壳聚糖功能性敷料止血性能的实验研究

合集下载

壳聚糖在医用敷料中的应用研究进展

壳聚糖在医用敷料中的应用研究进展

壳聚糖在医用敷料中的应用研究进展引言:医用敷料是指覆盖在伤口或疾病部位上的材料,具有保护、促进愈合和预防感染的功能。

在过去的几十年里,壳聚糖作为一种生物可降解材料,在医学领域的敷料应用中得到了广泛的关注。

壳聚糖不仅具有良好的生物相容性和生物可降解性,同时还具有抗菌、抗炎和促进伤口愈合等多种生物活性,使其成为研究人员关注的热点。

本文将综述壳聚糖在医用敷料中的应用研究进展,包括壳聚糖材料的制备方法、壳聚糖敷料的性能以及其在伤口愈合、抗菌和抗炎方面的应用。

一、壳聚糖材料的制备方法壳聚糖是由壳聚糖酶从壳酸壳聚糖中切割得到的高分子多糖,可以从海洋生物中提取得到。

壳聚糖的制备方法包括壳聚糖的提取与精制、壳聚糖的化学修饰以及壳聚糖的表面改性等。

提取与精制方法包括酸碱法、酶解法、微波法和超临界流体法等,其中酸碱法是最常用的提取方法。

化学修饰可以改变壳聚糖的溶解性、降解速度和生物活性等,常用的化学修饰方法有羟基化、甲基化和吡咯化等。

表面改性可以增加壳聚糖材料的生物相容性和机械性能,常用的表面改性方法有接枝聚合和共价结合等。

二、壳聚糖敷料的性能壳聚糖敷料具有多种良好的性能,包括优异的生物相容性、生物可降解性和可调控性。

壳聚糖作为生物材料,与人体组织相容性良好,不会引起明显的毒性或免疫反应。

同时,壳聚糖具有良好的生物可降解性,能够被细胞分泌的酶降解,最终形成无毒的代谢物。

壳聚糖具有可调控性,可以通过调整壳聚糖的结构和特性,来实现敷料的不同功能。

例如,调节壳聚糖的分子量可以改变敷料的机械性能和溶解速度;改变壳聚糖的表面形貌可以影响敷料的附着性和渗透性。

三、壳聚糖在伤口愈合中的应用壳聚糖敷料在伤口愈合中的应用主要表现在促进创面愈合、改善创面湿润度和减轻疼痛等方面。

首先,壳聚糖敷料可以通过形成透气的保护层,防止创面感染和进一步污染。

其次,壳聚糖敷料具有良好的持水性,可以保持创面湿润,促进细胞的迁移和新生血管的形成。

此外,壳聚糖敷料还可以释放活性物质,如生长因子和抗菌剂,来促进伤口的愈合和预防感染。

壳聚糖功能性敷料的作用

壳聚糖功能性敷料的作用

壳聚糖功能性敷料的作用一般身上出现伤口的时候,我们要么是用贴创口贴,要么是使用敷料,但是传统的处理伤口的方法,并不是那么的严格,仅仅只是覆盖到伤口,并没有抵御外部感染的作用,所以就诞生了新型的现代医学伤口敷料,名为壳聚糖功能性敷料。

壳聚糖功能性敷料,相较于传统敷料来说,壳聚糖敷料不仅仅覆盖到伤口上,并且还会防止伤口受到外部感染,并且能够创造出,促进伤口愈合的微环境,所以,这种敷料,在现代医学中,是非常受重视的,经研发,现在的市面上的壳聚糖敷料,一共有六大功能。

一、止痛功能使用壳聚糖敷料处理伤口的时候,壳聚糖能够对伤口起到润肤作用,并且会有一些清凉的感觉,并且,经过医学研究发现,壳聚糖还具有吸收伤口处“致痛因子”的作用,由此,壳聚糖可以起到舒缓伤口疼痛的功能,二、止血功能壳聚糖所带的正电荷和细胞表面所具有的负电荷能够相互吸引,能够快速的使血红细胞聚集,从而达到快速止血的功能,原理就是壳聚糖可以使细胞快速凝聚,然后给伤口止血的功能。

三、免疫作用壳聚糖通过刺激体内巨噬细胞往伤口处移动,能够提高伤口处的免疫能力,从而具有一一定的免疫功能。

四、抑菌功能壳聚糖有一定的抑制作用,原理就是壳聚糖所带的正电荷和微生物菌细胞所带的负电荷相互作用,会使得菌内的蛋白质和其他细胞的成分泄露,从而达到抑菌的作用。

五、促进愈合壳聚糖能够促进伤口处上皮细胞、角质细胞等的生长,促进巨噬细胞产生活性因子,能够达到促进愈合的作用。

六、减少瘢痕壳聚糖能够通过促进上皮细胞生长的同时抑制不正常纤维细胞的过度生长,起到减少皮肤留瘢痕的作用。

壳聚糖功能性敷料和传统的敷料,有很大的不同,壳聚糖敷料有着对伤口的处理、抑菌、促进愈合、减少瘢痕的作用,所以现代医学非常的重视壳聚糖敷料,并且得到了广泛的应用。

羧宁液体伤口能够促进伤口愈合,加快愈合时间。

羧甲基壳聚糖的性能及应用概况

羧甲基壳聚糖的性能及应用概况

羧甲基壳聚糖的性能及应用概况一、本文概述《羧甲基壳聚糖的性能及应用概况》这篇文章旨在全面介绍羧甲基壳聚糖(Carboxymethyl Chitosan,简称CMC)的基本性能及其在各个领域的应用情况。

羧甲基壳聚糖是一种由壳聚糖经过化学改性得到的水溶性多糖衍生物,具有良好的水溶性、生物相容性、生物可降解性和独特的物理化学性质。

由于其独特的性质,羧甲基壳聚糖在医药、食品、环保、农业和化妆品等多个领域得到了广泛应用。

本文将系统介绍羧甲基壳聚糖的基本性质、合成方法、改性技术,以及在不同领域中的应用实例和研究进展,以期为相关领域的研究人员和企业提供有价值的参考信息,推动羧甲基壳聚糖在各领域的应用和发展。

二、羧甲基壳聚糖的基本性质羧甲基壳聚糖(Carboxymethyl chitosan,简称CMC)是一种重要的壳聚糖衍生物,具有一系列独特的物理化学性质。

其最基本的性质源于其分子结构中的氨基和羧基官能团,这些官能团赋予了CMC出色的水溶性、离子交换能力和生物活性。

羧甲基壳聚糖的溶解性相较于未改性的壳聚糖有了显著提升。

由于羧甲基的引入,CMC在水中的溶解度大大增加,可以在广泛的pH值范围内溶解,这使得其在各种水溶液体系和生物应用中具有更大的灵活性。

CMC具有良好的离子交换能力。

其分子中的羧基可以发生电离,产生带有负电荷的离子,从而与带有正电荷的离子进行交换。

这种离子交换性质使得CMC在重金属离子吸附、水处理、药物载体等领域具有广泛的应用前景。

羧甲基壳聚糖还表现出良好的生物相容性和生物活性。

其分子结构中的氨基和羧基可以与生物体内的多种物质发生相互作用,如蛋白质、多糖、核酸等,从而显示出良好的生物相容性。

其生物活性使得CMC在生物医药、组织工程、生物传感器等领域具有潜在的应用价值。

羧甲基壳聚糖的基本性质使其在多个领域具有广泛的应用前景。

随着科学技术的不断发展,对CMC的研究和应用将会越来越深入,其在各个领域的应用也将不断拓展。

壳聚糖论文:壳聚糖伤口敷料复合膜稀土离子抑菌

壳聚糖论文:壳聚糖伤口敷料复合膜稀土离子抑菌

壳聚糖论文:壳聚糖伤口敷料复合膜稀土离子抑菌【中文摘要】本文以壳聚糖(CS)为主要原料,以流延法和冷冻干燥法两种制备工艺制得了壳聚糖基伤口敷料。

通过单因素实验,以膜的外观、透气率、吸水率、pH值为性能指标,对壳聚糖基伤口敷料的配方和工艺条件进行研究,探讨了配方和工艺条件对敷料膜各项性能的影响,并采用扫描电镜(SEM)、红外光谱(IR)、热重分析(TGA)对复合膜的结构和性能进行表征。

在优化好的配方基础上添加稀土元素铈离子,探讨了稀土离子的添加对膜吸水率,透气率,抑菌性能的影响。

结果表明:流延法制备了性能良好的壳聚糖伤口敷料膜,用硝酸铈对其进行表面修饰,表面修饰对复合膜的吸水性能和透气性能影响甚微,使膜的抑菌性能明显提高。

本文还研究了复合膜的阻菌性能。

通过体外细菌透过性实验表明,两种工艺研制的敷料膜均可抵御大肠杆菌和金黄色葡萄球菌的侵入。

【英文摘要】In order to prepare chitosan-basedwound-dressing of simple formula and good performance,the film was prepared by casting and freeze-drying.To integrate the appearance of membrane, water vapor permeation, water absorbance, pH, we got the formula and the conditions by the research. During the research,we gained the effect of different formula and conditions on the performance of membrance.Thestructure and properties were characterized by SEM(scanning electron microscopy),IR(Infrared Absorption spectroscopy)...【关键词】壳聚糖伤口敷料复合膜稀土离子抑菌【采买全文】1.3.9.9.38.8.4.8 1.3.8.1.13.7.2.1同时提供论文写作定制和论文发表服务.保过包发.【说明】本文仅为中国学术文献总库合作提供,无涉版权。

壳聚糖敷料国内外研究导读

壳聚糖敷料国内外研究导读

壳聚糖敷料国内外研究导读佚名分享| 收藏壳聚糖是甲壳素脱乙酰基衍生物,具有生物相容性好以及可生物降解等优点;明胶是动物胶原经温和断裂后的产物。

二者均具有良好的成膜性和黏度,具有良好的透气率和吸胀性,这对于膜吸收伤口渗出液和创面保湿非常有利。

用于伤口护理的明胶-壳聚糖敷料的文献报道,较早见诸于由英联邦政府于二十世纪80年代申请的美国专利US4572906。

自90年代末以来,随着组织工程医学的发展,美国、日本、意大利、韩国、中国等国家纷纷对这种生物医学材料予以高度关注。

实验已经证明,明胶-壳聚糖敷料具有良好的柔韧性、吸胀性和透气功能,是烧(创)伤后新鲜创面覆盖敷料的良好选择。

1984年英联邦政府申请的美国专利US4572906揭示了一种用于伤口护理的明胶-壳聚糖敷料,明胶-壳聚糖的重量比为3:1~1:3,还包括0-40%w/w(基于明胶、壳聚糖总重量)的相容的增塑剂山梨糖醇或甘油[1]。

