最新人教版2018-2019学年八年级数学上学期期中模拟检测试题及答案解析-精品试题
【真题卷】人教版八年级数学上册期中试卷(含答案解析)
2018-2019学年天津市蓟州区八年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,143.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.96.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有对.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.15.一个八边形的所有内角都相等,它的每一个外角等于度.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为.三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.2018-2019学年天津市蓟州区八年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各个汉字进行判断即可得解.【解答】解:A、“大”是轴对称图形,故本选项不合题意;B、“美”是轴对称图形,故本选项不合题意;C、“中”是轴对称图形,故本选项不合题意;D、“国”是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,14【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3>4,能组成三角形;B、3+6<11,不能组成三角形;C、4+6=10,不能组成三角形;D、5+8<14,不能够组成三角形.故选:A.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.【点评】此题主要考查了全等三角形的应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9【分析】根据多边形内角和公式180°(n﹣2)和外角和为360°可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.【点评】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选:C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC【分析】根据“AAS”对A进行判断;根据“ASA”对B进行判断;根据“SSA”对C进行判断;根据“SAS”对D进行判断.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.【点评】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“AAS”、“SAS”、“ASA”.9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选:A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线【分析】在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.垂直平分线对应的是直线、对称轴对应的同样为一条直线,根据各种线之间的对应关系即可得出答案.【解答】解:A、三角形中,中线是连接一个顶点和它所对边的中点的连线段,而线段的垂直平分线是直线,故A错误;B、三角形的高对应的是线段,而对称轴对应的是直线,故B错误;C、线段是轴对称图形,对称轴为垂直平分线,故C正确;D、角平分线对应的是射线,而对称轴对应的是直线,故D错误.故选:C.【点评】本题考查了三角形的基本性质,在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.这些都属于基本的概念问题,要能够吃透概念、定义.11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°【分析】根据平行线的性质得到∠BAA′=∠ABC=70°,根据全等三角形的性质、等腰三角形的性质计算即可.【解答】解:∵AA′∥BC,∴∠BAA′=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC′=∠ABC=70°,∴∠BAA′=∠BA′A=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故选:A.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm【分析】先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.【解答】解:∵AD平分∠CAB交BC于点D∴∠CAD=∠EAD∵DE⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=BE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC===3,∴BE=AB﹣AE=AB﹣AC=6﹣3,∴BC+BE=3+6﹣3=6cm,∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有3对.【分析】在线段AD的两旁猜想所有全等三角形,再利用全等三角形的判断方法进行判定,三对全等三角形是△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.【解答】解:①△ABE≌△ACE∵AB=AC,EB=EC,AE=AE∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE,∠AEB=∠AEC∴∠EBD=∠ECD,∠BED=∠CED∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE,△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED,∠ACB=∠ACE+∠CED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.【点评】本题考查学生观察,猜想全等三角形的能力,同时,也要求会运用全等三角形的几种判断方法进行判断.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为6或8cm.【分析】分6cm是底边与腰长两种情况讨论求解.【解答】解:①6cm是底边时,腰长=(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.15.一个八边形的所有内角都相等,它的每一个外角等于45度.【分析】根据多边形的外角和为360°即可解决问题;【解答】解:∵一个八边形的所有内角都相等,∴这个八边形的所有外角都相等,∴这个八边形的所有外角==45°,故答案为45;【点评】本题考查多边形内角与外角,解题的关键是熟练掌握基本知识,属于中考常考题型.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是10.【分析】依据线段垂直平分线的性质可得到AD=BD,则△ADC的周长=BC+AC.【解答】解:∵DE是AB的垂直平分线,∴AD=BD.∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=18﹣8=10.故答案为:10.【点评】本题主要考查的是线段垂直平分线的性质,熟练掌握相关知识是解题的关键.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为4.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=20,∴CE=4.即CM+MN的最小值为4.故答案为4.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;【分析】(1)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.(2)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.【解答】解:(1)如图所示:如三角形的三边长分别为1、1、或2、2、2或3、3、3或、、2或、、2或、、2等(2)如图所示:如三角形的三边长分别为、、或2、、等.【点评】本题考查了在小正三角形网格中,勾股定理的灵活应用.考查学生对有理数,无理数定义的理解,作出符合题目要求的图形.20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.【分析】根据全等三角形对应角相等得出∠ABD=∠CDA,进一步得出AB∥CD.【解答】证明:在△ABD与△CDB中,,∴△ABD≌△CDB,∴∠ABD=∠CDA,∴AB∥CD.【点评】本题主要考查了三角形全等的判定和性质;根据全等三角形对应角相等得出∠ABD=∠CDA是解决问题的关键.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.【分析】由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.【解答】解:在△COD和△BOE中,,∴△COD≌△BOE,∴∠D=∠B,∵OC=OE,OD=OB,∴DE=BC在△ADE和△ABC中,,∴△ADE≌△ABC.【点评】本题考查了三角形的全等的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰三角形的性质等知识,解题的关键是证明Rt△BDE≌Rt△CDF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.【分析】(1)首先利用等腰三角形的性质得出,∠CAE=∠CEA,再利用外角的性质得出∠BCE的度数,进而利用等边三角形的判定得出答案;(2)首先在AE上截取EM=AD,进而得出△ACD≌△ECM,进而得出△MCD为等边三角形,即可得出答案.【解答】(1)证明:∵CA=CB,CE=CA,∴BC=CE,∠CAE=∠CEA,∵CD平分∠ACB交AE于D,且∠CDE=60°,∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,∴∠DAC=∠CEA=15°,∴∠ACE=150°,∴∠BCE=60°,∴△CBE为等边三角形;(2)解:在AE上截取EM=AD,连接CM.在△ACD和△ECM中,,∴△ACD≌△ECM(SAS),∴CD=CM,∵∠CDE=60°,∴△MCD为等边三角形,∴CD=DM=7﹣5=2.【点评】此题主要考查了全等三角形的判定与性质以及等边三角形的性质与判定和三角形外角的性质等知识,正确作出辅助线是解题关键.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.。
人教版初二上学期期中数学试题与参考答案
人教版数学初二上学期期中模拟试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是6厘米,宽是宽的3倍,求这个长方形的周长。
选项:A、18厘米B、24厘米C、30厘米D、36厘米2、一个正方形的对角线长为10厘米,求这个正方形的面积。
选项:A、25平方厘米B、50平方厘米C、100平方厘米D、125平方厘米3、一个长方形的长是10厘米,宽是5厘米,它的面积是多少平方厘米?选项:A. 25B. 50C. 100D. 1254、一个数加上它的3倍后等于24,这个数是多少?选项:A. 4B. 6C. 8D. 125、题目:在下列各数中,最小的正有理数是:A.12B.−13C.0D.√26、题目:若x2−5x+6=0,则x的值是:A.2和3B.1和4C.2和2D.3和37、已知直角三角形两直角边长分别为3和4,那么斜边长是:A. 5B. 6C. 7D. 88、下列分数中,分母最大的一个是什么?A. 5/6B. 3/8C. 2/5D. 7/49、一个长方形的长是10厘米,宽是5厘米,如果将它的长和宽都扩大到原来的2倍,那么这个长方形的面积将扩大到原来的多少倍?选项:A. 2倍B. 4倍C. 5倍D. 10倍 10、一个等腰三角形的底边长为12厘米,腰长为10厘米,那么这个三角形的周长是多少厘米?选项:A. 32厘米B. 34厘米C. 36厘米D. 38厘米二、填空题(本大题有5小题,每小题3分,共15分)1、题干:若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长是_______cm。
2、题干:已知一元二次方程(x2−5x+6=0),则这个方程的两个根的和为_______ 。
3、若一个等腰三角形的底边长为8厘米,腰长为10厘米,则这个三角形的周长为______ 厘米。
4、小明家住在三层楼,他从一层走到三层需要爬 ______ 个楼梯间隔。
5、已知一个等腰三角形的腰长为5cm,底边长为8cm,则这个等腰三角形的高为____cm。
2018-2019学年上学期武汉市江岸区八年级期中数学试卷附答案详析
2018-2019学年上学期武汉市江岸区八年级期中数学试卷一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.86.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=cm.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为.12.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则AE = .13.如图,在△ABC 中,∠C =90°,AB 的垂直平分线分别交AB 、AC 于点D 、E ,AE =5,AD =4,线段CE 的长为 .14.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE = .15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程. 已知:直线l 和l 外一点P .求作:直线l 的垂线,使它经过点P作法:如图,(1)在直线l 上任意两点A 、B ; (2)分别以点A ,B 为圆心,AP ,BP 长为半径作弧,两弧相交于点Q ; (3)作直线PQ ,所以直线PQ 就是所求作的垂线.该作图的依据是 .16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B 落在长方形内点F处,且DF=6,求BE的长.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共12分)1.以下轴对称图形中,对称轴条数最少的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、有四条对称轴,B、有六条对称轴,C、有四条对称轴,D、有二条对称轴,综上所述,对称轴最少的是D选项.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,7【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【解答】解:A、12+22≠32,不能组成直角三角形,故此选项错误;B、22+32≠42,不能组成直角三角形,故此选项错误;C、32+42=52,能组成直角三角形,故此选项正确;D、52+62≠72,不能组成直角三角形,故此选项错误;故选:C.【点评】此题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.3.根据下列已知条件,能够画出唯一△ABC的是()A.AB=6,BC=5,∠A=50°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8D.∠A=40°,∠B=50°,∠C=90°【分析】根据全等三角形的判定方法可知只有C能画出唯一三角形.【解答】解:A、已知AB、BC和BC的对角,不能画出唯一三角形,故本选项错误;B、∵AB+BC=5+6=11<AC,∴不能画出△ABC;故本选项错误;C、已知两角和夹边,能画出唯一△ABC,故本选项正确;D、根据∠A=40°,∠B=50°,∠C=90°不能画出唯一三角形,故本选项错误;故选:C.【点评】本题考查了全等三角形的判定方法;一般三角形全等的判定方法有SSS、SAS、ASA、AAS,熟练掌握全等三角形的判定方法是解题的关键.4.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.40°B.30°C.50°D.60°【分析】根据邻补角的定义求出∠AED,再根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形的两底角相等列式计算即可得解.【解答】解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选:A.【点评】本题考查了全等三角形的性质,等腰三角形的判定与性质,熟记性质并准确识图是解题的关键.5.如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A.5B.4C.10D.8【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选:D.【点评】本题考查了等腰三角形的性质以及勾股定理的知识,熟练掌握等腰三角形的性质是解题的关键.6.规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1;③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1.其中能判定四边形ABCD和四边形A1B1C1D1全等有()个.A.1B.2C.3D.4【分析】根据条件能证明△ABC≌△A1B1C1,和△AC D≌△A1B1C1,的条件.【解答】解:有一组邻边和三个角对应相等的两个四边形全等,故①②③正确.故选:C.【点评】本题考查了三角形全等的判定与性质,解题的关键是注意:多边形的全等可以通过作辅助线转化为证明三角形全等的问题.二、填空题(本大题共10小题,每空3分,共30分)7.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若AD=13,AC=12,则点D到AB的距离为5.【分析】根据勾股定理求CD,根据角平分线性质得出DE=CD,即可得出答案.【解答】解:在Rt△ACD中,AD=13,AC=12,由勾股定理得:CD=5,过D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=5,即点D到AB的距离为5,故答案为:5.【点评】本题考查了角平分线性质和勾股定理,能熟记角平分线性质的内容是解此题的关键,注意:在角的内部,角平分线上的点到角两边的距离相等.8.如图,在△ABC中,∠ABC、∠ACB的角平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.若MN=5cm,CN=2cm,则BM=3cm.【分析】只要证明MN=BM+CN即可解决问题;【解答】解:∵∠ABC、∠ACB的平分线相交于点O,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠OBC=∠MOB,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠OCN,∴BM=MO,ON=CN,∴MN=MO+ON,即MN=BM+CN,∵MN=5cm,CN=2cm,∴BM=5﹣2=3cm,故答案为3cm.【点评】此题考查学生对等腰三角形的判定与性质和平行线性质的理解与掌握.此题关键是证明△BMO,△CNO是等腰三角形.9.如图,在△ABC中,AB=4,AC=3,BC=5,AD是△ABC的角平分线,DE⊥AB于点E,则DE长是.【分析】由△ABC的三边长,可证明△ABC为直角三角形,作DH⊥AC于H,利用角平分线的性质得DH=DE,根据三角形的面积公式得×DE•AB+×DH•AC=AB•AC,于是可求出DE的值.【解答】解:作DH⊥AC于H,∵AD是△ABC的角平分线,DE⊥AB于点E,∴DH=DE,∵AB=4,AC=3,BC=5,∴△ABC为直角三角形,∴DE•AB+DH•AC=AB•AC,∴DH=DE=,故答案为:【点评】本题考查了勾股定理的逆定理运用以及角平分线的性质,能够证明ABC为直角三角形,得到DE•AB+ DH•AC=AB•AC是解题的关键.10.如图,一块形如“Z”字形的铁皮,每个角都是直角,且AB=BC=EF=GF=1,CD=DE=GH=AH=3,现将铁片裁剪并拼接成一个和它等面积的正方形,则正方形的边长是.【分析】延长BC交HG于点M,延长HG交DE于点N,先计算出不规则铁皮的面积,再计算面积相等的正方形的面积.【解答】解:如图所示,延长BC交HG于点M,延长HG交DE于点N,则四边形ABMH、CDNM为矩形,四边形GFEN为正方形.所以“Z”字形的铁皮的面积=S矩形ABMH+S矩形CDNM+S正方形GFEN=AH•AB+CD•DN+GF•EF=3×1+3×2+1×1=10.∴正方形的边长=故答案为:.【点评】本题考查了矩形、正方形的判定和面积及算术平方根.解决本题的关键是利用割补的办法计算出不规则铁皮的面积.11.如图,△ABC,△ADE均是等腰直角三角形,BC与DE相交于F点,若AC=AE=1,则四边形AEFC的周长为2.【分析】根据等腰直角三角形的性质和等腰三角形的判定得到BE=EF=CF=CD,于是得到四边形AEFC的周长=AB+AC.【解答】解:∵△ABC,△ADE均是等腰直角三角形,∴∠B=∠D=45°,∠BEF=∠DCF=90°,∴△BEF,△DCF均是等腰直角三角形,∴BE=EF=CF=CD,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC,∵AC=AE=1,∴AB=AD=,∴四边形AEFC的周长=AE+EF+AC+CD=AB+AC=2,故答案为:2.【点评】本题考查了等腰直角三角形的性质,熟练掌握等腰直角三角形的判定与性质是解题的关键.12.如图,△ABC是边长为6的等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则AE=2.【分析】在Rt△BED中,求出BE即可解决问题;【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵DE⊥BC,∴∠EDB=90°,∵BD=2,∴EB=2BD=4,∴AE=AB﹣BE=6﹣4=2,故答案为2【点评】本题考查等边三角形的性质、直角三角形的30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交AB、AC于点D、E,AE=5,AD=4,线段CE 的长为 1.4.【分析】由AB的垂直平分线DE交AC于点D,垂足为E,根据线段垂直平分线的性质,求得AB,根据相似三角形的性质得到结论.【解答】解:∵DE是AB的垂直平分线,∴AB=2AD=8,∠ADE=∠C=90°,∴△ADE∽△ACB,∴,∴AC=6.4,∴CE=1.4,故答案为:1.4.【点评】此题考查了线段垂直平分线的性质、相似三角形的判定和性质,熟练掌握的线段垂直平分线性质是解决问题的关键.14.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=.【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【解答】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=DC=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,BD⊥AC,在Rt△BDC中,由勾股定理得:BD==,即DE=BD=,故答案为:.【点评】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.15.下面是“经过已知直线外一点作这条直线的垂线“的尺规作图过程.已知:直线l和l外一点P.求作:直线l的垂线,使它经过点P作法:如图,(1)在直线l上任意两点A、B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ,所以直线PQ就是所求作的垂线.该作图的依据是到线段两端点距离相等的点在线段的垂直平分线上.【分析】由AP=AQ、BP=BQ,依据到线段两端点距离相等的点在线段的垂直平分线上知点A、B在线段PQ 的中垂线上,据此可得PQ⊥l.【解答】解:由作图可知AP=AQ、BP=BQ,所以点A、B在线段PQ的中垂线上(到线段两端点距离相等的点在线段的垂直平分线上),所以PQ⊥l,故答案为:到线段两端点距离相等的点在线段的垂直平分线上.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握线段中垂线的性质及过直线外一点作已知直线的垂线的尺规作图.16.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=22°.【分析】根据折叠的性质即可得到AD=PD=BD,可得CD=AB=AD=BD,根据∠ACD=∠A=34°,∠BCD=∠B=56°,即可得出∠BCP=2∠BCD=112°,即可得出∠ACP=112°﹣90°=22°.【解答】解:由折叠可得,AD=PD=BD,∴D是AB的中点,∴CD=AB=AD=BD,∴∠ACD=∠A=34°,∠BCD=∠B=56°,∴∠BCP=2∠BCD=112°,∴∠ACP=112°﹣90°=22°,故答案为:22°.【点评】本题主要考查了折叠的性质以及三角形内角和定理的运用,解题时注意:三角形内角和是180°.三、解答题(共6小题,满分52分)17.(9分)(1)请在图中画出三个以AB为腰的等腰△ABC.(要求:1.锐角三角形,直角三角形,钝角三角形各画一个;2.点C在格点上.)(2)如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=BD.求证BC=AD.【分析】(1)根据等腰三角形、直角三角形、锐角三角形的特点和网格特点,再根据勾股定理画出即可;(2)根据直角三角形的全等判定证明即可.【解答】解:(1)如图所示:(2)证明:∵AC⊥BC,BD⊥AD,在Rt△ADB与Rt△BCA中,,∴Rt△ADB≌Rt△BCA(HL),∴BC=AD.【点评】此题考查了等腰三角形的性质,全等三角形的判定和性质,关键是根据直角三角形的全等判定即可.18.(8分)如图,甲、乙两艘轮船同时从港口O出发,甲轮船向南偏东45°方向航行,乙轮船以每小时15海里的速度向南偏西45°方向航行,2小时后两艘轮船之间的距离为50海里,问甲轮船平均每小时航行多少海里?【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,根据勾股定理解答即可.