最新中考数学试卷解析分类汇编(第1期)专题36-规律探索
全国各地中考数学解析汇编 第三十六章 规律探索型问题
三十六章 规律探索型问题12.(2012山东省滨州,12,3分)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S ﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为( ) A .52012﹣1 B .52013﹣1 C .D .【解析】设S=1+5+52+53+…+52012,则5S=5+52+53+54+…+52013,因此,5S ﹣S=52013﹣1, S=.【答案】选C .【点评】本题考查同底数幂的乘法,以及类比推理的能力.两式同时乘以底数,再相减可得s的值.(2012广东肇庆,15,3)观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ .【解析】通过观察不难发现,各分数的分子与分母均相差1,分子为连续偶数,分母为连续奇数. 【答案】122 k k【点评】本题是一道规律探索题目,考查了用代数式表示一般规律,难度较小.18. ( 2012年四川省巴中市,18,3)观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2012个数是___________【解析】观察知: 下列面一列数中,它们的绝对值是连续正整数,第2012个数的绝对值是2012,值偶数项是负数,故填-2012. 【答案】-2012【点评】本题是找规律的问题,确定符号是本题的难点.20.(2012贵州省毕节市,20,5分)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形。
解析:观察图案不难发现,图案中的正方形按照从上到下成奇数列排布,写出第n 个图案的正方形的个数,然后利用求和公式写出表达式,再把n=10代入进行计算即可得解. 答案:解:第1个图案中共有1个小正方形,第2个图案中共有1+3=4个小正方形,第3个图案中共有1+3+5=9个小正方形,…,第n 个图案中共有1+3+5+…+(2n-1)=2)121(-+n n =n 2个小正方形,所以,第10个图案中共有102=100个小正方形.故答案为:100.点评:本题是对图形变化规律的考查,根据图案从上到下的正方形的个数成奇数列排布,得到第n 个图案的正方形的个数的表达式是解题的关键.18.(2012贵州六盘水,18,4分)图7是我国古代数学家杨辉最早发现的,称为“杨辉三角形”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行的数字正好对应了()na b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如222()2a b a ab b +=++展开式中的系数1、2、1恰好对应图中第三行的数字;再入,33223()33a b a a b ab b+=+++展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出4()a b +的展开式.4()a b += ▲ .分析:该题属规律型,通过观察可发现第五行的系数是:1、4、6、4、1,再根据例子中字母的排列规律即得到答案.解答:解:由题意,4432234()464a b a a b a b ab b +=++++,故填432234464a a b a b ab b ++++.点评:本题考查了数字的变化规律,从整体观察还要考虑字母及字母指数的变化规律,从而得到答案.17. (2012山东莱芜, 17,4分) 将正方形ABCD 的各边按如图所示延长,从射线AB 开始,分别在各射线上标记点321,,A A A ….,按此规律,则点A 2012在射线 上. 【解析】根据表格中点的排列规律,可以得到点的坐标是每16个点排列的位置一循环, 2012=16×125+12,所以点A 2012所在的射线和点12A 所在的直线一样。
初中数学初中数学中考试题分类汇编及答案1 规律探索问题
中考试题汇编(规律探索问题)一、选择题1、(山东济宁)如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )。
B2、(江苏泰州)按右边33⨯方格中的规律,在下面4个符号中选择一个填入方格左上方的空格内( )A3、(湖南湘潭)为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A A .26n + B .86n + C .44n + D .8n4、(湖南株州)某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是( )C A. 31 B. 33 C. 35 D. 37二、填空题 1、(辽宁沈阳)有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .501、(山东日照)把正整数1,2,3,4,5,……,按如下规律排列: 1 2,3, 4,5,6,7,8,9,10,11,12,13,14,15,… … … …按此规律,可知第n 行有 个正整数.2n-12、(重庆)将正整数按如图所示的规律排列下去。
若用有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示实数9,则(7,2)表示的实数是 。
233、(福建晋江)试观察下列各式的规律,然后填空:1)1)(1(2-=+-x x x 1)1)(1(32-=++-x x x x(第01题图) A B C D11235...1)1)(1(423-=+++-x x x x x ……则=++++-)1)(1(910x x xx _______________。
111-x 。
4、(内蒙古赤峰)观察下列各式:22151(11)1005225=⨯+⨯+= 22252(21)1005625=⨯+⨯+= 22353(31)10051225=⨯+⨯+=……依此规律,第n 个等式(n 为正整数)为 .22(105)(1)1005n n n +=+⨯+5、(浙江温州)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两上数的和。
规律探索--图形规律(解析版)-中考数学重难点题型专题汇总
规律探索-中考数学重难点题型专题汇总图形规律1.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是A.B.C.D.【答案】D【解析】由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有,故选D.【名师点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.2.将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案.【详解】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.3.把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C 【分析】根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,∴则第⑥个图案中菱形的个数为:()126111+⨯-=,故C 正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.4.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202【分析】观察各图可知,后一个图案比前一个图案多2(n+3)枚棋子,然后写成第n个图案的通式,再取n=10进行计算即可求解.【解析】根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.5.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.21n个图案中黑色三角形的个数为1+2+3+4+……+n,据此可得第⑤个图案中黑色三角形的个数.【解析】∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.Y Y-=()6.观察下列树枝分杈的规律图,若第n个图树枝数用n Y表示,则94A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.7.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.8.在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11AOB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为()A.()202020202,2-B.