材料科学基础-3晶体缺陷

合集下载

材料科学基础-§3-1 点缺陷

材料科学基础-§3-1 点缺陷

柏氏矢量的守恒性
对一条位错线而言,其伯氏矢量是固定不变的,此即位 错的伯氏矢量的守恒性。 推论: 一条位错线只有一个伯氏矢量。
如果几条位错线在晶体内部相交
(交点称为节点),则指向节点的 各位错的伯氏矢量之和,必然等于 离开节点的各位错柏氏矢量之和 。
b1 b2 b3
三. 晶体中位错的组态和位错密度
材料性能的改善,对于新型材料的设计、研究与开发具有
重要意义。
晶体缺陷按范围分类:
点缺陷(Point Defect): 在三维空间各方向上尺寸 都很小,在原子尺寸大小的晶体缺陷。 线缺陷(Line Defect): 在三维空间的一个方向上 的尺寸很大(晶粒数量级),另外两个方向上的尺寸很 小(原子尺寸大小)的晶体缺陷。其具体形式就是晶体 中的位错(Dislocation)。 面缺陷(Interfacial Defect): 在三维空间的两个方 向上的尺寸很大(晶粒数量级),另外一个方向上的尺 寸很小(原子尺寸大小)的晶体缺陷。
1. 刃型位错:设有一简单立方结构的晶体,在切应力的作 用下发生局部滑移,发生局部滑移后晶体内在垂直方向出 现了一个多余的半原子面,显然在晶格内产生了缺陷,这 就是位错,这种位错在晶体中有一个刀刃状的多余半原子 面,所以称为刃型位错。
通常称晶体上半部多出原子面的位错为正刃型位错, 用符号“┴”表示,反之为负刃型位错,用“┬”表示。
Ev CV A exp( ) kT
在高于 0 K 的任何温度下,晶体最稳定的状态是含 有一定浓度点缺陷状态。此浓度称点缺陷的平衡浓度。
部分金属的空位形成能和500K的空位平衡浓度
金属 空位形成能 (10-8J) 空位 平衡浓度 Pb Al Mg Au Pt Cu W

材料科学基础 第 三 章 晶 体 缺 陷 (三)

材料科学基础 第 三 章  晶 体 缺 陷 (三)

c、位错的滑移(slipping of disloction)总结
任何类型的位错均可进行滑移.
(1) 刃位错的滑移过程(教材图3.13)∥b、b⊥、滑移 方向⊥ 、滑移方向∥b,刃型位错的滑移面就是位错线 与柏氏矢量所构成的平面,因此刃型位错的滑移面是单 一的。 (2) 螺型位错的滑移过程(教材图3.14)∥b、b ∥ 、滑 移方向⊥ 、滑移方向⊥ b ,非单一滑移面。可发生交 滑移。 (3) 混合位错的滑移过程(教材图3.15)沿位错线各点的 法线方向在滑移面上扩展,滑动方向垂直于位错线方向。 但滑动方向与柏氏矢量有夹角。
3.2.3 位错的运动
滑移(slip): 在一定的 切应力的作用下,位错在滑移 面上受到垂直于位错线的作用 力。当此力足够大,足以克服 位错运动时受到的阻力时,位 错便可以沿着滑移面移动,这 种沿着滑移面移动的位错运动 称为滑移或者滑动。 *保守运动。滑移实际上是 指多个位错的行为
.3 位错的运动
1、 位错的滑移
位错的滑移(slipping of disloction): 位错的滑移是在外加切应力作用下,通过位错 中心附近的原子沿柏氏矢量方向在滑移面上不断地 作少量位移(小于一个原子间距)而逐步实现的。 如图3-13 刃型位错的滑移过程, 图3-14 螺型位错的滑移过程, 图3-15 混合型位错的滑移过程所示。
攀移(climb):刃型位错的位错线还可以沿着 垂直于滑移面的方向移动,刃型位错的这种运动称 为攀移。也就是说只有刃位错才有攀移。 *非保守运动,并引起位错的半原子面扩大 和缩小,因此攀移总是伴随着点缺陷的输运。 除滑移和攀移还有交割(cross/interaction) 和扭折(kink)
位错的攀移
刃型位错还可以在垂直滑移面的方向上运动即发 生攀移。攀移的实质是多余半原子面的伸长或缩短。

第3章点缺陷、位错的基本类型和特征_材料科学基础

第3章点缺陷、位错的基本类型和特征_材料科学基础

位错运动导致晶体滑移的方向;该矢量的模|b|表示
了畸变的程度,即位错强度。
② 柏氏矢量的守恒性:柏氏矢量与回路起点及其具体途 径无关。一根不分岔的位错线,不论其形状如何变化 (直线、曲折线或闭合的环状),也不管位错线上各 处的位错类型是否相同,其各部位的柏氏矢量都相同; 而且当位错在晶体中运动或者改变方向时,其柏氏矢 量不变,即一根位错线具有唯一的柏氏矢量。
18

3.2 位错
三 章
3.2.1 位错的基本类型和特征
1. 位错的概念:位错是晶体的线性缺陷。晶体中

某处一列或若干列原子有规律的错排。

• 意义:对材料的力学行为如塑性变形、强度、断裂等

起着决定性的作用,对材料的扩散、相变过程有较大

影响。
• 位错的提出:1926年,弗兰克尔发现理论晶体模型刚
b l
positive
b
l
negative
Edge dislocations


b
b
right-handed left-handed Screw dislocations
26
3.2
3. 伯氏矢量的特性 位 ① 柏氏矢量是一个反映位错周围点阵畸变总累积的物理

量。该矢量的方向表示位错的性质与位错的取向,即
性切变强度与与实测临界切应力的巨大差异(2~4个 数量级)。1934年,泰勒、波朗依、奥罗万几乎同时 提出位错的概念。1939年,柏格斯提出用柏氏矢量表 征位错。1947年,柯垂耳提出溶质原子与位错的交互 作用。1950年,弗兰克和瑞德同时提出位错增殖机制。 之后,用TEM直接观察到了晶体中的位错。
➢ 特征:如果杂质的含量在固溶体的溶解度范围内,

3_《材料科学基础》第三章_晶体结构缺陷((上)

3_《材料科学基础》第三章_晶体结构缺陷((上)

点缺陷(零维缺陷)--原子尺度的偏离.
按 缺
例:空位、间隙原子、杂质原子等
陷 线缺陷(一维缺陷)--原子行列的偏离.