【解答】解:根据题意知∠AOB=90°,OB=2×15=30海里,AB=50海里,由勾股定理得,OA====40海里,则甲轮船每小时航行=20海里.答:甲轮船每小时航行20海里.【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.19.(8分)如图,正方形网格中每个小正方形边长都是1.(1)画出△ABC关于直线l对称的图形△A1B1C1;(2)在直线l上找一点P,使PB=PC;(要求在直线l上标出点P的位置)(3)连接PA、PC,计算四边形PABC的面积.【分析】(1)根据网格结构找出点A、B、C对应点A1、B1、C1的位置,然后顺次连接即可;(2)过BC中点D作DP⊥BC交直线l于点P,使得PB=PC;(3)S四边形PABC=S△ABC+S△APC,代入数据求解即可.【解答】解:(1)所作图形如图所示:(2)如图所示,过BC中点D作DP⊥BC交直线l于点P,此时PB=PC;(3)S四边形PABC=S△ABC+S△APC=×5×2+×5×1=.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点,然后顺次连接.20.(7分)如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B 落在长方形内点F处,且DF=6,求BE的长.【分析】由折叠的性质可知BE=EF,设BE=EF=x,然后再依据勾股定理的逆定理可证明△ADF为直角三角形,则E、D、F在一条直线上,最后,在Rt△CED中,依据勾股定理列方程求解即可.【解答】解:∵将△ABE沿AE折叠,使点B落在长方形内点F处,∴∠AFE=∠B=90°,AB=AF=8,BE=FE.在△ADF中,∵AF2+DF2=62+82=100=102=AD2,∴△ADF是直角三角形,∠AFD=90°.∴D,F,E在一条直线上.设BE=x,则EF=x,DE=6+x,EC=10﹣x,在Rt△DCE中,∠C=90°,∴CE2+CD2=DE2,即(10﹣x)2+82=(6+x)2.∴x=4.∴BE=4.【点评】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x的方程是解题的关键.21.(8分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.【分析】(1)根据线段垂直平分线和等腰三角形性质得出AB=AE=CE,求出∠AEB和∠C=∠EAC,即可得出答案;(2)根据已知能推出2DE+2EC=7cm,即可得出答案.【解答】解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力,题目比较好,难度适中.22.(12分)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.理解概念(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.概念应用(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.【分析】(1)根据“等角三角形”的定义解答;(2)根据三角形内角和定理求出∠ACB,根据角平分线的定义得到∠ACD=∠DCB=∠ACB=40°,根据“等角三角形”的定义证明;(3)分△ACD是等腰三角形,DA=DC、DA=AC和△BCD是等腰三角形,DB=BC、DC=BD四种情况,根据等腰三角形的性质、三角形内角和定理计算.【解答】解:(1)△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”;(2)∵在△ABC中,∠A=40°,∠B=60°∴∠ACB=180°﹣∠A﹣∠B=80°∵CD为角平分线,∴∠ACD=∠DCB=∠ACB=40°,∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,∵在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°﹣∠DCB﹣∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的等角分割线;(3)当△ACD是等腰三角形,DA=DC时,∠ACD=∠A=42°,∴∠ACB=∠BDC=42°+42°=84°,当△ACD是等腰三角形,DA=AC时,∠ACD=∠ADC=69°,∠BCD=∠A=42°,∴∠ACB=69°+42°=111°,当△BCD是等腰三角形,DC=BD时,∠ACD=∠BCD=∠B=46°,∴∠ACB=92°,当△BCD是等腰三角形,DB=BC时,∠BDC=∠BCD,设∠BDC=∠BCD=x,则∠B=180°﹣2x,则∠ACD=∠B=180°﹣2x,由题意得,180°﹣2x+42°=x,解得,x=74°,∴∠ACD=180°﹣2x=32°,∴∠ACB=106°,∴∠ACB的度数为111°或84°或106°或92°.【点评】本题“等角三角形”的定义、等腰三角形的性质、三角形内角和定理,灵活运用分情况讨论思想是解题的关键.- 21 -。
2018-2019学年河南省驻马店市泌阳县八年级(上)期中数学试卷(解析版)
2018-2019学年河南省驻马店市泌阳县八年级第一学期期中数学试卷一、选择题(共10小题).1.四个数0,1,,中,无理数的是()A.B.1C.D.02.下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=13.数轴上表示1﹣的点到原点的距离是()A.1﹣B.﹣1C.1+D.4.若(x﹣1)2=(x+7)(x﹣7),则的平方根是()A.5B.±5C.D.±5.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)6.举反例说明“x>﹣5,则x2>25”是假命题,下列正确的是()A.4>﹣5,而42<25B.6>﹣5,则62>25C.7>﹣5,则72>25D.8>﹣5,则82>257.小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()A.2种B.3种C.4种D.5种8.如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB 于点E,则图中等腰三角形共有()A.3个B.4个C.5个D.6个9.如图,已知∠1=∠2,AC=AD,从①AB=AE,②BC=ED,③∠B=∠E,④∠C=∠D.这四个条件中再选一个使△ABC≌△AED,符合条件的有()A.1个B.2个C.3个D.4个10.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共21分)11.已知2m=4n﹣1,27n=3m﹣1,则n﹣m=.12.计算:已知:a+b=3,ab=1,则a2+b2=.13.若x2+kx+81是完全平方式,则k的值应是.14.等腰三角形的周长是50cm,一条边长是12cm,则另两边长是.15.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是度.(用含α的代数式表示)17.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,下列各式:①i3=1;②i4=1;③(1+i)×(3﹣4i)=﹣1﹣i;④i+i2+i3+i4+…+i2019=﹣1,其中正确的是(填上所有正确答案的序号).三、解答题(共69分)18.(16分)计算:(1)++;(2)|1﹣|+|﹣|+|2﹣|;(3)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y);(4)2(2x﹣1)(2x+1)﹣5x(﹣x+3y)﹣(x﹣2y)2.19.分解因式:(1)a2b﹣b3;(2)﹣(x2+2)2+6(x2+2)﹣920.已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.21.先观察下列等式,再回答下列问题:①;②③(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).22.如图,线段AC交BD于O,点E,F在线段AC上,△DFO≌△BEO,且AF=CE,连接AB、CD,求证:AB=CD.23.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.24.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.参考答案一、选择题(每小题3分,共30分)1.四个数0,1,,中,无理数的是()A.B.1C.D.0【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:0,1是整数,属于有理数;是分数,属于有理数;无理数有,共1个.故选:B.2.下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.3.数轴上表示1﹣的点到原点的距离是()A.1﹣B.﹣1C.1+D.【分析】根据绝对值的定义即可得出答案.解:∵在数轴上,一个数的绝对值指的是这个数到原点的距离,∴表示1﹣的点到原点的距离为|1﹣|=,故选:B.4.若(x﹣1)2=(x+7)(x﹣7),则的平方根是()A.5B.±5C.D.±【分析】先利用完全平方公式与平方差公式把已知条件展开,求出x的值,然后再求出的值,最后求平方根即可.解:∵(x﹣1)2=(x+7)(x﹣7),∴x2﹣2x+1=x2﹣49,解得x=25,∴==5,∴的平方根是±.故选:D.5.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)【分析】用两种方法正确的表示出阴影部分的面积,再根据图形阴影部分面积的关系,即可直观地得到一个关于a、b的恒等式.解:方法一阴影部分的面积为:(a﹣b)2,方法二阴影部分的面积为:(a+b)2﹣4ab,所以根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为(a﹣b)2=(a+b)2﹣4ab.故选:C.6.举反例说明“x>﹣5,则x2>25”是假命题,下列正确的是()A.4>﹣5,而42<25B.6>﹣5,则62>25C.7>﹣5,则72>25D.8>﹣5,则82>25【分析】要说明一个命题是假命题可以举个反例来说明,且反例要求符合原命题的条件,但结论却与原命题不一致.解:当4>﹣5,而42<25,则“x>﹣5,则x2>25”是假命题,故选:A.7.小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()A.2种B.3种C.4种D.5种【分析】能利用平方差公式分解因式,说明漏掉的是平方项的指数,只能是偶数,又只知道该数为不大于10的正整数,则该指数可能是2、4、6、8、10五个数.解:该指数可能是2、4、6、8、10五个数.故选:D.8.如图,在△ABC中,∠A=36°,∠C=72°,点D在AC上,BC=BD,DE∥BC交AB 于点E,则图中等腰三角形共有()A.3个B.4个C.5个D.6个【分析】由在△ABC中,∠A=36°,∠C=72°°,BD平分∠ABC,DE∥BC,可求得∠ABD=∠EDB=∠DBC=∠A=36°,∠BDC=∠ABC=∠C=72°,∠AED=∠ADE,即可得△ABC,△ABD,△EBD,△BCD,△AED是等腰三角形.解:在△ABC中,∠A=36°,∠C=72°,∴∠ABC=∠C==72°,∴△ABC是等腰三角形,∴∠DBC=36°,∴∠ABD=∠DBC=36°,∴BD平分∠ABC,∴∠ABD=∠DBC=36°,∵DE∥BC,∴∠EDB=∠DBC=36°,∴∠ABD=∠EDB=∠A,∴AD=BD,EB=ED,即△ABD和△EBD是等腰三角形,∵∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,即△BCD是等腰三角形,∵DE∥BC,∴∠AED=∠ABC,∠ADE=∠C,∴∠AED=∠ADE,∴AE=AD,即△AED是等腰三角形.∴图中共有5个等腰三角形.故选:C.9.如图,已知∠1=∠2,AC=AD,从①AB=AE,②BC=ED,③∠B=∠E,④∠C=∠D.这四个条件中再选一个使△ABC≌△AED,符合条件的有()A.1个B.2个C.3个D.4个【分析】由∠1=∠2,可得∠BAC=∠EAD,又由于AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠B=∠E,就可以用AAS判定△ABC≌△AED;加④∠C=∠D,就可以用ASA判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等,其中能使△ABC≌△AED的条件有:①③④.故选:C.10.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1B.2C.3D.4【分析】把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.解:∵2=1×2,∴F(2)=是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的.∴正确的有(1),(4).故选:B.二、填空题(每小题3分,共21分)11.已知2m=4n﹣1,27n=3m﹣1,则n﹣m=5.【分析】直接利用幂的乘方运算法则将原式变形进而得出m,n的值即可.解:∵2m=4n﹣1,27n=3m﹣1,∴2m=22n﹣2,33n=3m﹣1,故,解得:,故n﹣m=5.故答案为:5.12.计算:已知:a+b=3,ab=1,则a2+b2=7.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:713.若x2+kx+81是完全平方式,则k的值应是±18.【分析】利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+kx+81是完全平方式,∴k=±18.故答案为:±18.14.等腰三角形的周长是50cm,一条边长是12cm,则另两边长是19cm、19cm.【分析】题中只给出了三角形的周长和一边长,没有指出它是底边还是腰,所以应该分两种情况进行分析.解:该三角形是等腰三角形,当底边长为12cm时,其它两条边为(50﹣12)÷2=19(cm),即三边长分别为12cm、19cm、19cm,能组成三角形.当腰长为12cm时,底边长为50﹣2×12=26(cm),即三边长分别为12cm,12cm,26cm,不能组成三角形.综上,另两边长是19cm、19cm.故答案为:19cm、19cm.15.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定,则[+]的值为3.【分析】估算出+的取值范围可以得到答案.解:∵3<+<4,∴[+]的值为3.故答案为:3.16.如图,在△ABC中,AB=AC,D,E,F分别在BC,AC,AB上的点,且BF=CD,BD=CE,∠FDE=α,则∠A的度数是180°﹣2α度.(用含α的代数式表示)【分析】根据已知条件可推出BDF≌△CDE,从而可知∠EDC=∠FDB,则∠EDF=∠B.解:∵AB=AC,∴∠B=∠C,在△BDF和△CED中,,∴△BDF≌△CDE(SAS)∴∠EDC=∠DFB∴∠EDF=∠B=(180°﹣∠A)÷2=90°﹣∠A,∵∠FDE=α,∴∠A=180°﹣2α,故答案为:180°﹣2α17.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣5i)=(2+3)+(1﹣5)i=5﹣4i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,下列各式:①i3=1;②i4=1;③(1+i)×(3﹣4i)=﹣1﹣i;④i+i2+i3+i4+…+i2019=﹣1,其中正确的是②④(填上所有正确答案的序号).【分析】①将i3表示成i2•i即可;②将i4表示成i2•i2即可;③利用多项式乘以多项式的法则计算即可;④利用式子的规律即依次每四项的和为0进行计算即可.解:①∵i3=i2•i,i2=﹣1,∴i3=﹣i.∴①不正确;②∵i4=i2•i2,i2=﹣1,∴i4=1×1=1.∴②正确;③∵(1+i)×(3﹣4i)=3﹣4i+3i﹣4i2=7﹣i,∴③不正确;④∵i+i2+i3+i4=i﹣1﹣i=1=0,∴i5+i6+i7+i8=i4(i+i2+i3+i4)=0.∴i+i2+i3+i4+…+i2019=i2017+i2018+i2019=i2016(i+i2+i3)=i﹣1+i=﹣1,∴④正确.综上,正确的是:②④.故答案为:②④.三、解答题(共69分)18.(16分)计算:(1)++;(2)|1﹣|+|﹣|+|2﹣|;(3)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y);(4)2(2x﹣1)(2x+1)﹣5x(﹣x+3y)﹣(x﹣2y)2.【分析】(1)先计算算术平方根、立方根,再计算加减即可;(2)先根据绝对值的性质去绝对值符号,再计算加减即可;(3)先计算多项式乘多项式,再去括号、合并同类项即可;(4)先利用平方差公式和完全平方公式及单项式乘多项式法则计算,再去括号、合并同类项即可.解:(1)原式=0.5+0.5+2=3;(2)原式=﹣1+﹣+2﹣=1;(3)原式=3xy﹣9x2﹣2y2+6xy﹣(6x2+2xy﹣3xy﹣y2)=3xy﹣9x2﹣2y2+6xy﹣6x2﹣2xy+3xy+y2=10xy﹣15x2﹣y2;(4)原式=2(4x2﹣1)+5x2﹣15xy﹣(x2﹣4xy+4y2)=8x2﹣2+5x2﹣15xy﹣x2+4xy﹣4y2=12x2﹣11xy﹣4y2﹣2.19.分解因式:(1)a2b﹣b3;(2)﹣(x2+2)2+6(x2+2)﹣9【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.解:(1)原式=b(a2﹣b2)=b(a+b)(a﹣b);(2)原式=﹣[(x2+2)2﹣6(x2+2)+9]=﹣(x2﹣1)2=﹣(x+1)2(x﹣1)2.20.已知:a+b=4(1)求代数式(a+1)(b+1)﹣ab值;(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.【分析】(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a﹣b)2+2(a+b)可得(a﹣b)2+2×4=17,据此进一步计算可得.解:(1)原式=ab+a+b+1﹣ab=a+b+1,当a+b=4时,原式=4+1=5;(2)∵a2﹣2ab+b2+2a+2b=(a﹣b)2+2(a+b),∴(a﹣b)2+2×4=17,∴(a﹣b)2=9,则a﹣b=3或﹣3.21.先观察下列等式,再回答下列问题:①;②③(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).【分析】(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.解:(1),验证:====,∵,∴;(2)==(n为整数)22.如图,线段AC交BD于O,点E,F在线段AC上,△DFO≌△BEO,且AF=CE,连接AB、CD,求证:AB=CD.【分析】先由△BEO≌△DFO,即可得出OF=OE,DO=BO,进而得到AO=CO,再证明△ABO≌△CDO,即可得到AB=CD.【解答】证明:∵△BEO≌△DFO,∴OF=OE,DO=BO,又∵AF=CE,∴AO=CO,在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),∴AB=CD.23.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.【分析】验证(1)计算(﹣1)2+02+12+22+32的结果,再将结果除以5即可;(2)用含n的代数式分别表示出其余的4个整数,再将它们的平方相加,化简得出它们的平方和,再证明是5的倍数;延伸:设三个连续整数的中间一个为n,用含n的代数式分别表示出其余的2个整数,再将它们相加,化简得出三个连续整数的平方和,再除以3得到余数.解:发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(﹣1)2+02+12+22+32的结果是5的3倍;(2)设五个连续整数的中间一个为n,则其余的4个整数分别是n﹣2,n﹣1,n+1,n+2,它们的平方和为:(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=n2﹣4n+4+n2﹣2n+1+n2+n2+2n+1+n2+4n+4=5n2+10,∵5n2+10=5(n2+2),又n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数;延伸设三个连续整数的中间一个为n,则其余的2个整数是n﹣1,n+1,它们的平方和为:(n﹣1)2+n2+(n+1)2=n2﹣2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.24.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.【分析】(1)由CA=CB,CD=CE,∠ACB=∠DCE=α,利用SAS即可判定△ACD≌△BCE;(2)根据△ACD≌△BCE,得出∠CAD=∠CBE,再根据∠AFC=∠BFH,即可得到∠AMB=∠ACB=α;(3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出CP=CQ,∠ACP =∠BCQ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ为等腰直角三角形.解:(1)如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD;(2)如图1,∵△ACD≌△BCE,∴∠CAD=∠CBE,∵△ABC中,∠BAC+∠ABC=180°﹣α,∴∠BAM+∠ABM=180°﹣α,∴△ABM中,∠AMB=180°﹣(180°﹣α)=α;(3)△CPQ为等腰直角三角形.证明:如图2,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.。
勤学早2018-2019学年度八年级数学(上)期中模拟卷月考三(word版含答
八年级数学(上)期中模拟卷(月考三)(测试范围:第11章三角形~第13章轴对称 解答参考时间:120分钟 满分 120分) 一、选择题(每小题3分,共30分) 1、下列各组线段中能围成三角形的是( )A 、3cm ,4cm ,6cmB 、8cm ,4cm ,3cmC 、14cm ,7cm ,6cmD 、2cm ,3cm ,6cm 2、如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )ADC BAABBCDABCCD D CBAD3、下列各图中,∠1=70°的是( )B40°30°21C 40°30°21D40°30°214、下面所给的交通标志中,是轴对称图形的是( )AC5、已知点A 的坐标为(-2,3),则点A 关于y 轴对称的点的坐标为( ) A 、(-2.-3) B 、(2,3) C 、(2,-3) D 、(-2,3)6、如图,△ACE ≌△DBF ,若AD =10,BC =2,则AB 的长度为( ) A 、6 B 、4 C 、2 D 、37、如图,△ABC 中,边AC 的垂直平分线分别交BC ,AC 于D ,E ,△ABC 的周长为34cm ,△ABD 的周长为22cm ,则AE 的长度为( )A 、8cmB 、4cmC 、2cmD 、6cmBCE F ACBAE QNMCBA第6题图 第7题图 第9题图8、已知直线l 经过点(2,0)且与y 轴平行,则点(3,4)关于直线l 的对称点的坐标为( ) A 、(-1,4) B (6,-1) C 、(1,4) D 、(4,1)9、如图,在△ABC 中,∠BAC =110°,MP ,NQ 分别垂直平分AB ,AC 交BC 于点P ,Q ,则∠P AQ 等 于( )A 、50°B 、80°C 、40°D 、65°10、如图,在RtABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其它边上,则可以画出的不同的等腰三角形的个数最多为( )个 A 、5 B 、6 C 、7 D 、8二、填空题(每小题3分,共18分)11、△ABC 中,∠A =70°,AB =AC ,则∠B 的度数为 .12、若等腰三角形有两边长分别为4cm 和6cm ,则它的周长是 cm . 13、一个n 边形的每个内角都等于144°,则n = .14、在△ABC 中,∠B ,∠C 的平分线相交于O ,∠BOC =125°,则∠A 的度数为 .15、如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =20,则CD 的长为 .AC BABCD第10题图 第15题图 16、已知A (0,1),B (3,1),C (4,3),如果在平面直角坐标系中存在一点D ,使得△ABD 与△ABC 全等,点D 不与点C 重合,那么点D 的坐标为 . 三、解答题(共8题,共72分)17、(本题8分)如图,点B ,C ,E ,F 在同一直线上,BE =CF ,AC ⊥BC 于点C ,DF ⊥EF 于点F ,AB ⊥DE ,求证:AB =DE 。
人教版数学八年级上学期《期中检测试卷》含答案解析
期中测 试 卷
学校________班级________姓名________成绩________
考试时间120分钟 满分120分
一、选择题:
1.下列图形中,属于轴对称图形的是( )
A. B.
C. D.
2.下列运算正确的是()
A. B. C. D.
3.在平面直角坐标系中,点 关于 轴对称 点 的坐标为()
故选:C.
【点睛】本题考查了等边三角形的性质,三角形全等的判定和性质,掌握三角形全等的判定和性质是解题的关键.
12.如图所示,在平面直角坐标系中 , , 是直角三角形,且 , , 到 轴距离为 ,把 绕点 顺时针旋转 ,得到 ;把 绕点 顺时针旋转 ,得到 .以此类推,则旋转第2017次后,得到的直角三角形的直角顶点 的坐标为()
【答案】C
【解析】
【分析】
根据轴对称图形 概念求解.
【详解】根据轴对称图形的概念求解,A不是轴对称图形,故本选项错误;B不是轴对称图形,故本选项错误;C是轴对称图形,故本选项正确;D不是轴对称图形,故本选项错误,故本题C为正确答案.
【点睛】本题考查了轴对称图形的概念,掌握一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形叫做轴对称图形,这条直线叫做对称轴是解决本题的关键.
A. B. C. D.
10.如图,等腰 的底边 长为4,腰长为6, 垂直平分 ,点 为直线 上一动点,则 的最小值为()
A.10B.6C.4D.2
11.如图, 和 均为等边三角形,点 , , 在同一条直线上,连接 ,若 ,则 的度数是()