()202120212,2C.()202020202,2⨯D.()201120212,2-【答案】C【分析】由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.解:由题意,点A 每6次绕原点循环一周,20216371......5÷= ,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=3222-⨯-,()2020202020212,2A ∴,故选:C.【点睛】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.9.如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n 个正方形多个小正方形.【分析】观察不难发现,所需要的小正方形的个数都是平方数,然后根据相应的序数与正方形的个数的关系找出规律解答即可.【解析】∵第1个正方形需要4个小正方形,4=22,第2个正方形需要9个小正方形,9=32,第3个正方形需要16个小正方形,16=42,…,∴第n+1个正方形有(n+1+1)2个小正方形,第n 个正方形有(n+1)2个小正方形,故拼成的第n+1个正方形比第n 个正方形多(n+2)2﹣(n+1)2=2n+3个小正方形.故答案为:2n+3.10.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有__________个〇.【答案】6058【解析】由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,…∴第2019个图形中共有:1+3×2019=1+6057=6058个〇,故答案为:6058.【名师点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.11.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=__________.【答案】1010【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2-1=3个.第3幅图中有2×3-1=5个.第4幅图中有2×4-1=7个.…可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n-1)个.当图中有2019个菱形时,2n-1=2019,n=1010,故答案为:1010.【名师点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.12.观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是32=n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:1255,22n n +-==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.13.将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数为()12n n+,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3,第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,第n个图形中的黑色圆点的个数为()1 2n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,,其中每3个数中,都有2个能被3整除,33÷2=161,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.14.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n条直线相交最多有的交点个数公式:1(1) 2n n-.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有12019190 2⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n条直线相交最多有1(1) 2n n-.15.如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.【答案】2n+1【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【详解】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,拼成第n 个图形共需要3+2×(n-1)=2n+1根火柴棍,故答案为:2n+1.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.16.如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3+ +n=()12n n +,列一元二次方程求解可得.【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∴第n 个图形中黑色三角形的个数为1+2+3+4+5+ +n=()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去),∴第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n.17.如图,由两个长为2,宽为1的长方形组成“7”字图形ABCDEF,其中顶点A 位于x 轴上,顶点B,D 位于y 轴上,O 为坐标原点,则OB OA的值为__________.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F 1,摆放第三个“7”字图形得顶点F 2,依此类推,…,摆放第n 个“7”字图形得顶点F n-1,…,则顶点F 2019的坐标为__________.【答案】(1)12;(2)606255(,【解析】(1)∵∠ABO+∠DBC=90°,∠ABO+∠OAB=90°,∴∠DBC=∠OAB,∵∠AOB=∠BCD=90°,∴△AOB∽△BCD,∴OB DC OA BC =,∵DC=1,BC=2,∴OB OA =12,故答案为:12.(2过C 作CM⊥y 轴于M,过M 1作M 1N⊥x 轴,过F 作FN 1⊥x 轴.根据勾股定理易证得BD ==CM=OA=5,DM=OB=AN=5,∴C(5),∵AF=3,M 1F=BC=2,∴AM 1=AF-M 1F=3-2=1,∴△BOA≌ANM 1(AAS),∴NM 1=OA=255,∵NM 1∥FN 1,∴1111251553M N AM FN AF FN ==,,∴FN 1=655,∴AN 1=355,∴ON 1=OA+AN 1=253555555+=,∴F(555,655),同理,F 1(857555,F 2(55,),F 3(1459555,),F 4(17510555,),…F 2019),即(【名师点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键18.如图,正方形1ABCB 中,AB =,AB 与直线l 所夹锐角为60︒,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ,…,依此规律,则线段20202021A A =________.【答案】20203【分析】利用tan30°计算出30°角所对直角边,乘以2得到斜边,计算3次,找出其中的规律即可.【详解】∵AB 与直线l 所夹锐角为60︒,正方形1ABCB 中,AB =,∴∠11B AA =30°,∴11B A =1B A∴111=2=2(3AA -;∵11B A =1,∠122B A A =30°,∴22B A =11B A tan30°=33133⨯=,∴2112=23A A -⨯;∴线段20202021A A =202112020332(33-⨯=,故答案为:2020)3.【点睛】本题考查了正方形的性质,特殊角三角函数值,含30°角的直角三角形的性质,规律思考,熟练进行计算,抓住指数的变化这个突破口求解是解题的关键.19.如图,菱形ABCD 中,120ABC ∠=︒,1AB =,延长CD 至1A ,使1DA CD =,以1AC 为一边,在BC 的延长线上作菱形111ACC D ,连接1AA ,得到1ADA ∆;再延长11C D 至2A ,使1211D A C D =,以21A C 为一边,在1CC 的延长线上作菱形2122A C C D ,连接12A A ,得到112A D A ∆……按此规律,得到202020202021A D A ∆,记1ADA ∆的面积为1S ,112A D A ∆的面积为2S ……202020202021A D A ∆的面积为2021S ,则2021S =_____.