信息光学(第二)数学基础常用函数
信息光学总复习
线性系统
若系统对几个激励的线性组合的整体响应,等于单个激 励所产生的响应的线性组合,则该系统称为线性系统。 系统对输入的脉冲函数产生的输出称为脉冲响应. 若输入脉冲发生位移时, 线性系统的响应函数形式 不变,仅造成响应函数相应的位移,即:
{d(x-x, y-h)}=h (x-x, y-h)
这样的系统称为线性空不变系统。
x y U ( x, y ) c t ( x0 , y0 ) exp j 2 f x0 f y0 dx0 dy0
c
t ( x0 , y0 ) f
x
x y , fy f f
用单色平面波照明物体,物体置于透镜的前焦面,则在 透镜的后焦面上得到物体的准确的傅里叶变换。透镜的后焦 面称为频谱面。
振幅谱 位相谱
线性系统的定义: 设: g1(x2, y2) =ℒ {f1(x, y)}, g2(x2, y2) = ℒ {f2(x, y)}, 且对于 任意复常数a1 和a2,有: ℒ {a1 f1 (x, y) + a2 f2 (x, y) } = a1 g1 (x2, y2) + a2 g2 (x2, y2) 则称该系统 ℒ 为线性系统。
衍射受限系统—— 线性空不变的成像系统
1
~ h xi ,yi
2
3
P(d i ~, d i ~) x y
若成像系统的像质仅受有限大小光瞳的衍射效应所限制, 则称为 “衍射受限”系统 (diffraction-limited system )
衍射受限的相干成像系统点扩展函数是光瞳函数的傅里叶变换
{h(x,y)}
x
x f y y )]dxdy
=
信息光学(第二版)4-数学基础3-卷积、相关、傅里叶级数
τ
1/2
-1< x <0; g(x) = 1×[x+1/2-(-1/2)]=1+x 0 < x <1; g(x) = 1×[1/2-( x-1/2)]= 1- x
卷积通常具有(1)加宽 (2)平滑 的作用
§0-3 卷积 convolution
四、性质
1. 卷积满足交换律 Commutative Property f(x)*h(x) = h (x) * f (x) 2. 卷积满足分配律 Distributive Property [v(x) + w(x)]*h(x) = v(x)*h (x) + w(x)*f (x) 推论:卷积是线性运算 Linearity
(n = 0, 1, 2... ),
f0 =
1
τ
展开系数
a0 =
τ∫
2
τ
0
g ( x)dx an =
τ∫
2
τ
0
g ( x) cos(2πnf 0 x)dx bn =
τ∫
2
τ
0
g ( x) sin(2πnf 0 x)dx
零频分量, 基频, 谐频, 频谱等概念, 奇、偶函数的三角级数展开
三角傅里叶展开的例子
+∞
即任意函数与δ(x) 卷积后不变 利用卷积的位移不变性可得: f(x)*δ(x - x0) = f (x - x0)
任意函数与脉冲函数卷积的结果, 是将该函数平 移到脉冲所在的位置. f(x)与脉冲阵列的卷积可在每个脉冲位置产生f(x) 的函数波形,用于描述各种重复性的结构.
a b a
−∞
=
a
*
1.1一些常用函数
第七章 计算全息
第八章 光学信息处理(空间滤波、图象识别、白光处理、小 波变换等)
第九章
激光散斑及其应用(自学)
第一章
1.1 常用函数
傅立叶分析
step( ) tir( ) circ( )
sign( ) sinc( ) d( )
rect( ) Gaus( ) comb( )
在光学系统的成像、干涉、衍射中, 上面这些函数经常用于表示光学系统。
(5)积分性质
Ad x0 d A
0
d x d 1
d x d x d d x x
0 0
九.梳状函数
Homework:
Page40
1.3(2)、(4) 1.4 1.6 1.7(2)
希腊字母表
大写
小写
国际音 标
[`Alf
E]
发音
大写
小写
国际音 标
[nju :]
发音
[`bi :tE
]
[ksa i]
[ou` mai kEn
]
[`gA mE
]
[`deltE
]
[pai] [qou] [`sig mE
] ]
[ep`s ailEn [`zi :tE
]
[`i:t
E]
[tR:
]
[`θ : tE
stepx x0
1 0 x
x0
用途:相当于一个开关。
在光学上,刀边衍射的屏函数就可以表示 为 f(x)step(x)
二. 符号函数(Sign function)
1 , x 0 sgn x 0 , x 0 1 , x 0
信息光学的数学基础
1.1.1
矩形函数
矩形函数(rectangle function)是在光信息处理中很有用的非初等函数之一,习惯上用 rect ( )或 ( )表 示。信号脉冲如光脉冲、电脉冲等的形状为矩形时,就可用矩形函数来描述,所以矩形函数也常称为矩形 脉冲。对一个具有确定形状的脉冲,通常可以用脉冲的宽度、高度和脉冲面积(一维函数曲线下所包含的面 积, 即函数在整个定义域上的积分值), 这三个参数来描述, 这个三参数中二个确定了, 另一个也就确定了。 把描述脉冲形状的某些参数取单位值 1 时,会使用问题变的简洁而方便又不会失去其特性,这就是所谓的 单位脉冲(或单位函数),也称为标准脉冲(或标准函数)。单位脉冲通常先设定脉冲面积为 1,如果脉冲面积 无法定义,就设定高度为 1,当然会可将宽度设定为 1。 一维单位矩形函数的定义为:
格式 1:y = rectpuls(x) 功能: 产生单位高度为 1、 宽度为 1、 中心为 0 的矩形。 注意: 在 MATLAB 中, 该函数间断点的值规定为 rectpuls(0.5)=1 和 rectpuls(0.5)=0。 格式 2:y = rectpuls(x, a) 功能:产生指定宽度为 a 的矩形。
3
1
rect(x,y)
0.5
0 1 0.5 0 -0.5 y -1 -1 -0.5 x 0.5 0 1
图 1.1.3
二维单位矩形函数
1.1.2
阶跃函数
阶跃函数(step fucction) , 用 step ( )或 H ( )表示。 为记念英国的著名的电气工程师海维赛德(Heaviside,
1850-1925),又称为海维赛德函数。一维单位阶跃函数的定义为:
1
常被使用的形式。另二种表达式的定义是:
信息光学复习重要知识点
1.常用的非初等函数:矩形函数、Sinc函数、三角形函数、符号函数、阶跃函数、圆柱函数。
2.δ函数的定义:a.类似普通函数定义b.序列极限形式定义c.广义函数形式定义δ函数的性质:a.筛选性质 b.坐标缩放性质 c.可分离变量性d.与普通函数乘积性质4.卷积,性质:线性性质、交换律、平移不变性、结合律、坐标缩放性质5.互相关,两个函数f(x,y)和g(x,y)的互相关定义为含参变量的无穷积分6.惠更斯-菲涅尔原理:光场中任意给定曲面上的诸面元可以看作是子波源,如果这些子波源是相干的,则在波继续传播的空间上任意一点处的光振动都可看作是子波源各自发出的子波在该点相干叠加的结果。
7.基尔霍夫理论:在空域中光的传播,把孔径平面上的光场看作点源的集合,观察平面上的场分布则等于他们所发出的带有不同权重的因子的球面子波的相干叠加。
8.角谱理论:孔径平面和观察平面上的光场分布都可以分别看成是许多不同方向传播的单色平面波分量的线性组合。
9.点扩散函数:面元的光振动为单位脉冲即δ函数时,这个像场分布函数叫做~。
10.菲涅尔衍射成立的充分条件:传递函数:11.泰伯效应:当用单色平面波垂直照明一个具有周期性透过率函数的图片时,发现在该透明片后的某些距离上出现该周期函数的现象,这种不用透镜就可以对周期物体成像的现象称为~。
12.夫琅禾费衍射:13.衍射受限系统:不考虑系统的几何像差,仅仅考虑系统的衍射限制。
14.单色信号的复表示:去掉实信号的负频成分,加倍实信号的正频成分。
多色信号的复表示:16.如果两点处的光扰动相同,两点间的互相干函数将变成自相干函数。
18.光学全息:利用干涉原理,将物体发出的特定光波以干涉条纹的形式记录下来,使物光波前的全部信息都储存在记录介质中,做记录的干涉条纹图样被称为“全息图”,当用光波照射全息图时,由于衍射原理能能重现出原始物光波,从而形成与原物体逼真的三维像,这个波前记录和重现的过程成为~19.+1级波(虚像),-1级波(实像),±1级波(赝像)20.从物光与参考光的位置是否同轴考虑:同轴全息、离轴全息。
信息光学知识点Word
[]{}{}{}{}{}{}),(),(),(),(),(),(),(),()2()()]()([212sin )](exp[)](exp[)]()([212cos )()()()(),()](2exp[)(sin )(sin )()(1),()(sin )(sin )()()](2exp[),()()(),()()(11)()(),(),(),(),()(),(1),(),(),(),(1),(000),(1)2(),()(),(01)(exp ),(exp 01)()(),()()(sin sin Sinc )()(),(021)(11110002222000220000000000222212222212222222222000200ηεηεηεηερπρδδπππδδπδπδπδτδτδτττδδδδδδδδδδδππππππG b F a bG aF y x g b y x f a y x bg y x af J r circ f f f f jx f f f y x f f f f xf f comb f comb y comb x comb f f f f y f x f j f c f c y tri x tri y x f c f c y rect x rect b f a f j b y a x y Comb x Comb y x Comb n x n x x Comb y x y x y y x x y x f y y x x xy f y x abby ax y x f dxdy y y x x y x f dxdy y x y x y x y x y x N J N y x f y x N Circ N y x f a y x a y x Circ y x N N y x f a x a x Gaus ax a x a x a x Tir Ny Sinc Nx Sinc N y x f a x x ax