A. B. C. D.
12.如图所示,在平面直角坐标系中 , , 是直角三角形,且 , , 到 轴距离为 ,把 绕点 顺时针旋转 ,得到 ;把 绕点 顺时针旋转 ,得到 .以此类推,则旋转第2017次后,得到 直角三角形的直角顶点 的坐标为()
人教版数学八年级上册期中考试模拟试卷(一)(前3章)含答案
八年级上学期期中考试数学模拟试卷(一)(前3章)(人教版)(满分120分,考试时间100分钟)(附答案)学校____________ 班级________ 姓名___________一、选择题(每小题3分,共30分)1.如图分别是贵州、旅游、河北、黑龙江卫视的图标,其中属于轴对称图形的是()A.B.C.D.2.下列条件:①∠A+∠B=∠C;②∠A∶∠B∶∠C=1∶2∶3;③∠A=90°-∠B;④∠A=∠B-∠C,其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个3.有长为2 cm,3 cm,4 cm,5 cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是()A.1个B.2个C.3个D.4个4.满足下列条件的两个三角形不一定全等的是()A.有一边相等的两个等边三角形B.有一腰和底边对应相等的两个等腰三角形C.周长相等的两个三角形D.斜边和直角边对应相等的两个等腰直角三角形5.已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O,C为圆心,大于1OC的长为半径画弧,两弧相交于E,F,画直线EF,分别交OA于点D,交OB2于点G,那么△ODG一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形6.若等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数是()A.65° B.55° C.125°或55° D.65°或115°7. 图中有三个正方形,其中构成的三角形中全等三角形的对数有( )A .2对B .3对C .4对D .5对8. 如图,将△ABC 纸片沿DE 折叠,使点A 落在点A '处,且A 'B 平分∠ABC ,A 'C 平分∠ACB .若∠BA 'C =110°,则∠1+∠2的度数为( ) A .80°B .90°C .100°D .110°9. 如图,在△ABC 中,点D 在BC 边上,过D 作DE ⊥BC 交AB 于点E ,P 为DC 上的一个动点,连接PA ,PE ,若PA +PE 最小,则点P 应该满足( ) A .PA =PCB .PA =PEC .∠APE =90°D .∠APC =∠DPE10. 如图所示,△ABC 的两条外角平分线AP ,CP 相交于点P ,PH ⊥AC 于H .若∠ABC =60°,则下面的结论:①∠ABP =30°;②∠APC =60°;③△ABC ≌△APC ;④P A ∥BC ;⑤∠APH =∠BPC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个A'21E D CBAAB CD EP二、填空题(每小题3分,共15分)11. 一个多边形的每一个外角都等于36°,则该多边形的内角和等于_______度.12. 已知点P (1,a )与点Q (b ,2)关于x 轴对称,点Q (b ,2)与点M (m ,n )关于y 轴对称,则m -n 的值为___________.13. 已知△ABC 三内角满足:3∠A >5∠B ,2∠B ≥3∠C ,则按角分类,△ABC 是__________三角形.14. 若满足∠AOB =30°,OA =4,AB =k 的△AOB 的形状与大小是唯一的,则k 的取值范围是_________.15. 如图,等边△ABC 的边长为2,CD 为AB 边上的中线,E 为线段CD 上的动点,以BE 为边,在BE 左侧作等边△BEF ,连接DF ,则DF 的最小值为_________.三、解答题(本大题共8个小题,满分75分)16. (8分)如图所示,两条笔直的公路AO 与BO 相交于点O ,村庄D 和E 在公路AO 的两侧,现要在公路AO 和BO 之间修一个供水站P 向D ,E 两村供水,使供水站P 到两公路的距离相等,且到D ,E 两村的距离也相等.请你在图中画出点P 的位置.(要求:尺规作图,不写作法,保留作图痕迹.)A B C D EPHA BCDEF17. (9分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1,并写出点B 1的坐标; (2)在x 轴上求作一点P ,使△PAB 的周长最小,并直接写出点P 的坐标.18. (9分)如图,∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .(1)求证:△AEC ≌△BED ; (2)若∠1=40°,求∠BDE 的度数.BOABCDEO1219. (9分)如图,在△ABC 中,∠BAC =120°,BC =26,AB ,AC 的垂直平分线分别交BC 于点E ,F ,与AB ,AC 分别交于点D ,G . (1)求∠EAF 的度数; (2)求△AEF 的周长.20. (9分)如图,在△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G . (1)求证:BF =AC ;DGABCEF(2)求证:CE=12BF .21. (10分)已知:如图,AF 平分∠BAC ,BC ⊥AF ,垂足为E ,点D 与点A 关于点E 对称,PB 分别与线段CF ,AF 相交于点P ,M . (1)求证:AB =CD ;(2)若∠BAC =2∠MPC ,请你判断∠F 与∠MCD 的数量关系,并说明理由.H A BCD EFGPMFE D CBA22. (10分)如图,在等边△ABC 中,AB =BC =AC =12 cm ,∠B =∠C =60°,现有M ,N 两点分别从点A ,B 同时出发,沿△ABC 的边运动,已知点M 的速度为1 cm/s ,点N 的速度为2 cm/s ,当点N 第一次到达B 点时,M ,N 同时停止运动,设运动时间为t (s ). (1)当t 为何值时,M ,N 两点重合?两点重合在什么位置?(2)当点M ,N 在BC 边上运动时,是否存在使AM =AN 的位置?若存在,请求出此时点M ,N 运动的时间;若不存在,请说明理由.23. (11分)如图1,点C 在线段AB 上(点C 不与A ,B 重合),分别以AC ,BC 为边在AB同侧作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点P .N M(1)观察猜想:①AE 与BD 的数量关系为____________; ②∠APD 的度数为____________. (2)数学思考:如图2,当点C 在线段AB 外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展应用:如图3,点E 为四边形ABCD 内一点,且满足∠AED =∠BEC =90°,AE =DE ,BE =CE ,对角线AC ,BD 交于点P ,AC =10,则四边形ABCD 的面积为_________.图1A BC DEP图2DAC P EB图3ABP DCE八年级上学期期中考试数学模拟试卷(一)(前3章)(人教版)【参考答案】一、选择题二、填空题11.1440.12.-3.13.钝角.14.k=2或k≥4.15.12.三、解答题16.如图,点P即为所求.17.(1)作图略,B1(-4,2);(2)P(2,0).18.(1)证明略;(2)70°.19.(1)∠EAF=60°;(2)△AEF的周长为26.20.(1)证明略;(2)证明略.21.(1)证明略;(2)∠F=∠MCD,理由略.22.(1)12 s,两点重合在C点;(2)存在,t=16 s.23.(1)①AE=BD;②60°;(2)成立,证明略;(3)50.。
2018-2019学年上学期八年级 数学期中考试卷含答案
2018-2019学年上学期期中教学质量调研八年级数学一.精心选择,一锤定音(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入下表中)序号 1 2 3 4 5 6 7 9 10答案1.下面四个手机应用图标中是轴对称图形的是2.已知图中的两个三角形全等,则的大小为A.B. C. D.3.如图,三角形被木板遮住一部分,这个三角形是A.锐角三角形B.直角三角形C.钝角三角形 D.以上都有可能4.如图,∠ACB=90,CD⊥AB,垂足为D,下列结论错误的是A.图中有三个直角三角形B. ∠1=∠2C. ∠1和∠B都是∠A的余角D.∠2=∠A5.已知n边形从一个顶点出发可以作9条对角线,则n=A.9B.10C.11D.126.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有A.1个B.2个C.3个D.4个7.如图,点O在△ABC内,且到三边的距离相等,若∠A=60,则∠BOC的大小为A. B. C. D.608.如图,在Rt△ABC中,∠BAC=90,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=2A.30B.C.60D.759.如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,……,照这样走下去,他第一次加到出发地A点时,一共走的路程是A.140米B.150米C.160米D.240米10.如图,在Rt△ABC中,∠ACB=90,∠BAC的平分线交BC于D,过点C作CG⊥AB于G,交AD 于E,过点D作DF⊥AB于 F.下列结论①∠CED=;②;③∠ADF=;④CE=DF.正确的是A.①②④B.②③④C.①③D.①②③④二.细心填一填,试试自己的身手!(本大题共10个小题;每小题3分,共30分)11.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是.12.三角形三边长分别为3,,7,则的取值范围是.13.一个正多边形的内角和为540,则这个正多边形的每个外角的度数为.14.如图,已知AB⊥BD,AB∥DE,AB=ED。
【人教版】数学八年级上学期《期中检测试卷》带答案
【答案】D
【解析】
【分析】
运用△ABC≌△ECD求出∠ACB=∠D=62°,再运用三角形内角和定理求出∠B即可.
【详解】∵△ABC≌△ECD,∠A=48°,∠D=62°,∴∠ACB=∠D=62°,∴∠B=180°-∠ACB-∠A=180°-62°-48°=70°.
10.若△ABC≌△A1B1C1,且∠A=100°,∠B=50°,则∠C1=_______.
【答案】30°
【解析】
【分析】
根据三角形的内角和等于180°求出∠C,再根据全等三角形对应角相等解答即可.
【详解】∵∠A=100°,∠B=50°,∴∠C=180°﹣∠A﹣∠B=180°﹣100°﹣50°=30°.
14.Rt△ABC两直角边的长分别为6cm和8cm,则斜边上的中线长为______
15.在△ABC中,若三条边的长度分别为3、4、5,则这个三角形的面积是______
16.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为_____厘米.
17.在等腰三角形中,马虎同学做了如下探究:已知一个角是60°,则另两个角是唯一确定的(60°,60°);已知一个角是90°,则另两个角也是唯一确定的(45°,45°);已知一个角是120°则另两个角也是唯一确定的(30°,30°).由此马虎同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数是唯一确定的,马虎同学的结论是_______的.(填”正确”或”错误”)
A.38°B.48°C.62°D.70°
5.下列轴对称图形中,对称轴条数最多的是()
A.线段B.角C.等腰三角形D.等边三角形
2018-2019学年八年级上册期中数学试卷含答案(人教版)
2018-2019学年八年级(上册)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.94.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或165.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()(A.30°B.50°C.60°D.37.5°9.3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米10.(3分)如图,在△ABC和△DEC中,已知AB=△DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EC.BC=DC,∠A=∠DB.BC=EC,AC=DCD.AC=DC,∠A=∠D11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.913.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN =4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.18.(3分)如图,AB、CD相交于点O,AD=△CB,请你补充一个条件,使得AOD≌△COB,你补充的条件是.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A△2,A2B2A△3,A3B3A4,…均为等边三角形,若OA1=△4,则A6B6A7的边长为.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且P A=PB.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.(不写作法,保留作图痕迹).22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).26.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.2018-2019学年八年级(上册)期中数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题锁给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列亚运会会徽中的图案,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(3分)小芳有两根长度为5cm和11cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm【分析】设木条的长度为x cm,再由三角形的三边关系即可得出结论.【解答】解:设木条的长度为x cm,则11﹣5<x<11+5,即6<x<16.故选:D.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)如果n边形的内角和是它外角和的4倍,则n等于()A.7B.8C.10D.9【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的4倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×4,解得n=10.故选:C.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4.(3分)若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15B.16C.14D.14或16【分析】由于等腰三角形的底边与腰不能确定,故应分4为底边与6为底边两种情况进行讨论.【解答】解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解是解题关键.5.(3分)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中,与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C【分析】根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是100°,再根据全等三角形的对应角相等解答.【解答】解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于100°,∴与△ABC全等的三角形的100°的角的对应角是∠A.故选:A.【点评】本题主要考查了全等三角形的对应角相等的性质,三角形的内角和等于180°,根据∠A=∠C判断出这两个角都不能是100°是解题的关键.6.(3分)如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于()A.18°B.36°C.54°D.64°【分析】根据等腰三角形的性质由已知可求得∠A的度数,再根据垂直的定义和三角形内角和定理不难求得∠ABD的度数.【解答】解:∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°﹣36°=54°.故选:C.【点评】本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.7.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.8.(3分)如图,已知D为△ABC边AB的中点,E在边AC上,将△ABC折叠,使A点落在BC上的F 处,若∠B=75°,则∠BDF等于()(A.30°B.50°C.60°D.37.5°【分析】由题意可得AD=BD=DF,即可求∠B=∠DFB=75°,根据三角形内角和定理可求∠BDF的度数.【解答】解:∵点D是AB的中点∴AD=BD∵折叠∴AD=DF∴BD=AD=DF∴∠B=∠DFB=75°∴∠BDF=30°故选:A.【点评】本题考查了翻折变换,三角形内角和定理,熟练运用折叠性质解决问题是本题的关键.9.3分)如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选:B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.10.(3分)如图,在△ABC和△DEC中,已知AB=△DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EC.BC=DC,∠A=∠DB.BC=EC,AC=DCD.AC=DC,∠A=∠D【分析】根据全等三角形的判定方法逐项判断即可.【解答】解:∵AB=DE,∴当BC=EC,∠B=∠E时,满足SAS,可证明△ABC≌△DEC,故A可以;当BC=EC,AC=DC时,满足SSS,可证明△ABC≌△DEC,故B可以;当BC=DC,∠A=∠D时,在△ABC中是ASS,在△DEC中是SAS,故不能证明△ABC≌△DEC,故C不可以;当AC=DC,∠A=∠D时,满足SAS,可证明△ABC≌△DEC,故D可以;故选:C.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.11.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.12.(3分)如图所示的正方形网格中,网格的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C的个数是()A.6B.7C.8D.9【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【解答】解:①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.13.(3分)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm【分析】利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用MN=4cm,得出NQ的长,即可得出QR的长.【解答】解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5cm,PN=3cm,MN=4cm,∴RN=3cm,MQ=2.5cm,即NQ=MN﹣MQ=4﹣2.5=1.5(cm),则线段QR的长为:RN+NQ=3+1.5=4.5(cm).故选:A.【点评】此题主要考查了轴对称图形的性质,得出PM=MQ,PN=NR是解题关键.14.(3分)如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则四个结论①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中正确的是()A.①②B.①②④C.①②③D.①②③④【分析】因为△ABC为等边三角形,根据已知条件可推出△Rt ARP≌△Rt ASP,则AR=AS,故(2)正确,∠BAP=∠CAP,所以AP是等边三角形的顶角的平分线,故(1)正确,根据等腰三角形的三线合一的性质知,AP也是BC边上的高和中线,即点P是BC的中点,因为AQ=PQ,所以点Q是AC的中点,所以PQ是边AB对的中位线,有PQ∥AB,故(△3)正确,又可推出BRP≌△QSP,故(4)正确.【解答】解:∵PR⊥AB于R,PS⊥AC于S∴∠ARP=∠ASP=90°∵PR=PS,AP=AP∴△Rt ARP≌△Rt ASP∴AR=AS,故(2)正确,∠BAP=∠CAP∴AP是等边三角形的顶角的平分线,故(1)正确∴AP是BC边上的高和中线,即点P是BC的中点∵AQ=PQ∴点Q是AC的中点∴PQ是边AB对的中位线∴PQ∥AB,故(3)正确∵∠B=∠C=60°,∠BRP=∠CSP=90°,BP=CP∴△BRP≌△QSP,故(4)正确∴全部正确.故选:D.【点评】本题利用了等边三角形的性质:三线合一,全等三角形的判定和性质,中位线的性质求解.二、填空题:(本题共5小题,每小题3分,共15分)15.(3分)点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5),故答案为:(﹣3,﹣5).【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.16.(3分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S=7,DE△ABC =2,AB=4,则AC长是3.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据三角形的面积公式列式计算即可得解.【解答】解:∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,=×4×2+AC•2=7,∴S△ABC解得AC=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.17.(3分)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13.【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.(3分)如图,AB、CD相交于点O,AD=△CB,请你补充一个条件,使得AOD≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO.【分析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.19.(3分)如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM 上.△A1B1A△2,A2B2A△3,A3B3A4,…均为等边三角形,若OA1=△4,则A6B6A7的边长为128.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=16,A4B4=8B1A2=32,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=4,∴A2B1=4,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=16=24,A4B4=8B1A2=32=25,A5B5=16B1A2=64=26,以此类推:△A n B n A n+1的边长为2n+1,∴△A6B6A7的边长为:26+1=128.故答案为:128.【点评】此题主要考查了等边三角形的性质以及直角三角形30度角的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.三、解答题(本大题共7个小题,共计63分)20.(6分)用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且P A=PB.【分析】分别作∠BAC的平分线和线段AB的中垂线,它们的交点即为所求点P.【解答】解:如图所示,点P即为所求.【点评】此题主要考查了线段垂直平分线的性质与作法以及角平分线的性质与作法,正确掌握相关性质是解题关键.21.(7分)如图,△ABC三个顶点的坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使P A+PC最小.(不写作法,保留作图痕迹).【分析】(1)写出点A、B、C关于y轴对称的对应点A′、B′、C′的坐标,然后描点即可;(2)作A点关于x轴的对应点A″,连接A″C交x轴于点P,利用两点之间线段最短可判断此时P A+PC 最小.【解答】解:(△1)如图,A′B′△C′为所作,A′B′C′三个顶点的坐标分别为A'(4,1),B'(3,3),C'(1,2);(2)如图,点P为所作..【点评】本题考查了作图﹣轴对称变换:在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.22.(8分)如图,在△ABC中,∠B=40°,AE是∠BAC的平分线,∠ACD=106°,求∠AEC的度数.【分析】先由三角形外角的性质,求出∠BAC的度数,然后由角平分线的定义即可求出∠BAE的度数,然后再根据外角的性质,即可求∠AEC的度数.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠BAC,∵∠B=40°,∠ACD=106°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠BAC=33°,∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠BAE=73°.【点评】此题考查了三角形外角的性质及角平分线的定义,熟记三角形的外角等于与它不相邻的两个内角之和.23.