人教A版高二数学选修1-1课件:第三章 3.1.1&3.1.2变化率及导数 (共59张PPT)

合集下载

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.1.3

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.1.3
切线方程为y-__f_(_x0_)_=__f′_(_x_0)_(_x-__x_0_)_____.
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
函数y=f(x)的导函数
确定
导数
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
合作探究 课堂互动
高效测评 知能提升
答案: x+y-2=0
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
过点P的切线
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
(1)求曲线在点P处的切线的斜率; (2)求曲线在点P处的切线方程.
[思路点拨]
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修1-1
第三章 导数及其应用
标.
(3)求切线的斜率f′(x0); (4)由斜率间的关系列出关于x0的方程,解方程求x0; (5)点(x0,y0)在曲线f(x)上,将(x0,y0)代入求y0得切点坐
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升

2014年人教A版选修1-1课件 3.1 变化率与导数

2014年人教A版选修1-1课件 3.1  变化率与导数

x

练习: (补充) 运动员起跳后相对于水面的高度 h (m) 与起跳后 的时间 t (s) 存在函数关系 h(t) 4.9t2+6.5t+10. 求以 下时间段的函数增量 △h 和自变量增量 △t, 并求出 该段的平均变化率, 解释其物理意义. (1) 0 t 65 ; (2) 0 t 65 ; (3) 65 t 65 . 98 49 49 98 解: (1) h h( 65 ) h(0) 49 65 65 2 4.9 ( ) + 6.5 + 10 (4.9 02 + 6.5 0 + 10) 49 49 0. h 0 0. 实际是 65 65 t 0 . t 65 这样吗? 49 49 49 65 ]这时段的平均速度为 0. 计算得 t 在 [0, 49
练习: (补充) 运动员起跳后相对于水面的高度 h (m) 与起跳后 的时间 t (s) 存在函数关系 h(t) 4.9t2+6.5t+10. 求以 下时间段的函数增量 △h 和自变量增量 △t, 并求出 该段的平均变化率, 解释其物理意义. (1) 0 t 65 ; (2) 0 t 65 ; (3) 65 t 65 . 98 49 49 98 解: (3) h h( 65 ) h( 65 ) 49 98 65 65 65 65 2 2 4.9 ( ) + 6.5 + 10 (4.9 ( ) + 6.5 + 10) 49 49 98 98 13 65 13 65 . h 4 98 4 98 13 . t 65 4 65 65 65 t . 98 49 98 98 这时段的平均速度为负, 速度是向下的.

高中数学 3.1.1《导数及其应用》课件 新人教版A选修1-1

高中数学 3.1.1《导数及其应用》课件 新人教版A选修1-1
第三章 导数及其应用
微积分主要与四类问题的处理相关:
• 一、已知物体运动的路程作为时间的函数, 求物体在任意时刻的速度与加速度等; • 二、求曲线的切线; • 三、求已知函数的最大值与最小值; • 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函 数增减、变化快慢、最大(小)值等问题 最一般、最有效的工具。
应用:
• 例2 将原油精练为汽油、柴油、塑胶等各种不同 产品,需要对原由进行冷却和加热。如果第 x(h) 时,原由的温度(单位:0C)为 f(x)=x27x+15(0≤x≤8).计算第2(h) 和第6(h)时,原由 温度的瞬时变化率,并说明它们的意义。
关键是求出:
f x 3 x f 再求出lim x 0 x
r (V2 ) r (V1 ) V2 V1
问题2 高台跳水
在高台跳水运动中,运动员相对于水面的高 度h(单位:米)与起跳后的时间t(单位:秒)存 在函数关系 h(t)=-4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度粗略地 描述其运动状态?
请计算
0 t 0.5和1 t 2时的平均速度v :
它说明在第2(h)附近,原油 温度大约以3 0C/H的速度下降; 在第6(h)附近,原油温度大 约以5 0C/H的速度上升。

瞬时速度?
• 我们用
h (2 t ) h (2) lim 13.1 t 0 t
表示 “当t=2, Δt趋近于0时,平均速度趋于确定值 -13.1”. • 那么,运动员在某一时刻t0的瞬时速度?
ht( 0 t) ht( 0) lim t0 t
导数的定义:
从函数y=f(x)在x=x0处的瞬时变化率是:

高中数学(人教版选修1-1)配套课件:第3章 导数及其应用3.1.1~3.1.2

高中数学(人教版选修1-1)配套课件:第3章 导数及其应用3.1.1~3.1.2
解析答案
题型二 物体运动的瞬时速度 例2 一辆汽车按规律s=2t2+3(时间的单位:s,位移的单位:m)做直线 运动,求这辆汽车在t=2 s时的瞬时速度. 解 设在t=2 s附近的时间增量为Δt, 则位移的增量Δs=[2(2+Δt)2+3]-(2×22+3)=8Δt+2(Δt)2. 因为ΔΔst=8+2Δt,Δlit→m0 ΔΔst=Δlit→m0 (8+2Δt)=8, 所以这辆汽车在t=2 s时的瞬时速度为8 m/s.
,即 f′(x0)=lim Δx→0
Δy Δx
= lim Δx→0
fx0+ΔΔxx-fx0.
答案
返回
题型探究
重点突破
题型一 平均变化率
例1 已知函数h(x)=-4.9x2+6.5x+10.
(1)计算从x=1到x=1+Δx的平均变化率,其中Δx的值为①2;②1;
③0.1;④0.01. 解 ∵Δy=h(1+Δx)-h(1)=-4.9(Δx)2-3.3Δx,∴ΔΔyx=-4.9Δx-3.3. ①当 Δx=2 时,ΔΔyx=-4.9Δx-3.3=-13.1; ②当 Δx=1 时,ΔΔyx=-4.9Δx-3.3=-8.2; ③当 Δx=0.1 时,ΔΔyx=-4.9Δx-3.3=-3.79; ④当 Δx=0.01 时,ΔΔyx=-4.9Δx-3.3=-3.349.
人教版七年级上册Unit4 Where‘s my backpack?
超级记忆法-记忆方法
TIP1:在使用场景记忆法时,我们可以多使用自己熟悉的场景(如日常自己的 卧室、平时上课的教室等等),这样记忆起来更加轻松; TIP2:在场景中记忆时,可以适当采用一些顺序,比如上面例子中从上到下、 从左到右、从远到近等顺序记忆会比杂乱无序乱记效果更好。
lim

新版高中数学人教A版选修1-1课件:第三章 导数及其应用 3.1.1-3.1.2

新版高中数学人教A版选修1-1课件:第三章 导数及其应用 3.1.1-3.1.2
第三章 导数及其应用
-1-
3.1 变化率与导数
-2-
3.1.1 变化率问题 3.1.2 导数的概念
-3-
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z 重难聚焦 HONGNAN JVJIAO
D 典例透析 IANLI TOUXI
1.了解导数概念的实际背景. 2.会求函数在某一点附近的平均变化率. 3.会利用导数的定义求函数在某点处的导数.
P1(x1,f(x1)),P2(x2,f(x2))所在直线的斜率.
(6)平均变化率的物理意义是把位移s看成时间t的函数s=s(t),在
时间段[t1,t2]上的平均速度,即
������
=
������(������2)-������(������1 ������2-������1
)
.
2.函数的平均变化率和瞬时变化率的关系
f(x)-f(x0).
x-x0
D 典例透析 IANLI TOUXI
123
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z 重难聚焦 HONGNAN JVJIAO
D 典例透析 IANLI TOUXI
【做一做 3】 求函数 y= ������在������ = 1 处的导数.
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z 重难聚焦 HONGNAN JVJIAO
D 典例透析 IANLI TOUXI
123
1.平均变化率
我们把式子 ������(������2)-������(������1) 称为函数������(������)从������1 到������2 的平均变化率.