1998年日本产业技术中心Maeda, Takuya等人将明胶和壳聚糖在稀蚁酸溶液中混合,20℃下润胀1小时,在60℃下溶解,然后在10℃玻璃板上干燥72小时。

所得到的明胶-壳聚糖膜用UV(254 nm)照射0、1或6小时(温度23℃,相对湿度50%)。

经历16小时UV照射的明胶-壳聚糖膜在pH 1.8条件下72小时后完全溶解[2]。

2000年韩国Kim, Min Jo等人申请的韩国专利KR2001016482揭示了壳聚糖、明胶和水作为主要成分的软凝胶具有水溶性、生物亲合力、生物降解性、抗菌性,可以吸收伤口分泌物,因此可以被用作伤口护理。

软胶的制备有四个步骤:(1)向明胶中加入水,加入0.1-5%有机酸,加入1-30%壳聚糖,摇晃1小时获得流体溶液;(2)使流体溶液硬化,得到易于成型的凝胶;(3)使凝胶成型为软膜;(4)干燥固化胶膜,得到水溶性固体膜[3]。

2001年意大利U.O Dermatologia对壳聚糖乙醇酸酯凝胶和交联明胶伤口敷料存在下,大鼠组织修复的形态学和免疫组化特性进行了比较和评价。

以壳聚糖,海藻酸盐为基础的新型止血材料有什么作用?

以壳聚糖,海藻酸盐为基础的新型止血材料有什么作用?

以壳聚糖,海藻酸盐为基础的新型止血材料有什么作用?随着科学技术的进步,人们活动的范围也越来越大,而各种意外事故也接踵而至,其中大部分伤者因为大量失血得不到有效治疗而导致死亡。

如何快速高效地在突发事件或大型手术中为患者止血显得格外重要。

目前,临床医疗中常见的止血材料有纤维蛋白胶、明胶海绵、氧化纤维素、微纤维胶原等,这些止血材料或多或少存在着诸如透气性差,伤口愈合缓慢等缺点。

接下来,就带你了解一下吧!而人们研究发现,存在于广袤海洋中的天然多糖高分子化合物壳聚糖,海藻酸盐不仅具有优异的生物相容性,生物可降解性,而且其突出的止血性能和抑菌性对于有效降低患者出血量以及减轻患者在治疗过程中的痛苦都有十分巨大的应用价值。

而以壳聚糖和海藻酸盐为基础原料开发新型高效的止血材料也成为了未来研究的热点。

2 壳聚糖壳聚糖又可称为脱乙酰甲壳素,是一种广泛存在于海洋中的天然碱性多糖,是通过对几丁质脱乙酰得到的,其化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。

这种纯天然高分子物质具有很好的生物相容性和可降解性,止血性能显著,是止血材料的首选原料。

在特定的条件下,壳聚糖能发生水解、烷基化、酰基化、羧甲基化、磺化、硝化、卤化、氧化、还原、缩合和络合等化学反应,可生成各种具有不同性能的壳聚糖衍生物,使其在生物医疗,食品加工,吸附和排泄重金属以及农业等领域都有十分重要的应用。

图1 壳聚糖分子结构2.1 单纯的壳聚糖敷料美国一家公司曾利用壳聚糖为基材研制出一款止血绷带,这种止血绷带与伤口处的渗出液接触后,能够利用壳聚糖自身所携带的正电荷吸引带负电荷的血红细胞,从而使血红细胞得以快速凝聚减少伤者的失血量。

又由于壳聚糖本身具有一定的抑菌性,使得这种止血绷带能够有效防止伤口处的细菌感染,促进受伤组织快速愈合。

此外,有研究人员比较了这种新型壳聚糖止血纱布与各种纱布的止血效果,结果表明,新型壳聚糖止血纱布在无人工按压的情况下更能起到快速止血的作用,从而有效减少伤者的血液流失。

壳聚糖的研究

壳聚糖的研究

壳聚糖的研究郑英奇 04300079壳聚糖[CS, (1 , 4) - 2- 氨基- 2- 脱氧- B- D - 葡聚糖]是目前自然界中发现的膳食纤维中唯一带正电荷的动物纤维, 分子内存的大量游离氨基, 使得其溶解性能较甲壳素有很大提高, 同时反应活性大大增强, 引起人们的广泛关注[ 1 ]。

壳聚糖分子中的氨基、羟基与大部分重金属离子形成稳定螯合物的性质, 可应用于贵金属回收、工业废水处理; 其天然生物活性的直链聚阳离子结构具有抑菌、消炎、保湿等功能, 可用于医药、化妆品配方等领域; 特别是经过化学改性得到的壳聚糖衍生物, 其物理化学性质得到改善, 使其应用范围大大拓展, 因此壳聚糖及其衍生物的开发及应用研究已引起人们广泛的兴趣。

本文就其功能化及其作为生物医用高分子材料方面的研究进行了简要综述。

1 壳聚糖的功能化及其在生物医用高分子材料方面的应用同其它碳水化合物一样, 壳聚糖也可以发生交联与接枝、酯化、氧化、醚化等反应, 生成一系列各具其特殊功能的新材料。

1. 1 壳聚糖的接枝反应及其在生物医用高分子方面的应用近几年壳聚糖的接枝共聚研究进展较快, 较为典型的引发剂是偶氮二异丁腈、Ce (IV ) [ 2 ]和氧化还原体系。

壳聚糖C6- 伯, C3- 仲羟基及C2-氨基皆可以成为接枝点, 通过接枝反应, 可将糖基、多肽、聚酯链、烷基链等引入到壳聚糖中, 赋予壳聚糖新的性能。

单纯的壳聚糖作为药物释放包覆物, 有溶解性差、对pH 的依赖性太强和机械性能不好等缺点, 而接枝上具有水溶性、生物相容性好的PVA 后, 能极大地改善其对药物的释放行为, 且满足H iguch i’s 扩散模型[ 3 ]。

在壳聚糖上接枝唾液酸的一部分, 有望成为人类红细胞凝结的抑制剂 , 壳聚糖上NH2 的正电荷与细胞表面的脂质体的负电荷(如唾液酸) 相结合后, 可抑制细胞的活动能力, 从而抑制细菌生长; 低聚体的壳聚糖能穿透细胞壁, 进入细菌的细胞内, 抑制其细胞中mRNA 的形成, 从而抑制细菌的生长。

美司特止血粉作为新型壳聚糖止血粉止血作用的实验研究

美司特止血粉作为新型壳聚糖止血粉止血作用的实验研究

美司特止血粉作为新型壳聚糖止血粉止血作用的实验研究美司特速效止血粉通用名称壳聚糖粉状医用功能敷料主要成分壳聚糖是由β-(1,4)糖苷键连接的氨基葡萄糖大分子天然聚合物,是自然界中唯一带有正电荷作用的多糖。

壳聚糖具有多种生物学功能,作为创伤修复材料,国内外大量科学研究结果证明:具有良好的止血作用、抗菌抑菌作用、镇痛作用、加快创面伤口愈合和减少疤痕增生等作用。

实验目的:探讨通过剂型改造和结构改变制备的一种新型壳聚糖止血粉的止血作用。

实验方法;取成年SD大鼠24只,雌雄不限,体重210g~240g,制备肝中叶切除出血模型,根据切口使用止血材料不同随机分为 3 组(n=8),A1组300 mg 云南白药,B1 组300 mg pH6.5 的新型壳聚糖止血粉,C1 组300 mg pH7.5 的新型壳聚糖止血粉,记录出血时间及出血量。

采用Lee 等方法进行体外促凝血实验。

分别取0.2 mL 终浓度为0.2 mg/mL 的云南白药(A2 组)、pH6.5 的新型壳聚糖止血粉(B2 组)及pH7.5 的新型壳聚糖止血粉(C2 组)溶液,与2mL 新西兰兔耳中央动脉血混匀,记录凝血时间。

并取B2 组及C2 组壳聚糖血凝块进行扫描电镜观察。

实验结果A1、B1 及C1 组出血时间分别为(292±31)、(261±23)、(224±28)s,出血量分别为(1.63±0.21)、(1.47±0.18)、(1.18±0.17)g;B1 组及C1 组出血时间及出血量与A1 组比较,差异均有统计学意义(P<0.05);且C1组优于B1组(P<0.05)。

A2、B2及C2组凝血时间分别为(653±41)、(255±20)、(202±11)s,B2、C2 组与A2 组比较,差异均有统计学意义(P<0.05);且C2 组优于B2 组(P<0.05)。

改性壳聚糖制备及止血性能探究

改性壳聚糖制备及止血性能探究

改性壳聚糖制备及止血性能探究摘要:壳聚糖是一种天然高分子聚合物,属于氨基多糖,学名为[ (1. 4) -2-乙酰氨基-2-脱氧-β -D-葡萄糖]。

是至今为止发现的唯一带阳离子电荷的碱性多糖,壳聚糖在自然界中广泛存在于低等生物菌类,藻类的细胞,节肢动物虾、蟹、昆虫等的外壳中。

生物相容性好、毒性低、可生物降解,广泛应用于食品、医药、保健、生物工程等领域。

近年来由于其诸多独特物理化学性质和广阔应用前景而越来越受到人们的重视。

壳聚糖分子结构中的氨基基团比甲壳素分子中的乙酰氨基基团反应活性更强,使得该多糖具有优异的生物学功能并能进行化学修饰反应。

因此,壳聚糖被认为是比纤维素具有更大应用潜力的功能性生物材料。

本文对壳聚糖、以及壳聚糖改性机理、改性方法、改性壳聚糖在止血材料中的相关应用、止血效果等方面进行研究与探讨。

关键词:壳聚糖;改性;止血海绵;止血材料不可控的急性出血一直是难以解决的问题,尤其是在战场和事故中。

战场上50%的死亡是由过度失血所致,入院前的及时止血可以为后续入院救治争取宝贵的时间。

目前,现有的商业化的止血材料分别为基于沸石、蒙脱石和高岭土的无机硅铝酸盐止血剂以及基于壳聚糖的有机高分子止血剂。

其中,无机硅铝酸盐止血剂具有多孔结构,能够浓缩血液成分,从而促进凝血。

高分子止血剂主要利用了壳聚糖的黏附机制,快速地封堵伤口,加速凝血。

但是,这些材料都有各自的缺点,沸石在吸收血液时会大量放热,易灼烧伤口;蒙脱石和高岭土.易残留堵塞血管;壳聚糖基止血剂的止血能力弱于无机材料,且机械强度较低,不足以抵抗动脉血压的冲击和实际应用中的压力和撕扯。