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,OA=OD,AC与BD相交于点O.(1)求证:AB=CD;(2)请判断△OBC的形状,并证明你的结论.【分析】(1)根据已知条件,用HL公理证:△Rt ABC≌△Rt DCB,从而得证;(2)利用△Rt ABC≌△Rt DCB的对应角相等,即可证明△OBC是等腰三角形.【解答】证明:(1)在△Rt ABC与△Rt DCB中,∠A=∠D=90°,,∴△Rt ABC≌△Rt DCB(HL),∴AB=CD;(2)△OBC是等腰三角形,理由如下:∵△ABC≌△DCB,则∠ACB=∠DBC,在△OBC中,即∠OCB=∠OBC∴△OBC是等腰三角形.【点评】此题主要考查全等三角形的判定和性质,关键是学生对直角三角形全等的判定和等腰三角形的判定与性质的理解和掌握.24.(10分)如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.(1)求此时货轮到小岛B的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.【分析】(1)根据题意得到∠CAB=∠B,根据等腰三角形的性质得到CB=CA=80,得到答案;(2)作BD⊥CD于点D,求出∠BCD=30°,根据直角三角形的性质计算即可.【解答】解:(1)由题意得,∠CAB=90°﹣40°﹣10°=40°,∠ACB=40°+60°=100°,∴∠B=180°﹣100°﹣40°=40°,∴∠CAB=∠B,∴CB=CA=80(海里),答:此时货轮到小岛B的距离为80海里;(2)轮船向正东方向航行没有触礁危险.理由如下:如图,作BD⊥CD于点D,∵∠BCD=90°﹣60°=30°,∴BD=BC=40,∵40>36,∴轮船向正东方向航行没有触礁危险.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握直角三角形的性质、方向角的概念是解题的关键.25.(12分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE 与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有②(请写序号,少选、错选均不得分).【分析】(1)欲证明AE=△CD,只要证明ABE≌△CBD;(2)由△ABE≌△CBD,推出BAE=∠BCD,由∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE ﹣∠ANB,又∠CNM=∠ABC,∠ABC=90°,可得∠NMC=90°;(3)结论:②;作BK⊥AE于K,BJ⊥CD于J.理由角平分线的判定定理证明即可;【解答】(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ABC,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②△S ABE=理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,△S CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设△①成立,则ABM≌△DBM,则AB=BD,显然可不能,故①错误.故答案为②.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.26.(12分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)试求何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.【分析】(△1)利用等边三角形的性质可证明APC≌△BQA,则可求得∠BAQ=∠ACP,再利用三角形外角的性质可证得∠CMQ=60°;(2)可用t分别表示出BP和BQ,分∠BPQ=90°和∠BPQ=90°两种情况,分别利用直角三角形的性质可得到关于t的方程,则可求得t的值;(3)同(△1)可证得PBC≌△QCA,再利用三角形外角的性质可求得∠CMQ=120°.【解答】解:(△1)∵ABC为等边三角形,∴AB=AC,∠B=∠P AC=60°,∵点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,∴AP=BQ,在△APC和△BQA中,∴△APC≌△BQA(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠CAQ+∠ACP=∠BAQ+∠CAQ=∠BAC=60°,∴在P、Q运动的过程中,∠CMQ不变,∠CMQ=60°;(2)∵运动时间为ts,则AP=BQ=t,∴PB=4﹣t,当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,∴4﹣t=2t,解得t=,当∠BPQ=90°时,∵∠B=60°,∴BQ=2PB,∴t=2(4﹣t),解得t=,∴当t为s或s时,△PBQ为直角三角形;(3)在等边三角形ABC中,AC=BC,∠ABC=∠BCA=60°,∴∠PBC=∠QCA=120°,且BP=CQ,在△PBC和△QCA中,∴△PBC≌△QCA(SAS),∴∠BPC=∠MQC,又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=120°,∴在P、Q运动的过程中,∠CMQ的大小不变,∠CMQ=120°.【点评】本题为三角形的综合应用、等边三角形的性质、直角三角形的性质、勾股定理、全等三角形的判定和性质、解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2018-2019学年八年级数学上期中质量试题(含答案)
题图第3题图第4题图第52018-2019学年八年级数学上学期期中教学质量检测试题注意事项:1.答题前,请先将自己的姓名、考场、考号在卷首的相应位置填写清楚;2.选择题答案涂在答题卡上,非选择题用蓝色、黑色钢笔或圆珠笔直接写在试卷上.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分)请将唯一正确答案的代号填涂在答题..卡.上 1.在下列四个交通标志图中,是轴对称图形的是A .B .C .D .2.三条线段a =5,b =3,c 的值为奇数,由a ,b ,c 为边可组成三角形A .1个B .3个C .5个D .无数个 3.如图,已知在△ABC 中,∠ABC =70°,∠C =50°,BD 是角平分线,则∠BDC 的度数为A .95°B .100°C .110°D .120°4.如图,EA ∥DF ,AE =DF ,要使△AEC ≌△DFB ,只要A .AB =BC B .EC =BF C .∠A =∠D D .AB =CD 5.一副三角板如图叠放在一起,则图中∠α的度数为A .35°B .30°C .25°D .15°6.一个多边形的内角和比其外角和的2倍多180°,则该多边形的边数是A .6B .7C .8D .10 7.下列条件中,不能判定两个直角三角形全等的是A .两直角边分别相等B .斜边和一条直角边分别相等C .两锐角分别相等D .一个锐角和斜边分别相等8.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是A .15B .30C .45D .609.在平面直角坐标系中,点P 1(,)2-关于x 轴对称的点的坐标是A .(1,2)B .(1-,2-)C .(1-,2)D .(2-,1)10.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC .其中正确结论的个数是 A .1个 B .2个C .3个D .4个11.如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为A .40°B .36°C .30°D .25°12.如图,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于21BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD=AC ,∠A =50°,则∠ACB 的度数为 A .90° B .95°C .100° 13.已知:在△ABC 中,∠A =60°,如要判定△ABC 还需添加一个条件.现有下面三种说法:①如果添加条件“AB =AC ”,那么△ABC 是等边三角形; ②如果添加条件“∠B =∠C ”,那么△ABC 是等边三角形;③如果添加条件“边AB ,BC 上的高相等”,那么△ABC 是等边三角形. 其中正确的说法有 A .3个B .2个C .1个D .0个题图第8题图第10题图第1114.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②AC=2CD;③AD=AE=EC;④∠BCE+∠BCD=180°.其中正确的是B.①②④C.①③④D.②③④二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.如图,要测量池塘两端A,B 的距离,可先在平地上取一个可以直接到达A,B 两点的C,连接AC并延长AC到点D,使CD=CA,连接BC并延长BC到点E,使CE=CB,连接DE,那么量出DE的长就等于AB的长,这是因为△ABC≌△DEC,而这个判定全等的依据是.16.如图△ABC中,∠A:∠B=1:2,DE⊥AB于E,且∠FCD=75°,则∠D= .17.等腰三角形的一个内角为80°,则顶角的度数是.18.如图,在△ABC中,点D在BC上且AB=AD,AC=AE,∠BAD=∠CAE,DE=12,CD=4,则BD= .19. 如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,则∠AEC的度数是.三、解答题(本大题共7小题,共63分)20.(本题满分7分)如图,在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=113°,求∠BCF的度数.题图第20题图第14题图第19题图第15题图第16题图第1821.(本题满分7分)如图,点C ,F ,E ,B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论.22.(本题满分8分)如图:△ABC 和△ADE 是等边三角形,AD 是BC 边上的中线.求证:BE =BD .题图第21题图第2223.(本题满分8分)将一副直角三角板如图摆放,等腰直角三角板ABC 的斜边BC 与含30°角的直角三角板DBE 的直角边BD 长度相同,且斜边BC 与BE 在同一直线上,AC 与BD 交于点O ,连接CD .求证:△CDO 是等腰三角形.24.(本题满分10分)如图,在直角坐标平面内,已知点A (8,0),点B (3,0),点C 是点A 关于直线m (直线m 上各点的横坐标都为3)的对称点.(1)在图中标出点A ,B ,C 的位置,并求出点C 的坐标;(2)如果点P 在y 轴上,过点P 作直线l ∥x 轴,点A 关于直线l 的对称点是点D ,那么当△BCD 的面积等于15时,求点P 的坐标.题图第24题图第2325.(本题满分10分)如图,四边形ABCD 中,DC ∥AB ,BD ⊥AD ,∠A =45°,E 、F 分别是AB 、CD 上的点,且BE=DF,连接EF 交BD 于O .(1)求证:BO=DO ;(2)若EF ⊥AB ,延长EF 交AD 的延长线于G ,当FG =2时,求AE 的长. 26.(本题满分13分)【问题提出】学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分题图第26类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角.请你证明:△ABC≌△DEF(提示:过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H).第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你在图③中画出△DEF,使△DEF和△ABC不全等.2017-2018学年度上学期期中教学质量监测八年级数学参考答案与评分标准一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1—5 CBADD 6—10 BCBAC 11—14BDAC二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.SAS 16.40° 17.80°或20° 18.8 19.75°.三、解答题(本大题共7小题,共63分)20.(本题满分7分)解:∵CD是AB边上高,∴∠BDF=90°,………………………………….1分∠ABE=∠BFC-∠BDF=113°-90°=23°,………………………………………3分∵BE为角平分线,∴∠CBF=∠ABE=23°,…………………………………………………………..5分∴∠BCF=180°-∠BFC-∠CBF=44°.………………………………………..7分21.(本题满分7分)解:CD∥AB,CD=AB,……………………………………………………………….2分理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,…………………………………………………………………………3分在△AEB和△CFD中,,∴△AEB≌△CFD (SAS)……5分∴CD=AB,∠C=∠B,…………………………………6分∴CD∥AB. (7)分22.(本题满分8分)证明:∵△ABC和△ADE是等边三角形,AD为BC边上的中线,∴AE=AD,AD为∠BAC的角平分线,即∠CAD=∠BAD=30°, (3)分∴∠BAE=∠BAD=30°,………………………………………………………5分在△ABE和△ABD中,,∴△ABE≌△ABD (SAS),…..7分∴BE=BD.…………………………………………………………………….8分23.(本题满分8分)证明:∵在△BDC中,BC=DB,∴∠BDC=∠BCD. (2)分∵∠DBE=30°∴∠BDC=∠BCD=75°,……………………….4分∵∠ACB=45°,∴∠DOC=30°+45°=75°.……………….…6分∴∠DOC=∠BDC,∴△CDO是等腰三角形.……………………8分24.(本题满分10分)解:(1)三个点位置标注正确……………………………………………………3分点C的坐标为(﹣2,0);…………………………………………….4分(2)如图,由题意知S△BCD=21BC•AD=15,BC=5,∴AD=6,则OP=3,………..8分∴点P的坐标为(0,3)或(0,﹣3).…………………………....10分25.(本题满分10分)解:(1)证明:∵ DC ∥AB , ∴∠OBE =∠ODF . ………………1分在△OBE 与△ODF 中, ∵∴△OBE ≌△ODF(AAS ). ………3分∴BO =DO . ………………………………4分 (2)解:∵EF ⊥AB ,DC ∥AB , ∴∠GEA=∠GFD =90°. ∵∠A =45°,∴∠G =∠A =45°. ……………………6分∴AE =GE …………………………………7分 ∵BD ⊥AD , ∴∠ADB =∠GDO =90°.∴∠GOD =∠G =45°. (8)分∴DG =DO∴OF =FG = 2 ……………………………………9分 由(1)可知,OE = OF =2, ∴GE =OE +OF +FG =6 ∴AE = GE =6 ………………………10分 26.(本题满分13分)(1)解:HL ;……………………………………………………………………..1分 (2)证明:如图,过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作FH ⊥DE 交DE 的延长线于H ,…………………………………………………………..2分 ∵∠ABC =∠DEF ,且∠ABC 、∠DEF 都是钝角, ∴180°﹣∠ABC =180°﹣∠DEF ,即∠CBG =∠FEH ,…………………………………………………4分 在△CBG 和△FEH 中,,∴△CBG ≌△FEH (AAS ),∴CG =FH ,……………………………………………………….…6分在Rt △ACG 和Rt △DFH 中,⎩⎨⎧==FHCG DFAC ,∴Rt △ACG ≌Rt △DFH (HL ),∴∠A=∠D, (8)分在△ABC和△DEF中,,∴△ABC≌△DEF (AAS);………………………………………..10分(3)解:如图,△DEF和△ABC不全等;………………………13分。
初中八年级数学上学期期中考前测试卷(人教版)含答案解析
2022-2023学年八年级上学期期中考前必刷卷数学(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:八年级上册第11-13章5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的.1.(2021·重庆市璧山中学校八年级期中)在一些美术字中,有的汉字是轴对称图形.下列4个汉字中,可以看作“沿某一条直线折叠后,直线两旁的部分能够互相重合”的是()A.B.C.D.2.(2021·四川·东坡区实验中学八年级期中)如图,△ABC≌△DEF,若∠A=132°,∠FED=15°,则∠C等于()A.13°B.23°C.33°D.43°3.(2022·江西赣州·八年级期中)若a、b、c为△ABC的三边长,且满足|a﹣,则c的值可以为()A.6B.7C.8D.94.(2021·山东烟台·七年级期中)如图,要使ABC ABD△≌△,下面给出的四组条件,错误的一组是()A.C D∠=∠,BAC BAD∠=∠B.BC BD=,AC AD=C.BAC BAD∠=∠,ABC ABD∠=∠D.BD BC=,BAC BAD∠=∠5.(2021·浙江·平阳苏步青学校八年级阶段练习)已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A.B.C.D.6.(2021·湖北·襄阳市樊城区青泥湾中学八年级阶段练习)如图,∠O=∠1,∠2=∠3,∠4=∠5,∠6=∠7,∠8=90°则∠O的度数为()A.10°B.15°C.18°D.20°7.(2021·黑龙江·同江市第三中学八年级期中)如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.288.(2022·辽宁·丹东第九中学八年级期末)如图,ABC的三边AB,BC,CA的长分别为15,20,25,………………○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○…点O是ABC三条角平分线的交点,则ABOS:BCOS△:CAOS△等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:59.(2022·宁夏·中宁县第三中学八年级期末)如图,在ABC中,4AB AC==,15B∠=︒,CD是腰AB上的高,则CD的长()A.4B.2C.1D.1210.(2022·北京一七一中八年级阶段练习)如图所示,ABC的两条角平分线相交于点D,过点D作EF∥BC,交AB于点E,交AC于点F,若AEF的周长为30cm,则AB AC+=()cm.A.10B.20C.30D.4011.(2022·全国·八年级专题练习)如图,△ABC中,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,若∠BAC=70︒,则∠EAN的度数为()A.35︒B.40︒C.50︒D.55︒12.(2022·广东·揭西县宝塔实验学校八年级期中)如图,在△ABC中,∠C=90°∠B=30°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④1:3ACD ACBS S=:.其中正确的有()A.只有①②③B.只有①②④C.只有①③④D.①②③④13.(2021·重庆市璧山中学校八年级期中)如图,过边长为1的等边三角形ABC的边AB上一点P,作PE AC⊥于点E,Q为BC延长线上一点,当AP CQ=时,PQ交AC于点D,则DE的长为()A.13B.12C.23D.不能确定14.(2022·陕西·西安爱知初级中学七年级期末)如图,在ABC中,90BAC∠=︒,2AB AC=,点D是线段AB的中点,将一块锐角为45︒的直角三角板按如图()ADE放置,使直角三角板斜边的两个端点分别与A、D重合,连接BE、CE,CE与AB交于点.F下列判断正确的有()①ACE≌DBE;②BE CE⊥;③DE DF=;④DEF ACFS S=A.①②B.①②③C.①②④D.①②③④第Ⅱ卷二、填空题:本题共4个小题;每个小题3分,共12分,把正确答案填在横线上.15.(2020·福建省福州延安中学八年级期中)已知点Р(a,3)和点Q(4,b)关于x轴对称,则()2021a b+=________.16.(2022·福建省龙岩市永定区第二初级中学九年级期中)如图,将一个正六边形与一个正五边形如图放置,顶点A、B、C、D四点共线,E为公共顶点.则∠BEC=_____.○………………内………………○………………装………………○………………订………………○………………线………………○…………○………………外………………○………………装………………○………………订………………○………………线………………○…………学校:______________姓名:_____________班级:_______________考号:______________________17.(2021·福建·福州教院二附中八年级期末)如图,将等边△ABC 的三条边向外延长一倍,得到第一个新的111A B C △,第二次将等边111A B C △的三边向外延长一倍,得到第二个新的222A B C △,依此规律继续延长下去,若△ABC 的面积01S =,则第2022个新的三角形的面积2022S 为________18.(2021·江苏南京·八年级阶段练习)如图,已知△ABC ,AB =AC =10cm ,∠B =∠C ,BC =8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段AC 上由C 点向A 点运动.若点Q 的运动速度为v cm/s ,则当△BPD 与△CQP 全等时,v 的值为_______cm/s .三、解答题:本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分.19.(2021·重庆·巴川初级中学校八年级期中)如图,已知点B ,E ,C ,F 在一条直线上,BE =CF ,AC DE ∥,A D ∠=∠.(1)求证:△ABC ≌△DFE ;(2)若BF =12,EC =4,求BC 的长.20.(2019·北京市八一中学八年级期中)在直角坐标系中,ABC 的三个顶点的位置如图所示.(1)请画出ABC 关于y 轴对称的A B C '''V (其中A ',B ',C '分别是A ,B ,C 的对应点,不写画法);(2)直接写出A ',B ',C '三点的坐标:A '(),B '(),C '()(3)在x 轴上找出点P ,使得点P 到点A 、点B 的距离之和最短(保留作图痕迹)(4)点Q 在坐标轴上,且满足BCQ △是等腰三角形,则所有符合条件的Q 点有__________个.21.(2022·黑龙江大庆·八年级期末)如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1)①求证CD =CE ;②求证:△ADE 是等边三角形;(2)若D 为直线BC 上任一点(如图2)其他条件不变,“△ADE 是等边三角形”的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.22.(2022·江苏·宜兴外国语学校八年级阶段练习)(1)如图,在7×6的方格中,△ABC 的顶点均在格点上.试只用不带刻度的直尺,按要求画出线段EF (E ,F 均为格点),各画出一条即可.(2)如图,△ABC 的顶点均在正方形网格格点上.只用不带刻度的直尺,作出△ABC 的角平分线BD (不写………………○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○…23.(2022·河南信阳·八年级期中)我们通过“三角形全等的判定”的学习,可以知道“两边和它们的夹角分别相等的两个三角形全等”是一个基本事实,用它可以判定两个三角形全等;而满足条件“两边和其中一边所对的角分别相等”的两个三角形却不一定全等.下面请你来探究“两边和其中一边所对的角分别相等的两个三角形不一定全等”.探究:已知△ABC,求作一个△DEF,使EF=BC,∠F=∠C,DE=AB(即两边和其中一边所对的角分别相等).(1)动手画图:请依据下面的步骤,用尺规完成作图过程(保留作图痕迹):①画EF=BC;②在线段EF的上方画∠F=∠C;③画DE=AB;④顺次连接相应顶点得所求三角形.(2)观察:观察你画的图形,你会发现满足条件的三角形有____个;其中三角形____(填三角形的名称)与△ABC明显不全等;(3)小结:经历以上探究过程,可得结论:______.24.(2021·重庆·巴川初级中学校八年级期中)如图,△ABC中,点D在边BC延长线上,100ACB∠=︒,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且50CEH∠=︒.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;25.(2022·全国·八年级专题练习)(1)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED内部点A'的位置时,∠A、∠1、∠2之间有怎样的数量关系?并说明理由.(2)如图②,把△ABC纸片沿DE折叠,当点A落在四边形BCED外部点A'的位置时,∠A、∠1、∠2之间有怎样的数量关系?并说明理由.(3)如图③,把四边形ABCD沿EF折叠,当点A、D分别落在四边形BCFE内部点A'、D¢的位置时,你能求出∠A'、∠D¢、∠1与∠2之间的数量关系吗?并说明理由.26.(2021·辽宁葫芦岛·八年级期中)如图,在三角形ABC中,∠ABC=90°,AB=BC,点A,B分别在坐标轴上.(1)如图①,若点C的横坐标为﹣3,点B的坐标为;(2)如图②,若x轴恰好平分∠BAC,BC交x轴于点M,过点C作CD垂直x轴于D点,试猜想线段CD与AM的数量关系,并说明理由;(3)如图③,OB=BF,∠OBF=90°,连接CF交y轴于P点,点B在y轴的正半轴上运动时,△BPC与△AOB的面积比是否变化?若不变,直接写出其值,若变化,直接写出取值范围.2022-2023学年八年级上学期期中考前必刷卷(人教版2022)数学·全解全析1234567891011121314 C C A D D C B D B C B D B C 1.C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据△ABC≌△DEF,∠FED=15°,得∠CBA=15°,再根据三角形内角和即可得答案.