y),当x=10,y=10时,密码可以是10、40、20的任意组合即可.【解答】解:9x3﹣xy2=x(9x2﹣y2)=x(3x+y)(3x﹣y),当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一.三.解答题(共7小题)11.【分析】(1)直接提取公因式4xy,进而分解因式得出答案;(2)直接利用平方差公式分解因式,进而结合完全平方公式分解因式得出答案.【解答】解:(1)8x2yz﹣4xy=4xy(2xz﹣1);(2)(x2+4)2﹣16x2=(x2+4﹣4x)(x2+4+4x)=(x﹣2)2(x+2)2.12.【分析】(1)由已知条件可知,当x=3时,x2+kx+12=0,将x的值代入即可求得(2)由题意可知,x=3和x=4时,x3+mx2+12x+n=0,由此得二元一次方程组,从而可求得m和n的值;(3)将(2)中m和n的值代入x3+mx2+12x+n,提取公因式x,则由题意知(x﹣3)和(x﹣4)也是所给多项式的因式,从而问题得解.【解答】解:(1)∵x﹣3是多项式x2+kx+12的一个因式∴x=3时,x2+kx+12=0∴9+3k+12=0∴3k=﹣21∴k=﹣7∴k的值为﹣7.(2)(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式∴x=3和x=4时,x3+mx2+12x+n=0∴解得∴m、n的值分别为﹣7和0.(3)∵m=﹣7,n=0,∴x3+mx2+12x+n可化为:x3﹣7x2+12x∴x3﹣7x2+12x=x(x2﹣7x+12)=x(x﹣3)(x﹣4)13.【分析】(1)设M=x+y,据此原式=M(M﹣4)+4=M2﹣4M+4=(M﹣2)2,再将M=x+y代回即可得;(2)由原式变形为(a2﹣5a+4)(a2﹣5a+6)+1,令N=a2﹣5a+4,据此可得原式N(N+2)+1=N2+2N+1=(N+1)2,根据a为正整数可作出判断.【解答】解:(1)设M=x+y,则原式=M(M﹣4)+4=M2﹣4M+4=(M﹣2)2,将M=x+y代入还原可得原式=(x+y﹣2)2;(2)原式=(a﹣1)(a﹣4)(a﹣2)(a﹣3)+1=(a2﹣5a+4)(a2﹣5a+6)+1令N=a2﹣5a+4,∵a为正整数,∴N=(a﹣1)(a﹣4)=a2﹣5a+4也是整数,则原式=N(N+2)+1=N2+2N+1=(N+1)2,∵N为整数,∴原式=(N+1)2即为整数的平方.14.【分析】(1)首先将前三项组合,利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可;(2)首先将前两项以及后两项组合,进而提取公因式法分解因式,即可得出a,b,c 的关系,判断三角形形状即可.【解答】解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a=b或a=c或a=b=c,∴△ABC的形状是等腰三角形或等边三角形.15.【分析】首先将原式配方,进而利用平方差公式分解因式即可.【解答】解:4a2+4a﹣1=(2a+1)2﹣2=(2a+1﹣)(2a+1+).16.【分析】(1)根据题目中的待定系数法原理即可求得结果;(2)根据待定系数法原理先设另一个多项式,然后根据恒等原理即可求得结论;(3)根据待定系数原理和多项式乘以多项式即可求得结论.【解答】解:(1)根据待定系数法原理,得3﹣a=2,a=1.故答案为1.(2)设另一个因式为(x2+ax+b),(x+1)(x2+ax+b)=x3+ax2+bx+x2+ax+b=x3+(a+1)x2+(a+b)x+b∴a+1=0 a=﹣1 b=3∴多项式的另一因式为x2﹣x+3.答:多项式的另一因式x2﹣x+3.(3)多项式x4+x2+1能分解成两个整系数二次多项式的乘积.理由如下:设多项式x4+x2+1能分解成①(x2+1)(x2+ax+b)或②(x+1)(x3+ax2+bx+c)或(x2+x+1)(x2+ax+1),①(x2+1)(x2+ax+b)=x4+ax3+bx2+ax+b=x4+ax3+(b+1)x2+ax+b∴a=o b+1=1 b=1由b+1=1得b=0≠1②(x+1)(x3+ax2+bx+c),=x4+ax3+bx2+cx+x3+ax2+bx+c=x4+(a+1)x3+(b+a)x2+(b+c)x+c∴a+1=0 b+a=1 b+c=0 c=1解得a=﹣1,b=2,c=1,又b+c=0,b=﹣1≠2.③(x2+x+1)(x2+ax+1)=x4+(a+1)x3+(a+2)x2+(a+1)x+1∴a+1=0,a+2=1,解得a=﹣1.即x4+x2+1=(x2+x+1)(x2﹣x+1)∴x4+x2+1能分解成两个整系数二次三项式的乘积却不能分解成两个整系数二次二项式与二次三项式的乘积.答:多项式x4+x2+1能分解成两个整系数二次三项式的乘积.17.【分析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)根据正方形的面积得出正方形的边长,再利用每块小矩形的面积为10厘米2,得出等式求出m+n,进一步得到图中所有裁剪线(虚线部分)长之和即可.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为6m+6n=6(m+n)=42cm.。
专题4.14 因式分解(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)
专题4.14因式分解(全章复习与巩固)(知识讲解)【知识点一】因式分解与整式乘法的识别把一个多项式化成几个整式的积的形式,叫因式分解。
【知识点二】因式分解的方法(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。
(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:))((212x x x x a c bx ax --=++【知识点三】因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法。
【典型例题】类型一、因式分解的概念✭✭求参数1.下列各式从左到右的变形属于因式分解的是()A .()2212x x x x+=+B .()()2111a a a -=+-C .()()2111x x x +-=-D .()222312a a a -+=-+【答案】B【分析】根据因式分解的定义解答即可.解:A .()2212x x x x +=+不是将多项式化成整式乘积的形式,故A 选项不符合题意;B .()()2111a a a -=+-是将多项式化成整式乘积的形式,故B 选项符合题意;C .()()2111x x x +-=-不是将多项式化成整式乘积的形式,故C 选项不符合题意;D .()222312a a a -+=-+不是将多项式化成整式乘积的形式,故D 选项不符合题意;故选:D .【点拨】本题主要考查了分解因式的定义,掌握定义是解题的关键.即把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式.举一反三:【变式】下列各式,从左到右的变形中,属于因式分解的是()A .()a m n am an+=+B .()()2222a b c a b a b c+-=+--C .()2221x x x x -=-D .()()2166446x x x x -+=+-+【答案】C【分析】根据因式分解的定义去判断即可.解:A 、因为()a m n am an +=+是单项式乘以多项式,不是因式分解,故A 不符合题意;B 、因为()()2222a b c a b a b c +-=+--不是因式乘积的形式,不是因式分解,故B 不符合题意;C 、因为()2221x x x x -=-是因式分解,故C 符合题意;D 、因为()()2166446x x x x -+=+-+不是因式乘积的形式,不是因式分解,故D 不符合题意;故选C .【点拨】本题考查了因式分解即把一个多项式写成几个因式积的形式,熟练掌握定义是解题的关键.2.三个多项式:24x y y -,22x y xy -,244x y xy y -+的最大公因式是()A .()2y x +B .()4y x -C .2(2)y x -D .()2y x -【答案】D【分析】先把三个多项式因式分解,再进行解答即可.解:∵()()2422x y y y x x -=+-,()222x y xy xy x -=-,2244(2)x y xy y y x -+=-,∴最大公因式是()2y x -.故选D .【点拨】本题主要考查了最大公因式,熟练掌握最大公因式的定义,将三个多项式分解因式,是解题的关键.举一反三:【变式】下列各组中,没有公因式的一组是()A .ax bx -与by ay -B .ab ac -与ab bc -C .268xy x y -与43x -+D .()3a b -与()2b ya -【答案】B【分析】将每一组因式分解,找公因式即可解:A.()ax bx x a b -=-,()by ay y a b -=--,有公因式a b -,故不符合题意;B.()ab ac a b c -=-,()ab bc b a c -=-,没有公因式,符合题意;C.()268234xy x y xy x -=-,4334x x -+=-,有公因式34x -,故不符合题意;D.()3a b -与()2b y a -有公因式a b -,故不符合题意;故选:B【点拨】本题考查公因式,熟练掌握因式分解是解决问题的关键类型二、公因式✭✭提取公因式进行因式分解3.若关于x 的二次三项式23x x k -+的因式是()2x -和()1x -,则k 的值是____.【答案】2【分析】先利用多项式乘以多项式法则计算,再利用多项式相等的条件求出k 的值即可.解:由题意得:()()2232132x x k x x x x -+=--=-+,2k ∴=.故答案为:2.【点拨】此题考查了多项式乘以多项式法则,因式分解的意义,以及多项式相等的条件,熟练掌握因式分解的意义是解本题的关键.举一反三:【变式】已知多项式4x mx n ++能分解为()()2223x px q x x +++-,则p =______,q =______.【答案】2-;7.【分析】把()()2223x px q x x +++-展开,找到所有3x 和2x 的项的系数,令它们的系数分别为0,列式求解即可.解:∵()()2223x px q x x +++-432322222333x px qx x px qx x px q=+++++---()()()432223233x p x q p x q p x q=++++-+--4x mx n =++.∴展开式乘积中不含3x 、2x 项,∴20230p q p +=⎧⎨+-=⎩,解得:27p q =-⎧⎨=⎩.故答案为:2-,7.【点拨】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可.4.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;【答案】(1)()24bc a c -;(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点拨】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.