西师大版中考数学二轮复习拔高训练卷 专题2 方程与不等式B卷
华中师大版中考数学二轮复习拔高训练卷 专题2 方程与不等式H卷
华中师大版中考数学二轮复习拔高训练卷专题2 方程与不等式H卷姓名:________ 班级:________ 成绩:________考试须知:1、请首先按要求在本卷的指定位置填写您的姓名、班级等信息。
2、请仔细阅读各种题目的回答要求,在指定区域内答题,否则不予评分。
一、单选题 (共10题;共20分)1. (2分)下面说法中①-a一定是负数;②0.5πab是二次单项式;③倒数等于它本身的数是±1;④若∣a∣=-a,则a<0;⑤由-2(x-4)=2变形为x - 4 =-1,其中正确的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分) (2015九上·句容竞赛) 设m是整数,关于x的方程mx2-(m-1)x+1=0有有理根,则方程的根为()。
A .B . x=-1C .D . 有无数个根3. (2分)下列方程中,有两个不相等实数根的是().A . x2-4x+4=0B . x2+3x-1=0C . x2+x+1=0D . x2-2x+3=04. (2分)设a、b为x2+x﹣2011=0的两个实根,则a3+a2+3a+2014b=()A . 2014B . ﹣2014C . 2011D . ﹣20115. (2分)若a为方程(x- )2=100的一根,b为方程(y-4)2=17的一根,且a、b都是正数,则a-b 之值是().A . 5B . 6C .D . 10-6. (2分)若方程(a-b)x2+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有()A . a=b=cB . 一根为1C . 一根为-1D . 以上都不对7. (2分)已知关于x的一元二次方程3x2+4x-5=0,下列说法不正确的是().A . 方程有两个相等的实数根B . 方程有两个不相等的实数根C . 没有实数根D . 无法确定8. (2分)生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,全组共互赠182件,如果全组有x名同学,则根据题意列出的方程是()A . x(x+1)=182B . x(x-1)=182C . 2x(x+1)=182D . x(x-1)=182×29. (2分) (2018九上·镇海期末) 如图,△AB C中,AB=AC=5,BC=6,AD⊥BC于点D,点E是线段AD上一点,以点E为圆心,r为半径作⊙E.若⊙E与边AB,AC相切,而与边BC相交,则半径r的取值范围是()A . r>B . <r≤4C . <r≤4D . <r≤10. (2分) (2017七下·淅川期末) 关于x的不等式组的整数解共有5个,则a的取值范围()A . a=﹣3B . ﹣4<a<﹣3C . ﹣4≤a<﹣3D . ﹣4<a≤﹣3二、填空题 (共5题;共5分)11. (1分)(2017·山东模拟) 关于x的分式方程的解为正数,则m的取值范围是________.12. (1分)若4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则的值等于________.13. (1分)方程x2-3x+1=0的解是________。
中考数学《方程与不等式》专题训练50题含参考答案
中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.方程()223x x =-化为一般形式后二次项系数、一次项系数和常数项分别为( )A .1、2、-3B .1、2、-6C .1、-2、6D .1、2、6【答案】C【分析】首先将方程()223x x =-化为一般形式: 2260x x -+=,然后根据此一般形式,即可求得答案.【详解】解:方程()223x x =-化成一般形式是2260x x -+=,∴二次项系数为1,一次项系数为-2,常数项为6.所以C 选项是正确的.【点睛】此题考查了一元二次方程的一般形式.注意一元二次方程的一般形式是:ax 2+bx+c=0(a,b,c 是常数且a≠0),其中a,b,c 分别叫二次项系数,一次项系数,常数项. 2.已知一个二次函数图象经过11(5,)P y -,22(1,)P y -,33P (1,y ),44(5,)P y 四点,若324y y y <<,则1y ,2y ,3y ,4y 的最值情况是( )A .1y 最小,4y 最大B .3y 最小,1y 最大C .3y 最小,4y 最大D .无法确定【答案】B【分析】设出抛物线的解析式,再把四点的坐标代入,解不等式后确定字母的取值范围,即可判断大小关系,从而知道哪个最小,哪个最大.【详解】解:∵一条抛物线过11(5,)P y -,22(1,)P y -,33P (1,y ),44(5,)P y 四点, 设抛物线的解析式为2y ax bx c =++(a≠0), ∵1255y a b c =-+, 2y a b c =-+,3y a b c =++,4255y a b c =++,∵324y y y <<, ∵a +b+c <a-b+c , ∵b <0,∵255a b c -+>255a b c ++, ∵14y y >,∵3y 最小,1y 最大. 故选B.【点睛】此题考查了二次函数的最值问题,涉及到解不等式,解不等式后确定字母的取值范围是解题关键.3.不等式组410,27x x +>⎧⎨<⎩正整数解的个数有( )A .2个B .3个C .4个D .5个4.下列不等式组中,无解的是( )A .1313x x -<⎧⎨+<⎩B .1313x x ->⎧⎨+>⎩C .1313x x -<⎧⎨+>⎩D .1313x x ->⎧⎨+<⎩【答案】D【分析】根据不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到,即可得出答案. 【详解】解:不等式组整理为: A 、42x x ⎧⎨⎩<<,解集为:2x <; B 、42x x >⎧⎨>⎩,解集为:>4x ; C 、42x x ⎧⎨>⎩<,解集为:24x <<; D 、42x x >⎧⎨⎩<,无解; 故选:D .【点睛】本题主要考查了一元一次不等式解集的求法,熟记求不等式组解集的方法是解题的关键.5.甲队修路120m 比乙队修路210m 所用天数少1天,已知甲队比乙队每天少修40%,设甲队每天修路m x .依题意,下面所列方程正确的是( ) A .12021010.4x x x+=- B .12021010.4x x x-=- C .120210(10.4)1x x -=+ D .120210(10.4)1x x-+=6.已知n 是方程2210x x --=的一个根,则2367n n --=( ) A .10- B .7-C .6-D .4-【答案】D【分析】把n 代入方程得到2210n n --=,再根据所求的代数式的特点即可求解. 【详解】把n 代入方程得到2210n n --=,故221n n -= ∵2367n n --=3(22n n -)-7=3-7=-4, 故选D.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程的解的定义.7.不等式2x﹣1<3的解集在数轴上表示为()A.B.C.D.【答案】D【分析】先解出一元一次不等式的解集,再根据不等式解集的表示方法做出判断即可.【详解】解:由2x﹣1<3得:x<2,则不等式2x﹣1<3的解集在数轴上表示为,故选:D.【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握在数轴上表示不等式的解集的方法是解答的关键.8.若点P(2m-4,2-3m)在第三象限,则实数m的取值范围是()A.223m-<<B.23m<C.223m<<D.223m-<<9.已知关x、y的方程组5331x y ax y a+=+⎧⎨-=-⎩给出下列结论:∵20x y =⎧⎨=⎩是方程组的解;∵无论a 取何值,x 、y 的值都不可能互为相反数; ∵当1a =时,方程组的解也是方程1x y a +=+的一组解; ∵x 、y 都为自然数的解有3对. 其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个10.一元二次方程2230x x ++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定【答案】C【分析】根据方程的系数结合根的判别式即可得出80∆=-<,由此即可得出结论. 【详解】解:∵在方程2230x x ++=中,2241380∆=-⨯⨯=-<, ∵该方程无解. 故选:C .【点睛】本题考查了一元二次方程根的判别式,牢记Δ0<时方程无解是解题的关键. 11.近日,教育部正式印发《义务教育课程方案》,将劳动从原来的综合实践活动课程中完全独立出来,并在今年9月份开学开始正式施行.某学校组织八年级同学到劳动教育基地参加实践活动,某小组的任务是平整土地2300m .开始的半小时,由于操作不熟练,只平整完230m .学校要求完成全部任务的时间不超过3小时,若他们在剩余时间内每小时平整土地2m x ,则x 满足的不等关系为( ) A .()3030.5300x +-≤ B .300300.53x --≤ C .()3030.5300x +-≥ D .0.5300303x +-≥【答案】C【分析】设他们在剩余时间内每小时平整土地x m 2,根据学校要求完成全部任务的时间不超过3小时得出不等式解答即可.【详解】解:设他们在剩余时间内每小时平整土地x m 2, 根据题意可得:()3030.5300x +-≥, 故选:C .【点睛】本题考查了由实际问题抽象出一元一次不等式,找准等量关系,正确列出一元一次不等式是解题的关键.12.如图,AB 与CD 相交于点E ,点F 在线段BC 上,且AC //EF //DB .若BE =5,BF =3,AE =BC ,则EBAE的值为( )A .23B .12C .35D .25//EF AC ∴BF BE CF AE =解得92x =92CF ∴=13.