例:位错等
几 何
面缺陷(二维缺陷)--表面、界面处原子排列混乱.

例:表面、晶界、堆积层错、镶嵌结构等
态 体缺陷(三维缺陷)--局部的三维空间偏离理想晶体的周期性
例:异相夹杂物、孔洞、亚结构等
1、 固溶体的分类
(1) 按杂质原子的位置分: 置换型固溶体—杂质原子进入晶格中正常结点位置而取代基
质中的原子。例MgO-CoO形成Mg1-xCoxO固溶体。 间隙型固溶体—杂质原子进入晶格中的间隙位置。
有时俩
(2)按杂质原子的固溶度x分: 无限(连续)固溶体—溶质和溶剂任意比例固溶(x=0~1)。
多相系统
均一单相系统
Compounds AmBn
原子间相互反应生成
均一单相系统
结构
各自有各自的结构
A structure
structure
+ B structure
结构与基质相同 A structure
结构既不同于A也不同于B New structure
化学计量 A/B
不定
固溶比例不定
m:n 整数比或接近整数比的一定范围内
四、固溶体Solid solution(杂质缺陷)
1、固溶体的分类 2、置换型固溶体 3、间隙型固溶体 4、形成固溶体后对晶体性质的影响 5、固溶体的研究方法
①固溶体:含有外来杂质原子的单一均匀的晶态固体。 例:MgO晶体中含有FeO杂质 → Mg1-xFexO
基质 溶剂 主晶相
杂质 溶质 掺杂剂
萤石CaF2(F-空位)

材料科学基础第三章晶体缺陷

材料科学基础第三章晶体缺陷

够的能量而跳入空位,并占据这个平衡位置,这时在这个原 子的原来位置上,就形成一个空位。这一过程可以看作是空 位向邻近结点的迁移。
在运动过程中,当间隙原子与一个空位相遇时,它将落入
这个空位,而使两者都消失,这一过程称为复合,或湮没。
(a)原来位置;
(b)中间位置;
(c)迁移后位置
图 空位从位置A迁移到B
2 Ar a 3 N A 8.57 (3.294108 )3 6.0231023 x 1 2 Ar 2 92.91 7.1766103 106 7.1766103 7176 .6(个) 所以, 106 个Nb中有7176 .6个空位。
a NA
作业:
二.本章重点及难点 1、点缺陷的形成与平衡浓度 2、位错类型的判断及其特征、伯氏矢量的特征和物理意义 3、位错源、位错的增殖(F-R源、双交滑移机制等)和运动、 交割
4、关于位错的应力场可作为一般了解
5、晶界的特性(大、小角度晶界)、孪晶界、相界的类型
维纳斯“无臂” 之美更深入人心
处处留心皆学问
2.点缺陷的形成(本征缺陷的形成)
点缺陷形成最重要的环节是原子的振动 原子的热振动
(以一定的频率和振幅作振动)
原子被束缚在它的平衡位置上,但原子却在做着挣脱
束缚的努力
点缺陷形成的驱动力:温度、离子轰击、冷加工
在外界驱动力作用下,哪个原子能够挣脱束缚,脱离
平衡位置是不确定的,宏观上说这是一种几率分布
刃型位错的特点:
1).刃型位错有一个额外的半原子面。其实正、负之分只具 相对意义而无本质的区别。 2).刃型位错线可理解为晶体中已滑移区与未滑移区的边界 线。它不一定是直线,也可以是折线或曲线,但它必与滑移 方向相垂直,也垂直于滑移矢量。

材料科学基础第3章

材料科学基础第3章

3.2 位错
晶体在结晶时受到杂质、温度变化或振动产
生的应力作用,或由于晶体受到打击、切削、 研磨等机械应力的作用,使晶体内部质点排列 变形,原子行列间相互滑移,即不再符合理想 晶格的有序排列,由此形成的缺陷称位错。
3.2.1 位错的基本类型和特征
刃型位错 螺型位错
刃型位错结构的特点: 1) 刃型位错有一个额外的半原子面。一般把多出的半原子面在滑移面 上边的称为正刃型位错,记为“┻”;而把多出在下边的称为负刃 型位错,记为“┳”。
螺型位错
a. 位错中心附近的原子移动小于一个原子间距的距离。 b. 位错线在滑移面上向左移动了一个原子间距。
c. d. e. 当位错线沿滑移面滑移通过整个晶体时,就会在晶体表面沿柏氏矢 量方向产生宽度为一个柏氏矢量大小的台阶。 螺型位错的运动方向始终垂直位错线并垂直于柏氏矢量。 螺型位错线与柏氏矢量平行,故其滑移不限于单一的滑移面上,所 有包含位错线的晶面都可成为其滑移面。
晶体中的位错环
晶体中的位错网络
3.柏氏矢量的表示法
•柏氏矢量的大小和方向可用与它同向的 晶向指数来表示。
[
a a a [2 2 2 ]
]
a [1 1 1] 2
例如:
在体心立方中, 柏氏矢量等于从体心 立方晶体的原点到体 心的矢量。
b=
a [1 1 1] 2
a •一般立方晶系中柏氏矢量可表示为b= n <u v w>
4)
5)
2.螺型位错
设立方晶体右侧受到切 应力的作用,其右侧上 下两部分晶体沿滑移面 ABCD发生了错动,如图 所示。这时已滑移区和 未滑移区的边界线 bb´(位错线)不是垂直而 是平行于滑移方向。
F
C D