举一反三:【变式】把下列多项式因式分解:(1)2x xy x -+;(2)22m n mn mn -+;(2)33322292112x y x y x y -+;(4)()()22x x y y x y -+-.【答案】(1)()1x x y -+;(2)()1mn m n -+;(3)()223374x y xy x -+;(4)()()22x y x y-+【分析】(1)直接提取公因式x ,进而分解因式得出答案;(2)直接提取公因式mn ,进而分解因式得出答案;(3)直接提取公因式223x y ,进而分解因式得出答案;(4)直接提取公因式()x y -,进而分解因式得出答案.(1)解:()21x xy x x x y -+=-+(2)解:()221m n mn mn mn m n -+=-+(3)解:()33322222921123374x y x y x y x y xy x +--=+(4)解:()()()()2222xx y y x y x y x y -+-=-+【点拨】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.类型三、公式法进行因式分解➽➼平方差公式✭✭完全平方公式5.因式分解:(1)﹣2a 3+12a 2﹣18a(2)9a 2(x ﹣y )+4b 2(y ﹣x )【答案】(1)﹣2a (a ﹣3)2(2)(x ﹣y )(3a +2b )(3a ﹣2b )【分析】(1)原式提取公因式,再利用完全平方公式分解即可.(2)原式变形后,提取公因式,再利用平方差公式分解即可.解:(1)原式=﹣2a (a 2﹣6a +9)=﹣2a (a ﹣3)2(2)原式=(x ﹣y )(9a 2﹣4b 2)=(x ﹣y )(3a +2b )(3a ﹣2b ).【点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.举一反三:【变式】因式分解:(1)224x y -(2)32296a a b ab -+【答案】(1)()()22x y x y +-;(2)()23a a b -.【分析】(1)利用平方差公式进行因式分解即可;(2)先提公因式,然后利用完全平方公式进因式分解即可.解:(1)22224(2)(2)(2)x y x y x y x y -=-=+-;(2)232222(96)(963)=-+=--+a a ab b a b a a b b a a .【点拨】本题主要考查了多项式的因式分解,解题的关键是熟练掌握各种因式分解的方法,并会根据多项式的特征选取合适的方法,还要注意要分解彻底.6.分解因式:(1)2225()9()m n m n +--(2)22441a b a --+【答案】(1)()()444m n n m ++;(2)()()2121a b a b +---【分析】(1)将m n +和m n -看成两个整体,利用平方差公式分解因式得到()()8228m n m n ++,再提取公因式即可.(2)利用分组法先将原式分成2441a a -+和2b -两组,2441a a -+可利用完全平方公式分解,再和2b -组合,由平方差公式分解即可.(1)解:2225()9()m n m n +--()()()()5353m n m n m n m n =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()55335533m n m n m n m n =++-+-+()()8228m n m n =++()()444m n m n =++.(2)22441a b a --+()22441a a b =-+-()2221a b =--()()2121a b a b =-+--()()2121a b a b =+---.【点拨】本题考查了因式分解的方法,分组法、公式法和提公因式法本题都涉及了,熟练掌握完全平方公式、平方差公式是解题的关键.举一反三:【变式】分解因式:(1)228168ax axy ay -+-(2)()22222936x y x y +-;【答案】(1)28()a x y --;(2)22(3)(3)x y x y +-【分析】(1)先提公因式,再根据完全平方公式分解因式即可;(2)根据平方差公式和完全平方公式分解因式即可.解:(1)原式228(2)a x xy y =--+28()a x y =--(2)原式2222(9)(6)x y xy =+-2222(96)(96)x y xy x y xy =+++-22(3)(3)x y x y =+-【点拨】本题考查了因式分解,涉及提公因式法和公式法,熟练掌握分解因式的步骤是解题的关键.类型四、因式分解➽➼十字相乘法✭✭分组分解法7.将下列各式分解因式:(1)256x x --;(2)21016x x -+;(3)2103x x --【答案】(1)(7)(8)x x +-;(2)(2)(8)x x --;(3)(5)(2)x x -+-【分析】(1)用十字相乘法,分解因式即可;(2)用十字相乘法,分解因式即可;(3)用十字相乘法,分解因式即可.(1)解:∵78x x ⨯-,即78x x x -=-,∴256(7)(8)x x x x --=+-;(2)解:∵28x x ⨯--,即2810x x x --=-,∴21016(2)(8)x x x x -+=--;(3)解:22103(310)x x x x --=-+-,∵52x x ⨯-,即523x x x -=,∴原式(5)(2)x x =-+-.【点拨】本题主要考查了利用十字相乘法分解因式,解题的关键在于能够熟练掌握十字相乘法:常数项为正,分解的两个数同号;常数项为负,分解的两个数异号.二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.举一反三:【变式】用十字相乘法解方程:(1)2560x x +-=;(2)2230x x --=.【答案】(1)6x =-或1x =;(2)3x =或=1x -【分析】根据十字相乘法可分别求解(1)(2).(1)解:2560x x +-=(6)(1)0x x +-=,60x +=或10x -=,6x =-或1x =;(2)解:2230x x --=,(3)(1)0x x -+=,30x -=或10x +=,3x =或=1x -.【点拨】本题主要考查利用因式分解进行求解方程,熟练掌握因式分解是解题的关键.8.因式分解:323412x x y x y +--.【答案】(3)(2)(2)x y x x ++-【分析】原式第一、三项结合,二、四项结合,提取公因式后再提取公因式,利用平方差公式分解即可.解:原式=324312x x x y y-+-=22(4)3(4)x x y x -+-=2(3)(4)x y x +-=(3)(2)(2)x y x x ++-.【点拨】本题考查了因式分解:分组分解法:对于多于三项以上的多项式的因式分解,先进行适当分组,再把每组因式分解,然后利用提公因式法或公式法进行分解.举一反三:【变式】因式分解:(1)a 2-ab +ac -bc ;(2)x 3+6x 2-x -6.【答案】(1)(a -b)(a +c);(2)(x +1)(x -1)(x +6)试题分析:根据因式分解的方法进行因式分解即可.解:(1)原式()()()()a a b c a b a b a c =-+-=-+.(2)原式()()()()()()()()()322226616116116x x x x x x x x x x x =-+-=-+-=-+=+-+类型五、因式分解综合9.将下列各式分解因式.(1)3416x x -;(2)()2212a x ax +-;(3)()24a b a b --;(4)()()()()2233a b a b a b b a -+++-.【答案】(1)()()41212x x x +-;(2)()221a x x ++;(3)()22a b --;(4)()()28a b a b -+【分析】(1)先提取公因式,然后进一步利用平方差公式进行因式分解即可;(2)利用提公因式法进行因式分解即可;(3)先将括号去掉,然后移项,根据完全平方公式进行因式分解即可;(4)利用提公因式法以及平方差公式综合进行因式分解即可.解:(1)3416x x -=()2414x x -=()()41212x x x +-;(2)()2212a x ax +-=()221a x x ⎡⎤+-⎣⎦=()221a x x ++;(3)()24a b a b --=2244ab a b --=()2244a ab b --+=()22a b --;(4)()()()()2233a b a b a b b a-+++-=()()()()2233a b a b a b a b -+-+-=()()()2233a b a b a b ⎡⎤-+-+⎣⎦=()()()4422a b a b a b -+-=()()28a b a b -+.【点拨】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.举一反三:【变式】因式分解:(1)2273xy x-(2)2292a b ab+-+(3)228x x --【答案】(1)3(3+1)(31)-x y y ;(2)(3)(3)+++-a b a b ;(3)(2)(4)x x +-【分析】(1)根据提取公因式,平方差公式,即可分解因式;(2)根据完全平方公式法、平方差公式,即可分解因式;(3)根据十字相乘法分解因式,即可得到答案.解:(1)2273xy x-23(91)x y =-3(31)(31)x y y =+-;(2)2292a b ab+-+2229a ab b =++-22()3a b =+-(3)(3)a b a b =+++-;(3)228x x --(2)(4)x x =+-.【点拨】本题主要考查分解因式,掌握提取公因式法、公式法、十字相乘法分解因式,是解题的关键.类型五、因式分解的应用10.阅读材料,回答下列问题:若22228160m mn n n -+-+=,求m ,n 的值.解:∵22228160m mn n n -+-+=,∴222(2)(816)0m mn n n n -++-+=,即22()(4)0m n n +--=,又2()0m n -≥,2(4)0n -≥,∴2()0m n -=,2(4)0n -=,∴4n =,4m =.(1)若22440a b a +-+=,求a ,b 的值;(2)已知ABC 的三边a ,b ,c 满足2222220a b c ab ac ++--=.判断ABC 的形状,并说明理由.【答案】(1)2,0a b ==;(2)等边三角形,理由见分析.【分析】(1)参照例题,将等式转化为两个完全平方的和等于0的形式,进而求得a ,b 的值;(2)方法同(1).解:(1)∵22440a b a +-+=,∴()22440a a b ++-=,即2220()a b -+=,又22(2)0,0a b -≥≥,22(2)0,0a b ∴-==,2,0a b ∴==.