中考数学重难点题型专题复习解读
人教版2023中考数学专题复习:多边形、平行四边形重难点题型讲练1多边形的内角和与外角和
多边形、平行四边形重难点题型讲练(一)多边形的内角和与外角和题型1:多边形的内角和与外角和类型1-多边形的内角和1.如果一个四边形四个内角度数之比是1:2:3:4,那么这四个内角中( )A .只有一个直角B .有两个直角C .有两个钝角D .只有一个钝角类型2-正多边形的内角和2.如图,O 与正五边形ABCDE 的边AB 、DE 分别相切于点B 、D ,则劣弧BD 所对的圆心角BOD ∠的大小为( )A .150︒B .144︒C .135︒D .120︒类型3-多边形的缺(多)角问题1.小明同学在用计算器计算某n 边形的内角和时,不小心少输入一个内角,得到和为2016°,则n 等于( )A .11B .12C .13D .14类型4-正多边形的外角问题2.如图,小明从A 点出发,沿直线前进9米后向左转45︒,再沿直线前进9米,又向左转45︒……照这样走下去,他第一次回到出发点A 时,共走路程为( )A .54米B .72米C .90米D .108米类型5-多边形的外角和问题3.如图,五边形ABCDE 的4个外角和1234290∠+∠+∠+∠=︒,则A ∠等于( )A .130︒B .110︒C .100︒D .70︒类型6-多边形的内角与外角和的综合问题4.一个正多边形每个内角与它相邻外角的度数比为3:2,则这个正多边形是( )A .正五边形B .正六边形C .正八边形D .正十边形综合训练1.如图,已知在Rt ABC △中,90C ∠=︒,若沿图中虚线剪去C ∠,则12∠+∠的度数是().A .270︒B .240︒C .180︒D .90︒2.一个正多边形的内角和为540°,则这个正多边形的边数是( )A .4B .5C .6D .73.湖南革命烈士纪念塔的塔底平面为八边形,这个八边形的内角和( )A .720︒B .900︒C .1080︒D .1440︒4.已知一个多边形的内角和为540︒,则这个多边形的对角线有:( )A .2条B .3条C .5条D .10条5.一个多边形的内角和为720︒,那么这个多边形是( )A .七边形B .六边形C .五边形D .四边形6.如图,点A 、B 、C 、D 、E 、F 在同一平面内,连接AB 、BC 、CD 、DE 、EF 、FA ,若110BCD ∠=︒,则A B D E F ∠+∠+∠+∠+∠等于( )A .470︒B .450︒C .430︒D .410︒7.如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是( )A .7个B .8个C .9个D .10个8.将正六边形与正方形按如图所示摆放,公共顶点为O ,且正六边形的边AB 与正方形的边CD 在同一条直线上,则BOC ∠的度数是( )A .30︒B .32︒C .35︒D .40︒9.用一条宽相等的足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE ,其中AFE ∠=()A .108︒B .63︒C .72︒D .81︒10.将边长为2的正五边形ABCDE 沿对角线BE 折叠,使点A 落在正五边形内部的点M 处,则下列说法正确的个数为( )①AB ME ∥;②36DEM ∠=︒;③若连CM ,则180CMB BME ∠+∠=︒A .3个B .2个C .1个D .0个11.如图,正六边形123456A A A A A A 内部有一个正五边形12345B B B B B ,且3434A A B B ∥,直线l 经过23B B ,,则直线l 与12A A 的夹角α为( )A .48°B .45°C .72°D .30°12.如图,已知AB 是正六边形ABCDEF 与正五边形ABGHI 的公共边,连接FI ,则AFI ∠的度数为( )A .24︒B .26︒C .28︒D .30︒13.如图,在平面上将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠放在一起,则312=∠+∠-∠( )A .24°B .26°C .28°D .30°14.一个正多边形的一个内角是一个外角的4倍,则正多边形的边数为( )A .8B .9C .10D .1115.一个多边形除去一个内角外,剩下的内角和是1000°,则这个多边形是( ).A .五边形B .六边形C .七边形D .八边形16.晨曦因少算了一个内角得出一多边形的内角和为980°,则该多边形的边数为( )A .6B .8C .10D .917.已知一个多边形多算了一个内角得到内角和是1960°,则这个多边形是( )A .十一边形B .十二边形C .十三边形D .十五边形18.在计算一个多边形内角和时,多加了一个角,得到的内角和为1500°,那么原多边形的边数为( )A .9B .10C .11D .10或1119.计算多边形内角和时不小心多输入一个内角,得到和为1290︒,则这个多边形的边数是( ).A .8B .9C .10D .1120.当多边形的边数增加1时,它的内角和会( )A .增加160B .增加180C .增加270D .增加36021.一个多边形截去一个角后,形成另一个多边形的内角和为900︒,那么原多边形的边数为( )A .5B .5或6C .6或7或8D .7或8或922.一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为( )A .120°B .130°C .135°D .150°23.正五边形的外角和为( )A .540︒B .360︒C .108︒D .72︒24.已知一个多边形的每一个外角都为40︒,则这个多边形的边数是( )A .6B .7C .8D .925.如图,正十边形与正方形共边AB ,延长正方形的一边AC 与正十边形的一边ED ,两线交于点F ,设AFD x ∠=︒,则x 的值为( ).A .15B .18C .21D .2426.正多边形的每个内角都是150︒,则这个正多边形的边数为( )A .8B .9C .10D .1227.已知一个正多边形的每一个外角都是45︒,则这个正多边形的边数是( )A .8B .9C .10D .1228.如图所示,分别以n 边形的顶点为圆心,以1cm 为半径画圆,当2021n =时,则图中阴影部分的面积之和为( )A .22cm πB .2cm πC .22020cm πD .22021cm π29.一个正多边形,它的每一个内角都等于140︒,则该正多边形是( )A .正六边形B .正七边形C .正八边形D .正九边形30.若n 边形的内角和是它外角和的3倍,则n 等于( )A .8B .9C .10D .1131.如果一个多边形的每个内角都相等,且内角和为1440︒,那么该多边形的一个外角是( )A .30°B .36°C .60°D .72°32.若一个正n 边形的内角和为1080︒,则它的每个外角度数是( )A .36︒B .45︒C .72︒D .60︒33.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形的边数是() A .4 B .5 C .6 D .834.如图,正五边形ABCDE ,BG 平分ABC ∠,DG 平分正五边形的外角EDF ∠,则G ∠=()A .45︒B .54︒C .60︒D .64︒。
中考数学复习考点题型专题讲解13 数轴动点问题中的新定义问题
中考数学复习考点题型专题讲解 专题13 数轴动点问题中的新定义问题例1.(2023·山东沂南期末)有如下定义 数轴上有三个点,若其中一个点与其它两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“关键点”.若点A 表示数﹣4,点B 表示数8,M 为数轴一个动点.若点M 在线段AB 上,且点M 是点A 、点B 的“关键点”,则此时点M 表示的数是________. 【答案】5或﹣1.【解析】解 设点M 表示的数是x , ∴MA =x ﹣(﹣4)=x +4;BM =8﹣x ,∵若其中一个点与其它两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“关键点”, ∴MA =3BM 或BM =3MA ,∴x +4=3(8﹣x )或8﹣x =3(x +4), 解得 x =5或x =﹣1. 故答案为 5或﹣1.例2.(2023·北京期中)在同一直线上的三点A 、B 、C ,若满足点C 到另两个点A 、B 的距离之比是2,则称点C 是其余两点的亮点(或暗点),具体地,当点C 在线段AB 上时,若2CACB=,则称点C 是[A ,B ]的亮点;若点C 在线段AB 延长线上,2CBCA=,则称点C 是[,]B A 的暗点,例如,如图1,在数轴上A B C D 、、、分别表示数,-1,2,1,0,则的点C 是[,]A B 的亮点,又是[,]A D 的暗点;点D 是[,]B A 的亮点,又是[,]B C 的暗点.(1)如图2,M 、N 为数轴上的两点,点M 表示的数为-2,点N 表示的数为4,则[,]M N 的亮点表示的数是,[,]N M 的暗点表示的数是 ;(2)如图3,数轴上的点A 所表示的数为点所表示的数为-20,点B 表示的数为40,一只电子蚂蚁P 从点B 出发以每秒2个单位的速度向左运动,设运动时间为t 秒.①求当t 为何值时,P 是[,]B A 的暗点;②求当t 为何值时,P 、A 和B 三个点中恰有一个点为其余两点的亮点.【答案】(1)2,-8;(2)①t =60;②当点P 为[,]A B 亮点时,t =10;当点P 为[,]B A 亮点时,t =20;当点A 为[,]P B 亮点时,t =90;当点A 为[,]B P 亮点时,t =45.【解析】解 (1)根据题意,[,]M N 的亮点表示的数在线段MN 上, 设亮点表示的数为x , 则x +2=2(4-x ), 解得 x =2∴[,]M N 的亮点表示的数是 2;根据题意,[,]N M 的暗点表示的数在线段NM 延长线上, 设暗点为y , 则4-y =2(-2-y ) 解得,y =-8故答案为 2,-8;(2)①根据题意,点P 是[,]B A 的暗点,即点P 在线段BA 的延长线上 ∴PB =2t ,P A =2t -60 ∵PB =2P A ∴2t =2(2t -60)解得 t =60;②当点P 为[,]A B 亮点时,即P 在线段AB 上 ∴PB =2t ,P A =60-2t ∴60-2t =2×2t ∴t =10当点P 为[,]B A 亮点时,即P 在线段AB 上 ∴2(60-2t )=2t ∴t =20;当点A 为[,]P B 亮点时,即A 在线段PB 上 同理,2t -60=2×60 ∴t =90当点A 为[,]B P 亮点时,即A 在线段BP 上 2(2t -60)=60 ∴t =45B 点不可能在线段AP 上,故B 不可能是[A ,P ]、[P ,A ]的亮点综上所述,当点P 为[,]A B 亮点时,t =10;当点P 为[,]B A 亮点时,t =20;当点A 为[,]P B 亮点时,t =90;当点A 为[,]B P 亮点时,t =45.例3.(2023·北京市期中)对于数轴上的两点P ,Q 给出如下定义 P ,Q 两点到原点О的距离之差的绝对值称为P ,Q 两点的“绝对距离”,记为POQ .例如,P ,Q 两点表示的数如图(1)所示,则312POQ PO QO =−=−=.(1)A ,B 两点表示的数如图(2)所示. ①求A ,B 两点的“绝对距离”;②若点C 为数轴上一点(不与点О重合),且2AOB AOC =,求点C 表示的数.(2)点M ,N 为数轴上的两点(点M 在点N 左侧)且2MN =,1MON =,请直接写出点M 表示的数为________.【答案】(1)①2;②2或-2;(2)12−或32−【解析】解 (1)①求A ,B 两点的绝对距离=2, ②∵AOB AO BO =−=2,又2AOB AOC =, ∴1AOC =,即1AO CO −= ∴OC =0或OC =2 ∵C 不与O 重合∴点C 表示的数为2或-2.(2)由题可知MON =1MO NO −= 得 MO -NO =1或MO -NO =-1 ∵点M 在点N 左侧∴①当M 、N 都在原点的左侧时,∵MN =2, ∴MO -ON =1≠2,该情况不存在,②当M 、N 都在原点的右侧时, 同理知,此情况不存在,③当M 点在原点的左侧,N 点在原点的右侧时, ∵MN =2,即MO +NO =2又MO -NO =1或MO -NO =-1 ∴点M 表示的数为12−或32−.例4.(2023·江苏省锡山期中)如图,数轴上点A 表示的数为-3,点B 表示的数为4,阅读并解决相应问题.(1)问题发现 若在数轴上存在一点P ,使得点P 到点A 的距离与点P 到点B 的距离之和等于n ,则称点P 为点A 、B 的“n 节点”.如图1,若点P 表示的数为1,点P 到点A 的距离与点P 到点B 的距离之和为4+3=7,则称点P 为点A 、B 的“7节点”.填空 ①若点P 表示的数为2−,则n 的值为;②数轴上表示整数的点称为整点,若整点P 为A 、B 的“7节点”,则这样的整点P 共有个.(2)类比探究 如图2,若点P 为数轴上一点,且点P 到点A 的距离为1,请你求出点P 表示的数及n 的值.(3)拓展延伸 若点P 在数轴上运动(不与点A 、B 重合),满足点P 到点B 的距离等于点P 到点A 的距离的34,且此时点P 为点A 、B 的“n 的节点”,请写出点P 表示的数及n 的值.【答案】(1)7①;8②;(2)点P 表示的数为 -4,n =9,或点P 表示的数为 -2,n =7;(3)P 表示的数为25,n =49,或P 表示的数为1,n =7.【解析】解 (1)①∵点P 表示的数为-2,∴点P 到点A 的距离与点P 到点B 的距离之和为1+6=7 ∴点P 为点A 、B 的“7节点” ∴n =7故答案为 7;②设出点P 表示的数为x∴点P 到点A 的距离为 ()33x x −−=+,点P 到点B 的距离为 4x −当x >4时,3+47x x +−>,不符合题意;当34x −≤≤时,34=347x x x x ++−++−=,符合题意 当3x <−时,3+47x x +−>,不符合题意; ∵P 为整点∴P 表示的数为 -3或-2或-1或0或1或2或3或4 ∴整点P 共有8个故答案为 8;(2)∵点P 到点A 的距离为1,点A 表示的数为-3, ∴点P 表示的数为 -4或-2当点P 表示的数为 -4时,n =9; 当点P 表示的数为 -2时,n =7; (3)设点P 表示的数为x由题意,得3344x x ×+=−解得 x =1或x =25 即P 表示的数为25或1 当P 表示的数为25时,n =49 当P 表示的数为1时,n =7.例5.(2023·北京八中期中)数轴上点A 表示10−,点B 表示10,点C 表示18,如图,将数轴在原点O 和点B 处各折一下,得到一条“折线数轴”,在“折线数轴”上,点M 、N 表示的数分别是m 、n ,我们把m 、n 之差的绝对值叫做点M ,N 之间友好距离,即||MN m n =−,那么我们称点A 和点C 在折线数轴上友好距离为28个长度单位.动点P 从点A 出发,以2单位/秒的速度沿着折线数轴的正方向运动,从点O 运动到点B 期间速度变为原来的一半 点P 从点A 出发的同时,点Q 从点C 出发,以1单位/秒的速度沿着“折线数轴”的负方向运动,当点P 到达B 点时,点P 、Q 均停止运动.设运动的时间为t 秒.(1)当14t =秒时,P 、Q 两点在折线数轴上的友好距离为______个单位长度. (2)当P 、Q 两点在折线数轴上相遇时,求运动的时间t 的值.(3)是否存在某一时刻使得P 、O 两点在折线数轴上的友好距离与Q 、B 两点在折线数轴上的友好距离相等?若存在,请直接写出t 的值;若不存在,请说明理由. 【答案】(1)5;(2)11.5;(3)存在,t =2或6.5【解析】解 (1)当t =14秒时,点P 和点O 在数轴上相距9个长度单位, 点Q 和点O 在数轴上相距18-1×14=4个长度单位,P 、Q 友好距离9-4=5 故答案为 5;(2)由题意可得 10+(t -5)+t =28, 解得 t =11.5.故运动的时间t的值为11.5;(3)①当点P在AO,点Q在BC上运动时,由题意得10-2t=8-t,解得t=2,②当点P、Q两点都在OB上运动时,t-5=t-8,无解,不存在③当P在OB上,Q在BC上运动时,8-t=t-5,解得t=6.5;即PO=QB时,运动的时间为2秒或6.5秒.综上所述,存在,t的值为2或6.5.例6.(2023·陕西富县月考)对于数轴上的A,B,C三点,给出如下定义若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“倍分点”.如图,数轴上点A,B,C表示的数分别是1,4,5,此时点B是点A,C的“倍分点”.(1)当点A表示数2−,点B表示数2时,下列各数52−,1,4是点A,B的“倍分点”的是____;(2)当点A表示数10−,点B表示数30时,D为数轴上一个动点.若点D是点A,B的“倍分点”,求此时点D表示的数.【答案】(1)1,4;(2)①20,0,50,-30;②20,0,50,-30,103,-130,703−,110,503,-90,150.【解析】解(1)∵点A表示数-2,点B表示数2∴AB=2-(-2)=4当C表示的数是52−时,此时点C不是点A,B的“倍分点”.如图,当点C 表示的数是1时,此时点C 是点A ,B 的“倍分点”.如图,当点C 表示的数是4时,此时点C 是点A ,B 的“倍分点”.故答案为 1,4.(2)设点D 对应的数为x .当点D 在AB 之间时,AB =40,所以BD =10, 即x =20; 当34BD AB =时,BD =30,即x =0. 当点D 在点B 右侧,AD =3BD ,即x +10=3(x -30),解得x =50; 当点D 在点A 左侧,BD =3AD ,即30-x =3(-x -10),解得x =-30. 综上所述,点D 表示的数可为20,0,50,-30.例7.(2023·辽宁沈阳月考)在数轴上,若点C 到点A 的距离恰好是3,则称点C 为点A 的“幸福点”;若点C 到点A ,B 的距离之和为6,则称点C 为点A ,B 的“幸福中心”.(1)如图1,点A 表示的数是﹣1,则点A 的“幸福点”C 表示的数是.(2)如图2,点M 表示的数是﹣2,点N 表示的数是4,若点C 为点M ,N 的“幸福中心”,则点C 表示的数可以是(填一个即可);(3)如图3,点A 表示的数是﹣1,点B 表示的数是4,点P 表示的数是8,点Q 从点P 出发,以2单位/s 的速度沿数轴向左运动,经过秒后点Q 是点A ,B 的“幸福中心”?【答案】(1)-4或2;(2)-2(答案不唯一);(3)1.75或4.75.【解析】解(1)由题意得点A的“幸福点”C表示的数为-1-3=-4或-1+3=2,故答案为-4或2;(2)由题意得点M、N的距离为4-(-2)=6,∵点C为点M,N的“幸福中心”,∴点C在点M、N之间,∴点C表示的数可以为-2、-1、0、1、2、3、4,故答案为-2(答案不唯一);(3)由题意可得A、B之间的距离为5,故有两种可能设经过x秒点Q是A、B的“幸福中心”,①点Q在点B和点P之间,则有8-2x-4+8-2x-(-1)=6,解得x=1.75;②点Q在点A的左侧,4-(8-2x)+(-1)-(8-2x)=6,解得x=4.75,综上所述当经过1.75秒或4.75秒时,点Q是A、B的“幸福中心”.例8.(2023·江苏高港月考)阅读理解点A、B、C为数轴上三点,如果点C在A、B之间到A的距离是点C到B的距离3倍,那么我们就称点C 是{A,B}的奇点.例如如图1,点A表示的数为﹣3,点B表80÷(3+1)=20,30−20=10,−50+20=−30,−50−80÷3=−7623(舍去),−50−80×3=−290.故P点运动到数轴上的−290,−30或10位置时,P、A和B中恰有一个点为其余两点的奇点.故答案为−290,−30或10.例9.(2023·湖南师大附中月考)已知数轴上两点A,B对应的数分别为8−和4,点P为数轴上一动点,若规定点P到A的距离是点P到B的距离的3倍时,我们就称点P是关于A B→的“好点”.(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;(2)①若点P运动到原点O时,此时点P关于A B→的“好点”(填是或者不是);②若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A B→的“好点”时,求点P的运动时间;(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P表示的数.【答案】(1)-2;(2)①不是;1②秒或10秒;(3)-4,-5,-12,-14,-32,-44.【解析】解(1)∵数轴上两点A,B对应的数分别为-8和4,∴AB=4-(-8)=12,∵点P到点A、点B的距离相等,∴P为AB的中点,∴BP=P A=12AB=6,∴点P表示的数是-2;(2)①当点P运动到原点O时,P A=8,PB=4,∵P A≠3PB,∴点P不是关于A→B的“好点”;故答案为不是;②根据题意可知设点P运动的时间为t秒,P A=t+8,PB=|4-t|,∴t+8=3|4-t|,解得t=1或t=10,所以点P的运动时间为1秒或10秒;(3)根据题意可知设点P表示的数为n,P A=n+8或-n-8,PB=4-n,AB=12,①当点A是关于P→B的“好点”时,|P A|=3|AB|,即-n-8=36,解得n=-44;②当点A是关于B→P的“好点”时,|AB|=3|AP|,即3(-n-8)=12,解得n=-12;或3(n+8)=12,解得n=-4;③当点P是关于A→B的“好点”时,|P A|=3|PB|,即-n-8=3(4-n)或n+8=3(4-n),解得n=10或1(不符合题意,舍去);④当点P是关于B→A的“好点”时,|PB|=3|AP|,即4-n=3(n+8),解得n=-5;或4-n=3(-n-8),解得n=-14;⑤当点B是关于P→A的“好点”时,|PB|=3|AB|,即4-n=36,解得n=-32.综上所述所有符合条件的点P表示的数是-4,-5,-12,-14,-32,-44.。
初中数学中考复习考点知识与题型专题讲解11 一次函数
初中数学中考复习考点知识与题型专题讲解专题11 一次函数【知识要点】考点知识一变量与函数变量:在一个变化过程中数值发生变化的量。
常量:在一个变化过程中数值始终不变的量。
【注意】1、变量是可以变化的,而常量是已知数,且它是不会发生变化的。
2、区分常量和变量就是在某个变化过程中该量的值是否发生变化。
函数的定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
【函数概念的解读】1、有两个变量。
2、一个变量的数值随另一个变量的数值变化而变化。
3、对于自变量每一个确定的值,函数有且只有一个值与之对应。
函数定义域:一般的,一个函数的自变量x允许取值的范围,叫做这个函数的定义域。
确定函数定义域的方法:(自变量取值范围)(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
函数值概念:如果在自变量取值范围内给定一个值a,函数对应的值为b,那么b叫做当自变量取值为a时的函数值。
函数解析式:用来表示函数关系的数学式子叫做函数解析式或函数关系式。
函数的取值范围:使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
画函数图像的一般步骤:1、列表2、描点3、连线函数图像上点的坐标与解析式之间的关系:1、将点的坐标代入到解析式中,如解析式两边成立,则点在解析式上,反之,不在。
2、两个函数图形交点的坐标就是这两个解析式所组成的方程组的解。
函数的三种表示法及其优缺点1、解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)
2024年中考数学复习重难点题型训练—一次函数与几何图形综合题二(含答案解析)类型一与三角形有关1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=12AB=3,∵OA=5,∴=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A的坐标是_____.【答案】(4,125)【解析】【分析】首先根据直线AB 来求出点A 和点B 的坐标,A 1的横坐标等于OB ,而纵坐标等于OB-OA ,即可得出答案.【详解】解:在542y x =+中,令x=0得,y=4,令y=0,得5042x =+,解得x=8-5,∴A (8-5,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO=∠A 1BO 1,∠BO 1A 1=∠AOB=90°,OA=O 1A 1=85,OB=O 1B=4,∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB-OA 的长,即为48-5=125;横坐标为O 1B=OB=4,故点A 1的坐标是(4,125),故答案为:(4,125).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.【答案】(--【分析】过P 作PD ⊥OC 于D ,先求出A ,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB ≌△OPA ,从而求出BD =,OD =,进而即可求解.【详解】如图所示,过P 作PD ⊥OC 于D ,∵一次函数4y x =+与坐标轴分别交于A ,B 两点,∴A(-4,0),B(0,4),即:OA=OB ,∴∠ABO=∠OAB=45°,∴△BDP 是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=2=2,∴OD=OB−BD=2,∴P(2,2).故答案是:P(2,2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C 匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.【答案】252+##2+25【分析】根据函数图像可得AB=4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB=4,AB+BC=8,∴BC=AB=4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD=BD ,72BCA DAC ∠∠︒==,∴AD=BD=CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC =,∴x 4x 4x-=,解得:1225x =-+,225x =--,∴252AD BD CD ===,此时521AB BD t +==(s),故答案为:52.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________【答案】20203(21)2-【解析】【分析】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (0,33),∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 1C=2AB=2×1,A 1纵坐标为32×1=13(21)2-;A 2C 1=32A 1B 1=1322⨯,A2的纵坐标为32×1+1322⨯=013(22)2+=332⨯=23(21)2-;A 3C 2=32A 2B 2=2322⨯,A 3的纵坐标为32×1+1322⨯+2322⨯=0123(222)2++=372⨯=33(21)2-;…由此规律可得:A n C n-1=1322n -⨯,A n 的纵坐标为01213(2222)2n -++++ =3(21)2n -,∴A 2020=20203(21)2-,故答案为:20203(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C '''V ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''V .【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4;(2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''V 即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ⊥x 轴于M将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°∴1ON NM =∵1ON NM ⊥∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)∴2021M 的坐标为(20212,0)故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为时,则矩形CODE 向右平移的距离为___________.【答案】2【解析】【分析】先求出点B 的坐标(0,3),得到直线AB 的解析式为:33y =+,根据点D 的坐标求出OC 的长度,利用矩形CODE 与ABO 重叠部分的面积为63列出关系式求出3D G '=,再利用一次函数关系式求出OD '=4,即可得到平移的距离.【详解】∵(6,0)A ,∴OA=6,在Rt △AOB 中,30ABO ∠=︒,∴63tan 30OA OB ==∴B (0,63),∴直线AB 的解析式为:33y =+,当x=2时,y=43∴E (2,3,即DE=3∵四边形CODE 是矩形,∴OC=DE=43设矩形CODE 沿x 轴向右平移后得到矩形C O D E '''',D E ''交AB 于点G ,∴D E ''∥OB ,∴△AD G '∽△AOB ,∴∠AGD '=∠AOB=30°,∴∠EGE '=∠AGD '=30°,∴GE ''=,∵平移后的矩形CODE 与ABO 重叠部分的面积为,∴五边形C O D GE '''的面积为∴12O D O C EE GE ''''''⋅-⋅=,∴122EE ''⨯-⨯=,∴2EE '=,∴矩形CODE 向右平移的距离DD '=2EE '=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,44+-4,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB ∠=∠,根据等角的余角相等和对顶角相等,得到CDO COD ∠=∠,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ⊥于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=⨯⨯ 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO ∠=∠时;②当点C 在第二象限内,ACB BCO ∠=∠时;③当点C 在第四象限内,ACB CBO ∠=∠时.【详解】解:(1)①证明:如图1,∵BA BO =,∴12∠=∠.∴BA BC ⊥,∴2590∠+∠=︒.而45∠=∠,∴2490∠+∠=︒.∵OB OC ⊥,∴1390∠+∠=︒.∴34∠=∠,∴CD CO =.②如图1,过点A 作AH OB ⊥于点H .由题意可知3tan 18∠=,在Rt AHO 中,3tan 18AH OH ∠==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC ∠=︒∠=︒,,∴45ABH ∠=︒,∴3,tan 45sin 45AH AH BH AB ====︒︒∴5OB OH BH =-=.∵45OB OC CBO ⊥∠=︒,,∴tan 455,cos 45OB OC OB BC =⨯︒===︒,∴111522ABC S AB BC =⨯=⨯= ,112555222CBO S OB OC =⨯=⨯⨯= :∴552ABC CBO ABOC S S S =+= 四边形.(2)过点A 作AH OB ⊥于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO ∠=∠时,设OB t=∵ACB CBO ∠=∠,∴//AC OB .又∵AH OB OC OB ⊥⊥,,∴3AH OC ==.∵AH OB AB BC ⊥⊥,,∴12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,∴AHB BOC ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =±∴4OB =±②如图3,当点C 在第二象限内,ACB BCO ∠=∠时,延长AB CO ,交于点G ,则ACB GCB ≌,∴AB GB =.又∵AH OB OC OB ⊥⊥,,∴90AHB GOB ∠=∠=︒,而ABH GBO ∠=∠,∴ABH GBO ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO ∠=∠时,AC 与OB 相交于点E ,则有BE CE =.(a)如图4,点B 在第三象限内.在Rt ABC 中,1290,90ACB CAB ∠+∠=︒∠+∠=︒,∴2CAB∠=∠∴AE BE CE ==,又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒,而AEH CEO∠=∠∴AHE COE ≌,∴142HE OE OH ===∴225AE AH HE =+=,∴5BE =,∴9OB BE OE =+=(b)如图5,点B 在第一象限内.在Rt ABC 中90,90ACB CAB CBO ABE ∠+∠=︒∠+∠=︒∴CAB ABE ∠=∠,∴AE BE CE ==.又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒而AEH CEO ∠=∠,∴AHE COE≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为44+4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象的交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN-匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQ B∠=∠.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC∆的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当03x≤≤及39x≤≤时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ∠扫描APQ∆区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接..写出点K被扫描到的总时长.