《材料科学基础》 第03章 晶体缺陷

《材料科学基础》 第03章 晶体缺陷

第三节 位错的基本概念
三、位错的运动
刃位错的攀移运动:刃型位错在垂直于滑移面方向上的运动。 刃位错发生攀移运动时相当于半原子面的伸长或缩短,通常把 半原子面缩短称为正攀移,反之为负攀移。 滑移时不涉及单个原子迁移,即扩散。刃型位错发生正攀 移将有原子多余,大部分是由于晶体中空位运动到位错线上的 结果,从而会造成空位的消失;而负攀移则需要外来原子,无 外来原子将在晶体中产生新的空位。空位的迁移速度随温度的 升高而加快,因此刃型位错的攀移一般发生在温度较高时;另 外,温度的变化将引起晶体的平衡空位浓度的变化,这种空位 的变化往往和刃位错的攀移相关。切应力对刃位错的攀移是无 效的,正应力的存在有助于攀移(压应力有助正攀移,拉应力 有助负攀移),但对攀移的总体作用甚小。
第一节 材料的实际晶体结构
二、晶体中的缺陷概论
晶体缺陷按范围分类:
1. 点缺陷 在三维空间各方向上尺寸都很小,在原 子尺寸大小的晶体缺陷。
2. 线缺陷 在三维空间的一个方向上的尺寸很大(晶 粒数量级),另外两个方向上的尺寸很小(原子尺 寸大小)的晶体缺陷。其具体形式就是晶体中的 位错Dislocation 。
说明:这是一个并不十分准确的定义方法。柏氏矢量的方向与位错线方向的定义有关,应该首 先定义位错线的方向,再依据位错线的方向来定柏氏回路的方向,再确定柏氏矢量的方 向。在专门的位错理论中还会纠正。
第三节 位错的基本概念
二、柏氏矢量
柏氏矢量与位错类型的关系:
刃型位错 柏氏矢量与位错线相互垂直。(依方向关系可 分正刃和负刃型位错) 螺型位错 柏氏矢量与位错线相互平行。(依方向关系可 分左螺和右螺型位错) 混合位错 柏氏矢量与位错线的夹角非0或90度。
过饱和空位 晶体中含点缺陷的数目明显超过平衡 值。如高温下停留平衡时晶体中存在一平衡空位, 快速冷却到一较低的温度,晶体中的空位来不及移 出晶体,就会造成晶体中的空位浓度超过这时的平 衡值。过饱和空位的存在是一非平衡状态,有恢复 到平衡态的热力学趋势,在动力学上要到达平衡态 还要一时间过程。

材料科学基础第三章 晶体缺陷

材料科学基础第三章 晶体缺陷

贵州师范大学
化学与材料科学学院
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
二、点缺陷的产生 1. 平衡点缺陷及其浓度 虽然点缺陷的存在使晶体的内能增高,但 同时也使熵增加,从而使晶体的能量下降。因 此,点缺陷是晶体中热力学平衡的缺陷。 等温等容条件下,点缺陷使晶体的亥姆霍 A U T S 兹自由能变化为:
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
三、点缺陷与材料行为 1. 点缺陷的运动 1)空位的运动
2)间隙原子的运动 3)空位片的形成
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
第三章 晶体缺陷
CRYSTAL DEFECTS
点缺陷 位错的基本概念 位错的弹性性质 作用在位错线上的力 实际晶体结构中的位错 晶体中的界面
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
一、点缺陷的类型
点缺陷的类型: (a) Schottky 空位; (b) Frenkel 缺陷; (c) 异类间隙原子; (d) 小置换原子; (e) 大置换原子
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY

厦门大学 材料科学基础(二) 第四章-3 缺陷化学 缺陷反应及其书写原则

厦门大学 材料科学基础(二) 第四章-3 缺陷化学 缺陷反应及其书写原则

H2O
H OH
[ H ] [OH ] Kw
0
h e'
n p Kg

热缺陷浓度的计算方法
缺陷看作化学组元
化学反应
统计热力学
化学平衡的质量作用定律 热缺陷浓度

弗仑克尔缺陷的生成
AgAg +Vi
KF = [Ag i ][VAg '] [Ag Ag ][Vi ]
Agi· +VAg′

Na取代YHale Waihona Puke 且进入间隙位置:4.8 色心

F色心
色心名称 α中心或F+ F色心 F′色心 M色心 R色心
符号 VX· (VX· e′) (VX· 2e′) (2VX· 2e′) (3VX· 3e′) (VM′h· ) (2VM′2h· ) (KMVX· e′)
形成方式 阴离子空位 1个α中心缔合1个电子 1个α中心缔合2个电子 相邻的2个F色心缔合 以等边三角形出现在(111)晶面 上的3个最邻近的F色心缔合 1个阳离子空位缔合1个电子空穴 相邻的2个阳离子空位缔合2个电子 空穴 F色心的1种,1个阴离子空位周围 的6个正离子之一是1个置换式 的1价杂质正离子,例如NaCl 中的K+

肖特基缺陷的生成 晶格位置 = 内部空位+表面(晶界)位置
NaNa ClCl
平衡常数:
因为:
VNa VCl Na (表面) Cl (表面)
'


KS [VNa ' ][VCl ]
[VNa ' ] [VCl ]
GS KS exp kT
G [VNa ' ] KS exp S 2kT

晶体缺陷【材料科学基础】

晶体缺陷【材料科学基础】

14
大角度晶界
¾ ¾ 9 9
大角度晶界的结构较复杂,其中原子排列较不规则。 有关大角度晶界的结构,人们曾提出许多模型: 早期:认为晶界是由一层很薄(几个原子间距)的非晶 质组成。 后来: 过渡结构模型:晶界原子分布同时受两相邻晶粒位向的 影响,处于折中位置。 小岛结构模型:晶界中的一部分原子与其相邻两边界的 点阵匹配排列,成为好区;有的部分(岛屿)原子排列 较混乱,成为坏区。好区与坏区交替相间组成晶界。