(2)∵2222220a b c ab ac ++--=,2222(2)(2)0a ab b b ac c ∴-++-+=,即22()()0a b b c -+-=,又22()0,()0a b b c -≥-≥,∴22()0,()0a b b c -=-=,,a b b c ∴==,a b c ==∴.ABC ∴ 是等边三角形.【点拨】本题考查了因式分解的应用,完全平方公式,掌握完全平方公式是解题的关键.举一反三:【变式】已知:1a b +=,154ab =-(1)求22ab a b +的值(2)求22a b +的值(3)若22a b k -=-,求非负数k 的值【答案】(1)154-;(2)172;(3)k =【分析】(1)将代数式22ab a b +用提公因式法因式分解为()ab a b +,再将1a b +=,154ab =-代入计算即可;(2)将22a b +变形为()22a b ab +-,再将1a b +=,154ab =-代入计算即可;(3)类似的方法将()2a b -变形为()24a b ab +-,代入计算后求出a b -的值,继而根据22a b k -=-计算出符合条件的k 的值即可.(1)解:∵1a b +=,154ab =-,∴()221515144ab a b ab a b +=+=-⨯=-;(2)解:∵1a b +=,154ab =-,∴()2222a b a b ab+=+-15124⎛⎫=-- ⎪⎝⎭1512=+172=;(3)解:∵()()224a b a b ab-=+-1514164⎛⎫=--= ⎪⎝⎭,∴4a b -=±当4a b -=时,224k -=,k =∵k 为非负数,∴k =当4a b -=-时,224k -=-,22k =-(舍去),∴k =【点拨】本题考查了完全平方公式的应用以及提取公因式分解因式,能够灵活应用完全平方公式是解题的关键.11.阅读材料:()()()2222244454529232322x x x x x x x ⎛⎫⎛⎫+-=++--=+-=+++- ⎪ ⎪⎝⎭⎝⎭()()51x x =+-上面的方法称为多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.根据以上材料,解答下列问题:(1)因式分解:223x x +-;(2)求多项式2610x x +-的最小值;(3)已知a 、b 、c 是△ABC 的三边长,且满足222506810a b c a b c +++=++,求△ABC 的周长.【答案】(1)()()31x x +-;(2)19-;(3)12【分析】(1)先配方后,再利用平方差公式进行因式分解;(2)配方后根据平方的非负性求最小值;(3)配方后根据非负性求出a ,b ,c 的值即可.(1)解:223x x +-222113x x =++--2(1)4x =+-(12)(12)x x =+++-;(3)(1)x x =+-;(2)2226106919(3)19x x x x x +-=++-=+-,∵2(3)0x +≥,∴多项式2610x x +-的最小值为19-;(3)由题意得:2226810500a b c a b c ++---+=,∴2226981610250a a b b c c +++++--=-.∴222(3)4)(0(5)a b c -+-+-=.又∵2(3)0a -≥,2(04)b -≥,2(05)c -≥,∴30a -=,40b -=,50c -=,∴3a =,4b =,5c =,∴ABC 的周长为34512++=.【点拨】本题考查了配方法因式分解以及因式分解的应用,掌握完全平方公式是解题的关键.举一反三:【变式】先阅读下面的内容,再解决问题,例题:若2222690m mn n n ++-+=,求m 和n 的值.解:因为2222690m mn n n ++-+=,所以2222690m mn n n n +++-+=.所以22()(3)0m n n ++-=.所以0,30m n n +=-=.所以3,3m n =-=.问题:(1)若224212120++-+=x y xy y ,求xy 的值;(2)已知a ,b ,c 是等腰ABC 的三边长,且a ,b 满足2210841a b a b +=+-,求ABC 的周长.【答案】(1)-4;(2)13或14【分析】(1)仿照例题的思路,配成两个完全平方式,然后利用偶次方的非负性,进行计算即可解答;(2)仿照例题的思路,配成两个完全平方式,再利用偶次方的非负性,先求出a ,b 的值,然后分两种情况,进行计算即可解答.解:(1)∵22421212x y xy y ++-+222231212x xy y y xy =+++-+2()3x y =++2(2)y -,=∴0x y +=,20y -=,∴2x =-,2y =,∴2(2)4=⨯-=-xy .(2)∵2210841a b a b +=+-,∴2210258160a a b b -+++=-,∴22(5)(4)0a b -+-=,∴50a -=,40b -=,∴5a =,4b =.由于ABC 是等腰三角形,所以5c =或4.①若5c =,则ABC 的周长为55414++=;②若4c =,则ABC 的周长为54413++=.所以ABC 的周长为13或14.【点拨】本题考查了配方法的应用,偶次方的非负性,三角形的三边关系,熟练掌握完全平方式是解题的关键.。
(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试(包含答案解析)(2)
一、选择题1.如图,Rt ABC ∆中,90,2,3ACB BC AC ︒∠===,点D 在Rt ABC ∆的边AC 上,DC m =,以BD 为直角边在AC 同侧作等腰直角三角形BDE ,使BD DE n ==,连接AE ,若52AEBC S n =四边形,则m 与n 的数量关系式是( )A .6nm =B .5m n +=C .1n m -=D .23n m = 2.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ 3.若32x y +=+322x y -=-22x y - )A .2B .1C .6D .322- 4.下列各式由左到右的变形中,属于分解因式的是( ) A .()a m n am an +=+B .21055(21)x x x x -=-C .2322623a b a b b =⋅D .2166(4)(4)6x x x x x -+=+-+ 5.将3-a b ab 进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 6.对于任何实数m 、n ,多项式2261036m n m n +--+的值总是( )A .非负数B .0C .大于2D .不小于2 7.下列各式中,从左到右的变形是因式分解的是A .22(2)(2)4x y x y x y +-=-B .221()1x y xy xy x y --=--C .a 2-4ab+4b 2=(a-2b )2D .ax+ay+a =a (x+y ) 8.如果917255+能被n 整除,则n 的值可能是( )A .20B .30C .35D .409.下列各式由左到右的变形中,属于因式分解的是( )A .()210x 5x 5x 2x 1-=-B .()()2222a b c a b a b c --=-+-C .()a m n am an +=+D .()()2x 166x x 4x 46x -+=+-+ 10.下列各式由左边到右边的变形中,属于因式分解的是( ) A .()222x y x y +=+B .()24444x x x x -+=-+C .()()2111x x x +-=-D .()210 5521x x x x -=- 11.812﹣81肯定能被( )整除.A .79B .80C .82D .83 12.下列因式分解正确的是( ) A .221144y y y ⎛⎫++=+ ⎪⎝⎭B .()322812246a a a a +=+C .()()22444x y x y x y -=+-D .()2214497m m m -+=-二、填空题13.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.14.分解因式:324x xy -=___________________________________.15.利用1个a×a 的正方形,1个b×b 的正方形和2个a×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.16.若x ,y 是整数且满足225x y xy ++=,则x y +=__________.17.分解因式 -2a 2+8ab-8b 2=______________.18.若多项式2x px q -+(p ,q 是常数)分解因式后,有一个因式是x +3,则3p +q 的值为________.19.(1)可燃冰是一种新型能源,它的密度很小,1cm 3可燃冰的质量仅为0.00092kg .数字0.00092用科学记数法表示是_________________.(2) 把多项式226x x --可以分解因式为(2)x -(___________)20.因式分解:3221218a a a -+=________.三、解答题21.探究题.(1)若28a ab m +=+,217b ab m +=-,求+a b 的值;(2)若实数x y ≠,且220x x -=,220y y -=,求x y +的值.22.分解因式:()()144m m ++()32228x xy -23.分解因式:(1)()22225100x x +-.(2)()()23118127x x ---+.24.分解因式.(1)(1)34x x x --+ (2)2222x xy y a ++- 25.我们知道形如2()x a b x ab +++的二次三项式可以分解因式为()()x a x b ++,所以2267[7(1)]7(1)(7)[(1)](7)(1)x x x x x x x x +-=++-+⨯-=++-=+-. 但小白在学习中发现,对于267x x +-还可以使用以下方法分解因式.22222676979(3)16(3)4x x x x x x +-=++--=+-=+-(34)(34)(7)(1)x x x x =+++-=+-.这种在二次三项式267x x +-中先加上9,使它与26x x +的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了. (1)请使用小白发现的方法把287x x -+分解因式;(2)填空:22222210910________9________(5)16x xy y x xy y x y y -+=-++-=-- 22(5)(________)[(5)________][(5)________]x y x y x y =--=-+-- ()(________)x y x =--;(3)请用两种不同方法分解因式221213x mx m +-.26.因式分解(1)﹣3x 3+6x 2y ﹣3xy 2;(2)2ax 2﹣20ax+50a .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】作EF ⊥AC ,垂足为F ,根据全等的条件可得,△DBC ≌△EDF ,可得CD=EF=m ,AEBC S =四边形S △BDE + S △BDC + S △ADE ,可得出m+n=5.