【详解】解:∵△ABC≌△DEF,∠FED=15°,∴∠CBA=∠FED=15°,∵∠A=132°,∴∠C=180°-132°=15°=33°,故选:C.【点睛】本题考查了全等三角形的性质,三角形的内角和,解题的关键是掌握三角形全等的性质.3.A【分析】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值.【详解】解:∵|a﹣,∴a﹣5=0,a=5;b﹣2=0,b=2;则5﹣2<c<5+2,6符合条件;故选:A .【点睛】本题考查非负数的性质和三角形三条边的关系,准确求出a 、b 的值是解题的关键.4.D【分析】根据全等三角形的判定定理逐项判定即可.【详解】解:A 、∵C D ∠=∠,BAC BAD ∠=∠,AB =AB ,∴ABC ABD △≌△(AAS ),正确,故此选项不符合题意;B 、∵BC BD =,AC AD =,AB =AB ,∴ABC ABD △≌△(SSS ),正确,故此选项不符合题意;C 、∵BAC BAD ∠=∠,ABC ABD ∠=∠,AB =AB ,∴ABC ABD △≌△(ASA ),正确,故此选项不符合题意;D 、BD BC =,BAC BAD ∠=∠,AB =AB ,两边以及一边对角对应相等,不能判定ABC ABD △≌△,故此选项符合题意;故选:D .【点睛】本题考查全靠等三角形的判定,熟练掌握全靠三角形判定定理:SSS ,SAS ,ASA ,AAS ,HL 是解题的关键.5.D【分析】若使PA +PC =BC ,则PA =PB ,P 在线段AB 的垂直平分线上,需要做线段AB 的垂直平分线.【详解】解:A.由作图可知BA =BP ,∴BC =BP +PC =BA +PC ,故A 不符合题意;B.由作图可知PA =PC ,∴BC =BP +PC =BP +PA ,故B 不符合题意;C.由作图可知AC =PC ,∴BC =BP +PC =BP +AC ,故C 不符合题意;D.由作图可知PA =PB ,∴BC =BP +PC =PA +PC ,故D 符合题意;故选:D.【点睛】本题考查了垂直平分线的性质及作图,熟练掌握垂直平分线的作图方法是解题关键.6.C【分析】设∠O=x ,进而根据三角形外角的性质表示出∠2,即可表示出∠3,同理表示出∠4,可得∠5,再表示出∠6,即可∠7,最后根据∠8=∠O +∠7得出答案即可.【详解】设∠O=x ,∵∠2是△ABO 的外角,且∠O =∠1,∴∠2=∠O +∠1=2x ,∵∠4是△BCO 的外角,∴∠4=∠O +∠3=3x ,∴∠5=∠4=3x .∵∠6是△CDO 的外角,∴∠6=∠O +∠5=4x ,∴∠7=∠6=4x .∵∠8是△DEO 的外角,∴∠8=∠O +∠7=5x ,即5x =90°,解得x =18°.故选:C .【点睛】本题主要考查了三角形的外角的性质,根据三角形外角的性质得出待求角之间的等量关系是解题的关键.7.B【分析】根据垂直平分线的性质可得EC =AE ,据此即可作答.【详解】∵ED 是边AC 的垂直平分线,∴AE =EC ,∵AB =10厘米,BC =8厘米,∴BC +CE +EB =BC +AE +EB =BC +AB =18厘米,即△BEC 的周长为18厘米,故选:B .【点睛】本题主要考查了垂直平分线的性质,根据垂直平分线的性质可得EC =AE ,是解答本题的关键.8.D【分析】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,利用角平分线的性质得到OD OE OF ==,然后根据三角形面积公式得到ABO S :BCO S △:CAO S AB = :BC :AC .【详解】过O 点作⊥OD AB 于D ,OE BC ⊥于E ,OF CA ⊥于F ,如图,点O 是ABC 三条角平分线的交点,OD OE OF ∴==,ABO S ∴ :BCO S △:12CAO S AB OD ⎛⎫=⋅ ⎪⎝⎭ :12OE BC ⎛⎫⋅ ⎪⎝⎭:12OF AC AB ⎛⎫⋅= ⎪⎝⎭:BC :15AC =:20:253=:4:5.故选:D .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形的面积公式.9.B【分析】根据三角形外角的性质得30DAC ∠=︒,再利用含30°角的直角三角形的性质可得CD 的长.【详解】解:AB AC = ,15B ∠=︒,15ACB B ∴∠=∠=︒,30DAC ∴∠=︒,CD 是腰AB 上的高,CD AB ∴⊥,122CD AC ∴==,故选:B【点睛】本题主要考查了等腰三角形的性质,含30°角的直角三角形的性质等知识,求出30DAC ∠=︒是解题的关键.10.C【分析】利用平行线的性质和角平分线的定义得到∠EBD =∠EDB ,证出ED =EB ,同理DF =FC ,则△AEF 的周长即为AB +AC ,可得出答案.【详解】解:∵EF ∥BC ,∴∠EDB =∠DBC ,∵BD 平分∠ABC ,∴∠ABD =∠DBC ,∴∠EBD =∠EDB ,同理:FD =FC ,∴AE +AF +EF =AE +EB +AF +FC =AB +AC =30cm ,即AB +AC =30cm ,故选:C .【点睛】本题考查了等腰三角形的判定和性质、平行线的性质等知识,证出ED =EB ,FD =FC 是解题的关键.11.B【分析】根据三角形内角和定理可求∠B +∠C ,根据垂直平分线性质,EA =EB ,NA =NC ,则∠EAB =∠B ,∠NAC =∠C ,从而可得∠BAC =∠BAE +∠NAC -∠EAN =∠B +∠C -∠EAN ,即可得到∠EAN =∠B +∠C -∠BAC ,即可得解.【详解】解:∵∠BAC =70︒,∴∠B +∠C =18070110︒︒︒﹣=,∵AB 的垂直平分线交BC 边于点E ,AC 的垂直平分线交BC 边于点N ,∴EA =EB ,NA =NC ,∴∠EAB =∠B ,∠NAC =∠C ,∴∠BAC =∠BAE +∠NAC -∠EAN =∠B +∠C -∠EAN ,∴∠EAN =∠B +∠C -∠BAC ,=11070︒︒﹣=40︒.故选:B .【点睛】本题主要考查了三角形的内角和,线段垂直平分线的性质,角的和差关系,能得到求∠EAN 的关系式是关键.12.D【分析】①根据作图的过程可以判定AD 是∠BAC 的角平分线;②利用角平分线的定义可以推知∠CAD =30°,则由直角三角形的性质来求∠ADC 的度数;③利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:①根据作图的过程可知,AD 是∠BAC 的平分线.故①正确;∵在△ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°.又∵AD 是∠BAC 的平分线,∴∠1=∠2=12∠CAB =30°,∴∠3=90°-∠2=60°,即∠ADC =60°.故②正确;③∵∠1=∠B =30°,∴AD =BD ,∴点D 在AB 的中垂线上.故③正确;④∵如图,在直角△ACD 中,∠2=30°,∴CD =12AD ,∴BC =CD +BD =12AD +AD =32AD ,DAC S =12AC •CD =14AC •AD .∴ABC S =12AC •BC =12AC •32AD =34AC •AD .∴DAC S :ABC S =14AC •AD :34AC •AD =1:3.故④正确.综上所述,正确的结论是:①②③④,故选D .【点睛】本题考查了角平分线的判定、线段垂直平分线的判定和性质、含30度角的直角三角形的性质以及作图-基本作图.解题时,需要熟悉线段垂直平分线的判定和性质.13.B【分析】根据题意先过点Q 作AD 的延长线的垂线QF ,证明 AEP ≅ CFQ ,再证明 DEP ≅ DFQ 得到DE =DF ,最后可以得到DE =12AC ,求出最终结果.【详解】如图,过点Q 作AD 的延长线的垂线于点F ,∵△ABC 是等边三角形,∴∠A =∠ACB =60°,∵∠ACB =∠QCF ,∴∠QCF =60°,又∵PE ⊥AC ,QF ⊥AC ,∴∠AEP =∠CFQ =90°,又AP =CQ ,∴△AEP ≅△CFQ (AAS ),∴AE =CF ,PE =QF ,同理可证,△DEP ≅△DFQ ,∴DE =DF ,∴AC =AE +DE +CD =DE +CD +CF =DE +DF =2DE ,∴DE =12AC =12.故选B .【点睛】本题属于全等三角形的综合问题,考查作辅助线、全等三角形的判定和等边三角形的性质,熟练掌握和运用全等三角形的判定定理是关键.14.C【分析】利用ADE 为等腰直角三角形得到45EAD EDA ∠∠==︒,EA ED =,则135EAC EDB ∠∠==︒,则可根据“SAS ”判断ACE ≌DBE SAS (),从而对①进行判断;再利用AEC DEB ∠∠=证明90BEC DEA ∠∠==︒,则可对②进行判断;由于9090DEF BED AEC ∠∠∠=︒-=︒-,90DFE AFC ACE ∠∠∠==︒-,而AC AD AE =>得到AEC ACE ∠∠>,所以DEF DFE ∠∠<,于是可对③进行判断;由ACE ≌DBE 得到ACE DBE S S = ,由BD AD =得到DAE DBE S S = ,所以ACE DAE S S = ,从而可对④进行判断.【详解】解:2AB AC = ,点D 是线段AB 的中点,BD AD AC ∴==,ADE 为等腰直角三角形,45EAD EDA ∠∠∴==︒,EA ED =,4590135EAC EAD BAC ∠∠∠=+=︒+︒=︒ ,180********EDB EDA ∠∠=︒-=︒-︒=︒,EAC EDB ∠∠∴=,在ACE 和DBE 中,EA ED EAC EDB AC DB =⎧⎪∠=∠⎨⎪=⎩,ACE ∴ ≌SAS DBE (),所以①正确;AEC DEB ∠∠∴=,90BEC BED DEC AEC DEC DEA ∠∠∠∠∠∠∴=+=+==︒,BE EC ∴⊥,所以②正确;90DEF BED ∠∠=︒- .而AEC DEB ∠∠=,90DEF AEC ∠∠∴=︒-,90DFE AFC ACE ∠∠∠==︒- ,而AC AD AE =>,AEC ACE ∠∠∴>,DEF DFE ∠∠∴<,DE DF ∴>,所以③错误;ACE Q V ≌DBE ,ACE DBE S S ∴= ,BD AD = ,DAE DBE S S ∴= ,ACE DAE S S ∴= ,DEF ACF S S ∴= ,所以④正确.故选:C .【点睛】本题考查全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.15.1【分析】直接利用关于x 轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a ,b 的值,进而得出答案.【详解】解:∵点P (a ,3)和点Q (4,b )关于x 轴对称,∴a =4,b =-3,则20212021()(43)1a b +=-=.故答案为:1.【点睛】此题主要考查了关于x 轴对称点的性质,正确得出a ,b 的值是解题关键.16.48°##48度【分析】根据多边形的内角和,分别得出∠ABE =120°,∠DCE =108°,再根据平角的定义和三角形的内角和算出∠BEC .【详解】解:由多边形的内角和可得,∠ABE =()621806-⨯︒=120°,∴∠EBC =180°﹣∠ABE =180°﹣=60°,∵∠DCE =()521805-⨯︒=108°,∴∠BCE =180°﹣108°=72°,由三角形的内角和得:∠BEC =180°﹣∠EBC ﹣∠BCE =180°﹣60°﹣72°=48°.故答案为:48°.【点睛】本题考查了多边形的内角和定理,掌握定理是解题的关键.17.20227【分析】连接1CB ,根据等底同高可得1111112,2,2B BC A CC A AB S S S === ,从而可得17S =,同样的方法可得227S =,再归纳类推出一般规律即可得.【详解】解:如图,连接1CB ,1AB BB = ,ABC 的面积01S =,101BCB ABC S S S ∴=== ,又1BC CC = ,1111B CC BCB S S ∴== ,112B BC S ∴= ,同理可得:11112,2A CC A AB S S == ,111122217A B C S S ∴==+++= ,同理可得:2221112277A B C A B C S S S === ,归纳类推得:7n n n A B n C n S S == ,其中n 为非负整数,202220227S ∴=,故答案为:20227.【点睛】本题考查了图形类规律探索、三角形中线与面积,正确归纳类推出一般规律是解题关键.18.3或154【分析】分情况讨论BPD △,CQP V 全等:①设运动了t 秒,BPD CQP ≅△△,得BP CQ =,3t vt =,算出v ;②设运动了t 秒,BDP QCP ≅V V ,得BD CQ =,PB PC =;得34t =,5vt =,解出v ,即可.10AB AC ==,8BC =【详解】①设运动了t 秒,BP CQ =,BPD CQP ≅△△,∵点D 是AB 的中点∴152BD AB ==∵BD PC=∴()853BP cm =-=∴B 点向C 点运动了33t =,1t =秒∵BPD CQP≅△△∴BP CQ=∴31v =⨯∴3/sv cm =②设运动了t 秒,当BD CQ =时,BDP QCP≅V V ∵5BD =,142PB PC BC ===∴34t =解得43t =秒∵BD CQ =∴453v =⨯∴15/s 4v cm =故答案为:3或154.【点睛】本题考查全等三角形、动点问题,解题的关键是以静制动,利用全等三角形的性质进行解答.19.(1)证明见解析(2)8【分析】(1)先根据平行线的性质可得ACB DEF ∠=∠,再根据线段和差可得BC FE =,然后根据AAS 定理即可得证;(2)先根据线段和差可得8BE CF +=,从而可得4BE =,再根据BC BE EC =+即可得.(1)证明:AC DE ∥,ACB DEF ∠=∠∴,BE CF = ,BE CE CF CE ∴+=+,即BC FE =,在ABC 和DFE △中,A D ACB DEF BC FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DFE ∴≅ .(2)解:12,4BF EC == ,8BE CF BF EC ∴+=-=,BE CF = ,4BE ∴=,448BC BE EC ∴=+=+=.【点睛】本题考查了平行线的性质、三角形全等的判定,线段和差,熟练掌握三角形全等的判定方法是解题关键.20.(1)见解析;(2)4,1;2,3;−1,−2;(3)见解析;(4)10.【分析】(1)由点的对称性,作出图形即可;(2)关于y 轴对称的点的坐标特点:横坐标变为相反数,纵坐标不变,即可求解;(3)作A 点关于x 轴的对称点A '',连接A B ''交x 轴于点P ,P 点即为所求;(4)利用两圆一线确定等腰三角形,作出图形即可求解.(1)如图1:(2)由图可知A (−4,1),B (−2,3),C (1,−2),∴A 点关于y 轴对称的点为(4,1),B 点关于y 轴对称的点为(2,3),C 点关于y 轴对称的点为(−1,−2),∴A′(4,1),B′(2,3),C′(−1,−2),故答案为:4,1;2,3;−1,−2;(3)如图2:作A 点关于x 轴的对称点A ',连接A B ''交x 轴于点P ,∴AP BP A P BP A B ''''+=+=,此时PA +PB 值最小;(4)如图:以B为圆心,BC长为半径做圆,此圆与坐标轴有4个交点,以C为圆心,BC长为半径做圆,此圆与坐标轴有4个交点,作线段BC的垂直平分线,此线与坐标轴有2个交点,∴△BCQ是等腰三角形时,Q点坐标有10个,故答案为:10.【点睛】本题考查轴对称作图,图形与坐标,熟练掌握轴对称的性质,垂直平分线的性质,等腰三角形的性质,两圆一线确定等腰三角形的方法是解题的关键.21.(1)①见解析;②见解析(2)成立,理由见解析【分析】(1)①利用等边三角形的性质得到BD=CD,AD⊥BC,进一步求出∠EDC=30°,然后根据三角形内角和定理推出∠DOC=90°,再根据三角形的外角性质可求出∠DEC=30°,从而得出∠EDC=∠DEC,再根据“等角对等边”即可证明结论;②由SAS证明△ABD≌△ACE得出AD=AE,然后根据“有一个角是60°的等腰三角形是等边三角形”可判断出△ADE是等边三角形的结论;(1)在AC上取点F,使CF=CD,连结DF,先证得△ADF≌△EDC得出AD=ED,再运用已证的结论“∠ADE=60°”和根据“有一个角是60°的等腰三角形是等边三角形”可证明出△ADE是等边三角形的结论.(1)①证明:∵a∥AB,且△ABC为等边三角形,∴∠ACE=∠BAC=∠ABD=60°,AB=AC,∵D是BC中点,即BD=CD,∴AD⊥BC,∴∠ADC=90°,∵∠ADE=60°,∴∠EDC=∠ADC-∠ADE=90°-60°=30°,∴∠DOC=180°-∠EDC-∠ACB=90°,∴∠DEC=∠DOC-∠ACE=90°-60°=30°,∴∠EDC=∠DEC,∴CD=CE;②∵BD=CD,CD=CE,∴BD=CE,在△ABD和△ACE中,∵AB AC ABD ACEBD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACE(SAS),∴AD=AE,又∵∠ADE=60°,∴△ADE是等边三角形;(2)解:“△ADE是等边三角形”的结论仍然成立.证明如下:在AC上取点F,使CF=CD,连结DF,如图2所示:,∵∠ACB=60°,∴△DCF是等边三角形,∴DF=CD,∵∠ADF+∠FDE=∠EDC+∠FDE=60°,∴∠ADF=∠EDC,∵∠DAF+∠ADE=∠DEC+∠ACE,∠ACE=∠ADE=60°,∴∠DAF=∠DEC,∴△ADF≌△EDC(AAS),∴AD=ED,又∵∠ADE=60°,∴△ADE是等边三角形.【点睛】本题考查的是等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理、三角形的外角性质、平行线的性质.解题关键是注意熟练掌握及熟练等边三角形的判定定理与性质定理、全等三角形的判定与性质.22.(1)见解析;(2)见解析【分析】(1)根据题目要求,利用数形结合的思想画出线段EF即可;(2)取格点Q,连接AQ,取AQ的中点J,作射线BJ交AC于点D,线段BD即为所求.【详解】解:(1)如图,线段EF即为所求:(2)如图,线段BD即为所求.【点睛】本题考查作图-应用与设计作图,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.23.(1)见解析(2)2,D EF ';(3)两边和其中一边所对的角分别相等的两个三角形不一定全等【分析】(1)根据尺规作线段,作一个角等于已知角的步骤作图即可;(2)根据所画图形填空即可;(3)根据探究过程结合全等三角形的判定可得出结论.(1)解:如图所示:(2)2个;其中三角形D EF '(填三角形的名称)与△ABC 明显不全等,故答案为:2,D EF ';(3)经历以上探究过程,可得结论:两边和其中一边所对的角分别相等的两个三角形不一定全等,故答案为:两边和其中一边所对的角分别相等的两个三角形不一定全等.【点睛】本题考查了尺规作图,全等三角形的判定,熟练掌握尺规作图的方法和全等三角形的判定定理是解题的关键.24.(1)40︒(2)证明见解析(3)514【分析】(1)先求出80ACD ∠=︒,再根据直角三角形的两个锐角互余可得40DCE ∠=︒,然后根据ACE ACD DCE ∠=∠-∠即可得;(2)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,先根据角平分线的性质可得,EM EH EN EH ==,从而可得EM EN =,再根据角平分线的判定即可得证;(3)过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,则EM EH EN ==,设EM EH EN x ===,再根据21ACE DCE ACD S S S +== 和三角形的面积公式可得x 的值,从而可得EM 的值,然后利用三角形的面积公式即可得.(1)解:100ACB ∠=︒ ,18080ACD ACB ∴∠=︒-∠=︒,,50EH BD CEH ⊥∠=︒ ,9040DCE CEH ∴∠=︒-∠=︒,40ACE ACD DCE ∴∠=∠-∠=︒.(2)证明:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,BE 平分ABC ∠,,EM BF EH BD ⊥⊥,EM EH ∴=,由(1)可知,40ACE DCE ∠=∠=︒,即CE 平分ACD ∠,EN EH ∴=,EM EN ∴=,又 点E 在CAF ∠的内部,AE ∴平分CAF ∠.(3)解:如图,过点E 作EM BF ⊥于点M ,作EN AC ⊥于点N ,由(2)已得:EM EH EN ==,设EM EH EN x ===,21ACD S = ,21ACE DCE S S +∴= ,112221AC EN CD EH ∴⋅+⋅=,即()1221x AC CD +=,又14AC CD += ,211223142x AC CD ⨯=∴⨯==+,3EM ∴=,8.5AB = ,ABE ∴ 的面积为11518.53224AB EM ⋅=⨯⨯=.【点睛】本题主要考查了角平分线的判定与性质,解题的关键是熟练掌握角平分线的性质定理:角的平分线上的点到角的两边的距离相等.25.(1)2∠A =∠1+∠2;见解析;(2)2∠A =∠1﹣∠2;见解析;(3)2(∠A +∠D )=∠1+∠2+360°,见解析【分析】(1)根据翻折的性质表示出∠3、∠4,再根据三角形的内角和定理列式整理即可得解;(2)先根据翻折的性质以及平角的定义表示出∠3、∠4,再根据三角形的内角和定理列式整理即可得解;(3)先根据翻折的性质表示出∠3、∠4,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,根据翻折的性质,∠3=EDA '∠=12(180-∠1),∠4=DEA '∠=12(180-∠2),∵∠A +∠3+∠4=180°,∴∠A +12(180-∠1)+12(180-∠2)=180°,整理得,2∠A=∠1+∠2;(2)如图,同理,根据翻折的性质,∠3=12(180-∠1),∠4=12(180+∠2),∵∠A+∠3+∠4=180°,∴∠A+12(180-∠1)+12(180+∠2)=180°,整理得,2∠A=∠1-∠2;(3)如图,同理,根据翻折的性质,∠3=12(180-∠1),∠4=12(180-∠2),∵∠A+∠D+∠3+∠4=360°,∴∠A+∠D+12(180-∠1)+12(180-∠2)=360°,整理得,2(∠A+∠D)=∠1+∠2+360°.【点睛】本题主要考查了三角形的内角和定理,多边形的内角与外角,翻折的性质,整体思想的利用是解题的关键.26.(1)(0,3);(2)AM =2CD ,理由见解析;(3)不变,12【分析】(1)过点C 作CH ⊥y 轴于H ,由全等三角形的判定定理可得ABO BCH ≌,可得3CH BO ==,即可求解;(2)延长AB ,CD 交于点N ,由全等三角形的判定定理可得ADN ADC ≌,得出CD DN =,再依据全等三角形判定定理证明ABM CBN ≌,可得AM CN =,即可得结论;(3)如图③,作CG ⊥y 轴于G ,由全等三角形判定定理可得BAO CBG ≌,得出BG AO =,CG OB =,再依据全等三角形的判定可证CGP FBP ≌,得出PB PG =,可得1122PB BG AO ==,由三角形面积公式可求解.【详解】解:(1)如图①,过点CH ⊥y 轴于H ,∴90BHC ABC ∠=︒=∠,∴90BCH CBH ABH CBH ∠+∠=∠+∠=︒,∴BCH ABH ∠=∠,∵点C 的横坐标为﹣3,∴3CH =,在ABO 和BCH 中,BCH ABHBHC AOB BC AB∠=∠⎧⎪∠∠⎨⎪=⎩=,∴ABO BCH ≌,∴3CH BO ==,∴点B (0,3);故答案为:(0,3);(2)2AM CD =,如图②,延长AB ,CD 交于点N,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,在ADN 和ADC 中,90BAD CADAD AD ADN ADC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ADN ADC ≌,∴CD DN =,∴2CN CD =,∵90BAD ∠+∠=︒N ,90BCN ∠+∠=︒N ,∴BAD BCN ∠=∠,在ABM 和CBN 中,BAM BCNBA BC ABM CBN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABM CBN ≌,∴AM CN =,∴2AM CD =;(3)△BPC 与△AOB 的面积比不会变化,理由:如图③,作CG ⊥y 轴于G,∵90BAO OBA ∠+∠︒=,90OBA CBG ∠+∠︒=,∴BAO CBG ∠∠=,在BAO 和CBG 中,90AOB BGC BAO CBG AB BC∠=∠=︒⎧⎪∠∠⎨⎪=⎩=,∴BAO CBG ≌,∴BG AO =,CG OB =,∵OB BF =,∴BF GC =,在CGP 和FBP 中,90CPG FPBCGP FBP CG BF∠=∠⎧⎪∠∠=︒⎨⎪=⎩=,∴CGP FBP ≌,∴PB PG=,∴1122PB BG AO==,∵12AOBS OB OA∆=⨯⨯,111222PBCS PB GC OB OA∆=⨯⨯=⨯⨯⨯,∴12PBC AOBS S∆∆=:.【点睛】题目主要考查全等三角形的判定定理和性质,理解题意,作出相应辅助线,充分运用全等三角形的判定是解题关键.。
【人教版】八年级上期中数学试卷(含答案)