相界能低(畸变非常小)。
36
半共格相界
定义:两相结构相近而原子 间距相差较大,在相界面上 出现了一些刃位错。(界面 上两相原子部分匹配) 相界能较高(有畸变)。相 界面上的原子共格关系主要 通过一组刃位错调整和维持。

37

半共格相界上位错间距D取决于相界处两相匹配晶 面的错配度(δ) 。 相界两侧原子的不匹配程度
19
晶界的性质
晶界能:形成单位面积晶界时所增加的能量。 ¾ 小角度晶界的晶界能: 小角度晶界的能量主要来自位错能量(形成位错的 能量和将位错排成有关组态所作的功),而位错密 度又决定于晶粒间的位向差,所以,小角度晶界能 也和位向差有关:

20
可见,小角度晶界的界面能随位向差增加而增大。
21
大角度晶界的晶界能: 9 基本恒定,约在0.25~1.0J/m2范围内,与晶粒 之间的位向差无关。 9 晶界能可以界面张力的形式来表现,且可以通过界 面交角的测定求出它的相对值。三个晶粒相交于一 点,界面张力达到平衡时:
9
界面结构:溶质原子在大角度晶界中偏聚严重。
27
¾ ¾ ¾ ¾ ¾
晶界的其它特性: 晶界的扩散激活能约为晶内的一半,晶界处原子的 扩散速度比在晶内快得多。 随温度升高,保温时间延长,晶界发生迁移,晶粒 要长大,晶界平直化;晶界可能熔化(过烧)。 新相易在晶界处优先形核(晶界能量高,原子活动 能力大)。 晶界具有较低的抗腐蚀能力。 晶界阻碍位错运动,使金属具有较高的塑变抗力。

[课件]材料科学基础 第三章晶体缺陷PPT

[课件]材料科学基础 第三章晶体缺陷PPT

2018/12/13
《材料科学基础》CAI课件-李克
11
b. 螺型位错 screw dislocation
位错线bb’:已滑移区和未滑移区的边界线
特征:
1)无额外半原子面, 原子错排是轴对称的 2)分左螺旋位错,符合左手法则;右螺旋位错 ,符合右手法则 3)位错线与滑移矢量平行,且为直线,位错线的运动方向与滑移矢量垂直 4)凡是以螺型位错线为晶带轴的晶带 所有晶面都可以为滑移面。 5) 点阵畸变引起平行于位错线的切应变,无正应变。 6)螺型位错是包含几个原子宽度的线缺陷。
2018/12/13 《材料科学基础》CAI课件-李克 9
3.2.1 位错的基本类型和特征
根据几何结构特征: a. 刃型位错 edge dislocation
b. 螺型位错 screw dislocation
2018/12/13
《材料科学基础》CAI课件-李克
10
a. 刃型位错 edge dislocation
材料科学基础 第三章_晶体缺 陷
第三章 晶体缺陷
Imperfections (defects) in Crystals
It is the defects that makes materials so interesting, just like the human being.
Defects are at the heart of materials science.
1、点缺陷的形成 (production of point defects)
原因:热运动:热振动强度是温度的函数 能量起伏=〉原子脱离原来的平衡位置而迁移别处 Schottky 空位,-〉晶体表面 =〉空位(vacancy)

材料科学基础第三章晶体缺陷

材料科学基础第三章晶体缺陷
和缺陷数量变化呈非线与振动熵有关的常数玻尔兹曼常数变化每增加一个空位的能量阵点总数平衡空位数exp点缺陷并非固定不动而是处在不断改变位置的运动过程空位周围的原子由于热振动能量的起伏有可能获得足够的能量而跳入空位并占据这个平衡位置这时在这个原子的原来位置上就形成一个空位
材料科学基础第三章晶体缺陷
本章要求掌握的主要内容
b. 由于存在着这两个互为矛盾的因素,晶体中的点缺陷在一定温度下有一定的平衡数目,这时点 缺陷的浓度就称为它们在该温度下的热力学平衡浓度。
c. 在一定温度下有一定的热力学平衡浓度,这是点缺 陷区别于其它类型晶体缺陷的重要特点。
图 空位-体系能量曲线
1.形成缺陷带来晶格应变,内能U增加,一个缺陷带来的内能
过饱和点缺陷(如淬火空位、辐照缺陷)还提高了 金属的屈服强度。
例1:Cu晶体的空位形成能Ev为1.44×10-19J/atom, 材料常数A取为1,波尔兹曼常数为k=1.38×10-23J/K, 计算:
1)在500℃下,每立方米Cu中的空位数目; 2)500℃下的平衡空位浓度。 (已知Cu的摩尔质量63.54,500℃ Cu的密度为 8.96×106g/m3)
增加为u,所以内能增加
,故内能增加是线性的。
Unu
2.缺陷存在使体系的混乱度增加,引起熵值增加,缺陷存在使 体系排列方式增加,即熵值显著增加。和缺陷数量变化呈非线 性的。
C
n N
A exp( Ev / kT )
n 平衡空位数
N 阵点总数
Ev 每增加一个空位的能量 变化 K 玻尔兹曼常数
A 与振动熵有关的常数
晶体结构的特点是长程有序。结构基元或者构成物体的粒子(原子、离子或分子等)完全按照空间点阵 规则排列的晶体叫理想晶体。 在实际晶体中,粒子的排列不可能这样规则和完整,而是或多或少地存在着偏离理想结构的区域,出 现了不完整性。 把实际晶体中偏离理想点阵结构的区域称为晶体缺陷。 实际晶体中虽然有晶体缺陷存在,但偏离平衡位置很大的粒子数目是很少的,从总的来看,其结构仍 可以认为是接近完整的。