【详解】解:作EF ⊥AC ,垂足为F∴∠EFD=90,ACB ︒∠=∴∠BDC+∠DBC=90°∵三角形BDE 是等腰直角三角形,∴∠EDB=90°,∴∠EDF+∠BDC=90°,∴∠EDF=∠DBC在△DBC 和△EDF 中==EFD DCB EDF DBC ED DB ∠∠⎧⎪∠∠⎨⎪=⎩∴△DBC ≌△EDF (AAS )∴CD=EF=m,∵AC=3,∴AD=AC-CD=3-m∵AEBC S =四边形S △BDE + S △BDC + S △ADE∴AEBC S =四边形111222BD DE DC CB AD FE ⋅+⋅+⋅ =11152(3)2222n n m m m n ⋅+⋅+-⋅= 化简得:22235n m m m n ++-=()()5()n m n m n m +-=-,∵n 是Rt DBC ∆的斜边,m 是直角边∴n-m >0∴5n m +=故答案选:B【点睛】本题主要考查了构造三角形全等,割补法求面积,因式分解,解决本题的关键是构造全等三角表示出面积.2.C解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】解:A 、2105525x x x x x -=⋅-,不是分解因式;B 、()a x y ax ay +=+,不是分解因式;C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式; 故选:C .【点睛】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键. 3.B解析:B【分析】利用平方差公式进行分解因式后计算即可得到答案.【详解】∵3x y +=+,3x y -=-∴=,故选:B.【点睛】此题考查平方差公式分解因式,22()()a b a b a b -=+-,熟记公式并运用解题是关键. 4.B解析:B【分析】根据因式分解的概念,即把一个多项式化成几个整式的积的形式,进行逐一分析判断.【详解】解:A 、该变形是整式乘法,不是因式分解,故本选项不符合题意;B 、符合因式分解的概念,故本选项符合题意;C 、该变形不是多项式分解因式,故本选项不符合题意;D 、该变形没有分解成几个整式的积的形式,故本选项不符合题意.故选:B .【点睛】本题考查因式分解的意义,熟练掌握因式分解的定义是解题关键.5.C解析:C【分析】多项式3-a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;6.D解析:D【分析】利用完全平方公式把原式变形,根据偶次方的非负性解答即可.【详解】解:2261036m n m n +--+226910252m m n n =-++-++22(3)(5)2m n =-+-+,2(3)0m -,2(5)0n -,22(3)(5)22m n ∴-+-+,∴多项式2261036m n m n +--+的值总是不小于2,故选:D .【点睛】本题考查了完全平方公式的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.7.C解析:C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、是因式分解,故本选项正确;D 、右边不是整式积的形式,不是因式分解,故本选项错误;故选C.【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.8.B解析:B【分析】两项的底数可以进行转化,25写成5的平方,利用幂的乘方转化后,就可提取公因数进行分解即可解答.【详解】()91718171717162555555156530+=+=⨯+=⨯=⨯,917255∴+能被n 整除,则n 的值可能是30,故选B .【点睛】本题考查了分解因式在计算中的应用,将所给的式子化成积的形式,关键是将两项的底数转化成相同的.9.A解析:A【分析】根据把一个多项式写成几个整式积的形式叫做因式分解对各选项分析判断后利用排除法求解.【详解】解:A 、10x 2-5x=5x(2x-1)是因式分解,故本选项正确;B 、右边不是整式积的形式,故本选项错误;C 、是整式的乘法,不是因式分解,故本选项错误;D 、右边不是整式积的形式,故本选项错误.故选A.【点睛】本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,熟记因式分解的定义是解题的关键.10.D解析:D【分析】直接利用因式分解的定义逐一分析即可得出答案.【详解】A.()222x y x y +=+属于整式乘法运算,不符合因式分解的定义,故此选项不符合题意,B.()24444x x x x -+=-+,右边不是整式的积的形式,不符合因式分解的定义,故此选项不符合题意,C.()()2111x x x +-=-属于整式乘法运算,不符合因式分解的定义,故此选项不符合题意,D.()210 5521x x x x -=-属于因式分解,符合题意.【点睛】本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.11.B解析:B【分析】原式提取公因式分解因式后,判断即可.【详解】解:原式=81×(81﹣1)=81×80,则812﹣81肯定能被80整除.故选:B .【点睛】本题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解题的关键. 12.D解析:D【分析】直接利用提取公因式法以及公式法分解因式进而判断得出答案.【详解】解:A 、221142y y y ⎛⎫++=+ ⎪⎝⎭,故此选项错误,不符合题意; B 、()322812423a a aa +=+,故此选项错误,不符合题意;C 、()()22422x y x y x y -=+-,故此选项错误,不符合题意;D 、()2214497m m m -+=-,故此选项正确,符合题意;故选:D .【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.二、填空题13.4【分析】根据x2-3x -1=0可得x2-3x =1再将所求代数式适当变形后分两次整体代入即可求得值【详解】解:∵x2-3x -1=0∴x2-3x =1∴==将x2-3x =1代入原式==将x2-3x =1代解析:4【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值.解:∵x 2-3x -1=0,∴x 2-3x =1,∴3223111x x x --+=223132611x x x x -+-+=()22233111x x x x x -+-+将x 2-3x =1代入原式=221113x x x +-+=23)13(x x -+将x 2-3x =1代入原式=314+=,故答案为:4.【点睛】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想. 14.【分析】先提取公因式再用平方差公式分解即可【详解】解:x3-4xy2=x(x2-4y2)=x(x+2y)(x-2y)故答案为:x(x+2y)(x-2y)【点睛】本题考查了分解因式分解因式要先提取公因解析:()()22x x y x y +-【分析】先提取公因式,再用平方差公式分解即可.【详解】解:x 3-4xy 2,=x(x 2-4y 2),=x(x+2y)(x-2y),故答案为:x(x+2y)(x-2y)【点睛】本题考查了分解因式,分解因式要先提取公因式,再运用公式;注意:分解要彻底. 15.a2+2ab+b2=(a+b )2【解析】试题分析:两个正方形的面积分别为a2b2两个长方形的面积都为ab 组成的正方形的边长为a +b 面积为(a +b)2所以a2+2ab +b2=(a +b)2点睛:本题考查解析:a 2+2ab+b 2=(a+b )2【解析】试题分析:两个正方形的面积分别为a 2,b 2,两个长方形的面积都为ab ,组成的正方形的边长为a +b ,面积为(a +b )2,所以a 2+2ab +b 2=(a +b )2.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面16.25或9或或【分析】由题意原式通过整理得到结合xy 是整数进行分析讨论即可求出答案【详解】解:∵∴∴∴∵xy 是整数∴是整数∵∴或或或或或或或;∴或或或或或或或;∴或或或;故答案为:25或9或或【点睛】 解析:25或9或27-或11-.【分析】由题意,原式通过整理得到(21)(21)51x y ++=,结合x 、y 是整数,进行分析讨论,即可求出答案.【详解】解:∵225x y xy ++=,∴22450x y xy ++=,∴224151x y xy +++=,∴(21)(21)51x y ++=,∵x ,y 是整数,∴21x +,21y +是整数,∵151317(1)(51)(3)(17)51⨯=⨯=-⨯-=-⨯-=,∴211x +=,2151y +=,或2151x +=,211y +=,或213x +=,2117y +=,或2117x +=,213y +=,或211x +=-,2151y +=-,或2151x +=-,211y +=-,或213x +=-,2117y +=-,或2117x +=-,213y +=-;∴0x =,25y =,或25x =,0y =,或1x =,8y =,或8x =,1y =,或1x =-,26y =-,或26x =-,1y =-,或2x =-,9y =-,或9x =-,2y =-;∴25x y +=,或9x y +=,或27x y +=-,或 11x y +=-;故答案为:25或9或27-或11-.【点睛】本题考查了二元二次方程的解,因式分解的应用,解题的关键是熟练掌握题意,正确得到(21)(21)51x y ++=,从而利用分类讨论进行解题.17.-2(a-2b)2【详解】解:-2a2+8ab-8b2=-2(a2-4ab+4b2)=-2(a-2b)2故答案为-2(a-2b)2解析:-2(a-2b)2【详解】解:-2a 2+8ab-8b 2=-2(a 2-4ab+4b 2)=-2(a-2b)2故答案为-2(a-2b)218.-9【分析】设另一个因式为因为整式乘法是因式分解的逆运算所以将两个因式相乘后结果得根据各项系数相等列式计算可得3p+q 的值【详解】因为多项式中二次项的系数为1则设另一个因式为则由此可得由①得:③把③ 解析:-9【分析】设另一个因式为x a +,因为整式乘法是因式分解的逆运算,所以将两个因式相乘后结果得2x px q -+,根据各项系数相等列式,计算可得3p+q 的值.【详解】因为多项式2x px q -+中二次项的系数为1,则设另一个因式为x a +,则()()()22233333x px q x x a x ax x a x a x a -+=++=+++=+++, 由此可得33a p a q +=-⎧⎨=⎩①②, 由①得:3a p =--③,把③代入②得:39p q --=,∴39p q +=-,故答案为:9-.【点睛】本题考查了因式分解的意义.