【答案】(1)3;(2)43MP=;(3)当03x≤≤时,24482525d x=+;当39x≤≤时,33355d x=-+;(4)23t s=【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得2APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,根据SS上下=45可得24=9APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,可得23APAB=,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3;(2)过A 点向BC 边作垂线,交BC 于点E,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==,∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =,根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43;(3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC+==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335,综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =-+,当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得:11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =.根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =+,当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3),当点H 落在AB 边上时,将点H 代入122y x =+,得:13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=,∵169﹤9136,∴133﹤t ﹤5,如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-,∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -,211(7)24BET S BE ET t ∆==- ,21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-,由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去),∴143t =;(3)可能,35≤t≤1或t=4.∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=,易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇;当12﹤t ﹤1时,12+12÷(1+4)=35秒,∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤;当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤当t=2时,点M 运动返回到点O 处停止运动,当t=3时,点E 运动返回到点O 处,当t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若,DHE DPH GQ FG ∠=∠-=,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P .【解析】【分析】(1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据GQ FG -=,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD=,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12,∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC 为矩形,∴MC=OA=12,∵NC=OM ,∴NC=9,则MN=MC-NC=3,∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =,∴y=3x ,设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D ,∴3(,)4E a a ,(a,0)D ,∴PE=39344a a a -=,OD=a ,∴9944a PE OD a ==;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR ,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴=,-=,∵GQ FG∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT 为矩形,∴OT=FS=8,∵∠DHE=∠DPH ,∴tan ∠DHE=tan ∠DPH ,∴DE DH DH PD=,由(2)可知,DE=34a ,PD=3a ,∴343a DH DH a=,解得:DH=32a ,∴tan ∠PHD=3232PD a DH a ==,∵∠PHD=∠FHT ,∴tan ∠FHT=2TF HT =,∴HT=2,∵OT=OD+DH+HT ,∴3282a a ++=,∴a=125,∴1236(,)55P 【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A=60°,∴△ABD 为等边三角形,设AB=a ,由图2可知,△ABD 的面积为∴△ABD 的面积24a ==解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.16.(2020·黑龙江牡丹江?中考真题)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数k y x=图象的一支经过点C ,求k 的值;(3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【答案】(1)A (9,0),B (0,92);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A 的坐标,再根据12OB OA =可得点B 坐标;(2)利用待定系数法求出直线AB 的表达式,根据点C 是EF 的中点,得到点C 横坐标,代入可得点C 坐标,根据点C 在反比例函数图像上求出k 值;(3)画出图形,可得点P 共有5个位置,分别求解即可.【详解】解:(1)∵线段OA 的长是方程27180x x --=的一个根,解得:x=9或-2(舍),而点A 在x 轴正半轴,∴A (9,0),∵12OB OA =,∴B (0,92);(2)∵6OE =,∴E (-6,0),设直线AB 的表达式为y=kx+b ,将A 和B 代入,得:0992k b b =+⎧⎪⎨=⎪⎩,解得:1292k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 的表达式为:1922y x =-+,∵点C 是EF 的中点,∴点C 的横坐标为-3,代入AB 中,y=6,则C (-3,6),∵反比例函数k y x=经过点C ,则k=-3×6=-18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y=x+3上,联立:31922y x y x =+⎧⎪⎨=-+⎪⎩,解得:14x y =⎧⎨=⎩,∴M (1,4),∴P 3(1,0),同理可得:P 2(9,-12),P 4(-7,4),P 5(-15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形,点P 的坐标为P 1(9,12),P 2(9,-12),P 3(1,0),P 4(-7,4),P 5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.455B C.523D.655【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键18.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d可用公式d =C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是()A .355B .3515-C .6515-D .2【答案】B 【解析】【分析】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,利用公式计算即可.【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,∵点C 到直线l 的距离()00222116355112kx y b d k -+-⨯-+==++-,C 半径为1,∴PQ 的最小值是3515-,故选:B.【点睛】此题考查公式的运用,垂线段最短的性质,正确理解公式中的各字母的含义,确定点P与点Q最小时的位置是解题的关键.A B-,在x19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)CD=,线段CD在x轴上平移,当轴上取两点C,D(点C在点D左侧),且始终保持1+的值最小时,点C的坐标为________.AD BC【答案】(-1,0)【解析】【分析】作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,得到此时AD+BC的值最小,求出直线AB″,得到点D坐标,从而可得点C坐标.【详解】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则632k bk b=+⎧⎨-=-+⎩,解得:2kb=⎧⎨=⎩,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC最小时的情形20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.【解析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD =4,OE =3,∴DE =32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C′重合时,△C′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】2【解析】【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C′.求出MN ,当点C 与C′重合时,△C′DE的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴5 DE===,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MN DM OE DE=,∴3 35 MN=,∴95 MN=,当点C 与C′重合时,△C′DE 的面积最小,△C′DE 的面积最小值1951225⎛⎫=⨯⨯-= ⎪⎝⎭,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.22.(2020·北京中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是;在点1234,,,P P P P 中,连接点A 与点的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.【答案】(1)平行,P 3;(2)32;(3)233922d ≤≤。
中考数学复习考点知识与题型专题讲解14--- 多边形(解析版)
中考数学复习考点知识与题型专题讲解专题14 多边形【知识要点】多边形的相关知识:➢ 在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。
多边形的边与它邻边的延长线组成的角叫做外角。
➢ 连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
➢ 一个n 边形从一个顶点出发的对角线的条数为(n -3)条,其所有的对角线条数为2)3( n n凸多边形 :画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。
正多边形 :各角相等,各边相等的多边形叫做正多边形。
(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)⏹ 多边形的内角和➢ n 边形的内角和定理:n 边形的内角和为(n −2)∙180°➢ n 边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。
【考查题型】考查题型一多边形截角后的边数问题【解题思路】多边形减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.典例1.(2018·云南昭通市模拟)把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16B.17C.18D.19【答案】A【详解】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.变式1-1.(2021·宁波市一模)把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】当剪去一个角后,剩下的部分是一个四边形,则这张纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选A.考查题型二计算多边形的周长【解题思路】考查多边形的周长,解题在于掌握计算公式典例2.(2021·隆化县模拟)下列图形中,周长不是32 m的图形是( )A.B.C.D.【答案】B【提示】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.变式2-1.(2017·海南中考模拟)如图,□ABCD纸片,∠A=120°,AB=4,BC=5,剪掉两个角后,得到六边形AEFCGH ,它的每个内角都是120°,且EF=1,HG=2,则这个六边形的周长为( )A.12B.15C.16D.18【答案】B【解析】如图,分别作直线AB、BC、HG的延长线和反向延长线使它们交于点B、Q、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APH、△BEF、△DHG、△CQG都是等边三角形.∴EF=BE=BF=1,DG=HG=HD=2.∴FC=5-1=4,AH=5-2= 3,CG=CD-DG=4−2=2.∴六边形的周长为1+3+3+2+2+4=15.故选B.考查题型三计算网格中的多边形面积【解题思路】利用分割法即可解决问题典例3.(2021·辽宁葫芦岛市模拟)如图是边长为1的正方形网格,A、B、C、D均为格点,则四边形的面积为()A .7B .10C .152D .8 【答案】A 【提示】利用分割法即可解决问题.【详解】解:S 四边形ABCD =3×4﹣12×2×1×2﹣12×1×3×2=12﹣5=7,故选:A . 变式3-1.(2021·山东烟台市模拟)如图,在边长为1的小正方形网格中,△ABC 的三个顶点均在格点上,若向正方形网格中投针,落在△ABC 内部的概率是()A .12B .14C .38D .516【答案】D【提示】用正方形的面积减去四个易求得三角形的面积,即可确定△ABC 面积,用△ABC 面积除以正方形的面积即可.【详解】解:正方形的面积=4×4=16,三角形ABC 的面积=11116434221222-⨯⨯-⨯⨯-⨯⨯=5, 所以落在△ABC 内部的概率是516, 故选D .变式3-2.(2021·江西九年级零模)如图,在边长为1的小正方形网格中,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形图中①,②,③,④四个格点多边形的面积分别记为1234,,,,S S S S 下列说法正确的是()A .12S SB .23S S =C .124S S S +=D .134S S S +=【答案】B【提示】根据题意判断格点多边形的面积,依次将1234S S S S 、、、计算出来,再找到等量关系.【详解】观察图形可得12342.5,3,3,6,S S S S ====∴23234,6S S S S S =+==,故选:B .考查题型四 计算多边形对角线条数【解题思路】熟记n 边形从一个顶点出发可引出(n-3)条对角线是解答此题的关键.典例4.(2017·山东济南市·中考真题)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( )A .12B .13C .14D .15【答案】C【解析】解:根据题意,得:(n ﹣2)•180=360°×2+180°,解得:n=7.则这个多边形的边数是7,七边形的对角线条数为7(73)2⨯-=14,故选C . 变式4-1.(2018·山东济南市·中考模拟)若凸n 边形的每个外角都是36°,则从一个顶点出发引的对角线条数是( )A .6B .7C .8D .9【答案】B【解析】360°÷36°=10,10−3=7.故从一个顶点出发引的对角线条数是7.故选:B.变式4-2.(2021·莆田市二模)从n边形的一个顶点出发可以连接8条对角线,则n ()A.8B.9C.10D.11【答案】D【提示】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=8,求出n的值即可.【详解】解:由题意得:n-3=8,解得n=11,故选:D.变式4-3.(2021·湖南长沙市模拟)已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条【答案】D【提示】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有12(6×3)=9条,故选:D.变式4-4.(2021·广东茂名市·中考模拟)若一个多边形从同一个顶点出发可以作5条对角线,则这个多边形的边数为()A.6B.7C.8D.9【答案】C【提示】可根据n边形从一个顶点引出的对角线有n-3条,即可求解.【详解】解:设这个多边形的边数为n,则n-3=5,解得n=8,故这个多边形的边数为8,故选:C.变式4-5.(2021·河北模拟)过某个多边形的一个顶点的所有对角线,将这个多边形分成7个三角形,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】D【提示】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.【详解】解:设这个多边形是n边形,由题意得,n-2=7,解得:n=9,即这个多边形是九边形,故选:D.考查题型五多边形内角和问题【解题思路】考查多边形的内角和公式,解题关键是牢记多边形的内角和公式.典例5.(2018·山东济宁市·中考真题)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°【答案】A【解析】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=(∠BCD+∠CDE )=120°,∴∠P=180°﹣120°=60°.故选A .变式5-1.(2021·甘肃庆阳市·中考真题)如图,足球图片正中的黑色正五边形的内角和是( ).A .180°B .360°C .540°D .720°【答案】C【提示】根据多边形内角和公式2180()n -⨯︒即可求出结果.【详解】解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,故选C .变式5-2.(2021·湖南湘西土家族苗族自治州·中考真题)已知一个多边形的内角和是1080°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形【答案】D【提示】根据多边形的内角和=(n ﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n ,∴(n ﹣2)•180°=1080°,解得n =8.故选D.考查题型六正多边形内角和问题【解题思路】掌握并能运用多边形内角和公式是解题的关键典例6.(2021·湖南怀化市·中考真题)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.9【答案】C【提示】设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案:n=8.故选C.变式6-1.(2021·湖北宜昌市·中考真题)游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行.成功的招数不止一招,可助我们成功的一招是().A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长【答案】A【提示】根据题意可知封闭的图形是正五边形,求出正五边形内角的度数即可解决问题.【详解】根据题意可知,从起点走五段相等直路之后回到起点的封闭图形是正五边形,∵正五边形的每个内角的度数为:(52)1801085-⨯︒=︒∴它的邻补角的度数为:180°-108°=72°,因此,每走完一段直路后沿向右偏72°方向行走,故选:A.变式6-2.(2021·河北中考真题)正六边形的一个内角是正n边形一个外角的4倍,则n=_________.【答案】12【提示】先根据外角和定理求出正六边形的外角为60°,进而得到其内角为120°,再求出正n边形的外角为30°,再根据外角和定理即可求解.【详解】解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°,又正六边形的一个内角是正n边形一个外角的4倍,∴正n边形的外角为30°,∴正n边形的边数为:360°÷30°=12.故答案为:12.∠变式6-3.(2021·福建中考真题)如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC 等于_______度.【答案】30【提示】先证出内部的图形是正六边形,求出内部小正六边形的内角,即可得到∠ACB的度数,根据直角三角形的两个锐角互余即可求解.【详解】解:由题意六边形花环是用六个全等的直角三角形拼成,可得BD=AC,BC=AF,∴CD=CF,同理可证小六边形其他的边也相等,即里面的小六边形也是正六边形,∴∠1=()1621801206-⨯︒=︒, ∴∠2=180°-120°=60°,∴∠ABC=30°,故答案为:30.考查题型七 截角后的内角和问题【解题思路】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个是解决本题的关键.典例7.(2021·五莲县一模)一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是( )A .360°B .540°C .180°或360°D .540°或360°或180°【答案】D【提示】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.【详解】n 边形的内角和是(n ﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°,故选D .变式7-1.(2021·河北九年级其他模拟)一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是( )A .17B .16C .15D .16或15或17【答案】D【详解】多边形的内角和可以表示成()2180n -⋅︒ (3n ≥且n 是整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据()21802520,n -⋅︒=解得:n=16,则多边形的边数是15,16,17.故选D .变式7-2.(2021·贵州铜仁市·九年级零模)一个多边形切去一个角后得到的另一个多边形的内角和为900︒,那么原多边形的边数为()A .6或7或8B .6或7C .7或8D .7【答案】A【提示】首先求得内角和为900°的多边形的边数,即可确定原多边形的边数.【详解】解:设内角和为900°的多边形的边数是n ,则(n-2)•180°=900°,解得:n=7,如图,有如下几种切法,则原多边形的边数为6或7或8.故选:A .考查题型八 正多边形的外角问题【解题思路】解决问题的关键是掌握多边形的外角和等于360度.典例8.(2021·江苏无锡市·中考真题)正十边形的每一个外角的度数为()A.36︒B.30C.144︒D.150︒【答案】A【提示】利用多边形的外角性质计算即可求出值.【详解】解:360°÷10=36°,故选:A.变式8-1.(2021·江苏扬州市·中考真题)如图,小明从点A出发沿直线前进10米到达点B,向左转45︒后又沿直线前进10米到达点C,再向左转45︒后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米【答案】B【提示】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以10米即可.【详解】解:∵小明每次都是沿直线前进10米后再向左转45︒,∴他走过的图形是正多边形,边数n=360°÷45°=8,∴小明第一次回到出发点A时所走的路程=8×10=80米.故选:B.变式8-2.(2021·湖南娄底市·中考真题)正多边形的一个外角为60°,则这个多边形的边数为()A.5B.6C.7D.8【答案】B【提示】根据正多边形的外角和以及一个外角的度数,求得边数.【详解】解:正多边形的一个外角等于60°,且外角和为360°,则这个正多边形的边数是:360°÷60°=6,故选:B.考查题型九多边形外角和的实际应用【解题思路】典例9.(2021·湖北黄冈市·中考真题)如果一个多边形的每一个外角都是36°,那么这个多边形的边数是()A.7B.8C.9D.10【答案】D【提示】根据多边形的外角的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是36°,∴n=360°÷36°=10.故选D.变式9-1.(2021·山东德州市·中考真题)如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米【答案】C【提示】根据多边形的外角和即可求出答案.【详解】解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×8=64米.故选:C考查题型十多边形内角和与外角和的综合应用【解题思路】熟悉多边形的内角和公式:n边形的内角和是(n-2)×180°;多边形的外角和是360度.典例10.(2021·西藏中考真题)一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A.8B.9C.10D.11【答案】C【提示】利用多边形的内角和公式及外角和定理列方程即可解决问题.【详解】设这个多边形的边数是n,则有(n-2)×180°=360°×4,所有n=10.故选C.变式10-1.(2021·陆丰市模拟)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【提示】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.变式10-2.(2021·中江县模拟)已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8B.9C.10D.12【答案】A【解析】试题提示:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.变式10-3.(2021·西宁市模拟)一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.8【答案】C【解析】解:设这个多边形的边数是n,根据题意得,(n-2)•180°=2×360°+180°, n=7.故选C.考查题型十一平面镶嵌【解题思路】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.典例11.下列多边形中,不能够单独铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【提示】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.变式11-1小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能...是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【提示】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.【详解】解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.故选:C变式11-2.能够铺满地面的正多边形组合是()A.正六边形和正方形B.正五边形和正八边形C.正方形和正八边形D.正三角形和正十边形【答案】C【解析】A、正六边形的每个内角是120°,正方形的每个内角是90°,120m+90n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满;B、正五边形每个内角是180°-360°÷5=108°,正八边形每个内角为135度,135m+108n=360°,显然n 取任何正整数时,m不能得正整数,故不能铺满;C、正方形的每个内角为90°,正八边形的每个内角为135°,两个正八边形和一个正方形刚好能铺满地面;D、正三角形每个内角为60度,正十边形每个内角为144度,60m+144n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满.故选C.变式11-3下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形B.3个正方形和2个正三角形C.1个正五边形和1个正十边形D.2个正六边形和2个正三角形【答案】D【提示】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。
中考数学复习考点知识与题型专题讲解3--- 一元一次方程(解析版)
中考数学复习考点知识与题型专题讲解专题03一元一次方程【思维导图】【知识要点】知识点一一元一次方程的基础等式的概念:用等号表示相等关系的式子。
注意:1.等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等。
2.不能将等式和代数式概念混淆,等式含有等号,表示两个式子相等关系,而代数式不含等号,你只能作为等式的一边。
方程的概念:含有未知数的等式叫做方程。
特征:它含有未知数,同时又是—个等式。
一元一次方程的概念:只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
标准形式:ax+b=0(x为未知数,a、b是已知数且a≠0)【特征】1. 只含有一个未知数x2. 未知数x的次数都是13. 等式两边都是整式,分母中不含未知数。
方程的解的概念:能使方程中等号左右两边相等的未知数的值叫方程的解。
一元方程的解又叫根。
知识点二等式的性质(解一元一次方程的基础)等式的性质1:等式两边(或减)同一个数(或式子),结果仍相等。
表示为:如果a=b,则a±c=b±c等式的性质2:等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
表示为:如果 a=b,那么ac = bc如果 a=b(c≠0),那么 =【注意事项】1.等式两边都要参加运算,并且是同一种运算。
2.等式两边加或减,乘或除以的数一定是同一个数或同一个式子。
3.等式两边不能都除以0,即0不能作除数或分母.4.等式左右两边互换,所得结果仍是等式。
知识点三解一元一次方程合并同类项把若干能合并的式子的系数相加,字母和字母的指数不变,起到化简的作用。
移项把等式一边的某项变号后移到另一边,叫做移项。
(依据:等式的性质1)去括号括号前负号时,去掉括号时里面各项应变号。
去分母在方程的两边都乘以各自分母的最小公倍数。
去分母时不要漏乘不含分母的项。
当分母中含有小数时,先将小数化成整数。