八年级上学期期中数学试题一、选择题目(本题有10个小题,每小题3分,共30分)1. 在下列各电视台的台标图案中,是轴对称图形的是( )A. B. C. D.2. 下列线段能构成三角形的是( )A. 2,2,4B. 3,4,5C. 1,2,3D. 2,3,63.如图,过△ABC 顶点A ,作BC 边上的高,以下作法正确的是( )A. B. C. D.4.如图,直线AB ∥ CD ,∠ B=50°,∠ C=40°,则∠E 等于( )A. 70°B. 80°C. 90°D. 100°5.一个多边形的内角和与外角和相等,它是( )边形.A. 三B. 四C. 五D. 六6.如图,若△ABC ≌△DEF ,则∠E 为( )A. 30°B. 70°C. 80°D. 100°7.如图,将△ABC 沿AC 对折,点B 与点E 重合,则全等的三角形有( )A. 4对B. 3对C. 2对D. 1对8. 如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在C′处,折痕为EF ,若AB=1,BC=2,则△ABE 和△BC′F 的周长之和为( )的A. 3B. 4C. 6D. 89.如图,在△ABC 中,∠BAC=90°,∠ABC=2∠C ,BE 平分∠ABC 交AC 于E ,AD ⊥BE 于D ,下列结论:①AC-BE=AE ;②点E 在线段BC 的垂直平分线上;③∠DAE=∠C ;④BC=3AD ,其中正确的个数有( )A. 4个B. 3个C. 2个D. 1个10.平面直角坐标系中,已知点A (2,2),B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( )A. 3B. 4C. 5D. 6二、填空题目(本题有6个小题,每小题3分,共18分)11.已知点P (-2,3),关于x 轴对称的点1P 的坐标为__________.12.若正多边形的每一个内角为135,则这个正多边形的边数是__________.13.等腰三角形一腰上高与另一腰的夹角为48,则该等腰三角形的底角的度数为______.14.如图,点B 在∠DAC 的平分线AE 上,请添加一个适当的条件: ,使△ABD ≌△ABC.(只填一个即可)的15.如图,∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,CB=8,则点M到BC的距离_______.16.四边形ABCD中,∠B=∠D=90°,∠C=72°,在BC、CD上分别找一点M、N,使△AMN的周长最小时,∠AMN+∠ANM的度数为_______三、解答题(本题有8个小题,共72分)17.如图,已知点B、E、C、F在同一条直线上,AB∥DE, AC∥DF, BE=CF.求证: AC=DF.18.如图,AC⊥CB,DB⊥CB,垂足分别为C,B,AB,CD相交于点O,AB=DC.求证:OB=OC.19.已知,如图△ABC中,AB=AC,点D在BC上,且BD=AD,DC=AC.并求∠B的度数.20.如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F .求证:AD ⊥EF .21.如图,在平面直角坐标系中(1)做出△A BC 关于y 轴对称的111A B C ∆,并求出111A B C ∆三个顶点的坐标;(2)计算△ABC 的面积;(3)x 轴上画点P ,使P A +PC 最小.22.如图,△ABC 等边三角形,点D ,E 分别在边BC ,AC 上,且AE =CD ,AD 与BE 相交于点F .(1)求∠BFD 的度数;(2)作出AD 的垂线段BH ,若EF =2,FH =4,求出AD 的长度.在为23.如图,在△ABC中,∠BAC=60°,∠C=40°,P,Q分别在BC,CA上,AP,BQ分别是∠BAC,∠ABC 的角平分线.求证:BQ+AQ=AB+BP.24.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;并用含α的式子表示∠AMB的度数;(2)当α=90°时,取AD,BE中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形的状,并加以证明.八年级上学期期中数学试题(解析卷)一、选择题目(本题有10个小题,每小题3分,共30分)1. 在下列各电视台的台标图案中,是轴对称图形的是()A. B. C. D.【答案】C【解析】试题分析:关于某条直线对称的图形叫轴对称图形.只有C沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形考点:轴对称图形.2. 下列线段能构成三角形的是()A. 2,2,4B. 3,4,5C. 1,2,3D. 2,3,6 【答案】B【解析】试题分析:A、2+2=4,不能构成三角形,故本选项错误;B、3、4、5,满足任意两边之和大于第三边,能构成三角形,故本选项正确;C、1+2=3,不能构成三角形,故本选项错误;D、2+3<6,不能构成三角形,故本选项错误.故选B.考点:三角形三边关系.3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B. C. D.【答案】A【解析】【分析】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A是作BC边上的高,C是作AB边上的高,D是作AC边上的高.故选A.考点:三角形高线的作法4.如图,直线AB∥ CD,∠ B=50°,∠ C=40°,则∠E等于()A. 70°B. 80°C. 90°D. 100°【答案】C【解析】【详解】解:根据平行线的性质得到∠1=∠B=50°,由三角形的内角和定理可得∠E=180°﹣∠B﹣∠1=90°,故选C.【点睛】本题考查平行线的性质.5.一个多边形的内角和与外角和相等,它是()边形.A. 三B. 四C. 五D. 六【答案】B【解析】【分析】设多边形的边数为n,则根据多边形的内角和公式与多边形的外角和为360°,列方程解答.【详解】设多边形的边数为n,根据题意列方程得,(n-2)•180°=360°,n-2=2,n=4.故选:B.【点睛】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为360°.6.如图,若△ABC≌△DEF,则∠E为( )A. 30°B. 70°C. 80°D. 100°【答案】C【解析】【分析】根据全等三角形的性质求出∠D、∠F,根据三角形内角和定理求出即可.【详解】∵△ABC≌△DEF,∠A=70°,∠C=30°,∴∠D=∠A=70°,∠F=∠C=30°,∠E=∠B,∴∠E=180°-∠D-∠F=80°,故选:C.【点睛】本题考查了全等三角形的性质和三角形的内角和定理的应用,注意:全等三角形的对应边相等,对应角相等.7.如图,将△ABC沿AC对折,点B与点E重合,则全等的三角形有()A. 4对B. 3对C. 2对D. 1对【答案】B【解析】【分析】根据全等三角形的判定解答即可.【详解】将△ABC沿AC对折,点B与点E重合,则全等的三角形有△ABD≌△AED,△ABC≌△AEC,△BDC≌△EDC,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是掌握判定方法:SSS、SAS、AAS、ASA、HL.8. 如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和△BC′F的周长之和为()A. 3B. 4C. 6D. 8【答案】C【解析】试题分析:由折叠特性可得CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,推出∠ABE=∠C′BF,所以△BAE≌△BC′F,根据△ABE和△BC′F的周长=2△ABE的周长求解.解:将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,∵∠ABE+∠EBF=∠C′BF+∠EBF=90°∴∠ABE=∠C′BF在△BAE和△BC′F中,∴△BAE≌△BC′F(ASA),∵△ABE的周长=AB+AE+EB=AB+AE+ED=AB+AD=1+2=3,△ABE和△BC′F的周长=2△ABE的周长=2×3=6.故选C.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,折叠前后图形的形状和大小不变,如本题中折叠前后角边相等.9.如图,在△ABC中,∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于E,AD⊥BE于D,下列结论:①AC-BE=AE;②点E在线段BC的垂直平分线上;③∠DAE=∠C;④BC=3AD,其中正确的个数有()A. 4个B. 3个C. 2个D. 1个【答案】B【解析】【分析】根据三角形内角和定理、线段垂直平分线的判定定理、直角三角形的性质判断即可.【详解】∵90,2BAC ABC C ∠=︒∠=∠∴60,30ABC C ∠=︒∠=︒∵BE 平分ABC ∠ ∴1302EBC ABE ABC ∠=∠=∠=︒ ∴EBC C ∠=∠∴EB EC =∴AC BE AC EC AE -=-=,则①正确∵EB EC =∴点E 在线段BC 的垂直平分线上,则②正确∵90,30BAC ABE ∠=︒∠=︒∴60AEB ∠=︒∵AD BE ⊥∴30DAE ∠=︒∴DAE C ∠=∠,则③正确∵90,30BAC C ∠=︒∠=︒∴2BC AB =,则④错误综上,正确的个数为3个故选:B .【点睛】本题主要考查了线段的垂直平分线的判定、三角形内角和定理、直角三角形的性质,掌握相关的判定定理和性质定理是解题关键.10.平面直角坐标系中,已知点A (2,2),B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( )A. 3B. 4C. 5D. 6【答案】C【解析】【分析】由点A、B的坐标可得到AB=AC=AB;若BC=AB;若CA=CB,确定C点的个数.【详解】∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:C.【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.二、填空题目(本题有6个小题,每小题3分,共18分)P的坐标为__________.11.已知点P(-2,3),关于x轴对称的点1--【答案】(2,3)【解析】【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】点P (-2,3)关于x 轴对称的点的坐标为(-2,-3).故答案为:(2,3)--.【点睛】本题考查了关于x 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.12.若正多边形的每一个内角为135,则这个正多边形的边数是__________.【答案】八(或8)【解析】分析:根据正多边形的每一个内角为135,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.详解:根据正多边形的每一个内角为135,正多边形的每一个外角为:18013545,︒-︒=︒多边形边数为:3608.45︒=︒故答案为八.点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.13.等腰三角形一腰上的高与另一腰的夹角为48,则该等腰三角形的底角的度数为______.【答案】69°或21°【解析】分两种情况讨论:①若∠A<90°,如图1所示:∵BD ⊥AC ,∴∠A+∠ABD=90°, ∵∠ABD=48°,的∴∠A=90°−48°=42°,∵AB=AC,∴∠ABC=∠C=12(180°−42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°−48°=42°,∴∠BAC=180°−42°=138°,∵AB=AC,∴∠ABC=∠C=12(180°−138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为69°或21°.14.如图,点B在∠DAC的平分线AE上,请添加一个适当的条件: ,使△ABD≌△ABC.(只填一个即可)【答案】∠C=∠D或∠CBA=∠DBA或∠CBE=∠DBE或AC=AD(只填一个即可)【解析】已知已经有一对角和一条公共边,所以再找一对边或一对角就可以得到两三角形全等解:已经有∠CAB=∠DAB,AB=AB,再添加AC=AD,利用SAS证明;或添加∠ABC=∠ABD,利用ASA证明;或添加∠C=∠D,利用AAS证明.(答案只要符合即可).故填AC=AD或∠ABC=∠ABD或∠C=∠D15.如图,∠B =∠C =90°,DM 平分∠ADC ,AM 平分∠DAB ,CB =8,则点M 到BC 的距离_______.【答案】4【解析】【分析】过点M 作ME ⊥AD 于E ,根据角平分线上的点到角的两边距离相等可得BM=ME ,CM=EM ,然后求出BM=CM ,再求解即可.【详解】如图,过点M 作ME ⊥AD 于E ,∵AM 平分∠DAB ,DM 平分∠ADC ,∠B=∠C=90°,∴BM=ME ,CM=EM ,∴BM=CM ,∵BC=8, ∴1842BM =⨯=, ∴ME=4,即点M 到AD 的距离为4.故答案为:4.【点睛】本题考查了角平分线上点到角的两边距离相等的性质,熟记性质并作出辅助线是解题的关键.16.四边形ABCD 中,∠B =∠D =90°,∠C =72°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为_______的【答案】144°【解析】【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵四边形ABCD中,∠B=∠D=90°,∠C=72°∴∠DAB=108°,∴∠AA′M+∠A″=72°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×72°=144°,故填:144°.【点睛】此题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.三、解答题(本题有8个小题,共72分)17.如图,已知点B、E、C、F在同一条直线上,AB∥DE, AC∥DF, BE=CF.求证: AC=DF.【答案】证明见解析【解析】分析】根据平行线的性质可得∠B=∠DEF ,∠ACB=∠F ,由BE=CF 可得BC=EF ,运用ASA 证明△ABC 与△DEF 全等,从而可得出结果.【详解】证明:∵BE=CF ,∴BE+EC=CF+EC ,即BC=EF ,∵AB ∥DE ,∴∠DEF=∠B ,∵AC ∥DF ,∴∠ACB=∠F ,在△ABC 和△DEF 中,=B DEF BC EFACB F ∠∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA),∴AC=DF .【点睛】此题考查了全等三角形的判定与性质,证明线段相等,通常证明它们所在的三角形全等.18.如图,AC ⊥CB ,DB ⊥CB ,垂足分别为C ,B ,AB ,CD 相交于点O ,AB =DC .求证:OB =OC .【答案】证明见解析【解析】【分析】已知AC ⊥CB ,DB ⊥CB ,AB =DC ,根据HL 证明Rt ACB Rt DBC ∆∆≌,得ABC DCB ∠=∠,即可证得OB OC =【【详解】∵AC CB ⊥,DB CB ⊥∴90ACB ∠=︒,90DBC ∠=︒Rt ACB ∆和Rt DBC ∆中AB DC CB BC =⎧⎨=⎩∴()Rt ACB Rt DBC HL ∆∆≌∴ABC DCB ∠=∠∴OB OC =【点睛】本题考查了全等三角形的判定和性质,本题利用HL 证明两个直角三角形全等,同时涉及了等角对等边的知识点.19.已知,如图△ABC 中,AB =AC ,点D 在BC 上,且BD =AD ,DC =AC .并求∠B 的度数.【答案】36°.【解析】试题分析:先设∠B=x ,由AB=AC 可知,∠C=x ,由AD=BD 可知∠B=∠DAB=x ,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x ,根据AC=CD 可知∠ADC=∠CAD=2x ,再在△ABD 中,由三角形内角和定理即可得出关于x 的一元一次方程,求出x 的值即可.试题解析:设∠B=x ,∵AB=AC ,∴∠C=∠B=x ,∵AD=BD ,∴∠B=∠DAB=x ,∴∠ADC=∠B+∠DAB=2x ,∵AC=CD ,∴∠ADC=∠CAD=2x ,在△ACD 中,∠C=x ,∠ADC=∠CAD=2x ,∴x+2x+2x=180°,解得x=36°.在∴∠B=36°.考点:等腰三角形的性质.20.如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F .求证:AD ⊥EF .【答案】见解析【解析】【分析】利用HL 证明Rt AED Rt AFD ∆∆≌,即可解答.【详解】证明:∵AB AC =,D 为BC 的中点,∴AD 平分BAC ∠又DE AB ⊥,DF AC ⊥∴DE DF =在Rt AED ∆和Rt AFD ∆中,DE DF AD AD =⎧⎨=⎩∴()Rt AED Rt AFD HL ∆∆≌∴AE AF =∴AD EF ⊥.【点睛】此题考查等腰三角形的性质及全等三角形的判定与性质,掌握判定定理是解题的关键.21.如图,在平面直角坐标系中(1)做出△A BC 关于y 轴对称的111A B C ∆,并求出111A B C ∆三个顶点的坐标;(2)计算△ABC 的面积;(3)在x 轴上画点P ,使P A +PC 最小.【答案】(1)111(1,2),(3,1),(4,3)A B C ---;(2)2.5;(3)见解析【解析】【分析】(1)根据y 轴对称的性质,纵坐标不变,横坐标变相反数,描出对称点,然后连接各个点即可; (2)利用格点把三角形补成矩形,在用矩形面积减去外面的三角形面积即可算出;(3)先作A 点的对称点A ',根据对称,PA=PA ',PA+PC=PA '+PC ,连接C A ',根据两点间线段最短,PA+PC 的最小值就是C A '的长度,C 和A '的连线与x 轴的交点即是P 点.【详解】解:(1)如图所示:111(1,2),(3,1),(4,3)A B C ---(2)如图,将ABC ∆补成矩形EFDC ,则1AE =,3EC =,1AF =,2BF =,1BD =,2CD =,2EF =,3FD =,ABC AEC AFB BCD EFDC S S S S S ∆∆∆∆=---矩111222EF FD AE EC AF BF BD CD =⋅-⋅-⋅-⋅ 11123131212222=⨯-⨯⨯-⨯⨯-⨯⨯ 6 1.511=---2.5=(3)如图所示【点睛】本题考查了作坐标系中的对称图形,利用构造法来求三角形面积和将军饮马的问题,熟练掌握相关知识点是解决本题的关键.22.如图,△ABC 为等边三角形,点D ,E 分别在边BC ,AC 上,且AE =CD ,AD 与BE 相交于点F .(1)求∠BFD 的度数;(2)作出AD 的垂线段BH ,若EF =2,FH =4,求出AD 的长度.【答案】(1)∠BFD=60°;(2)10AD =【解析】【分析】(1)根据SAS 证明△ABE ≌△CAD 得到12∠=∠,而2BAE ∠=∠+∠3=60︒,得到1360∠+∠=︒,从而得到∠BFD 的度数;(2)由(1)得∠BFD=60°,再利用直角三角形30°角性质,推出BF=2FH=8,再根据AD=BE=BF+EF 即可解决问题;【详解】(1)证明:∵ABC ∆是等边三角形∴AB AC =,60BAE C ∠=∠=︒在ABE ∆和CAD ∆中AB AC BAE C AE CD =⎧⎪∠=∠⎨⎪=⎩∴()ABE CAD SAS ∆∆≌∴12∠=∠又2BAE ∠=∠+∠3=60︒∴1360∠+∠=︒在ABF ∆中,1360BFD ∠=∠+∠=︒即BFD ∠的度数为60︒(2)如图所示:由(1)知ABE CAD ∆∆≌,60BFD ∠=︒∴AD BE =∵BH AD ⊥∴90BHF ∠=︒Rt FBH ∆中,9030FBH BFD ∠=︒-∠=︒∴28BF FH ==∴8210BE BF EF =+=+=∴10AD =【点睛】本题考查全等三角形的判定和性质,等边三角形的性质,含30°角的直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.如图,在△ABC 中,∠BAC =60°,∠C =40°,P ,Q 分别在BC ,CA 上,AP ,BQ 分别是∠BAC ,∠ABC在的角平分线.求证:BQ +AQ =AB +BP .【答案】证明见解析.【解析】【分析】延长AB 到D ,使BD =BP ,连接PD ,由题意得:∠D =∠5=∠4=∠C =40°,从而得QB =QC ,易证△APD ≌△APC ,从而得AD =AC ,进而即可得到结论.【详解】延长AB 到D ,使BD =BP ,连接PD ,则∠D =∠5.∵AP ,BQ 分别是∠BAC ,∠ABC 的平分线,∠BAC =60°,∠ACB =40°,∴∠1=∠2=30°,∠ABC =180°-60°-40°=80°,∠3=∠4=40°=∠C , ∴QB =QC ,又∠D +∠5=∠3+∠4=80°,∴∠D =40°.在△APD 与△APC 中,21D C AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△APD ≌△APC (AAS ),∴AD =AC .∴AB +BD =AQ +QC ,∴AB +BP =BQ +AQ .【点睛】本题主要考查等腰三角形的判定和性质,三角形全等的判定和性质定理,添加合适的辅助线,构造等腰三角形和全等三角形,是解题的关键.24.如图1,AC =BC ,CD =CE ,∠ACB =∠DCE =α,AD 、BE 相交于点M ,连接CM .(1)求证:BE =AD ;并用含α的式子表示∠AMB 的度数;(2)当α=90°时,取AD ,BE 的中点分别为点P 、Q ,连接CP ,CQ ,PQ ,如图2,判断△CPQ 的形状,并加以证明.【答案】(1)α;(2)△CPQ 为等腰直角三角形.证明见解析.【解析】试题分析:(1)由CA=CB ,CD=CE ,∠ACB=∠DCE=α,利用SAS 即可判定△ACD ≌△BCE ; (2)根据△ACD ≌△BCE ,得出∠CAD=∠CBE ,再根据∠AFC=∠BFH ,即可得到∠AMB=∠ACB=α; (3)先根据SAS 判定△ACP ≌△BCQ ,再根据全等三角形的性质,得出CP=CQ ,∠ACP=∠BCQ ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ 为等腰直角三角形.试题解析:(1)证明:如图①,∵∠ACB =∠DCE =α,∴∠ACD =∠BCE.在△ACD 和△BCE 中,;CA CB ACD BCECD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE(SAS),∴BE =AD.(2)解:如图①,∵△ACD ≌△BCE ,∴∠CAD =∠CBE.∵∠BAC +∠ABC =180°-α, ∴∠BAM +∠ABM =180°-α, ∴∠AMB =180°-(180°-α)=α. (3)解:△CPQ 为等腰直角三角形.证明:如图②,由(1)可得,BE =AD.∵AD ,BE 的中点分别为点P ,Q ,∴AP =BQ.∵△ACD ≌△BCE ,∴∠CAP =∠CBQ.在△ACP 和△BCQ 中,CA CB CAP CBQ AP BQ ⎧⎪∠∠⎨⎪⎩===∴△ACP ≌△BCQ(SAS),∴CP =CQ 且∠ACP =∠BCQ.又∵∠ACP +∠PCB =90°, ∴∠BCQ +∠PCB =90°, ∴∠PCQ =90°, ∴△CPQ 为等腰直角三角形.点睛:等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解题时注意掌握全等三角形的对应边相等,对应角相等的运用.祝福语祝你考试成功!。
山东省烟台市2018-2019年初二数学第一学期期中考试试题及答案