因此,对壳聚糖进行改性、研发安全高效的止血剂对军事医学和外科医疗具有重要意义。

一、壳聚糖简介壳聚糖又名脱乙酰甲壳质、可溶性甲壳素、聚氨基葡萄糖,为类白色粉末,无臭,无味。

本品微溶于水,几乎不溶于乙醇。

本品是一种阳离子聚胺,在pH<6.5时电荷密度高。

壳聚糖是一种带有活泼羟基与氨基的线型聚电解质,是天然多糖甲壳素脱除部分乙酰基的产物,具有生物降解性、生物相容性、无毒性、抑菌、抗癌、降脂、增强免疫等多种生理功能,广泛应用于食品添加剂、纺织、农业、环保、美容保健、化妆品、抗菌剂、医用纤维、医用敷料、人造组织材料、药物缓释材料、基因转导载体、生物医用领域、医用可吸收材料、组织工程载体材料、医疗以及药物开发等众多领域和其他日用化学工业[1]。

介入诊疗术后应用壳聚糖敷料联合充气止血绷带的研究

介入诊疗术后应用壳聚糖敷料联合充气止血绷带的研究

皮 肤淤 斑 发 生 率 比较
糖 止 血 敷 料 和 充 气 止 血 绷 带 均 系 一 次 性 无 菌 物 品 , 止 重 复 利 禁 用 , 用 时 注 意无 菌操 作 。 使 综 上 所 述 : 桡 动 脉 人 路 实 施 冠 状 动 脉 检 查 治 疗 术 后 病 人 经
应 用 壳 聚糖 止 血 敷 料 联 合 充 气 止 血 绷 带 压 迫 止 血 可 显 著缩 短 压
较两组病人局部压迫 时间、 出血 并 发 症 和 皮肤 淤 斑 情 况 。[ 果] 结 实验 组 较 对 照 组 压 迫 止 血 时 间 明 显 缩 短 ( < 0 0 1 , P . 0 ) 出血 并 发 症 发 生 率 明显 减 少( P<0 0 ) 皮肤 淤 斑 发 生 率 明 显 减 少( O 0 1 。[ 论 ] 桡 动 脉 途 径 实施 冠 状 动 脉 介 入 检 查 和 治 疗 后 应 用 壳 .5 , P< . 0 ) 结 经
ba d g fer it v to al a n s s a d tea men n a e a t n er en i n g o i n r t di t
陆芸 岚
Lu Yu ln( fl t d Te t o l ’ s i lo n j Unv riy, h n h i2 0 7 ia n a Afia e n h Pe p e S Ho pt fTo g i ie st S a g a 0 0 2Ch n ) i a
12 2 压 迫 方 法 ..
对 照 组 单 纯 采 用 桡 动 脉 充 气 止 血 绷 带 方 法
空气 后 , 除 动 脉 鞘 管 开 始 至 完 全 放 去 气 囊 内空 气 , 拔 观察 1 i 0r n a 皮肤 穿刺 点不 出 血 为 止 。 出 血并 发症 包 括 肉 眼 可见 皮 肤 穿 刺 点 冒血 、 血 , 渗 以及 桡 动 脉 穿刺 点 出 现 2c ×2c 以上 的 高 出 皮 m m 肤表 面 圆 形边 缘不 清 肿 块 或 可 触 及 的 囊性 结 节 ] 5。皮 肤 淤斑 为 皮 肤 表 面 直 径 大 于 1c 呈 暗 红色 或紫 色 的皮 下 片状 出血 。 m 12 4 统 计 学 方 法 ..

壳聚糖伤口敷料的研究进展

壳聚糖伤口敷料的研究进展
Park 等 用 [34~38] 冻 融 和 辐 射 交 联 反 应 将 聚 乙 烯
醇(PVA)、 聚(N- 乙 烯 吡 咯 烷 酮)(PVP)、 聚 乙 烯 二 醇 (PEG) 和 壳 聚 糖 制 成 PVA/PVP/PEG/ 壳 聚 糖 水 凝 胶 ; Choi 等[39]也 用 冻 融 和 辐 射 交 联 反 应 将 聚 乙 烯 醇(PVA)、 聚(N- 乙 烯 吡 咯 烷 酮)(PVP)、 己 烯 二 醇 和壳聚糖制成 PVA/PVP/ 己烯二醇 / 壳聚糖水凝胶。 动物实验表明制得的复合壳聚糖水凝胶对伤口治疗 效 果 和 抗 菌 活 性 得 到 了 明 显 改 善 ; Park 等[40]还 用 冻 融 和 辐 射 交 联 反 应 将 聚 乙 烯 醇(PVA)、 聚(N- 乙 烯吡咯烷酮)(PVP)、和壳聚糖制成 PVA/PVP/ 壳聚 糖水凝胶。并在该壳聚糖水凝胶上面覆盖一层聚氨 酯薄膜, 很好的改善了壳聚糖水凝胶的凝胶化和凝 胶强度, 其水汽蒸发速率也得到了降低。更适用于 伤口的治疗。Alencar 等[41]用相反转技术将聚乙烯 醇(PVA)和壳聚糖乳酸盐(ChL)混合制成水凝胶。向 PVA/ChL 混合膜加载抗感染药物呋喃西林, 该膜对 呋喃西林有缓释作用。血液实验表面, PVA/ChL 混 合膜与血液的相容性比单聚合物的更好, 白鼠体内 实验也证明了这点。 2.3 纤维材料
第 13 卷 第 2 期 Vol.13 No.2
华南热带农业大学学报 JOURNAL OF SOUTH CHINA UNIVERSITY OF TROPICAL un . 2007
壳聚糖伤口敷料的研究进展
王华明 王 江
( 华南热带农业大学基础学院 海南儋州 571737)
壳 聚 糖 对 于 伤 口 的 治 疗 具 有 多 种 优 异 性 能[9],

壳聚糖功能性敷料止血性能实验研究

壳聚糖功能性敷料止血性能实验研究

壳聚糖功能性敷料止血性能的实验研究【摘要】目的:对比两种功能型敷料:壳聚糖功能性敷料(本项目已申请国家专利,专利号:zl 2011 1 0057512.8)藻酸盐功能性敷料(本项目已申请国家专利,专利号:zl 2009 1 0214067.4)的止血性能。

方法:取新西兰兔10只,在背部两侧去毛后对称性剪5个直径2cm 的圆形创口,分别用与创面大小相当的壳聚糖功能性敷料和藻酸盐功能性敷料止血,观察与创面的粘附情况,记录出血时间;止血停止后,将壳聚糖功能性敷料和藻酸盐功能性敷料放入预先配制好的氰化高铁血红蛋白检测试剂中仔细清洗,用分光光度计在540nm 波长处光度比色,测出的hb 光度吸收值表示出血量。

结果:壳聚糖功能性敷料和藻酸盐功能性敷料均与创面粘附较好,壳聚糖功能性敷料、藻酸盐功能性敷料的出血时间分别为(80.3±15.6)s、(83.6±20.6)s,hb 光度吸收值分别为(1.069±0.423)、(1.135±0.612),经统计学分析,两组数据无显著性差异(p>0.05),壳聚糖功能性敷料不优于藻酸盐功能性敷料。

结论:壳聚糖功能性敷料与藻酸盐功能性敷料均具有较好的止血性能。

【关键词】壳聚糖功能性敷料;藻酸盐功能性敷料;止血1.资料1.1壳聚糖功能性敷料、藻酸盐功能性敷料:广东泰宝医疗科技股份有限公司研制。

1.2 新西兰兔:中山大学动物实验中心提供。

1.3 异戊巴比妥钠粉剂:国药集团购买。

1.4 氰化高铁血红蛋白检测试剂:上海楷洋生物工程有限公司购买。

1.5 722s 型分光光度计:广东泰宝医疗科技股份有限公司实验中心提供。

1.6 其他物品由广东泰宝医疗科技股份有限公司实验中心提供。

2.方法2.1 手术方法健康成年新西兰兔10只,雌雄各半,体重(2.5±0.20)kg,麻醉方法:按30mg/kg 体重于兔耳缘静脉缓慢注入3%异戊巴比妥钠。

壳聚糖功能性敷料和传统的医用敷料有什么区别?

壳聚糖功能性敷料和传统的医用敷料有什么区别?

壳聚糖功能性敷料和传统的医用敷料有什么区别?传统的医用敷料仅能覆盖伤口,已经不能满足现代临床伤口护理的需求。

近年来,壳聚糖作为现代医用伤口敷料的应用受到高度重视,壳聚糖及其衍生物适用于医用伤口敷料,具有能抵御伤口受机械等因素(如损伤、碰撞、炎症等)损害,污染和化学剌激;防止伤口过于潮湿或过度干燥,预防伤口二度感染;极大地减少电解质及能量丢失,对伤口实行全面保护;能通过主动影响伤口愈合过程,创造促进伤口愈合的微环境。

医用敷料行业专家还归纳了如下壳聚糖功能性敷料的5大作用,不难看出,壳聚糖功能性敷料是伤口快速愈合的”神器“。

止痛作用壳聚糖功能性敷料对伤口疼痛有很好的舒缓作用。

国内外专家研究发现壳聚糖与伤口接触时能起到清凉而舒服的润肤作用。

研究发现,壳聚糖由于吸收了炎症部位释放出来的致痛因子而起到止痛作用。

凝血作用科学家进行的血液凝结实验表明,壳聚糖有加速止血的作用,对人和动物血液中的红血球都有凝聚作用,认为这是由于壳聚糖分子链所带的正电荷和与细胞表面带负电荷的胞壁酸的相互吸引而产生粘合作用。

由于壳聚糖与红血球的粘合作用引起细胞的聚集,从而促进血液的凝结,起到止血的作用。

抑菌作用科研工作者研究发现,壳聚糖及其衍生物对细菌、酵母、真菌等微生物都有很好的抑制作用,如:表皮葡萄球菌,大肠杆菌和白色念珠菌以及烧伤病人易出现的绿脓杆菌、金黄色葡萄球菌和化脓性金黄色葡萄球菌等。