【答案】40382【分析】由题意易得60,1BCD AB AD CD ∠=︒===,则有1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,进而根据等边三角形的面积公式可得134S =,2S =242n n S -=,然后问题可求解.【详解】解:∵四边形ABCD 是菱形,∴1AB AD CD ===,//,//AD BC AB CD ,∵120ABC ∠=︒,∴60BCD ∠=︒,∴160ADA BCD ∠=∠=︒,∵1DA CD =,∴1DA AD =,∴1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,过点B 作BE⊥CD 于点E,如图所示:∴3sin 2BE BC BCD =⋅∠=,∴1121133244A D BE A S D =⋅==,同理可得:2222133244S A D ==⨯=,2233233444S A D ==⨯=∴由此规律可得:242n n S -=,∴2202144038202122S ⨯-==⋅;故答案为40382【点睛】本题主要考查菱形的性质、等边三角形的性质与判定及三角函数,熟练掌握菱形的性质、等边三角形的性质与判定及三角函数是解题的关键.20.将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.【答案】875【分析】设第n 个“龟图”中有a n 个“〇”(n 为正整数),观察“龟图”,根据给定图形中“〇”个数的变化可找出变化规律“a n =n 2−n+5(n 为正整数)”,再代入n=30即可得出结论.【详解】解:设第n 个“龟图”中有a n 个“〇”(n 为正整数).观察图形,可知:a 1=1+2+2=5,a 2=1+3+12+2=7,a 3=1+4+22+2=11,a 4=1+5+32+2=17,…,∴a n =1+(n+1)+(n −1)2+2=n 2−n+5(n 为正整数),∴a 30=302−30+5=875.故答案是:875.【点睛】n =n 2−n+5(n 为正整数)”是解题的关键.21.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究22.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n 个图案有个三角形(用含n 的代数式表示).【分析】根据图形的变化发现规律,即可用含n 的代数式表示.【解析】第1个图案有4个三角形,即4=3×1+1第2个图案有7个三角形,即第3个图案有10个三角形,即10=3×3+1…按此规律摆下去,第n 个图案有(3n+1)个三角形.故答案为:(3n+1).23.如图,四边形ABCD 是矩形,延长DA 到点E,使AE=DA,连接EB,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)【分析】先求得△EF 1D 的面积为1,再根据等高的三角形面积比等于底边的比可得EF 1F 2的面积,EF 2F 3的面积,…,EF n﹣1F n 的面积,以及△BCF n 的面积,再根据面积的和差关系即可求解.【解析】∵AE=DA,点F 1是CD 的中点,矩形ABCD 的面积等于2,∴△EF 1D 和△EAB 的面积都等于1,∵点F 2是CF 1的中点,∴△EF 1F 2的面积等于12,同理可得△EF n﹣1F n 的面积为12n−1,∵△BCF n 的面积为2×12n ÷2=12n ,∴△EF n B 的面积为2+1﹣1−12−⋯−12n−1−12n =2﹣(1−12n )=2n +12n .故答案为:2n +12n .。
中考数学探索规律题分类及解析
中考数学探索规律题分类及解析中考数学探索规律题是指通过观察一组数或一组图形,发现其中存在的规律或者推导出下一个数字或图形的解题方法。
这类题目不是通过直接计算或者运用公式来得到答案,而是通过观察和推理来寻找规律并进行推导。
这类题目在中考数学中比较常见,考察学生的观察力、逻辑推理能力和发现规律的能力。
中考数学探索规律题可以分为数列规律、形状规律和操作规律等几个分类。
数列规律题是指给出一组数字,要求学生根据已知数字的特点推导出下一个数字或者补全数列。
这类题目常常通过给出一定的条件或者变化规律,让学生去寻找数字之间的关系。
学生可以通过计算差值、比值等方式来找到规律。
比如,给出一个数列1,3,5,7,要求学生推导出下一个数字。
学生可以发现,每两个数字之间差值都是2,所以下一个数字应该是9。
形状规律题是指给出一组图形,要求学生根据已知图形的特点推导出下一个图形或者补全图形。
这类题目常常通过给出一定的条件或者变化规律,让学生去寻找图形之间的关系。
学生可以通过观察图形边长、角度、对称性等特点找到规律。
比如,给出一个图形如下:1 2 34 5 67 8 ?要求学生填空。
学生可以发现,每一行的数字是依次递增的,所以下一个数字应该是9。
操作规律题是指通过一系列操作或者变换,让学生来探索操作之间的关系从而推导出答案。
这类题目常常通过给出一系列数字或者图形的变化过程,让学生去寻找变化之间的规律。
比如,给出一系列数字1,4,9,16,要求学生推导下一个数字。
学生可以发现,每一个数字都是前一个数字的平方,所以下一个数字应该是25。
总之,中考数学探索规律题要求学生通过观察和推理来寻找规律,需要学生具备较强的观察力、逻辑推理能力和发现规律的能力。
在解题过程中,学生可以采用数列差值、比值等方式来寻找数列规律;可以通过观察图形的边长、角度、对称性等特点来寻找形状规律;可以通过寻找操作之间的关系来寻找操作规律。
通过不断的练习和思考,可以提高解决这类问题的能力。
2018年中考数学真题分类汇编第一期专题36规律探索试题含解析
规律探索一、选择题1.(2018·重庆(A)·4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A.12 B.14 C.16 D.18【考点】图形的变化规律【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
比较简单。
2(2018·台湾·分)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出7,20、33、46为等差数列,进而可得出20可以出现,选项A不符合题意;B、找出7、16、25、34为等差数列,进而可得出25可以出现,选项B不符合题意;C、由30﹣7=23,23为质数,30+23>50,进而可得出30不可能出现,选项C符合题意;D、找出7、21、35、49为等差数列,进而可得出35可以出现,选项D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.故选:C.【点评】本题考查了规律型中数字的变化类,根据等差数列的定义结合四个选项中的数字,找出符合题意得等差数列是解题的关键.3(2018·广东广州·3分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,则△的面积是()A.504B.C.D.【答案】A【考点】探索图形规律【解析】【解答】解:依题可得:A2(1,1),A4(2,0),A8(4,0),A12(6,0)……∴A4n(2n,0),∴A2016=A4×504(1008,0),∴A2018(1009,1),∴A2A2018=1009-1=1008,∴S△=×1×1008=504().故答案为:A.【分析】根据图中规律可得A4n(2n,0),即A2016=A4×504(1008,0),从而得A2018(1009,1),再根据坐标性质可得A2A2018=1008,由三角形面积公式即可得出答案.4 (2018四川省绵阳市)将全体正奇数排成一个三角形数阵13 57 9 1113 15 17 1921 23 25 27 29… … … … … …根据以上排列规律,数阵中第25行的第20个数是()A.639B.637C.635D.633【答案】A【考点】探索数与式的规律【解析】【解答】解:依题可得:第25行的第一个数为:1+2+4+6+8+……+2×24=1+2× =601,∴第25行的第第20个数为:601+2×19=639.故答案为:A.【分析】根据规律可得第25行的第一个数为,再由规律得第25行的第第20个数.5.(2018年湖北省宜昌市3分)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c 的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二.填空题1(2018年四川省内江市)如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则S1+S2+S3+…+S n﹣1=﹣.【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,推出=××=,S1=,S2=,可得S1+S2+S3+…+S n﹣1=(S△AOB﹣n).