山东省烟台市2018-2019年初二数学第一学期期中考试试题及答案(第一部分:基础演练,满分120分)一、 选择题(3′×12=36′)1、 下列图形中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个2、下列长度的三根木棒,能组成三角形的是( ) A. 3,4,8 B. 4,4,8 C. 5,6,10 D. 6,7,143、该图形从哪个方向看是轴对称图形( ) A. 从正面看 B. 从上面看 C. 从左面看D. 都不是4、下列说法正确的是( )角是轴对称图形,角平分线是它的对称轴 B. 等腰三角形是轴对称图形,底边中线是它的对称轴 C. 线段是轴对称图形,中垂线是它的一条对称轴 D. 所有的直角三角形都不是轴对称图形 5、下列哪组数可以作为直角三角形的三边长( )A .9,40,41B .32,42,52C .111,345, D .2,3,56、如图,△ABC 中,AB=AC ,BD=CD ,下列说法不正确的是( ) A. ∠BAD=12∠BAC B. AD=BC C. ∠B =∠C D. AD ⊥BC 7、下列能作出唯一△ABC 的是( )A. AB=3,BC=7,AC=4B. AB=6,BC=3,∠A=40°C. AB=5,BC=3,∠A=40°D. ∠A=30°,∠B=60°,∠C=90°8、如图,AB=BC=CD=DE=1,且BC ⊥AB ,CD ⊥AC ,DE ⊥AD ,则线段AE 的长为( )A. 2B. 2.5C. 3D. 3.59、如图,直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )A. B. C. D.10、如图,尺规作图作∠AOB 的平分线的方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于点C 、D ,再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧交于点P ,作射线OP .由作法得△OCP ≌△ODP 从而得两角相等的根据是:( ) A .SAS B . SSS C . AAS D . ASA11、如图,福山文博苑国庆期间准备将大厅高5m ,长13m 的楼梯铺上地毯,那么至少需要地毯( )A. 5mB. 12mC. 13mD. 17m12、有7块厚度相同的木板块,分两摞如图垂直摆放在地面上,一个等腰直角三角形的三角板卡在两摞木块中间.已知三角板的直角边长为25cm ,则每块砖的厚度是( )A .3cmB .4cmC .5cmD . 6cm二、填空题(3分×8=24分)13、下列说法正确的是(填序号)①三角形的三条角平分线交于一点;②三角形的三条高相交于一点;③全等三角形的面积相等;④面积相等的三角形全等.14、如图,一个圆柱,底面圆的周长6cm,高4cm一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行;15、如图,△ABC与△A1B1C1关于直线l对称,若∠B1=25°,∠A=40°,则∠C的度数是.16、如图,在△ABC的中,DE是线段AB的中垂线,D在BC上,E在AB上.已知AC=5cm,ΔADC的周长为17cm,则BC的长为cm;17、请你发现下图的规律,在空格上画出第四个图案.18、如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是2,3,5,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4= ;三、解答题(66分)19、如图,两个班的学生分别在M、N两处参加植树劳动,现要在道路AB、AC的交叉区域内设一个饮水供应点P,使P到两条道路的距离相等,且使PM=PN,有一同学说:“只要作一个角平分线、一条线段的垂直平分线,这个茶水供应点的位置就确定了”,你认为这位同学说得对吗?请说明理由,并通过作图找出这一点,不写作法,保留作图痕迹.20、(10分)如图,在△ABC的中,∠C=90°,AD平分∠CAB交CB于点D,过点D作DE⊥AB,于点E,若∠B=30°,CD=5.(1)求BD的长;(2)AE与BE相等吗?说明理由.21、(10分)如图,△ABC是等腰三角形,AB=AC,BD、CE分别平分∠ABC、∠ACB,过点A分别作BD、CE的垂线,垂足为D、E.求证:AD=AE.22、(12分)如图,小明的家位于一条南北走向的河流MN的东侧A处,某一天小明从家出发沿南偏西30°方向走60m到达河边B处取水,然后沿另一方向走80m到达菜地C处浇水,最后沿第三方向走100m 回到家A处.问小明在河边B处取水后是沿哪个方向行走的?并说明理由.23、(12分)如图,在△ABC中,AB=12,AC=9,BC=15,DE是BC的垂直平分线,交BC于点D,交AB于点E.(1)判定△ABC的形状,并说明理由;(2)求AE的长.24、(12分)如图,一课高32米的大树在一次暴风雨中被刮断,树顶C落在离树根B点16m处,研究人员要查看断痕A处的情况,在离树根5m的D处竖起一个梯子AD,请问这个梯子的长是多少(第二部分:能力挑战,满分30分)25、(14分)如图1,在△ABC中,AD,BE交于点F,AD=BD,CD=4,AF=2,连接CF. (1)请说明△BDF≌△ADC;(2)请判断△DCF的形状;(3)如图2,有一条长度为7的线段MN在射线AD上从点A向下运动,运动过程中,当∠MNC与△BCF 中的某个角度相等时,求AM的长.26、(16分)如图1,∠BAD=∠CAE,AB=AD,AE=AC.(1)CA平分∠BCE吗?说说你的理由;(2)若∠BAD=90°,AC=10,如图2,求四边形ABCD的面积;(3)在(2)的条件下,AF⊥CF,垂足为F,试写出CE与AF之间的数量关系,并说明理由.图1 图22018-2019学年度第一学期期中学业水平考试初二数学试题参考答案及评分建议(如有错误请组长及时更正)一、选择题(每小题3分,满分36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCCCABCADBDC二、填空题(每小题3分,满分18分)13.①③ 14.5cm 15. 115° 16.12 17. 18.7(备注:填空题未写单位的此题0分) 三、解答题(满分66分) 19.(本题满分10分)解:这位同学说得正确. …………………………1分 理由是:角平分线上的点到这个角的两边的距离相等;…3分线段垂直平分线上的点到这条线段两个端点的距离相等.…5分所以点P 就是所求的点.作图…………………………………………10分20. (本题满分10分)解:(1)因为AD 平分∠CAB ,DE ⊥AB ,DC ⊥AC, 所以DE=CD=5, …………………………………………………………2分 在Rt △BD 中, 因为∠B=30°, 所以BD=2DE=10. ……………………4分 (2) AE=BE. ………………………………………………………………5分 理由是:因为∠C=90°所以∠BAC=90°-∠B=60° 所以∠DAE=21∠BAC=30°,………………………………………7分 所以∠DAE=∠B, ……………………………………………………8分 所以AD=BD, ………………………………………………………10分21. (本题满分10分)解:AD=AE . 证明:∵AB=AC ,∴∠ABC=∠ACB .………………………………………………2分 ∵BD 平分∠ABC ,CE 平分∠ACB , ∴∠ABD=21∠ABC ,∠ACE=21∠ACB . ∴∠ABD=∠ACE .……………………………………………………..4分∵AE ⊥EC ,AD ⊥DB , ∴∠D=∠E=90°.……………………………………………………….6分 在△ADB 与△AEC 中,∵∠D=∠E ,∠ABD=∠ACE ,AB=AC ,∴△ADB ≌△AEC .………………………………………………….9分 ∴AD=AE .…………………………………………………………….10分22. (本题满分12分)解:由题意得,在△ABC 中,AB=60,BC=80,AC=100∵AB 2+BC 2=602+802=1002=AC 2 ,∴∠ABC=900…………………………6分 ∵∠NBA=300,∴∠MBC=600…………………………11分∴小刚在河边B 处取水后是沿着南偏东600的方向行走的…………12分23. (本题满分12分)(1)△ABC 是直角三角形…………………2分 理由:∵△ABC 中,AB=12,AC=9,BC=15,又∵92+122=152,即AB 2+AC 2=BC 2,……………5分 ∴△ABC 是直角三角形……………6分 (2)连结EC ,……………………7分 ∵DE 是BC 的垂直平分线,∴EC=EB , ……………………9分设AE=x ,则EC=12-x .∴x 2+92=(12-x )2.……………… 11分 ∵x >0 解之得x=852,即AE 的长是852.……………… 12分 24. (本题满分12分)由题意可知,在Rt △ABC 中, AB+AC=32 m ,BC=16 m, 由勾股定理得,AC 2=AB 2+BC 2. 即(32-AB )2=AB 2+162. ∵AB >0.∴AB=12 m.………………………………………………5分 在Rt △ABD 中,AB=12 m ,BD=5 m, 由勾股定理得,AD 2=AB 2+BD 2. 即AD 2=122+52. ∵AD >0.∴AD=13 m.………………………………………11分答:梯子的长度是13 m.…………………………………………12分四、附加题:(满分共30分)25. (本题满分14分) 解:(1)∵AD 、BE 是△ABC 的高线, ∴∠ADB=∠ADC=90°,∠AEB=90°, ∵∠EBC+∠BFD=90°,∠CAD+∠AFE=90°,∠AFE=∠BFD ,∴∠CAD=∠EBC ,……………………………………………………2分在△BDF 和△ADC 中,90CAD EBC AD BD AD C BD F ∠=∠=∠=∠=︒⎧⎪⎨⎪⎩,△BDF ≌△ADC (ASA );……………………………………………5分 (2)由(1)可得CD=DF ,所以△DCF 是等腰直角三角形; ……………………………………8分 (3)当∠MNC=∠FCB=45°时,∠DCN=MNC=45°,∴DN=DC=4,……………………………………………………9分∴MD=3, 所以AM=AD-MD=3. …………………………………………………………10分 当∠MNC=∠FBC 时,在△FDB 和△CDN 中,90M NC FBC FD CD FD B CD N ∠=∠=∠=∠=︒⎧⎪⎨⎪⎩,∴△FDB ≌△CDN ,…………………………………………………12分 ∴DN=BD=6,所以MD=MN-DN=1,∴AM=AD-MD=5.……………………………………………………13分 所以AM 的长为3或5.…………………………… ……………………14分 26.(本题满分16分) 解:(1)CA 平分∠BCE …………1分∵∠BAD=∠CAE ,即∠BAC+∠CAD=∠EAD+∠CAD ∴∠BAC=∠EAD ,…………2分在△ABC 和△ADE 中,AB=AD ,∠BAC=∠DAE ,AC=AE ∴△ABC ≌△ADE (SAS ),∴∠ACB=∠AED ,…………4分 ∵AE=AC ,∴∠ACE=∠AED ,∴∠ACB=∠ACE , ∴AC 平分∠BCE…………5分 (2)∵∠BAD=90°,∴△ACE 是等腰直角三角形,………7分 ∵S 四边形ABCD =S △ABC +S △ACD ,………8分 ∴S 四边形ABCD =S △ADE +S △ACD =5010212=⨯………10分 (3)写出CE=2AF 或CE 2=4 AF 2均正确…………12分 法一:CE 2=4 AF 2理由:由(2)知,∠ACB=45°,又AF ⊥CF ,∴∠F=90°,∠FAC=45°, ∴∠ACB=∠FAC ,∴FC=FA在Rt △ACE 中,CE 2=2AC 2,在Rt △AFC 中,AC 2=2AF 2…………15分 ∴CE 2=4 AF 2…………16分法二:CE=2AF过点A作AG⊥CE,垂足为点G,∵AC平分∠ECF,AF⊥CB,∴AF=AG,………13分又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,…………15分∴CE=2AG,∴CE=2AF.…………16分。
人教版八年级上学期期中考试数学试卷及答案解析(共六套)
人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。
2018-2019学 年八年级上学期期中考试数学试题(含答案)
2018-2019学年八年级(上)期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)实数﹣3的倒数是()A.﹣3 B.﹣C.D.32.(4分)25的算术平方根是()A.5 B.±5 C.﹣5 D.253.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)4.(4分)下列计算正确的是()A.6a8÷3a2=2a5 B.a4•a3=a7 C.(2a)2=4a D.(a2)3=a55.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.66.(4分)多项式2x2+6x3中各项的公因式是()A.x2 B.2x C.2x3 D.2x27.(4分)下列式子正确的是()A.=±3 B.=3 C.=﹣3 D.8.(4分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>09.(4分)已知+(b+3)2=0,则(a+b)2017的值为()A.0 B.2017 C.﹣1 D.110.(4分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3 B.﹣1 C.1 D.﹣3或111.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣112.(4分)已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.3二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)﹣的绝对值是.14.(4分)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为.15.(4分)若x2+kx+16是完全平方式,则k的值为.16.(4分)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.三、解答题(本大题共6小题,共56分)17.(9分)计算或化简:(1)|﹣3|﹣(2)(m4)2+m5•m3+(﹣m)4•m4(3)(1+a)(1﹣a)+a(a﹣2)18.(9分)把下列各数分别填在相应的集合中:,﹣6,,0,,3.1415926,,﹣.19.(8分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.20.(9分)把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.22.(12分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:;方法②:;(2)根据(1)写出一个等式:;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)实数﹣3的倒数是()A.﹣3 B.﹣C.D.3【解答】解:﹣3的倒数是﹣,故选:B.2.(4分)25的算术平方根是()A.5 B.±5 C.﹣5 D.25【解答】解:∵52=25,∴25的算术平方根是5.故选:A.3.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边分解不彻底,不是因式分解,故本选项错误;故选:C.4.(4分)下列计算正确的是()A.6a8÷3a2=2a5 B.a4•a3=a7 C.(2a)2=4a D.(a2)3=a5【解答】解:A、原式=2a6,不符合题意;B、原式=a7,符合题意;C、原式=4a2,不符合题意;D、原式=a6,不符合题意,故选:B.5.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.6.(4分)多项式2x2+6x3中各项的公因式是()A.x2 B.2x C.2x3D.2x2【解答】解:2x2+6x3=2x2(1+3x),故选:D.7.(4分)下列式子正确的是()A.=±3 B.=3 C.=﹣3 D.【解答】解:A、原式=±3,符合题意;B、原式=﹣3,不符合题意;C、原式=3,不符合题意;D、原式=±2,不符合题意,故选:A.8.(4分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>0【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、|a|>4=|d|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.9.(4分)已知+(b+3)2=0,则(a+b)2017的值为()A.0 B.2017 C.﹣1 D.1【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2017=﹣1,故选:C.10.(4分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3B.﹣1 C.1 D.﹣3或1【解答】解:当2m﹣4=3m﹣1时,m=﹣3,当2m﹣4+3m﹣1=0时,m=1.故选:D.11.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.12.(4分)已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.3【解答】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴a4﹣2a3﹣2a+1=a2(a2﹣2a)﹣2a+1=a2﹣2a+1=1+1=2.故选:C.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)﹣的绝对值是.【解答】解:|﹣|=.故本题的答案是.14.(4分)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为2.【解答】解:(ax+2y)(x﹣y)=ax2+(2﹣a)xy﹣2y2,含xy的项系数是2﹣a.∵展开式中不含xy的项,∴2﹣a=0,解得a=2.故答案为:2.15.(4分)若x2+kx+16是完全平方式,则k的值为±8.【解答】解:∵x2+kx+16=x2+kx+42,∴kx=±2•x•4,解得k=±8.故答案为:±8.16.(4分)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为﹣2.【解答】解:∵m2=n+2,n2=m+2(m≠n),∴m2﹣n2=n﹣m,∵m≠n,∴m+n=﹣1,∴原式=m(n+2)﹣2mn+n(m+2)=mn+2m﹣2mn+mn+2n=2(m+n)=﹣2.故答案为﹣2.三、解答题(本大题共6小题,共56分)17.(9分)计算或化简:(1)|﹣3|﹣(2)(m4)2+m5•m3+(﹣m)4•m4(3)(1+a)(1﹣a)+a(a﹣2)【解答】解:(1)原式=3﹣4+4=3;(2)原式=m8+m8+m8=3m8;(3)原式=1﹣a2+a2﹣2a=1﹣2a.18.(9分)把下列各数分别填在相应的集合中:,﹣6,,0,,3.1415926,,﹣.【解答】解:如图,故答案为:﹣6,,0,3.1415926,,﹣;,;﹣6,﹣.19.(8分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.【解答】解:原式=a2+6a+9﹣6a﹣8=a2+1,当a=﹣2时,原式=4+1=5.20.(9分)把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.【解答】解:(1)27xy2﹣3x=3x(9y2﹣1)=3x(3y+1)(3y﹣1);(2)2x2+12x+18=2(x2+6x+9)=2(x+3)2;(3)(a﹣b)(a﹣4b)+ab=a2﹣5ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.22.(12分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:(m+n)2﹣4mn;方法②:(m﹣n)2;(2)根据(1)写出一个等式:(m+n)2﹣4mn=(m﹣n)2;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.【解答】解:(1)方法①:(m+n)2﹣4mn,方法②:(m﹣n)2;故答案为:(m+n)2﹣4mn,(m﹣n)2;(2)由①可得:(m+n)2﹣4mn=(m﹣n)2;故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)由②可得:(x﹣y)2=(x+y)2﹣4xy,∵x+y=﹣8,xy=3.75,∴(x﹣y)2=64﹣15=49,∴x﹣y=±7;又∵x+y=8,∴或;(4)如图,表示(2m+n)(m+2n)=2m2+5mn+2n2:。
2018-2019学年八 年级上学期期中考试数学试题(含答案)
2018-2019学年度第一学期阶段联考八年级数学试卷一.选择题(本大题共10小题,每小题3分,共30分)点P在第二象限内,P到x轴的距离是2,到y轴的距离是3,那么点P的坐标为()A. (-2,3)B. (-3,-2)C. (-3,2)D. (3,-2)如图所反映的两个量中,其中y是x的函数的个数有()A. 4个B. 3个C. 2个D. 1个下列语句中,是命题的是()A. ∠α和∠β相等吗?B. 两个锐角的和大于直角C. 作∠A的平分线MND. 在线段AB上任取一点在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1),P2(x2,y2)两点,下列表述正确的是()A. 若x1<x2,则y1<y2B. 若x1<x2,则y1>y2C. 若x1>x2,则y1<y2D. y1与y2大小关系不确定在同一直角坐标系中,若直线y=kx+3与直线y=-2x+b平行,则()A. k=-2,b≠3B. k=-2,b=3C. k≠-2,b≠3D. k≠-2,b=3如图,一次函数y1=x+3与y2=ax+b的图象相交于点P(1,4),则关于x的不等式x+3≤ax+b的解集是()A. x≥4B. x≤4C. x≥1D. x≤17.一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()A. B. C. D.8.一次函数y1=ax+b与y2=bx+a,它们在同一坐标系中的大致图象是()A. B. C. D.9如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B. 3C.(m-1)D.()2 23-m10. 如图,在平面直角坐标系上有个点A (-1,0),点A 第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A 第2017次跳动至点A2017的坐标是( ) A. (-504,1008) B. (-505,1009) C. (504,1009) D. (-503,1008) 填空题(本大题共8小题,每小题3分,共24分)11.在平面直角坐标系中有一点A (-2,1),将点A 先向右平移3个单位,再向下平移2个单位,则平移后点A 的坐标为 ______ .12.函数31-=x y 的自变量x 的取值范围是 ______ .13.已知a <b <0,则点A(a-b ,b)在第____________象限.14.如图,为了防止门板变形,小明在门板上钉了一根加固木条,从数学的角度看,这样做的理由是利用了三角形的____________15.等腰三角形的三边长为3,a ,7,则它的周长是 ______ .16.当k= ______ 时,函数y=()532-++k x k 是关于x 的一次函数.17.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y 轴围城的三角形面积为4,那么b1﹣b2等于 .18.等腰三角形的一腰上的高与另一腰的夹角为45°,则这个三角形的底角为 ______ .三.解答题(本大题共6小题,第19题8分,20题10分,21题10分,22题12分,23题12分,24题14分,共66分)19.如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A (1,2),图书馆的位置坐标为B (-2,-1),解答以下问题: (1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C (1,-3),食堂坐标为D (2,0),请在图中标出体育馆和食堂的位置; (3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD ,求四边形ABCD 的面积.20.已知y与x+1.5成正比例,且x=2时,y=7.(1)求y与x之间的函数表达式;(2)若点P(-2,a)在(1)所得的函数图象上,求a.21.如图,在平面直角坐标系中直线y=-2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标(2)求三角形OAC的面积.22.如图,在△ABC中,CD、CE分别是△ABC的高和角平分线.(1)若∠A=30°,∠B=50°,求∠ECD的度数;(2)试用含有∠A、∠B的代数式表示∠ECD(不必证明)23.一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.根据图象进行以下探究:(1)西宁到西安两地相距_________千米,两车出发后___________小时相遇;普通列车到达终点共需__________小时,普通列车的速度是___________千米/小时.(2)求动车的速度;(3)普通列车行驶t小时后,动车的达终点西宁,求此时普通列车还需行驶多少千米到达西安?24.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D ; 【简单应用】(2)如图2,AP 、CP 分别平分∠BAD .∠BCD ,若∠ABC=36°,∠ADC=16°, 求∠P 的度数; 【问题探究】(3)如图3,直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,若∠ABC=36°,∠ADC=16°,请猜想∠P 的度数,并说明理由.【拓展延伸】(4)在图4中,若设∠C =α,∠B =β,∠CAP=31∠CAB ,∠CDP=31∠CDB ,试问∠P 与∠C 、∠B之间的数量关系为: ______ (用α、β表示∠P,不必证明)八年级数学答案一.选择题(共10小题,每小题3分,满分30分)题号 1234567 8 9 10 答案C C B A A DCDBB二.填空题(共8小题,每小题3分,满分24分)11.(1,-1) ,12.3x ≠,13.三,14.稳定性15.17 16.-1,17.4 ,18.67.5°或22.5° 三.解答题(共6小题,满分66分)19.(1) 略…3分(2)体育馆C (1,-3),食堂D (2,0)…6分 (3)四边形ABCD 的面积=10.…8分20.(1)y=2x+3,……5分(2)1-=a …10分21.解:(1) ∴点C 的坐标为(4,4). ……………5分(2)点A 的坐标为(6,0),∴OA=6,∴S △OAC=21OA •yC=21×6×4=12.…10分22.(1)∵CD 为高,∴∠CDB=90°,∴∠BCD=90°-∠B ,∵CE 为角平分线,∴∠BCE=∠ACB ,而∠ACB=180°-∠A-∠B ,∴∠BCE=(180°-∠A-∠B )=90°-(∠A+∠B ),∴∠ECD=∠BCE-∠BCD =90°-(∠A+∠B )-(90°-∠B )=(∠B-∠A ), 当∠A=30°,∠B=50°时,∠ECD=×(50°-30°)=10°; ………………………8分 (2)由(1)得∠ECD=(∠B-∠A ).………………………12分23.(1)1000,3,12,,3250…………4分(2)250……8分(3)32000……12分24.(1)证明:在△AOB 中,∠A+∠B+∠AOB=180°,在△COD 中,∠C+∠D+∠COD=180°, ∵∠AOB=∠COD ,∴∠A+∠B=∠C+∠D ;…………3分 (2)26°.…………7分 (3)如图3,∵AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4, ∴2∠P=∠B+∠D ,∴∠P=(∠B+∠D )=×(36°+16°)=26°;……………11分(4)∠P=α+β; …………………………14分。
2018人教版八年级数学(上)期中测试题及答案
AD第8题图 第1题图第9题图 2018--2019(上)八年级数学期中考试卷(考试用时:100分钟 ; 满分: 120分)班级: 姓名: 分数:一、选择题(共12小题,每小题3分,共36分.请将正确答案的序号填入对应题目后的括号内) 1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ).2. 对于任意三角形的高,下列说法不正确的是( )A .锐角三角形有三条高B .直角三角形只有一条高C .任意三角形都有三条高D .钝角三角形有两条高在三角形的外部3. 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为( ) A. 5或7 B. 7或9 C. 7 D. 94. 等腰三角形的一个角是80°,则它的底角是( )A. 50°B. 80°C. 50°或80°D. 20°或80°5. 点M (3,2)关于y 轴对称的点的坐标为 ( )。
A.(—3,2) B.(-3,-2) C. (3,-2) D. (2,-3)6. 如图,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( )。
A .30° B. 40° C. 50° D. 60°7. 现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm .从中任取 三根木棒,能组成三角形的个数为( )A .1个B .2个C .3个D .4个 8. 如图,△ABC 中,AB=AC ,D 为BC 的中点,以下结论: (1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线。
其中正确的有( )。