x a x x c Ny rect Nx rect N y x f a x x a x x rect x x y x x x y x b y a x b a y x y x y x n n N NN N N ---∞-∞=∞-∞=∞+∞-∞+∞-+=++=+---+-+--+---++---=-=-=⎪⎭⎫ ⎝⎛=--=--==--⎪⎩⎪⎨⎧=≠≠=++=+=⎪⎩⎪⎨⎧≤+=++-=⎥⎦⎤⎢⎣⎡-=⎪⎩⎪⎨⎧≤-=∧==--=-=⎪⎩⎪⎨⎧≤-=-∑∑⎰⎰⎰⎰F F FF F F 频谱函数原函数频谱函数原函数,梳状函数:分离性质:相乘性质:比例性质:筛选性质:函数的定义及性质:贝塞尔函数:,其它)()(圆域函数:,)()(高斯函数:其它)()(三角函数:,)(函数:,其它矩形函数:线性关系。
信息光学讲义目录02
目录第一章信息光学的数学基础1.1 光学中常用的非初等函数 (1)1.1.1 矩形函数 (1)1.1.2 阶跃函数 (5)1.1.3 符号函数 (8)1.1.4 三角形函数 (10)1.1.5 斜坡函数 (13)1.1.6 圆域函数 (14)1.1.7 非初等函数的运算和复合 (15)1.2 光学中常用的初等函数 (17)1.2.1 sinc 函数 (17)1.2.2 高斯函数 (19)1.2.3 贝塞尔函数 (24)1.2.4 宽边帽函数 (27)1.3 函数的变换 (28)1.3.1 一维函数的变换 (28)1.3.2 可分离变量的二维函数的特性 (31)1.3.3 几何变换 (33)1.4 δ函数和梳状函数 (38)1.4.1 广义函数的含义 (38)1.4.2 δ函数的定义 (40)1.4.3 δ函数的性质 (49)1.4.4 δ函数的导数 (54)1.4.5 复合δ函数 (56)1.4.6 用δ函数描述光学过程的一个例子 (57)1.4.7 梳状函数 (59)1.5 周期函数 (64)1.5.1 周期函数的含义 (64)1.5.2 正弦函数 (66)1.5.3 周期脉冲序列 (67)1.6 离散函数 (70)1.6.1 单位脉冲序列 (70)1.6.2 单位阶跃序列 (72)1.6.3 矩形序列 (73)1.6.4 正弦型序列 (74)1.6.5 斜变序列 (75)1.6.6 实指数序列 (76)1.6.7 复指数序列 (76)1.6.8 随机序列 (77)1.7 复值函数 (77)1.7.1 复数 (77)1.7.2 复值函数 (79)1.7.3 几个常数的关系式和恒等式 (82)习题 1 (83)第二章傅里叶变换和系统的频域分析2.1 一维函数的傅里叶变换 (86)2.1.1 傅里叶级数 (86)2.1.2 傅里叶积分定理 (96)2.1.3 傅里叶变换 (97)2.1.4 极限情况下的傅里叶变换 (104)2.1.5 δ函数的傅里叶变换 (105)2.1.6 常用一维函数傅里叶变换对 (114)2.2 二维函数的傅里叶变换 (116)2.2.1 二维函数傅里叶变换的定义 (116)2.2.2 极坐标系中的二维傅里叶变换 (118)2.2.3 常用二维函数傅里叶变换对 (121)2.3 傅里叶变换的性质 (121)2.3.1 傅里叶变换的基本性质 (121)2.3.2 虚、实、奇和偶函数的傅里叶变换 (124)2.4 傅里叶变换的MATLAB 实现 (126)2.4.1 符号傅里叶变换 (126)2.4.2 离散傅立叶变换 (127)2.4.3 快速傅里叶变换 (130)2.5 卷积和卷积定理 (137)2.5.1 卷积的定义 (137)2.5.2 卷积的计算 (138)2.5.3 函数f (x, y)与δ函数的卷积 (148)2.5.4 卷积的效应 (150)2.5.5 卷积运算的基本性质 (152)2.5.6 卷积的MATLAB 实现 (154)2.6 相关和相关定理 (157)2.6.1 互相关 (157)2.6.2 自相关 (159)2.6.3 归一化互相关函数和自相关函数 (161)2.6.4 有限功率函数的相关 (162)2.6.5 相关的计算方法 (162)2.6.6 相关的MATLAB 实现 (167)2.7 傅里叶变换的基本定理 (170)2.7.1 卷积定理 (170)2.7.2 互相关定理 (171)2.7.3 互相关定理 (173)2.7.4 自相关定理 (174)2.7.5 巴塞伐定理 (174)2.7.6 广义巴塞伐定理 (175)2.7.7 导数定理或微分变换定理 (differential transform theorem) 1752.7.8 积分变换定理 (176)2.7.9 转动定理 (176)2.7.10 矩定理 (176)习题2 (178)第三章线性系统和光场的傅里叶分析3.1 线性系统的概念 (180)3.1.1 信号和信息 (180)3.1.2 系统的概念 (180)3.1.3 线性系统 (182)3.1.4 线性平移不变系统 (183)3.2 线性系统的分析方法 (184)3.2.1 正交函数系 (184)3.2.2 基元函数的响应 (188)3.2.3 线性平移不变系统的传递函数 (193)3.2.4 线性平移不变系统的传递函数 (195)3.3 光场解析信号表示 (199)3.3.1 单色光场的数学形式和复数表示 (199)3.3.2 准单色光场的复数表示 (201)3.3.3 多色光场的复数表示 (203)3.4 光场的复振幅空间描述 (206)3.4.1 球面波的复振幅 (206)3.4.2 球面波的近轴近似 (207)3.4.3 平面波的复振幅 (212)3.5 二维光场的傅里叶分析 (216)3.5.1 平面波的空间频率 (216)3.5.2 球面波的空间频率 (222)3.5.3 复振幅分布的空间频谱和角谱 (222)3.5.4 局域空间频率 (224)3.5.5 复杂光波的分解 (225)3.6 函数抽样与函数复原 (228)3.6.1 一维抽样定理 (228)3.6.3 空间-带宽积 (239)3.6.4 线性光学系统的分辨率 (242)习题3 (242)第四章标量衍射理论 (248)4.1 从矢量电场到标量电场 (251)4.1.1 波动方程 (251)4.1.2 亥姆霍兹方程 (253)4.2 基尔霍夫衍射理论 (254)4.2.1 惠更斯-菲涅耳原理 (254)4.2.2 格林定理 (256)4.2.3 基尔霍夫积分定理 (257)4.2.4 基尔霍夫衍射公式 (260)4.2.5 菲涅耳-基尔霍夫衍射公式 (263)4.2.6 球面波的衍射理论 (265)4.3 衍射在空间频域的描述 (268)4.3.1 从空间域到空间频域 (268)4.3.2 谱频的传播效应 (269)4.3.3 角谱的传播 (272)4.3.4 孔径对角谱的效应 (273)4.3.5 传播现象作为一种线性空间滤波器 (276)4.4 衍射的菲涅耳近似和夫琅禾费近似 (277)4.4.1 菲涅耳近似 (277)4.4.2 夫琅禾费近似 (280)4.4.3 夫琅禾费衍射与菲涅耳衍射的关系 (280)4.4.4 衍射屏被会聚球面波照射时的菲涅耳衍射 (281)4.4.5 衍射的巴俾涅原理 (283)4.5 菲涅耳衍射的计算 (285)4.5.1 周期性物体的菲涅耳衍射 (285)4.5.2 矩形孔的菲涅耳衍射 (291)4.5.3 特殊矩形孔的菲涅耳衍射 (300)4.5.4 圆孔的菲涅耳衍射 (303)4.6 夫琅禾费衍射的计算 (306)4.6.1 矩形孔和狭缝 (307)4.6.3 衍射光栅 (313)4.6.4 圆形孔径 (324)习题 4 (329)第五章光学成像系统的空域描述及傅里叶分析 (336)5.1 成像系统和透镜的结构及变换作用 (336)5.1.2 透镜的结构及变换作用 (337)5.2 透镜作为相位变换器 (341)5.2.1 薄透镜的厚度函数 (341)5.2.2 薄透镜的相位变换及其物理意义 (343)5.3 透镜的傅里叶变换性质 (345)5.3.1 透镜的一般变换特性 (345)5.3.2 物在透镜之前 (349)5.3.3 物在透镜后方 (353)5.4 透镜的空间滤波特性 (355)5.4.1 透镜的截止频率、空间带宽积和视场 (356)5.4.2 透镜孔径引起的渐晕效应 (359)5.5 光学系统的一般模型 (363)5.5.1 光阑 (363)5.5.2 入射光瞳和出射光瞳 (366)5.5.3 黑箱模型 (368)5.6 衍射受限光学系统成像的空域分析 (370)5.6.1 衍射受限系统的点扩散函数及成像 (370)5.6.2 正薄透镜的点扩散函数 (374)5.6.3 相干照射下衍射受限系统的成像规律 (375)5.6.4 成像系统的线性特性 (377)习题 5 (378)第六章光学成像系统的频谱分析和传递函数 (384)6.1 光成像系统像质评价概述 (384)6.1.1 星点检验法 (385)6.1.2 图像分辨率板法 (388)6.2 光学传递函数的基本概念 (394)6.2.1 以点扩散函数为基础的定义 (397)6.2.2 以正弦光栅成像为基础的定义 (401)6.2.3 以光瞳函数表示的光学传递函数 (404)6.2.4 组合成像系统的光学传递函数 (405)6.3 衍射受限相干成像系统的相干传递函数 (406)6.3.1 相干传递函数 (406)6.3.2 相干传递函数的角谱解释 (415)6.4 衍射受限系统非相干成像的频域分析—非相干传递函数 (416)6.4.1 非相干成像系统的光学传递函数(OTF) (417)6.4.2 OTF 和CTF 的关系 (421)6.4.3 衍射受限的OTF (421)6.4.4 有像差系统的传递函数 (426)6.5 线扩散函数和刃边扩散函数 (429)6.5.1 线扩散函数和刃边扩散函数的概念 (429)6.5.2 相干线扩散函数和相干刃边扩散函数 (431)6.5.3 非相干线扩散函数和刃边扩散函数 (433)6.6 相干与非相干成像系统的比较 (434)6.7 光学传递函数的测量 (436)6.7.1 光学传递函数测量装置 (436)6.7.2 光学传递函数测量步骤 (439)6.7.3 光学传递函数测量准确度 (440)6.7.4 光学传递函数的测量环境 (445)6.7.5 光学传递函数的测量数据的修正和表示 (447)6.7.6 光学传递函数的测量方法 (448)6.7.7 