若0a b <<,则下列各式中不一定...成立的是( ) A .33a b +<+ B .88a b ->- C .11a b> D .22ac bc <14.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( ) A .k <5 B .k <5,且k ≠1 C .k ≤5,且k ≠1 D .k >5【答案】B【详解】∵关于x 的一元二次方程方程()21410k x x -++=有两个不相等的实数根,∵10Δ0k-≠⎧⎨>⎩,即()2104410kk-≠⎧⎨-->⎩,解得:k<5且k≠1.故选:B.15.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<4【答案】D【详解】将方程组中两方程相加,表示出x+y,代入x+y<2中,即可求出a的范围.解:,(1)+(2)得:4x+4y=a+4,即x+y=,∵x+y=<2,∵a<4.故选D16.已知二次函数,且,,则一定有()A.B.C.D.≤0【答案】A【详解】试题分析:∵二次函数中,∵当x=-1时,y=a-b+c>0且∵a<0∵抛物线开口向下且穿过x轴∵抛物线与x轴肯定有两个交点即∵=故选A考点:1.抛物线的值;2.根的判别式17.下列不等式中,是一元一次不等式的是( ) A .20x< B .x 2-5<0 C .3x >2y D .2x -1≥0 【答案】D【详解】A 选项中不等式的左边不是整式,故A 中的不等式不是一元一次不等式;B 选项中未知数的次数是2,故B 中的不等式也不是一元一次不等式;C 选项中含有两个未知数,故C 中的不等式也不是一元一次不等式;只有D 中的不等式符合条件.18.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( ) A .2m >- B .m>2C .3m >D .2m <-【答案】A【分析】首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y >0即可得到关于m 的不等式,求得m 的范围.【详解】解:2133x y m x y -+⎧⎨+⎩=①=②∵+∵得2x +2y =2m +4, 则x +y =m +2, 根据题意得m +2>0, 解得m >-2. 故选:A .【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x +y 的值,再得到关于m 的不等式. 19.若关于x 的方程322133x mx x x---=---无解,则m 的值为( ) A .1 B .3C .1或53D .53【答案】C【分析】分式方程去分母转化为整式方程,由分式方程无解的意义,计算即可求出m 的值.20.甲在集市上先买了3只羊,平均每只a 元,稍后又买了2只,平均每只羊b 元,后来他以每只2a b+ 元的价格把羊全卖给了乙,结果甲发现赚了钱,赚钱的原因是( ) A .a b = B .a b >C .a b <D .与a b 、大小无关二、填空题21.电影《长津湖》首映当日票房已经达到2.06亿元,2天后当日票房达到4.38亿元,设平均每天票房的增长率为x ,则可列方程为________________. 【答案】2.06(1+x )2=4.38【分析】设平均每天票房的增长率为x ,根据当日票房已经达到2.06亿元,2天后当日票房达到4.38亿元,即可得出关于x 的一元二次方程,此题得解.【详解】解:设平均每天票房的增长率为x ,根据题意得:2.06(1+x )2=4.38.故答案为:2.06(1+x )2=4.38.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.22.若关于x 的方程()1320k k xx ----=是一元二次方程,则k =______.23.关于x 的方程(a ﹣1)21ax ++x ﹣3=0是一元二次方程,则a =_____. 【答案】-1【分析】直接利用一元二次方程的定义得出a 2+1=2且a ﹣1≠0,进而得出答案.【详解】解:∵关于x 的方程(a ﹣1)x 21a++x ﹣3=0是一元二次方程,∵a 2+1=2且a ﹣1≠0,解得:a =﹣1.故答案为:﹣1.【点睛】此题考查的是求一元二次方程中的参数问题,掌握一元二次方程的定义是解决此题的关键.24.已知1x =是方程220x mx +=的根,则m =______.25.某校将若干间宿舍分配给八年级(1)班女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,且有一间住不满.那么该班有____________名女生.26.不等式2x+1>3x-2的非负整数解是______.【答案】0,1,2【分析】先求出不等式2x+1>3x-2的解集,再求其非负整数解【详解】移项得,2+1>3x-2x,合并同类项得,3>x,故其非负整数解为:0,1,2【点睛】解答此题不仅要明确不等式的解法,还要知道非负整数的定义.27.关于x 的方程ax 2-3x -6=0是一元二次方程,则a 满足的条件是________. 【答案】a≠0【分析】直接利用一元二次方程的定义分析得出答案. 【详解】解:∵关于x 的方程ax 2-3x -6=0是一元二次方程,∵a 满足的条件是a≠0.故答案为:a≠0.【点睛】此题主要考查了一元二次方程的定义,正确把握相关定义是解题关键. 28.已知关于x 的一元二次方程21(2)04mx m x m --+=有两个不相等的实数根,则m 的取值范围是_______. 【分析】由题意可得21244404m m m m ,即可求解.【详解】解:关于x 的一元二次方程21(2)04mx m x m --+=∴21244404m m m m ,104m1m <且0m ≠故答案是:1m <且0m ≠.【点睛】本题考查了一元二次方程20(ax bx c ++=29.已知关于x 的方程250mx mx ++=有两个相等的实数根,则m 的值是____________.【答案】20【分析】根据一元二次方程根与判别式的关系求解即可.【详解】解:∵关于x 的方程250mx mx ++=有两个相等的实数根,∵2450m m ∆=-⨯=且0m ≠,解得:20m =.故答案为:20.【点睛】本题考查一元二次方程根的判别式、解一元二次方程,解答关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的情况与根的判别式24b ac ∆=-的关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.30.一辆匀速行驶的汽车在 10:30 距离A 地50千米,要在12:00之前驶过A 地,车速v (单位:km/h)应满足的条件 是___________.(请列一元一次不等式)31.关于x 的一元二次方程(m ﹣1)x 2﹣x ﹣2=0有两个不等的实数根,则m 的取值范围是_____________ 20{18(m m -≠=+-解得:m>78故答案为m>【点睛】本题考查了根的判别式,牢记题的关键.32.若二元一次方程组232x y m x y m+=+⎧⎨+=⎩的解x 、y 的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m 的值为______.【答案】2【分析】解二元一次方程组,分三种情况考虑,根据周长为7得关于m 的方程,求得m ,根据构成三角形的条件判断即可.【详解】232x y m x y m +=+⎧⎨+=⎩①②33.2x2﹣x﹣1=0的二次项系数是_____,一次项系数是_______,常数项是_____.解:根据一元二次方程的定义得:2x2﹣x﹣1=0的二次项系数是2,一次项系数是﹣,常数项是﹣1.34.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____.35.某厂工业废气年排放量为450万立方米,为了改善上海市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,每期减少的百分率是________________. 【答案】20%;【分析】等量关系为:450×(1-减少的百分率)2=288,把相关数值代入计算即可.【详解】设每期减少的百分率为x ,根据题意得:450×(1-x )2=288,解得:x 1=1.8(舍去),x 2=0.2解得x=20%.所以,每期减少的百分率是20%.故答案为20%.【点睛】考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )236.若关于x 、y 的方程组ax by c mx ny d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则方程组()()133133a x by c m x ny d ⎧--=⎪⎨--=⎪⎩的解是__________.【答案】42x y =⎧⎨=-⎩ 【分析】将方程组的解代入方程组得到22a b c m n d +=⎧⎨+=⎩,等式两边同时乘以3得到363363a b c m n d +=⎧⎨+=⎩,与方程组()()133133a x by c m x ny d ⎧--=⎪⎨--=⎪⎩对比系数得到()1336x y ⎧-=⎨-=⎩,从而得到方程组的解.【详解】∵方程组ax by cmx ny d+=⎧⎨+=⎩的解为12xy=⎧⎨=⎩∵22a b c m n d+=⎧⎨+=⎩∵363 363 a b c m n d+=⎧⎨+=⎩∵()()133133 a x by c m x ny d ⎧--=⎪⎨--=⎪⎩得()13 36 xy⎧-=⎨-=⎩∵42 xy=⎧⎨=-⎩故答案为:42 xy=⎧⎨=-⎩【点睛】本题考查方程组的性质,解题的关键是熟练掌握方程组的相关知识.37.在下边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a=_____,b=________.