A .1个 B. 2个 C. 3个 D. 4个9. 如图,△ABC 中,AC =AD =BD ,∠DAC =80º, 则∠B 的度数是( ) A .40º B .35º C .25º D .20º10. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是 ( ) A .30º B .36º C .60º D .72º11.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块, )去.B C D第16题图第12题图第17题图第15题图 第14题图 12.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n 个图案中正三角形的个数为( ) (用含n 的代数式表示).A .2n +1 B. 3n +2 C. 4n +2 D. 4n -2二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在相应题目后的横线上) 13. 若A (x ,3)关于y 轴的对称点是B (-2,y ),则x =____ ,y =______ , 点A 关于x 轴的对称点的坐标是___________ 。
2018-2019学年四川省绵阳市八年级(上)期中数学试卷
2018-2019学年四川省绵阳市八年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.下列各式运算正确的是()A. a2+a3=a5B. a2⋅a3=a5C. (ab2)3=ab6D. a10÷a2=a52.计算2x2•(-3x3)的结果是()A. 6x5B. 2x6C. −2x6D. −6x53.△ABC中,∠ABC与∠ACB的平分线相交于I,且∠BIC=130°,则∠A的度数是()A. 40∘B. 50∘C. 65∘D. 80∘4.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A. 4B. 5C. 6D. 75.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形6.在△ABC中,AB=8,则B边上的中线AD=5,那么线段AC的取值范围是()A. 2<AC<18B. 2<AC<10C. 3<AD<13D. 无法确定7.一个多边形截去一角后,变成一个八边形则这个多边形原来的边数是()A. 8或9B. 2或8C. 7或8或9D. 8或9或108.如果一个三角形三边垂直平分线的交点在三角形外部,那么这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定9.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则拼成长方形的面积是()A. 4m2+12m+9B. 3m+6C. 3m2+6D. 2m2+6m+910.已知(5-3x+mx2-6x3)(1-2x)的计算结果中不含x3的项,则m的值为()D. 0A. 3B. −3C. −1211.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A. 1个B. 2个C. 3个D. 4个12.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=12AC•BD,④AO=OC.其中正确的结论有()A. 4个B. 1个C. 2个D. 3个二、填空题(本大题共6小题,共18.0分)13.已知:a5•(a m)3=a11,则m的值为______.14.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为______°.15.如图所示是两块完全一样的含30°角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,设较长直角边的中点为M,绕中点M转动三角板ABC,使其直角顶点C恰好落在三角板A1B1C1的斜边A1B1上,当∠A=30°,AC=10时,两直角顶点C,C1的距离是______.16.在△ABC中,∠ABC和∠ACB的外角平分线BP,CP交于点P,PE⊥AC于点E,若S△BPC=3、PE=2,S△ABC=5,求△ABC的周长是______.17.若实数a、b、c满足a-b=√2,b-c=1,那么a2+b2+c2-ab-bc-ca的值是______18.已知a+1a =√10,则a2-1a2的值是______.三、解答题(本大题共6小题,共46.0分)19.(1)计算:(a3b4)2÷(ab2)2(2)如图,AD为△ABC的中线,BE为三角形ABD中线,①在△BED中作BD边上的高EF;(保留作图)②若△ABC的面积为60,BD=5,求EF的长.20.(1)如图,在△ABC中,∠A=40°,∠B=70°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.(2)计算:(-x)2•x3•(-2y)3+(2xy)2•(-x)3•y21.先化简,再求值[(x2+y2)-(x-y)2+2y(x-y)]÷2y,其中x=-2,y=-1.2 22.如图,E、A、C三点共线,AB=CE,∠B=∠E,BC=DE.求证:AB∥CD.23.如图:在六边形ABCDEF中,AF∥CD,AB∥DE,且∠BAF=100°,∠BCD=120°,求∠ABC和∠D的度数.24.(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,若EF=BE+FD.求证:∠EAF=∠BAD(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、∠BAD,试探究线段EF、BE、FD之间的数量关系,CD延长线上的点,且∠EAF=12证明你的结论.答案和解析1.【答案】B【解析】解:A、a2与a3不是同类项,不能直接合并,故本选项错误;B、a2•a3=a5,计算正确,故本选项正确;C、(ab2)3=a3b6,原式计算错误,故本选项错误;D、a10÷a2=a8,原式计算错误,故本选项错误;故选:B.根据同底数幂的乘除法则及幂的乘方与积的乘方法则进行各选项的判断即可.本题考查了同底数幂的除法及幂的乘方与积的乘方运算,掌握同底数幂的乘除法则是解题关键.2.【答案】D【解析】解:原式=2×(-3)x2+3=-6x5,故选:D.根据单项式乘单项式,可得答案.本题考查了单项式乘单项式,熟记单项式的乘法并根据法则计算是解题关键.3.【答案】D【解析】解:∵∠BIC=130°,∴∠EBC+∠FCB=180°-∠BIC=180°-130°=50°,∵BE、CF是△ABC的角平分线,∴∠ABC+∠ACB=2(∠EBC+∠FCB)=2×50°=100°,∴∠A=180°-100°=80°.故选:D.根据三角形的内角和定理和∠BIC的度数求得另外两个内角的和,利用角平分线的性质得到这两个角和的一半,用三角形内角和减去这两个角的一半即可.本题考查了三角形的内角和定理,此定理对学生来说比较熟悉,但有时运用起来却不很熟练,难度较小.4.【答案】C【解析】解:设这个多边形是n边形,根据题意,得(n-2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n-2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.5.【答案】B【解析】解:∵三角形三个内角度数的比为2:3:4,∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.所以该三角形是锐角三角形.故选:B.根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.三角形按边分类:不等边三角形和等腰三角形(等边三角形);三角形按角分类:锐角三角形,钝角三角形,直角三角形.6.【答案】A【解析】解:延长AD到E,使AD=DE,连接BE,∵AD=DE,∠ADC=∠BDE,BD=DC,∴△ADC≌△EDB(SAS)∴BE=AC,在△AEB中,AE-AB<BE<AB+AE,即2<BE<18,∴2<AC<18,故选:A.先延长AD到E,且AD=DE,并连接BE,由于∠ADC=∠BDE,AD=DE,利用SAS易证△ADC≌△EDB,从而可得AC=BE,在△ABE中,再利用三角形三边的关系,可得2<BE<18解决问题;此题主要考查全等三角形的判定和性质、三角形三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.7.【答案】C【解析】解:∵截去一个角后边数可以增加1,不变,减少1,∴原多边形的边数是7或8或9.故选:C.根据截去一个角后边数增加1,不变,减少1讨论得解.本题考查了多边形,关键是理解多边形截去一个角后边数有增加1,不变,减少1三种情况.8.【答案】C【解析】解:一个三角形三边垂直平分线的交点是这个三角形外接圆的圆心,如果在外部,则这个三角形是钝角三角形.故选:C.根据线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.此点称为外心,也是这个三角形外接圆的圆心.)依题意画出直角三角形,锐角三角形以及钝角三角形的垂直平分线的交点即可求解.本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.此点称为外心,也是这个三角形外接圆的圆心.),难度一般.考生关键是画出图形即可求解.9.【答案】C【解析】解:根据题意,得:(2m+3)-(m+3)=[(2m+3)+(m+3)][(2m+3)-(m+3)]=(3m+6)m=3m2+6m故选:C.根据题意,利用大正方形的面积减去小正方形的面积表示出长方形的面积,再化简整理即可.本题主要考查平方差公式的几何背景,解决此题的关键是利用两正方形的面积表示出长方形的面积.10.【答案】B【解析】【分析】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.【解答】解:∵(5-3x+mx2-6x3)(1-2x)=5-13x+(m+6)x2+(-6-2m)x3+12x4.又∵结果中不含x3的项,∴-2m-6=0,解得m=-3.故选:B.11.【答案】C【解析】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.根据全等三角形的判定得出点P的位置即可.此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点P的位置.12.【答案】A【解析】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,∵DA=DC,∴AC⊥BD,AO=OC,故②④正确;四边形ABCD的面积=S△ADB+S△BDC=•DB•OA+•DB•OC=AC•BD,故③正确,故选:A.根据SSS证明△ABD≌△CBD,可得①正确,推出∠ADB=∠CDB,再根据等腰三角形的三线合一的性质即可判断②④正确,根据四边形ABCD的面积=S△ADB+S△BDC=•DB•OA+•DB•OC=AC•BD,可得④正确.本题考查全等三角形的判定和性质、等腰三角形的三线合一的性质的应用,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.13.【答案】2【解析】解:∵a5•(a m)3=a5•a3m,=a3m+5,∴3m+5=11,解得m=2.故答案为:2.根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加进行计算,然后列出方程求解即可.本题考查了幂的乘方与积的乘方的性质,同底数幂的乘法的性质,熟记性质并准确列出方程是解题的关键.14.【答案】108【解析】解:∵正五边形的内角和为(5-2)×180°=540°,∴∠1=540°÷5=108°,故答案为:108所求角即为正五边形的内角,利用多边形的内角和定理求出即可.此题考查了多边形的内角和外角,熟练掌握多边形的内角和定理是解本题的关键.15.【答案】5【解析】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=AC=5,∴∠A1=∠A1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M= AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.本题考查了旋转的性质,等边三角形的判定与性质,证明出△MCC1为等边三角形是解题的关键.16.【答案】11【解析】解:如图,过点P作PF⊥BC于F,作PG⊥AB于G,连接AP,∵∠ABC和∠ACB的外角平分线BP、CP交于P,∴PF=PG=PE=2,∵S△BPC=3,∴BC•2=3,解得BC=3,∵S△ABC=S△ACP+S△ABP-S△BCP,=×(AB+AC)×2-3,=5,∴AB+AC=8,∴△ABC的周长=11,故答案为:11.过点P作PF⊥BC于F,作PG⊥AB于G,根据角平分线上的点到角的两边距离相等可得PF=PG=PE,再根据三角形的面积求出BC,然后求出AC+AB,再根据S△ABC=S△ACP+S△ABP-S△BCP计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键,难点在于△ABC的面积的表示.17.【答案】3+√2【解析】解:∵a-b=,b-c=1,∴a-c=+1∵a2+b2+c2-ab-bc-ca=(2a2+2b2+2c2-2ab-2bc-2ca)=[(a-b)2+(b-c)2+(a-c)2] ∴a2+b2+c2-ab-bc-ca=3+故答案为:3+利用完全平方公式将代数式变形:a2+b2+c2-ab-bc-ca=(2a2+2b2+2c2-2ab-2bc-2ca)=[(a-b)2+(b-c)2+(a-c)2],即可求代数式的值.本题考查了因式分解的应用,利用完全平方公式将代数式变形是本题的关键.18.【答案】±2√15【解析】解:∵(a+)2=10,∴a2+2+=10,∴a2+=8,∴a2-2+=6,∴(a-)2=6,∴a-=,∴原式=(a+)(a-)=±×=±2,故答案为:±2根据完全平方公式以及平方差公式即可求出答案.本题考查乘法公式,解题的关键是熟练运用乘法公式,本题属于中等题型.19.【答案】解:(1)原式=a6b8÷a2b4=a4b4.(2)①在△BED中作BD边上的高EF如图所示;②∵S△ABC=60,BD=DC,∴S△ABD=30,∵AE=ED,∴S△BDE=15=1×BD×EF,2∴EF=6.【解析】(1)先计算乘方后计算乘除即可;(2)①作EF⊥BC即可;②利用三角形的中线的性质求出△BDE的面积即可解决问题;本题考查作图-基本作图,幂的乘方与积的乘方,三角形的中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.【答案】解:(1)∵∠A =40°,∠B =70°, ∴∠ACB =180°-40°-70°=70°.∵CE 是∠ACB 的平分线,∴∠BCE =12∠ACB =12×70°=35°.∵CD ⊥AB 即∠CDB =90°,∴∠BCD =180°-90°-70°=20°,∴∠DCE =∠BCE -∠BCD =35°-20°=15°.∵DF ⊥CE 即∠DFC =90°,∴∠CDF =180°-90°-15°=75°;(2)(-x )2•x 3•(-2y )3+(2xy )2•(-x )3•y=x 2•x 3•(-8y 3)+4x 2y 2•(-x 3)•y=-8x 5y 3-4x 5y 3=-12x 5y 3.【解析】(1)由DF ⊥CE 可知,要求∠CDF 的度数,只需求出∠FCD ,只需求出∠BCE 和∠BCD 即可;(2)根据整式的混合运算的法则计算即可.本题主要考查了三角形的内角和定理、直角三角形的两锐角互余、角平分线的定义等知识,在三角形中求角度时,通常需利用三角形内角和定理和外角的性质,还考查了整式的混合运算.21.【答案】解:[(x 2+y 2)-(x -y )2+2y (x -y )]÷2y =[x 2+y 2-x 2+2xy -y 2+2xy -2y 2]÷2y=[4xy -2y 2]÷2y=2x -y ,当x =-2,y =-12时,原式=-4+12=-312.【解析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.本题考查了整式的混合式运算和求值,能正确根据运算法则进行化简是解此题的关键.22.【答案】证明:在△BAC 和△ECD 中,{BA =CE ∠B =∠E BC =ED,∴△BAC≌△ECD(SAS),∴∠BAC=∠ECD,∴AB∥CD.【解析】欲证明AB∥CD,只要证明∠BAC=∠ECD,只要证明△BAC≌△ECD即可;本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形解决问题.23.【答案】解:连接AD∵AF∥CD,AB∥DE,∴∠FAD=∠ADC,∠BAD=∠ADE,∴∠BAF=∠CDE=100°∵∠ABC+∠DCB+∠BAD+∠ADC=360°,又∵∠FAB=∠FAD+∠BAD=∠ADC+∠BAD=100°,∴∠ABC=360°-120°-100°=140°.【解析】连接AD,利用平行线的性质说明∠BAF与∠CDE的关系,从而求出∠CDE的度数.利用四边形的内角和是360°,求出∠ABC.本题考查了平行线的性质,多边形的内角和定理.解决本题亦可延长AB、DC,利用平行和三角形的内角和求解.24.【答案】证明:(1)延长CB至M,使得BM=DF,∵∠B=∠D=90°,AB=AD,在△ABM与△ADF中{BM=DF∠ABM=∠ADF AB=AD,∴△ABM≌△ADF(SAS),∴AM=AF,∠DAF=∠BAM,∵EF=BE+DF=BE+BM=ME,在△AME与△AFE中{AE=AE EF=ME AM=AF,∴△AME≌△AFE(SSS),∴∠MAE=∠EAF,∴∠BAE+∠DAF=∠EAF,即∠EAF=12∠BAD;(2)线段EF、BE、FD之间的数量关系是EF+DF=BE,在BE上截取BM=DF,连接AM,∵AB=AD,∠B+∠ADC=180°,∠ADC+∠ADE=180°,∴∠ABM=∠ADF,在△ABM与△ADF中{BM=DF∠ABM=∠ADF AB=AD,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∠EAF=12∠BAD,∴∠EAF=∠EAM,在△AEM与△AEF中{AM=AF∠EAF=∠EAM AE=AE,∴△AEM≌△AEF(SAS),∴EM=EF,即BE-BM=EF,即BE-DF=EF.【解析】(1)延长CB至M,使得BM=DF,根据全等三角形的判定和性质解答即可;(2)通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.可得出DF=BG,GE=EF,那么EF=GE=BE-BG=BE-DF.此题考查三角形全等的判定和性质;本题中通过全等三角形来实现线段的转换是解题的关键,没有明确的全等三角形时,要通过辅助线来构建与已知和所求条件相关联全等三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第
7题图
12
C
B
A
E
D
上学期期中考试
八年级数学试题
温馨提示:解题要先易后难,后面的题目不一定难哦!
一.精心选一选(每题3分,共30分.请把你认为正确结论的代号填入题后的括号
内)
1.16的平方根是 ( )
A . 2
B . ±2
C .4
D . ±4 2.在实数2
3
-
,0,34,π,9,227,0.1010010001……中,无理数有 ( )
A .1个
B .2个
C .3个
D .4个
3.下列图形中,是轴对称图形并且对称轴条数最多的是( )
4.如图,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B 的度数为 ( )
A .30o
B .50o
C .90o
D .100o
5.如果实数y 、x 满足y=111+-+-x x ,
那么3y x +的值是( ) A .0
B .1
C .2
D .-2
6.与三角形三个顶点的距离相等的点是 ( ) A .三条角平分线的交点 B .三边中线的交点 C .三边上高所在直线的交点 D .三边的垂直平分线的交点
7.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE ;②BC=ED ;③∠C=∠D ;④
∠B=∠E .其中能使△ABC ≌△AED 的条件有( )
A .1个
B .2个
C .3个
D .4个
8.以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( )
A .21
1
B .1.4
C .3
D .2 9.如图,在直角坐标系xoy 中,△ABC 关于直线y =1成轴对称,已知点A 坐标是(4,
4),则点B 的坐标是 ( )
A .(4,-4)
B .(4,-2)
C .(-2,4)
D .(-4,2)
l
10.如图,在△ABC 中,AB=AC ,AD=AE ,则图中全等三角形的对数是( )
A .3
B .2
C .1
D .0
二.耐心填一填(每题3分,共18分,直接写出结果) 11.计算︱2-3︱+22的结果是 .
12.若25x 2
=36,则x = ;若23-=y ,则y =.
13.点P 关于x 轴对称的点是(3,–4),则点P 关于y 轴对称的点的坐标是. 14.如图,BAC ABD ∠=∠,请你添加一个条件:,使OC OD =(只添一个即可). 15.如图,在△ABC 中,AD=DE ,AB=BE ,∠A=110︒,则∠DEC=. 16.如图,在△ABD 和△ACE 中,有下列4个论断:①AB=AC ;②AD=AE ;③∠B=∠C ;④BD=CE .请以其中3个论断作为条件,余下一个论断作为结论,写出一个真命题:_______________________________(提示:用序号×××→×的形式写出)
三.计算题(计算要仔细认真,善于思考!17题6分,18题、19题各7分,共20分) 17.(6分)解方程:25(x 2
-1)=24
18.(7分)计算()
3
2
2
8
1442⨯+--)(+32+42
-︱6-3︱
19.(7分)如图,AB=AC ,AD=AE ,求证:∠B=∠C
四.解答题(解答要有理由和逻辑性,本大题有3个小题,每题8分,共24分)
20.(8分)△ABC 中,AD 为角平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,AB=10㎝,AC=8㎝,△ABC 的面积为54㎝2
,求DE 的长。
21.(8分)某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由等腰三角形和正方形组
成(个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案。
22.(8分)如图,在平面直角坐标系xoy 中,(15)
A -,,(10)
B -,,(43)
C -,. (1)求出ABC △的面积.
(2)在图中作出ABC △关于y 轴的对称图形111A B C △. (3)写出点A1,B1,C1的坐标.
五.解答题(学数学要善于观察思考,勇于探索!23、24题各9分,25题10分,共
28分)
23.(9分)如图, AD ∥BC ,BD 平分∠ABC ,∠A=120°,∠C=60°,AB=CD=4cm ,
求四边形ABCD 的周长.
24.(9分)在你身边450
角的三角板ABC 中,AB=AC ,∠BAC=900
,O 为BC 的中点,(1)试问点O 到△ABC 的三个顶点A 、B 、C 的距离有何关系,说明理由。
(2)如果将你身边另一块三角板的直角顶点放在O 点上,两条直角边分别与AC 、AB 相交于N 、M ,请你探索说明△OMN 的形状,并证明你的结论。
25.(10分)如图,△ABC 为等边三角形,D 、E 是BC 、AC 边上的点,且BD=CE ,线段AD 、BE 交于F ,(1)求∠AFE 的度数;(2)若作EG ⊥AD ,G 为垂足,且FG=3,BF=1,求AD 的长;(3)如果D 、E 分别在BC 、CA 的延长线上,且仍有BD=CE ,请探究BE 、AD 所在直线夹的锐角的度数是否是定值,请画图说明理由。
数学试题参考答案
一.精心选一选(本题共10小题,每题3分,共30分.)
二.耐心填一填(本题共6小题,每题3分,共18分,直接写出结果) 11. 3+2 12.±
5
6
;-8. 13.(-3,4) 14. ①BC=AD ;② ∠ABC=∠DAB ;③∠C=∠D ; ④AC=BD ;……(只添一个即可) 15.800
16. ①②④→③或①③④→②
三.计算题(17题6分,18题、19题各7分,共20分) 17.(6分)x=±7
5
18.(7分)解:原式=2—4+4×
2
1
+5-3+6= 2+ 6 19.(7分)证明:∵AB=AC ,AD=AE ,∠A=∠A ∴△ABE ≌△ACD ∴∠B=∠C 四.解答题(本大题有3个小题,每是题8分,共24分)
20.(8分)(先说明DE=DF ……得4分,再由面积求得DE=6㎝……得4分) 21.(8分,答案略,只要方案符合题目要求可给满分。
)
题号 1 2 3 4 5 6 7 8 9 10 答案 B
C
C
D
C
D
C
D
B
B
22.(8分)(1)(2分)S△ABC =
2
15
(2)(3分)(略)
(3)(3分)A1(1,5),B1(2,0),C1(4,3)
22.(8分)(1)△BDE即为所求.(4分)(2)(6分)(略)
五.解答题(23、24题各9分,25题10分,共28分)
23.(9分)∵AD∥BC ∴∠ADB=∠DBC ,∵∠ADC+∠C=1800,∠C=60°,∴∠
ADC=1500,又∵∠ABD=∠DBC ,∠A=120°,∴∠ADB=∠ABD =300,∴∠BDC=∠ADC -
∠ADB=900,∴AD =AB=4cm ,又在Rt△BDC中,∵∠DBC=300∴BC=2CD=8cm,∴
AB+BC+CD+DA=20 cm.答(略)。
24.(9分)(1)点O到△ABC的
三个顶点A、B、C的距离相等,
(说明理由略)……4分
(2)△OMN的形状为等腰直角三
角形。
……1分
证明:△ONA≌△OMB可得ON=OM,
又∵∠NOM直角,故
△OMN的为等腰直角三角形。
………4分
25.(10分)(1)∵△ABC为等边三角形,∴AB=BC,∠ABC=∠C=600。
又∵BD=CF,
∴△ABD≌△BCE,∴∠BAD=∠CBE。
又∵∠AFE=∠ABF+∠BAD=∠ABC
∴∠AFE=600。
…………4分。
(2)∵EG⊥AD,∠AFE=600∴∠FEG=300,∴EF=2FG=6,∵BF=2,∴EB=1+6=7
由(1)可知AD=EB=7。
………3分。
(3)是定值,仍为600,如图。
理由可证△ACD≌△BAE得∠D=∠E,而
∠BFD=∠E+∠EAF=∠D+∠DAC=600。
…………3分。