一种看法认为:由于壳聚糖分子中所带的正电荷和微生物细胞膜所带的负电荷的相互作用,导致细菌的蛋白质和其它细胞成分的泄漏而产生抗菌作用。

此外,壳聚糖可以激发许多组织的抵抗能力;作为一种水性键合剂并抑制不同的酶;低分子量的壳聚糖可以进入微生物的细胞,通过抑制DNA转变为RNA来抑制细胞的生长。

局部免疫作用刺激巨噬细胞等移行至伤口部位,提高伤口部位的局部免疫力。

促进愈合,减少瘢痕1) 促进愈合:促进与创面愈合相关细胞的生长,如促进正常成纤维细胞、上皮细胞和角质细胞的生长;促进巨噬细胞产生有助于创面愈合的活性因子,从而促进创面愈合;促进皮肤创伤组织的微血管再生,改善血液循环,从而加速创面愈合;2)壳聚糖与细胞间质中粘多糖类基质的分子结构相近,细胞相容性好,为皮肤细胞的生长提供了有利的环境,有利于创面愈合;3)通过促进上皮细胞生长、抑制不正常成纤维细胞的过度生长来阻止瘢痕的形成。

壳聚糖的实验报告(3篇)

壳聚糖的实验报告(3篇)

第1篇一、实验目的1. 学习壳聚糖的提取方法。

2. 探究壳聚糖的性质及其应用。

3. 了解壳聚糖在食品、医药等领域的应用前景。

二、实验原理壳聚糖是一种天然的高分子多糖,由甲壳素经过脱乙酰化反应得到。

壳聚糖具有良好的生物相容性、生物降解性、抗菌性、成膜性等特性,广泛应用于食品、医药、环保等领域。

三、实验材料与仪器1. 材料:虾壳、稀盐酸、氢氧化钠、无水乙醇、氯仿、硫酸铜、硫酸锌、硫酸钠等。

2. 仪器:电子天平、恒温加热器、电热鼓风干燥箱、研钵、烧杯、滴定管、移液管、容量瓶、锥形瓶、玻璃棒等。

四、实验步骤1. 壳聚糖的提取(1)将虾壳洗净,晾干,剪碎。

(2)将虾壳放入烧杯中,加入适量的稀盐酸,加热煮沸,搅拌,使虾壳中的甲壳素溶解。

(3)过滤,取滤液,用氢氧化钠调节pH值至7-8。

(4)将调节pH值后的溶液加热煮沸,使壳聚糖析出。

(5)过滤,取滤饼,用无水乙醇洗涤,去除杂质。

(6)将洗涤后的滤饼放入电热鼓风干燥箱中,干燥至恒重。

2. 壳聚糖的性质研究(1)溶解性:将干燥后的壳聚糖加入适量的氯仿中,观察壳聚糖在氯仿中的溶解情况。

(2)成膜性:将壳聚糖溶液滴在玻璃板上,待溶液蒸发后,观察壳聚糖薄膜的形成情况。

(3)抗菌性:将壳聚糖溶液滴在含有细菌的培养基上,观察细菌的生长情况。

(4)生物降解性:将壳聚糖溶液滴在土壤中,观察壳聚糖在土壤中的降解情况。

五、实验结果与分析1. 壳聚糖的提取经过实验,成功提取出壳聚糖,干燥后的壳聚糖呈白色粉末状。

2. 壳聚糖的性质研究(1)溶解性:壳聚糖在氯仿中溶解度较低,说明其具有一定的溶解性。

(2)成膜性:壳聚糖溶液在玻璃板上形成薄膜,说明其具有良好的成膜性。

(3)抗菌性:壳聚糖溶液对细菌具有一定的抑制作用,说明其具有良好的抗菌性。

(4)生物降解性:壳聚糖在土壤中逐渐降解,说明其具有良好的生物降解性。

六、结论1. 成功提取出壳聚糖,干燥后的壳聚糖呈白色粉末状。

2. 壳聚糖具有良好的溶解性、成膜性、抗菌性和生物降解性。

壳聚糖儿茶酚在止血方面的研究进展

壳聚糖儿茶酚在止血方面的研究进展

壳聚糖儿茶酚在止血方面的研究进展摘要:外伤性大出血是导致休克的主要原因。

院前急救通常是由于意外发生导致的伤者在接受专业医疗设备诊疗前的急救方式。

多学科分析表明,约2.5%的死亡是可以通过在不可控出血刚发生时采用止血药物或介入治疗等方式避免的。

有效控制出血,可将战伤死亡率降低50%,近年来以壳聚糖儿茶酚为材料的止血器材得到重视。

关键词:儿茶酚;止血材料;壳聚糖一、壳聚糖的应用原理壳聚糖是甲壳素经脱乙酰化制成的,而甲壳素是广泛存在于自然界的一种多糖生物高分子化合物,是仅次于植物纤维的一种生物高分子化合物。

最早是由欧吉尔从甲壳纲动物的硬壳中提取的,并命名为甲壳质(又名几丁质),甲壳素自发现以来备受科学家的关注,目前已被广泛应用于医学领域,大量研究表明壳聚糖具有抑制癌症、降血压、降血糖等作用,制成各种相关产品;有实验证明壳聚糖还具有促进创面愈合,减少创面感染等作用,应用于烧伤创面的治疗中;壳聚糖和甲壳素具有促凝血作用,这一作用的机理可能为:壳聚糖与甲壳素表面带有大量电离子,当其与血液接触时,可瞬时吸附血液蛋白于其表面形成一层蛋白膜,这些蛋白包括:血浆白蛋白、纤维蛋白原、凝血酶等,蛋白又可以介导血小板的吸附,从而使这些物质在材料表面通过复杂的聚合反应最终形成血凝块,从而达到止血的目的。

二、壳聚糖类产品目前壳聚糖类止血剂被制成各种剂型,有水剂、水溶胶还有膜剂等,主要是因为出血的部位和出血类型,选择不同的剂型,均有不同程度的止血效果,其中已经得到良好应用而且具有代表性意义的产品有Syvek纱布、RDH绷带和HemCon止血敷料,这三种敷料先后都通过了美国FDA的认证。

其中Hemcon止血敷料设计及应用对象主要是针对于军队,主要应用于阿富汗和伊拉克特种部队。

其主要成分是壳聚糖,以塑料膜作为被衬层,当伤口出血时,根据伤口情况覆盖HemCon敷料,敷料可在出血伤口形成粘附性很高的血凝块,达到止血的目的,这一过程大概需要数分钟时间,而且需要辅助于加压包扎。