【答案】62【详解】试题分析:根据正方体的展开图的特点,1与a相对,5与b相对,3与4相对,因为3+4=7,所以1+a=7,5+b=7,解得:a = 6,b = 2.故答案为6;2.考点:正方体的展开图.38.关于x的不等式3x-2m<x-m的正整数解为1、2、3,则m取值范围是______.39.若 21x y =⎧⎨=⎩是方程()2121x m y nx y ⎧+-=⎨+=⎩的解,则(m+n )2016的值是________. 【答案】1【详解】由题意得:()412211m n ⎧+-=⎨+=⎩,解得:10m n =-⎧⎨=⎩ , 所以(m+n )2016=1,故答案为1.三、解答题40.解方程()2331842y y y y ++--=-. 【答案】11y =,21y =-.【分析】先把方程整理成一般形式,再利用直接开平方法求解即可.【详解】解:去分母,得:()()()2382341y y y y +-=+--,即26982644y y y y y ++-=+-+,整理得:y 2=1,∵y =±1,即11y =,21y =-.【点睛】本题考查了一元二次方程的解法,属于基础题型,熟练掌握解一元二次方程的方法是关键.41.解下列分式方程:(1)542332x x x +=-- (2)32x x --+1=32x- 【答案】(1)1x =;(2)1x =.【分析】(1)先去分母,把分式方程化为整式方程,再解整式方程并检验; (2)先去分母,把分式方程化为整式方程,再解整式方程并检验.【详解】解:(1)去分母,得54(23)x x -=-,去括号,得5812x x -=-,移项,得77x -=-,解得 1.x =检验:x =1时,230.x -≠∵原分式方程的解为 1.x =(2)方程两边同乘()2x - ,得3(2)3x x -+-=-,解得x =1检验:x =1时,20.x -≠∵x =1是原分式方程的解. 【点睛】本题考查的是分式方程的解法,解分式方程的一般步骤:去分母,去括号,移项,合并同类项,把系数化为1,并检验.422倍,求改造后的正方形绿地的边长是多少米?43.解下列分式方程(1)11322x x x-+=--; (2)225124x x x ++=--- 【答案】(1)原方程无解2x=0是增根,原方程无解.)4,约去分母,得4),44.甲、乙两地间铁路长2400千米,经技术改造后,列车实现了提速.提速后比提速前速度增加20千米/时,列车从甲地到乙地行驶时间减少4小时.已知列车在现有条件下安全行驶的速度不超过140千米/时.请你用学过的数学知识说明这条铁路在现有条件下是否还可以再次提速?【答案】可以再次提速【详解】试题分析:首先设提速后列车的速度为x千米/时,然后根据题意列出分式方程,从而求出方程的解,将解与140进行比较大小,从而得出答案.试题解析:设提速后列车的速度为x千米/时,根据题意可得:解得:,=-100(舍去)经检验:x=120是原方程的解且符合题意∵120<140∵仍可以再次提速考点:分式方程的应用45.解不等式:(1)2(1)3(1)2x x -<+-,并把解集在数轴上表示出来.(2)解不等式:213x -≥324x +﹣1,并写出其非负整数解. 【答案】(1)3x >-,见解析(2)x ≤2;非负整数解有0,1,2【分析】(1)按去括号,移项、合并同类项,系数化1的步骤求解,再把解集用数轴表示出来即可;(2)按去分母,去括号,移项、合并同类项,系数化1的步骤求解,再写出解集中非负整数即可.(1)解:去括号,得:22332x x -<+-移项、合并同类项,得:3x -<系数化1得:3x >-这个不等式的解集在数轴上表示如图:(2)解:去分母得,4(2x ﹣1)≥3(3x +2)﹣12,去括号得,8x ﹣4≥9x +6﹣12,移项得,8x ﹣9x ≥6﹣12+4,合并同类项得,﹣x ≥﹣2,系数化为1得,x ≤2.非负整数解有0,1,2.【点睛】本题考查解不等式,用数轴表示不等式的解集,熟练掌握解不等式的一般步骤是解是题的关键.46.某工厂有甲、乙两台机器加工同一种零件,已知一小时甲加工的零件数与一小时乙加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求甲、乙两台机器每小时分别加工零件多少个?47.解方程1132x x +-=﹣1. 【答案】x =11.【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】方程两边同时乘以6得:2(x +1)=3(x ﹣1)﹣6,去括号得:2x +2=3x ﹣3﹣6,移项得:2x ﹣3x =﹣3﹣6﹣2,合并同类项得:﹣x =﹣11,系数化为1得:x =11.【点睛】此题主要考查学生对解一元一次方程的理解和掌握,此题难度不大,属于基础题.48.解方程:(1)()3242--=-x x (2)1311510---=x x 【答案】(1)2x =;(2)11x =-.【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)()3242--=-x x ,去括号得:3642x x -+=-,移项合并得:2x -=-,解得:2x =;49.解方程:(1)312x x=+;(2)11322xx x-=---.【答案】(1)x=﹣3;(2)无解.【详解】试题分析:(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:解:(1)去分母得:3x+6=x,解得:x=﹣3,经检验x=﹣3是分式方程的解;(2)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.考点:解分式方程.。
中考数学专题复习《方程与不等式》测试卷-附带答案
中考数学专题复习《方程与不等式》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.下列等式变形错误的是( )A .若 33x y -=- 则 0x y -=B .若112x x -= 则 12x x -= C .若 13x -= 则 4x =D .若 342x x += 则 324x x -=-2.用配方法解一元二次方程2870x x +-= 则方程可化为( )A .2(4)23x +=B .2(8)23x +=C .2(4)9x +=D .2(8)9x +=3.在解方程3157246x x -+-= 时 第一步去分母 去分母后结果正确的是( ) A .12(31)12212(57)x x --⨯=+ B .3(31)1222(57)x x --⨯=+ C .3(31)322(57)x x --⨯=+D .3(31)22(57)x x --⨯=+4.下列方程为一元一次方程的是( )A .+2=3 x yB .5y =C .22x x =D .12y y+= 5.《九章算术》中记载:“今有善田一亩 价三百 恶田七亩 价五百.今并买一顷 价钱一万.问善恶田各几何?”其大意是:今有好田1亩 价值300钱 坏田7亩 价值500钱.今共买好 坏田1顷(1顷=100亩) 价钱10000钱.问好 坏田各买了多少亩?设好田买了x 亩 坏田买了y 亩 则下面所列方程组正确的是( ) A .{x +y =100300x +7500y =10000 B .{x +y =100300x +5007y =10000 C .{x +y =1007500x +300y =10000D .{x +y =1005007x +300y =100006.已知方程组35ax by ax by +=-⎧⎨-=⎩的解是12x y =-⎧⎨=⎩则2a b -的值是( ) A .3B .-3C .5D .-57.如图 由矩形和三角形组合而成的广告牌紧贴在墙面上 重叠部分(阴影)的面积是4m 2 广告牌所占的面积是 30m 2(厚度忽略不计) 除重叠部分外 矩形剩余部分的面积比三角形剩余部分的面积多2m 2 设矩形面积是xm 2 三角形面积是ym 2 则根据题意 可列出二元一次方程组为( )A .{x +y −4=30(x −4)−(y −4)=2B .{x +y =26(x −4)−(y −4)=2C .{x +y −4=30(y −4)−(x −4)=2D .{x −y +4=30x −y =28.为了奖励学习认真的同学 班主任老师给班长拿了40元钱 让其购买奖品 现有单价为4元的A 种学习用品和单价为6元的B 种学习用品可供选择 若40元钱恰好花完 则班长的购买方案有( ) A .1种B .2种C .3种D .4种9.若x y < 则下列不等式中不成立的是( )A .22x y -<-B .22x y -<-C .22x y ->- D .22x y ->-10.已知公式12111R R R =+ ( 12R R ≠ ) 则表示 1R 的公式是( ) A .212R RR RR -=B .212RR R R R =-C .1212()R R R R R +=D .212RR R R R=-二 填空题11.已知2x =是方程230x x m -+=的解 则m 的值为 . 12. 已知a =120222023+ b =120232023+ c =120242023+ 则代数式 2(a 2+b 2+c 2-ab-bc-ac )的值是 .13.若一元二次方程 22(1)310k x x k -++-= 有一个根为 0x = 则k= .14.今年春节某超市组装了甲 乙两种礼品盆 他们都是由 ,,a b c 三种零食组成 其中甲礼品盒装有3千克 a 零食 1千克 b 零食 1千克 c 零食 乙礼品盒装有2千克 a 零食 2千克 b 零食 2千克 c 零食 甲 乙两种礼品盒的成本均为盆中 ,,a b c 三种零食的成本之和.已知每千克 a 的成本为10元 乙种礼品盒的售价为60元 每盒利润率为25%甲种每盒的利润率为50%当甲 乙两种礼盒的销售利润率为13时 该商场销售甲 乙两种礼盒的数量之比是 . 三 解答题15.