解一元一次方程的基本步骤:知识点四实际问题与一元一次方程用方程解决实际问题的步骤:审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解;验:考虑求出的解是否具有实际意义;答:实际问题的答案.【考查题型】考查题型一 一元一次方程概念的应用【解题思路】关键是根据一元一次方程的概念和其解的概念解答.典例1.(2021·四川中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9 B .8 C .5 D .4【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1, 可得:a-2=1,2+m=4, 解得:a=3,m=2, 所以a+m=3+2=5, 故选:C .变式1-1.(2021·内蒙古中考真题)关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____. 【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,2m 11∴﹣=,即m 1=或m 0=,方程为x 20﹣=或x 20--=, 解得:x 2=或x 2=-, 当2m-1=0,即m=12时, 方程为112022x --= 解得:x=-3,故答案为:x=2或x=-2或x=-3.变式1-2.(2021·四川南充市·中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为() A .9 B .8C .5D .4【答案】C【分析】根据一元一次方程的概念和其解的概念解答即可.【详解】解:因为关于x 的一元一次方程2x a-2+m=4的解为x=1,可得:a-2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选C . 考查题型二 解一元一次方程【解题思路】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.典例2.(2021·重庆中考真题)解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-【答案】D【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .变式2-1.(2021·湖北恩施土家族苗族自治州·中考真题)在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是(). A .1- B .1 C .0 D .2【答案】C【分析】根据题目中给出的新定义运算规则进行运算即可求解. 【详解】解:由题意知:2211☆=+-=+x x x , 又21x =☆, ∴11x +=, ∴0x =. 故选:C .变式2-2.(2021·四川凉山彝族自治州·中考真题)解方程:221123x x x ---=- 【答案】27x =【分析】去分母、去括号、移项、合并同类项、系数化为1,依此即可求解. 【详解】解:221123x x x ---=- ()()6326221x x x --=--636642x x x -+=-+ 634662x x x -+=-+ 72x =27x =考查题型三 配套问题和工程问题【配套问题解题关键】配套问题的物品之间具有一定的数量关系,依次作为列方程的依据.【工程问题解题关键】常把总工作量看做1,并利用“工作量=人均效率×人数×时间”的关系考虑问题典例3.(2021·哈尔滨市模拟)某车间有27名工人,每个工人每天生产64个螺母或者22个螺栓,每个螺栓配套两个螺母,若分配x个工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下列所列方程中正确的是()A.22x=64(27﹣x)B.2×22x=64(27﹣x)C.64x=22(27﹣x)D.2×64x=22(27﹣x)【答案】B【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺母数量=2倍的螺栓数量,可得出方程.【详解】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母64个或螺栓22个,∴可得2×22x=64(27﹣x).故选:B.变式3-1.(2021·黑哈尔滨市二模)某车间有22名工人,每人每天可生产1200个螺钉或2000个螺母,1个螺钉需配2个螺母,为使生产的螺钉和螺母刚好配套,若设x名工人生产螺钉,依题意列方程为()A.1200x=2000(22﹣x)B.1200x=2×2000(22﹣x)C.1200(22﹣x)=2000x D.2×1200x=2000(22﹣x)【答案】D【分析】首先根据题目中已经设出每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,由1个螺钉需要配2个螺母,可知螺母的个数是螺钉个数的2倍,从而得出等量关系,就可以列出方程.【详解】解:设每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,利用一个螺钉配两个螺母.由题意得:2×1200x=2000(22-x),即2×1200x=2000(22-x),故选D.变式3-2.(2021·山西阳泉市模拟)在中国数学名著《九章算术》中,有这样一个问题:“今有共买牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十. 问家数、牛价各几何?”大意是:几家人凑钱合伙买牛,如果每7家共出190元,那么还缺少330元钱;如果每9家共出270元,又多了30元钱. 问共有多少人家,每头牛的价钱是多少元?若设有x户人家,则可列方程为()A.1902703303079x x+=-B.1902703303079x x-=+C.7190927033030x x⨯⨯+=-D.7190927033030x x⨯⨯-=+【答案】A【分析】根据“如果每7家共出190元,那么还缺少330元钱;如果每9家共出270元,又多了30元钱”,可得每头牛的价钱是1903307x+或270309x-,即可得出关于x的方程.【详解】解:∵如果每7家共出190元,那么还缺少330元钱,∴每头牛的价钱是1903307x+;∵如果每9家共出270元,又多了30元钱,∴每头牛的价钱又可以表示为270309x-,∴可列方程为:19027033030 79x x+=-,故选A.变式3-3.(2021·广西南宁市一模)某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.120350506x x+-=+B.350506x x-=+C.120350506x x+-=+D.120350650x x+-=+【答案】C【分析】关系式为:零件任务÷原计划每天生产的零件个数-(零件任务+120)÷实际每天生产的零件个数=3,把相关数值代入即可求解. 【详解】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:12035050+6x x +-= 故选C .变式3-4.(2021·浙江杭州市·中考真题)已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x xB .327230x xB .C .233072x xD .323072x x【答案】D【分析】先设男生x 人,根据题意可得323072x x .【详解】男生x 人,则女生有(30-x)人,由题意得:323072x x,故选D.变式3-5.(2021·哈尔滨市模拟)甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x 人到甲队,列出的方程正确的是() A .1(96)723x x -=-B .196723x x ⨯-=-C .1(96)723x x +=-D .196(72)3x x +=-【答案】C【分析】根据等量关系:乙队调动后的人数=13甲队调动后的人数,列出一元一次方程即可. 【详解】设应从乙队调x 人到甲队,此时甲队有(96+x )人,乙队有(72-x )人, 根据题意可得:13(96+x )=72-x .故选C . 考查题型四 销售盈亏问题 销售金额=售价×数量利润= 商品售价-商品进价利润率=(利润÷商品进价)×100%现售价 = 标价×折扣售价 = 进价×(1+利润率)典例4.(2021·长沙市一模)随着传统节日“端午节”临近,某超市决定开展“欢度端午,回馈顾客”的活动,将进价为120元一盒的某品牌粽子按标价的8折出售,仍可获利20%,则该超市该品牌粽子的标价为__元.()A.180 B.170 C.160 D.150【答案】A【分析】设该超市该品牌粽子的标价为x元,则售价为80%x元,根据等量关系:利润=售价﹣进价列出方程,解出即可.【详解】解:设该超市该品牌粽子的标价为x元,则售价为80%x元,由题意得:80%x﹣120=20%×120,解得:x=180.即该超市该品牌粽子的标价为180元.故选:A.变式4-1.(2021·广东深圳市模拟)某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元【答案】C【分析】设盈利上衣成本x元,亏本上衣成本y元,由题意得:135-x=25%x;y-135=25%y;求出成本可得.【详解】设盈利上衣成本x元,亏本上衣成本y元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C变式4-2.(2021·长沙市二模)中国总理李克强2021年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40% B.20% C.60% D.30%【答案】B【分析】设该小商品的利润率为x,根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设该小商品的利润率为x,依题意,得:10×(1+100%)×0.6﹣10=10x,解得:x=0.2=20%.故选:B.考查题型五比赛积分问题比赛总场数=胜场数+负场数+平场数比赛总积分=胜场积分+负场积分+平场积分典例5.(2021·大庆市模拟)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【答案】B【分析】解答此题可设该队获胜x场,则负了(6-x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【详解】设该队获胜x场,则负了(6-x)场.根据题意得3x+(6-x)=12,解得x=3.经检验x=3符合题意.故该队获胜3场.故选B.变式5-1.(2021·武汉市模拟)一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A.17道B.18道C.19道D.20道【答案】C【分析】设作对了x道,则错了(25-x)道,根据题意列出方程进行求解.【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.变式5-2.(2021·广东深圳市模拟)在2018﹣2021赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=74【答案】C【分析】根据题意分析,可以设曼城队一共胜了x场,则平了(30-x-4)场,找出等量关系:总积分=3×获胜场数+1×踢平场数,即可得出关于x的一元一次方程,此题得解.【详解】设曼城队一共胜了x场,则平了(30﹣x﹣4)场,依题意,得:3x+(30﹣x﹣4)=74,即3x+(26﹣x)=74.故选:C.考查题型六方案选择问题结合实际,分情况讨论,给出合理建议。
中考数学复习考点题型专题讲解13 已知式子的值求代数式的值
中考数学复习考点题型专题讲解 专题13 13 已知式子的值求代数式的值已知式子的值求代数式的值已知式子的值求代数式的值1.已知:x 2﹣5x =6,请你求出代数式10x ﹣2x 2+5的值. 【答案】-7.【分析】先把10x ﹣2x 2+5变形为﹣2(x 2﹣5x )+5,然后把x 2﹣5x =6整体代入进行计算即可. 【详解】解:10x ﹣2x 2+5=﹣2(x 2﹣5x )+5,∵x 2﹣5x =6,∴原式=﹣2×6+5=﹣12+5=﹣7.【点睛】本题考查了代数式求值:先根据已知条件把代数式进行变形,然后利用整体代入进行求值.掌握代数式求值是解题关键.2.已知33x y −=−,求()53x y −−的值.【答案】8【分析】将33x y −=−直接带入到()53x y −−中即可.【详解】解:当33x y −=−时,()()53538x y −−=−−=.【点睛】本题主要考查了代数式求值,整体代入的思想是解题的关键.3.已知a 、b 互为相反数,c 、d 互为倒数,||2m =,且0m <,求23a cd b m −++的值.【答案】-8【分析】结合题目条件,根据相反数、倒数、绝对值求出a +b =0,cd =1,m =-2,再代入求出即可.【详解】解:解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,且0m < ∴a +b =0,cd =1,m =-2,∴23=()230213(2)8a cd b m a b cd m −+++−+=−×+×−=−.【点睛】本题考查了相反数、倒数、绝对值、有理数的混合运算等知识点,能求出a +b =0、cd =1、m =-2是解此题的关键.4.已知代数式 5a +3b 的值为 -4.(1)求代数式 8a - 3(a -b -3)-9 的值;(2)求代数式 2(a +b -5)- (7a +5b -10)的值;(3)求代数式 -6(3a -2b -1)+3(2a -5b -2)+(2a -3b +10)的值. 【答案】(1)-4(2)4(3)18【详解】试题分析:(1)把所给的整式化简成5a +3b ,然后根据条件可得出结果;(2)把所给的整式化简成-(5a +3b ),代入计算即可;(3)把所给的整式化简成-2(5 a +3b )+10,代入计算即可.试题解析:(1)原式=8a -3a +3b +9-9(1分)=5a +3b (2分)= -4;(2)原式="2a +2b -10-7a -5b +10=" -5a -3b (4分)=-(5a +3b )= 4(3)原式=-18a +12b +6+6a -15b -6+2a -3b +10(6分)=-2(5 a +3b )+10(7分)=-2×(-4)+10=18.考点:化简求值.5.整体思想是数学学习中的一种重要的思想方法,认真阅读下面的探究过程,然后解决问题: 探究:已知x 满足2210x x +−=,求代数式222021++x x 的值.解:由2210x x +−=可得,221x x +=,将22x x +看作一个整体,代入得:原式222021*********=++=+=x x ,∴代数式222021++x x 的值为2022.(1)若x 满足250x x −−=,求代数式215−+x x 的值;(2)若222100,50+−=−=x xy y ,且2222,22=−+=−+A x xy y B x xy y ,求代数式43A B −的值.【答案】(1)20(2)0【分析】(1)把将2x x −看作一个整体代入215−+x x ,再求值即可;(2)先求解22210,5+==x xy y ,根据()()2222434322−=−+−−+A B x xy y x xy y 2222x xy y =+−,再整体代入求值即可.*(1)解:由250x x −−=可得:25x x −=,将2x x −看作一个整体代入得:21551520−+=+=x x ;(2)因为22100+−=x xy ,250−=y ,所以22210,5+==x xy y ,()()2222434322−=−+−−+A B x xy y x xy y ,2222x xy y =+−,所以将2210+=x xy 、25y =分别代入,可得4310250−=−×=A B .【点睛】本题考查的是求解代数式的值,掌握“整体代入法求解代数式的值”是解本题的关键.6.已知a ﹣2b =﹣5,b ﹣c =﹣2,3c +d =6,求(a +3c )﹣(2b +c )+(b +d )的值. 【答案】-1【分析】原式去括号整理后,把已知等式代入计算即可求出值.【详解】解:∵a -2b =-5,b -c =-2,3c +d =6,∴原式=a +3c -2b -c +b +d =(a -2b )+(b -c )+(3c +d )=-5-2+6=-1.【点睛】本题考查了已知式子求代数式的值的知识,先去括号再对照已知的式子进行变形是解答本题的关键.7.先化简,再求值:已知122A a b =−+,314B a b =−−,若3b a −的值为-8,求2A B −的值.8.已知代数式5331ax bx x ++−(1)已知当1x =时,该代数式的值为1−,试求a b +的值:(2)已知当3x =时,该代数式的值为9,试求当3x =−时该代数式的值.【答案】(1)a +b =-3;(2)-11【分析】(1)将x =1代入代数式即可求出a +b 的值;(3)将x =3代入代数式求出35a +33b 的值,再将x =-3代入代数式,变形后将35a +33b 的值整体代入计算即可求出值.(1)解:把x =1代入代数式,得到a +b +3-1=-1,∴a +b =-3;(2)解:把x =3代入代数式,得到35a +33b +9-1=9,即35a +33b =1,当x =-3时,原式=-35a -33b -9-1=-(35a +33b )-9-1=-1-9-1=-11.【点睛】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键. 9.阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把()3a b +看成是一个整体,则()()()()()()332353325363a b a b a b a b a b +−+++=−++=+.尝试应用:(1)把()22a b −看成一个整体,合并()()()222225262a b a b a b −−−+−的结果是____________.(2)已知2320x y +−=,求2392016x y ++的值;(3)已知21a b −=,23b c −=−,6c d −=,求()()()22a c b c b d −−−+−的值. 【答案】(1)()232a b − (2)2022(3)4【分析】(1)利用合并同类项进行计算即可;(2)把2392016x y ++的前两项提公因式3,再代入求值即可;(3)利用已知条件求出a c −,2b d −的值,再代入计算即可.(1)()()()222225262a b a b a b −−−+− ()()22562a b =−+−()232a b =−故答案为:()232a b −.(2)∵2320x y +−=,∴232x y +=,∴2392016x y ++()2332016x y =++322016=×+2022=; (3)∵21a b −=①,23b c −=−②,6c d −=③,∴①+②得:2a c −=−,②+③得:23b d −=,∴()()()22a c b c b d −−−+−()233=−−−+4=【点睛】此题主要考查了整式的加减−−化简求值,解题的关键是掌握整体思想,注意去括号时符号的变化.10.阅读理解:已知5412a b −=,求代数式()()232a b a b −+−的值. 解:因为5412a b −=,所以原式5226385242122a b a b a b a b =−+−=−=−=×=. 仿照以上解题方法,完成下面的问题:(1)已知3a b −=−,求()31a b a b −−++的值;(2)已知222a ab +=,21ab b −=,求2225a ab b +−的值.【答案】(1)5−(2)5【分析】(1)仿照例题,可得()31a b a b −−++()()31a b a b =−−−+,将3a b −=−,整体代入求解即可;(2)仿照例题,可得2225a ab b +−()()2222a ab ab b =++−,将222a ab +=,21ab b −=,,整体代入求解即可.(1)解:因为3a b −=−,所以原式()()31a b a b =−−−+()()3331=×−−−+5=−.(2)解:因为222a ab +=,21ab b −=,所以原式2225a ab b +=−()()2222a ab ab b =++−221=×+5=.【点睛】本题考查了代数式求值,整体代入是解题的关键.11.如下表,给出了在x 的不同取值时,三个代数式所得到的代数式的值,回答问题:(1)根据表中信息可知:=a _____________;b =____________;m =____________;n =_____________;(2)表中代数式23x −+的值的变化规律是:x 的值每增加1,23x −+的值就都减少2.类似地,代数式35x −的值的变化规律是:__________________;(3)请直接写出一个含x 的代数式,要求x 的值每增加1,代数式的值就都减少5;(4)已知1x ,2x ,3x 是三个连续偶数;当1x x =时,1mx n y +=;当2x x =时,2x n y +=;当3x x =时,3mx n y +=;且1232022y y y ++=.求123x x x ++的值.【答案】(1)7;1;0.5;2(2)x 的值每增加1,35x −的值就都增加3(3)57x −−(答案不唯一)(4)123x x x ++的值为4032【分析】(1)分别将2x =−和2x =代入两个代数式.计算可得a 和b 的值;分别把0x =和2x =−代入mx n +,建立方程组求解即可;(2)结合所给例子并观察表格数字的变化情况即可得出结论;(3)按要求使x 的系数为5−,常数项可随意取值即可;(4)在(1)计算的基础上,分别代入上面三个式子,计算即可.(1)解:用2替换代数式中的x ,2(2)37a =−×−+=,3251b =×−=.由表格可知,当0x =时,2n =;当2x =−时,21m n −+=;解得2n =,0.5m =;故答案为:7;1;0.5;2;(2)解:观察表格中第三行可以看出,x 的值每增加1,35x −的值就都增加3,故答案为:x 的值每增加1,35x −的值就都增加3;(3)解:x ∵的值每增加1,代数式的值就都减小5,x \的系数为5−,∴这个含x 的代数式是:57x −−(答案不唯一);(4)解:由(1)知,2n =,0.5m =,110.52y x ∴=+,220.52y x =+,330.52y x =+,1231230.5()6y y y x x x ∴++=+++,1232022y y y ++=∵,1234032x x x ∴++=,即123x x x ++的值为4032.【点睛】本题主要考查列代数式和求代数式的值,涉及到有理数的混合运算,掌握运算法则准确计算是解题的关键.12.整体思想是中学数学解题中一种重要思想方法.有这样一道题:“如果整式a +b 的值为-4,那么整式2(a +2b )+3a +b ”的值是多少?”爱动脑筋的小明同学把a +b 作为一个整体进行求解,解题过程为:原式=2a +4b +3a +b=5a +5b=5(a +b )=5×(-4)=-20.请仿照以上解题方法,解决下面的问题:(1)已知a 2+a =3,求2a 2+2a +2022的值;(2)已知a -2b =-3,求3(a -b )-4a +5b +5的值.【答案】(1)2028(2)8【分析】(1)利用整体代入的思想代入计算即可;(2)首先把代数式进行变形,然后再代入计算即可(1)解:当a 2+a =3时,2a 2+2a +2022=2(a 2+a )+2022=2×3+2022=2028(2)解:当a -2b =-3时,3(a -b )-4a +5b +5=3a -3b -4a +5b +5=-a +2b +5=-(a -2b )+5=-(-3)+5=8【点睛】此题考查了整式的加减一化简求值,利用整体代入的思想解答是解此题的关键. 13.我们知道,42(421)3x x x x x −+=−+=.类似地,我们把()a b +看成一个整体,则4()2()((421)()3())a b a b a b a b a b =+−+++−++=+.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.(1)若把2()a b −看成一个整体,则合并2223()8()6()a b a b a b −−−+−的结果是.(2)已知223x y−=,求2842y x−+−的值.【答案】(1)2()a b−(2)10,过程见解析【分析】(1)把2()a b−看成一个整体,合并同类项即可;(2)把2842y x−+−的前两项提取公因式4,然后整体代入求值.(1)解:2223()8()6()a b a b a b−−−+−=(3-8+6)2()a b−=2()a b−故答案为:2()a b−(2)解:∵223x y−=,∴2842y x−+−=24(2)2y x−+−=24(2)2x y−−=432×−=10【点睛】本题考查了整式的加减,掌握整体的思想是解决本题的关键.14.A、B、C、D四个车站的位置如图所示,A、B两站之间的距离AB=a-b,B、C两站之间的距离BC=2a-b,B、D两站之间的距离BD=72a-2b-1.求:(1)A 、C 两站之间的距离AC ;(2)若A 、C 两站之间的距离AC =9015.数学中,运用整体思想方法在例如:已知m 2+3m =1,则2m=90km ,求C 、D 两站之间的距离C D .方法在求整式的值时非常重要.2+6m +1=2(m 2+3m )+1=2×1+1=3请你根据上面材料解答以下问题:(1)若n2﹣2n=3,求2﹣n2+2n的值;(2)当x=1时,px3+qx﹣1=4,当x=﹣1时,求px3+qx﹣1的值;(3)当x=2021时,ax5+bx3+cx+2=k,当x=﹣2021时,直接写出ax5+bx3+cx+2的值(用含k 的式子表示).【答案】(1)-1(2)-6(3)﹣k+4【分析】(1)将代数式适当变形,利用整体代入的方法解答即可;(2)将x=1代入px3+qx﹣1=4中,得到关于p,q的关系式,将x=﹣1代入px3+qx﹣1后,适当变形,利用整体代入的方法解答即可;(1)解:∵n2-2n=3∴2−+n n22()2=−−n n22=−23=−1∴2−+=−.n n221(2)解:∵当1x =时,3114px qx p q +−=+−=∴5p q +=∴当1x =−时,31px qx +−1p q =−−−()1p q =−+−51=−−6=−∴1x =−时316px qx +−=−.(3)解:∵当2021x =时,532ax bx cx k +++=∴20215a +20213b +2021c +2=k∴532021202120212a b c k ++=−∴当2021x =−时,532ax bx cx +++532021202120212a b c =−−−+()532021202120212a b c =−+++ ()22k =−−+4k =−+∴2021x =−时5324ax bx cx k +++=−+.【点睛】本题考查了整体代入求整式值.解题的关键在于用将代数式适当变形.体现了整体代入的方法和思想.16.【阅读理解】“整体思想”是一种重要的数学思想方法,在多项式的化简求值中应用极为广泛. 比如,()424213x x x x x −+=−+=,类似地,我们把()a b −看成一个整体,则()()()()()()424213a b a b a b a b a b −−−+−=−+−=−.(1)化简()()()42a b a b a b +++−+的结果是______.(2)化简求值,()()()()223553x y x y x y x y +++++−+,其中12x y +=. (3)若224x y −=,请直接写出23610x y −++的值. 【答案】(1)55a b +;(2)()()282x y x y +++,3;(3)-2.【分析】(1)直接合并同类项,再用分配律去括号即可;(2)先用整体思想化简,再整体代入式子的值,计算即可;(3)逆用乘法分配律,然后整体代入式子的值,计算即可.(1)解:()()()42a b a b a b +++−+,=()5a b +,=55a b +;(2)17.数学中,运用整体思想方法在求代数式的值中非常重要.例如:已知,221a a +=,则代数式()222442242146a a a a ++=++=×+=.请你根据以上材料解答以下问题:(1)若232x x −=,则213x x +−=;(2)已知5a b −=,3b c −=,求代数式()2323a c a c −−++的值; (3)当1x =−,2y =时,代数式221ax y bxy −−的值为8,则当1x =,2y =−时,求代数式221ax y bxy −−的值.【答案】(1)-1;(2)42;(3)-10本号资料全#部来源于微信公众号:数学第*六感【分析】(1)根据整体思想代入计算即可求解;(2)根据已知条件先求出a -c 的值,再整体代入到所求代数式中即可;(3)根据已知可得2a +4b =9,再整体代入到所求代数式中即可.【详解】解:(1)因为x 2-3x =2,所以1+3x -x 2=1-(x 2-3x )=1-2=-1故答案为:-1.(2)∵a -b =5,b -c =3,∴a -b +b -c =a -c =5+3=8,∴(a -c )2-3a +2+3c =(a -c )2-3(a -c )+2=82-24+2=64-24+2=42;(3)∵当x =-1,y =2时,代数式ax 2y -bxy 2-1的值为8,即2a +4b -1=8,所以2a +4b =9,∴当x =1,y =-2时,代数式ax 2y -bxy 2-1=-2a -4b -1=-(2a +4b )-1=-9-1=-10.【点睛】本题考查了代数式求值,解决本题的关键是运用整体代入思想.18.用整体思想解题:为了简化问题,我们往往把一个式子看成一个数——整体.试按提示解答下面问题.(1)已知A +B =3x 2-5x +1,A -C =-2x +3x 2-5,求:当x =2时,B +C 的值.提示:B +C =(A +B )-(A -C ).(2)若代数式2x 2+3y +7的值为8,求代数式6x 2+9 y +8的值.提示:把6x 2+9 y +8变形为含有2x 2+3y +7的形式.(3)已知2xy x y=+,求代数式3533x xy y x xy y −+−+−的值.提示:把xy 和x y +分别看作整体;再由已知可得2()xy x y =+,代入3533x xy y x xy y −+−+−.。
2023学年人教中考数学重难点题型分类 专题04 一元一次方程的应用题重难点题型分类
专题04 高分必刷题-一元一次方程的应用题重难点题型分类(解析版) 专题简介:本份资料包含一元一次方程这一章的常考应用题的全部题型,所选题目源自各名校期中、期末 试题中的典型考题,具体包含七类题型:配套问题、古典应用题、利润问题、费用与方案选择问题、分层 计费问题、工程问题、路程问题。
适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使 用。
配套问题1.(明德)七年级(1)班课外手工制作小组30名学生制作纸飞机模型,每人每小时可做20个机身或60个机翼,一个飞机模型要一个机身配两个机翼,为了使每小时制作的成品刚好配套,应该分配多少名学生做机身,多少名学生做机翼?设分配x 名学生做机身,则可列方程( )A.()206030x x =-B.()2026030x x =⨯-C.()2206030x x ⨯=-D.()602030x x =-【解答】解:设应该分配x 名学生做机身,则有(30﹣x )名学生做机翼,由题意得:60(30﹣x )=2×20x ,故选:C .2.(长郡)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?【解答】解:设可设分配x 名工人生产螺栓,(24﹣x )名工人生产螺母.由题意得:3×12x =2×18(24﹣x ),解得:x =12,24﹣x =12(人).答:应该分配12名工人生产螺栓,12名生产螺母,才能使每天的产品刚好配套.3.(青竹湖)甲一天能加工A 种零件50个或加工B 种零件20个,1个A 种零件与2个 B 种零件配成一套,那么甲30天时间安排多少天做零件A ,多少天做零件B ,才能使得所有零件都刚好配套?【解答】解:设x 天制作A 种零件,可得方程:2×50x =20(30﹣x ),解得:x =5,30﹣5=25, 答:甲30天时间安排5天做A 种零件,25天做B 种零件,才能使得所有零件都刚好配套. 古典应用题4.(西雅)在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(“倍加增”指灯的数量从塔的顶层到底层逐层翻倍增加).根据此诗,可以得出塔的顶层有( )A.3盏灯B.4盏灯C.5盏灯D.6盏灯【解答】解:设顶层x 盏灯,可得方程:x+2x+4x+8x+16x+32x+64x =381,得:x =3,故选:A .5.(一中)我国明朝数学家程大位著的《算法统筹》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”原文的意思是:“有一百个和尚,吃一百个馒头,大和尚每人吃三个,小和尚三人吃一个,大小和尚各多少人?”大和尚人数为__________人.【解答】解:设大和尚有x 人,小和尚有100-x 人,依题意,得100)100(313=-+x x .所以x =25. 6. (青竹湖)古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十 二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x 天可追上慢马,则由题意,可列方程为 .【解答】解:设快马x 天可以追上慢马,据题题意:240x =150x +12×150,故答案为:240x =150x +12×1507. (雅礼我国古代对于利用方程解决实际问题早有研究,《九章算术》中提到这么一道“以绳测井”的题: 以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设井深为x 尺,则求解井深的方程正确的是( )A .3(x +4)=4(x +1)B .3x +4=4x +1C .x +4=x +1D .x ﹣4=x ﹣1【解答】解:根据将绳三折测之,绳多四尺,则绳长为:3(x +4),根据绳四折测之,绳多一尺,则绳长为:4(x +1),故3(x +4)=4(x +1).故选:A .8. (广益)我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐,问人数和车数各多少?设车x 辆,根据题意,可列出的方程是( )A. 3229x x -=+B. ()3229x x -=+C. 2932x x +=- D. ()()3229x x -=+ 【解答】解:设车x 辆,根据题意得:3(x ﹣2)=2x +9.故选:B .利润问题9.(青竹湖)某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .100【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.10.(青竹湖)已知某种商品的标价为200元,即使搞促销活动打九折后仍有20%的利润,则该商品的成本价是()A.144元B.150元C.153元D.167元【解答】解:设该商品的成本价为x元,根据题意得:200×0.9﹣x=20%x,解得:x=150.故选:B.11.(长梅)一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是( )A.亏损20元B.盈利30元C.亏损50元D.不盈不亏【解答】解:设盈利的商品的进价为x元,亏损的商品的进价为y元,根据题意得:150﹣x=25%x,150﹣y=﹣25%y,解得:x=120,y=200,∴150+150﹣120﹣200=﹣20(元).故选:A.12.(雅礼)某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1000﹣x)只,由题意,得25x+45(1000﹣x)=37000,解得:x=400,购进乙型节能灯1000﹣x=1000﹣400=600(只)答:购进甲型节能灯400只,购进乙型节能灯600只进货款恰好为37000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.费用与方案选择问题13.(青竹湖)学校艺术节要印制节目单,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收800元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而800元的制版费则七折优惠。
2024成都中考数学第一轮专题复习 重难题型分类题型 综合与实践