光学传递测量装置的检定 (450)6.7.8 光学传递标准装置 (450)6.7.9 离散采样系统光学传递测量 (451)习题 6 (452)第七章部分相干理论 (457)7.1 光的干涉理论 (457)7.1.1 叠加原理 (458)7.1.2 光波的干涉 (458)7.1.3 相干和非相干叠加 (460)7.1.4 干涉条纹的可见度 (462)7.2 互相干函数和相干度 (463)7.2.1 互相干函数的定义 (464)7.2.2 杨氏干涉条纹的几何结构 (468)7.2.3 互相干函数的谱表示 (470)7.3 时间相干性和相干时间 (471)7.3.1 时间相干性 (471)7.3.2 相干时间的定义 (476)7.3.3 傅里叶变换光谱技术 (477)7.4 空间相干性 (479)7.5 准单色条件下的干涉和互强度 (480)7.6 范西泰特-策尼克定理 (483)7.6.1 范西泰特-策尼克定理 (484)7.6.2 相干面积 (486)7.6.3 均匀圆形光源 (486)7.7 互相干函数的传播和广义惠更斯原理 (488)习题 7 (491)第八章光学全息 (496)8.1 光学全息概述 (496)8.1.1 全息术的发展简史 (496)8.1.2 全息照相的基本特点 (498)8.1.3 全息图的类型 (500)8.2 全息照相的基本原理 (501)8.2.1 全息照相的基本过程 (501)8.2.2 波前记录 (502)8.2.3 记录过程的线性条件 (503)8.2.4 波前再现 (504)8.3 同轴全息图和离轴全息图 (507)8.3.1 同轴全息图 (507)8.3.2 离轴全息图 (510)8.4 基元全息图 (514)8.4.1 基元全息图 (514)8.4.2 基元光栅 (515)8.5 菲涅耳全息图 (517)8.5.1 点源全息图和基元波带片 (517)8.5.2 几种特殊情况的讨论 (521)8.6 像全息图 (524)8.6.1 再现光源宽度的影响 (524)8.6.2 再现光源光谱宽度的影响 (525)8.6.3 色模糊 (527)8.6.4 像全息图的制作 (528)8.7 傅里叶变换全息图 (529)8.7.1 傅里叶变换全息图的原理 (530)8.7.2 准傅里叶变换全息图 (532)8.7.3 无透镜傅里叶变换全息图 (533)8.8 彩虹全息 (535)8.8.1 二步彩虹全息 (535)8.8.2 一步彩虹全息 (536)8.8.3 彩虹全息的色模糊 (537)8.9 相位全息图 (540)8.10 模压全息图 (541)8.10.1 模压全息图的制作 (542)8.10.2 全息烫印箔 (542)8.10.3 动态点阵全息图 (543)8.11 体积全息 (543)8.11.1 透射体积全息图 (544)8.11.2 反射全息图 (546)8.12 平面全息图的衍射效率 (546)8.12.1 振幅全息图的衍射效率 (547)8.12.2 相位全息图的衍射效率 (548)8.13 全息记录介质 (549)8.13.1 基本术语 (549)8.13.2 E-D曲线和特性曲线 (551)V8.13.3 全息记录介质的分类 (554)习题 8 (558)第九章光学信息处理技术 (562)9.1 引言 (562)9.2 早期研究成果 (563)9.2.1 阿贝成像理论 (563)9.2.2 阿贝-波特(Abbe-Porter)实验 (564)9.2.3 泽尼克相衬显微镜 (568)9.2.4 改善的照片质量 (570)9.3 空间频率滤波系统 (571)9.3.1 空间滤波系统 (571)9.3.2 空间滤波的傅里叶分析 (572)9.3.3 滤波器的种类及应用举例 (576)9.4 相干光学信息处理 (580)9.4.1 相干光学信息处理系统 (580)9.4.2 多重像的产生 (581)9.4.3 图像的相加和相减 (581)9.4.4 光学微分—像边缘增强 (584)9.4.5 综合孔径雷达 (586)9.5 非相干光学信息处理 (588)9.5.1 相干光与非相干光处理的比较 (588)9.5.2 非相干空间滤波 (589)9.5.3 基于几何光学的非相干处理 (593)9.6 白光信息处理 (594)9.7 光计算 (595)9.7.1 光学矩阵运算 (596)9.7.2 光学互连 (597)9.7.3 光学神经网络 (598)习题 9 (598)。
信息光学:1-1常用函数
一幅图像由缓慢变化的背景、粗的轮廓等比较低 的“空间频率”成分和急剧变化的细节等比较高 的“空间频率”成分构成。
5
学完本课程后要对光学现象有一个新的认识:
1、衍射场的计算; 2、透镜成像的本质; 3、光学成像系统的传递函数; 4、光学全息技术与应用; 5、光学信息处理的理论基础及应用;
Step(x)
0
x
11
第一章 §1.1 常用函数 阶跃函数
标准型:
x0 是间断(跃变)点
Step( x-x0 ) =
1 , x > x0 1/2, x = x0 0, x < x0
Step(x)
1
0
x0
x
12
第一章 §1.1 常用函数 阶跃函数
阶跃函数的性质
与函数相乘
f(x)