计算:(1)解方程组:{y =2x −5 ①7x −3y =20 ② (2)解不等式:32523x x --> (3)解不等式组:523923x x ->⎧⎨-<⎩(4)解不等式组:{5x −12≤2(4x −3)x+42<3−6x−1616.解方程:241x - + 21x + = 1xx - 17.小红和小凤两人在解关于x y 的方程组 {ax +3y =5 ,bx +2y =8 .时 小红只因看错了系数a 得到方程组的解为 {x =−1 ,y =2 . 小凤只因看错了系数b 得到方程组的解为 {x =1 ,y =4 .求a b 的值和原方程组的解.18.阅读理解下列材料然后回答问题:解方程:x²-3|x|+2=0解:(1)当x≥0时 原方程化为x²-3x+2=0 解得: 1x =2 2x =1 ( 2 )当x <0时 原方程化为x²+3x+2=0 解得: 1x =1 2x =-2. ∴原方程的根是 1x =2 2x =1 3x =1 4x =-2. 请观察上述方程的求解过程 试解方程x²-2|x-1|-1=0.19.如图 在矩形ABCD 中剪去正方形ABFE 后 剩下的矩形EFCD 与原矩形ABCD 相似.求矩形ABCD 的宽和长的比.20.为了丰富市民的文化生活 我市某景点开放夜游项目.为吸引游客组团来此夜游 特推出了如下门票收费标准:标准一:如果人数不超过20人 门票价格为60元/人标准二:如果人数超过20人 每超过1人 门票价格降低2元 但门票价格不低于50元/人.(1)当夜游人数为15人时 人均门票价格为 元 当夜游人数为25人时 人均门票价格为 元(2)若某单位支付门票费用共1232元 则该单位这次共有多少名员工去此景点夜游?21.已知 422(2)50a a b y y+--+= 是关于y 的一元一次方程.(1)求 ,a b 的值. (2)若 2a x =-是 2211632x x x m--+-+= 的解 求 b m a m +-- 的值.22.新冠疫情以来 口罩成为了生活和工作的必需品.某口罩生产企业主要生产过滤式和供气式两种口罩.有过滤式口罩机和供气式口罩机各 10 台 统计发现 去年每台过滤式口罩机的产量比每台供气式口罩机多 60 万个 过滤式口罩的出厂价为 0.2 元/个 供气式口罩的出厂价为 4 元/个 两种口罩全部售出 总销售额为 10200 万元.(1)去年每台供气式口罩机的产量为多少万个?(2)今年 为了加大口罩供应量 该企业优化了生产方法 在保持口罩机数量不变的情况下 预计每台过滤式口罩机和供气式口罩机的产量将在去年基础上分别增加 2%a 和 %a .由于过滤式口罩更受市场欢迎 出厂价将在去年的基础上上涨 %a 而供气式口罩的出厂价保持不变 两种口罩全部售出后总销售额将增加20%17a 求 a 的值. 23.定义一种新运算“a ⊗ b”:当a≥b 时 a ⊗ b=a+2b 当a <b 时 a ⊗ b=a-2b.例如:3 ⊗ (-4)=3(8)(5)+-=- ()61262430-⊗=--=- .(1)填空:(-3) ⊗ (-2)=(2)若 (34)(5)(34)2(5)x x x x -⊗+=-++ 则x 的取值范围为 (3)已知 (57)(2)1x x -⊗-> 求x 的取值范围(4)利用以上新运算化简: ()()2235102m m m m ++⊗- .答案解析部分1.【答案】B【解析】【解答】A.若 33x y -=- 则 0x y -= 正确B.若112x x -= 两边同乘以2 则 22x x -= 故错误 C.若 13x -= 则 4x = 正确 D.若 342x x += 则 324x x -=- 正确 故答案为:B.【分析】等式的基本性质:(1)等式两边同加(或减)同一个数(或式子) 结果仍相等 (2)在不等式两边同乘一个数 或除以一个不为0的数 结果仍相等。
2023年中考数学专题练——2方程和不等式
2023年中考数学专题练——2方程和不等式一.选择题(共5小题)1.(2022•泉山区校级三模)我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.若设牧童有x 人,根据题意可列方程为( ) A .6x +14=8xB .6(x +14)=8xC .8x +14=6xD .8(x ﹣14)=6x2.(2021•徐州模拟)已知x 1,x 2是关于x 的方程x 2﹣kx ﹣1=0的两个实数根,下列结论一定正确的是( ) A .x 1≠x 2B .x 1+x 2>0C .x 1•x 2>0D .x 1<0,x 2<03.(2022•徐州二模)若一元二次方程ax 2+2x +1=0有两个不相等的实数根,则实数a 的取值范围是( ) A .a <1B .a ≤1C .a ≤1且a ≠0D .a <1且a ≠04.(2021•徐州二模)学校组织一次足球赛,要求每两队之间都要赛一场.若共赛了28场,则有几支球队参赛?设有x 支球队参赛,则下列方程中正确的是( ) A .x (x +1)=28 B .x (x ﹣1)=28 C .12x (x +1)=28D .12x (x ﹣1)=285.(2020•徐州模拟)一元二次方程3x 2﹣4x +1=0的根的情况为( ) A .没有实数根 B .只有一个实数根 C .两个相等的实数根 D .两个不相等的实数根二.填空题(共11小题)6.(2022•徐州二模)如果关于x 的方程2x−3=1−k 3−x有增根,那么k = .7.(2022•徐州一模)已知关于x 的一元二次方程x 2﹣kx ﹣6=0的一个根是2,则它的另一个根为 .8.(2022•徐州一模)《九章算术》中记载;“今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:现在一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元,问共有多少人?这个物品价格是多少元?设共有x 个人,这个物品价格是y 元.则可列方程组为 .9.(2022•邳州市一模)已知x 、y 满足方程组{x +3y =−1x −y =3,则x +y 的值为 .10.(2022•睢宁县模拟)方程组{3x +4y =19x −y =4的解是 .11.(2022•邳州市一模)若关于x 的一元二次方程x 2+3x ﹣k =0有两个相等的实数根,则k 的值是 .12.(2022•睢宁县模拟)如果关于x 的方程x 2+kx +9=0有两个相等的实数根,那么k 的值为 .13.(2022•鼓楼区校级一模)关于x 的一元二次方程x 2+x ﹣a =0的一个根是2,则另一个根是 .14.(2022•鼓楼区校级三模)设x 1,x 2是关于x 的方程x 2﹣3x +k =0的两个根,且x 1=2x 2,则k = .15.(2021•徐州模拟)若关于x 的一元二次方程x 2+8x +m =0有两个不相等的实数根,则m 的取值范围是 . 16.(2021•邳州市模拟)方程2x+4=1x−2的解为 .三.解答题(共14小题)17.(2022•鼓楼区校级二模)(1)解方程:x 2﹣2x ﹣3=0; (2)解不等式组:{2x +3≤1x −2>4x +4.18.(2022•鼓楼区校级三模)(1)解方程:2x+5=1x−3;(2)解不等式组:{−2x +3>5①2x−13≥12x −23②.19.(2022•丰县二模)(1)解方程:x 2﹣4x ﹣2=0; (2)解不等式组:{3x −1≥x12(x +1)<2.20.(2022•丰县二模)金山银山不如绿水青山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树900棵,由于青年志愿者支援,实际每天种树的棵数是原计划的1.5倍,结果提前4天完成任务.原计划每天种树多少棵?21.(2022•贾汪区二模)我国今年成功举办了北京冬奥会和冬残奥会,吉祥物“冰墩墩”和“雪容融”深受广大民众的喜爱,小王想购买两种吉祥物毛绒玩具,已知购买1件“冰墩墩”和1件“雪容融”共需230元,购买2件“冰墩墩”和3件“雪容融”共需540元,求吉祥物玩具“冰墩墩”和“雪容融”单价分别是多少?22.(2022•徐州二模)(1)解方程:x 2﹣2x ﹣2=0; (2)解不等式组:{2+x >−12x−13≤1.23.(2022•贾汪区二模)(1)解方程x 2﹣2x ﹣6=0; (2)解不等式组{2x −1≤x2(x +1)>x −2.24.(2022•鼓楼区校级三模)2020年初,受疫情影响,医用防护服生产车间有7人不能到厂生产,为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变.原来生产车间每天生产防护服800套,现在每天生产防护服650套,求原来生产车间的工人有多少人? 25.(2022•睢宁县模拟)(1)解方程:x 2﹣4x +2=0;(2)解不等式组:{4x+13<x①x >2x②.26.(2022•邳州市一模)(1)解方程:x−3x−2+1=32−x; (2)解不等式组:{3x −5≥x +13x−42<x.27.(2022•邳州市一模)直播带货逐渐走进了人们的生活,某电商在抖音上销售一批小商品,平均每天可卖出20件,每件盈利30元通过市场调查发现,在一定范围内,小商品单价每降低1元,平均每天销售量增加2件,商家预期日利润为750元,决定降价促销,小商品的单价应降低多少元?28.(2022•徐州一模)(1)解方程:x 2﹣6x ﹣7=0; (2)解不等式组:{2x −2<x +1x +7>3x.29.(2022•睢宁县模拟)中国古代数学著作《孙子算经》中有这样一个问题,原文:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,所乘车都坐满,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?30.(2022•鼓楼区校级一模)(1)解方程:x (x ﹣7)=8(7﹣x ); (2)解不等式组:{4x −5>x +13x−42<x .2023年江苏省徐州市中考数学专题练——2方程和不等式参考答案与试题解析一.选择题(共5小题)1.(2022•泉山区校级三模)我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.