2024成都中考数学第一轮专题复习重难题型分类题型综合与实践1. (2022河南)综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图①中一个30°的角:______________________________________;(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图②,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;②改变点P在AD上的位置(点P不与点A,D重合),如图③,判断∠MBQ与∠CBQ的数量关系,并说明理由;(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8 cm,当FQ=1 cm时,直接写出AP的长.第1题图2. (2022齐齐哈尔)数学是以数量关系和空间形式为主要研究对象的科学.数学实践活动有利于我们在图形运动变化的过程中去发现其中的位置关系和数量关系,让我们在学习与探索中发现数学的美,体会数学实践活动带给我们的乐趣.转一转:如图①,在矩形ABCD中,点E,F,G分别为边BC,AB,AD的中点,连接EF,DF,H为DF的中点,连接GH .将△BEF 绕点B 旋转,线段DF ,GH 和CE 的位置和长度也随之变化.当△BEF 绕点B 顺时针旋转90°时,请解决下列问题:(1)图②中,AB =BC ,此时点E 落在AB 的延长线上,点F 落在线段BC 上,连接AF ,猜想GH 与CE 之间的数量关系,并证明你的猜想;(2)图③中,AB =2,BC =3,则GH CE=________; (3)当AB =m ,BC =n 时,GH CE=________;第2题图剪一剪、折一折:(4)在(2)的条件下,连接图③中矩形的对角线AC ,并沿对角线AC 剪开,得△ABC (如图④).点M ,N 分别在AC ,BC 上,连接MN ,将△CMN 沿MN 翻折,使点C 的对应点P 落在AB 的延长线上,若PM 平分∠APN ,则CM 长为________.第2题图④类型二 探究迁移型试题3. (2022乐山)以下是华师版八年级下册数学教材第121页习题19.3第2小题及参考答案.如图①,在正方形ABCD 中,CE ⊥DF .求证:CE =DF .证明:设CE 与DF 交于点O ,∵四边形ABCD 是正方形,∴∠B =∠DCB =90°,BC =C D.∴∠BCE +∠DCE =90°.∵CE ⊥DF ,∴∠COD =90°.∴∠CDF +∠DCE =90°.∴∠CDF =∠BCE .∴△CBE ≌△DCF .∴CE =DF .第3题图①某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究.【问题探究】如图②,在正方形ABCD 中,点E ,F ,G ,H 分别在线段AB ,BC ,CD ,DA 上,且EG ⊥FH .试猜想EG FH的值,并证明你的猜想;【知识迁移】如图③,在矩形ABCD 中,AB =m ,BC =n ,点E ,F ,G ,H 分别在线段AB ,BC ,CD ,DA 上,且EG ⊥FH ,则EG FH=________; 【拓展应用】如图④,在四边形ABCD 中,∠DAB =90°,∠ABC =60°,AB =BC ,点E ,F 分别在线段AB ,AD 上,且CE ⊥BF .求CE BF的值.图②图③图④第3题图4. (2022江西)综合与实践问题提出某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板PEF(∠P=90°,∠F=60°)的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板PEF与正方形ABCD重叠部分的面积变化情况(已知正方形边长为2).操作发现(1)如图①,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,重叠部分的面积为________;当OF与BC垂直时,重叠部分的面积为________;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为________;类比探究(2)若将三角板的顶点F放在点O处,在旋转过程中,OE,OP分别与正方形的边相交于点M,N.①如图②,当BM=CN时,试判断重叠部分△OMN的形状,并说明理由;②如图③,当CM=CN时,求重叠部分四边形OMCN的面积(结果保留根号);拓展应用(3)若将任意一个锐角的顶点放在正方形中心O处,该锐角记为∠GOH(设∠GOH=α),将∠GOH绕点O逆时针旋转,在旋转过程中,∠GOH的两边与正方形ABCD的边所围成的图形的面积为S2,请直接写出S2的最小值与最大值(分别用含α的式子表示).(参考数据:sin 15°=6-24,cos 15°=6+24,tan 15°=2-3)第4题图源自北师九上P25第4题类型三综合应用型试题5. (2022自贡)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A,B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由;第5题图(2)实地测量如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH;(3≈1.73,结果精确到0.1米) (3)拓展探究公园高台上有一凉亭,为测量凉亭顶端P距地面的高度PH(如图④),同学们经过讨论,决定先在水平地面上选取观测点E,F(E,F,H在同一直线上),分别测得点P的仰角α,β,再测得E,F间的距离m,点O1,O2到地面的距离O1E,O2F均为1.5米.求PH(用α,β,m表示).图③图④第5题图源自北师九下P22活动课题6. (2022陕西)问题提出(1)如图①,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为________;问题探究(2)如图②,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB,BC于点O,E,求四边形OECA的面积;问题解决(3)如图③,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP 型部件,并要求∠BAP=15°,AP=A C.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP,BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.第6题图。
2023学年人教中考数学重难点题型分类必刷题 专题18 一次函数的应用题重难点题型分类(含详解)
专题18 一次函数的应用题重难点题型分类-高分必刷题(原卷版)专题简介:本份资料包含一次函数这一章的常考中档应用题,所选题目源自各名校期中、期末试题中的典型考题,具体包含五类题型:常规的一次函数最大利润问题、含参数的一次函数最大利润问题、一次函数的最少费用问题、分段函数的应用题、货物调运问题。
适合于培训机构的老师给学生作专题复习时使用或者学生考前刷题时使用。
题型一:常规的一次函数最大利润问题1.(青竹湖)在近期“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售80只A型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A型口罩的进货量且不超过它的3倍,设购进A型口罩x只,这2000只口罩的销售总利润为y元.①求y关于x的函数关系式,并求出自变量x的取值范围;②该药店购进A型、B型口罩各多少只,才能使销售总利润最大?2.(一中)夏季来临,商场准备购进甲、乙两种空调.已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场欲同时购进两种空调20台,且全部售出,请写所获利润y(元)与甲种空调x(台)之间的函数关系式;(3)在(2)的条件下,若商场计划用不超过36000元购进空调,且甲种空调至少购进10台,并将所获得的最大利润全部用于为某敬老院购买1100元/台的A型按摩器和700元/台的B型按摩器.直接写出购买按摩器的方案.3.(青竹湖)由于新能源汽车越来越受到消费者的青睐,某经销商决定分两次购进甲、乙两种型号的新能源汽车(两次购进同一种型号汽车每辆的进价相同).第一次用270万元购进甲型号汽车30辆和乙型号汽车20辆;第二次用128万元购进甲型号汽车14辆和乙型号汽车10辆.(1)求甲、乙两种型号汽车每辆的进价;(2)经销商分别以每辆甲型号汽车8.8万元,每辆乙型号汽车4.2万元的价格销售后,根据销售情况,决定再次购进甲、乙两种型号的汽车共100辆,且乙型号汽车的辆数不少于甲型号汽车辆数的3倍,设再次购进甲型据销售情况汽车a辆,这100辆汽车的总销售利润为W万元.①求W关于a的函数关系式;②若每辆汽车的售价和进价均不变,该如何购进这两种汽车,才能使销售利润最大?最大利润是多少?4.(长培)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价-进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.5.(南雅)近段时间共享单车风靡全国,从而刺激了自行车生产厂家,某厂家准备生产A、B两种型号的共享单车,已知生产6辆A型单车与5辆B型单车的成本相同,生产3辆A型单车与2辆B型单车共需1080元.(1)求生产一辆A型车和生产一辆B型单车的成本各为多少元?(2)由于共享单车公司需求量加大,生产厂家需要再生产A、B两种型号的单车共10000辆,恰逢原料商对基本原料的价格进行调整,调整后,A型单车每辆成本价比原来降低10%,B型单车每辆的成本价不变,如果厂家准备投入的总成本不超过216万元,那么至少要生产多少辆A型单车?(3)在(2)的条件下,该生产厂家发现,销售过程中每辆A型单车可获利100元,每辆B型单车可获利120元,求全部销售完这批单车获得的利润z与A型单车辆数m之间的函数关系式,并求获利最大的方案及最大利润.题型二:含参数的一次函数最大利润问题6.(长沙中考)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.7.(雅礼)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍.设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 与x 的关系式;②该商店购进A 型、B 型各多少台,才能使销售利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调()0100m m <<元,且限定商店最多购进A 型电脑70台.若商店保持同种电脑的售价不变,请你以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.8.(雅礼)通程电器商城购3台空调、2台彩电需花费2.32万元.购2台空调、4台彩电需花费2.48万元.(1)计算每台空调与彩电的进价分别是多少元?(2)已知一次性购进空调、彩电共30台,购进资金不超过12.8万元,购进空调不少于10台,写出符合要求的进货方案.(3)在(2)的情况下,原每台空调的售价为6100元,每台彩电的售价为3900元,根据市场需要,商城行“庆五一优惠活动”,每台空调让利a 元()0350a <<设商城计划购进空调x 台,空调和彩电全部销售完商城获得的利润为y 元,试写出y 与x 的函数关系式,选择哪种进货方案,商城获利最大?9.(青竹湖)红旗连锁超市准备购进甲、乙两种绿色袋装食品.甲、乙两种绿色袋装食品的进价和售价如表.已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价-进价)不少于4800元,且不超过4900元,问该超市有几种进货方案?(3)在(2)的条件下,该超市如果对甲种袋装食品每袋优惠()18a a <<元出售,乙种袋装食品价格不变.那么该超市要获得最大利润应如何进货?题型三:一次函数的费用最值问题10.(麓山国际)2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A 、B 两种类型的便携式风扇到地摊一条街出售.已知2台A 型风扇和5台B 型风扇进价共100元,3台A 型风扇和2台B 型风扇进价共62元.(1)求A 型风扇、B 型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A 型风扇销售情况比B 型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?哪种进货方案费用最低?最低费用为多少?11.(中雅)为发展农村经济,修建一批沼气池.某村共264户村民,计划修建A型、B型沼气池共20个,两种沼气池每个的修建费用、修建用地、可供使用户数情况如表:设修建A型沼气池x个;修建两种沼气池共需费用y万元.(1)求y与x之间的函数关系式;(2)已知政府只批给该村沼气池修建用地708m2,求既不超过政府批给该村沼气池修建用地,又要使该村每户村民都用上沼气的修建方案有哪几种?(3)若选择(2)中费用最少的修建方案,村里得32万元政府补助款,不足部分由村民集资,全村村民共应自筹资金多少元?12.(长郡)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.题型四:分段函数的应用题13.(麓山)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数。
初中数学中考二轮复习重难突破专题06 反比例函数的综合(含答案)
专题06 反比例函数的综合重点分析在中考中,反比例函数的图象与性质常以选择题和填空形式考查;反比例函数解析式主要在反比例函数综合题中与一次函数、几何图形结合考查。
难点解读难点一:反比例函数的概念一般地,形如,叫做反比例函数,自变量范围是≠0的一切实数难点二:反比例函数的图象与性质一、三二、四难点三:反比例函数系数k的几何意义在反比例函数上任取一点轴的垂线PM、P=难点四:反比例函数解析式的确定设所求反比例函数解析式为:得几何意义,由面积得真题演练1.如图,在平面直角坐标系中,函数的图象与直线交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.【答案】(1) k的值为3,m的值为1;(2)0<n≤1或n≥3.【解析】【详解】分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k 的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.详解:(1)将A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),将A(3,1)代入y=,∴k=3×1=3,m的值为1.(2)①当n=1时,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.2.如图,在平面直角坐标系xOy中,直线l:y=x与反比例函数y=(x>0)的图象交于点A(2,a).(1)求a,k的值;(2)横,纵坐标都是整数的点叫做整点.点P(m,n)为射线OA上一点,过点P作x轴,y轴的垂线,分别交函数y=(x>0)的图象于点B,C.由线段PB,PC和函数y=(x>0)的图象在点B,C之间的部分所围成的区域(不含边界)记为W.①若PA=OA,求区域W内的整点个数;②若区域W内恰有5个整点,结合函数图象,直接写出m的取值范围.【答案】(1)3,6;(2)①5个;②或.【解析】(1)先根据直线的解析式可求a的值,从而可得点A的坐标,再将将点A坐标代入反比例函数的解析式可得k的值;(2)①先求出点P坐标,再根据反比例函数的解析式求出点B,C坐标,然后结合函数图象、整点的定义即可得;②分点P在点A下方和点P在点A上方两种情况讨论,结合函数图象列出不等式组求解即可.【详解】(1)∵直线与反比例函数的图象交于点∴∴将代入反比例函数得解得;(2)①∵点P为射线OA上一点,且∴A为OP中点∵,解得∴点P的坐标为将代入得将代入得,解得∵如图,PB,PC分别垂直于x轴和y轴∴结合函数图象可知,区域W内有5个整点;②在射线OA上由题意,分以下两种情况:如图,当点P在点A下方时结合函数图象得:,即解得如图,当点P在点A上方时结合函数图象得:,即解得综上,当或时,区域W内恰有5个整点.【点拨】本题考查了反比例函数与一次函数的综合,掌握反比例函数的性质是解题关键.3.如图,一次函数y=ax+b与反比例函数y=(x>0)的图象在第一象限交于A,B两点,点B的坐标为(4,2),连接OA,过点B作BD⊥y轴,垂足为D,交OA于点C,且OC=CA.(1)求反比例函数和一次函数的解析式.(2)根据图象直接写出关于x的不等式的解集为 .【答案】(1)反比例函数的表达式为,一次函数的表达式为y=-x+6;(2)0<x<2或x>4.【解析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)观察函数图象即可求解.【详解】解:(1)如图,过点A作AN⊥x轴于点N,交BD于点E,∵点B(4,2)在反比例函数图象上,∴,∴反比例函数的表达式为,∵B(4,2),∴EN=2,∵BD⊥y轴,OC=CA,∴AE=EN=AN,∴AN=4,∴点A的纵坐标为4,∵点A在反比例函数图象上,∴A(2,4),∵一次函数的表达式为,∴4a+b=2,2a+b=4,∴a=-1,b=6,∴一次函数的表达式为y=-x+6;(2)观察函数图象知,不等式的解集为:0<x<2或x>4,故答案为:0<x<2或x>4.【点拨】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法,解本题的关键是用待定系数法求出直线AB的解析式.4.如图,关于x的一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(﹣2,8),B(4,m)两点.(1)求一次函数与反比例函数的解析式.(2)设一次函数y=k1x+b的图象与x轴,y轴的交点分别为M,N,P是x轴上一动点,当以P,M,N三点为顶点的三角形是等腰三角形时,求点P的坐标.【答案】(1)y=﹣,y=﹣2x+4;(2)点P的坐标是(﹣2,0)或(2+2,0)或(2﹣2,0)或(﹣3,0).【解析】(1)先把A点坐标代入y=可求出k2的值,从而确定反比例函数解析式;再把B(4,m)代入反比例函数解析式求出m的值,可确定点B的坐标,然后利用待定系数法求一次函数解析式;(2)先根据一次函数的解析式确定M和N的坐标,根据以P,M,N三点为顶点的三角形是等腰三角形分三种情况讨论:①NP=NM;②MP=MN;③PN=PM;前两种直接根据线段的长得出点P的坐标,第三种根据两点的距离列方程可得结论.【详解】解:(1)把,代入反比例函数得:,,,∴反比例函数解析式为,且,把,代入得:,解得,∴一次函数解析式为;(2),当时,,当时,,,,,,,①当时,如图1,,,;②当时,如图2,由勾股定理得:,,或,;③当时,如图3,是轴上一动点,设,,,,,综上,点的坐标是或,或,或.【点拨】本题考查了反比例函数与一次函数的交点问题和等腰三角形的性质和判定,并注意等腰三角形在没确定腰和底边时要分情况讨论,注意利用数形结合的思想.5.如图,一次函数与反比例函数的图象交于,两点.(1)求反比例函数的解析式和的值;(2)根据图象直接写出不等式的的取值范围;(3)求的面积.【答案】(1),2;(2)或;(3)8【解析】(1)把的坐标代入反比例函数解析式即可求得的值,然后把代入即可求得的值;(2)根据一次函数和反比例函数的图象即可直接求解;(3)利用待定系数法求得一次函数的解析式,设直线与轴相交于点,然后根据即可求解.【详解】解:(1)在的图象上,,反比例函数的解析式是.又∵在的图象上,;(2)由图象可知:当或时,;(3),在函数的图象上,,解得:,则一次函数的解析式是,设直线与轴相交于点,则的坐标是.∴.【点拨】本题考查了反比例函数和一次函数的综合,熟练掌握待定系数法求函数的解析式是解决本题的关键.6.如图,一次函数y=x+2的图象与反比例函数y=的图象相交,其中一个交点的横坐标是1.(1)求k的值;(2)若将一次函数y=x+2的图象向下平移4个单位长度,平移后所得到的图象与反比例函数y=的图象相交于A,B两点,求此时线段AB的长.【答案】(1)k=3;(2)4.【解析】(1)将x=1代入y=x+1=3,故其中交点的坐标为(1,3),将(1,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+2的图象向下平移4个单位得到y=x﹣2,一次函数和反比例函数解析式联立,解方程组求得A.B的坐标,然后根据勾股定理即可求解.【解答】解:(1)将x=1代入y=x+2=3,∴交点的坐标为(1,3),将(1,3)代入y=,解得:k=1×3=3;(2)将一次函数y=x+2的图象向下平移4个单位长度得到y=x﹣2,由,解得:或,∴A(﹣1,﹣3),B(3,1),∴AB==4.7.在平面直角坐标系中,一次函数的图象与x轴、y轴分别交于A.B两点,且与反比例函数图象的一个交点为.(1)求m的值;(2)若,求k的值.【答案】(1)4;(2)或【解析】(1)将P点的坐标代入反比例函数解析式,计算即可求得m;(2)分两种情况讨论,当一次函数过一、二、三象限时,画出图象,将转化为两个三角形相似,过过P作轴交x轴于点H,证明,即可求出k和b的值;当一次函数过一、三、四象限时,画出图象,将转化为两个三角形相似,过点P作PQ⊥y轴于点Q,证明即可求出k和b的值.【详解】解:(1)∵P为反比例函数上一点,∴代入得,∴.(2)令,即,∴,,令,∴,∵.由图象得,可分为以下两种情况,①B在y轴正半轴时,,∵,过P作轴交x轴于点H,又,,∴∴,,即,∴,∴,∴.②B在y轴负半轴时,,过P作轴,∵,∴,∴,∴,,∵,∴,代入∴,综上,或.【点拨】本题考查了反比例函数,一次函数的图象与性质和相似三角形,添加辅助线构造相似三角形,将题目中线段的倍数关系转化为相似三角形的相似比是解题关键.8.如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与反比例函数在第一象限内的图象相交于点,过点作轴于点.(1)求反比例函数的解析式;(2)求的面积.【答案】(1);(2)6【解析】(1)因为一次函数与反比例函数交于点,将代入到一次函数解析式中,可以求得点坐标,从而求得,得到反比例函数解析式;(2)因为轴,所以,利用一次函数解析式可以求得它与轴交点A的坐标,由,,三点坐标,可以求得和的长度,并且轴,所以,即可求解.【详解】解:(1)∵点是直线与反比例函数交点,∴点坐标满足一次函数解析式,∴,∴,∴,∴,∴反比例函数的解析式为;(2)∵轴,∴,轴,∴,令,则,∴,∴,∴,∴的面积为6【点拨】本题考查了反比例函数与一次函数交点问题,三角形的面积,同时要注意在平面直角坐标系中如何利用坐标表示水平线段和竖直线段.9.如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=2.(1)求反比例函数的解析式;(2)求∠EOD的度数.【答案】(1)y;(2)15°.(1)根据题意求得A(2,2),然后代入y(x>0),求得k的值,即可求得反比例函数的解析式;(2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质越久三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD =15°.【解析】(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,∴△AOD是等腰直角三角形,∵OA=2,∴OD=AD=2,∴A(2,2),∵顶点A在反比例函数y(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y;(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∵Rt△ABC中,∠ACB=90°,∴CE=AE=BE,∴∠AOE=∠AEO,∠ECB=∠EBC,∵∠AEO=∠ECB+∠EBC=2∠EBC,∵BC∥x轴,∴∠EOD=∠ECB,∴∠AOE=2∠EOD,∵∠AOE=45°,∴∠EOD=15°.10.如图,在平面直角坐标系中,直线与函数的图象交于点A(1,2).(1)求的值;(2)过点作轴的平行线l,直线与直线l交于点B,与函数的图象交于点,与轴交于点D.①当点C是线段BD的中点时,求的值;②当时,直接写出的取值范围.【答案】(1)m=2;(2)①b=-3, ②b>3.【解析】(1)把A点坐标代入中即可得出m的值;(2)①求出C点坐标为(2,1)代入直线即可得出b的值;②根据图象可得结论.【详解】(1)把A(1,2)代入函数中,∴.∴.(2)①过点C作轴的垂线,交直线l于点E,交轴于点F.当点C是线段BD的中点时,.∴点C的纵坐标为1,把代入函数中,得.∴点C的坐标为(2,1).把C(2,1)代入函数中,得.②由图象可知,当时,。
2024年中考数学复习重难点(全国通用版):用一次函数、反比例函数、二次函数解决实际问题(原卷版)
专题19用一次函数、反比例函数、二次函数解决实际问题【中考考向导航】目录【直击中考】 (1)【考向一在一次函数解决实际问题求最值问题】 (1)【考向二用反比例函数解决实际问题】 (3)【考向三在二次函数解决实际问题求最值问题】 (6)【直击中考】【考向一在一次函数解决实际问题求最值问题】例题:(2023·山东济南·山东大学附属中学校考一模)为响应对口扶贫,深圳某单位和西部某乡结对帮扶,采购该乡农副产品助力乡村振兴.已知1件A产品价格比1件B产品价格少20元,300元购买A产品件数与400元购买B产品件数相同.(1)A产品和B产品每件分别是多少元?(2)深圳该对口单位动员职工采购该乡A、B两种农副产品,根据统计:职工响应积极,两种预计共购买150件,A的数量不少于B的2倍,当采购A、B两种农副产品为多少时,购买总费用最大?并求购买总费用的最大值.【变式训练】1.(2023秋·广东河源·八年级校考期末)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710且不超过6810元购进这两种商品共100件.(1)甲、乙两种商品的进价各是多少?(2)设其中甲商品的进货件数为x件,商店有几种进货方案?(3)设销售两种商品的总利润为W元,试写出利润W与x的函数关系式,并利用函数的性质说明哪一种进货方案可获得最大利润,并求出最大利润是多少?设该经销商购进普通包装的柿饼x 斤,总利润为y 元.(1)求y 与x 之间的函数关系式;(2)经过市场调研,该经销商决定购进精品包装的柿饼不大于普通包装的3倍,请问获利最大的进货方案及最大利润.【考向二用反比例函数解决实际问题】例题:(2023秋·湖南永州·九年级校考期末)某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度 C y 与时间 h x 之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间 024x x 的函数关系式;(2)若大棚内的温度低于10C 时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【变式训练】1.(2023·云南·校考一模)云南某山区冬季经常缺水,政府在山顶修建了一大型蓄水池.据统计,按每天用水0.6立方米计算,蓄水池剩余的水一个月(30天)刚好用完.如果每天的用水量为x 立方米,那么这个蓄水池的水能维持y 天.(1)写出y 与x 之间的函数表达式;(2)如果每天用水0.5立方米,那么蓄水池剩余的水能维持多少天?2.(2023·安徽宿州·统考一模)为检测某品牌一次性注射器的质量,将注射器里充满一定量的气体,当温度不变时,注射器里的气体的压强 kPa p 与气体体积 ml V 满足反比例函数关系,其图像如图所示.(1)求反比例函数的表达式.(2)当气体体积为60ml 时,气体的压强为______kPa .(3)若注射器内气体的压强不能超过500kPa ,则其体积V 要控制在什么范围?3.(2023秋·河北邯郸·九年级校考期末)某校为进一步预防“新型冠状病毒”,对全校所有的教室都进行了“熏药法消毒”处理,已知该药物在燃烧释放过程中,教室内空气中每立方米的含药量y (mg )与燃烧时间x (min )之间的函数关系如图所示,其中当5x 时,y 是x 的正比例函数,当5x ≥时,y 是x 的反比例函数,根据图象提供的信息,解答下列问题:(1)求y 与x 的函数关系式;(2)求点P 的坐标;(3)药物燃烧释放过程中,若空气中每立方米的含药量不小于4mg 的时间超过20分钟,即为有效消毒,请问本题中的消毒是否为有效消毒?一辆汽车行驶在从甲地到乙地的高速公路上,(1)观察上表实验数据,写出表中a的值______.(2)以L的数值为横坐标,F的数值为纵坐标建立如图平面直角坐标系,在坐标系中描出以上表中的数对为坐标的各点,并用平滑的曲线顺次连接这些点;(3)根据所画的图象,求出F与L的函数关系式.【考向三在二次函数解决实际问题求最值问题】例题:(2022秋·山东烟台·九年级统考期末)某文具店以8元/支的进价购进一批签字笔进行销售,经市场调查后发现,日销量y(支)与零售价x(元)之间的关系图象如下图所示,其中816x.(1)求出日销量y(支)与零售价x(元)之间的关系;(2)当零售价定为多少时,该文具店每天销售这种签字笔获得的利润最大?最大利润是多少?【变式训练】1.(2022秋·山西太原·九年级校考期末)某文具商店销售进价为28元/盒的彩色铅笔,市场调查发现,若以每盒40元的价格销售,平均每天销售80盒,价格每提高1元,平均每天少销售2盒,设每盒彩色铅笔的销售价为x(40x )元,平均每天销售y盒,平均每天的销售利润为W元.(1)直接写出y与x之间的函数关系式:_______.(2)求W与x之间的函数关系式(3)为稳定市场,物价部门规定每盒彩色铅笔的售价不得高于50元,当每盒的销售价为多少元时,平均每天获得的利润最大?最大利润是多少元?40 y两种产品共7.(2023秋·江苏泰州·九年级校考期末)某书店销售一本畅销的小说,每本进价为25元.根据以往经验,当销售单价是30元时,每天的销售量是300本;销售单价每上涨1元,每天的销售量减少10本,设这本小说每天的销售量为y本,销售单价为x3050()元.x(1)请求出y与x之间的函数关系式;(2)书店决定每销售1本该小说,就捐赠3元给山区贫困儿童,若想每天扣除捐赠后获得最大利润,则该小说每本售价为多少元?每天最大利润是多少元?。
2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)
2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.(1)求证:CE与⊙O相切;(2)若AD=4,∠D=60°,求线段AB,BC的长.【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=2AB= 6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故CF=AC2−AF2=2,从而BC=BF+CF=6+2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,==,OC与AD相交于点AB BC CDE.求证:(1)AD∥BC(2)四边形BCDE为菱形.【答案】(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB=∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE=BC ,证明四边形BCDE 为平行四边形,再根据 BCCD =得到BC=CD ,从而证明菱形.【详解】解:(1)连接BD ,∵ AB BCCD ==,∴∠ADB=∠CBD ,∴AD ∥BC ;(2)连接CD ,∵AD ∥BC ,∴∠EDF=∠CBF ,∵ BCCD =,∴BC=CD ,∴BF=DF ,又∠DFE=∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE=BC ,∴四边形BCDE 是平行四边形,又BC=CD ,∴四边形BCDE 是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF .4.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长.【答案】(1)见解析;(2)【分析】(1)先证得△AOB 为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O 作OM ⊥DF 于M ,DN ⊥OC 于N ,利用勾股定理得出AC=30°的直角三角形的性质得出DN ,再根据垂径定理和勾股定理即可求出GF 的长.【详解】(1)证明:∵AB=OA ,OA=OB∴AB=OA=OB∴△AOB 为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC 是⊙O 的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=∵D 、E 分别为AC 、OA 的中点,∴OE//BC ,DC=过O 作OM ⊥DF 于M ,DN ⊥OC 于N则四边形OMDN 为矩形∴DN=OM在Rt △CDN 中,∠C=30°,∴DN=12DC=∴OM=3连接OG ,∵OM ⊥GF∴GF=2MG=222OG OM -=()22243-=213【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.【答案】(1)35;(2)见解析.【分析】(1)根据M 是CD 的中点,OM 与圆O 直径共线可得OM CD ⊥,OM 平分CD ,则有6MC =,利用勾股定理可求得半径的长;(2)连接AC ,延长AF 交BD 于G ,根据CE EF =,AE FC ⊥,可得AF AC =,12∠=∠,利用圆周角定理可得2D ∠=∠,可得1D ∠=∠,利用直角三角形的两锐角互余,可证得90AGB ∠=︒,即有AF BD ⊥.【详解】(1)解:连接OC ,∵M 是CD 的中点,OM 与圆O 直径共线∴OM CD ⊥,OM 平分CD ,90OMC ∴∠=︒12CD = 6MC ∴=.在Rt OMC △中.OC ===∴圆O 的半径为(2)证明:连接AC ,延长AF 交BD 于G .CE EF = ,AE FC⊥AF AC∴=又CE EF= 12∠∠∴= BCBC = 2D∴∠=∠1D∴∠=∠中在Rt BED∠+∠=︒90D B∴∠+∠=︒B190AGB∴∠=︒90∴⊥AF BD【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.∠是 AD所对的圆周角,6.(2021·浙江中考真题)如图,已知AB是⊙O的直径,ACD∠=︒.30ACD∠的度数;(1)求DABAB=,求DF的(2)过点D作DE AB⊥,垂足为E,DE的延长线交⊙O于点F.若4长.【答案】(1)60︒;(2)23【分析】(1)连结BD ,根据圆周角性质,得B ACD ∠=∠;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含30°角的直角三角形性质,得12AD AB =;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结BD ,30ACD ∠=︒30B ACD \Ð=Ð=°AB Q 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒(2)90ADB ∠=︒ ,30B ∠=︒,4AB =∴122AD AB ==60DAB ∠=︒ ,DE AB ⊥,且AB 是直径sin 60EF DE AD︒∴===2DF DE =∴=.【点睛】本题考查了圆、含30°角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含30°角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.【答案】(1)见解析;(2)5CE =.【分析】(1)连接OD ,由点D 是 BC的中点得OD ⊥BC ,由DE//BC 得OD ⊥DE ,由OD 是半径可得DE 是切线;(2)证明△ODE 是等腰直角三角形,可求出OE 的长,从而可求得结论.