材料科学基础 第三章

材料科学基础 第三章

山 3.混合位错 3.混合位错 东 科 技 大 学
材 料 学 院
滑移矢量既不垂直于位错线也不平行于位错线—一条曲线
一、位错的基本类型和特征
山 东 科 技 大 学
材 料 学 院
一、位错的基本类型和特征
山 东 科 技 大 学
位错的性质: 位错的性质: (1)形状:不一定是直线,位错及其畸变区是一条管道。 (2)是已滑移区和未滑移区的边界。 (3)不能中断于晶体内部。可在表面露头,或终止于晶界和相界, 或与其它位错相交,或自行封闭成环。
山 东 科 技 大 学
1.线缺陷: 1.线缺陷:在三维空间的一个方向上的尺寸很大(晶粒数量级),另外 线缺陷 两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷。 2.意义: 2.意义:(对材料的力学行为如塑性变形、强度、断裂等起着决定性 意义 的作用,对材料的扩散、相变过程有较大影响。) 3.位错的提出: 3.位错的提出:1926年,弗兰克尔发现理论晶体模型刚性切变强度与与 位错的提出 实测临界切应力的巨大差异(2~4个数量级)。 1934年,泰勒、波朗依、奥罗万几乎同时提出位错的概念。 1939年,柏格斯提出用柏氏矢量表征位错。 1947年,柯垂耳提出溶质原子与位错的交互作用。 1950年,弗兰克和瑞德同时提出位错增殖机制。之后,用TEM直接观察 到了晶体中的位错。
机分布,大量晶粒的综合作用, 整个材料宏观上不出现各向异 性,这个现象称为多晶体的伪 各向同性。
材 料 学 院
维纳斯“无臂”之美深入人 心
晶体缺陷赋予材料丰富内容
第3章 晶体缺陷
山 东 晶体中的缺陷概论 科 (corncob) 技 晶体缺陷:在每个晶粒的内部,原子并不是完全呈现周期性的规 大 则重复的排列。把实际晶体中原子排列与理想晶体的差别称为晶体 学 缺陷。

无机材料科学基础第三章晶体结构缺陷

无机材料科学基础第三章晶体结构缺陷
• 点缺陷的存在会引起性能的变化: (1)物理性质、如V、ρ 等; (2)力学性能:采用高温急冷(如淬火 quenching),大 量 的 冷 变 形 (cold working), 高 能 粒 子 辐 照 (radiation)等方法可获得过饱和点缺陷,如使屈服强 度σS提高; ( 3 ) 影 响 固 态 相 变 , 化 学 热 处 理 (chemical heat treatment)等。
(4)溶质原子(杂质原子):
LM 表示溶质L占据了M的位置。如:CaNa SX 表示S溶质占据了X位置。 (5)自由电子及电子空穴:
有些情况下,价电子并不一定属于某个特定位置的原子,在光、电、热 的作用下可以在晶体中运动,原固定位置称次自由电子(符号e/ )。同 样可以出现缺少电子,而出现电子空穴(符号h. ),它也不属于某个特定 的原子位置。
(5)热缺陷与晶体的离子导电性
纯净MX晶体:只有本征缺陷(即热缺陷) 能斯特-爱因斯坦(Nernst-Einstein)方程:
n k 2 e 2 z T [a 2cex k E c p ) T a ( 2a ex k E a p )T ]( n k 2 e 2 z T D
式中 D —— 带电粒子在晶体中的扩散系数; n —— 单位体积的电荷载流子数,即单位体 积的缺陷数。 下标c、a —— 阳离子、阴离子
离子晶体中:CaF2型结构。
从形成缺陷的能量来分析——
Schttky缺陷的形成能量小,Frankel 缺陷的 形成能量大,因此对于大多数晶体来说, Schttky 缺陷是主要的。
(4) 点缺陷对结构和性能的影响
• 点缺陷引起晶格畸变(distortion of lattice),能量升 高,结构不稳定,易发生转变。

材料科学基础第3-4章小结及习题课讲解

材料科学基础第3-4章小结及习题课讲解
表示 ,模的大小表示该晶向上原子间的距离。
b a u2 v2 w2 n
六方晶系中: b=(a/n)[uvtw]
同一晶体中,柏氏矢量愈大,表明该位错导致点阵畸变愈 严重,它所在处的能量也愈高。
3.2.3 位错的运动
基本形式:滑移和攀移
滑移(slip):三种位错的滑移过程 攀移(climb):在垂直于滑移面方向上运动,
第三章 晶体缺陷
晶体缺陷分类及特征(几何形态、相对于晶体的尺寸、影响范围) :
1. 点缺陷:特征是三维空间的各个方面上尺寸都很小,尺寸
范围约为一个或几个原子尺度,包括空位、间隙原子、杂质 和溶质原子。
2. 线缺陷:特征是在两个方向上尺寸很小,另外一个方面上
很大,如各类位错。
3. 面缺陷:特征是在一个方向上尺寸很小,另外两个方向上
晶界:属于同一固相但位向不同的晶粒之间的界面 称为晶界。
亚晶界:每个晶粒有时又由若干个位向稍有差异的 亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界。
确定晶界位置方法: (1)两晶粒的位向差θ (2)晶界相对于一个点阵某一平面的夹角φ。
晶界分类(按θ的大小): 小角度晶界θ<10º 大角度晶界θ>10º
(3)刃型位错标记 正刃型位错用“⊥”表示,负刃型位错用“┬”表示;其
正负只是相对而言。
(4)刃型位错特征: ① 有一额外的半原子面,分正和负刃型位错;
② 可理解为是已滑移区与未滑移区的边界线,可是直线也 可是折线和曲线,但它们必与滑移方向和滑移矢量垂直;
③ 只能在同时包含有位错线和滑移矢量的滑移平面上滑移; ④ 位错周围点阵发生弹性畸变,有切应变,也有正应变;
表面能(γ):产生单位面积新表面所做的功。 表示法:①γ= dw/ds ②γ= T/L (N/m) ③γ= [被割断的结合键数/形成单位新表面]×[能量/每个键] 影响γ的因素: (1)晶体表面原子排列的致密程度。 (2)晶体表面曲率。 (3)外部介质的性质。 (4)晶体性质。