【解答】解:如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,∴=××=,S1=,S2=,∴S1+S2+S3+…+S n﹣1=(S△AOB﹣n)=×(﹣n×)=﹣.故答案为﹣.【点评】本题考查一次函数的应用,规律型﹣点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积.2(2018•广西桂林•3分)将从1开始的连续自然数按右图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)......按此规律,自然数2018记为__________【答案】(505,2)【解析】分析:由表格数据排列可知,4个数一组,奇数行从左向右数字逐渐增大,偶数行从右向左数字逐渐增大,用2018除以4,商确定所在的行数,余数确定所在行的序数,然后解答即可.详解:2018÷4=504⋯⋯2.∴2018在第505行,第2列,∴自然数2018记为(505,2).故答案为:(505,2).点睛:本题是对数字变化规律的考查,观察出实际有4列,但每行数字的排列顺序是解题的关键,还要注意奇数行与偶数行的排列顺序正好相反.3(2018•河北•6分)如图,作平分线的反向延长线,现要分别以,,为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以为内角,可作出一个边长为1的正方形,此时,而是(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图所示.图中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.4(2018·广东·3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.5(2018·浙江临安·3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b= 109 .【考点】等式的变化规律【分析】要求a+b的值,首先应该认真仔细地观察题目给出的4个等式,找到它们的规律,即中,b=n+1,a=(n+1)2﹣1.【解答】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出式子的规律.6(2018·浙江衢州·4分)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是(﹣,﹣),点A2018的坐标是(﹣,).【考点】坐标的变化规律.【分析】分析图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.向右平移n个单位变换就是横坐标加n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.【解答】解:根据图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.△ABC经γ(1,180°)变换后得△A1B1C1,A1 坐标(﹣,﹣)△A1B1C1经γ(2,180°)变换后得△A2B2C2,A2坐标(﹣,)△A2B2C2经γ(3,180°)变换后得△A3B3C3,A3坐标(﹣,﹣)△A3B3C3经γ(3,180°)变换后得△A4B4C4,A4坐标(﹣,)依此类推……可以发现规律:A n横坐标存在周期性,每3次变换为一个周期,纵坐标为当n=2018时,有2018÷3=672余2所以,A2018横坐标是﹣,纵坐标为故答案为:(﹣,﹣),(﹣,).【点评】本题是规律探究题,又是材料阅读理解题,关键是能正确理解图形的γ(a,θ)变换的定义后运用,关键是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不同的规律,需要分别来研究.7(2018·四川自贡·4分)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055 个○.【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.【点评】本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.8(2018•湖北荆门•3分)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018= 63.【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【解答】解:∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.【点评】本题考查了规律型中数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.9(2018•甘肃白银,定西,武威•3分)如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【答案】1【解析】【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】当x=625时,当x=125时,=25,当x=25时,=5,当x=5时,=1,当x=1时,x+4=5,当x=5时,=1,当x=1时,x+4=5,当x=5时,=1,…(2018−3)÷2=1007…1,即输出的结果是1,故答案为:1.【点评】考查代数式的求值,找出其中的规律是解题的关键.10. (2018•山东滨州•5分)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为9.【分析】直接根据已知数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.【点评】此题主要考查了数字变化规律,正确将原式变形是解题关键.11.(2018·山东泰安·3分)观察“田”字中各数之间的关系:则c的值为270或28+14 .【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8 数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270故应填:270或28+14【点评】本题以探究数字规律为背景,考查学生的数感.解题时注意同等位置的数字变化规律,用代数式表示出来.12.(2018·山东威海·3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为(22018,22017).【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a, a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).【点评】本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.13.(2018·山东潍坊·3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是.【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.【解答】解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.14. (2018•山东枣庄•4分)将从1开始的连续自然数按以下规律排列:则2018在第45 行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.15. (2018•山东淄博•4分)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是2018 .【考点】37:规律型:数字的变化类.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.【点评】本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.16(2018•四川成都•3分)已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,________.【答案】【考点】探索数与式的规律【解析】【解答】解:∵,∴S2=- -1=∵,∴S3=1÷()=∵,∴S4=-()-1=∴S5=-a-1、S6=a、S7= 、S8= …∴2018÷4=54 (2)∴S2018=故答案为:【分析】根据已知求出S2= ,S3= ,S4= 、S5=-a-1、S6=a、S7= 、S8= …可得出规律,按此规律可求出答案。
2024年中考数学复习重难点题型训练—规律探索题(含答案解析)