【详解】解:(1)连接OD 交BC 于点F ,如图,∵点D 是 BC的中点,∴OD ⊥BC ,∵DE//BC∴OD ⊥DE∵OD 是O 的半径∴直线DE 与O 相切;(2)∵AC 是O 的直径,且AB=10,∴∠ABC=90°,152OC OA AB ===∵OD ⊥BC∴∠OFC=90°∴OD//AB 45BAC ∠=︒∴45DOE ∠=︒∵90ODE ∠=︒∴45OED ∠=∴5DE OD OC ===由勾股定理得,OE =∴5CE OE OC =-=.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在Rt AOB 中,90∠=︒ABO ,30OAB ∠=︒,以点O 为圆心,OB 为半径的圆交BO 的延长线于点C ,过点C 作OA 的平行线,交O 于点D ,连接AD .(1)求证:AD 为O 的切线;(2)若2OB =,求弧CD 的长.【答案】(1)见解析;(2)23π【分析】(1)连接OB ,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得60AOD ∠=︒,再证明AOB AOD △≌△可得90ADO ABO ∠=∠=︒即可;(2)先求出∠COD ,然后再运用弧长公式计算即可.【详解】(1)证明:连接OD∵30OAB ∠=︒,90B ∠=︒∴60AOB ∠=︒又∵//CD AO∴60C AOB ∠=∠=︒∴2120BOD C ∠=∠=︒∴60AOD ∠=︒又∵,OB OD AO AO==∴()AOB AOD SAS ≌∴90ADO ABO ∠=∠=︒又∵点D 在O 上∴AD 是O 的切线;(2)∵120BOD ∠=︒∴60COD ∠=︒∴602223603l ππ=⨯⨯=.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两个点,AC=CD =DB ,连接AD ,过点D 作DE ⊥AC 交AC 的延长线于点E .(1)求证:DE 是⊙O 的切线.(2)若直径AB =6,求AD 的长.【分析】(1)连接OD ,根据已知条件得到∠BOD =13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,=CD =DB ,∵AC∴∠BOD=13×180°=60°,=DB ,∵CD∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=62−32=33.10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6×810=245.11.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB AD==83,∴AD=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF AF=3,∴EF=3AF=12,∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AE DE=23,AF=10,求⊙O的半径.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AE DE=23,∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得∠C=∠ODC ,∠B=∠C ,则∠B=∠ODC ,推出OD ∥AB ,由平行线的性质可得∠ODE=∠DEB=90°,即DE ⊥OD ,据此证明;(2)连接CF ,由(1)知OD ⊥DE ,则OD ∥AB ,易得OD 是△ABC 的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE ∥CF ,推出DE 是△FBC的中位线,得CF=2DE ,设AE=2x ,DE=3k ,CF=6k ,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k 的值,然后求出AC 、OA ,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA Ð=°,40ACD ∠=︒,求证:OAB CDE V V ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵AC 是O 的直径,∴∠ABC=90°,∵PB 切O 于点B ,∴∠OBP=90°,∴90PBA ABO OBC ABO ∠+∠=∠+∠=︒,∴PBA OBC ∠=∠;(2)∵20PBA Ð=°,PBA OBC ∠=∠,∴20OBC ∠=︒,∵OB=OC ,∴20OCB OBC ∠=∠=︒,∴∠AOB=20°+20°=40°,∵OB=OA ,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=12∠AOB=20°,∵AC 是O 的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB ,∵40ACD ∠=︒,∴40ACD AOB ∠=∠=︒,∴OAB CDE V V ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CE AC=AC AB,求出EC即可解决问题.【解析】(1)证明:∵AE=DE,OC是半径,=CD ,∴AC∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC=AC AB,∴CE6=610,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BE CE=12,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC=tan∠BCE=BE CE=12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC=CD AD=12,∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2−AC2==根据相似三角形的性质即可得到结论.【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AE AD=AD AC,108=8AC,∴AC=325,∴CD=AD2−AC2==245,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴OD AC=BD BC,∴5325=BD BD+245,∴BD=1207.18.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC 于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BA=BF BD,∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=12CD,在Rt△AOP中,OP=62+82=10,由(1)知,△AOP∽△CBD,∴DB OP=BC OA=DC AP,即1210=BC6=DC8,∴BC=365,DC=485,∴OE=185,CE=245,在Rt△AEC中,AC=AE2+CE2==20(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线:(2)若2,33OA BE OD ==,求DA 的长.【答案】(1)见解析;(2)910【分析】(1)连接OC ,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC 是圆O 的切线;(2)根据已知得到OA=2DA ,证明△DCO ∽△DEB ,得到DO CO DB EB =,可得DA=310EB ,即可求出DA 的长.【详解】解:(1)如图,连接OC ,由题意可知:∠ACB 是直径AB 所对的圆周角,∴∠ACB=90°,∵OC ,OB 是圆O 的半径,∴OC=OB ,∴∠OCB=∠ABC ,又∵∠DCA=∠ABC ,∴∠DCA=∠OCB ,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC ⊥DC ,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB+===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =,60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF=BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD=30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB=∠CBD ,∵CB=CD ,∴∠CBD=∠CDB ,∴∠ADB=∠CDB ,又BD=BD ,∠BAD=∠BFD=90°,∴△ABD ≌△FBD (AAS ),∴BF=BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=tan30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC 于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AE BC=AD DC=23,推出AO OH=AE BH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解析】(1)证明:连接OA.A∵AB=AC,=AC ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C =4∠ABD ,∵∠DBC+∠C+∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在.综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23,∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a ,∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =∴BC =2BH =23.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC是O的切线:(2)若2,33OA BEOD==,求DA的长.【答案】(1)见解析;(2)9 10【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到DO CODB EB=,可得DA=310EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB +===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE= 90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD ,∠BDC =∠BAD .(1)求证:CD 是⊙O 的切线.(2)若tan∠BED =23,AC =9,求⊙O 的半径.【答案】(1)连接OD ,由圆周角定理得出∠ADB =90°,证出OD ⊥CD ,由切线的判定可得出结论;(2)证明△BDC∽△DAC ,由相似三角形的性质得出CD AC =BC CD =BD DA =23,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(2021·山东菏泽市·中考真题)如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.【答案】(1)见解析;(2)=2BG 【分析】(1)连接OE ,证明OE ⊥EF 即可;(2)由3sin 5F =证得4sin 5G =,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE ,如图,∵OA=OE∴∠OAE=∠OEA .∵EF=PF ,∴∠EPF=∠PEF∵∠APH=∠EPF ,∴∠APH=∠EPF ,∴∠AEF=∠APH .∵CD ⊥AB ,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE ⊥EF .∵OE 是O 的半径∴EF 是圆的切线,(2)∵CD ⊥AB∴FHG ∆是直角三角形∵3sin 5F =∴35GH FG =设3GH x =,则5FG x=由勾股定理得,4FH x=由(1)得,OEG ∆是直角三角形∴4sin 5OE FH x G OG FG x===∴45OE OG =,即45OE OE BG =+∵8OE =∴8485BG =+解得,2BG =【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);的中点,过点B的(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD对应的圆周角,∠COE是CE 对应的圆心角∵∠CAE是CE∴∠COE=2∠CAE的中点∵点B是CE∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE对应的圆周角∵∠ABC与∠AEC是AC∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=90°∴tan∠AEC=AC CE=34∴CE=8∵AE2=CE2+AC2∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC 的外接圆;【分析】(1)利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积.【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=12,∴BC AC=12,∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PC PA=PB PC=BC CA=12,∴PA=8,PB=2,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PB OP=PC PD,即25=4PD,∴PD=10,∴CD=6,∴S△OCD=12OC⋅CD=9【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;(2)根据三角函数的概念可得BC AC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD可得CD,然后根据三角形的面积公式进行计算.29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O直径.【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,。
中考数学复习考点知识与题型专题讲解5---平面直角坐标系(解析版)
中考数学复习考点知识与题型专题讲解专题05 平面直角坐标系【思维导图】【知识要点】知识点一平面直角坐标系的基础有序数对概念:有顺序的两个数a与b组成的数对,叫做有序数对,记作(a ,b)。
【注意】a、b的先后顺序对位置的影响。
平面直角坐标系的概念:在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系。
两轴的定义:水平的数轴叫做x轴或横轴,通常取向右为正方向;竖直的数轴叫做y轴或纵轴,通常取向上方向为正方向。
平面直角坐标系原点:两坐标轴交点为其原点。
坐标平面:坐标系所在的平面叫坐标平面。
象限的概念:x轴和y轴把平面直角坐标系分成四部分,每个部分称为象限。
按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限。
【注意】坐标轴上的点不属于任何象限。
点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b 分别叫做点A 的横坐标和纵坐标,有序数对A(a ,b)叫做点A 的坐标,记作A(a ,b)。
知识点二 点的坐标的有关性质(考点) 性质一 各象限内点的坐标的符号特征性质二 坐标轴上的点的坐标特征 1.x 轴上的点,纵坐标等于0; 2.y 轴上的点,横坐标等于0; 3.原点位置的点,横、纵坐标都为0. 性质三 象限角的平分线上的点的坐标1.若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; 2.若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;象限 横坐标x 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限 负 负 第四象限正负在第一、三象限的角平分线上 在第二、四象限的角平分线上 性质四 与坐标轴平行的直线上的点的坐标特征 1.在与x 轴平行的直线上, 所有点的纵坐标相等;m ;2.在与y 轴平行的直线上,所有点的横坐标相等;n ;性质五 点到坐标轴距离在平面直角坐标系中,已知点P ),(b a ,则 1.点P 到x 轴的距离为b ; 2.点P 到y 轴的距离为a ;3.点P 到原点O 的距离为PO = 22b aXXXY性质六 平面直角坐标系内平移变化性质七 对称点的坐标1. 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数;2. 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;3.点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;P (b a ,)abxy OXyPP mm -nOXyP1Pnn -mO小结:【考查题型】考查题型一 用有序数对表示位置【解题思路】要确定位置坐标,需根据题目信息、明确行和列的实际意义是解答本题的关键. 典例1.(2021·湖北宜昌市中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).X-A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列【答案】B【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.【详解】解:A. 小李现在位置为第1排第4列,故A选项错误;B. 小张现在位置为第3排第2列,故B选项正确;C. 小王现在位置为第2排第3列,故C选项错误;D. 小谢现在位置为第4排第4列,故D选项错误.故选:B.变式1-1.(2018·广西柳州市中考模拟)初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)【答案】C【详解】根据题意知小李所对应的坐标是(7,4).故选C.变式1-2.(2017·北京门头沟区一模)小军邀请小亮去他家做客,以下是他俩的对话: 小军:“你在公交总站下车后,往正前方直走400米,然后右转直走300米就到我家了” 小亮:“我是按照你说的走的,可是走到了邮局,不是你家…”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方走才能到我家…” 根据两人的对话记录,从邮局出发走到小军家应( ) A .先向北直走700米,再向西走100米 B .先向北直走100米,再向西走700米 C .先向北直走300米,再向西走400米 D .先向北直走400米,再向西走300米 【答案】A【分析】根据对话画出图形即可得出答案.【详解】解:如图所示:从邮局出发走到小军家应:向北直走700米,再向西直走100米.故选:A .考查题型二 求点的坐标典例2.(2021·天津中考真题)如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是()A .()6,3B .()3,6C .()0,6D .()6,6【答案】D【分析】利用O ,D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB ,BC 的长度,进而得出C 点的坐标即可.【详解】解:∵O ,D 两点的坐标分别是()0,0,()0,6,∴OD =6,∵四边形OBCD 是正方形,∴OB ⊥BC ,OB =BC =6 ∴C 点的坐标为:()6,6, 故选:D .变式2-1.(2021·山东滨州市·中考真题)在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为() A .()4,5- B .(5,4)-C .(4,5)-D .(5,4)-【答案】D【分析】根据点到坐标轴的距离及点所在的象限解答即可. 【详解】设点M 的坐标为(x ,y ), ∵点M 到x 轴的距离为4, ∴4y =, ∴4y =±,∵点M 到y 轴的距离为5,x=,∴5x=±,∴5∵点M在第四象限内,∴x=5,y=-4,即点M的坐标为(5,-4)故选:D.4,0,点C的坐标变式2-2.(2021·湖北襄阳市模拟)如图,四边形ABCD为菱形,点A的坐标为() 4,4,点D在y轴上,则点B的坐标为()为()A.(4,2)B.(2,8)C.(8,4)D.(8,2)【答案】D【分析】根据菱形的性质得出D的坐标(0,2),进而得出点B的坐标即可.【详解】连接AC,BD,AC、BD交于点E,∵四边形ABCD是菱形,OA=4,AC=4,∴ED=OA=EB=4,AC=2EA=4,∴BD=8,OD=EA=2∴点B 坐标为(8,2), 故选:D .变式2-3.(2021·广东二模)已知点2,24()P m m +-在x 轴上,则点Р的坐标是() A .()4,0 B .()0,8C .()4,0-D .()0,8-【答案】A【分析】根据点P 在x 轴上,即y=0,可得出m 的值,从而得出点P 的坐标. 【详解】解:∵点2,24()P m m +-在x 轴上, ∴240m -=, ∴2m =;∴2224m +=+=, ∴点P 为:(4,0); 故选:A .变式2-4.(2021·广西一模)点M (3,1)关于y 轴的对称点的坐标为( ) A .(﹣3,1) B .(3,﹣1)C .(﹣3.﹣1)D .(1,3)【答案】A【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案. 【详解】点M (3,1)关于y 轴的对称点的坐标为(﹣3,1),故选:A . 考查题型三 点的坐标的规律探索【解题思路】考查坐标的规律探索,解题的关键是根据题意找到坐标的变化规律.典例3.(2021·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2021的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)【答案】A【分析】观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,由于2021÷4=504…3,A2021在x轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.【详解】解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2021÷4=504 (3)∴A2021在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2021的横坐标为﹣(2021﹣3)×12=﹣1008.∴A2021的坐标为(﹣1008,0).故选A.变式3-1.(2021·山东菏泽市·中考真题)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A,第二次移动到点2A……第n次移动到点n A,则点2019A的坐标是()A .()1010,0B .()1010,1C .()1009,0D .()1009,1【答案】C 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点2019A 的坐标.【详解】()10,1A ,()21,1A ,()31,0A ,()42,0A ,()52,1A ,()63,1A ,…,201945043÷=⋅⋅⋅,所以2019A 的坐标为()50421,0⨯+,则2019A 的坐标是()1009,0,故选C .变式3-2.(2021·辽宁阜新市·中考真题)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C 100的坐标为( )A .121200,5⎛⎫ ⎪⎝⎭ B .()600,0 C .12600,5⎛⎫ ⎪⎝⎭ D .()1200,0【答案】B 【分析】根据三角形的滚动,可得出:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上,由点A ,B 的坐标利用勾股定理可求出AB 的长,进而可得出点C 2的横坐标,同理可得出点C 4,C 6的横坐标,根据点的横坐标的变化可找出变化规律“点C 2n 的横坐标为2n×6(n 为正整数)”,再代入2n=100即可求出结论.【详解】解:根据题意,可知:每滚动3次为一个周期,点C 1,C 3,C 5,…在第一象限,点C 2,C 4,C 6,…在x 轴上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴,∴点C 2的横坐标为4+5+3=12=2×6, 同理,可得出:点C 4的横坐标为4×6,点C 6的横坐标为6×6,…, ∴点C 2n 的横坐标为2n×6(n 为正整数), ∴点C 100的横坐标为100×6=600, ∴点C 100的坐标为(600,0).故选:B .考查题型四 判断点的象限【解题思路】各象限内点的坐标的符号特征需记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 典例4.(2021·湖南株洲市·中考真题)在平面直角坐标系中,点(,2)A a 在第二象限内,则a 的取值可.以.是( ) A .1B .32-C .43D .4或-4 【答案】B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数即可判断.【详解】解:∵点(,2)A a 是第二象限内的点,∴0a <, 四个选项中符合题意的数是32-, 故选:B变式4-1.(2021·江苏扬州市中考真题)在平面直角坐标系中,点()22,3P x +-所在的象限是() A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】直接利用各象限内点的坐标特点分析得出答案.【详解】∵x 2+2>0,∴点P (x 2+2,−3)所在的象限是第四象限.故选:D . 变式4-2.(2021·湖北黄冈市·中考真题)在平面直角坐标系中,若点(,)A a b -在第三象限,则点(,)B ab b -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【分析】根据点(,)A a b -在第三象限,可得0a <,0b -<,进而判定出点B 横纵坐标的正负,即可解决.【详解】解:∵点(,)A a b -在第三象限,∴0a <,0b -<,∴0b >,∴0ab ->,∴点B 在第一象限,故选:A .变式4-4.(2021·湖南邵阳市·中考真题)已知0,0a b ab +>>,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A .(),a bB .(),a b -C .(),a b --D .(),a b -【答案】B 【分析】根据0,0a b ab +>>,得出0,0a b >>,判断选项中的点所在的象限,即可得出答案.【详解】∵0,0a b ab +>>∴0,0a b >>选项A:(),a b 在第一象限选项B:(),a b -在第二象限选项C:(),a b --在第三象限选项D:(),a b -在第四象限小手盖住的点位于第二象限故选:B考查题型五 点坐标的有关性质1.坐标轴上的点的坐标特征1.(2017·四川中考模拟)如果点P(a -4,a)在y 轴上,则点P 的坐标是( )A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)【答案】B【解析】由点P(a−4,a)在y 轴上,得a−4=0,解得a=4,P 的坐标为(0,4),故选B.2.(2018·广西柳州十二中中考模拟)点P (m +3,m +1)在x 轴上,则点P 坐标为() A .(0,﹣4) B .(4,0) C .(0,﹣2) D .(2,0)【答案】D【详解】解:∵点P (m+3,m+1)在x 轴上,∴y =0,∴m+1=0,解得:m =﹣1,∴m+3=﹣1+3=2,∴点P 的坐标为(2,0).故选:D .3.(2021·甘肃中考真题)已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( )A .(40),B .(04),C .40)(-,D .(0,4)-【答案】A【详解】 解:点224P m m +(,﹣)在x 轴上,240m ∴﹣=,m=,解得:2∴+=,24m4,0.则点P的坐标是:()故选:A.4.(2021·甘肃中考模拟)已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【答案】A【详解】解:∵点P(m+2,2m﹣4)在x轴上,∴2m﹣4=0,解得:m=2,∴m+2=4,则点P的坐标是:(4,0).故选:A.5.(2021·广东华南师大附中中考模拟)如果点P(m+3,m+1)在平面直角坐标系的x轴上,则m=() A.﹣1 B.﹣3 C.﹣2 D.0【答案】A【详解】由P(m+3,m+1)在平面直角坐标系的x轴上,得m+1=0.解得:m=﹣1,故选:A.2.象限角的平分线上的点的坐标1.已知点A(-3+a,2a+9)在第二象限角平分线上,则a=_________ 【答案】-2【详解】∵点A在第二象限角平分线上∴它的横纵坐标互为相反数则-3+a+2a+9=0解得a=-22.(2018·广西中考模拟)若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N 的坐标是( )A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2)【答案】C【解析】已知点M在第一、三象限的角平分线上,点M到x轴的距离为2,所以点M到y轴的距离也为2.当点M在第一象限时,点M的坐标为(2,2);点M在第三象限时,点M的坐标为(-2,-2).所以,点M的坐标为(2,2)或(-2,-2).故选C.3.与坐标轴平行的直线上的点的坐标特征1.(2021·广西中考模拟)已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1 B.3 C.﹣1 D.5【答案】B【详解】解:∵AB∥y轴,∴点A横坐标与点A横坐标相同,为1,可得:a -2=1,a=3故选:B.2.(2018·天津中考模拟)如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等【答案】A【解析】试题解析:∵直线AB平行于y轴,∴点A,B的坐标之间的关系是横坐标相等.故选A.3.(2021·广东华南师大附中中考模拟)已知点A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,且B到y轴的距离等于4,那么点B是坐标是()A.(4,﹣2)或(﹣4,﹣2)B.(4,2)或(﹣4,2)C.(4,﹣2)或(﹣5,﹣2)D.(4,﹣2)或(﹣1,﹣2)【答案】A【详解】∵A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,∴B的纵坐标y=﹣2,∵“B到y轴的距离等于4”,∴B的横坐标为4或﹣4.所以点B的坐标为(4,﹣2)或(﹣4,﹣2),故选A.4.(2021·江苏中考模拟)若线段AB∥x轴且AB=3,点A的坐标为(2,1),则点B的坐标为()A.(5,1)B.(﹣1,1)C.(5,1)或(﹣1,1)D.(2,4)或(2,﹣2)【答案】C【详解】∵AB∥x轴且AB=3,点A的坐标为(2,1)∴点B的坐标为(5,1)或(﹣1,1)5.(2018·江苏中考模拟)已知点M(﹣1,3),N(﹣3,3),则直线MN与x轴、y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直【答案】D【详解】由题可知,M、N两点的纵坐标相等,所以直线MN与x轴平行,与y轴垂直相交.故选:D.4.点到坐标轴距离1.(2018·天津中考模拟)已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5【答案】A【解析】∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .2.(2018·江苏中考真题)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-【答案】C【解析】由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .3.(2017·北京中考模拟)点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A .(﹣3,4)B .( 3,﹣4)C .(﹣4,3)D .( 4,﹣3) 【答案】C【详解】由点且到x 轴的距离为3、到y 轴的距离为4,得|y|=3,|x|=4.由P 是第二象限的点,得x=-4,y=3.即点P 的坐标是(-4,3),故选C.4.(2012·江苏中考模拟)在平面直角坐标系中,点P(-3,4)到x轴的距离为( )A.3 B.-3 C.4 D.-4【答案】C【详解】∵|4|=4,∴点P(-3,4)到x轴距离为4.故选C.5.平面直角坐标系内平移变化1.(2021·山东中考真题)在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【答案】A【解析】已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.2.(2021·北京中考模拟)在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4) B.(4,3) C.(-1,-2) D.(-2,-1)【答案】A【详解】∵点A(4,﹣1)向左平移6个单位,再向上平移3个单位得到A′(﹣2,2),∴点B(1,1)向左平移6个单位,再向上平移3个单位得到的对应点B′的坐标为(﹣5,4).故选A.3.(2015·广西中考真题)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5) B.(-8,5) C.(-8,-1) D.(2,-1)【答案】D【解析】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.4.(2016·四川中考真题)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC 平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)【答案】C【解析】因为4-0=4,10-6=4,所以由点A到点A1的平移是向右平移4个单位,再向上平移4个单位,则点B 的对应点1B的坐标为(1,1)故选C.5.(2018·武汉市东西湖区教育局中考模拟)在坐标系中,将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标()A.(2,4)B.(1,5) C.(1,-3) D.(-5,5)【答案】B将点P( -2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P’的坐标(1,5).故选B.6.对称点的坐标1.(2021·广东中考模拟)在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)【答案】A【解析】点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.2.(2021·山东中考模拟)已知点P(a+1,2a﹣3)关于x轴的对称点在第二象限,则a的取值范围是()A.﹣1<a<B.﹣<a<1 C.a<﹣1 D.a>【答案】C【详解】依题意得P点在第三象限,∴,解得:a<﹣1.故选C.3.(2014·广西中考真题)已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1 B.1 C.2 D.3【答案】B关于x 轴对称的两个点的特点是,x 相同即横坐标,y 相反即纵坐标相反,故a=2014,b=-2013,故a+b=14.(2018·广西中考模拟)已知点P(a +l ,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( ) A .a 1<- B .31a 2-<< C .3a 12-<< D .3a 2>【答案】B【解析】∵点P (a +1,2a -3)关于x 轴的对称点在第一象限,∴点P 在第四象限。