武汉理工大学考研材料科学基础重点 第3章-晶体结构缺陷

武汉理工大学考研材料科学基础重点 第3章-晶体结构缺陷

第二章晶体结构缺陷缺陷的含义:通常把晶体点阵结构中周期性势场的畸变称为晶体的结构缺陷。

理想晶体:质点严格按照空间点阵排列的晶体。

实际晶体:存在着各种各样的结构的不完整性。

本章主要内容:2.1 晶体结构缺陷的类型2.2 点缺陷2.3 线缺陷2.4 面缺陷2.5 固溶体2.6 非化学计量化合物⏹ 2.1 晶体结构缺陷的类型分类方式:几何形态:点缺陷、线缺陷、面缺陷和体缺陷等形成原因:热缺陷、杂质缺陷、非化学计量缺陷、电荷缺陷和辐照缺陷等●一、按缺陷的几何形态分类1. 点缺陷(零维缺陷)缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小。

包括:空位:正常结点没有被质点占据,成为空结点间隙质点:质点进入正常晶格的间隙位置,成为间隙质点错位原子或离子杂质质点:指外来质点进入正常结点位置或晶格间隙,形成杂质缺陷双空位等复合体点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。

2. 线缺陷(一维缺陷)位错指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向较长,另外二维方向上很短,如各种位错。

线缺陷的产生及运动与材料的韧性、脆性密切相关。

3.面缺陷面缺陷又称为二维缺陷,是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维方向上很小。

如晶界、表面、堆积层错、镶嵌结构等。

面缺陷的取向及分布与材料的断裂韧性有关。

4.体缺陷体缺陷亦称为三维缺陷,是指在局部的三维空间偏离理想晶体的周期性、规则性排列而产生的缺陷。

如第二相粒子团、空位团等。

体缺陷与物系的分相、偏聚等过程有关。

●二、按缺陷产生的原因分类1. 热缺陷定义:热缺陷亦称为本征缺陷,是指由热起伏的原因所产生的空位或间隙质点(原子或离子)。

类型:弗仑克尔缺陷和肖特基缺陷。

弗伦克尔缺陷是质点离开正常格点后进入到晶格间隙位置,其特征是空位和间隙质点成对出现。

肖特基缺陷是质点由表面位置迁移到新表面位置,在晶体表面形成新的一层,同时在晶体内部留下空位。

814材料科学基础-第三章 晶体缺陷知识点讲解

814材料科学基础-第三章 晶体缺陷知识点讲解

北京科技大学材料科学与工程专业814 材料科学基础主讲人:薛老师第三章晶体缺陷本章主要内容与要求:内容:(1)点缺陷;(2)线缺陷;(3)面缺陷要求:(1)熟悉三种缺陷的概念、特点;(2)掌握点缺陷中空位浓度的计算;(3)掌握线缺陷中位错的运动,增殖;(4)熟悉各种面缺陷。

知识点1 缺陷定义:实际晶体中原子的排列不可能那样规则、完整,常常存在各种偏离理想结构的情况,这种情况我们就称为晶体缺陷。

作用:晶体缺陷对晶体的性能,特别是对那些结构敏感的性能,如屈服强度、断裂强度、塑性等有很大的影响。

根据几何特征,可以分为:点缺陷、线缺陷、面缺陷三类。

知识点2 点缺陷定义:点缺陷是最简单的一种晶体缺陷,主要是结点上或者邻近的微观区域内偏离晶体的正常结构排列的一种缺陷。

主要包括:空位、间隙原子、杂质或溶质原子。

空位:当某一原子具有足够大的振动能而使振幅增大到一定限度时,就可能克服周围原子对它的制约作用,跳离原来的位置,使阵点中形成空结点,这种空的结点就是空位。

间隙原子:在晶格非结点的位置,往往是间隙,此时在间隙的位置出现了多余的原子,这种多余的原子就是间隙原子。

离开平衡位置的原子有三个去处:(1)肖脱基缺陷:迁移到表面—在内部形成空位(2)弗兰克尔缺陷:原子迁移到间隙中,在晶体中形成数目相等的空位-间隙原子;(3)跑到其他空位,使空位消失。

知识点3 空位平衡浓度空位形成能Ev:在晶体内取出一个原子放在晶体表面上所需要的能量。

通常材料的熔点越高,结合能越大,空位的形成能也越大。

间隙原子会使周围点阵产生弹性畸变,而且畸变程度要比空位引起的畸变大得多,也会改变其周围电子能量,因此,它的形成能大,在晶体中浓度一般很低。

空位的形成过程原子的热振动克服约束,迁移到新的位置成为空位、间隙原子引起局部点阵畸变少部分原子获得足够高的能量结果晶体中点缺陷的存在:(1)一方面造成点阵畸变,使晶体内能升高,降低了晶体热力学的稳定性;(2)另一方面,由于原子排列顺序的混乱程度,并改变了其周围原子的振动频率,引起熵值的增大,这又增加了热力学的稳定性。