2024年中考数学复习重难点题型训练—规律探索题(含答案解析)类型一数式规律1.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a ,第n 个单项式是()AB1n -CnD1n -【答案】Ca ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第nn ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.2.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111n n na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.3.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数202023若排在第a 行b 列,则a b -的值为()11122113223114233241……A .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.4.(2023·四川内江·统考中考真题)对于正数x ,规定2()1xf x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+…2100200(100)1100101f ⨯==+,1212100()11001011100f ⨯==+,1(100)(2100f f +=,11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+201=故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.5.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于()A.23-B.13C.12-D.23【答案】D 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+ ,2021223a a ∴==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.6.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p的值为()A.100B.121C.144D.169【答案】B 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.7.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时W 的分子为5,分母为23110+=∴这个数为51102=故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.8.(2021·湖北十堰市·)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【解析】∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.10.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是.【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…∴第n (n 为正整数)个等式是()21n n n n -=-,故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律,找到规律是解题的关键.11.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.12.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.13.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.14.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=-的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b -=⎧⎨-+=-⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4--【分析】先分别解一元一次方程37322x x +=-和二元一次方程组2428a b a b -=⎧⎨-+=-⎩,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=-,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b -=⎧⎨-+=-⎩①②,由2+⨯①②得,3=12b -,解得:4b =-,把4b =-代入①得,24=4a +,解得:0a =,∴=04=4a b +--,∴点Q 的纵坐标为4-,∴点Q 的坐标为()5,4-,又∴点Q 关于y 轴对称点Q '的坐标为()5,4--,故答案为:()5,4--.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键.15.(2023·湖北恩施·统考中考真题)观察下列两行数,探究第②行数与第①行数的关系:2-,4,8-,16,32-,64,……①0,7,4-,21,26-,71,……②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.16.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.17.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,2468101214161820……则第27行的第21个数是______.【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有(1)2n n+个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有1+2+3+⋯+n=(1)2n n+个数.∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.18.(2021·四川眉山市·中考真题)观察下列等式:1311 212x===+⨯;2711623x ===+⨯;313111234x ===+⨯;……根据以上规律,计算12320202021x x x x ++++-= ______.【答案】12016-【分析】根据题意,找到第n 个等式的左边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可.【详解】11(1)n n =++,20201120202021x =+⨯12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021=2020+1﹣12016﹣2021=12016-.故答案为:12016-.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.19.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.20.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12nn +.【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设12a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解: 12a =,b =11122ab =⨯=∴,1112211112a ba ba b b ba bS a a ++++=+==+++++++ ,222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++∴12100S S S +++= 121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.22.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.24.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n+1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n+1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明.(1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++,第三个式子()11111452041441=+=+++,……∴第(n+1)个式子1111(1)n n n n =+++;(2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边,∴1111(1)n n n n =+++.