若设牧童有x人,根据题意可列方程为()A.6x+14=8x B.6(x+14)=8x C.8x+14=6x D.8(x﹣14)=6x 【解答】解:设有牧童x人,若设牧童有x人,根据题意可列方程为:6x+14=8x.故选:A.2.(2021•徐州模拟)已知x1,x2是关于x的方程x2﹣kx﹣1=0的两个实数根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0C.x1•x2>0D.x1<0,x2<0【解答】解:∵x1,x2是关于x的方程x2﹣kx﹣1=0的两个实数根,∴x1+x2=k,x1•x2=﹣1,即x1和x2互为负倒数,∴x1≠x2,即选项A符合题意,选项B(当k为负数时,x1+x2<0)、选项C(x1•x2=﹣1<0)、选项D(x1和x2不一定都是负数)都不符合题意;故选:A.3.(2022•徐州二模)若一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是()A.a<1B.a≤1C.a≤1且a≠0D.a<1且a≠0【解答】解:∵一元二次方程ax2+2x+1=0有两个不相等的实数根,∴a≠0,Δ=b2﹣4ac=22﹣4×a×1=4﹣4a>0,解得:a<1且a≠0,故选:D.4.(2021•徐州二模)学校组织一次足球赛,要求每两队之间都要赛一场.若共赛了28场,则有几支球队参赛?设有x 支球队参赛,则下列方程中正确的是( ) A .x (x +1)=28 B .x (x ﹣1)=28 C .12x (x +1)=28D .12x (x ﹣1)=28【解答】解:每支球队都需要与其他球队赛(x ﹣1)场,但2队之间只有1场比赛, 所以可列方程为:12x (x ﹣1)=28,故选:D .5.(2020•徐州模拟)一元二次方程3x 2﹣4x +1=0的根的情况为( ) A .没有实数根 B .只有一个实数根 C .两个相等的实数根D .两个不相等的实数根【解答】解:∵Δ=(﹣4)2﹣4×3×1=4>0 ∴方程有两个不相等的实数根. 故选:D .二.填空题(共11小题)6.(2022•徐州二模)如果关于x 的方程2x−3=1−k 3−x有增根,那么k = 2 .【解答】解:方程两边同时乘以x ﹣3得: 2=x ﹣3+k , x =5﹣k ,∵分式方程的增根是x =3, ∴5﹣k =3, 即k =2. 故答案为:2.7.(2022•徐州一模)已知关于x 的一元二次方程x 2﹣kx ﹣6=0的一个根是2,则它的另一个根为 ﹣3 .【解答】解:设另一个根为m ,由根与系数之间的关系得, m ×2=﹣6, ∴m =﹣3, 故答案为:﹣3.8.(2022•徐州一模)《九章算术》中记载;“今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:现在一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元,问共有多少人?这个物品价格是多少元?设共有x 个人,这个物品价格是y 元.则可列方程组为 {8x =y +37x =y −4 .【解答】解:设共有x 个人,这个物品价格是y 元, 则{8x =y +37x =y −4. 故答案为:{8x =y +37x =y −4.9.(2022•邳州市一模)已知x 、y 满足方程组{x +3y =−1x −y =3,则x +y 的值为 1 .【解答】解:{x +3y =−1①x −y =3②①+②得:2x +2y =2, 2(x +y )=2, x +y =1. 故答案为:1.10.(2022•睢宁县模拟)方程组{3x +4y =19x −y =4的解是 {x =5y =1 .【解答】解:{3x +4y =19①x −y =4②,①+②×4得:7x =35, 解得:x =5,把x =5代入②得:y =1, 则方程组的解为{x =5y =1,故答案为:{x =5y =111.(2022•邳州市一模)若关于x 的一元二次方程x 2+3x ﹣k =0有两个相等的实数根,则k 的值是 −94.【解答】解:∵关于x 的一元二次方程x 2+3x ﹣k =0有两个相等的实数根, ∴Δ=32+4k =9+4k =0, 解得:k =−94. 故答案为:−94.12.(2022•睢宁县模拟)如果关于x 的方程x 2+kx +9=0有两个相等的实数根,那么k 的值为 ±6 .【解答】解:∵方程有两相等的实数根,∴Δ=b2﹣4ac=k2﹣36=0,解得k=±6.故答案为:±6.13.(2022•鼓楼区校级一模)关于x的一元二次方程x2+x﹣a=0的一个根是2,则另一个根是﹣3.【解答】解:设另一个根为m,由根与系数之间的关系得,m+2=﹣1,∴m=﹣3,故答案为﹣3,14.(2022•鼓楼区校级三模)设x1,x2是关于x的方程x2﹣3x+k=0的两个根,且x1=2x2,则k=2.【解答】解:根据题意,知x1+x2=3x2=3,则x2=1,将其代入关于x的方程x2﹣3x+k=0,得12﹣3×1+k=0.解得k=2.故答案是:2.15.(2021•徐州模拟)若关于x的一元二次方程x2+8x+m=0有两个不相等的实数根,则m 的取值范围是m<16.【解答】解:根据题意得Δ=82﹣4m>0,解得m<16.故答案为m<16.16.(2021•邳州市模拟)方程2x+4=1x−2的解为x=8.【解答】解:方程两边都乘以(x+4)(x﹣2)得:2(x﹣2)=x+4,解得:x=8,检验:当x=8时,(x+4)(x﹣2)≠0,∴x=8是原方程的根.故答案为:x=8.三.解答题(共14小题)17.(2022•鼓楼区校级二模)(1)解方程:x2﹣2x﹣3=0;(2)解不等式组:{2x +3≤1x −2>4x +4.【解答】解:(1)x 2﹣2x ﹣3=0, (x +1)(x ﹣3)=0, x +1=0或x ﹣3=0, x 1=﹣1,x 2=3; (2){2x +3≤1x −2>4x +4,解不等式2x +3≤1得:x ≤﹣1, 解不等式x ﹣2>4x +4得:x <﹣2. ∴不等式组的解集为x <﹣2.18.(2022•鼓楼区校级三模)(1)解方程:2x+5=1x−3;(2)解不等式组:{−2x +3>5①2x−13≥12x −23②.【解答】解:(1)去分母得:2(x ﹣3)=x +5, 解得:x =11,检验:把x =11代入得:(x +5)(x ﹣3)≠0, ∴分式方程的解为x =11; (2)由①得:x <﹣1, 由②得:x ≥﹣2,∴不等式组的解集为﹣2≤x <﹣1.19.(2022•丰县二模)(1)解方程:x 2﹣4x ﹣2=0; (2)解不等式组:{3x −1≥x12(x +1)<2.【解答】解:(1)x 2﹣4x ﹣2=0, 配方,得x 2﹣4x +4=6. 即(x ﹣2)2=6.解得x 1=2+√6,x 2=2−√6.(2)由3x ﹣1>x ,得x ≥12.由12(x +1)<2,得x <3.∴不等式组的解集是:12≤x <3.20.(2022•丰县二模)金山银山不如绿水青山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树900棵,由于青年志愿者支援,实际每天种树的棵数是原计划的1.5倍,结果提前4天完成任务.原计划每天种树多少棵? 【解答】解:设原计划每天种树x 棵.则实际每天种树1.5x 棵, 由题意,得:900x=9001.5x+4,解得:x =75,经检验,x =75是原方程的解,且符合题意. 答:原计划每天种树75棵.21.(2022•贾汪区二模)我国今年成功举办了北京冬奥会和冬残奥会,吉祥物“冰墩墩”和“雪容融”深受广大民众的喜爱,小王想购买两种吉祥物毛绒玩具,已知购买1件“冰墩墩”和1件“雪容融”共需230元,购买2件“冰墩墩”和3件“雪容融”共需540元,求吉祥物玩具“冰墩墩”和“雪容融”单价分别是多少?【解答】解:设吉祥物玩具“冰墩墩”的单价是x 元,“雪容融”的单价是y 元, 依题意得:{x +y =2302x +3y =540,解得:{x =150y =80.答:吉祥物玩具“冰墩墩”的单价是150元,“雪容融”的单价是80元. 22.(2022•徐州二模)(1)解方程:x 2﹣2x ﹣2=0; (2)解不等式组:{2+x >−12x−13≤1.【解答】解:(1)方程移项得:x 2﹣2x =2, 配方得:x 2﹣2x +1=3,即(x ﹣1)2=3, 开方得:x ﹣1=±√3, 解得:x 1=1+√3,x 2=1−√3; (2){2+x >−1①2x−13≤1②,由①得:x >﹣3,由②得:x ≤2,则不等式组的解集为﹣3<x ≤2.23.(2022•贾汪区二模)(1)解方程x 2﹣2x ﹣6=0; (2)解不等式组{2x −1≤x 2(x +1)>x −2.【解答】解:(1)方程移项得:x 2﹣2x =6, 配方得:x 2﹣2x +1=7,即(x ﹣1)2=7, 开方得:x ﹣1=±√7, 解得:x 1=1+√7,x 2=1−√7; (2){2x −1≤x ①2(x +1)>x −2②,由①得:x ≤1, 由②得:x >﹣4,则不等式组的解集为﹣4<x ≤1.24.(2022•鼓楼区校级三模)2020年初,受疫情影响,医用防护服生产车间有7人不能到厂生产,为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变.原来生产车间每天生产防护服800套,现在每天生产防护服650套,求原来生产车间的工人有多少人? 【解答】解:设原来生产车间的工人有x 人, 根据题意,得8008x=65010(x−7),解得x =20,经检验,x =20是原方程的根, 答:原来生产车间的工人有20人.25.(2022•睢宁县模拟)(1)解方程:x 2﹣4x +2=0;(2)解不等式组:{4x+13<x①x >2x②.【解答】解:(1)∵x 2﹣4x +2=0, ∴x 2﹣4x =﹣2,∴x 2﹣4x +4=﹣2+4,即(x ﹣2)2=2, 则x ﹣2=√2或x ﹣2=−√2,解得x 1=2+√2,x 2=2−√2;(2)解不等式①得:x <﹣1,解不等式②得:x <0,则不等式组的解集为x <﹣1.26.