211275368_基于壳聚糖的水凝胶用于伤口敷料的研究进展

211275368_基于壳聚糖的水凝胶用于伤口敷料的研究进展

第22卷第3期2023年5月杭州师范大学学报(自然科学版)JournalofHangzhouNormalUniversity(NaturalScienceEdition)Vol.22No.3May2023收稿日期:2022 07 15 修回日期:2022 10 26基金项目:杭州高层次留学回国人员(团队)在杭创业创新项目(202011108);杭州师范大学“本科生创新能力提升工程”项目(cx20221058);杭州师范大学“星光计划”学生创新创业项目(2022026).通信作者:梁媛媛(1980—),女,副教授,博士,主要从事功能高分子材料研究.E mail:liangyy@hznu.edu.cn犱狅犻:10.19926/j.cnki.issn.1674 232X.2023.03.002基于壳聚糖的水凝胶用于伤口敷料的研究进展黄雨欣,王 伟,杨 涛,孙 俊,吴彦彤,梁媛媛(杭州师范大学材料与化学化工学院,浙江杭州311121)摘 要:伤口敷料具有促进创面愈合和保护创面不受感染的特点,广泛应用于临床治疗.以天然多糖壳聚糖为原料构筑的水凝胶材料具有独特的三维网络结构和促进伤口愈合能力,在伤口敷料的应用方面受到关注.文章从水凝胶伤口敷料的性能要求如生物相容性、抗菌性能、黏合性和强度、止血性能及抗氧化性等出发,对近年来基于壳聚糖的水凝胶伤口敷料的设计和制备研究进行了总结与概括,并对该类水凝胶伤口敷料的未来发展和应用前景进行了展望.关键词:壳聚糖;水凝胶;伤口敷料中图分类号:R318.08 文献标志码:A文章编号:1674 232X(2023)03 0233 07伤口敷料是一类用于创伤、烧伤、溃疡等伤口覆盖的医用材料,其主要作用是吸收渗出液防止渗液感染.常见的传统敷料如医用脱脂棉、无菌纱布等,只能起到简单的物理屏蔽作用,容易与伤口黏合而在换药时造成二次伤害,且其透气性不佳,易引发细菌滋生及伤口感染[1].目前临床上创口不及时处理带来的后果主要有3类[2],即外伤细菌炎症、血液循环障碍、免疫攻击组织损坏.外伤细菌炎症一般是指外伤后的伤口发炎,往往因异物或其他因素导致的局部细菌感染而引起.血液循环障碍是指外伤后创口局部组织血管内血液含量增多,发生水肿、充血、出血,以及血栓形成、栓塞、梗死.而当细菌或病原体进入人体后,诱发机体产生免疫应答,在杀伤、清除病原体的同时损害宿主的组织细胞,称为免疫攻击组织损坏.壳聚糖(chitosan,CS)是天然存在的唯一碱性多糖,具有生物相容性良好、价格低廉易得等优势.有研究表明,CS具有促进组织再生的能力,在伤口愈合过程中可降低炎症反应,促进新生血管形成,减少瘢痕产生,遏制血液循环[3].以CS为原料构筑的水凝胶材料可以为伤口愈合过程提供相对湿润的环境,避免二次感染,有效降低免疫系统对本体的伤害,并能有效吸收渗出的组织液,使得伤口快速愈合;同时CS水凝胶可以作为载体实现生物活性物质(如药物、抗原、抗体、生长因子、干细胞等)的控制释放.因此,CS基伤口敷料有着良好的应用前景.本文将从CS基水凝胶敷料的性能如生物相容性、抗菌性能、黏合性和强度、止血性能及抗氧化性等出发,对近年基于CS的水凝胶伤口敷料的设计和制备研究进行概括与总结.Copyright ©博看网. All Rights Reserved.1 壳聚糖基水凝胶的制备图1 甲壳素和壳聚糖的分子结构式犉犻犵.1 犛狋狉狌犮狋狌狉犪犾犳狅狉犿狌犾犪狊狅犳犮犺犻狋犻狀犪狀犱犮犺犻狋狅狊犪狀 CS是甲壳素的脱乙酰化产物,而甲壳素是从虾、蟹等甲壳类动物的外壳及菌类、藻类植物的细胞壁中提取出的天然高分子.一般将脱乙酰度为55%的甲壳素称为CS,其结构式如图1所示.由于CS上有丰富的基团,如氨基、羟基等,通常可使用物理交联、化学交联和酶交联等方法来制备水凝胶.1.1 物理交联物理交联主要通过非化学作用(即非共价键作用,包括氢键作用、静电作用、配位作用等)交联形成网络结构.由于非共价作用较弱,故物理交联状态下的水凝胶一般不稳定,力学性能较差,可通过构建多重物理交联网络改善其力学性能.且物理交联能大大减少有毒化学交联剂的使用,符合绿色化学的理念,形成的水凝胶往往具有一定的自修复能力,拥有较宽的使用范围.CS分子链中含有羟基、氨基,可与其他聚合物通过氢键作用形成水凝胶网络,如通过循环冻融法制备聚乙烯醇(polyvinylalcohol,PVA)/CS共混水凝胶(PVA/CS)[4].该工作利用冷冻过程中水的结冰排出作用,使PVA分子链发生富集而形成晶区结构,通过多次循环冻融,PVA晶区的结晶度不断提高,从而形成以晶区为物理交联点的PVA网络,而PVA又可与CS分子链段通过氢键作用形成PVA CS物理交联网络,因此获得的PVA/CS水凝胶具有双层网络结构,有良好的抗溶胀性能和力学性能.此外,CS作为天然碱性多糖,可以通过其质子化氨基与阴离子聚电解质之间的强静电作用构筑聚电解质复合水凝胶.鲁程程等[5]通过两步法制备出完全物理交联的CS Al3+/聚丙烯酸(poly(acrylicacid),PAA)双网络凝胶,其中PAA与CS通过静电作用形成第一交联网络,PAA与Al3+通过配位作用形成第二交联网络.为进一步提高凝胶的机械性能,采用饱和NaCl溶液诱导CS分子链发生亲水—疏水转变,通过形成CS链缠结微区来提高凝胶的交联密度,再加上物理交联网络具有重新缔合和自恢复能力,该复合水凝胶具有良好的机械稳定性.1.2 化学交联CS分子链段中含有—OH和—NH2,通常采用甲醛、戊二醛、京尼平、甘油醛等为交联剂构筑凝胶网络(图2),如利用醛类交联剂上的醛基与CS链上的氨基发生席夫碱反应获得三维水凝胶,这类化学交联过程不可逆,形成的水凝胶性质稳定.动态交联的水凝胶是通过动态共价键或非共价键交联形成的,在剪切力的作用下可屈服流动,外力撤销后,又能自修复损伤结构,故可用于注射型凝胶伤口敷料的构筑.常见的动态交联相互作用包括席夫碱键[6]、酰腙键[7]、可逆氢键[8]、硼酸酯键[9]、金属配位[10]、主体 客体[11]、阴阳离子[12]和疏水相互作用[13]等.Xu等[14]采用N 羧乙基壳聚糖(N carboxyethylchitosan,CEC)、双键壳聚糖改性聚吡咯(chitosan modifiedpolypyrrole,DCP)和双醛端基聚氨酯(aldehyde terminateddifunctionalpolyurethane,DFPU)制备了CEC/DCP/DFPU(CDD)水凝胶,该水凝胶分子结构中除了存在席夫碱键,还存在离子和氢键相互作用,其中离子相互作用在交联和自愈过程中发挥着重要作用,增强了凝胶自愈性和可注射性.研究表明,CDD水凝胶表现出优异的剪切稀释行为,在高剪切作用下可发生凝胶—溶胶的转变,所以能够通过内径80μm的针头实现皮下注射,是细胞和药物微创递送的合适载体.432杭州师范大学学报(自然科学版)2023年 Copyright ©博看网. All Rights Reserved.图2 壳聚糖常见化学交联反应犉犻犵.2 犆狅犿犿狅狀犮犺犲犿犻犮犪犾犮狉狅狊狊 犾犻狀犽犻狀犵狉犲犪犮狋犻狅狀狊狅犳犮犺犻狋狅狊犪狀光诱导的化学交联反应具有操作简单、反应速率快的优点,且光具有非侵入性,副产物有限,交联反应程度在二维和三维空间中均可控.CS分子本身不具光敏性,将光敏性基团接枝于CS分子中,可以赋予CS光敏特性,还可破坏CS自身分子间的氢键作用,改善其水溶性[15].如丁海昌[16]在壳聚糖C6羟基引入烯丙基,光引发剂经过UV辐照后产生自由基,自由基进攻CS链上的烯丙基双键产生卡宾(carbenes)结构,卡宾相互碰撞后发生偶联,自由基进行转移后继续进攻双键,如此循环往复形成具有交联结构的水凝胶.1.3 酶交联反应酶通常可以有效地催化生化反应,酶法催化交联采用生物相容性优异的酶催化交联,因此得到的水凝胶材料也具有优异的生物相容性.辣根过氧化物酶(horseradishperoxidase,HRP)在H2O2存在下,可催化羟基酚,产生苯氧自由基,这些自由基通过氧化自偶联作用促进酚类化合物的聚合.利用该反应,Ha等[17]使用HRP催化羟苯基丙酸修饰的CS与4 羟基苯乙胺修饰的聚乙二醇之间的交联聚合反应,获得了具有良好生物相容性的CS基水凝胶.微生物谷氨酰胺转氨酶(microbialtransglutaminase,MTG)能催化蛋白质分子内或蛋白质分子间的交联,Hu等[18]在羧甲基壳聚糖分子链中通过化学接枝反应引入胶原蛋白多肽(collagenpolypeptide,CP),通过MTG催化CP支链发生交联反应,实现了羧甲基壳聚糖分子的交联.Chen等[19]利用葡萄糖氧化酶催化葡萄糖氧化反应,制备了一种超分子级联反应器用于糖尿病性慢性伤口的治疗.该反应器由CS、磺基丁基 β 环糊精(SBE β CD)、铁离子(Fe2+)和葡萄糖氧化酶(glucoseoxidase,GOX)通过离子作用和配位作用获得.GOX催化糖尿病人伤口处的葡萄糖产生Fe2+介导Fenton反应所需的H2O2,最终产生羟基自由基(·OH).而·OH对体外耐药细菌具有较高抑制作用,并能引发聚乙二醇二丙烯酸酯的自由基聚合反应,在伤口表面原位形成交联的水凝胶网络结构,水凝胶的形成和·OH的抗菌作用可协同促进糖尿病患者慢性伤口愈合.2 壳聚糖水凝胶伤口敷料的性能要求2.1 生物相容性由于水凝胶敷料直接与组织和细胞相互接触以促进伤口愈合,其生物相容性是首要因素,因此其制备原料不应引起机体的不良免疫或异物反应等.CS作为天然来源的多糖,虽然自身具有良好的生物相容性,但其分子内的氢键作用力较强,导致CS不溶于水、醇等许多典型的溶剂,只有在偏酸性的条件下溶解性较好[20],故而在构筑凝胶过程中常使用有机溶剂,这对凝胶敷料的生物相容性造成负面影响.另外,CS分532 第3期黄雨欣,等:基于壳聚糖的水凝胶用于伤口敷料的研究进展Copyright©博看网. All Rights Reserved.子结构中含有丰富的氨基基团,可以与醛类物质生成席夫碱而形成三维网状结构,在化学交联中常常使用小分子二醛作交联剂,而凝胶中小分子醛类交联剂残余往往会引起严重的炎症反应.因此,需采用长时间透析等方式彻底去除有机溶剂及未反应的交联剂等,但长时间的透析不仅耗时,还会导致凝胶网络过度溶胀,凝胶敷料的内部结构被破坏.为克服上述问题,目前主要采用以下2种策略来实现水凝胶生物相容性的改善:一是选择低毒的天然来源的交联剂,如京尼平是植物杜仲中提取的栀子苷经过β葡萄糖苷酶水解的产物,但使用京尼平交联的CS凝胶呈蓝色,凝胶的透明度会受到一定程度的影响[21].二是对CS进行化学改性,改善其水溶性的同时引入其他官能团实现壳聚糖的交联,从而避免醛类小分子交联剂的使用.如陈凯等[22]采用水溶性良好的羧甲基化壳聚糖与PVA、海藻酸钠复合,通过组分间的氢键、席夫碱相互作用而获得的复合水凝胶对细胞生长无副作用,有良好的生物相容性;童泽鑫等[23]利用羧丁酰壳聚糖接枝小分子胶原蛋白肽,以氧化普鲁兰多糖为交联剂,通过席夫碱反应制备得到羧丁酰壳聚糖/氧化普鲁兰复合水凝胶,体外细胞实验结果表明该水凝胶具有良好的生物相容性.2.2 抗菌性伤口愈合过程中的主要障碍是细菌感染,受损的组织失去屏障的保护后极易受到金黄色葡萄球菌、大肠杆菌等的侵袭.因此,水凝胶中往往会加入抗生素等抗菌性物质,但抗生素容易使细菌产生耐药性.以CS为原料构筑的水凝胶具有良好的抗菌性,依据相互作用理论模型,CS分子中含有游离的氨基,易被H+质子化,质子化的氨基带有正电荷,会与菌体细胞壁表面带负电荷的蛋白质、磷脂等产生静电吸引,继而破坏细菌的细胞膜导致细胞内成分泄漏,或者通过改变细菌外膜的渗透性,阻碍细菌对营养物质的吸收,使细菌缺乏营养而死亡[24].但也有研究者提出了不同的观点,认为CS中自由氨基(非质子化氨基)含量越高,抑菌能力越强.如Lu等[25]将CS溶解于LiOH/KOH/尿素碱性溶液中,以含有醛基端基的四臂聚乙二醇为交联剂,通过席夫碱反应制备CS水凝胶,同时加入含有端氨基的四臂聚乙二醇,对交联网络结构进行调节.抑菌实验结果表明,相比用酸溶解,采用LiOH/KOH/尿素碱性溶液溶解的CS,由于溶解主要通过破坏CS分子间的氢键作用实现,而非因酸性下的氨基质子化实现,因此CS结构中自由氨基得以保留,在含端氨基的四臂聚乙二醇的协同作用下,该凝胶对大肠杆菌和金黄色葡萄球菌的抗菌率接近100%.李明等[26]以羧甲基壳聚糖、氧化淀粉和单宁酸为原料,利用席夫碱反应制备羧甲基壳聚糖复合水凝胶,证明羧甲基壳聚糖上的自由氨基可以与细菌结合,破坏细菌细胞壁的完整性,抑菌活性高.此外,Xue等[27]将CS分子改性成为壳聚糖季铵盐,同时提高了CS的水溶性和抗菌能力.一般认为,壳聚糖季铵盐中季铵阳离子可与细菌细胞壁表面的酸性高分子相互作用,进一步改变细胞膜通透性,从而阻止营养物质透过细胞壁,使细菌不能进行新陈代谢,达到抗菌的目的[28].2.3 黏合性和强度水凝胶作为伤口敷料需要与伤口组织直接接触,其黏合性是评价水凝胶伤口敷料性能的标准之一.水凝胶良好的黏合性不仅可以减少传统敷料缠绕四肢给患者带来的束缚感,还可以促进凝胶内部负载的活性物质如生长因子等与伤口之间的相互作用.Yang等[29]发现黏合缝合拓扑可进一步加强水凝胶与皮肤之间的黏合强度.他们在丙烯酸弹性体(VHB)表面加入CS酸性溶液,CS与VHB表面可形成亚胺键和离子键,随后利用NH2与OH官能之间的氢键作用,CS链段可进入水凝胶内部与聚丙烯酰胺原位形成网络拓扑结构,由于这种拓扑结构强度与皮肤强度相当,该水凝胶对皮肤表现出较高的黏合强度.此外,在水凝胶的黏合性设计上也需考虑不同的使用场景,如对大量出血或者存在大量体液的伤口,需考虑水凝胶在湿态下的黏合强度.Du等[30]将疏水改性壳聚糖乳酸酯与咖啡酸改性的壳聚糖整合,制备了组织黏合性水凝胶.疏水改性可以排除血液和体液对黏结的干扰,促进咖啡酸修饰的壳聚糖中邻醌基团与组织表面胺或硫醇基团生成共价键,实现对湿性伤口的黏合.对于脚踝、膝盖、腕部等关节部位的伤口敷料,还需要考虑关节频繁运动和弯曲对凝胶强度的要求,一般可以通过调整交联密度或交联方式来控制水凝胶的机械性能.而双网络结构(double network)由于具有双层交联的网络结构,可以有效改善凝胶的强度和韧性,常用于凝胶敷料的构筑.如Wang等[31]在儿茶酚改性的甲基丙烯酰壳聚糖和甲基丙烯酰壳聚糖形成的共价632杭州师范大学学报(自然科学版)2023年 Copyright ©博看网. All Rights Reserved.交联网络基础上,利用儿茶酚基团与Fe3+之间的鳌合作用,构筑了双网络结构,提高了水凝胶的机械强度,并且由于儿茶酚基团与组织表面基团(氨基、巯基和咪唑基团等)存在共价相互作用,水凝胶对组织有较好的黏合能力,其搭接剪切强度可达到18kPa,为商品化的胶原蛋白胶的6倍.2.4 止血性能CS与血液接触时,CS上的游离氨基可以和血浆蛋白或血细胞上的酸性基团相互作用引起血栓,该过程通常被理解为血浆蛋白在CS上吸附,促进了血小板的黏附和激活,导致血栓形成从而达到凝血效果[32].在实际应用中凝胶敷料要达到止血效果,需要与创口表面紧密黏附.从分子结构上看,CS是甲壳素N 脱乙酰基的产物,与组织间的静电作用较弱,因此依赖氨基阳离子实现组织黏附的CS水凝胶止血能力有限,研究者们主要通过在凝胶中引入可与组织发生共价作用的基团或电荷来改善其止血效果.Sundaram等[33]将纳米生物玻璃(nano bioglass,nBG)和CS溶液混合,通过溶胶 凝胶法制备了CS/nBG复合水凝胶.该水凝胶具有优秀的止血性能,这源于CS的质子化氨基基团与nBG释放的Si、Ca、P等元素成分(以离子或离子基团形式)发生协同作用,激活了不同类型的凝血因子从而达到快速止血的效果.张冬英[34]制备的儿茶酚功能化壳聚糖/牡蛎肽温敏水凝胶能够明显缩短体外凝血时间达到高效止血作用,其中儿茶酚功能化壳聚糖组分可以提高组织中蛋白质的合成效率,促进血管、肉芽组织生成,为创伤愈合提供合适环境.2.5 抗氧化性长时间的炎症反应会使机体产生大量的活性氧(reactiveoxygenspecies,ROS),当细胞无法抵抗高浓度的ROS时就会出现阻碍伤口愈合的情况,所以伤口修复时还需注意伤口微环境中的ROS浓度.因此功能性伤口敷料需要具有一定的抗氧化性及降低炎症作用的效果.李航婷等[35]以鳗鱼鱼鳔胶原蛋白、CS和海藻酸钠为原料与Ca2+交联制得水凝胶.该水凝胶材料含有鳗鱼鱼鳔胶原蛋白,具有较好的抗氧化活性,与对照组相比,实验小鼠血清内的炎症因子(白介素 6、白介素 1β、肿瘤坏死因子)含量均减少,表明该CS基水凝胶可以抑制炎症反应的发生,有效促进伤口的愈合.Bergonzi等[36]将α 生育酚(维生素E,VitE)与CS溶液反应制得含有VitE的CS基油墨,通过3D打印获得具有抗氧化活性的支架,以帮助慢性伤口愈合.该支架在具有优良机械特性的同时,能缓慢释放VitE,从而具有优良的自由基清除能力,为组织的再生创造了良好的环境.Hao等[37]以硼酸盐保护的二氮二醇酯修饰的壳聚糖(chitosanmodifiedbyboronate protecteddiazeniumdiolat,CS B NO)为原料制备了一种可注射的水凝胶,CS B NO可以响应ROS刺激而释放NO,从而调节缺血/再灌注(ischemia/reperfusioninjury,I/R)损伤后的ROS/NO失衡.结果表明,在小鼠心肌I/R损伤模型中,CS B NO与传统释放NO的水凝胶相比,能更有效地减轻心脏损伤,促进心脏修复并改善心脏功能.调节ROS/NO可激活抗氧化防御系统,从而调节Nrf2 Keap1通路来防止I/R损伤诱导的氧化应激,抑制NF κB信号转导通路的过度激活来减少炎症.2.6 活性物质负载在临床中,药物缓释系统是一类用于人体内部的可以定点、定向控制药物释放的技术.利用水凝胶通过物理包埋固定化技术携带药物后,可以在特定的时间和环境下,使药物在体内通过扩散缓慢释放,同时水凝胶的降解也会进一步释放药物,使药物利用率和功效大大提高.CS在生物组织工程中对细胞的生长和增殖具有良好的效果,将生长因子、抗生素、疫苗等包埋在CS水凝胶中,不仅可以实现负载药物释放和输送,还可以发挥CS本身的优良作用.