【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.类型二图形规律25.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A .39B .44C .49D .54【答案】B 【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.25.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341…,⨯-=;所以第⑦个图案中圆圈的个数为37120故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为31n -是解题的关键.27.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B 【分析】利用图形寻找规律()211,1n A n n ---,再利用规律解题即可.【详解】解:第1圈有1个点,即1(0,0)A ,这时10a =;第2圈有8个点,即2A 到()91,1A ;第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.28.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.29.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.30.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答31.(2021·黑龙江大庆市·中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -.32.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.【答案】1226C H 【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.【详解】解:甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为1226C H ,故答案为:1226C H .【点睛】本题考查了规律题,找到规律是解题的关键.33.(2023·山西·统考中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,∴第(1)n n >个图案中有()22n +个白色圆片.故答案为:()22n +.【点睛】此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.解题关键是总结归纳出图形的变化规律.34.(2023·黑龙江绥化·统考中考真题)在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.35.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.36.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.37.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n+2n ×(n-1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+ 故答案为:2n 2+2n.【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.38.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.类型三与函数有关规律39.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()。
2019年全国各地中考数学试题分类汇编(第一期) 专题36 规律探索(含解析)
规律探索一.选择题1. (2019•山东省济宁市 •3分)已知有理数a ≠1,我们把称为a 的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( ) A .﹣7.5B .7.5C .5.5D .﹣5.5【考点】数字的变化【分析】求出数列的前4个数,从而得出这个数列以﹣2,,依次循环,且﹣2++=﹣,再求出这100个数中有多少个周期,从而得出答案. 【解答】解:∵a 1=﹣2, ∴a 2==,a 3==,a 4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣, ∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(﹣)﹣2=﹣=﹣7.5,故选:A .【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 2. (2019•广东深圳•3分)定义一种新运算:⎰-=⋅-abn n n b a dx x n 1,例如:⎰-=⋅khh k xdx 222,若⎰-=--m522mdx x ,则m =( )A. -2B. 52-C. 2D.52【答案】B 【解析】⎰-=-=-=----m51122511)5(mmm m m dx x ,则m =52-,故选B.3.(2019,山东枣庄,3分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A.B.C.D.【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:D.【点评】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.4. (2019•湖北十堰•3分)一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=()A.50 B.60 C.62 D.71【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为时n的值,本题得意解决.【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,∴分母为11开头到分母为1的数有11个,分别为,∴第n个数为,则n=1+2+3+4+…+10+5=60,故选:B.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.5. (2019•湖北武汉•3分)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251.252.…、299.2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.二.填空题1. (2019•江苏连云港•3分)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1.2.3.4.5.6.7.8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为(2,4,2).【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,于是得到结论.【解答】解:根据题意得,点C的坐标可表示为(2,4,2),故答案为:(2,4,2).【点评】本题考查了规律型:点的坐标,等边三角形的性质,找出题中的规律是解题的关键.2.(2019•浙江衢州•4分)如图,由两个长为2,宽为1的长方形组成“7”字图形。
中考数学《规律探索》专题复习试题含解析