(2022•邳州市一模)(1)解方程:x−3x−2+1=32−x ; (2)解不等式组:{3x −5≥x +13x−42<x . 【解答】解:(1)x−3x−2+1=32−x , x ﹣3+x ﹣2=﹣3,解得:x =1,检验:当x =1时,x ﹣2≠0,∴x =1是原方程的根;(2){3x −5≥x +1①3x−42<x②, 解不等式①得:x ≥3,解不等式②得:x <4,∴原不等式组的解集为:3≤x <4.27.(2022•邳州市一模)直播带货逐渐走进了人们的生活,某电商在抖音上销售一批小商品,平均每天可卖出20件,每件盈利30元通过市场调查发现,在一定范围内,小商品单价每降低1元,平均每天销售量增加2件,商家预期日利润为750元,决定降价促销,小商品的单价应降低多少元?【解答】解:设每件小商品降价x 元,由题意得,(30﹣x )(20+2x )=750,整理得:x 2﹣20x +75=0,解得:x 1=5,x 2=15.又∵降价促销,∴小商品的单价应降低15元.答:小商品的单价应降低15元.28.(2022•徐州一模)(1)解方程:x 2﹣6x ﹣7=0;(2)解不等式组:{2x −2<x +1x +7>3x. 【解答】解:(1)∵x 2﹣6x ﹣7=0,∴(x ﹣7)(x +1)=0,则x ﹣7=0或x +1=0,解得x 1=7,x 2=﹣1;(2)解不等式2x ﹣2<x +1得,x <3,解不等式x +7>3x 得,x <72,所以不等式组的解集是x <3.29.(2022•睢宁县模拟)中国古代数学著作《孙子算经》中有这样一个问题,原文:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,所乘车都坐满,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【解答】解:设共有x 人,y 辆车,根据题意得:{x 3+2=y x−92=y , 解得:{x =39y =15, 答:共有39人,15辆车.30.(2022•鼓楼区校级一模)(1)解方程:x (x ﹣7)=8(7﹣x );(2)解不等式组:{4x −5>x +13x−42<x . 【解答】解:(1)x (x ﹣7)=8(7﹣x ),x (x ﹣7)+8(x ﹣7)=0,(x ﹣7)(x +8)=0,x ﹣7=0或x +8=0,所以x 1=7,x 2=﹣8;(2){4x −5>x +1①3x−42<x②, 解①得x >2,解②得x<4,所以不等式组的解集为2<x<4.。
中考数学二轮复习拔高训练卷 专题2 方程与不等式(学生版)
有且仅有四个整数解,且使关于 y 的分式方程
+
=2 有非负数解,则所有满足条件的整数 a 的值之和是( )
A. 3
B. 1
C. 0
二、填空题(共 5 题;共 5 分)
11.关于 x 的分式方程
的解为正数,则 m 的取值范围是________.
D. ﹣3
第 1 页 共 16 页
12.有甲、乙、丙 3 种商品,某人若购甲 3 件、乙 7 件、丙 1 件共需 24 元;若购甲 4 件、乙 10 件、丙 1 件共需 33 元,则此人购甲、乙、丙各一件共需________ 元。 13.方程 x2-2|x+4|-27=0 的所有根的和为________. 14.△ABC 的两边长分别为 2 和 3,第三边的长是方程 x2-8x+15=0 的根,则△ABC 的周长是________.
月使用费/元 主叫限定时间/分 主叫超时费/(元/分) 被叫
方式一 58
150
0.25
免费
方式二 88
350
0.19
免费
设一个月内使用移动电话主叫的时间为 t 分(t 为正整数),请根据表中提供的信息回答下列问题: (1)用含有 t 的式子填写下表:
t≤150 150<t<350 t=350 t>350
15.若
是方程
的两个实数根,且
,则 的值为________.
三、计算题(共 2 题;共 12 分)
16.解方程组或不等式组:
(1)解方程组
;
(2)解不等式组:
17.解下列方程: (1)(x-5)2=x-5
(2)x2+12x+27=0(配方法).
四、解答题(共 3 题;共 16 分)
华中师大版中考数学二轮复习拔高训练卷 专题2 方程与不等式F卷
华中师大版中考数学二轮复习拔高训练卷专题2 方程与不等式F卷姓名:________ 班级:________ 成绩:________考试须知:1、请首先按要求在本卷的指定位置填写您的姓名、班级等信息。
2、请仔细阅读各种题目的回答要求,在指定区域内答题,否则不予评分。
一、单选题 (共10题;共20分)1. (2分) (2017七下·南陵竞赛) 方程的解是等于()A .B .C .D .2. (2分)已知二次函数y=x2-mx+m-2的图象与x轴有()个交点.A . 1个B . 2 个C . 无交点D . 无法确定3. (2分) (2015九上·句容竞赛) 设m是整数,关于x的方程mx2-(m-1)x+1=0有有理根,则方程的根为()。
A .B . x=-1C .D . 有无数个根4. (2分)若方程(a-b)x2+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有()A . a=b=cB . 一根为1C . 一根为-1D . 以上都不对5. (2分)若a为方程(x- )2=100的一根,b为方程(y-4)2=17的一根,且a、b都是正数,则a-b 之值是().A . 5B . 6C .D . 10-6. (2分)已知关于x的方程x2+bx+a=0有一个根是-a(a≠0) ,则a-b的值为().A . -1B . 0C . 1D . 27. (2分)已知关于x的一元二次方程3x2+4x-5=0,下列说法不正确的是().A . 方程有两个相等的实数根B . 方程有两个不相等的实数根C . 没有实数根D . 无法确定8. (2分)某产品的成本两年降低了75%,平均每年递降()A . 50%B . 25%C . 37.5%D . 以上答案都不对9. (2分)(2017·溧水模拟) 如图,矩形ABCD中,AB=4,AD=7,其中点E为CD的中点.有一动点P,从点A按A→B→C→E的顺序在矩形ABCD的边上移动,移动到点E停止,在此过程中以点A,P,E三点为顶点的直角三角形的个数为()A . 2B . 3C . 4D . 510. (2分)(2017·港南模拟) 已知不等式组仅有2个整数解,那么a的取值范围是()A . a≥2B . a<4C . 2≤a<4D . 2<a≤4二、填空题 (共5题;共5分)11. (1分)(2017·山东模拟) 关于x的分式方程的解为正数,则m的取值范围是________.12. (1分)若4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则的值等于________.13. (1分)如果关于x的方程x2+2(a+1)x+2a+1=0有一个小于1的正数根,那么实数a的取值范围是________.14. (1分)对于实数a,b,定义运算“⊗”:,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x1 , x2是一元二次方程x2﹣6x+8=0的两个根,则x1⊗x2=________.15. (1分) (2017八下·丽水期末) 在△ABC中,已知两边a=3,b=4,第三边为c.若关于x的方程有两个相等的实数根,则该三角形的面积是________三、计算题 (共2题;共12分)16. (6分) (2016八上·杭州期末) 解不等式组,并把它的解集在数轴上表示出来.17. (6分)用适当的方法解下列方程.(1) x2﹣x﹣1=0;(2) x2﹣2x=2x+1;(3) x(x﹣2)﹣3x2=﹣1;(4)(x+3)2=(1﹣2x)2.四、解答题 (共3题;共16分)18. (4分)设a,b,c为△ ABC的三边,化简19. (8分)已知关于x的方程x2+(2m-1)x+4=0有两个相等的实数根,求m的值.20. (4分)某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?五、综合题 (共5题;共47分)21. (8分)“十一”期间,小明跟父亲一起去某市旅游,出发前小明从网上了解到该出租车收费标准如下:(1)若甲、乙两地相距10千米,乘出租车从甲地到乙地需要付款多少元?(2)小明和父亲从火车站乘出租车到旅馆,下车时计费表显示18元,请你帮小明算一算从火车站到旅馆的距离有多远?(3)小明的母亲乘飞机来到该市,小明和父亲从旅馆乘坐出租车到机场去接母亲,到达机场时计费表显示72元,接完母亲,立即沿原路返回旅馆(接人时间忽略不计),请帮小明算一下乘原车返回和换乘另外的出租车相比哪个省钱?22. (9分) (2015七下·绍兴期中) 某中学为了筹备校庆活动,准备印制一批校庆纪念册.该纪念册分A、B 两种,每册都需要10张8K大小的纸,其中A纪念册有4张彩色页和6张黑白页组成;B纪念册有6张彩色页和4张黑白页组成.印制这批纪念册的总费用由制版费和印制费两部分组成,制版费与印数无关,价格为:彩色页300元∕张,黑白页50元∕张;印制费与总印数的关系见下表.(1)印制这批纪念册的制版费为________元.(2)若印制A、B两种纪念册各2千册,则共需多少费用?(3)如果该校共印制了A、B两种纪念册6千册,一共花费了75500元,则该校印制了A、B两种纪念册各多少册?23. (10分) (2016七上·禹州期末) 张老师暑假将带领学生去北京旅游,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”;乙旅行社说:“包括校长在内全部按全票价的6折优惠”,若全票价为240元.(1)若学生有3人和5人,甲旅行社需费用多少元?乙旅行社呢?(2)学生数为多少时两个旅行社的收费相同?24. (10分) (2017八上·台州开学考) 某超市电器销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(1)求A、B两种型号的电风扇的销售价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能请给出采购方案.若不能,请说明理由.25. (10分)(2017·绵阳模拟) 某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B 型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、计算题 (共2题;共12分) 16-1、17-1、17-2、17-3、17-4、四、解答题 (共3题;共16分)18-1、19-1、20-1、五、综合题 (共5题;共47分)21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、第11 页共11 页。