解题的关键是掌握因式分解的意义,因式分解与整式乘法是相反方向的变形,二者是一个式子的不同表现形式;因此具体作法是:按多项式法则将分解的两个因式相乘,列等式或方程组即可求解.19.2×10-4【分析】(1)绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定;(2解析:2×10-4 23x +【分析】(1)绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定;(2)根据十字相乘法即可求解.【详解】(1)0.00092=9.2×10-4(2)226x x --=(2)x -(23x +)故答案为9.2×10-4;23x +. 【点睛】此题主要考查科学记数法的表示及因式分解,解题的关键是熟知十字相乘法因式分解的运用.20.【分析】先提公因式然后利用完全平方公式进行因式分解即可得到答案【详解】解:故答案为:【点睛】本题考查了因式分解的方法解题的关键是熟练掌握提公因式法公式法进行因式分解解析:()223a a -.【分析】先提公因式,然后利用完全平方公式进行因式分解,即可得到答案.【详解】解:()()23222121826923a a a a a a a a -+=-+=-, 故答案为:()223a a -.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握提公因式法,公式法进行因式分解. 三、解答题21.(1)5a b +=±;(2)2x y +=.【分析】(1)首先把两式相加,然后根据完全平方公式计算即可;(2)把两式相减,进一步分组因式分解整理得出答案即可.【详解】解:(1)∵28a ab m +=+,217b ab m +=-,两式相加得:22817a ab b ab m m +++=++-,∴()225a b +=, ∴5a b +=±;(2)∵22?0x x -=,22?0y y -=, 两式相减得:()22220x x y y ---=,∴()()()20x y x y x y +---=,∴()()20x y x y +--=,∵x y ≠,∴20x y +-=,则2x y +=.【点睛】本题考查了因式分解的应用,熟练掌握提取公因式法和完全平方公式,平方差公式是解决问题的关键.22.(1)()22m +;(2)()()222x x y x y +- 【分析】(1)将原代数式去括号计算后,直接利用完全平方公式因式分解;(2)先提取公因式,再利用平方差公式因式分解.【详解】解:()()144m m ++244m m =++()22m =+; ()32228x xy -()2224x x y =- ()()222x x y x y =+-.【点睛】本题考查因式分解.一般因式分解时能提取公因式先提取公因式,再看能否运用公式因式分解.23.(1)()()2255x x +-;(2)()234x - 【分析】(1)先利用平方差公式,然后根据完全平方公式进行因式分解;(2)先提取公因式,然后利用完全平方公式进行因式分解.【详解】解:(1)()22225100x x +- ()()2222510x x =+-()()2225102510x x x x =+++-()()2255x x =+-.(2)()()23118127x x ---+()()231619x x ⎡⎤=---+⎣⎦ =()2313x --⎡⎤⎣⎦=()234x -.【点睛】本题考查综合提公因式和公式法因式分解,掌握分解因式的技巧及平方差公式和完全平方公式的结构正确计算是解题关键.24.(1)2(2)x -;(2)()()x y a x y a +++-.【分析】(1)原式整理后,利用完全平方公式分解即可;(2)原式先利用完全平方公式分解因式,再利用平方差公式分解即可.【详解】解:(1)原式=2x −x−3x +4=2x −4x +4=2(2)x -; (2)原式=()2x y +-2a =()()x y a x y a +++-.【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式、平方差公式是解本题的关键. 25.(1)(1)(7)x x --;(2)225y ;225y ;4y ;4y ;4y ;9y ;(3)(13)()x m x m +-【分析】(1)在287x x -+上加16减去16,仿照小白的解法解答;(2)在原多项式上加225y 再减去225y ,仿照小白的解法解答;(3)将213m -分解为13m 与(-m )的乘积,仿照例题解答;在原多项式上加236m 再减去236m 仿照小白的解法解答.【详解】(1)解:287x x -+=2816716x x -++-=2(4)9x --=22(4)3x --=(43)(43)x x -+--=(1)(7)x x --;(2)解:22109x xy y -+=22221025925x xy y y y -++-=22(5)16x y y --=22(5)(4)x y y --=[(5)4][(5)4]x y y x y y -+--=(x-y )(x-9y )故答案为:225y ;225y ;4y ;4y ;4y ;9y ;(3)解法1:原式2[13()]13()(13)()x m m x m m x m x m =++-+⋅-=+-.解法2:原式222212361336x mx m m m =++--22(6)49x m m =+-[(6)7][(6)7]x m m x m m =+++-(13)()x m x m =+-.【点睛】此题考查多项式的因式分解,读懂例题及小白的解法,掌握完全平方公式、平方差公式的结构特征是解题的关键.26.(1)23()x x y --;(2)22(5)a x -.【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【详解】解:(1)﹣3x 3+6x 2y ﹣3xy 2=223(2)x x xy y --+=23()x x y --;(2)2ax 2﹣20ax+50a=22(1025)a x x +﹣=22(5)a x -.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.。
北师大版八年级数学下册第四章因式分解练习题
第四章因式分解一.选择题1.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .(a +b )(a ﹣b )=a 2﹣b 2C .x 2+4x +4=(x +2)2D .ax ﹣a +1=a (x ﹣1)+12.将下列多项式分解因式,结果中不含因式x +1的是( )A .x 2﹣1B .x 2﹣2x +1C .x (x ﹣2)+(x ﹣2)D .x 2+2x +13.把代数式ax 2﹣4ax +4a 分解因式,下列结果中正确的是( )A .a (x ﹣2)2B .a (x +2)2C .a (x ﹣4)2D .a (x ﹣2)(x +2)4.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是( )A .x 3﹣4x 2+4x =x (x 2﹣4x +4)B .x 2y ﹣xy 2=xy (x ﹣y )C .x 2﹣y 2=(x ﹣y )(x +y )D .x 2﹣2xy +y 2=(x ﹣y )25.下列多项式中可以用平方差公式进行因式分解的有( )①﹣a 2b 2;②x 2+x +﹣y 2;③x 2﹣4y 2;④(﹣m )2﹣(﹣n )2;⑤﹣144a 2+121b 2;⑥m 2+2mA .2个B .3个C .4个D .5个6.若x 2+2(m ﹣3)x +16是完全平方式,则m 的值等于( )A .3B .﹣5C .7D .7或﹣17.下列分解因式错误的是( )A .﹣x 2﹣y 2=﹣(x 2﹣y 2)=﹣(x +y )(x ﹣y )B .15a 2+5a =5a (3a +1)C .k (x +y )+x +y =(k +1)(x +y )D .a 3﹣2a 2+a =a (a ﹣1)28.已知△ABC 的三边长分别为a 、b 、c ,判断式子b 2﹣a 2+2ac ﹣c 2的结果是( )A .负数B .正数C .非正数D .非负数9.已知a 为任意整数,且(a +7)2﹣a 2的值总可以被n (n 为自然数,且n ≠1)整除,则n 的值为()A .14B .7C .7或14D .7的倍数 10.如果12-=+a a ,则32223+++a a a 的值为( )A.0B.1C.2D.3二.填空题11.分解因式:x 2﹣25= ;3a 2﹣6ab +3b 2= .12.已知m +n =3,m ﹣n =2,那么m 2﹣n 2的值是 .13.计算:7.56×1.09+1.09×6﹣12.56×1.09= .14.当x 取 时,代数式2﹣取值最大,并求出这个最大值 . 15.如果实数x ,y 满足方程组,那么(x ﹣y )2020= .16.已知a +b ﹣3=0,则多项式2a +2b ﹣4的值为 .17.已知 (19x ﹣31)(13x ﹣17)﹣(13x ﹣17)(11x ﹣23)可因式分解成(ax +b )(8x +c ),其中常数a ,b ,c 均为整数,则a +b +c = .18.小明在抄分解因式的题目时,不小心漏抄了x 的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x □−4y 2(“□”表示漏抄的指数),则这个指数可能的结果共有三.解答题19.把下列各式因式分解:(1)()()()()m y m x m y m x m x ----- (2)()()816186222++++a a a a(3)()222224y x y x -+ (4)ay ax y x 263-+-20.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下: 2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.21.先因式分解,再求值:3x2(a+3)﹣4x2y(a+3),其中a=﹣1,x=3,y=1.22.利用因式分解计算:(1)1999+19992﹣20002(2)1012﹣202×99+992.23.已知a、b互为相反数,且(a+4)2﹣(b+4)2=16,求4a﹣4b的值.24.如图,在一个大圆盘中有4个相同的小圆盘,已知大、小圆盘的半径都是整数,阴影部分的面积为5πcm2.求大、小圆盘的半径.25.发现:任意五个连续整数的平方和是5的倍数.验证:(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸:任意三个连续整数的平方和能被3整除吗?如果不能,余数是几呢?请给出结论并写出理由.26.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.。
北师大版八年级数学下册第四章因式分解章末复习课件(共42张)
章末复习
母题2 (教材P104复习题第1题) 把下列各式因式分解: (1)7x2-63; (2)a3-a; (3)3a2-3b2; (4)y2-9(x+y)2; (5)a(x-y)-b(y-x)+c(x-y); (6)x(m+n)-y(n+m)+(m+n); (7)(x+y)2-16(x-y)2; (8)a2(a-b)2-b2(a-b)2; (9)(x+y+z)2-(x-y-z)2; (10)(x+y)2-14(x+y)+49.