Step( x-x0 ) ·f(x)=
0ay xb
20
第一章 §1.1 常用函数 矩形函数
标准型
rect x x0 • rect y y0
a
b
(x0 、y0 )是对称中心
一维情况
二维情况
rect(x/a) 1
rect(x,y)
0 x0 x
0 y0
x0
ay
x
b
21
第一章 §1.1 常用函数 矩形函数 光学意义
一维矩形函数
单缝 的 透过率函数
Sgn(x) = 2 Step (x) - 1
16
第一章 §1.1 常用函数 符号函数
符号函数的性质 与函数相乘
f(x) Sgn( x-x0 ) ·f(x)= 0
- f(x)
信息光学 中常用函数
④朱自强等,现代光学教程,四川大学出版社,1990
⑤卞松玲等,傅立叶光学,兵器工业出版社,
⑥蒋秀明等,高等光学,上海交大出版社
⑦M.波恩,E.沃耳夫,光学原理,科学出版社,1978
⑧吕乃光等,傅立叶光学基本概念和习题
⑨谢建平等,近代光学基础,中国科技大学出版社,1990
2、卷积的性质
1)卷积符合交换律
2)卷积满足分配律
3)卷积的位移性质
若f(x,y)*g(x,y)=h(x,y),则f(x-x0,y-y0)*g(x,y)=h(x-x0,y-y0) (证略)
4)结合律
3、相关函数的定义
§1-4Fourier级数
Fourier分析方法是研究振动和波动现象的重要工具。其在物理上说明:任意波形总能进行谱分解——即表示为不同频率、不同振幅的简谐波的叠加。上世纪六十年代发展了快速Fourier变换(FFT),为Fourier分析在实际中广泛应用创造了条件。现在的有关数值计算程序,如Fortran、Matlab、Mathcad等都加挂了FFT程序模块,为实际应用提供了方便。
对一个非周期函数,可以看成是某一周期函数T→∞时转化而来(如图),即
这样非周期函数f(x)的傅立叶级数就可以写为
当n取一切整数时, 所对应的点便能均匀地分布在整个数轴上。记两点之间的距离为
则
因为T→∞, →0,而n可以取一切整数,因此 可以取任何数,就象一个变量一样,我们记为 =ω,根据积分的定义,则上述傅立叶级数可以写为
常用的傅立叶变换对见表1-2(P.35)。下面给出几个傅立叶变换的例子。
,
所以
从而
由于上式与φ无关,所以圆对称函数 的傅立叶变换 也是圆对称函数。这一变换使用频繁,我们给它一个专门的名称——傅立叶-贝塞尔变换,记为 。所以
信息光学03-数学基础2-脉冲函数和卷积
4.二者相乘;
1/3
0
46
f()
1/5 0
1/3
0
46
-9
h(x-)
59
h(-)
1/5 -5 0
5. 乘积函数曲线下面积 的值即为g(x).
x-9 x-5
x0 4 6
练习: 计算
rect(x)*rect(x)
g(x) 2/15
0
x 9 11 13 15
1 fx0dxx0
a a a
§0-2 梳状函数 练习
0-6(2)
g(x)f(x)com x-bx0 b
b1comxb-0x b b
bd[x(x0nb)] n
bf(x0n)db[x(x0n)b ] n
§0-3 卷积 convolution
三、计算方法--几何作图法
练习: 计算
rect(x) *rect(x)
1.用哑元画出 二个 rect()
rect() 1
rect() 1
-1/2 0 1/2
-1/2 0 1/2
2.将rect()折叠后不变;
1 rect()
3.将一个rect(-)移位至给定的x0,
g(x)= f(x)[d(x+a) d(x-a)]
并作出示意图。 0-6:已知连续函数f(x), a>0和b>0 。求出
下列函数:
(1) h(x)= f(x)d(ax-x0)
(2) g(x)= f(x)comb[(x- x0)/b]
§0-2 d -函数 练习
d 0-4:
f(x )[x (x 0 b )]d x f(x 0 b )
信息光学部分章节小结
信息光学部分章节小结第一部分:数学基础一 几个常用函数(1)矩形函数:该二维矩形函数可用来描述无限大不透明屏上矩形孔的透过率。
(a>0,b>0)(2)sinc 函数:sin by b y a x a x b y c a x c b y a x /)/sin(/)/sin()(sin )(sin ),ππππ∙=∙= (a>0,b>0) (3)阶跃函数: (4)符号函数:(5)三角函数:二维三角函数可用来表示一个光瞳为矩形的非相干成像系统的光学传递函数 (6)高斯函数:(7)圆域函数:(8)δ函数: ⎪⎩⎪⎨⎧≤≤=∙=others b y a x by rect a x rect b y a x rect ,02,2,1)()(),(⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<=0102100)(a x a x a x a x step ⎪⎪⎪⎩⎪⎪⎪⎨⎧<-=>=010001)sgn(a x a x a x a x ⎪⎩⎪⎨⎧<--=ΛΛ=Λothers b y a x b y a x b y a x b y a x ,01,),1)(1()()(),(0,]})()[(exp{),(22>+-=b a b y a x b y