北师大版中考数学二轮复习拔高训练卷 专题2 方程与不等式A卷
北师大版中考数学二轮复习拔高训练卷专题2 方程与不等式A卷姓名:________ 班级:________ 成绩:________考试须知:1、请首先按要求在本卷的指定位置填写您的姓名、班级等信息。
2、请仔细阅读各种题目的回答要求,在指定区域内答题,否则不予评分。
一、单选题 (共10题;共20分)1. (2分)若方程:2(x-1)-6=0与的解互为相反数,则a的值为()A .B .C .D . -12. (2分)(2018·龙岗模拟) 二次函数的图象如图,下列四个结论:;;关于x的一元二次方程没有实数根;为常数.其中正确结论的个数是 )A . 4个B . 3个C . 2个3. (2分) (2015九上·句容竞赛) 已知的三边长为a,b,c,且满足方程a2x2-(c2-a2-b2)x+b2=0,则方程根的情况是()。
A . 有两相等实根B . 有两相异实根C . 无实根D . 不能确定4. (2分)若方程(a-b)x2+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有()A . a=b=cB . 一根为1C . 一根为-1D . 以上都不对5. (2分)若a为方程(x- )2=100的一根,b为方程(y-4)2=17的一根,且a、b都是正数,则a-b 之值是().A . 5B . 6C .D . 10-6. (2分)设a、b为x2+x﹣2011=0的两个实根,则a3+a2+3a+2014b=()A . 2014B . ﹣2014C . 20117. (2分)已知a、b、c分别为Rt△ABC(∠C=90°)的三边的长,则关于x的一元二次方程(c+a)x2+2bx+(c-a)=0根的情况是().A . 方程无实数根B . 方程有两个不相等的实数根C . 方程有两个相等的实数根D . 无法判断8. (2分)如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数y=(x>0)的图像上,则点E 的坐标为()A . (,)B . (1,)C . (2,)D . (,)9. (2分) (2018九上·镇海期末) 如图,△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,点E是线段AD上一点,以点E为圆心,r为半径作⊙E.若⊙E与边AB,AC相切,而与边BC相交,则半径r的取值范围是()A . r>B . <r≤4C . <r≤4D . <r≤10. (2分)不等式组,写出不等式组的整数解是()A . ﹣1,0,1B . 0,1,2C . ﹣2,﹣1,0D . 1,2,3二、填空题 (共5题;共5分)11. (1分)(2017·山东模拟) 关于x的分式方程的解为正数,则m的取值范围是________.12. (1分) (2017七下·泗阳期末) 已知非负数a,b,c满足条件3a+2b+c=4. 2a+b+3c=5. 设s=5a+4b+7c 的最大值为m,最小值为n.则n-m的值为________.13. (1分)方程x2+x-1=0的根是________。
2021年中考数学二轮复习:方程与不等式的应用 专项练习题(Word版,含答案)
2021年中考数学二轮复习:方程与不等式的应用专项练习题1. 某市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A,B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A,B两种奖品每件各多少元?(2)现要购买A,B两种奖品共100件,总费用不超过900元,问A种奖品最多购买多少件?2. 甲、乙两地相距300m,小红从甲地出发以1m/s的速度向乙地运动;小明从乙地出发以1.5m/s的速度向甲地运动,两人同时出发,设运动时间为t秒.(1)用含t的代数式分别表示小红、小明与甲地之间的距离.小红距离甲地________m,小明距离甲地________m;(2)当两人相距100m时,求t的值;(3)在两人相遇前,当小红正好到达小明与甲地距离的三等分点时,求t的值.3. 在抗击新冠肺炎疫情期间,某社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.求每次购买的酒精和消毒液分别是多少瓶?4. 某玩具工厂制造一种玩具,其成本价为每件25元.如果直接出厂家门市部销售,每件产品售价为32元,同时每月还要支出其他费用1200元;如果委托商场销售,那么出厂价为29元.(1)求在两种销售方式下,每月销售多少件时,所得利润相等;(2)当每月销售量达到500件时,采用哪种销售方式获得的利润较多?5. 沁河润城段生态景观治理项目是大力发展全域旅游的重点项目.该工程在招标时,接到甲、乙两个工程队的招标书,工程领导根据甲、乙两个工程队的投标书测算:Ⅰ.甲工程队单独完成这项工程刚好能如期完成;Ⅰ.乙工程队单独完成这项工程要比规定日期延迟6天;Ⅰ.若甲、乙两工程队合作3天,余下的工程由乙工程队单独完成能正好如期完成.(1)设甲工程队单独完成这项工程需要x天,请你按上述结论Ⅰ、Ⅰ完成表格:(2)根据题意及表格提供的信息,列出关于x的分式方程,并求出x的值.6. 今年我市对城区内的老旧小区进行升级改造,某小区准备修建一条长1350米的健身小路,甲、乙两个工程队想承建这项工程,经了解得到下表所示信息:。
福州市中考数学二轮复习拔高训练卷 专题2 方程与不等式
福州市中考数学二轮复习拔高训练卷专题2 方程与不等式姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果甲、乙、丙三个村合修一段水渠,计划出工65人,按各村受益土地面积3:4:6出工,求各村应出工的人数. ①设甲、乙、丙三村分别派3x,4x,6x人,依题意可得3x+4x+6x=65; ②设甲村派x人,依题意得x+4x+6x=65; ③设甲村派x人,依题意得x+ x+2x=65;④设丙村派x人,依题意得3x+4x+x=65.上面所列方程中正确的是()A . ①②B . ②③C . ③④D . ①③2. (2分)已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是().A . a<2B . a>2C . a<2且a≠1D . a<-23. (2分) (2017七上·拱墅期中) 如果,长方形中有个形状、大小相同的小长方形,且,,则图中阴影部分的面积为().A .B .C .D .4. (2分)若,,则的值为()A . 5B . 4C . 3D . 25. (2分)已知a,b是方程x2+2013x+1=0的两个根,则(1+2015a+a2)(1+2015b+b2)的值为()A . 1B . 2C . 3D . 46. (2分) .如图所示,是本月份的日历表,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是()日一二三四五六1 2 34 5 6 7 8 9 1011 12 13 14 15 16 1718 19 20 21 22 23 2425 26 27 28 29 30A . 24B . 43C . 57D . 697. (2分) (2019八上·萧山月考) 若方程组的解是,则方程组的解是()A .B .C .D .8. (2分)医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是()住院医疗费(元)报销率(%)不超过500元的部分0超过500~1000元的部分60超过1000~3000元的部分80……A . 1000元B . 1250元C . 1500元D . 2000元9. (2分)(2019·河北模拟) 欧几里得的《原本)记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,∠ACB=90°,BC= ,AC=b,再在斜边AB上截取BD= ,则该方程的一个正根是()A . AC的长B . AD的长C . BC的长D . CD的长10. (2分) (2017七上·拱墅期中) 某商品降价后欲恢复原价,则提价的百分数为().A .B .C .D .二、填空题 (共5题;共5分)11. (1分)方程x2-3x+1=0的解是________。
福建省厦门市中考数学二轮复习拔高训练卷 专题2 方程与不等式