韩佳岐等[38]制备了一种邻苯二酚改性的壳聚糖水凝胶用于血管内皮生长因子的负载,具有良好的药物释放能力和抗菌性.Tan等[39]将CS与羧甲基化西米纸浆(carboxymethylsagopulp,CMSP)通过电子束辐交联获得水凝胶,该水凝胶具有pH敏感性:在酸性介质中,CMSP中的羧酸基团和CS中的氨基基团被质子化,水凝胶不发生溶胀,可限制负载药物的释放;当pH为6.8时,CMSP的羧基基团和CS的氨基去质子化,凝胶发生溶胀,药物开始释放且缓释时间可达32h.3 结论与展望综上所述,水凝胶伤口敷料在应用中不仅需要满足止血、抗菌等基础性能要求,还需要满足促进皮肤再732 第3期黄雨欣,等:基于壳聚糖的水凝胶用于伤口敷料的研究进展Copyright ©博看网. All Rights Reserved.生、防止产生瘢痕等更加复杂的应用要求,如根据伤口愈合不同阶段(炎症、增生、成熟)的特点,有效结合伤口微环境变化,发展具有皮肤生理结构和生理微环境的CS基敷料.这对水凝胶敷料的生物相容性、机械强度、湿性环境的黏合性能等提出了更高的要求.目前,基于CS的伤口敷料研究大多停留在实验室阶段,鲜有研究涉及CS衍生物或CS基凝胶与伤口接触后的代谢物对伤口愈合过程的影响及潜在风险.探索绿色环保、安全性高、成本低廉、适应人体多种需求的CS基水凝胶敷料的设计及制备方法,并且逐渐实现从外敷向人体内部组织的应用,这是以CS为代表的天然抗菌性多糖基水凝胶材料研究的重要内容和长远目标.参考文献:[1]YONETANIY,KUROKAWAM,AMANOH,etal.Thewounddressinginfluencedeffectivenessofcryotherapyafteranteriorcruciateligamentreconstruction:case controlstudycomparinggauzeversusfilmdressing[J].Arthroscopy,SportsMedicine,andRehabilitation,2022,4(3):e965 e968.[2]GAOBB,GUOMZ,LYUK,etal.Microneedledressing:intelligentsilkfibroinbasedmicroneedledressing(i SMD)[J].AdvancedFunctionalMaterials,2021,31(3):2170018.[3]CHENWH,CHENQW,CHENQ,etal.Biomedicalpolymers:synthesis,properties,andapplications[J].ScienceChinaChemistry,2022,65(6):1010 1075.[4]KALANTARIK,MOSTAFAVIE,SALEHB,etal.Chitosan/PVAhydrogelsincorporatedwithgreensynthesizedceriumoxidenanoparticlesforwoundhealingapplications[J].EuropeanPolymerJournal,2020,134:109853.[5]鲁程程,于振坤,杨园园,等.聚丙烯酸 Al3+/壳聚糖复合双网络水凝胶的制备与性能[J].复合材料学报,2022,39(12):5912 5922.[6]YANGC,GAOLL,LIUXY,etal.InjectableSchiffbasepolysaccharidehydrogelsforintraoculardrugloadingandrelease[J].JournalofBiomedicalMaterialsResearch,2019,107(9):1909 1916.[7]HYUNAJ,SEUNGHYUNS.Programmablelivingmaterialsconstructedwiththedynamiccovalentinterfacebetweensyntheticpolymersandengineered犅.狊狌犫狋犻犾犻狊[J].ACSAppliedMaterials&Interfaces,2022,14(18):20729 20738.[8]WANGXY,SONGRJ,JOHNSONM,etal.Aninjectablechitosan basedself healablehydrogelsystemasanantibacterialwounddressing[J].Materials,2021,14(20):5956.[9]童艳萍,肖艳.双重动态化学键交联水凝胶的制备及性能[J].功能高分子学报,2020,33(3):305 312.[10]ZHANGJH,CAOLM,CHENYK.Mechanicallyrobust,self healingandconductiverubberwithdualdynamicinteractionsofhydrogenbondsandborateesterbonds[J].EuropeanPolymerJournal,2022,168:111103.[11]CAITT,HUOSJ,WANGT,etal.Self healabletoughsupramolecularhydrogelscrosslinkedbypoly cyclodextrinthroughhost guestinteraction[J].CarbohydratePolymers,2018,193:54 61.[12]HUANGG,TANGZF,PENGSW,etal.Modificationofhydrophobichydrogelsintoastronglyadhesiveandtoughhydrogelbyelectrostaticinteraction[J].Macromolecules,2022,55(1):156 165.[13]DINGCC,TIANMD,FENGR,etal.Novelself healinghydrogelwithinjectable,pH responsive,strain sensitive,promotingwound healing,andhemostaticpropertiesbasedoncollagenandchitosan[J].ACSBiomaterialsScience&Engineering,2020,6(7):3855 3867.[14]XUJP,WONGCW,HSUSH.Aninjectable,electroconductivehydrogel/scaffoldforneuralrepairandmotionsensing[J].ChemistryofMaterials,2020,32(24):10407 10422.[15]ABDUL MONEMMM,KAMOUNEA,AHMEDDM,etal.Light curedhyaluronicacidcompositehydrogelsusingriboflavinasaphotoinitiatorforboneregenerationapplications[J].JournalofTaibahUniversityMedicalSciences,2021,16(4):529 539.[16]丁海昌.UV交联壳聚糖水凝胶的可控合成与pH/温度响应性溶胀行为[D].哈尔滨:哈尔滨工业大学,2020.[17]HAYJ,PHUONGLT,KYUNG HEEH,etal.Tunableandhightissueadhesivepropertiesofinjectablechitosanbasedhydrogelsthroughpolymerarchitecturemodulation[J].CarbohydratePolymers,2021,261:117810.[18]HUWQ,LIUM,YANGXS,etal.Modificationofchitosangraftedwithcollagenpeptidebyenzymecrosslinking[J].CarbohydratePolymers,2019,206:468 475.[19]CHENL,CHENY,ZHANGR,etal.Glucose activatednanoconfinementsupramolecularcascadereaction犻狀狊犻狋狌fordiabeticwoundhealing[J].ACSNano,2022,16(6):9929 9937.[20]BOZUYUKU,DOGANNO,KIZILELS.DeepinsightintoPEGylationofbioadhesivechitosannanoparticles:sensitivitystudyforthekeyparametersthroughartificialneuralnetworkmodel[J].ACSAppliedMaterials&Interfaces,2018,10(40):33945 33955.[21]NERI NUMAIA,PESSOAMG,PAULINOBN,etal.Genipin:anaturalbluepigmentforfoodandhealthpurposes[J].TrendsinFoodScience&Technology,2017,67:271 279.832杭州师范大学学报(自然科学版)2023年 Copyright ©博看网. All Rights Reserved.[22]陈凯,柴琦,王丰艳,等.基于3D打印构建载银聚乙烯醇 羧甲基壳聚糖 海藻酸钠水凝胶伤口敷料及性能表征[J].复合材料学报,2022,39(12):5879 5891.[23]童泽鑫,徐海星,樊李红,等.羧丁酰壳聚糖/氧化普鲁兰复合水凝胶的制备及其性能[J].武汉大学学报(理学版),2021,67(4):346 352.[24]TANGRL,ZHANGY,ZHANGY,etal.Synthesisandcharacterizationofchitosanbaseddyecontainingquaternaryammoniumgroup[J].CarbohydratePolymers,2016,139:191 196.[25]LUJW,CHENY,DINGM,etal.A4arm PEGmacromoleculecrosslinkedchitosanhydrogelsasantibacterialwounddressing[J].CarbohydratePolymers,2022,277:118871.[26]李明,刘杨,龚浩,等.羧甲基壳聚糖复合水凝胶的制备及其性能研究[J].中国海洋药物,2022,41(2):19 27.[27]XUEH,HULC,XIONGY,etal.Quaternizedchitosan matrigel polyacrylamidehydrogelsaswounddressingforwoundrepairandregeneration[J].CarbohydratePolymers,2019,226:115302.[28]TANHL,MAR,LINCC,etal.Quaternizedchitosanasanantimicrobialagent:antimicrobialactivity,mechanismofactionandbiomedicalapplicationsinorthopedics[J].InternationalJournalofMolecularSciences,2013,14(1):1854 1869.[29]YANGJW,BAIRB,LIJY,etal.Designmoleculartopologyforwet dryadhesion[J].ACSAppliedMaterials&Interfaces,2019,11(27):24802 24811.[30]DUXC,LIUYJ,YANHY,etal.Anti infectiveandpro coagulantchitosan basedhydrogeltissueadhesiveforsuturelesswoundclosure[J].Biomacromolecules,2020,21(3):1243 1253.[31]WANGL,ZHANGXH,YANGK,etal.Anoveldouble crosslinking double networkdesignforinjectablehydrogelswithenhancedtissueadhesionandantibacterialcapabilityforwoundtreatment[J].AdvancedFunctionalMaterials,2020,30(1):1904156.[32]DINGCC,TIANMD,FENGR,etal.Novelself healinghydrogelwithinjectable,pH responsive,strain sensitive,promotingwound healing,andhemostaticpropertiesbasedoncollagenandchitosan[J].ACSBiomaterialsScience&Engineering,2020,6(7):3855 3867.[33]SUNDARAMMN,AMIRTHALINGAMS,MONYU,etal.Injectablechitosan nanobioglasscompositehemostatichydrogelforeffectivebleedingcontrol[J].InternationalJournalofBiologicalMacromolecules,2019,129:936 943.[34]张冬英.儿茶酚功能化壳聚糖/牡蛎肽温敏水凝胶的制备及其性能研究[D].湛江:广东海洋大学,2020.[35]李航婷,金明月,李诺营,等.鱼鳔胶原蛋白 壳聚糖 海藻酸钠水凝胶促小鼠皮肤伤口愈合研究[J].湖北农业科学,2022,61(10):127 131.[36]BERGONZIC,BIANCHERAA,REMAGGIG,etal.Biocompatible3Dprintedchitosan basedscaffoldscontainingα tocopherolshowingantioxidantandantimicrobialactivity[J].AppliedSciences,2021,11(16):7253.[37]HAOT,QIANM,ZHANGYT,etal.Aninjectabledual functionhydrogelprotectsagainstmyocardialischemia/reperfusioninjurybymodulatingROS/NOdisequilibrium[J].AdvancedScience,2022,9(15):2105408.[38]韩佳岐,田瑗,姜秋,等.负载血管内皮生长因子的邻苯二酚壳聚糖体外药物缓释性能及抗菌性研究[J].中国实验诊断学,2022,26(3):413 418.[39]TANLS,TANHL,DEEKONDAK,etal.Fabricationofradiationcross linkeddiclofenacsodiumloadedcarboxymethylsagopulp/chitosanhydrogelforentericandsustaineddrugdelivery[J].CarbohydratePolymerTechnologiesandApplications,2021,2:100084.犚犲狊犲犪狉犮犺犘狉狅犵狉犲狊狊狅犳犆犺犻狋狅狊犪狀 犫犪狊犲犱犎狔犱狉狅犵犲犾狊犳狅狉犠狅狌狀犱犇狉犲狊狊犻狀犵狊HUANGYuxin,WANGWei,YANGTao,SUNJun,WUYantong,LIANGYuanyuan(CollegeofMaterial,ChemistryandChemicalEngineering,HangzhouNormalUniversity,Hangzhou311121,China)犃犫狊狋狉犪犮狋:Wounddressingsarewidelyusedinclinicaltreatmentbecauseoftheircharacteristicsofpromotingwoundhealingandprotectingwoundsfrominfection.Hydrogelsbasedonnaturalpolysaccharidechitosan,whichhaveauniquethree dimensionalnetworkstructureforwoundhealing,haveattractedextensiveattentionsinapplicationofwounddressings.Basedontheperformancerequirementsofhydrogelwounddressings,suchasbiocompatibility,antibacterialproperties,adhesionandstrength,hemostaticpropertiesandantioxidantproperties,thispapersummarizedrelativeresearchesondesignandpreparationofchitosan basedhydrogelwounddressings,andlookedforwardtothefuturedevelopmentandapplicationprospectsonchitosan basedhydrogelwounddressings.犓犲狔狑狅狉犱狊:chitosan;hydrogels;wounddressings932 第3期黄雨欣,等:基于壳聚糖的水凝胶用于伤口敷料的研究进展Copyright ©博看网. All Rights Reserved.。