中考数学《规律(Lv)探索》专题复习试题含解析一(Yi)、选择题1. 如图,将一张等边(Bian)三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按(An)同样方式再剪成4个小三(San)角形,共得到7个小(Xiao)三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得(De)到10个小三角形,称为第三次操(Cao)作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.50【考点】规律型:图形的变化类.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.2.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分(Fen)析】根据图形中对应的数字和各个(Ge)数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本(Ben)题得以解决.【解(Jie)答】解(Jie):∵2016÷4=504,又(You)∵由题目中给出的几个(Ge)正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在(Zai)右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.3.(2016.山东省临沂市,3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【考点】规律型:图形的变化类.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每(Mei)个图中三角形个数比图形的编号的(De)4倍(Bei)少(Shao)3个三角形,即可(Ke)得出结果.【解(Jie)答】解:第(Di)①是(Shi)1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l:y=-x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A 3,…,按此做法进行下去,点A2016的坐标为 .【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】由直线l:y=-x的解析式求出A1B1的长,再根据勾股定理,求出OB1的长,从而得出A2的坐标;再把A2的横坐标代入y=-x的解析式求出A2B2的长,再根据勾股定理,求出OB2的长,从而得出A3的坐标;…,由此得出一般规律.【解(Jie)答】解(Jie):∵点(Dian)A1坐(Zuo)标为(-3,0),知(Zhi)O A1=3,把(Ba)x=-3代入(Ru)直线(Xian)y=-x中,得y= 4 ,即A1B1=4.根据勾股定理,OB1===5,∴A2坐标为(-5,0),O A2=5;把x=-5代入直线y=-x中,得y=,即A2B2=.根据勾股定理,OB2====,∴A3坐标为(-3512,0),O A3=3512;把x=-3512代入直线y=-x中,得y=,即A3B3=.根据勾(Gou)股定理,OB 3====,∴A 4坐标(Biao)为(-3523,0),O A 4=3523;……同理(Li)可得(De)A n 坐(Zuo)标为(-,0),O A n =3521--n n ;∴A 2016坐(Zuo)标为(-,0)故(Gu)答案为:(− 3520142015,0)【点(Dian)评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征. 解题时,要注意数形结合思想的运用,总结规律是解题的关键. 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。
近两年中考“探索规律”型真题赏析
近两年中考“探索规律”型真题赏析作者:肖庆来源:《理科考试研究·初中》2013年第06期规律探索型问题是指给出一列数字、字母、算式或图形的前几个,要求学生经历观察、推理、猜想这一系列的活动逐步找出题目中存在的规律,最后归纳出一般的结论,必要时可以进行验证或者证明,之后再加以运用.不少规律探索型问题立意新颖、构思巧妙,能比较系统地考查学生的观察发现能力、归纳猜想能力以及运用所学的知识和方法分析、解决数学问题的能力,所以频频出现在这两年的全国各地中考中.其类型可分为“数字规律”、“图形规律”、“算式规律”、“排列规律”等题型.题型一数字规律解数字规律的探索题,主要是先观察一系列数字的变化趋势,再分析数字之间或数字与序号之间的关系,最后归纳一般性的规律,必要时候举例验证.点评本题主要考查学生的数字规律探究能力和归纳能力,找到对应所得分数与挪动珠子数之间的关系,再用代数式表示此关系,最后列方程解决问题.题型二图形规律解图形规律型问题需要观察图形的组成和变化特征,再用代数式表示情景所蕴含的规律,方法一是转化成数字找规律,方法二是比较相邻的两个图形的关系找规律,方法三是拆分各图形,找到它们的区别与联系.点评图形规律题是中考中最常见的考查题型,解图形规律题一般是将它转化成数字规律,这要求学生有一定的识图能力以及归纳数字规律的能力,此题也可以拆分图形来找到规律.题型三算式规律对给出的算式或等式观察、比较其所蕴含的数字关系以及运算符号规律,从中归纳出一般结论,并且会用此结论解决其他问题,有时候还要注意字母的取值范围.点评此题考查学生的观察归纳能力和计算能力.(1)要先观察各等式中等号两边数字之间的关系以及运算符号的异同,从而找到一般规律;(2)可以用分式的运算来证明;(3)用(1)的结论先裂项再计算.题型四排列规律排列规律指的是数字、字母、图形在一定范围内不断地变化,而不同的数字、字母或图形之间不存在任何关系,通过认真观察、比较可以看出排列都存在一定的循环规律.点评解决本题的关键是找到字母的循环规律,即6个字母“ABCDCB”一循坏,再由数字算出循环的次数从而得到对应的字母,或者由字母出现的次数得到循环的次数从而算出对应的数字.排列规律往往都蕴含着循环的规律.。
2024中考数学复习专题 规律探索题 (含答案)
2024中考数学复习专题规律探索题类型一数式规律1. (2023鄂州)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示.即:21=2,22=4,23=8,24=16,25=32,…,请你推算22023的个位数字是()A. 8B. 6C. 4D. 22. (2023泰安)将从1开始的连续自然数按以下规律排列:…若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是________.3. (2022怀化)观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2,…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m,用含m的代数式表示这组数的和是________.4. (2023张家界)有一组数据:a1=31×2×3,a2=52×3×4,a3=73×4×5,…,a n=2n+1n(n+1)(n+2).记S n=a1+a2+a3+…+a n,则S12=________.5. (2023达州)人们把5-12≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a=5-12,b=5+12,记S1=11+a+11+b,S2=21+a2+2 1+b2,…,S100=1001+a100+1001+b100,则S1+S2+…+S100=________.6. (2023安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2-(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2-(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2-(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2-(5×8)2,…按照以上规律,解决下列问题:(1)写出第5个等式:____________________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.类型二图形规律考向1累加型7. (2023重庆B卷)把菱形按如图所示的规律拼图案,其中第①个图案中有1个菱形,第①个图案中有3个菱形,第①个图案中有5个菱形,…,按此规律排列下去,则第①个图案中菱形的个数为()第7题图A. 15B. 13C. 11D. 98. (2023济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点…按照此规律,第一百幅图中圆点的个数是()第8题图A. 297B. 301C. 303D. 4009. (2023青海省卷)木材加工厂将一批木料按如图所示的规律依次摆放,则第n个图中共有木料________根.第9题图源自人教七上P70第10题10. (2022常德)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有1×1个小正方形,所有线段的和为4,第二个图形有2×2个小正方形,所有线段的和为12,第三个图形有3×3个小正方形,所有线段的和为24,按此规律,则第n个网格中所有线段的和为________.(用含n的代数式表示)第10题图11. (2023遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设下图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为________.