章末复习
相关题1 把下列各式分解因式: (1)5x2-15xy+10xy2; (2)a(x-2)+(2-x)2; (3)2x2y-8xy+8y; (4)(m2+n2)2-4m2n2.
章末复习
解:(1)原式=5x(x-3y+2y2). (2)原式=(x-2)(a+x-2). (3)原式=2y(x2-4x+4)=2y(x-2)2. (4)原式=(m2+n2+2mn)(m2+n2-2mn)=(m+n)2·(m-n)2.
相关题3 求证:不论x取何实数, 多项式-2x4-12x3-18x2的值都不会是 正数.
证明:原式=-2x2(x2+6x+9)=-2x2(x+3)2. ∵-2x2≤0,(x+3)2≥0, ∴-2x2(x+3)2≤0, ∴不论 x 取何实数,原式的值都不会是正数.
章末复习
专题四 因式分解的应用
【要点指点】 因式分解不仅在数值计算、代数式的化简求值等方 面有广泛的应用, 在解决实际问题时也同样重要.通过学习和应用 因式分解, 能使我们的视察能力、运算能力、逻辑思维能力、探究 能力得到提高.
(完整版)北师大版八年级下册数学第四章因式分解精练习题
因式分解专题1.( 2016 吴中期末)下列等式从左到右的变形中,属于因式分解的是( )2 2 2A.x2 6x x(x 6) B. (x 3)2 x2 6x 92 2 2 2C. x2 4 4x (x 2)(x 2) 4x D . 8x2 y 2xy2 4xy22 . (2016滨州)把多项式x2 ax b分解因式,得(x+1 ) (x - 3)则a, b的值分别是()A . a=2 , b=3 B. a= —2, b= —3 C. a= —2, b=3 D . a=2 , b= —3 3.(2016 梅州)分解因式a2b b3结果正确的是( )A .b(a+b )(a—b)B. b( a b)2C. b(a2b2)2D. b(a b)24.下列各式分解正确的是()A 2 2 2 212xy29x2y23xy 2(43xy) 2B. 3x2y 3xy 3y 3y(x2 x 1)C. x2 xy 2x x(x y 2) D . x 2y 5xy y y(x25y)5 .多项式5mx3 25mx2 10mx各项的公因式是_________________________ .6. 因式分解:ab—a= ____________________7. 因式分解:x2 4xy 4y2 __________________8. 因式分解:(1) y2 16 (2) m(m 1) m 1 (3) (x 1)2 2(x 1) 19. 【类比精练】1.(2015 春?连云港期末)将下列各式因式分解:1 ) 25x2 36y2(2) 3x2y 6xy 3y10 .例2.若x2 4x 3与x2 2x 3的公因式为x-c,则c的值为()A. -3B. -1C. 1 D . 311. 【类比精练】(2016温州一模)多项式x2 1与多项式x2 2x 1的公因式是()A . x - 1 B. x+1 C. x2 - 1 D .(x - 1)212. 例3.若.x y y24y 4 0 ,求xy 的值13. (2016 澧县期末)已知x2 y2 4x 6y 13 0,求x2 6xy 9y2的值.14. 下列各组多项式中,没有公因式的是()22ab a2 A . ax - bx 和by - ay B. 6x+12y 和2x - 4 C. a+b 和a - b D. a+b 和b15. (2016 保定期末)计算:101 1022 101 982=()A . 404B . 808C . 40400D . 8080016. (2016泾阳期中)多项式12x3 9x2 3x中各项的公因式是 _______________________17. 因式分解:因式分解:2 (a- b)2 -8(b- a)18. (2016 常州)因式分解:_____________________________________ x-2x2 + x=19. (2016洪泽泽期末)x - y = 2, xy = 3,则x2y- xy2___________________20. 若(x-5)(x + 3)是由x- kx T5分解而来的,则k = _____________________21. 已知x2 + x -1 = 0,则则代数x3 + 2x2 +2015的值值为2.因式分解:(2x + y ) - (x + 2y )23. (2016故城期末)已知a - b = 5, ab= 3,求代数式a 3b -2a 2b 2 + ab 3的值5.已知 x2+y 2+2x-6y+10=0, 求 x+y 的值第四章 分解因式综合测试题、选择题1.下列各式中从左到右的变形,是因式分解的是()(A)(a+3)( a-3)=a 2-9 (B)x 2+x- 5=( x- 2)(x+3)+1(C)a 2b+ ab 2= ab (a+ b)1 (D)x 2+1= x(x+ )x2.下列各式的因式分解中正确的是()(A)-a 2+ab-ac= -a(a+b-c)(B)9xyz- 6x 2y 2=3 xyz (3 - 2xy)(C)3a 2x-6bx+3 x=3x(a 2-2b)3.把多项式m 2(a-2)+m (2-a )分解因式等于( )(A)(a-2)(m 2+m) (B)(a-2)(m 2-m) (C)m(a-2)(m-1)(D)m(a-2)(m+ 1)4. 下列多项式能分解因式的是()(A)x 2-y(B)x 2+1(C)x 2+y + y 2(D)x 2- 4x+45. 下列多项式中,不能用完全平方公式分解因式的是(1 1(D)2xy 2+2灼=尹(心2m2 2(A) m 1(B) x 2 2xy y 246. 多项式4X 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的 单项式不可以是()(A)4X(B)-4X(C)4X 4(D)-4X 47. 下列分解因式错误的是( )(A)15 a 2+5 a=5 a(3a+1) (B)-x 2-y 2= - (x 2-y 2)= - (X + y)(x-y) (C)k(x+y)+x+y=( k+1)( x+y ) (D)a 3-2a 2+ a= a(a-1)28.下列多项式中不能用平方差公式分解的是( )(A)-a 2+b 2(B)-x 2-y 2(C)49x 2y 2-z 2(D)16 m 4-25 n 2p 29. 下列多 项式:① 16X 5-X ;②(X -1)2-4(X - 1)+4 ;③(X +1) 4-4X (X +1)+4 X 2 ;④-4X 2-1+4X ,分解因式后,结果含有相同因式的是()(A)①②(B)②④ (C)③④ (D)②③10. 两个连续的奇数的平方差总可以被 k 整除,则k 等于( )(A)4(B)8(C)4 或-4(D)8 的倍数二、填空题11. 分解因式:m 3- 4m = __________ .12. 已知 X + y=6,xy=4,则 x 2y + xy 2 的值为 ______ .13. _______________________________________________________ 将x n -y n 分解因式的结果为(x 2+y 2)(x+y)(x-y),则n 的值为 __________________________ . 14. 若 ax 2+24 x+b=(mx-3)2,贝U a= _____ , b = ____ , m = ____ .15. 观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分(C) a 2 14ab 49b 2(D )n - |n93Lt □2解因式的公式,这个公式是________________ : 、(每小题6分,共24分)1 116.分解因式:(1)-4x3+16 x2-26x⑵一a2(x-2a)2- - a(2a-x)32 432a(x a) 4b(a x) 6c(x a);(3) 56x 3yz+14x 2y 2z — 21xy 2z 218. 分解因式:(1)-3ma 3+6 ma 2-12 ma19、分解因式(1) 5(x y)3 10(y x)2;23(2) 18b(a b)212(a b)3;17.分解因式:(1) 4xy - (x 2-4y 2)1 1⑵-严b)2+4(a --b)2(4)m n(m — n) — m(n — m)⑵ a2(x-y)+b 2(y-x)117 17 3131 3120. 分解因式: ⑴ 丄ax 2y 2+2 axy+2 a(2)(x 2-6x)2+18( x 2-6x)+812(3) £x 2n -4x n21. 将下列各式分解因式:222244(1) 4m 9n ; (2) 9(m n) 16(m n) ; (3) m 16n ;22 •分解因式(1) (x y)210(x y) 25 ;23.用简便方法计算: (1)57.6 X 1.6+28.8 X 36.8-14.4 X8042 2 4(2) 16a72a b 81b ;(2)39 X 37-13 X 34(3). 13.719.8 口 2.524 •试说明:两个连续奇数的平方差是这两个连续奇数和的 2倍a25 •如图,在一块边长为a 厘米的正方形纸板四角,各剪去一个边长为 b(b< -)厘米的正方形,利用因式分解计算当 a=13.2,b=3.4时,剩余部分的面积。