多边形证明(复习讲义)(三角形、平行四边形、矩形、正方形、菱形)(解析)-中考数学重难点题型专题汇总
题型四--多边形证明(三角形、平行四边形、矩形、正方形、菱形)(复习讲义)【考点总结|典例分析】考点01三角形全等及性质一、三角形的基础知识1.三角形的概念由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.二、全等三角形5.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(4)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).6.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.7.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.8.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.四、等边三角形(1)定义:三条边都相等的三角形是等边三角形.(2)性质:等边三角形的各角都相等,并且每一个角都等于60°.(3)判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.五、直角三角形与勾股定理9.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.10.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.(2)勾股定理的逆定理:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形1.如图,AC 和BD 相交于点O ,OA =OC ,OB =OD .(1)求证:∠A =∠C ;(2)求证:AB//CD .【答案】证明:(1)在△AOB 和△COD 中,OA =OC ∠AOB =∠COD OB =OD ,∴△AOB≌△COD(SAS),∴∠A =∠C ;(2)由(1)得∠A =∠C ,∴AB//CD .2.如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E.求证:∠A =∠D .【答案】证明:∵BF =EC ,∴BF +CF =EC +CF ,即BC =EF ,在△ABC 和△DEF 中,AB =DE ∠B =∠E BC =EF ,∴△ABC≌△DEF(SAS),∴∠A =∠D .3.(2022·四川省宜宾市)已知:如图,点A、D、C、F在同一直线上,AB//DE,∠B=∠E,BC=EF.求证:AD=CF.【答案】证明:∵AB//DE,∴∠A=∠EDF.在△ABC和△DEF中,∠A=∠EDF∠B=∠EBC=EF,∴△ABC≌△DEF(AAS).∴AC=DF,∴AC−DC=DF−DC,即:AD=CF.4.(2022·陕西省)如图,在△ABC中,点D在边BC上,CD=AB,DE//AB,∠DCE=∠A.求证:DE=BC.【答案】证明:∵DE//AB,∴∠EDC=∠B,在△CDE和△ABC中,∠EDC=∠BCD=AB∠DCE=∠A,∴△CDE≌△ABC(ASA),∴DE =BC .5.(2022·浙江省杭州市)如图,在Rt △ACB 中,∠ACB =90°,点M 为边AB 的中点,点E 在线段AM 上,EF ⊥AC 于点F ,连接CM ,CE.已知∠A =50°,∠ACE =30°.(1)求证:CE =CM .(2)若AB =4,求线段FC 的长.【答案】(1)证明:∵∠ACB =90°,点M 为边AB 的中点,∴MC =MA =MB ,∴∠MCA =∠A ,∠MCB =∠B ,∵∠A =50°,∴∠MCA =50°,∠MCB =∠B =40°,∴∠EMC =∠MCB +∠B =80°,∵∠ACE =30°,∴∠MEC =∠A +∠ACE =50°,∴∠MEC =∠EMC ,∴CE =CM ;(2)解:∵AB =4,∴CE =CM =12AB =2,∵EF ⊥AC ,∠ACE =30°,∴FC =CE ⋅cos30°=3.6.(2021·云南中考真题)如图,在四边形ABCD 中,,,AD BC AC BD AC ==与BD 相交于点E .求证:DAC CBD ∠=∠.【答案】见解析【分析】直接利用SSS 证明△ACD ≌△BDC ,即可证明.【详解】解:在△ACD 和△BDC 中,AD BC AC BD CD DC =⎧⎪=⎨⎪=⎩,∴△ACD ≌△BDC (SSS ),∴∠DAC=∠CBD .【点睛】本题考查了全等三角形的判定和性质,解题的关键是根据题意灵活运用SSS 的方法.7.(2021·浙江绍兴市·中考真题)如图,在ABC 中,40A ∠=︒,点D ,E 分別在边AB ,AC 上,BD BC CE ==,连结CD ,BE.(1)若80ABC ∠=︒,求BDC ∠,ABE ∠的度数.(2)写出BEC ∠与BDC ∠之间的关系,并说明理由.【答案】(1)50BDC ∠=︒;20ABE ∠=︒;(2)110BEC BDC ∠+∠=︒,见解析【分析】(1)利用三角形的内角和定理求出ACB ∠的大小,再利用等腰三角形的性质分别求出BDC ∠,ABE ∠.(2)利用三角形的内角和定理、三角形外角的性质和等腰三角形的性质,求出用含ABE ∠分别表示BEC ∠,BDC ∠,即可得到两角的关系.【详解】(1)80ABC ∠=︒ ,BD BC =,50BDC BCD ∴∠=∠=︒.在ABC 中,180A ABC ACB ∠+∠+∠=︒,40A ∠=︒ ,60ACB ∠=︒∴,CE BC = ,60EBC ∴∠=︒.20ABE ABC EBC ∴∠=∠-∠=︒.(2)BEC ∠,BDC ∠的关系:110BEC BDC ∠+∠=︒.理由如下:设BEC α∠=,BDC β∠=.在ABE △中,40A ABE ABE α=∠+∠=︒+∠,CE BC = ,CBE BEC α∴∠=∠=.2402ABC ABE CBE A ABE ABE ∴∠=∠+∠=∠+∠=︒+∠,在BDC 中,BD BC =,2402180BDC BCD DBC ABE β∴∠+∠+∠=+︒+∠=︒.70ABE β︒∴=-∠.4070110ABE ABE αβ∴+=︒+∠+︒-∠=︒.110BEC BDC ∴∠+∠=︒.【点睛】本题主要通过求解角和两角之间的关系,考查三角形的内角和定理、三角形外角的性质和等腰三角形的性质.三角形的内角和等于180︒.三角形的外角等于与其不相邻的两个内角之和.等腰三角形等边对等角.8.(2021·浙江温州市·中考真题)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.【答案】(1)见解析;(2)35°【分析】(1)直接利用角平分线的定义和等边对等角求出BED EBC ∠=∠,即可完成求证;(2)先求出∠ADE ,再利用平行线的性质求出∠ABC ,最后利用角平分线的定义即可完成求解.【详解】解:(1) BE 平分ABC ∠,∴ABE EBC ∠=∠.DB DE =,∴ABE BED ∠=∠,∴BED EBC ∠=∠,∴//DE BC .(2) 65A ∠=︒,45AED ∠=︒,∴18070ADE A AED ∠=︒-∠-∠=︒.//DE BC .∴70ABC ADE ∠=∠=︒.BE 平分ABC ∠,∴1352EBC ABC ∠=∠=︒,即35EBC ∠=︒.【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.9.(2021·福建中考真题)如图,在ABC 中,D 是边BC 上的点,,⊥⊥DE AC DF AB ,垂足分别为E ,F ,且,DE DF CE BF ==.求证:B C ∠=∠.【答案】见解析【分析】由,⊥⊥DE AC DF AB 得出90DEC DFB ∠=∠=︒,由SAS 证明DEC DFB ≌,得出对应角相等即可.【详解】证明:∵,⊥⊥DE AC DF AB ,∴90DEC DFB ∠=∠=︒.在DEC 和DFB △中,,,,DE DF DEC DFB CE BF =⎧⎪∠=∠⎨⎪=⎩∴DEC DFB ≌,∴B C ∠=∠.【点睛】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观.10.(2021·四川乐山市·中考真题)如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.【答案】证明见解析【分析】根据全等三角形的性质,通过证明ABO DCO △≌△,得OB OC =,结合等腰三角形的性质,即可得到答案.【详解】∵A D AOB DOC AB DC ∠=∠∠=∠=⎧⎪⎨⎪⎩,∴ABO DCO △≌△(AAS ),∴OB OC =,∴OBC OCB ∠=∠.【点睛】本题考查了全等三角形、等腰三角形的知识;解题的关键是熟练掌握全等三角形、等腰三角形的性质,从而完成求解.考点02相似六、相似三角形的判定及性质11.定义对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比叫做相似比.12.性质(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方.13.判定(1)有两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)两直角三角形的斜边和一条直角边对应成比例,两直角三角形相似.【方法技巧】判定三角形相似的几条思路:(1)条件中若有平行线,可采用相似三角形的判定(1);(2)条件中若有一对等角,可再找一对等角[用判定(1)]或再找夹边成比例[用判定(2)];(3)条件中若有两边对应成比例,可找夹角相等;(4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;(5)条件中若有等腰条件,可找顶角相等,或找一个底角相等,也可找底和腰对应成比例.七、相似多边形14.定义对应角相等,对应边成比例的两个多边形叫做相似多边形,相似多边形对应边的比叫做它们的相似比.15.性质(1)相似多边形的对应边成比例;(2)相似多边形的对应角相等;(3)相似多边形周长的比等于相似比,相似多边形面积的比等于相似比的平方.八、位似图形16.定义如果两个图形不仅是相似图形而且每组对应点的连线交于一点,对应边互相平行(或在同一条直线上),那么这样的两个图形叫做位似图形,这个点叫做位似中心,相似比叫做位似比.27.性质(1)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或–k ;(2)位似图形上任意一对对应点到位似中心的距离之比等于位似比或相似比.18.找位似中心的方法将两个图形的各组对应点连接起来,若它们的直线或延长线相交于一点,则该点即是位似中心.19.画位似图形的步骤(1)确定位似中心;(2)确定原图形的关键点;(3)确定位似比,即要将图形放大或缩小的倍数;(4)作出原图形中各关键点的对应点;(5)按原图形的连接顺序连接所作的各个对应点.11.(2021·云南中考真题)如图,在ABC 中,点D ,E 分别是,BC AC 的中点,AD 与BE 相交于点F ,若6BF ,则BE 的长是______.【答案】9【分析】根据中位线定理得到DE=12AB,DE∥AB,从而证明△DEF∽△ABF,得到12DE EFAB BF==,求出EF,可得BE.【详解】解:∵点D,E分别为BC和AC中点,∴DE=12AB,DE∥AB,∴△DEF∽△ABF,∴12 DE EFAB BF==,∵BF=6,∴EF=3,∴BE=6+3=9,故答案为:9.【点睛】本题考查了三角形中位线定理,相似三角形的判定和性质,解题的关键是根据中位线的性质证明△DEF∽△ABF.12.(2020•盐城)如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则AE AC的值.【分析】由平行线得三角形相似,得出AB•DE,进而求得AB,DE,再由相似三角形求得结果.【解析】∵BC∥DE,∴△ADE ∽△ABC ,∴AD AB =DE BC =AE AC ,即4AB =DE 4=AE AC ,∴AB •DE =16,∵AB+DE =10,∴AB =2,DE =8,∴AE AC =DE BC =84=2,故答案为:2.13.(2021·广东中考真题)如图,边长为1的正方形ABCD 中,点E 为AD 的中点.连接BE ,将ABE △沿BE 折叠得到,FBE BF 交AC 于点G ,求CG 的长.【答案】CG =【分析】根据题意,延长BF 交CD 于H 连EH ,通过证明()Rt EDH Rt EFH HL ≌、DHE AEB ∽得到34CH =,再由HGC BGA ∽得到()34CG AC CG =-,进而即可求得CG 的长.【详解】解:延长BF 交CD 于H 连EH ,∵FBE 由ABE △沿BE 折叠得到,∴EA EF =,90EFB EAB ∠=∠=︒,∵E 为AD 中点,正方形ABCD 边长为1,∴12EA ED ==,∴12ED EF ==,∵四边形ABCD 是正方形,∴90D EFB EFH ∠=∠=∠=︒,在Rt EDH △和Rt EFH 中,ED EF EH EH =⎧⎨=⎩,∴()Rt EDH Rt EFH HL ≌,∴DEH FEH ∠=∠,又∵AEB FEB ∠=∠,∴90DEH AEB ∠+∠=︒,∵90ABE AEB ∠+∠=︒,∴ABE DEH ∠=∠,∴DHE AEB ∽,∴12DH AE DE AB ==,∴14DH =,∴13144CH CD DH =-=-=,∵CH AB ∥,∴HGC BGA ∽,∴34CG CH AG AB ==,∴()3344CG AG AC CG ==-,∵1AB =,1CB =,90CBA ∠=︒,∴AC =,∴)34CG CG =,∴CG =.【点睛】本题主要考查了三角形全等的判定及性质、三角形相似的判定及性质以及正方形的性质,熟练掌握相关几何知识是解决本题的关键.14.(2020•长沙)在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F .(1)求证:△ABF ∽△FCE ;(2)若AB =23,AD =4,求EC 的长;(3)若AE ﹣DE =2EC ,记∠BAF =α,∠FAE =β,求tan α+tan β的值.【分析】(1)根据两角对应相等的两个三角形相似证明即可.(2)设EC =x ,证明△ABF ∽△FCE ,可得AB CF =BF EC ,由此即可解决问题.(3)首先证明tan α+tan β=BF AB +EF AF =BF AB +CF AB =BF+CF AB =BC AB ,设AB =CD =a ,BC =AD =b ,DE =x ,解直角三角形求出a ,b 之间的关系即可解决问题.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°,由翻折可知,∠D =∠AFE =90°,∴∠AFB+∠EFC =90°,∠EFC+∠CEF =90°,∴∠AFB =∠FEC ,∴△ABF ∽△FCE .(2)设EC=x,由翻折可知,AD=AF=4,∴BF=AF2−AB2=16−12=2,∴CF=BC﹣BF=2,∵△ABF∽△FCE,∴AB CF=BF EC,∴2322,∴x=∴EC=(3)∵△ABF∽△FCE,∴AF EF=AB CF,∴tanα+tanβ=BF AB+EF AF=BF AB+CF AB=BF+CF AB=BC AB,设AB=CD=a,BC=AD=b,DE=x,∴AE=DE+2CE=x+2(a﹣x)=2a﹣x,∵AD=AF=b,DE=EF=x,∠B=∠C=∠D=90°,∴BF=b2−a2,CF==2ax−a2,∵AD2+DE2=AE2,∴b2+x2=(2a﹣x)2,∴a2﹣ax=14b2,∵△ABF∽△FCE,∴AB CF=BF EC,−(a−x)2=a−x∴a2﹣ax=b2−a2•2ax−a2,∴14b2=b2−a2•整理得,16a4﹣24a2b2+9b4=0,∴(4a2﹣3b2)2=0,∴b a=233,∴tanα+tanβ=BC AB=考点03多边形十、多边形20.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为()32n n-.21.多边形的内角和、外角和(1)内角和:n边形内角和公式为(n–2)·180°;(2360°. 22.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn-⋅,每一个外角为360n︒.(3)正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.15.(2021·湖南岳阳市·中考真题)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.16.(2021·四川自贡市·中考真题)如图,AC 是正五边形ABCDE 的对角线,ACD ∠的度数是()A .72°B .36°C .74°D .88°【答案】A【分析】根据正五边形的性质可得108B BCD ∠=∠=︒,AB BC =,根据等腰三角形的性质可得36BCA BAC ∠=∠=︒,利用角的和差即可求解.【详解】解:∵ABCDE 是正五边形,∴108B BCD ∠=∠=︒,AB BC =,∴36BCA BAC ∠=∠=︒,∴1083672ACD ∠=︒-︒=︒,故选:A .本题考查正五边形的性质,求出正五边形内角的度数是解题的关键.17.(2021·四川资阳市·中考真题)下列命题正确的是()A.每个内角都相等的多边形是正多边形B.对角线互相平分的四边形是平行四边形C.过线段中点的直线是线段的垂直平分线D.三角形的中位线将三角形的面积分成1∶2两部分【答案】B【分析】分别根据正多边形的判定、平行四边形的判定、线段垂直平分线的判定以及三角形中线的性质逐项进行判断即可得到结论.【详解】解:A.每个内角都相等,各边都相等的多边形是正多边形,故选项A的说法错误,不符合题意;B.对角线互相平分的四边形是平行四边形,说法正确,故选项B符合题意;C.过线段中点且垂直这条线段的直线是线段的垂直平分线,故选项C的说法错误,不符合题意;D.三角形的中位线将三角形的面积分成1∶3两部分,故选项D的说法错误,不符合题意.故选:B.【点睛】此题主要考查了对正多边形、平行四边形、线段垂直平分线的判断以及三角形中线性质的认识,熟练掌握正多边形、平行四边形、线段垂直平分线的判断是解答此题的关键.18.(2021·浙江丽水市·中考真题)一个多边形过顶点剪去一个角后,所得多边形的内角和为720 ,则原多边形的边数是__________.【答案】6或7【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n-2)×180°=720°,∴n=6,∴新的多边形为6边形,∵过顶点剪去一个角,∴原来的多边形可以是6边形,也可以是7边形,故答案为6或7.【点睛】本题考查多边形的内角和;熟练掌握多边形的内角和与多边形的边数之间的关系是解题的关键.19.(2021·湖北黄冈市·中考真题)正五边形的一个内角是_____度.【答案】108【分析】根据正多边形的定义、多边形的内角和公式即可得.【详解】解:正五边形的一个内角度数为180(52)1085︒⨯-=︒,故答案为:108.【点睛】本题考查了正多边形的内角,熟练掌握多边形的内角和公式是解题关键.20.(2021·陕西中考真题)正九边形一个内角的度数为______.【答案】140°【分析】正多边形的每个内角相等,每个外角也相等,而每个内角等于180︒减去一个外角,求出外角即可求解.【详解】正多边形的每个外角360=n︒(n为边数),所以正九边形的一个外角360==409︒︒∴正九边形一个内角的度数为18040140︒-︒=︒故答案为:140°.【点睛】本题考查的是多边形的内角和,多边形的外角和为360︒,正多边形的每个内角相等,通过计算1个外角的度数来求得1个内角度数是解题关键.21.(2021·湖南中考真题)一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______.【答案】720°【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2)×180°.【详解】解:∵任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∴n=360°÷60°=6,∴此正多边形的边数为6,则这个多边形的内角和为(n-2)×180°,(6-2)×180°=720°,故答案为720°.【点睛】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n边形内角和等于(n-2)×180°”考点04平行四边形十一、平行四边形的性质23.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“ ”表示.24.平行四边形的性质(1)边:两组对边分别平行且相等.(2)角:对角相等,邻角互补.(3)对角线:互相平分.(4)对称性:中心对称但不是轴对称.25.注意:利用平行四边形的性质解题时一些常用到的结论和方法:(1)平行四边形相邻两边之和等于周长的一半.(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.26.平行四边形中的几个解题模型(1)如图①,AE 平分∠BAD ,则可利用平行线的性质结合等角对等边得到△ABE 为等腰三角形,即AB=BE .(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD ≌△CDB ;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD ≌△COB,△AOB ≌△COD ;根据平行四边形的中心对称性,可得经过对称中心O 的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE ≌△COF.图②中阴影部分的面积为平行四边形面积的一半.(3)如图③,已知点E 为AD 上一点,根据平行线间的距离处处相等,可得S △BEC =S △ABE +S △CDE .(4)如图④,根据平行四边形的面积的求法,可得AE ·BC=AF ·CD .十二、平行四边形的判定(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.(2)方法二:两组对边分别相等的四边形是平行四边形.(3)方法三:有一组对边平行且相等的四边形是平行四边形.(4)方法四:对角线互相平分的四边形是平行四边形.(5)方法五:两组对角分别相等的四边形是平行四边形.十三、矩形的性质与判定27.矩形的性质:(1)四个角都是直角;(2)对角线相等且互相平分;(3)面积=长×宽=2S △ABD =4S △AOB .(如图)28.矩形的判定:(1)定义法:有一个角是直角的平行四边形;(2)有三个角是直角;(3)对角线相等的平行四边形.十四、菱形的性质与判定29.菱形的性质:(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;(3)面积=底×高=对角线乘积的一半.30.菱形的判定:(1)定义法:有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;(3)四条边都相等的四边形.十五、正方形的性质与判定31.正方形的性质:(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;=4S△AOB.(3)面积=边长×边长=2S△ABD32.正方形的判定:(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;(2)一组邻边相等的矩形;(3)一个角是直角的菱形;(4)对角线相等且互相垂直、平分.十六、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等(8)有三个角都是直角.十七、中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4.22.(2021·江苏扬州市·中考真题)如图,在ABC 中,BAC ∠的角平分线交BC 于点D ,//,//DE AB DF AC .(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且AD =,求四边形AFDE 的面积.【答案】(1)菱形,理由见解析;(2)4【分析】(1)根据DE∥AB,DF∥AC判定四边形AFDE是平行四边形,再根据平行线的性质和角平分线的定义得到∠EDA=∠EAD,可得AE=DE,即可证明;(2)根据∠BAC=90°得到菱形AFDE是正方形,根据对角线AD求出边长,再根据面积公式计算即可.【详解】解:(1)四边形AFDE是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∵AD平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE是菱形;(2)∵∠BAC=90°,∴四边形AFDE是正方形,∵AD=,=2,∴∴四边形AFDE的面积为2×2=4.【点睛】本题考查了菱形的判定,正方形的判定和性质,平行线的性质,角平分线的定义,解题的关键是掌握特殊四边形的判定方法.23.(2021·江苏连云港市·中考真题)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;,求证:四边形ACED是矩形.(2)如果AB AE【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质以及点C是BE的中点,得到AD∥CE,AD=CE,从而证明四边形ACED是平行四边形;(2)由平行四边形的性质证得DC=AE,从而证明平行四边形ACED是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC.∵点C是BE的中点,∴BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB=DC,∵AB=AE,∴DC=AE,∵四边形ACED是平行四边形,∴四边形ACED是矩形.【点睛】本题考查了平行四边形和矩形的判定和性质,正确的识别图形是解题的关键.24.(2021·四川广安市·中考真题)如图,四边形ABCD是菱形,点E、F分别在边AB、AD=.连接CE、CF.的延长线上,且BE DF求证:CE CF=.【答案】见解析【分析】根据菱形的性质得到BC=CD ,∠ADC=∠ABC ,根据SAS 证明△BEC ≌△DFC ,可得CE=CF .【详解】解:∵四边形ABCD 是菱形,∴BC=CD ,∠ADC=∠ABC ,∴∠CDF=∠CBE ,在△BEC 和△DFC 中,BE DF CBE CDF BC CD =⎧⎪∠=∠⎨⎪=⎩,∴△BEC ≌△DFC (SAS ),∴CE=CF .【点睛】本题考查了菱形的性质,全等三角形的判定和性质,解题的关键是根据菱形得到判定全等的条件.25.(2021·四川自贡市·中考真题)如图,在矩形ABCD 中,点E 、F 分别是边AB 、CD 的中点.求证:DE=BF.【答案】证明见试题解析.【分析】由矩形的性质和已知得到DF=BE ,AB ∥CD ,故四边形DEBF 是平行四边形,即可得到答案.【详解】∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,又E 、F 分别是边AB 、CD 的中点,∴DF=BE ,又AB ∥CD ,∴四边形DEBF 是平行四边形,∴DE=BF .考点:1.矩形的性质;2.全等三角形的判定.26.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.【答案】(1)见解析;(2)EF ⊥BD 或EB =ED ,见解析【分析】(1)根据平行四边形的性质和全等三角形的证明方法证明AOE COF V V ≌,则可得到AE =CF ;(2)连接BF ,DE ,由AOE COF V V ≌,得到OE=OF ,又AO=CO ,所以四边形AECF 是平行四边形,则根据EF ⊥BD 可得四边形BFDE 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∴OA =OC ,BE ∥DF∴∠E =∠F在△AOE 和△COF 中E F AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AOE COF V V ≌()AAS ∴AE =CF(2)当EF ⊥BD 时,四边形BFDE 是菱形,理由如下:如图:连结BF ,DE∵四边形ABCD 是平行四边形∴OB =OD∵AOE COFV V ≌∴OE OF=∴四边形BFDE 是平行四边形∵EF ⊥BD ,∴四边形BFDE 是菱形【点睛】本题主要考查了全等三角形的性质与判定、平行四边形的性质,菱形的判定等知识点,熟悉相关性质,能全等三角形的性质解决问题是解题的关键.。
中考数学复习考点题型专题讲解14 整式加减中的无关型问题