材料科学基础 第 三 章 晶 体 缺 陷 (二)资料讲解

材料科学基础  第 三 章  晶 体 缺 陷 (二)资料讲解

综合而言刃型位错具有以下几个重要特征:
(1) 刃形位错有一个额外半原子面;
(2) 刃形位错线是一个具有一定宽度的细长 晶格畸变管道,其中既有正应变,又有切应变;
(3) 位错线与晶体滑移的方向垂直,即位错 线运动的方向垂直于位错线。
➢ Burgers vector b is perpendicular to line dislocation vector ξ. ➢ The slip plane is unique.
➢ Burgers vector b is parallel to the line vector ξ of the dislocation. ➢ The slip plane cannot be defined uniquely. ➢ Slip direction is parallel to b. ➢ Dislocation line moves perpendicular to b.
完整晶体滑移的理 论剪切强度要远高于实 际晶体滑移的对应强度, 从而促进了位错理论的 产生和发展。
刃位错的原子模型
(2) 刃型位错定义
晶体中已滑移区与未滑移区的边界线(即位错线)若垂 直于滑移方向,则会存在一多余半排原子面,它象一把刀刃 插入晶体中,使此处上下两部分晶体产生原子错排,这种晶 体缺陷称为刃型位错(edge dislocation)。多余半排原子面在 滑移面上方的称正刃型位错,记为“┻”;相反,半排原子 面在滑移面下方的称负刃型位错,记为“┳”。
滑移矢量
*滑移矢量之 伯氏矢量表示法
➢用来描述位错区域原子的畸变特征(包括畸 变发生在什么晶向以及畸变有多大)的物理 参量,称为伯氏矢量(Burgers Vector);
➢它是一个矢量,1939年由伯格斯(J. M. Burgers)率先提出。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.小角度晶界的结构
D┻= b┻ /θsinφ ,
D├ = b├ /θcosφ
2.
大角度晶界的结构
晶界中原子过于密集的区域为压应力区,原
子过于松散的区域为拉应力区
大角度晶界晶界能较高,在
0.5-0.6J/m2,与
相邻位向无关
某些特殊位向的大角度晶界界面能很低--
间隙原子平衡浓度
3.1.3 点缺陷的运动
3.2 位错
原子发生错排时,在某一方向是几百到 上万个原子间距,另外两个方向仅有 3-5 个
间距 位错对金属强度、相变影响显著
泰勒认为位错在切应力作用下的运动完成 晶体塑性形变的滑移过程
3.2.1位错的基本类型和特征
1.刃型位错
3.2.3 位错的运动
1.刃位错的滑移和攀移
刃位错的攀移
2.螺位错的滑移
在切应力作用下,异号位错运动方向相反,滑移 效应相同。同一滑移面上的异号位错如果相遇,位错 消失,刃型、螺型位错都是如此。
刃型位错线的方向与柏氏矢量方向
垂直 ,与 位错线运动方向 垂直,与切应力方向垂直 。 最终扫出晶体,在与位错线垂直 方向上形成 一个b台阶。 螺型位错线的方向与柏氏矢量方向 平行,与 位错线运动方向垂直,与切应力方向 垂直。 最终扫出晶体,在与位错线 平行 方向上形 成一个b台阶。 刃型位错线的攀移是半排原子面向上移或下 移一个 前者称为 ,后者称为 ,是在 应力作用下进行的。
6.2两根柏氏矢量相互平行刃位错的交截
柏氏矢量相互平行刃位错交截
XY对AB作用 产生台阶 PP′ AB对XY作用 QQ′
台阶方向
台阶大小 台阶柏氏矢量 台阶所在面与原滑移面 关系 类型 台阶的可动性
b1
︱b1︱ b2 相同
b2∥b1;螺型、 扭折 扭折 可动,最终拉直 消失 可动,最终拉直 消失
相连。
(3)若不与其它位错线相连,则在晶体内部
形成闭合位错环。
3.2.2 柏氏矢量
1.柏氏矢量的确定
刃位错的右手法则
2.柏氏矢量的物理意义
3.柏氏矢量的特性
b1=b2+b3
4.柏氏矢量的表示方法
★b=a/n<u v w >,n为正整数; ★若b1=a/n[u1 v1 w1], b2=a/n[u2 v2 w2] b=b1+b2=a/n[u1 v1 w1]+a/n[u2 v2 w2] = a/n[u1+u2 v1 +v2 w1 + w2] ★ ︱b︱ =a/n (u2 + v2 + w2 )1/2
位错线运动方向与滑移 矢量关系(晶体滑移方 平行 向) 应力、应变性质 位错线滑移的结果 有正应力(变)、切应力(变) (上半部受压、下半部受拉)
位错线∥滑移矢量构 成、有限多
垂直
仅有切应力(变)
在滑移面上沿滑移矢量方向产生一个原子间距的台阶
3. 混合位错
4.位错的重要性质
(1)位错线不能中止的晶体内部。 (2)若中止在晶体内部,必然与其它位错线
共格界面
共格界面:两相必须有特殊的位向关系,而且原子 的排列、晶面间距相差不大,大多数情况下共格界 面产生弹性应变 和应力,使界面原子匹配。 半共格界面:相邻晶面间距相差较大,界面上原子 不能完全对应 。 失配度 δ= ( αα - αβ)/ αα 失配度越大,界面位错间距 D 越小。δ <0.05 为完 全共格;δ =0.05~0.25 为半共格界面;δ >0.25 , 完全失去匹配能力,成为非共格界面。 共格界面界面能最低,非共格界面界面能最高,半 共格界面界面能居中。 非共格孪晶界界面能约为大角度晶界的 1/2
★任一点 |σxx | > |σyy |
★以上关系不适用于刃位错中心区
2.位错的应变能
We/Ws=
=
一般金属材料的υ≈1/3,所以 We/Ws≈1.5
K≈1~0.75
3.位错的线张力
为了降低能量,位错有尽可能缩短其
长度的倾向,这时产生了一种称为线张力 的组态力。因此,位错力求变直。线张力
重合位置点阵模型,两晶粒有 1/n 原子处在 重合位置,构成 1/n 重合位置点阵
两个晶粒有
1/5 的原子是在另一晶粒点阵的
延伸位置;重合位置构成重合位置点阵
晶界与重合位置点阵的密排面重合或以台阶
方式与重合位置点阵的几个密排面重合时,
晶界上的重合位置多,晶界的畸变下降,晶
界能降低
3.3 .3孪晶界
材料科学基础
第3章 晶体缺陷
合肥工业大学材料学院 宣天鹏
3.1 点缺陷
3.1.1 点缺陷的形成
3.1.2 点缺陷的平衡浓度
晶体的组态熵增值 △Sc=kln[(N+n)!]/N!n!
当N和n非常大时,可用Stirling公式 Lnx! ≈xlnx-x 所以:△Sc=k[(N+n)ln(N+n) –NlnN-nlnn] △F=n(Ev-T △Sv)-kT[(N+n)ln(N+n) –NlnN-nlnn] F 平衡时, 0