a x Gauss πothers r y x r r y x circ r r circ 01{)()(0220220≤+==+= 1),( 20,),( 1000000⎪⎪⎭⎪⎪⎬⎫=--︒⎩⎨⎧==∞=--︒⎰⎰∞+∞-dxdy y y x x others y y x x y y x x δδ(9)comb 函数:∑--==nm ny y mx x y x y y comb x x comb y y x x comb ,00000000),()()(),(δ 二 几种重要的数学运算1 卷积:卷积的几个重要性质: (1) 线性性质:{),(),(),(),(),()},(),(y x g y x bh y x g y x af y x g y x bh y x af *+*=*+(2) 卷积符合交换律:),(),(),(),(y x f y x h y x h y x f *=*(3) 卷积符合结合律:[][]),(),(),(),(),(),(y x g y x h y x f y x g y x h y x f **=**(4) 卷积的坐标缩放:若),(),(),(y x g y x h y x f =*,则),(1),(),(by ax g ab by ax h by ax f =* (a,b 均不等于0) (5) 卷积位移不变性:若),(),(),(),(y x f y x h y x h y x f *=*,则),(),(),(),(),(000000y y x x g y y x x h y x f y x h y y x x f --=--*=*--(6) 函数),(y x f 与δ函数的卷积:),(),(),(0000y y x x f y y x x y x f --=--*δ2 相关互相关:自相关:3 傅立叶变换 傅立叶变换对:正变换 ⎰⎰+∞∞-+-=dxdy y f x f j y x f f f F y x y x )(2exp[),(),(π 逆变换 ⎰⎰+∞∞-+=y x y x y x df df y f x f j f f F y x f )(2exp[),(),(π频谱函数),(y x f f F 一般是复函数,因此:[]),(exp ),(),(y x y x y x f f i f f F f f F φ= 傅立叶变换的重要性质:(1)线性 a,b 为任意常数ηξηξηξd d y x h f y x h y x f y x g ),(),(),(),(),(--=*=⎰+∞∞-),(),(),(),(),(y x g y x f d d y x g f y x e fg ⊗=++=⎰⎰*ηξηξηξηξηξηξηξηξηξd d f y x f d d y x f f y x f y x f y x e ff ),(),(),(),(),(),(),(**⎰⎰⎰⎰--=++=⊗=),(),(y x bg y x af +⇔(,)(,)x y x y aF f f bG f f +(2)缩放定理 (3)位移定理 [])(2ex p ),(),(b f a f i f f F b y a x f y x y x +±⇔±±π),()](2exp[),(ηξηξπ y x f f F y x i y x f ⇔+±(4)卷积定理),(),(),(),(),(),(),(),(y x y x y x y x f f G f f F y x g y x f f f G f f F y x g y x f *⇔⇔* (5)互相关定理),(),(),(),(),(),(),(),(y x y x y x y x f f G f f F y x g y x f f f G f f F y x g y x f ⊗⇔⇔⊗***由互相关定理可以推导出自相关定理。
信息光学2
f ( x , y ) ∗ g ( x , y )= ∫ ∫− ∞ g (ξ ,η ) f ( x − ξ , y − η ) dξ dη
两个复函数f(x,y),g(x,y)的互相关: 的互相关: 两个复函数 的互相关
∞
= ∫∫ g (ξ ,η ) f * (ξ − x,η − y )dξdη f ( x, y )★g ( x, y ) ∞
e ff ( x, y ) ≤ e ff (0,0)
1-5 傅立叶变换的基本概念 - 傅立叶分析是广泛应用于物理学和各工程学科的重要数学工具。 傅立叶分析是广泛应用于物理学和各工程学科的重要数学工具。 1.二维傅立叶变换的定义 二维傅立叶变换的定义 复函数f(x,y)的傅立叶变换定义为: 的傅立叶变换定义为: 复函数 的傅立叶变换定义为
证明: 证明:
f ( x )★ g ( x ) = f ( − x ) ∗ g ( x )
*
= g ( x) ∗ f * (− x) = g * ( − x )★ f * ( − x )
2.自相关 自相关 当f(x,y)=g(x,y)时,互相关称为函数的自相关: = 时 互相关称为函数的自相关:
e ff ( x, y ) = ∫∫ f * (ξ ,η ) f ( x + ξ , y + η )dξdη