中考数学复习考点题型专题讲解专题14 14 整式加减中的无关型问题整式加减中的无关型问题整式加减中的无关型问题1.有这样一道题:“求322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =−,1y =−”,小马虎把“12x =−”错抄成“12x =”,但他计算的结果却是正确的,你觉得可能吗?请用具体过程说明为什么?并求出正确答案. 【答案】可能,理由见详解,2【分析】将原式去括号合并同类项得到最简式子,即可判断;*【详解】解:原式=32232332323223x x y xy x xy y x x y y −−−+−−+−3322(1)2y =−=−×−= ∵化简后不含x ,∴原式的值与x 值无关,正确答案为:2.【点睛】此题考查了整式的加减,合并同类项:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项;熟练掌握运算法则是解题关键. 2.已知231122A x x =−+,215122B x x =+−. (1)求A -B ;(2)若2A -m B 中不含x 项,求m 的值.3.已知A =4x ²+ax +b ,B =2bx ²-3x -1,且A -2B 的值与x 的取值无关.(1)求a ,b 的值;(2)求代数式a ²-2ab +(-b )2021的值.【答案】(1)6a =−,1b =;(2)47【分析】(1)根据题意首先表示出A -2B ,然后根据A -2B 的值与x 的取值无关得到x 的系数为零,列出方程即可求出a ,b 的值;(2)将(1)中求出的a ,b 的值代入a ²-2ab +(-b )2021求解即可.【详解】解:(1)因为24A x ax b =++,2231B bx x =−−,所以()22242231A B x ax b bx x −=++−−−224462x ax b bx x =++−++()()24462b x a x b =−++++.又因为2A B −的值与x 的取值无关,所以440b −=,60a +=,解得6a =−,1b =.(2)当6a =−,1b =时,原式()()()2202162611=−−×−×+−36121=+−47=.【点睛】此题考查了整式的化解和代数求值问题,解题的关键是熟练掌握整式的化简方法. 4.已知:232x x b −+与21x bx +−的和不含关于x 的一次项.()1求b 的值,并写出它们的和;()2请你说明不论x 取什么值,这两个多项式的和总是正数的理由.【答案】(1)b 的值为2,它们的和为241x +;(2)见详解.【分析】(1)将232x x b −+与21x bx +−相加并合并同类项,由不含关于x 的一次项可知x 的一次项的系数为0,由此可求得b 的值,易知两个多项式的和;(2)由平方的非负性可得结论.【详解】解:(1)2223214(2)1x x b x bx x b x b −+++−=+−+−,由题意得20b −=,解得2b =,则224(2)141x b x b x +−+−=+,所以b 的值为2,它们的和为241x +;(2)由(1)知它们的和为241x +,20x ≥Q ,2410x ∴+>,所以不论x 取什么值,这两个多项式的和总是正数.【点睛】本题考查了整式的加减,涉及了与含x 项无关的问题以及平方的非负性,正确理解题意,确定参数的值是解题的关键.5.已知多项式()()22262351x ax y bx x y +−+−−+−的值与字母x 的取值无关,求a ,b 的值.【答案】a 、b 的值分别为3−,1.【分析】根据整式的加减运算进行化简合并,再根据多项式的值与字母x 的取值无关得到关于a,b 的式子即可求解.【详解】原式22262351x ax y bx x y =+−+−+−+2(22)(3)67b x a x y =−++−+∵多项式的值与字母x 的取值无关220b ∴−=,30a +=1b =,3a =−a ∴、b 的值分别为3−,1.【点睛】此题主要考查整式的加减,解题的关键是熟知整式的加减运算法则.6.已知A =3a 2b ﹣2ab 2+abc ,B =﹣2a 2b +ab 2+2abc .(1)求2A ﹣B ;(2)小强同学说:“当c =﹣2018时和c =2018时,(1)中的结果都是一样的”,你认为对吗?说明理由;(3)若a =12−,b =15−,求2A ﹣B 的值.7.已知:A=ax2﹣x﹣1,B=3x2﹣2x+2(a为常数)时,化简:B﹣2A;(1)当a=12(2)在(1)的条件下,若B﹣2A﹣2C=0,求C;(3)若A与B的和中不含x2项,求a的值.8.老师写出一个整式(ax2+bx-1)-(4x2+3x)(其中a、b为常数,且表示为系数),然后让同学给a、b赋予不同的数值进行计算,(1)甲同学给出了一组数据,最后计算的结果为2x2-3x-1,则甲同学给出a、b的值分别是a=_______,b=_______;(2)乙同学给出了a=5,b=-1,请按照乙同学给出的数值化简整式;(3)丙同学给出一组数,计算的最后结果与x的取值无关,请直接写出丙同学的计算结果.【答案】(1)6、0(2)241x x −−(3)丙同学的计算结果是-1.【分析】(1)将所求式子化简,然后根据计算的结果为2x 2-3x -1,即可得到a 、b 的值;(2)将a 、b 的值代入(1)中化简后的结果,即可解答本题;(3)根据(1)中化简后的结果和题意,可以写出丙同学的计算结果.(1)解:(ax 2+bx -1)-(4x 2+3x )=ax 2+bx -1-4x 2-3x =(a -4)x 2+(b -3)x -1,∵甲同学给出了一组数据,最后计算的结果为2x 2-3x -1,∴a -4=2,b -3=-3,解得a =6,b =0,故答案为:6,0;(2)解:由(1)(ax 2+bx -1)-(4x 2+3x )化简的结果是(a -4)x 2+(b -3)x -1,∴当a =5,b =-1时,原式=(5-4)x 2+(-1-3)x -1=x 2-4x -1,即按照乙同学给出的数值化简整式结果是x 2-4x -1;(3)解:由(1)(ax 2+bx -1)-(4x 2+3x )化简的结果是(a -4)x 2+(b -3)x -1,∵丙同学给出一组数,计算的最后结果与x 的取值无关,∴原式=-1,即丙同学的计算结果是-1.【点睛】本题考查整式的加减,解答本题的关键是明确题意,计算出相应的结果.9.已知:225A x ax y b =+−+,235202122B bx x y =−−−,且当x 取任意数值,2A B −的值是一个定值,求33a b −的值.【答案】-28【分析】首先求出2A B −的值,然后根据含x 的项的系数为0求出a 和b 的值,进一步求出代数式的值.【详解】解:2A B −22252354042x ax y b bx x y =+−+−+++2(22)(3)4042b x a x b =−++++,因为当x 取任意数值,2A B −的值是一个定值,所以220b −=,30a +=,所以1b =,3a =−,从而3333(3)127128a b −=−−=−−=−.【点睛】本题考查整式的加减运算,基本步骤是先去括号,再合并同类项.10.试说明:不论x 取何值,代数式()()()322323541323876x x x x x x x x x ++−−−−+−+−−+的值恒不变.【答案】见解析【分析】先将代数式进行化简,化简后代数式中不含x ,可得不论x 取何值,代数式的值是不会改变的.【详解】解:(x 3+5x 2+4x ﹣1)﹣(﹣x 2﹣3x +2x 3﹣3)+(8﹣7x ﹣6x 2+x 3)=x 3+5x 2+4x ﹣1+x 2+3x ﹣2x 3+3+8﹣7x ﹣6x 2+x 3=x 3﹣2x 3+x 3+5x 2+x 2﹣6x 2+4x +3x ﹣7x +10=10,∵此代数式恒等于10,∴不论x 取何值,代数式的值是不会改变的.【点睛】本题考查了整式的加减,解答本题的关键是将代数式化简,比较简单,同学们要熟练掌握. 11.已知.222423,2A x xy x B x xy =+−−=−++;求:(1)3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.12.已知多项式2222(2481)(643)mx y x x y x +++−−+化简后不含2x 项.(1)求m 的值;(2)化简并求多项式3323(55) −−++ m m m m 的值.【答案】(1)3m =;(2)345,10m m −++−【分析】(1)原式去括号合并得到最简结果,由结果不含2x 项,即可得到m 的值;(2)先将所求式子去括号合并得到最简结果,再将(1)中所求的m 的值代入,计算即可求出值.(1)解:2222(2481)(643)mx y x x y x +++−−+2222=2481643+++−+−mx y x x y x()22=26851−+++m x y x ∵不含2x 项,∴26=0−m ,即=3m .(2)解:3323(55) −−++ m m m m 33=2345 −−− m m m 33=2345−++m m m 3=45−++m m .将=3m 代入上式可得:原式=27125=10−++−.【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.13.已知代数式2342A x x =−+(1)若221B x x =−−,①求2A B −;②当2x =−时,求2A B −的值;(2)若21B ax x =−−(a 为常数),且A 与B 的和不含2x 项,求整式2452a a +−的值.【答案】(1)①24x +;②8(2)19【分析】(1)根据整式的加减运算化简求值即可;(2)根据整式的加减运算顺序即可求解;(3)根据和中不含x 2项即是此项的系数为0即可求解.(1)①222(342)2(21)A B x x x x −=−+−−−22342242x x x x =−+−++24x =+,②由①知224A B x −=+,当2x =−时,22(2)4448A B −=−+=+=;(2)2342A x x =−+∵,21B ax x =−−22(342)(1)A B x x ax x ∴+=−++−−223421x x ax x =−++−−2(3)51a x x =+−+,∵A 与B 的和不含2x 项,30a ∴+=,即3a =−,224524(3)5(3)2a a ∴+−=×−+×−−49152=×−−36152=−−19=.【点睛】本题考查了整式的加减,解答本题的关键是掌握多项式加减的运算法则,合并同类项的法则.14.一个多项式的次数为m ,项数为n ,我们称这个多项式为m 次多项式或者m 次n 项式,例如:322523x y x y xy −+为五次三项式,222232x y xy x −++为二次四项式.(1)22333243xy x y x y −+−+为________次________项式.(2)若关于x 、y 的多项式232A ax xy x =−+,242B bxy x y =−+,已知23A B −中不含二次项,求a +b 的值.(3)已知关于x 的二次多项式,()()3223325a x x x b x x x −++++−在2x =时,值是17−,求当2x =−时,该多项式的值.【答案】(1)六,四;(2)8−;(3)1−.【分析】(1)根据一个多项式的次数为m ,项数为n ,我们称这个多项式为m 次多项式或者m 次n 项式,即可解答;(2)计算出23A B −,根据不含二次项,即二次项的系数为0,求出a ,b 的值,即可解答; (3)先将关于x 的二次多项式变形,根据二次多项式的特点求出a 、b 的值,进而求出当2x =−时,该多项式的值.【详解】解:(1)22333243xy x y x y −+−+为六次四项式;故答案为:六,四;(2)222232(32)3(42)(212)(63)46A B ax xy x bxy x y a x b xy x y −=−+−−+=+−++−,23A B −∵中不含二次项,2120a ∴+=,630b +=,6a ∴=−,2b =−,(6)(2)8a b ∴+=−+−=−;(3)322332(3)(2)5(1)(2)(3)5a x x x b x x x a x b a x a b x −++++−=++−++−.∵32(1)(2)(3)5a x b a x a b x ++−++−是关于x 的二次多项式10a ∴+=,即1a =−.322(1)(2)(3)5(21)(3)5a x b a x a b x b x b x ∴++−++−=++−−又当2x =时,原代数式的值是17−4(21)2(3)517b b ∴++−−=−解得:1b =−.∴关于x 的二次多项式3223(3)(2)5a x x x b x x x −++++−2(21)(3)5b x b x =++−−2[2(1)1](13)5x x =×−++−−−245x x =−−−∴当2x =−时,原式2(2)4(2)51=−−−×−−=−.【点睛】本题考查了多项式,解决本题的关键是熟记多项式的有关概念.15.(1)已知22231A x xy y B x xy =++−=−,,若()2230x y ++−=,求2A B −的值; (2)已知多项式2212x my +−与多项式236nx y −+的差中不含有2,x y ,求m n mn ++的值.(2)()2221236x my nx y +−−−+=()()22318n x m y −++−∵两多项式的差中不含有2x ,y∴20n −=,30m +=∴2n =,3m =−当2n =,3m =−时,原式=()3232−++−×=7−故答案为(1)10−;(2)7−.【点睛】本题考查了整数的加减混合运算,绝对值的非负性,偶次方的非负性,整式的意义,多项式中不含有某项,令该项的系数为0即可.16.关于x ,y 的多项式6mx 2+4nxy +2x +2xy -x 2+y +4不含二次项,求多项式2m 2n +10m -4n +2-2m 2n -4m +2n 的值.17.按照下面的步骤计算:任意写一个三位数,百位数字比个的百位数字与个位数字做加法问题:(1)用不同的三位数再做两次(2)你能解释其中的道理吗?【答案】(1)结果是1089;用不同的【分析】设这个三位数为100根据条件推理,可得结果是【详解】解:(1)结果是1089;用不(2)设这个三位数为100(3+c )+10根据题意,有[100(3+c )+10b +c ]再交换297的百位和个位数字得所以用不同的三位数再做几次,【点睛】本题考查了整式加减的运18.如图,在数轴上A 点表示数字比个数数字大3交换差的百位数字与个位数字用大数做两次,结果都是1089吗?不同的三位数再做几次,结果都是一样的;(2)(3+c )+10b +c ,再交换百位数字与个位数字后为1089.用不同的三位数再做几次,结果都是一样的;+10b +c ,再交换百位数字与个位数字后为100c +10﹣[100c +10b +3+c ]=297.字得792,而297+792=1089.,结果都是1089.减的运用.认真读题,理解题意是关键.示数-3,B 点表示数b ,C 点表示数c ,且b .c 用大数减去小数交换它见解析.后为100c +10b +3+c .再b +3+c .满足()2140b c ++−=(1)b =,c =.(2)若使C .B 两点的距离是(3)点A .B .C 开始在数轴上运和点C 分别以每秒2个单位长度和①点A .B .C 表示的数分别是②若点B 与点C 之间的距离表示为的值不会随着时间t 的变化而改变A .B 两点的距离的2倍,则需将点C 向左移动个轴上运动,若点A 以每秒m 个单位长度的速度向左运长度和5个单位长度的速度向右运动,设运动时间为别是..(用含m .t 的代数式表示);表示为d 1,点A 与点B 之间的距离表示为d 2,当而改变,并求出此时2d 1-d 2的值.移动个单位长度. 向左运动,同时,点B 时间为t 秒; m 为何值时,2d 1-d 2∴需将点C向左移动1或9个单位;故答案是:1或9;(3)①点A表示的数是-3-mt;点B表示的数是-1+2t;点C所表示的数是4+5t.故答案是:-3-mt;-1+2t;4+5t;②∵点A表示的数是-3-mt;点B表示的数是-1+2t;点C所表示的数是4+5,∴d1=4+5t-(-1+2t)=3t+5,d2=-1+2t-(-3-mt)=(m+2)t+2,∴2d1-d2=2(3t+5)-[(m+2)t+2]=(4-m)t+12,∵2d1-d2的值不会随着时间t的变化而改变∴4-m=0,∴m=4,故当m=4时,2d1-d2的值不会随着时间t的变化而改变,此时2d1-d2的值为12.【点睛】本题考查了数轴上两点间的距离及动点问题,掌握距离公式及平移规律是解决问题的关键.本题体现了数形结合的数学思想.。
中考数学复习考点题型专题讲解08 数轴上动点返回
中考数学复习考点题中考数学复习考点题型专题讲解型专题讲解专题08 08 数轴上动点返回数轴上动点返回数轴上动点返回1.已知数轴上点A 与点B 相距12个单位长度,点A 在原点的右侧,到原点的距离为22个单位长度,点B 在点A 的左侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒. (1)点A 表示的数为______,点C 表示的数为______. (2)用含t 的代数式表示P 与点A 的距离:PA =______.(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,回到点A 处停止运动. ①在点Q 运动过程中,请求出点Q 运动几秒后与点P 相遇?②在点Q 从点A 向点C 运动的过程中,P 、Q 两点之间的距离能否为3个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.【答案】(1)22, -10;(2)t ;(3)①点Q 运动6或13秒后与点P 相遇;②点P 表示的数5.5或2.5. 【解析】 【分析】试题分析:(1)根据:数轴上点A 与点B 的距离为12个单位长度,点A 在原点的右侧,到原点的距离为22个单位长度,点B 在点A 的左侧,点C 表示的数与点B 表示的数互为相反数,可以确定A 、C 点对应的数;(2)因为动点P 从A 出发,以每秒1个单位的速度向终点C 移动,且移动时间为t 秒,所以PA=t ;(3)①设运动时间是t 秒,根据点Q 追上点P 时,点Q 运动的路程=点P 运动的路程,列出关于t 的方程,求出方程的解即可得到结果.②分情况讨论:点Q 从A 点向点C 运动时,又分点Q 在点P 的后面与点Q 在点P 的前面;点Q 从C 点返回到点A 时,又分点Q 在点P 的后面与点Q 在点P 的前面. 【详解】解:(1)由分析可知,点A 表示的数为22,点C 表示的数为-10; (2)1PA t t =×=;(3)①Ⅰ)在点Q 向点C 运动过程中,设点Q 运动x 秒与点P 相遇,根据题意得312x x =+,解得6x =.Ⅱ)在点Q 向点A 运动过程中,设点Q 运动x 秒与点P 相遇,根据题意得()()322101010x x +=−−+−−, 解得13x =.答:点Q 运动6或13秒后与点P 相遇; ②分两种情况:如果点Q 在点P 的后面,那么1233x x +−=,解得 4.5x =,此时点P 表示的数是5.5; 如果点Q 在点P 的前面,那么()3123x x −+=,解得7.5x =,此时点P 表示的数是2.5. 答:点P 表示的数5.5或2.5. 【点睛】此题考查一元一次方程的应用,数轴,列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.如图,数轴上有A ,B 两点,AB =12,原点O 是线段AB 上的一点,OA =2OB ,(1)写出A ,B 两点所表示的实数;(2)若点C 是线段AB 上一点,且满足AC =CO +CB ,求C 点所表示的实数;(3)若动点P ,Q 分别从A ,B 同时出发,向右运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度运动.①当t 为何值时,2OP ﹣②当点P 到达点O 时,M 追上点Q 后立即返回,以同度向点Q 运动,如此往返,行驶的总路程和点M 最后位置【答案】(1)A 表示-8,B 为24和点M 最后位置在数轴上【解析】 【分析】(1)由AO =2OB 可知,将A 在原点的左边,B 在原点的右(2)分两种情况:①点在线段OB 上时,分别根据(3)①分两种情况:点P 在原代入2OP -OQ =4列式即可求出②点M 运动的时间就是点式为t (2-1)=8,解出即可解决【详解】解:(1)∵AB =12,AO =2∴AO =8,OB =4,∴A 点所表示的实数为-8,(2)设C点所表示的实数为位长度,设运动时间为t 秒,当点P 与点Q 重合时,OQ =4;动点M 从点O 出发,以每秒3个单位长度的速度也向以同样的速度向点P 运动,遇到点P 后再立即返回,直到点P ,Q 停止时,点M 也停止运动,求在此过后位置在数轴上对应的实数.表示4;(2)43−;(3)①1.6秒或8秒;②点数轴上对应的实数为16 12平均分成三份,AO 占两份为8,OB 占一份为点的右边,从而得出结论;C 在原点的左边,即在线段OA 上时,②点C 在原点据AC =CO +CB 列式即可;在原点的左侧和右侧时,OP 表示的代数式不同,可求出t 的值;P 从点O 开始到追到点Q 的时间,设点M 运动的时可解决问题. OB ,B 点所表示的实数为4;数为x ,,P ,Q 两点停止度也向右运动,当点返回,以同样的速在此过程中,点M M 行驶的总路程份为4,由图可知,在原点的右边,即,OQ =4+t ,分别动的时间为t 秒,列分两种情况:①点C 在线段∵AC =CO +CB , ∴8+x =-x +4-x ,解得:x =43−;②点C 在线段OB 上时,则∵AC =CO +CB , ∴8+x =4,x =-4(不符合题意,舍);综上所述,C 点所表示的实数是(3)①当0<t <4时,如图AP =2t ,OP =8-2t ,BQ =t ,∵2OP -OQ =4,∴2(8-2t )-(4+t )=4,解得:t =85=1.6,当点P 与点Q 重合时,如图2t =12+t ,t =12,当4<t <12时,如图5,线段OA 上时,则x <0,如图1,则x >0,如图2,实数是43−;如图3,OQ =4+t ,如图4,OP =2t -8,OQ =4+t ,则2(2t -8)-(4+t )=4, 解得:t =8,综上所述,当t 为1.6秒或②当点P 到达点O 时,如图6,设点M 运动的时间为由题意得:2t -t =8, 解得:t =8,此时,点P 表示的实数为8×2=∴点M 行驶的总路程为:3×8=答:点M 行驶的总路程为【点睛】本题考查了数轴上两点的距离理清题意,并注意数轴上的点等于任意两点表示的数的差的3.如图,O 为原点,在数轴上22(3)0a a b +++=.(1)a =________,b =________8秒时,2OP -OQ =4;8÷2=4,此时,OQ =4+t =8,即点Q 所表示的实数为时间为t 秒,8×2=16,所以点M 表示的实数也是16, 3×8=24,24和点M 最后位置在数轴上对应的实数为16.的距离、数轴上点的表示、一元一次方程的应用,比较上的点,原点左边表示负数,右边表示正数,在数轴上的差的绝对值.数轴上点A 表示的数为a ,点B 表示的数为b ,且_______.数为8,比较复杂,要认真数轴上,两点的距离a ,b 满足(2)若点P 从点A 出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动的时间为t秒.①当点P 运动到线段OB 上,且PO =2PB 时,求t 的值.②若点P 从点A 出发,同时,另一动点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,到达点O 后立即原速返回向右匀速运动,当PQ =1时,求t 的值. 【答案】(1)2−,6 (2)①6;②173t =,23t =,35t = 【解析】 【分析】(1)根据绝对值的非负性、平方的非负性解题;(2)①由PO =2PB 列方程解题;②分两种情况讨论:点Q 到达原点之前PQ =1,或点Q 到达原点返回之后PQ =1,根据题意列方程解题即可. (1)解:22(3)0a a b +++=Q2030a a b ∴+=+=,2,6a b ∴=−=故答案为:-2,6. (2)①根据题意得,∵PO =2PB[]2026(2)t t ∴−+−=−−+ 21242t t ∴−+=+− 318t ∴= 6t ∴=②分两种情况讨论:第一种情况:点Q 到达原点之前PQ =1,点P 表示的数为:2t −+,点Q 表示的数为:62t −=62(2)1PQ t t −−−+= 6221t t ∴−+−= 381t ∴−+=381t ∴−+=± 127,33t t ∴==第二种情况:点Q 到达原点返回之后PQ =1, 点P 与点Q 相遇时,即622t t −=−+,83t ∴=此时点P 、Q 表示的数均为23,此时点Q 到达原点还需要221123323÷=×=秒,当点Q 在原点时,点P 表示数2211333t +=+=当点Q 由原点返回,向右匀速运动时,PQ =1121t t ∴+−= 11t ∴−=±342,0t t ∴==(舍去)即当点Q 到达原点返回之后PQ =1,812533t =++=综上所述,当PQ =1时,173t =,23t =,35t =. 【点睛】本题考查数轴上的动点、一元一次方程的应用、绝对值的非负性等知识,掌握相关知识是解题关键.4.已知数轴上有A 、B 、C 三个点,分别表示有理数24−、10−、10,动点P 从A 出发,以每秒1个单位长度的速度向终点C 移动,设移动时间为t 秒.若用PA ,PB ,PC 分别表示点P 与点A 、点B 、点的距(1)当点P 运动10秒时,(2)当点P 运动了t 秒时,PB =______,PC =______(3)经过几秒后,点P 到点(4)当点P 运动到B 点时,点达C 点后,再立即以同样的速的距离能否为4个单位长度【答案】(1)10,14,24 (2)t ,14t −+,34t −+ (3)17−(4)能,5,1,2.5,4.5−−【解析】 【分析】(1)根据题意求得10t =时(2)先表示出P 点的位置表示(3)根据题意,列一元一次方(4)分Q 点到达C 点之前,元一次方程解方程求解即可(1)∵A 、B 、C 三个点,分别表示动点P 从A 出发,以每秒∴10t =时,P点表示的数为C 的距离,试回答以下问题.PA =______,PB =______,PC =______;请用含t 的代数式表示P 到点A 、点B 、点C 的距离___;A 、点B 的距离相等?此时点P 表示的数是多少?Q 从A 点出发,以每秒3个单位长度的速度向样的速度返回,运动到终点A .在点Q 开始运动后,长度?如果能,请直接写出点P 表示的数;如果不能时,P 点的位置,进而求得两点距离; 置表示的数,进而求得两点距离; 一次方程,解方程求解即可;,和Q 点到达C 点之后,两种情形,根据两点距离即可. 别表示有理数24−、10−、10,1个单位长度的速度向终点C 移动,设移动时间为数为241014−+=−:PA =______,C 点运动,Q 点到,P 、Q 两点之间不能,请说明理由.点距离为4,建立一间为t 秒,∴当点P 运动10秒时,PA =()142410−−−=,PB =()14104−−−=,PC =141024−−=故答案为:10,14,24 (2)依题意,当点P 运动了t 秒时,则PA t =,点P 表示的数为24t −+,∴PB =()241014t t −+−−=−+,PC =241034t t −+−=−+故答案为:t ,14t −+,34t −+ (3) PA PB =∵14t t ∴=−+即14t t =−+或14t t =− 则无解或7t =∴7t =∴点P 表示的数为2424717t −+=−+=−,(4)根据题意,设经过x 秒后P 、Q 两点之间的距离能否为4个单位长度,P 点运动到C 点需要的时间为:20120÷=(秒)①当点Q 未到达C 点,此时3,AQ x BP x ==,则Q 点表示的数为243x −+,点P 表示的数为10x −+则PQ =()10243142,4x x x PQ −+−−+=−= 即1424x −= 解得5x =或9x =101055x −+=−+=−或1091−+=−∴点P 表示的数为5−或1−②当点Q 从C 点返回后,此时(343AQ AC QC x =−=−−24683443x x −+−=−,点P则PQ =()104434x x −+−−=即4544x −= 解得292x =,252x =点P 表示的数为10x −+=10−+综上所述,点P 表示的数为【点睛】本题考查了数轴上动点问题的关键.5.探究与发现:|a ﹣b |表示所对应的两点之间的距离.如的点之间的距离.(1)如图,已知数轴上点A 表示则数轴上点B 表示的数;(2)若|x﹣8|=2,则x=.拓展与延伸:在(1)的基础上,解决下列问题:(3)动点P 从O 点出发,以每秒5 个单位长度的速度沿数轴向右匀速运动,设运动时间为t (t>0)秒.求当t 为多少秒时?A,P 两点之间的距离为2;本号资料全部来源于微信公众号:数学第*六*感(4)数轴上还有一点C 所对应的数为30,动点P 和Q 同时从点O 和点B 出发分别以每秒5 个单位长度和每秒10 个单位长度的速度向C 点运动,点Q 到达C 点后,再立即以同样的速度返回,点P 到达点C 后,运动停止.设运动时间为t(t>0)秒.问当t 为多少秒时?P,Q 之间的距离为4.【答案】(1)-12(2)6或10(3)当t 为65秒时,A,P 两点之间的距离为2(4)当t 为85或165或6815或7615秒时,P,Q 之间的距离为4.【解析】(1)(1)数轴上点B表示的数=8-20=-12.故答案为:-12.(2)∵|x-8|=2,∴x-8=-2或x-8=2,∴x=6或x=10.故答案为:6或10.(3)当运动时间为t秒时,点P表示的数为5t,依题意得:|5t-8|=2,即5t-8=-2或5t-8=2,解得:t=65或t=2.答:当t为65秒或2秒时,A,P两点之间的距离为2.(4)P到达C点时间:(30-0)÷5=6(秒),Q到达C点时间:|-12-30|÷10=215(秒).当0<t<215时,P、Q都没有到达C点点P表示的数为5t,点Q表示的数为10t-12,依题意得:|5t-(10t-12)|=4,即12-5t=4或5t-12=4,解得:t=85或t=165;当215≤t<6时,Q已经到达C点,P没有到达C点点P表示的数为5t,点Q表示的数为-10(t-215)+30=-10t+72,依题意得:|5t-(-10t+72)|=4,即72-15t=4或15t-72=4,解得:t=6815或t=7615;当t≥6时,P、Q都已经到达C点点P表示的数为30,点Q表示的数为-10(t-215)+30=-10t+72,依题意得:30-(-10t+72)=4,解得:t=235(不合题意,舍去).答:当t 为85或165或6815或15【点睛】本题考查了一元一次方程的应的距离公式,找出点B 表示的量关系,正确列出一元一次方的一元一次方程.6.如图,数轴上A ,B 两点对个单位长度;然后在新的位置向左运动3个单位长度,…按照(1)A ,B 两点之间的距离为(2)当运动到第2021次时(3)在数轴上有一动点C 点C 向右运动到B 点立即返回秒1个单位长度的速度沿着数t 使得CD 的长度为2;若存在【答案】(1)12;(2)-1015【解析】 【分析】(1)根据数轴上A ,B 两点对(2)当运动到第2021次时,化简求值即可;(3)分三种情况讨论:①动到B 点时,③当C ,D 两点76秒时,P ,Q 之间的距离为 4.程的应用、数轴以及绝对值,解题的关键是:(1)利用表示的数;(2)利用绝对值的定义,去掉绝对值符号一次方程;(4)分0<t <215,215≤t <6或t≥6三种情况两点对应的数分别-4,8.有一动点P 从点A 出发第一的位置第二次运动,向右运动2个单位长度;在此位置按照如此规律不断地左右运动.距离为.次时,求点P 所对应的有理数. 从点A 出发,以每秒2个单位长度的速度沿着数轴向即返回,返回到A 点停止.在数轴上有一动点D 沿着数轴向左匀速移动,到A 点停止.设运动时间为若存在,请求出t 的值;若不存在,请说明理由.015;(3)存在,103,143,10 两点对应的数分别-4,8,可直接得到A ,B 两点之间的,点P 所对应的有理数是:412345620−−+−+−+− 当C ,D 两点没相遇时,②当C ,D 两点相遇后时两点相遇后时,点C 运动到B 点再返回时,分别列出利用数轴上两点间符号;(3)找准等种情况,找出关于t 发第一次向左运动1此位置第三次运动,数轴向右匀速移动,从点B 出发,以每间为t 秒.是否存在 之间的距离;201920202021−+−,遇后时,点C 没有运分别列出方程,然后求解即可得到结果. 【详解】解:(1)∵数轴上A ,B 两点对应的数分别-4,8,∴A ,B 两点之间的距离为()8412−−=,(2)根据题意可得,当运动到第2021次时,点P 所对应的有理数是:4123456201920202021−−+−+−+−−+−()()()()4123456201920202021=−+−++−++−+−+−+− 20204120212=−+×− 1015=−,(3)存在,理由如下: 由(1)得:12AB =, ①当C ,D 两点没相遇时,依题意得:2212t t ++= 解之得:103t =; ②当C ,D 两点相遇后时,点C 没有运动到B 点时,依题意得:2212t t +−= 解之得:143t =; ③当C ,D 两点相遇后时,点C 运动到B 点再返回时,依题意得:2212t t −=− 解之得:10t =;综上所述,CD 的长度为2时,运动时间为103t =或143或10. 【点睛】本题考查的是数轴的性质和数轴上的动点,明确数轴的特点,利用分类讨论的思想、数形结合的思想解答是解题的关键.7.数轴上点A 表示-8,点和点B ,C 处各折一下,得到一的绝对值叫这两点间的和谐距个单位长度.动点M 从点A 出发,以4个单期间速度变为原来的一半,同时,点N 从点D 出发,中一点到达终点时,两点都停(1)当2t =秒时,M 、N 两点在折(2)当点M 、N 都运动到折线段O 、M 两点间的和谐距离C 、N 两点间的和谐距离t =________时,M 、N 两点相(3)当t =________时,M 、(4)当t =________时,M 、距离相等. 【答案】(1)12(2)2(t -2);3t -6;4.4(3)当t =5.2或3.6秒时,M (4)当t =3.2或8秒时,M 、点B 表示6,点C 表示12,点D 表示18.如图,得到一条“折线数轴”.在“折线数轴”上,把两点所对应和谐距离.例如,点A 和点D 在折线数轴上的和谐距离为个单位/秒的速度沿着折线数轴的正方向运动,,过点C 后继续以原来的速度向终点D 运动;点一直以3个单位/秒的速度沿着“折线数轴”负方向向终点都停止运动.设运动的时间为t 秒.两点在折线数轴上的和谐距离MN 为________; 折线段O B C −−上时,OM =________(用含有t 的代数式表示); CN =________(用含有t 的代数式表示); 两点相遇; N 两点在折线数轴上的和谐距离为4个单位长度;O 两点在折线数轴上的和谐距离与N 、B 两点在折线、N 两点在折线数轴上的和谐距离为4个单位长度O 两点在折线数轴上的和谐距离与N 、B 两点在折线,将数轴在原点O点所对应的两数之差距离为81826−−=从点O 运动到点C 点M 从点A 出发的向向终点A 运动.其;在折线数轴上的和谐长度;在折线数轴上的和谐距离相等【解析】【分析】(1)先求得点M表示的数为0,点N表示的数为12,据此即可求解;(2)先求得点M表示的数为2(t-2),点N表示的数为18-3t,据此即可求解;(3)根据题意列出方程|2(t-2) - (18-3t)|=4,即可求解;(4)分点M在OA上,O−B−C上,CD上三种情况讨论,列出方程求解即可.(1)解:∵t=2时,点M表示的数为4t-8=0,点N表示的数为18-3t=12,∴|MN|=|12-0|=12;故答案为:12;(2)点N到达原点的时间为186=(秒),3∵点M、N都运动到折线段O−B−C上,即2<t<6,∴点M表示的数为2(t-2),点N表示的数为18-3t,∴O、M两点间的和谐距离|OM|=2(t-2);C、N两点间的和谐距离|CN|=|12-(18-3t)|=3t-6;当2(t-2)= 18-3t时,M、N两点相遇,解得:t=4.4,∴当t=4.4秒时,M、N两点相遇;故答案为:2(t-2);3t-6;4.4;(3)当点M在OA上或在CD上即0<t≤2或t8≥时,由(1)知,不存在和谐距离为4个单位长度;当点M运动到折线段O−B−C上,即2<t<8,依题意得:|2(t-2) - (18-3t)|=4解得:t=5.2或t=3.6,∴当t=5.2或3.6秒时,M、(4)当点M在OA上即0<t≤2时依题意得:0-(4t-8)=18-3t-6,解得:t=-4(不合题意,舍去)当点M在折线段O−B−C上,依题意得:2(t-2)-0=|18-3t-6|解得:t=3.2或t=8;当点M在CD上即8<t28≤3依题意得:4(t-8)-0=6-(18-3t)解得:t=20(不合题意,舍去综上,当t=3.2或8秒时,M 和谐距离相等.【点睛】本题综合考查了数轴与有理数者的关系等相关知识点,重点8.如图,O为原点,在数轴上+(3a+b)2=0.(1)a=________,b=_____(2)若点P从点A出发,以每为t(秒).①当点P运动到线段OB上②先取OB 的中点E ,当点P 在线段OE 上时,再取AP 的中点F ,试探究AB OPEF−的值是否为定值?若是,求出该值;若不是,请用含t 的代数式表示.③若点P 从点A 出发,同时,另一动点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,到达点O 后立即原速返回向右匀速运动,当PQ =1时,求t 的值. 【答案】(1)-2,6;(2)①6,②2,③5. 【解析】 【详解】试题分析:(1)根据非负数的性质即可求出,a b 的值;(2)①先表示出运动t 秒后P 点对应的数为2t −+,再根据两点间的距离公式得出2PO t =−+,268PB t t =−+−=−,利用2PO PB =建立方程,求解即可; ②根据中点坐标公式分别表示出点E 表示的数,点F 表示的数,再计算AB OPEF− 即可; ③分类讨论.试题解析:()1220,(3)0a a b +≥+≥∵.22(3)0a a b +++=∵. 2030,a ab += ∴ += 解得:2, 6.a b =−= 故答案为2,6.−()2①()228t t −=−,解得: 6.t =②AP 的中点F 表示的数是224.22t t −+−−= OB 的中点E 表示的数是3.所以4103,22t tEF −−=−= 所以()82 2.102t AB OP tEF −−−==− ③()2621,PQ t t =+−+=解得:7,3t =281PQ t t =+−=,解得: 3.t =()()2331 1.t t −−−−=解得: 5.t =9.已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为22个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)点A 表示的数为,点B 表示的数为,点C 表示的数为; (2)用含t 的代数式表示P 到点A 和点C 的距离:P A =,PC =;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .①在点Q 向点C 运动过程中,能否追上点P ?若能,请求出点Q 运动几秒追上. ②在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由. 