北师大版八年级下册第四章因式分解方法技巧 专题练习
第四章因式分解方法技巧专题练习一、知识点:1.因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解。
因式分解也可称为分解因式。
2.分解因式与整式乘法的关系:分解因式与整式乘法是两种方向相反的变形。
3.公因式(1)公因式的概念:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式。
(2)确定多项式的公因式的方法:①系数:公因式的系数是多项式各项系数的最大公约数;②字母:字母取多项式各项中都含有的相同的字母;③指数:相同字母的指数取各项中最小的一个,即字母最低次幂;注:多项式各项的公因式可以是单项式,也可以是多项式。
4.提公因式法-分解因式(1)定义:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
(2)提公因式法-分解因式方法步骤:①第一步,找出公因式;②第二步,提公因式,即用多项式除以公因式.(3)提注意事项公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式.注意事项:①多项式是几项,提公因式后也剩几项。
②当多项式的某一项和公因式相同时,提公因式后该项剩余1(不能漏写1)。
③当多项式第一项系数是负数,通常先提出“-”号,使括号内第一项系数变为正数,注意括号内各项都要变号。
④公因式可以是单项式,也可以是多项式,5.公式法-分解因式常用公式(1)平方差公式:()()bababa-+=-22;(2)完全平方公式:a2±2ab+b2=(a±b)2(3)完全立方和公式: a3+b3=(a+b)(a2-ab+b2).(4)完全立方差公式:a3-b3=(a-b)(a2+ab+b2).(5)三项完全平方和公式:a2+b2+c2+2ab+2bc+2ca=(a+b+c)2(6)三项立方和公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);二、专项练习专题练习一分解因式的常用方法:一提二用三查,即先考虑各项有无公因式可提;再考虑能否运用公式来分解;最后检查每个因式是否还可以继续分解,以及分解的结果是否正确。
北师大版八年级下册数学第四章因式分解精练习题
因式分解专题9.【类比精练】 1 .( 2015 春连云港期末)将下列各式因式分解: 10. 例2.若x 2 4x 3与x 2 2x 3的公因式为x -c ,则c 的值为() A .-3B .-1C .1D .311. 【类比精练】(2016 温州一模)多项式 x 2 1与多项式 x 2 2x 1的公因式是( )A . x - 1B . x+1C . x2- 1D .( x - 1 ) 212. 例3若x y y 2 4y 4 0,求xy 的值y 2 4x 6y 13 0,求 x 2 6xy 9y 2 的值.A . a=2, b=3B . a=- 2, b=- 3C . a=- 2, b=3D . a=2, b=-33.((2016梅州)分解因式a 2b b 3结果正确的是(:)A . b ( a+b )( a - b )B . b (a b )2C . b ( 22a b )D . b(ab)24. 下列各式分解正确的是( )A 2 2 212xy 9x y 3xy 2(4 3xy) 2B. 3x y 3xy 3y 23y(x x 1)C2 x xy 2xx(x y 2) D . x 2y5xy yy(x 25y)5. 多项式 5mx 3225mx10mx 各项的公因式是_______________________6. 因式分解: ab - a= ___7. 因式分解: x 224xy 4y _________8. 因式分解:( 1 ) y 2 16 ( 2) m(m 1) m1 ( 3) ( x 1)2 b 分解因式,得(x+1) (x -3)2. ax 2(x 1) 12016 滨州)把多项式 x 2 1. A .( 2016 吴中期末)下列等式从左到右的变形中,属于因式分解的是( 2x 2 6x x (x 6)22B. (x 3)2 x 26x 9C. x 2 4 4x (x 2)(x 2)4x2 2 2D . 8x y 2xy4xy则 a , b 的值分别是( ) 1 ) 25x 2 36y 2 ( 2) 3x 2 y 6xy 3y 13. (2016澧县期末)已知x 214. 下列各组多项式中,没有公因式的是()A. ax- bx和by- ayB. 6x+12y和2x-4C. a+b 和a- bD. a+b和b22ab a215. (2016 保定期末)计算:101 1022 101 982=()A. 404B. 808C. 40400D. 8080016. (2016泾阳期中)多项式12x3 9x2 3x中各项的公因式是_______________________17. 因式分解:因式分解:2 (a- b)2 -8 (b- a),. 3 218. (2016常州)因式分解: _____________________________________ x -2x + x =19. (2016洪泽泽期末)x - y = 2, xy = 3,则x2y - xy 2______________________若(x -5)(x +3)是由x- kx T5分解而来的,则k =21.已知x2 +x T = 0,则则代数x3 +2x2 +2015的值值为2. 因式分解:(2x + y)2- (x + 2y)23. (2016故城期末)已知a- b = 5, ab= 3,求代数式a3b -2a2b2 + ab3的值5.已知x2+y2+2x-6y+10=0求x+y 的值第四章分解因式综合测试题一、选择题1. 下列各式中从左到右的变形,是因式分解的是( )(A)(a+3)(a-3)=a2-91(B)x2+x-5=(x-2)(x+3)+1 (C)a2b+ab2=ab(a+b) (D)x2+1=x(x+ —)x2. 下列各式的因式分解中正确的是( )(A)-a2+ab-ac= -a(a+b-c)(B)9xyz-6x2y2=3xyz(3-2xy) (C)3a2x-6bx+3x=3x(a2-2b)(D)1xy2+1x2y=1xy(x+y)2 2 23. 把多项式m2(a-2)+m(2-a)分解因式等于( )(A)(a-2)(m2+m) (B)(a-2)(m2-m) (C)m(a-2)(m-1) (D)m(a-2)(m+1)4. 下列多项式能分解因式的是( )(A)x2-y (B)x2+1 (C)x2+y+y2(D)x2-4x+45. 下列多项式中,不能用完全平方公式分解因式的是( )(A)m 1 (B) x2 2xy y2(C) a2 14ab 49b26. 多项式4«+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是( )(A)4x (B)-4x (C)4x4(D)-4x47. 下列分解因式错误的是( )(A)15a2+5a=5a(3a+1) (B)-x2-y2= -(x2-y2)= -(x+y)(x-y)(CX (x+y)+x+y=(k+1)(x+y) (D)a3-2a2+a =a(a-1)28. 下列多项式中不能用平方差公式分解的是( )(A)-a2+b2(B)-x2-y2(C)49x2 y^z2(D)16m4-25n2p29. 下列多项式:① 16X5-X;②(X-1)2-4(X-1)+4;③(x+1)4-4x(x+1)+4x;④-4x2-1+4x,分解因式后,结果含有相同因式的是( )(A)①②(B)②④(C③④(D)②③10. 两个连续的奇数的平方差总可以被k整除,则k等于((A)4 (B)8 (C)4 或-4 (D)8 的倍数二、填空题11. ___________________________ 分解因式:m3-4m = .12. 已知x+y=6,xy=4,贝U x2y+xy2的值为___ .13. 将x n-y n分解因式的结果为(《+y2)(x+y)(x-y),则n的值为 ______14. 若ax2+24x+b=(mx-3)2,贝U a= __ ,b= _____ ,m= ____ .15. 观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是三、(每小题6分,共24分) 16分解因式:(Ddx^lGX^Gx(3) 56x 3yz+14XVz — 21xy 2z 218分解因式:(1)-3ma 3+6ma 2-12ma 19、分解因式23(2) 18b(a b) 12(a b);(3) 2a(x a) 4b(a x) 6c(x a);3 2(1) 5(x y) 10(y x);17分解因式:⑴Axy-^dy 2)(2)£(2a-b )2+4(a -2b)1 1 ⑵-a 2(x-2a)2- a(2a-x)324(4)m n(m — n) — m(n — m)⑵ a 2(x-y)+b 2(y-x)20分解因式: ⑴刁ax 2y 2+2axy+2a ⑵(x 2-6x)2+18(x 2-6x)+811(3) 72x 2n -4x n21.将下列各式分解因式:23.用简便方法计算: (1)X +x(2)39X 37-13X 3424.试说明:两个连续奇数的平方差是这两个连续奇数和的 2倍(3).17 31 19.8 口 31 2.5 17312 2(1) 4m 9n ;2 2(2) 9(m n) 16(m n);(3) m 4 16n 422.分解因式(1) (x2y) 10(x y) 25;(2) 16a 4 72a 2b 2 81b 4 ;25•如图'在一块边长为a 厘米的正方形纸板四角'各剪去一个边长为b (吩) 厘米的正方形,利用因式分解计算当 a=,匕=时,剩余部分的面积。