4.虚、实、奇、偶函数傅立叶变换的性质 虚 复函数f(x,y)的傅立叶变换可写为: 复函数 的傅立叶变换可写为: 的傅立叶变换可写为
F( fx, f y ) = ∫ ∫
∞
−∞
f ( x, y )e
−i 2π ( f x x + f y y )
dxdy
= ∫∫
∞
−∞
f ( x, y ) cos[2π ( f x x + f y y )]dxdy −
信息光学常用函数傅立叶变换相关卷积线性系统二维光场
一般情况下,相关运算与卷积运算的区别:
f(x)要取复共轭;运算时 f(x) 不需折叠
2.互相关不满足交换律
相 关 运 算(correlation)
2. 自相关 auto-correlation
rff (x)
f (x)★f (x)
f ( ) f *( x)d
互相关在两函数有相似性时出现峰值, 自相关则在位移到重叠时出现极大值
相 关 运 算(correlation)
1. 互相关 cross correlation
rfg (x)
f (x)★g(x)
f *( )g(x )d
与卷积的关系:
rfg ( x) f * ( x)g( )d g( x) f * ( x)
1. 当且仅当 f*(-x)=f(x) ,相关才和卷积相同。
三角形函数
原型
:
tri ( x)
1
0,
x,
x 1 其它 ,
标准型
:
tri
(
x
a
x0
)
1 0,
x x0 , a
x x0 1 a 其它
tri(x) 1
1
-1 0 1 x
-a+x0
x x0 a+x0
底宽: 2 最大值:tri(0)=1 曲线下面积: S=1
底宽:2|a|, 面积: S= |a|
2024/10/1
H仅依赖于观察点与脉冲输入点坐标在x和y方向
的相对间距 ( x )和 ( y ) ,与坐标本身的绝
对数值无关。
叠
加
g( x, y) f ( , )h( x , y )dd
积
分
f ( x, y) h( x, y)
信息光学基础1-2脉冲函数
Nrect(Nx)
NGaus( Nx)
—— 当函数底边变得越来越小的时候, 其高度不变仍然为1,面积趋近于0;
但若当高度为N倍,实际值会趋于无穷大,因而面积为1.
(x) lim Nrect(Nx) (x) lim NGaus(Nx)
N
N
可以用矩形、高斯、sinc等函数序列来表示脉冲函数。
1).筛选特性 若函数 f (x, y) 在 (x0 , y0 ) 点连续,则有
f (x, y) (x x0, y y0 )dxdy f (x0, y0 ) ——可以筛出某点的函数值
2).可分离变量
(x x0, y y0 ) (x x0 ) ( y y0 )
02. 数学基础2: 函数
学习目标: – 了解脉冲函数定义. – 熟悉脉冲函数对应的物理模型. – 熟悉梳函数定义及其数学表达式.
2016/9/29
– 01 脉冲函数的定义 – 02 脉冲函数的物理意义 – 03 脉冲函数的性质 – 04 梳函数定义及其性质
1930 P.A.M.Dirac 狄拉克 函数
2016/9/29
04. 梳状函数(Comb function)
一维梳状函数 comb(x) (x n) n
n为整数
—— 沿x轴的、间隔为1的多个脉冲函数的无穷序列. —— 代表不考虑缝宽度和总尺寸的线光栅.
2016/9/29
——间隔为T(>0)的脉冲序列
(x nT ) 1 ( x n) = 1 comb( x )
2016/9/29
3).坐标缩放性质
(ax,by) 1 (x, y) a, b为任意实常数
光学信息第二章1-2
a0 k U( x, y ) exp( jkz1 )exp{ j [( x x0 )2 ( y y0 )2 ]} z1 2z1
( x x0 )2 ( y y0 )2 r z1 2z1
• 说明:分母中 r 直接用z1替代,而指数项中 r 由 于波长λ极小,k 2 很大,上式中第二项不能 省略
coscos平面波的空间频率是信息光学中常用的基本物理量深入理解这个概念的物理含义是很重要的首先研究波矢量位于xz平面内的简单情况考虑cosexpcos复振幅在xy平面上周期分布的空间周期可以用相位差的两相邻等相位线的间距x表示则有x方向的空间频率用表示单位因此y方向的空间频率cos传播方向余弦为cos0的单色平面波在xy平面上的复振幅分布可用xy方向的空间频率来表示
注
意
空间频率的概念同样可以描述其它物 理量如光强度的空间周期分布,但它们有 不同的物理含义。 对于非相干照明的平面上的光强分布, 也可以通过傅里叶分析利用空间频率来描 ( f x 不再和单色平面波 , fy) 述。但空间频率 exp j2 ( f x x 也就不再对应沿某一 f y y) 有关, 方向传播的平面波。
U ( x, y ) A exp j 2 ( f x x f y y )
• 代表了一个传播方向余弦为 (cos , cos ) 的单色平面波。 • 我们观察的不是某一个平面上而是整个空间光场分 cos 布,可以类似地定义沿z方向的空间频率 f z 有 U ( x, y, z ) a exp j 2 ( f x x f y y f z z ) • 由 cos2 cos2 cos2 1 有 f 2 f 2 f 2 1 x y z 2
2.2