壳聚糖止血原理

壳聚糖止血原理

壳聚糖止血原理
壳聚糖是一种多糖类聚合物,具有良好的生物相容性和生物可降解性。

在止血过程中,壳聚糖主要通过以下几个原理发挥作用:
1. 机械性作用:壳聚糖具有较高的黏附性和吸附性,可以通过与血液中的红细胞、血小板和血浆蛋白等组分相互作用,形成一层黏附在伤口上的血栓结构,有效封闭伤口并防止继续出血。

2. 血液凝固反应促进作用:壳聚糖可以作为凝血反应的活化剂,促进血液中的凝血因子的活化和聚集。

在凝血级联反应中,壳聚糖通过与血液中的特异性分子相结合,激活细胞外的凝血因子,加速凝血反应的进行。

3. 血细胞聚集作用:壳聚糖可以通过与血浆中的纤维蛋白原、纤维连接蛋白等分子相互作用,促进血小板和红细胞的聚集和黏附,形成血栓,从而在伤口上形成稳定的止血栓块,停止出血。

综上所述,壳聚糖的止血原理主要包括机械性作用、血液凝固反应促进作用以及血细胞聚集作用。

这些作用使得壳聚糖成为一种有效的止血材料,并被广泛应用于临床医学和外科手术中。

可生物降解止血粉的制备及其止血性能

可生物降解止血粉的制备及其止血性能

中国修复重建外科杂志2007年8月第2l卷第8期可生物降解止血粉的制备及其止血性能刘亚平1侯春林1顾其胜2肖海军1蒋丽霞2·829·【摘要】目的采用壳聚糖(ehitosan,CTS)为主要材料制备一种可生物降解止血粉并观察其止血性能。