北师大版数学八年级下册因式分解强化练习题
北师大版数学八年级下册因式分解强化练习题第四章因式分解期末复题题型一:直接提公因式1、因式分解:xy-y=y(x-1)2、分解因式:x^2+2x=x(x+2)3、分解因式:x^2-4=(x+2)(x-2)4、分解因式:2a^2-4a=2a(a-2)5、因式分解:2x^3-x^2=x^2(2x-1)6、分解因式:ax+ay=a(x+y)7、分解因式:7x^321x^2=7x^2(x-3)8、分解因式:x^23x=x(x+3)题型二:直接用公式平方差公式:a^2b^2(a b)(a b)a+b)^2=a^2+2ab+b^2a-b)^2=a^2-2ab+b^2完全平方公式:(a+b)^2=a^2+2ab+b^2a-b)^2=a^2-2ab+b^21、分解因式:x^2-25=(x+5)(x-5)2、分解因式:x^2-4=(x+2)(x-2)3、因式分解:a^2+5a=a(a+5)4、分解因式:x^2-4=-1(x+2)(x-2)5、因式分解:2-4y^2=-2(2y+1)(y-1)6、分解因式:4x^2-1=(2x+1)(2x-1)7、分解因式:4x+2x+1=2(2x+1)^28、分解因式:16-8(x-y)+(x-y)=(4-x+y)^2题型三:先提公因式,再套平方差或者完全平方公式。
A:先提后套平方差1、分解因式:2x8=2(x-4)2、因式分解:x^3-x=x(x+1)(x-1)3、分解因式:x^3-4x=x(x^2-4)=(x+2)(x-2)x4、分解因式:2x^2-18=2(x^2-9)=2(x+3)(x-3)5、分解因式:9a-ab^2=a(9-b^2)=a(3+b)(3-b)6、因式分解:a^3-a=a(a^2-1)=a(a+1)(a-1)7、因式分解:x^3-9x=x(x^2-9)=(x+3)(x-3)x8、分解因式:8a^2-2=2(4a^2-1)=2(2a+1)(2a-1)9、因式分解:x^3y^2-x^5=x^3(y^2-x^2)=x^3(y+x)(y-x)B:先提后套完全平方1、分解因式:x^2y2xy y=(x-y)^22、因式分解:x^32x^2y xy^2=x(x-y)^23、因式分解:a^2b+2ab+b=(a+b)^24、分解因式:8xy8xy2y=2y(1-4xy)5、把多项式(m+1)(m-1)+(m-1)提公因式(m-1)后,余下的部分是()A.m+1.B.2m。
北师大版八年级数学下册第四章-分解因式-(基础+提高)
第四章分解因式考点一:分解因式的概念1、下列变形中,从左向右是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6x B.x2﹣8x+16=(x﹣4)2C.(x﹣1)2=x2﹣2x+1D.x2+1=x(x+)考点二:因式分解1、下列分解因式中,正确的个数为()x2+2xy+x=x(x2+2y);x2+4x+4=(x+2)2;—x2+y2=(x+y)(x—y)A.3个B.2个C.1个D.0个2、下列多项式中,能运用公式法进行因式分解的是()A.a2+b2B.x2+9 C.m2﹣n2D.x2+2xy+4y23、小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )A.我爱美B.宜晶游C.爱我宜昌D.美我宜昌4、若分解因式x2+mx-24=(x+3)(x+n),则m的值为。
已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),另一个因式为。
5、甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=_______6、因式分解9a2(x-y)+4b2(y-x) x2+2xy+y2-4(m+1)(m﹣9)+8m.x2+4xy﹣5y24x2+4xy+y2﹣4x﹣2y﹣3.考点三:利用因式分解计算1、2016×2016﹣2016×2015﹣2015×2014+2015×2015的值为()。
A.1 B.﹣1 C.4032 D.40312、3(4+1)(42+1)(44+1)+13、考点四:利用因式分解化简求值1、已知xy=8,x﹣y=2,求代数式x3y﹣x2y2+xy3的值为.2、a+1+a(a+1)+a(a+1)2+……+a(a+1)2014= .3、已知a2+b2+4a﹣2b+5=0,则的值为()A.3 B.C.﹣3 D.4、已知x2+x-1=0,则代数式x3+2x2+2014= .5、化简求值:(2x-1)2(3x+2)+(2x-1)(3x+2)2-x(1-2x)(3x+2),其中x=1.考点五:利用因式分解证明整除问题1、能被下列数整除的是( )A.3B.5C.7D.92、已知58-1能被20-—30之间的两个整数整除,则这两个整数是 .3、如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如:自然数12321,从最高位到个位排出的一串数字是:1,2,3,2,1,从个位到最高排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如:22,545,3883,34543,…,都是“和谐数".(1)请你直接写出3个四位“和谐数";请你猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数",设其个位上的数字为x(,x为自然数),十位上的数字为y,求y与x的函数关系式.考点六:利用因式分解解决几何问题1、若、、为的三边长,且满足,,则的形状是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形2、设是一个直角三角形两条直角边的长,且,则这个直角三角形的斜边长为.3、已知a、b、c为△ABC三边的长.(1)求证:a2﹣b2+c2﹣2ac<0.(2)当a2+2b2+c2=2b(a+c)时,试判断△ABC的形状.4、已知是△ABC的三边长,是△ABC的最短边且满足,求的范围。
北师大版八年级数学下册第四章因式分解回顾与思考
种变形叫做把这个多项式分解因式.
二第四、章多| 项复式习 分解的几种常用方法 1.什么叫提公因式法 如果多项式的各项含有公因式,可以把这个公 因式提出来,从而将多项式化成两个因式乘积 的形式,这种分解因式的方法叫做_提__公__因_式__法. 2.什么叫公式法 如果把乘法公式反过来,那么就可用来把某些 多项式分解因式.要求熟练运用于因式分解的 公式:
第四章 复习因式分解
知识归纳
一、因式分解的有关概念 1.什么叫因式
几个整式相乘,每个整式叫做_因___式_.例如(x-
3)(x+1)=x2-2x-3,x-3和x+1都是x2-2x-3的 因式.
2.什么叫公因式 多项式各项都含有的相同因式,叫做这个多项式各
项的__公__因__式__.
3.什么叫因式分解
(1)平方差公式:a2-b2=(a+b)(a-_b__); (2)完全平方公式:a2±2ab+b2=(a±__b_)2.
考点攻略
►考点一 分解因式
例1 7x2 y 14 xy2 49 x2 y2
解析:经观察可提出多项式中各项的公因式 7xy
解:7x2 y 14 xy2 49 x2 y2 7xyx 2 y 7xy
解:1.9a2 b2 13
3a b3a b 13
3a b 13,3a b 1 a 2, b 7 当a 2为腰长时,2 27,舍去;当b 7为腰长时, 7 727 7,则三角形的周长为7 7 2 16
2( . 1)a c 2 b 2 a c ba c b
3、小明在抄分解因式的题目时,不小心漏抄了 x 的指数,他只知
道该数为不大于 10 的正整数,并且能利用平方差公式分解因