福建省厦门市中考数学二轮复习拔高训练卷专题2 方程与不等式姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)已知有最大值,则方程的解是()A .B .C .D .2. (2分)已知关于x的一元二次方程3x2+4x-5=0,下列说法不正确的是().A . 方程有两个相等的实数根B . 方程有两个不相等的实数根C . 没有实数根D . 无法确定3. (2分)(2017·荆州) 规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);④若点(m,n)在反比例函数y= 的图象上,则关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有()A . ①②B . ③④C . ②③D . ②④4. (2分) (2017八下·丰台期末) 关于x的一元二次方程有两个实数根,那么实数k的取值范围是()A .B . 且C . 且D .5. (2分)若a为方程(x- )2=100的一根,b为方程(y-4)2=17的一根,且a、b都是正数,则a-b 之值是().A . 5B . 6C .D . 10-6. (2分)(2016·大庆) 若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2 ,则M 与N的大小关系正确的为()A . M>NB . M=NC . M<ND . 不确定7. (2分)设a、b、c和S分别为三角形的三边长和面积,关于x的方程b2x2+(b2+c2-a2)x+c2=0的判别式为Δ.则Δ与S的大小关系为().A . Δ=16S2B . Δ=-16S2C . Δ=16SD . Δ=-16S8. (2分)如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数y=(x>0)的图像上,则点E 的坐标为()A . (,)B . (1,)C . (2,)D . (,)9. (2分)(2017·溧水模拟) 如图,矩形ABCD中,AB=4,AD=7,其中点E为CD的中点.有一动点P,从点A按A→B→C→E的顺序在矩形ABCD的边上移动,移动到点E停止,在此过程中以点A,P,E三点为顶点的直角三角形的个数为()A . 2B . 3C . 4D . 510. (2分)若不等式组恰有两个整数解,则m的取值范围是()A . -1≤m<0B . -1<m≤0C . -1≤m≤0D . -1<m<0二、填空题 (共5题;共5分)11. (1分)(2017·山东模拟) 关于x的分式方程的解为正数,则m的取值范围是________.12. (1分)山脚下有一池塘,泉水以固定的流量(即单位时间里流入池中的水量相同)不停地向池塘内流淌.现池塘中有一定深度的水,若用一台A型抽水机抽水,则1小时正好能把池塘中的水抽完;若用两台A型抽水机抽水,则20分钟正好把池塘中的水抽完.问若用三台A型抽水机同时抽,则需要________分钟恰好把池塘中的水抽完.13. (1分)方程x2+x-1=0的根是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西师大版中考数学二轮复习拔高训练卷专题2 方程与不等式B卷
姓名:________ 班级:________ 成绩:________
考试须知:
1、请首先按要求在本卷的指定位置填写您的姓名、班级等信息。
2、请仔细阅读各种题目的回答要求,在指定区域内答题,否则不予评分。
一、单选题 (共10题;共20分)
1. (2分)某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()
A . 8人
B . 10人
C . 12人
D . 14人
2. (2分)已知a、b、c分别为Rt△ABC(∠C=90°)的三边的长,则关于x的一元二次方程(c+a)x2+2bx+(c-a)=0根的情况是().
A . 方程无实数根
B . 方程有两个不相等的实数根
C . 方程有两个相等的实数根
D . 无法判断
3. (2分)已知二次函数y=x2-mx+m-2的图象与x轴有()个交点.
A . 1个
D . 无法确定
4. (2分)设a、b为x2+x﹣2011=0的两个实根,则a3+a2+3a+2014b=()
A . 2014
B . ﹣2014
C . 2011
D . ﹣2011
5. (2分)若a为方程(x- )2=100的一根,b为方程(y-4)2=17的一根,且a、b都是正数,则a-b 之值是().
A . 5
B . 6
C .
D . 10-
6. (2分)(2017·肥城模拟) 对于下列结论:
①二次函数y=6x2 ,当x>0时,y随x的增大而增大.
②关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1(a、m、b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是x1=﹣4,x2=﹣1.
③设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是c≥3.
其中,正确结论的个数是()
A . 0个
B . 1个
7. (2分)(2018·龙岗模拟) 二次函数的图象如图,下列四个结论:
;;关于x的一元二次方程没有实数根;
为常数.其中正确结论的个数是 )
A . 4个
B . 3个
C . 2个
D . 1个
8. (2分)生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,全组共互赠182件,如果全组有x名同学,则根据题意列出的方程是()
A . x(x+1)=182
B . x(x-1)=182
C . 2x(x+1)=182
D . x(x-1)=182×2
9. (2分)在平面直角坐标系中,以点(3,-5)为圆心,r为半径的圆上有且仅有两点到x轴所在直线的距离等于1,则圆的半径r的取值范围是()
A . r>4
D . 4<r<6
10. (2分) (2017八下·佛冈期中) 不等式组的最小整数解为()。
A . 1
B . 2
C . 5
D . 6
二、填空题 (共5题;共5分)
11. (1分)(2017·山东模拟) 关于x的分式方程的解为正数,则m的取值范围是________.
12. (1分)若4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则的值等于________.
13. (1分)如果关于x的方程x2+2(a+1)x+2a+1=0有一个小于1的正数根,那么实数a的取值范围是________.
14. (1分)方程:(2x+1)(x-1)=8(9-x)-1的根为________。
15. (1分)(2014·桂林) 已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2 ,且(x1﹣2)(x1﹣x2)=0,则k的值是________.
三、计算题 (共2题;共12分)
16. (6分) (2018七下·黑龙江期中) 解方程组
(1)解方程组
(2)解不等式组.
17. (6分)解下列方程
(1) x2+4x+3=0;
(2) 3x2+10x+5=0.
四、解答题 (共3题;共16分)
18. (4分)已知 + + =-1,试求 + + + 的值.
19. (8分)关于x的方程(m2-8m+19)x2-2mx-13=0是否一定是一元二次方程?请证明你的结论.
20. (4分)某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:
(1)甲队单独完成这项工程刚好如期完成;
(2)乙队单独完成这项工程要比规定日期多用5天;
(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.
在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?
五、综合题 (共5题;共47分)
21. (8分) (2016七上·罗山期末) 为更好的参与“阳光体育”大课间活动,某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的兵兵球和乒乓球拍.兵乓球拍毎副定价30元,兵兵球毎盒定价5元,两店促销活动如下:甲店毎买一副球拍赠一盒乒乓球,乙店两种商品均按定价的9折优惠.(1)若该班需球拍5副,乒乓球x盒(不小于5盒),请用含x的代数式表示此时甲店和乙店分别所需费用.(2)当购买乒乓球多少盒时,两种优惠办法付款一样?
(3)当购买10副球拍30盒乒乓球时,请你去办这件事,你打算去如何购买才能最省钱?需要花费多少元?
22. (9分) (2015七下·定陶期中) 如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:
(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?
(2)这批产品的销售款比原料费与运输费的和多多少元?
23. (10分) (2016七上·禹州期末) 张老师暑假将带领学生去北京旅游,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”;乙旅行社说:“包括校长在内全部按全票价的6折优惠”,若全票价为240元.
(1)若学生有3人和5人,甲旅行社需费用多少元?乙旅行社呢?
(2)学生数为多少时两个旅行社的收费相同?
24. (10分)(2017·开封模拟) 某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段销售数量销售收入
A种型号B种型号
第一周3台5台1800元
第二周4台10台3100元
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
25. (10分)(2017·泸州) 某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资
金1440元.
(1)甲、乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共5题;共5分)
11-1、
12-1、
13-1、
14-1、
15-1、
三、计算题 (共2题;共12分) 16-1、
16-2、
17-1、
17-2、
四、解答题 (共3题;共16分)
18-1、
19-1、
20-1、
五、综合题 (共5题;共47分) 21-1、
21-2、
21-3、
22-1、
22-2、23-1、23-2、24-1、24-2、24-3、25-1、
25-2、。