方法以可降解的天然有机高分子材料CTS为主材,海藻酸钠(alginate,AI。

G)为辅料,通过乳化交联工艺,制成一种结构疏松的微球。

利用单颗粒光学传感技术测定微球粒径,扫描电镜观察干燥微球的超微结构,将其置于伤口渗出液中浸泡,分别于1、3、5、10、20、30和60min后测定微球溶胀率。

以云南白药为对照,在6只新西兰兔的脾出血模型,随机使用CTS/ALG微球和云南白药进行止血,观察止血效果。

结果乳化交联法工艺稳定,CTS/ALG微球形态圆整,粒度均匀,粒径为2~20bcm,平均粒径为4.05±2.55/*m。

干燥态CTS/ALG微球呈白色粉体状,结构疏松,扫描电镜下可见其呈珊瑚状外观,表面布满皱折。

CTs/ALG微球的溶胀率,5min时达280.139%。

在兔的脾出血模型上CTS/ALG微球组的出血时间为2.83±0.17min,云南白药组为5.33±0.49min,止血效果明显优于云南白药组(P<o.01)。

结论以CTS和ALG为材料制备的CTs/ALG微球止血性能良好,使用方便,是一种新型的粉体止血剂。

【关键词】止血生物降解壳聚糖海藻酸钠中图分类号:R318.08R442.7文献标识码:APREPARATl0NANDEVALUATIoNoFCHITOSAN/ALGINATEMICROSPHEREASANOVELBIODEGRADABLEHAEMoSTATICPOWDER/LIUYaping,HOUChunlin,GUQisheng,ela1.DepartmentofOrthopedics,ChangzhengHospital,SecondMilitaryMedicalUniversity,Shanghai,200003,P.R.China.E—mail:lyp401@163.comCorrespondingauthor:LIUYaping,E—mail:lyp401@163.com[Abstract]ObjectiveToexplorewaytomakenewkindofchitosan—basedmicrosphere(MS),whichbeusednovelbiodegradablehaemostaticpowder,andtoconfirmitshaemostaticefficiency.MethodsChitosan(CTS),ahaemostaticpolysaccharide,wasselectedmainmaterialforthehaemostaticpowder;alginate(ALG),anotherhaemostaticpolysaccharidethathasbeenfoundtobeeffectiveinpromotinghaemostasisinsurgicalprocedures,wasselectedtobethecostar.Theemulsificationandthecross—linkwerechosenpreparationprocessbasedtheinteractionbetweenthepolysaccharides.ThediameterofthepreparedMSwasdeterminedbySPOS,andthesurfaceofMSwasobservedunderSEM.TheswellingcharacteristicsofMSinthesimulativewoundefflusionwereinvestigated.Insplenicbleedingmodelin6rabbits,MSandYunnanbaiyaowererandomlyusedhaemostaticagent,andthecorrespondingbleedingtimewasrecorded.ResultsTheMSpreparedintheabove—mentionedprocesswaswellproportionedandwassimilarlyshaped.Itbecamekindofwhitepowderafterdehydration,andhadcoralloidsurfaceunderSEM.ThediameteroftheMSwas4.054-_2.55nm,whichwasdeterminedbySPOS.TheswellingratiooftheMSwas280.139%within5min.ThebleedingtimewassignificantlydecreasedintheMStreatedgroup(2.83--+0.17min)whencomparedwiththatinthecontrolgroup(5.33±0.49rain)(P<O.01).ConclusionTheCTS/ALG—MS,whichiSmadefromhaemostaticbiomaterials(CTS,ALG)byemulsificationandthecross—linkprocesses,canbeprovidedwithfavorablehaemostaticefficiency.Itbeusednovelhaemostaticpowder.However,itsbiodegradingrateandmodestillremaintobefurtherstudied.[Keywords]HaemostasisBiodegradableChitosanAlginate壳聚糖(chitosan,CTS)是一种来源于虾、蟹壳的天然有机高分子多糖,具有良好的生物相容性,并具有抗炎、抑菌、促进创面修复、减少瘢痕增生等生物活性‘1卅,并且能够通过多种途径起到止血作用‘5’6]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

壳聚糖功能性敷料止血性能的实验研究
【摘要】目的:对比两种功能型敷料:壳聚糖功能性敷料(本项目已申请国家专利,专利号:ZL 2011 1 0057512.8)藻酸盐功能性敷料(本项目已申请国家专利,专利号:ZL 2009 1 0214067.4)的止血性能。

方法:取新西兰兔10只,在背部两侧去毛后对称性剪5个直径2cm 的圆形创口,分别用与创面大小相当的壳聚糖功能性敷料和藻酸盐功能性敷料止血,观察与创面的粘附情况,记录出血时间;止血停止后,将壳聚糖功能性敷料和藻酸盐功能性敷料放入预先配制好的氰化高铁血红蛋白检测试剂中仔细清洗,用分光光度计在540nm 波长处光度比色,测出的Hb 光度吸收值表示出血量。

结果:壳聚糖功能性敷料和藻酸盐功能性敷料均与创面粘附较好,壳聚糖功能性敷料、藻酸盐功能性敷料的出血时间分别为(80.3±15.6)s、(83.6±20.6)s,Hb 光度吸收值分别为(1.069±0.423)、(1.135±0.612),经统计学分析,两组数据无显著性差异(P>0.05),壳聚糖功能性敷料不优于藻酸盐功能性敷料。

结论:壳聚糖功能性敷料与藻酸盐功能性敷料均具有较好的止血性能。

【关键词】壳聚糖功能性敷料;藻酸盐功能性敷料;止血
1.资料
1.1壳聚糖功能性敷料、藻酸盐功能性敷料:广东泰宝医疗科技股份有限公司研制。

1.2 新西兰兔:中山大学动物实验中心提供。

1.3 异戊巴比妥钠粉剂:国药集团购买。

1.4 氰化高铁血红蛋白检测试剂:上海楷洋生物工程有限公司购买。

1.5 722s 型分光光度计:广东泰宝医疗科技股份有限公司实验中心提供。

1.6 其他物品由广东泰宝医疗科技股份有限公司实验中心提供。

2.方法
2.1 手术方法
健康成年新西兰兔10只,雌雄各半,体重(2.5±0.20)kg,麻醉方法:按30mg/kg 体重于兔耳缘静脉缓慢注入3%异戊巴比妥钠。

将动物背部备皮并用碘尔康溶液消毒铺巾单后,沿脊柱两侧对称性各剪5个圆形切口,直径约2.0cm,深度先至皮肤全层,然后仔细分离至筋膜层,避开皮下组织中大血管。

左侧为壳聚糖功能性敷料组,敷以与创面相当大小的壳聚糖功能性敷料止血;右侧为藻酸
盐功能性敷料,敷以相当大小的藻酸盐功能性敷料止血,记录出血时间,观察与创面的粘合情况。

观察伤口出血已确实停止后,揭下敷料,将敷料放入预先配制好的氰化高铁血红蛋白检测试剂10ml中仔细清洗,用分光光度计在540nm波长处光度比色。

2.2 统计学处理方法
统计软件采用SAS6.12,实验所得数据均采用成组设计的t 检验分析,结果以均值±标准差表示。

P值<0.05 为有统计学意义。

3.试验结果
壳聚糖功能性敷料组与藻酸盐功能性敷料组出血时间和Hb 光度吸收值如下表:
BT、A 值高说明出血量时间长、出血量多,止血效果差。

两组比较BT、A 值差异均无显著性意义,可以认为壳聚糖功能性敷料与藻酸盐功能性敷料有相同的止血作用。

同时,壳聚糖功能性敷料与藻酸盐功能性敷料均与创面粘附良好,有效地密封出血创面。

4.讨论
藻酸盐功能性敷料是目前临床上经常使用的功能性敷,是一种新型湿性敷料。

目前广泛使用于临床内分科、骨科等科室,主要用于糖尿病足、术后创面的护理。

多年临床使用证明其具有良好的止血、抑菌和促进伤口愈合的功能。

其止血功能主要来源于其分子结构中的Ca2+。

当其与伤口渗液接触后,Ca2+与伤口渗液中的Na+交换后进入伤口渗液,作为一种凝血因子参与凝血过程,并促进凝血过程[1]。

同时藻酸盐功能性敷料还具有能够吸收大量伤口渗液的功能,其能够吸收相当于自身重量18倍左右的渗液量。

其吸收渗液后形成凝胶状,封闭伤口,维持伤口湿润环境,促进伤口愈合[2]。

壳聚糖功能性敷料也是一种新型湿性敷料。

壳聚糖用于生物医用材料领域已经有将近四十年的历史。

已有的研究表明壳聚糖在生物医学领域主要具有如下功能,抗菌、抗肿瘤、抗胆固醇升高、抑制瘢痕形成和止血等功能。

壳聚糖的止血功能主要是由于其分子结构中具有大量-NH3+基团,这些带正电荷的基团与红细胞和血小板表面的负电荷可以相互作用,进而使红细胞和血小板发生凝集[3],进而促进止血功能。

氰化高铁血红蛋白(HiCN)测定法是国际血液学标准化委员会(ICSH)推荐的用于测定血红蛋白含量的方法。

其原理为血红蛋白被高铁氰化钾氧化为高铁血红蛋白(Hi),再与氰结合成稳定的棕红色氰化高铁血红蛋白(HiCN),在规定的波长和液层厚度的条件下,具有一定吸光度,再乘以一个固定系数即可求得Hb定量,为便于统计,本实验忽略此固定系数,以Hb 光度吸收值代表出血量,对结果无影响。

本实验结果显示壳聚糖功能性敷料与藻酸功能性敷料在伤口止血功能上,没有统计学意义上的差异,证明其与藻酸盐功能性敷料具有相同的止血功能,可用于临床上渗血较多的伤口护理。

参考文献:
[1]王清华,钟文菲,何盟.藻酸盐敷料的临床应用:与传统材料特征的比较[J].中国组织工程研究与临床康复,2010,14(3):533-536.
[2]叶漆,陈炯.藻酸盐敷料在烧伤供皮区创面的应用[J].浙江医学,2001,23(4):248一249.
[3]马军阳,陈亦平,李俊杰,等.甲壳素/ 壳聚糖止血机理及应用[J].北京生物医学工程,2007,26(4):442-445.。

相关文档
最新文档