人教A版高中数学选修1-1第三章3.1.1变化率问题教学课件

人教A版高中数学选修1-1第三章3.1.1变化率问题教学课件

我们都吹过气球,回忆一下吹气球的过程, 可以发现,随着气球内空气容量的增加,气 球的半径增加越来越慢.
从数学角度,如何描述这种现象呢?
问题一:气球膨胀率 气球的体积V(单位:L)与半径r(单
位:dm)之间的函数关系是:
V (r) 4 r3
3
用V 表示r得:
r(V ) 3 3V
4
问题一:气球膨胀率
我们称它为函数 y f (x)在x x0处的导数;
例1将原油精练为汽油、柴油、塑胶等各种
不同产品,需要对原由进行冷却和加热。如
果第 x(h)时,原油的温度(单位:0C)
为 y f (x) x2 7x 15(0 x 8).计算第2(h)和第 6(h)时,原油温度的瞬时变化率,并说明它
们的意义。 关键是求出:
则平均变化率为:y 20 5x x
探 究
计算:运动员在 0 t 65
49
这段时间内的平均速度,
并思考下面的问题: P73
(1)运动员在这段 时间里是静止的吗?
(2)你认为用平均速度描述运动员的运动状态有 什么问题吗?
平均速度只是粗略地描述这段时间内运动员 运动的快慢,不能反应他在这段时间里运动状态, 需要用瞬时速度描述运动状态。
x1 x2 x
平均变化率表示函数图像上两点连线的斜
率,即割线的斜率。
随堂练习
1.函数 f (x) x2 在区间 1,3上的平均变化率( )
A. 4 B. 2
C. 1
4
D. 3
4
2.求函数y=5x2+6在区间[2,2+△x]内的平均变化
率。
解:y 5(2 x)2 6 (5 22 6) 20x 5x2
它说明在第2(h)附近,原 油温度大约以3 0C/H的速 度降落;在第6(h)附近, 原油温度大约以5 0C/H的

人教A版高中数学选修1-1课件 3.1导数的概念课件

人教A版高中数学选修1-1课件 3.1导数的概念课件

lim f ( x0 Δx) f ( x0 ) lim f
x0
x
x0 x
称为函数 y = f (x) 在 x = x0 处的导数, 记作 f ( x0 )

y |xx0
,即
f (x0 )
lim
x0
f
( x0
Δx) x
f (x0 )
.
1
.
f
(
x
0
)与
x

0







x
0






3.质量为10kg的物体,按照s(t)=3t2+t+4的规 律做直线运动,
(1)求运动开始后4s时物体的瞬时速度;
(2)求运动开始后4s时物体的动能。
(E
1 2
mv2
)
4.求函数y=3x2在x=1处的导数.
分析:先求Δf=Δy=f(1+Δx)-f(1)
=6Δx+(Δx)2
再求
f 6 x x
再求 lim y 6 x0 x
△t = – 0.000001,v 13.0999951 △t =0.000001,v 13.1000049
……
……
从2s到(2+△t)s这段时间内平均速度
v h 13.1 4.9t t
当△ t 趋近于0时, 即无论 t 从小于2的一边, 还是从大于2的一边趋
近于2时, 平均速度都趋近与一个确定的值 –13.1.
温度大约以3℃/ h的速率下降C ; 在第6h附近,原油温度大约以5℃ / h的速率上升.
当堂练习
1.计算第3h和第5h时原油的瞬时变化率, 并说明它们的意义.

人教A版高中数学选修1-1课件1、3-1-1

人教A版高中数学选修1-1课件1、3-1-1

5.一般地,函数 y=f(x)在 x=x0 处的瞬时变化率是 Δlixm→0 f(x0+ΔΔxx)-f(x0)=Δlixm→0 ΔΔxf,我们称它为函数 y=f(x)在 x
= x0 处 的 导 数 , 记 作 f′(x0) 或 y′|x = x0 , 即 f′(x0) = Δlixm→0 f(x0+ΔΔxx)-f(x0).
C.54
D.81
[答案] C
[解析] s(t)=2t3,Δs=s(3+Δt)-s(3)=2Δt3+18Δt2+
54Δt,
ΔΔst=2Δt2+18Δt+54,在 t=3 秒时的瞬时速度为:
Δlit→ m0 ΔΔst=Δlit→ m0 (2Δt2+18Δt+54)=54.
3.当自变量x0变到x1时,函数值的增量与相应自变量
的增量之比是函数
()
A.在区间[x0,x1]上的平均变化率 B.在x0处的变化率 C.在x1处的导数 D.在区间[x0,x1]上的导数 [答案] A
[解析] 由平均变化率的定义可知A正确.
4.已知f(x)=x2-3x,则f′(0)=
A.Δx-3
B.(Δx)2-3Δx
C.-3
D.0
[答案] C
()
[解析]
[例 1] 求函数 y=x3 在 x0 到 x0+Δx 之间的平均变化 率,并计算当 x0=1,Δx=12时平均变化率的值.
[分析] 直接利用概念求平均变化率,先求出表达式, 再直接代入数据就可以得出相应的平均变化率.
[解析] 当自变量从 x0 变化到 x0+Δx 时,函数的平均 变化率为f(x0Δ+xΔx)=(x0+ΔΔxx)3-x03=3x20+3x0Δx+(Δx)2.
ΔΔyx=a,∴Δlixm→0 ΔΔyx=a,∴f′(1)=a=2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档