3.3.5晶界能和晶界特性
1晶界能
γ= γ0θ(A-lnθ) γ0 =Gb/4π(1-ν) 上述公式只适用于小角度晶界
大角度晶界
2.晶界特性


当晶体中存在能降低界面能的异类原子时,这些原子将向晶 界偏聚--内吸附 晶界上原子具有较高的能量,且存在较多的晶体缺陷,使原 子的扩散速度比晶粒内部快得多 常温下,晶界对位错运动起阻碍作用,故金属材料的晶粒越 细,则单位体积晶界面积越多,其强度,硬度越高 晶界比晶内更易氧化和优先腐蚀 大角度晶界界面能最高,故其晶界迁移速率最大。晶粒的长 大及晶界平直化可减少晶界总面积,使晶界 能总量下降, 故 晶粒长大是能量降低过程 ,由于晶界迁移靠原子扩散, 故只有在较高温度下才能进行 由于晶界具有较高能量,固态相变时优先在母相晶界上形核
6.3柏氏矢量相互垂直刃、螺位错交截
柏氏矢量相互垂直刃、螺位错交截
BB′(螺)对 AA′(刃)作用 产生台阶 MM′ AA′(刃) 对 BB′(螺) 作用 NN′
台阶方向 台阶大小 台阶柏氏矢量 台阶所在面与原滑移 面关系 类型
台阶的可动性
b2 ︱b2︱ b1 不同
b1 ︱b1︱ b2 相同
MM′⊥b1;刃型、NN′⊥b2;刃型、 割阶 扭折 不可动 可动,最终拉直消 失
4.扭转、割阶的大小和方向取决于另一根位错的 柏氏矢量。
3.2.3 位错的弹性性质
1.位错的应力场
正应力:σxx ,σyy , σzz 切应力:τxy =τyx ; τxz=τzx ;τyz=τzy
a.螺位错应力场
★G :切变弹性模量。
除Z方向外,其余方向无位移,应力为零; 应力场只与半径有关,是径向对称的; ★ r → 0 ,应力无穷大--不适用于位错中心的严 重畸变区。
6.4柏氏矢量相互垂直两根螺位错交截
柏氏矢量相互垂直两根螺位错交截
BB′对AA′作用 AA′ 对BB′作用
产生台阶 台阶方向 台阶大小 台阶柏氏矢量 台阶所在面与原滑移 面关系 MM′ b2 ︱b2︱ b1 不同 NN′ b1 ︱b1︱ b2 不同
类型
台阶的可动性
MM′⊥b1;刃型、NN′⊥b2;刃型、 割阶 割阶 不可动 不可动
★见双交滑移swf
3.2.6堆垛层错
3.3 表面及界面
3.3.1 外表面

由于另一侧无原子,配位数少于晶体内部,表面几层原子点 阵畸变,能量高于晶体内部 表面能 γ --晶体表面单位面积能量的增加,与表面张力 σ 相等 , γ=dW/dS(J/m2) 不同的晶面为外表面时,被破坏的结合键的数目不同→表面 能各向异性 密排面的表面能低:体心立方 {110} ,面心立方 {111} 表 面能最低 外表面杂质的吸附显著影响表面能 , 杂质在外表面的物理 吸附 ( 分子键 ) ,化学吸附 ( 离子键、共价键 )
3.混合位错的滑移
4.位错环的运动
6.运动位错的交截
割阶:垂直于原滑移面上的折线。 扭折:位于原滑移面上的折线。 割阶及扭折的大小和方向均与对方的b相同, 一般扭折可动,割阶不可动。
6.1两个柏氏矢量相互垂直刃位错的交截
柏氏矢量相互垂直刃位错交截
XY对AB作用 产生台阶 台阶方向 台阶大小 台阶柏氏矢量 台阶所在面与原滑移 面关系 类型 台阶的可动性 PP′ b1 ︱b1︱ b2 不同 PP′⊥b2;刃型、 割阶 一般不可动 AB对XY作用 XY∥b2,2根位 错交截后,在 位错XY上不会 产生割阶。
n T
F Ev TS kT ln(N n) ln n 0 n T
当N远大于 n时,lnN/n ≈ (Ev-T △Sv)/kT
分子分母同乘于NA, C=Aexp(-Qv/RT) Qf= NAEv,是形成1摩尔空位所需作的功,即空位形成能。 气体常数R=kNA 间隙原子平衡浓度 C′=n′/N′=A′ exp(- E v′/kT) 由于E v′ ≈(3~4) E v ,所以, C′要比C小得多。
★孪晶--相邻两晶粒或晶粒内部相邻部分沿 同一个公共晶面 ( 孪晶界 ) ,构成镜面对称的 位向关系
★孪晶界是最简单的一种晶界
★孪晶界与堆垛层错有密切关系
★共格孪晶界原子没有错排,不会引起弹性应
变能,界面能很低, Cu 的共格孪晶界界面能

0.025J/m2
3.3.4 相界
三种相界结构:共格界面、半共格界面、非
是一种组态的作用力,与位错线附近的个
别原子所受的作用力不同。
位错线有应变能=>位错线有缩短趋势以减少应
变能=>位错线张力
线张力等于单位长度位错的应变能
相关文档
最新文档