【答案】(1)﹣22,﹣10, 10 (2)t ,32﹣t(3)①在点Q向点C运动过程中,能追上点P,点Q运动4秒追上;②能,点P表示的数分别是﹣203,﹣163,0,45【解析】【分析】(1)根据点A、B的位置可确定点A、B表示的数,根据相反数的定义可确定点C表示的数;(2)根据两点间的距离公式解答即可;(3)①在点Q向点C运动过程中,设点Q运动x秒追上点P,根据点Q追上点P时,点Q运动的路程=点P运动的路程,列出方程,解方程即可;②分两种情况:点Q从A点向点C运动时,又分点Q在点P的左边与点Q在点P的右边;点Q从C点返回到点A时,又分点Q在点P的右边与点Q在点P的左边.(1)解:∵点A在原点的左侧,到原点的距离为22个单位长度,∴点A表示的数为﹣22,∵点A与点B的距离为12个单位长度,点B在点A的右侧,∴点B表示的数为﹣10,∵点C表示的数与点B表示的数互为相反数,∴点C表示的数为10,故答案为:﹣22,﹣10,10;(2)解:P A=1×t=t,PC=AC﹣P A=32﹣t,故答案为:t,32﹣t;(3)解:①在点Q向点C运动过程中,设点Q运动x秒追上点P,根据题意得4x=x+12,解得x=4.答:在点Q向点C运动过程中,能追上点P,点Q运动4秒追上;②点P从点B运动到点C需:(10+10) ÷1=20秒,分两种情况:当点Q从A点向点C运动时,如果点Q在点P的左边,那么x+12﹣4x=2,解得x=103,此时点P表示的数是-10+103=﹣203;如果点Q在点P的右边,那么4x﹣x﹣12=2,解得x=143,此时点P表示的数是-10+143=﹣163;当点Q从C点返回到点A时,如果点Q在点P的右边,那么4x+x+12+2=2×32,解得x=10,此时点P表示的数是-10+10=0;如果点Q在点P的左边,那么4x+x+12=2×32+2,解得x=545,此时点P表示的数是-10+545=45.所以在点Q开始运动后,P、Q两点之间的距离能为2个单位,此时点P表示的数分别是﹣20 3,﹣163,0,45.【点睛】本题考查了一元一次方程的应用,数轴的知识,相反数的定义,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,分类讨论是解(3)的关键.10.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC=,BE=;(2)当线段CE 运动到点①设AF 长为x ,用含x 的代数②求BE 与CF 的数量关系(3)当点C 运动到数轴上表示的速度向右运动,抵达B 后单位长度的速度向终点B 运动间的距离为1个单位长度.【答案】(1)16,6,2;(2)【解析】 【分析】(1)由数轴上A 、B 两点对应的数长,由点F 是AE 的中点,可得 (2)设AF =FE =x ,则CF =8 (3)分①当0<t≤6时; 【详解】(1)数轴上A 、B 两点对应的∴AB=16,∵CE=8,CF=1,∴EF=7,A 在C 、E 之间时,的代数式表示BE =(结果需化简.....); 量关系;上表示数﹣14的位置时,动点P 从点E 出发,后,立即以原来一半速度返回,同时点Q 从A 出发运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时.①162x −②2BE CF =;(3)t=1或3或487或应的数分別是-4、12,可得AB 的长;由CE =8,CF 可得AF 的长,用AB 的长减去2倍的EF 的长即为8-x ,用含x 的式子表示出BE ,即可得出答案 ②当6<t≤8时,两种情况讨论计算即可得解对应的数分别是-4、12,以每秒3个单位长度出发,以每秒2个何值时,P 、Q 两点527=1,可得EF 的即为BE 的长;∵点F 是AE 的中点,∴AF=EF=7,∴,AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;∵(2)点F 是AE 的中点,∴AF=EF ,设∴AF=EF=x,CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ), ∴BE=2CF.故答案为①162x −②2BE CF =;(3) ①当0<t≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t≤8时,P 对应数()33126t 22t −−−=21, Q 对应数-4+2t , 37=4t =t 2=12t PQ −﹣+2﹣()25﹣21,解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健11.已知数轴上A 、B 、C 三个点对应的数分别为a 、b 、c ,且满足|a +10|+|b +4|+(c ﹣5)2=0;动点P 在数轴上从A 出发,以每秒1个单位长度的速度向终点C 移动. (1)求a 、b 、c 的值;(2)当点P 到B 点的距离是点A 到B 点距离的一半时,求P 点移动的时间;(3)当点P 移动到B 点时,点Q 从点A 出发以每秒3个单位长度的速度在数轴上向C 点移动,Q 点到达C 点后,再立即以同样的速度返回,移动到终点A .当P 、Q 两点之间的距离为3个单位长度时,求Q 点移【答案】(1)10,a b =−=【解析】 【分析】(1)根据非负数的性质求得(2)根据题意设P 的移动时间(3)根据Q 点到达C 点前后进【详解】解:(1)∵|a +10|+|b +4|+∴10,4,5a b c =−=−=(2)设P 的运动时间为1t 秒()11104PB t t =−+−−=−()4106AB =−−−=∵,当点∴163t −=解得13t =或19t =∴P 点移动时间为3或9秒;(3)()549BC =−−=∵,Q 的速度为3个单位每秒,则P 点表示的数为4t −,当Q 点到达C 点之前,Q 点表根据题意,()410t−−−+=解得32t =或92t =点移动的时间.4,5c −=;(2)3或9秒;(3)32或92或214或274求得,,a b c 的值;动时间为1t ,分别求得,PA AB 的距离,列出方程进而前后进行分类讨论,进而分别得出结果. (c ﹣5)2=0;秒,根据题意点P 表示的数为110t −+,则PB 的距离6,当点P 到B 点的距离是点A 到B 点距离的一半时,;()51015AC =−−=,P 点的速度为1个单位每秒,设Q 点的移动时间为09t <<点表示的数为103t −+,此时05t <≤ 33t 7程进而求解即可 的距离为,时间为t ,当Q 点从C 点返回时,Q 点表根据题意,()42033t t −−−=解得214t =或274t =综上所述,Q的移动时间为【点睛】本题考查了一元一次方程的应的关键.12.已知数轴上点A 与点个单位长度,点B 在点A 的右出发,以每秒1个单位长度的(1)点A 表示的数为_______(2)用含t 的代数式表示(3)当点P 运动到B 点时,达C 点后,再立即以同样的速①点Q 运动过程中,请求出点②在点Q 从点A 向点C 运动的请直接写出此时点P 表示的数【答案】(1)24−,12;(【解析】 【分析】(1)由点A 在原点的左侧,点表示的数为[]5315203t t −−=−,此时5t << 间为32或92或214或274程的应用以及利用数轴确定点的位置,利用分类讨论得B 相距12个单位长度,点A 在原点的左侧,到原点的右侧,点C 表示的数与点B 表示的数互为相反数长度的速度向终点C 移动,设移动时间为t 秒. ________,点C 表示的数为_________; P 与点A 的距离:=PA _________;,点Q 从A 点出发,以每秒3个单位的速度向样的速度返回,回到点A 处停止运动. 求出点Q 运动几秒后与点P 相遇?运动的过程中,P 、Q 两点之间的距离能否为4个单位示的数;如果不能,请说明理由.2)t ;(3)①6秒或15秒;②8−或4−或2或-2,离原点的距离为24,可知点A 表示的数,继而解9 讨论得出结果是解题到原点的距离为24反数,动点P 从AC 点运动,Q 点到个单位?如果能,2. 继而解得点B 表示的数,,再根据相反数的定义解得点C 的坐标; (2)根据路程=速度×时间,可得PA ;(3)①分两种情况讨论Ⅰ:点Q 从点A 向点C 运动时,Ⅱ:点Q 从点C 返回点A 时,根据题意列一元一次方程解题即可;②分两种情况讨论,Ⅰ)点Q 从点A 向点C 运动时,Ⅱ)点Q 从点C 返回点A 时,根据题意,列一元一次方程解题即可. 【详解】(1)由题意可知,点A 表示数-24,根据数轴上点A 与点B 相距12个单位长度,点B 在点A 的右侧,可得点B 表示的数是-24+12=-12因为点C 表示的数与点B 表示的数互为相反数,所以点C 表示的数是12, 故答案为:-24,12;(2)根据题意得,点P 在点A 的右侧,故点P 表示的数是-24+t,=-24+t-(-24)=t PA ∴故答案为:t ;(3)①设点Q 运动x 秒与点p 相遇, Ⅰ:点Q 从点A 向点C 运动时,根据题意得:3x -x =12 (或-24+3x =-12+x ),解得:x =6; Ⅱ:点Q 从点C 返回点A 时,AC=12-(-24)=36,BC=12-(-12)=24 根据题意得:3x +x =36+24 或12(336)12x x −−=−+,解得:x =15②分两种情况讨论,设点Q 运动x 秒与点p 相距4个单位,Ⅰ)点Q 从点A 向点C 运动时,则12+(324)4x x −−−=,解得4x =或8x =, P 1=-8或P 2=-4Ⅱ)点Q 从点C 返回点A 时,12+(336)4x x −−−=,解得14x =或10x =,P3 = 2或P 4 = -2本题考查一元一次方程的应用关键.13.在如图所示的不完整的数轴将点B 向右移动15个单位长度每秒3个单位长度的速度匀速速向右运动.设点P 的运动时(1)点A 表示的数是_______(2)当点P 与点A 的距离是点(3)点Q 为该数轴上的另一动发匀速向右运动,直接写出....【答案】(1)15−;30;(表示的数为75,对应t 【解析】 【分析】(1)利用数形结合,及相反数(2)分三种情况进行讨论,向左运动至点B 时;第二种,向右运动到点B 时;第三种,向右运动到点C 右边距离倍,分别求解即可;(3)P ,Q两点之间距离为的应用、数轴等知识,是重要考点,难度一般,掌握相的数轴上,相距30个单位长度的点A 和点B 表示的数位长度,得到点C .点P 是该数轴上的一个动点,度匀速向左运动至点A ,然后立即返回以每秒5个单位运动时间为t 秒._____,点C 表示的数是________; 离是点P 与点C 的距离的2倍时,求点P 表示的数及另一动点,与点P 同时开始,以每秒2个单位长度的出.P ,Q 两点之间距离为5个单位长度时的t 的值(2)点P 表示的数为15,对应t 的值为5(秒)或的值为33(秒);(3)8或10或703或803 相反数的概念进行解答;,第一种,当点P 从点C 出发,以每秒3个单位长,当运动至点A ,然后立即返回以每秒5个单位长,当运动至点A ,然后立即返回以每秒5个单位长45个单位处时,此时点P 与点A 的距离是点P 离为5个单位长度时的t的值,要进行分四类讨论.掌握相关知识是解题示的数互为相反数,,从点C 出发,以个单位长度的速度匀的数及对应t 的值;长度的速度从点A 出(不写计算过程......) 或21(秒),点P 单位长度的速度匀速单位长度的速度匀速单位长度的速度匀速与点C 的距离的2.。
中考数学复习考点题型专题讲解23 水速风速问题
中考数学复习考点题型专题讲解专题23 23 水速风速问题水速风速问题水速风速问题1.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是( ) A .32824x x=− B .32824x x =+ C .2232626x x +−=+ D .2232626x x −+=−2.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用2小时,若船速为25千米/时,水速为3千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是( ) A .22822x x =− B .22822x x =+ C .3322525x x +−=+ D .3322525x x +−=− 【答案】A【分析】设A 港和B 港相距x 千米,根据时间=路程÷速度结合顺流比逆流少用2小时,即可得出关3.一架飞机在A ,B 两城间飞行,顺风要5.5小时,逆风要6小时,风速为24千米/小时.设A ,B两城之间的距离为x ,则可列出方程( ) A .245.56x x−= B .24245.56−+=x x C .24246 5.5x x+=− D .24245.56x x +−=4.在风速为24km/h 的条件下,一架飞机顺风从A 机场飞到B 机场要用2.8h ,逆风飞行同样的航线要用3h ,若设飞机飞行速度为每小时km x ,则可列方程为( )A .()()2.824324x x +=−B .()()2.824324x x −=+C .()()324 2.824x x +=−D .()()324 2.824x x −=+【答案】D【分析】根据顺风速度=飞机速度+风速,逆风速度=飞机速度-风速,结合路程相等即可列出方程.【详解】根据题意可直接列出方程:()()324 2.824x x −=+. 故选D .【点睛】本题考查一元一次方程的实际应用.根据题意找出等量关系,列出等式是解题关键. 5.一架飞机在两城间飞行,顺风要5.5小时,逆风要6小时,风速为24千米/时,求两城距离x 的方程是( ). A .24245.56−=+x xB .24245.56−+=x x C .2245.56 5.5=−+x xD .245.56−=x x6.一架飞机在两城市之间飞行,顺风用2小时45分,逆风用3小时,风速为20km/h ,两城市之间的距离为( )km A .1319B .1320C .1321D .1322【答案】B【分析】可设飞机的速度为x ,根据往返时两地的距离相等建立方程求解即可. 【详解】2小时45分=2.75小时,设飞机的速度为xkm/h , 则:()()27520320.x x +=−, 解得:460x =,∴两地的距离为:()3460201320×−=km , 故选:B .【点睛】本题考查一元一次方程的实际应用,注意抓住两地的距离相等建立方程是解题关键. 7.一架飞机在两城间飞行,顺风航行要5.5小时,逆风航行要6小时,风速为24千米/时,设飞机无风时的速度为每小时x 千米,则下列方程正确的是( ) A .()()5.524624x x −=+ B .24245.56x x −+= C .()()5.524624x x +=−D .2245.56 5.5x x=−+ 【答案】C【分析】设飞机在无风时的飞行速度为x 千米/时,则飞机顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x-24)千米/时,列出方程5.5•(x+24)=6(x-24)即可【详解】解:设飞机在无风时的飞行速度为x 千米/时,则飞机顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x-24)千米/时, 根据题意得5.5•(x+24)=6(x-24). 故选C .【点睛】本题考查一元一次方程的简单应用,本题关键在于能够弄清楚顺风速度、逆风速度、飞行速度三者的关系第II 卷(非选择题非选择题))请点击修改第II 卷的文字说明二、填空题8.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是_____.9.一轮船往返于A、B两港之间,逆水航行需4小时,顺水航行需3小时,水速是5千米/时,则轮船在静水中的速度是_____千米/时.【答案】35【分析】本题求的是速度,时间比较明确,那么一定是根据路程来列等量关系.本题的等量关系为:逆水速度×逆水时间=顺水速度×顺水时间.【详解】解:设轮船在静水中的速度是x千米/时,根据题意得:4(x-5)=3(x+5),解得:x=35,答:轮船在静水中的速度是35千米/时.故答案为:35.【点睛】本题考查了一元一次方程的应用,逆水速度=静水速度-水流速度;顺水速度=静水速度+水流速度是船航行之类的题中的必备内容.10.某轮船顺水航行3小时,已知轮船在静水中的速度是a 千米/小时,流水速度是b 千米/小时,轮船航行了___________千米. 【答案】(3a +3b )【分析】根据静水速度+水流速度=顺水速度,路程=速度×时间,列出代数式即可. 【详解】解:∵静水速度+水流速度=顺水速度, ∴顺水速度=a +b , ∵轮船顺水航行3小时, ∴轮船航行了(3a +3b ) 千米. 故答案为(3a +3b )【点睛】此题考查列代数式,做题的关键是掌握顺水速度公式,弄清题意.11.甲、乙两艘轮船分别从A 、B 两地出发,相向而行,甲船顺水,乙船逆水,两船在静水中的速度都为40km /h ,水速为km /h v ,3h 后两船相遇,则甲船速度为__________km /h ,乙船速度为_______km /h ,A 、B 两地相距_______km ,乙船比甲船少行驶______km .【答案】 (40)v + (40)v − 240 6v【分析】根据“甲船顺水,乙船逆水,静水速度都为40km /h ,水速为km /h v ,”可得甲船速度为(40)v +km /h ,乙船速度为(40)v −km /h ;然后根据A 、B 两地相距等于两船行驶的路程之和,可得A 、B两地相距;最后用甲船行驶的路程减去乙船行驶的路程可得到乙船比甲船少行驶的路程. 【详解】解:∵甲船顺水,乙船逆水,两船在静水中的速度都为40km /h ,水速为km /h v , ∴甲船顺水速度为(40)v +km /h ,乙船逆水速度为(40)v −km /h ;∴A 、B 两地相距()()34034012031203240v v v v ++−=++−=km /h ; ∴乙船比甲船少行驶()()340340*********v v v v v +−−=+−+=km .故答案为:(40)v +;(40)v −;240;6v .【点睛】本题主要考查了列代数式,整式的混合运算,明确题意,准确列出代数式是解题的关键. 12.飞机在无风环境中的飞行速度为km /h x ,风速为km /h y ,则飞机顺风飞行速度比逆风飞行的速度多________km /h .(结果需化简) 【答案】2y【分析】先分别求出顺风速度和逆风速度,然后作差即可.【详解】解:∵飞机在无风环境中的飞行速度为xkm/h ,风速为ykm/h , ∴飞机顺风飞行速度为()km /h x y +,逆风飞行速度为()km /h x y −,∴飞机顺风飞行速度比逆风飞行的速度多()()2km /h x y x y x y x y y +−−=+−+=, 故答案为:2y .【点睛】本题主要考查了整式加减的应用,解题的关键在于能够根据题意求出飞机的顺风速度和逆风速度.13.一架飞机在两城间飞行,顺风要5.5小时,逆风要6小时,风速为24千米/时,则两城的距离为______千米.【点睛】考查用一元一次方程解决行程问题,用逆风速度和顺风速度表示出无风时的速度是解决本题的关键;用到的知识点为:顺风速度=无风时的速度+风速;逆风速度=无风时的速度-风速.14.一架飞机在两城之间飞行,顺风需5小时30分,逆风需6小时.已知风速为24千米/小时,求飞机在无风时的速度.设飞机飞行无风时的速度为x千米/小时.则列方程为______________________________.【答案】5.5(x +24) =6 (x-24)【分析】先表示出飞机顺风飞行的速度和逆风飞行的速度,然后根据速度公式,利用路程相等列方程.【详解】设飞机在无风时的飞行速度为x千米/时,则飞机顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x-24)千米/时,根据题意得5.5•(x+24)=6(x-24).故答案为5.5•(x+24)=6(x-24).【点睛】此题考查由实际问题抽象出一元一次方程,解题关键是表示出飞机顺风飞行的速度和逆风飞行的速度.三、解答题15.已知一条船的顺水速度为72 km/h,逆水速度为56 km/h,求该船在静水中的速度和水流的速度.(列方程解决问题)【答案】该船在静水中的速度为64 km/h,水流的速度为8 km/h.【分析】设该船在静水中的速度为x km/h,则水流的速度为(72-x) km/h,根据“逆水速度为56 km/h”列出一元一次方程即可求解.【详解】解:设该船在静水中的速度为x km/h,则水流的速度为(72-x) km/h,依题意得:x-(72-x)=56,解得:x=64,则72-64=8,答:该船在静水中的速度为64 km/h,水流的速度为8 km/h.【点睛】此题主要考查了一元一次方程的应用,关键是掌握顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.16.轮船沿江从A港顺流行驶到B港,比从B港返回时少用2h.若船速为28km/h,水速为2km/h,则A港和B港相距多少千米?17.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,如果船速为8千米/时,水速为2千米/时,那么A港和B港相距多少千米?【点睛】本题主要考查了一元一次方程的应用,在行船问题中:顺流速度=船速+水速,逆流速度=船速-水速.18.某人乘船从甲地顺流而下到乙地,然后又逆流而上到丙地,共乘船7个小时.已知船在静水中的速度为7.5km/h,水速为2.5km/h,甲、丙两地的航程是10km,求甲、乙两地间的航程.19.甲城在乙城上游,船的静水速度为每小时15千米,水速为每小时5干米,甲、乙两城的水路距离为a千米,则船从甲城出发至乙城并立刻返回需多少时间?船的平均速度是多少?20.列一元一次方程解应用题:在风速为24 km/h 的条件下,一架飞机顺风从A 机场飞到B 机场要用2.8 h ,它逆风飞行同样的航线要用3h .求无风时这架飞机在这一航线的平均航速和两机场之间的航程. 【答案】无风时飞机的航速是696千米/时,两机场之间的航程是2016千米【分析】设无风时飞机的航速是x 千米/时,根据路程=时间×速度,列出方程求解即可.【详解】解:设无风时飞机的航速是x 千米/时,依题意得:()()2.824324x x +=−,解得:696x =.则3(69624)2016×−=(千米)答:无风时飞机的航速是696千米/时,两机场之间的航程是2016千米.【点睛】本题主要考查了一元一次方程的应用,正确理解题意找到等量关系列出方程是解题的关键.21.飞机的无风航速为a km/h ,风速为y km/h .有一架飞机先顺风飞行13h 后,又逆风飞行6.5h . (1)两次航程该飞机共飞行多少千米?(2)若y =20,求飞机顺风飞行的航程比逆风飞行的航程多多少千米?【答案】(1)(19.5a +6.5y )千米;(2)(6.5a +39)千米【分析】(1)根据题意列出代数式即可;(2)根据题意列出代数式求值即可.【详解】解:(1)由题意得,顺风飞行航程为(a +y )×13千米,逆风飞行航程为(a -y )×6.5千米,∴两次航程该飞机共飞行(a+y)×13+(a-y)×6.5=19.5a+6.5y(千米),即两次航程该飞机共飞行(19.5a+6.5y)千米;(2)由(1)知,顺风飞行航程为(a+y)×13千米,逆风飞行航程为(a-y)×6.5千米,∴飞机顺风飞行的航程比逆风飞行的航程多(a+y)×13-(a-y)×6.5=6.5a+19.5y(千米);∵y=20,∴飞机顺风飞行的航程比逆风飞行的航程多6.5a+19.5×20=6.5a+39(千米),即飞机顺风飞行的航程比逆风飞行的航程多(6.5a+39)千米.【点睛】本题主要考查代数式的知识,根据题意列出相应的代数式是解题的关键.22.如果飞机的无风航速为m千米/时,风速20千米/时,那么逆风飞行4小时的行程与顺风航行3小时的行程相差多少千米?【答案】逆风飞行4小时的行程与顺风航行3小时的行程相差(a﹣140)千米.【分析】根据逆风走的路程=(无风速度-风速)×逆风时间,顺风走的路程=(无风速度+风速)×顺风时间,再作差,把相关数值代入即可求解.【详解】逆风飞行4小时的行程与顺风航行3小时的行程相差(20)4(20)3−×−+×a a=−−−480360a a=−.a140a−千米.所以逆风飞行4小时的行程与顺风航行3小时的行程相差(140)【点睛】本题主要考查了用代数式表示行程问题中的路程,掌握顺风速度=无风速度+风速,逆风速度=无风速度-风速是解答本题的关键.23.两架飞机从同一机场同时出发反向而飞,甲飞机顺风飞行,乙飞机逆风飞行.已知两飞机在无风的速度都是50千米每小时,风速是a千米每小时.求:(1)5小时后两机相距多远?(2)5小时后,甲飞机比乙飞机多航行多少千米?【答案】(1)500千米;(2)10a千米.【分析】根据题意可以列出相应的代数式,从而可以解答本题.顺风速度=无风速度+风速,逆风速度=无风速度-风速.【详解】解:(1)由题意可得,甲飞机顺风飞行5小时的行程是:5(50+a)=(250+5a)千米,乙飞机逆风飞行5小时的行程是:5(50-a)=(250-5a)千米,5小时后两机相距:(250+5a)+(250-5a)=500千米.(2)5小时后,甲飞机比乙飞机多航行:(250+5a)-(250-5a)=10a(千米).【点睛】本题考查列代数式及整式加减的应用,解答本题的关键是明确顺风速度=无风速度+风速,逆风速度=无风速度-风速,列出相应的代数式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学新题型专题复习专题复习 新题型解析 探究性问题传统的解答题和证明题,其条件和结论是由题目明确给出的,我们的工作就是由因导果或执果索因。
而探究性问题一般没有明确的条件或结论,没有固定的形式和方法,要求我们认真收集和处理问题的信息,通过观察、分析、综合、归纳、概括、猜想和论证等深层次的探索活动,认真研究才能得到问题的解答。
开放性、操作性、探索性和综合性是探究性问题的明显特征。
这类题目形式新颖,格调清新,涉及的基础知识和基本技能十分广泛,解题过程中有较多的创造性和探索性,解答方法灵活多变,既需要扎实的基础知识和基本技能,具备一定的数学能力,又需要思维的创造性和具有良好的个性品质。
1. 阅读理解型这类题主要是对数学语言(也包括非数学语言)的理解和应用进行考查。
要求能够读懂题目,理解数学语言,特别是非数学语言,并能进行抽象和转化及文字表达,能根据引入的新内容解题。
这是数学问题解决的开始和基础。
例1. (1)据《北京日报》2000年5月16日报道:北京市人均水资源占有量只有300立方米,仅是全国人均占有量的18,世界人均占有量的132。
问:全国人均水资源占有量是多少立方米?世界人均水资源占有量是多少立方米。
(2)北京市一年漏掉的水,相当于新建一个自来水厂。
据不完全统计,全市至少有6105⨯个水龙头、2105⨯个抽水马桶漏水。
如果一个关不紧的水龙头,一个月能漏掉a 立方米水;一个漏水马桶,一个月漏掉b 立方米水,那么一年造成的水流失量至少是多少立方米(用含a 、b 的代数式表示);(3)水源透支令人担忧,节约用水迫在眉睫。
针对居民用水浪费现象,北京市将制定居民用水标准,规定三口之家楼房每月标准用水量,超标部分加价收费。
假设不超标部分每立方米水费1.3元,超标部分每立方米水费2.9元,某住楼房的三口之家某月用水12立方米,交水费22元,请你通过列方程求出北京市规定三口之家楼房每月标准用水量为多少立方米。
分析:本题是结合当前社会关注的热点和难点问题——环保问题设计的题组,着重考查运用数学知识分析和解决实际问题的能力,以及阅读理解、检索、整理和处理信息的能力,解好本题的关键是认真阅读理解题意,剖析基本数量关系。
解:(1)3001824003001329600÷=÷=,答:全国人均水资源占有量是2400立方米,世界人均水资源占有量是9600立方米。
(2)依题意,一个月造成的水流失量至少为()61021055⨯+⨯a b 立方米 所以,一年造成的水流失量至少为(..)7210241066⨯+⨯a b 立方米 (3)设北京市规定三口之家楼房每月标准用水量为x 立方米依题意,得13291222..()x x +-= 解这个方程,得x=8答:北京市规定三口之家楼房每月标准用水量为8立方米。
例2. 阅读下列题目的解题过程:已知a 、b 、c 为∆ABC 的三边,且满足a c b c a b 222244-=-,试判断∆ABC 的形状。
解: a c b c a bA 222244-=-()∴-=+-∴=+∴c a b a b a b B c a b C ABC 2222222222()()()()()∆是直角三角形 问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:_______; (2)错误的原因为:_________________________________; (3)本题正确的结论为:___________________________。
分析:认真阅读,审查每一步的解答是否合理、有据、完整,从而找出错误及产生错误的原因。
答:(1)C ;(2)a b 22-也可以为零;(3)∆ABC 是等腰三角形或直角三角形。
例3. 先阅读第(1)题的解法,再解第(2)题:(1)已知p p q q 22301130--=--=,,p 、q 为实数,且pq ≠1,求p q +1的值。
解:pq p q ≠∴≠11,又,和是一元二次方程的两个不相等的实数根p p q qp q x x 222301130130--=--=∴--=由一元二次方程根与系数关系可得p q +=--=111()(2)已知2370732022m m n n --=+-=,,m 、n 为实数,n ≠0,且mn ≠1,求m n +1的值。
分析:本题首先要求在阅读第(1)题规范的解法基础上,总结归纳出逆用方程根的定义构造一元二次方程,根据根与系数的关系求代数式值的方法,并加以应用。
但这种应用并非机械模仿,需要先对第(2)题的第二个方程变形转化,才能实现信息迁移,建模应用。
解: 73202n n n +-=,为实数且n ≠07)1(3)1(22=--n n ··可得又2370112m m mn m n --=≠∴≠∴--=m n x x 、是方程的两个不相等的实数根123702由根与系数的关系可得m n +=--=13232()说明:本题考查了阅读理解、举一反三、触类旁通、创造性地解决新问题的能力。
例4. 阅读下列材料:“11312113⨯=-(),1351213151571215171171912117119⨯=-⨯=-⨯=-()()()……∴⨯+⨯+⨯++⨯11313515711719…=-+-+-++-=-+-+-+++-=1211312131512151712117119121131315151717117119919()()()()()……”解答问题:(1)在和式113135157⨯+⨯+⨯+…中,第五项为________,第n 项为_________,上述求和的想法是:通过逆用________法则,将和式中各分数转化为两个实数之差,使得除首、末两项外的中间各项可以___________,从而达到求和的目的。
(2)解方程121241810524x x x x x x ()()()()()++++++++=…… 分析:本题是从一个和式的解题技巧入手,进而探索具有类似特征的分式方程的解题思路。
解:(1)第五项为1911⨯,第n 项为12121()()n n -+,上述求和的想法是:通过逆用分数减法法则,将和式中各分数转化为两个实数之差,使得除首、末两项外的中间各项都可以互相抵消,从而达到求和的目的。
(2)方程左边的分式运用拆项的方法化简:12112121418110524121110524()()x x x x x x x x -+++-++++-+=-+=…即化简可得()()x x +-=1220解得,经检验,,是原方程的根。
x x x x 1212212212==-==- 例5. 阅读以下材料并填空。
平面上有n 个点(n ≥2),且任意三个点不在同一直线上,过这些点作直线,一共能作出多少条不同的直线?(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线; 当有4个点时,可连成6条直线;当有5个点时,可连成10条直线;(2)归纳:考察点的个数n 和可连成直线的条数S n ,发现:(3)推理:平面上有n 个点,两点确定一条直线,取第一个点A 有n 种取法,取第二个点B 有()n -1种取法,所以一共可连成n n ()-1条直线,但AB 与BA 是同一条直线,故应除以2,即S n n n =-()12(4)结论:S n n n =-()12试探究以下问题:平面上有n (n ≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少不同的三角形?(1)分析:当仅有3个点时,可作________个三角形; 当有4个点时,可作________个三角形; 当有5个点时,可作________个三角形; ……(2)归纳:考察点的个数n 和可作出的三角形的个数S n ,发现:(3)推理:_________________________________________________________________________________________ ___________________________________________________________________________________________ ___________________________________________________________________________________________ ______________________(4)结论:________________________________________________________________________________________ 分析:本题是从阅读材料中得到研究数学问题的方法:分析——归纳——猜想——推理——结论,再用这种方法探究解决新的数学问题。
解:(1)当仅有3个点时,可作 1 个三角形;当有4个点时,可作 4 个三角形;当有5个点时,可作 10 个三角形。
(3)平面上有n个点,过不在同一条直线上的三点可以确定一个三角形,取第一个点A有n种取法,取第二个点B有()n-1种取法,取第三个点C有()n-2种取法,所以一共可以作n n n()()--12个三角形,但∆∆A∆∆∆ABC CB BAC BCA CAB 、、、、、∆CBA是同一个三角形,故应除以6,即Sn n nn=--()()126(4)Sn n nn=--()()1262. 探究规律型例6. 观察下列各式:2 122123 23323⨯=+⨯=+4 34434⨯=+5 45545⨯=+……想一想,什么样的两数之积等于这两数之和?设n表示正整数,用关于n的等式表示这个规律为:_______×_______=______+________。
分析:本题从比较简单的例子入手,探索算式的规律,易得出nnnnn ++=+ 111·()++()n1,其中n为正整数。
例7. 如图,在直角坐标系中,第一次将∆OAB变换成∆OA B11,第二次将∆OA B11变换成∆OA B22,第三次将∆OA B22变换成∆OA B33。
已知A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0)。
(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将∆OA B33变换成OA B44,则A4的坐标是________,B4的坐标是_____________。
(2)若按第(1)题找到的规律将∆OAB进行了n次变换,得到∆OA Bn n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测An的坐标为________,Bn的坐标是___________。