第11题图12. (2023德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:第12题图其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,…图①的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,……由此类推,图①中第五个正六边形数是________.考向2成倍递变型13. (2023威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,①AOB =①BOC =①COD =…=①LOM =30°.若S ①AOB =1,则图中与①AOB 位似的三角形的面积为( )第13题图A. (43 )3B. (43 )7C. (43 )6D. (34)6 14. (2023荆州)如图,已知矩形ABCD 的边长分别为a ,b ,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形A 1B 1C 1D 1;第二次,顺次连接四边形A 1B 1C 1D 1各边的中点,得到四边形A 2B 2C 2D 2;…如此反复操作下去,则第n 次操作后,得到四边形A n B n C n D n 的面积是( )A. ab 2nB. ab 2n -1C. ab 2n +1 D. ab22n第14题图15. (2023烟台)如图,正方形ABCD 边长为1,以AC 为边作第2个正方形ACEF ,再以CF 为边作第3个正方形FCGH ,…,按照这样的规律作下去,第6个正方形的边长为( ) A. (22 )5 B. (22 )6 C. (2 )5 D. (2 )6第15题图16. (2023广安)如图,四边形ABCD 是边长为12的正方形,曲线DA 1B 1C 1D 1A 2…是由多段90°的圆心角所对的弧组成的.其中,弧DA 1的圆心为A ,半径为AD ;弧A 1B 1的圆心为B ,半径为BA1;弧B1C1的圆心为C,半径为CB1;弧C1D1的圆心为D,半径为DC1….弧DA1、弧A1B1、弧B1C1、弧C1D1…的圆心依次按点A、B、C、D循环,则弧C2023D2023的长是________(结果保留π).第16题图17. (2023绥化)如图,①AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1①OA 交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2①OA交射线OB 于K2,在射线OA上截取P2P3,使P2P3=P2K2;…;按照此规律,线段P2023K2023的长为________.第17题图考向3周期变化型18. (2023玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2023秒钟后,两枚跳棋之间的距离是()A. 4B. 23C. 2D. 0第18题图19. (2023河南)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O 重合,AB①x轴,交y轴于点P.将①OAP绕点O顺时针旋转,每次旋转90°,则第2023次旋转结束时,点A的坐标为()A. (3,-1)B. (-1,-3)C. (-3,-1)D. (1,3)第19题图20. (2023毕节)如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4);…;按此做法进行下去,则点A10的坐标为________.第20题图类型三与函数图象结合21. (2023龙东地区)如图,在平面直角坐标系中,点A1,A2,A3,A4…在x轴上且OA1=1,OA2=2OA1,OA3=2OA2,OA4=2OA3…按此规律,过点A1,A2,A3,A4…作x轴的垂线分别与直线y=3x交于点B1,B2,B3,B4…记①OA1B1,①OA2B2,①OA3B3,①OA4B4…的面积分别为S1,S2,S3,S4…则S2023=________.第21题图22. (2022菏泽)如图,一次函数y =x 与反比例函数y =1x(x >0)的图象交于点A ,过点A 作AB ①OA ,交x 轴于点B ;作BA 1①OA ,交反比例函数图象于点A 1;过点A 1作A 1B 1①A 1B 交x 轴于点B 1;再作B 1A 2①BA 1,交反比例函数图象于点A 2,依次进行下去…,则点A 2022的横坐标为________.第22题图23. (2023盐城)《庄子·天下篇》记载“一尺之棰,日取其半,万世不竭”.如图,直线l 1:y =12x +1与y 轴交于点A ,过点A 作x 轴的平行线交直线l 2:y =x 于点O 1,过点O 1作y 轴的平行线交直线l 1于点A 1,以此类推,令OA =a 1,O 1A 1=a 2,…,O n -1A n -1=a n ,若a 1+a 2+…+a n ≤S 对任意大于1的整数n 恒成立,则S 的最小值为________.第23题图类型四 与实际问题结合24. (2022安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图①表示此人行道的地砖排列方式,其中正方形地砖为连续排列.【观察思考】当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图①);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图①);以此类推.第24题图【规律总结】(1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加________块;(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为______(用含n的代数式表示);【问题解决】(3)现有2022块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?参考答案与解析1. C 【解析】21=2,22=4,23=8,24=16,25=32,则2的1,2,3,4次方的个位上的数分别为2,4,8,6,每4个一次循环,而22022中2022÷4=550……2,∴个位上的数为4.2. (10,18) 【解析】按照规律可得每一行的最后一个数为行数的平方,第n 行有(2n -1)个数.∵92=81,102=100,∴99是第10行,第18个数,∴表示99的有序数对是(10,18).3. m 2-m4.201182 【解析】∵a n =2n +1n (n +1)(n +2) =n +n +1n (n +1)(n +2) =n n (n +1)(n +2) +n +1n (n +1)(n +2) =1(n +1)(n +2) +1n (n +2) =1n +1 -1n +2 +12 (1n -1n +2),∴S 12=12 -13 +13 -14 +…+113 -114 +12 ×(1-13 +12 -14 +…+112 -114 )=12 -114 +12 ×(1+12 -113 -114 )=12 +12 +14 -126 -114 -128 =201182. 5. 5050 【解析】∵a =5-12 ,b =5+12 ,∴ab =1,∵S 1=11+a +11+b =2+a +b 1+a +b +ab =2+a +b 2+a +b =1,S 2=21+a 2 +21+b 2 =2(2+a 2+b 2)1+a 2+b 2+a 2b 2 =2(2+a 2+b 2)2+a 2+b 2=2,…,S 100=1001+a 100 +1001+b 100 =100(2+a 100+b 100)1+a 100+b 100+a 100b 100 =100(2+a 100+b 100)2+a 100+b 100=100,∴S 1+S 2+…+S 100=1+2+…+100=100×(100+1)2=5050. 6. 解:(1)(2×5+1)2=(6×10+1)2-(6×10)2;(2)(2n +1)2=[2n (n +1)+1]2-[2n (n +1)]2.证明:等式左边=4n 2+4n +1,等式右边=4n 2(n +1)2+1+4n (n +1)-4n 2(n +1)2=4n (n +1)+1=4n 2+4n +1,∴左边=右边,∴等式成立.7. C 【解析】经分析可得,第个图案的菱形个数为2n -1,∴第⑥个图案中菱形个数为2×6-1=11(个).8. B 【解析】第一幅图中圆点的个数是4=1×3+1;第二幅图中圆点的个数是7=2×3+1;第三幅图中圆点的个数是10=3×3+1;第四幅图中圆点的个数是13=4×3+1;…;按照此规律,第n 幅图中圆点的个数是3n +1,∴第一百幅图中圆点的个数是3×100+1=301.9. n (n +1)2【解析】∵第1个图中有木料1根,第2个图中有木料1+2=3根,第3个图中有木料1+2+3=6根,第4个图中有木料1+2+3+4=10根,…,∴第n 个图中有木料1+2+3+4+…+n =n (n +1)2根. 10. 2n 2+2n 【解析】观察图形可知:第一个图形由1个小正方形组成,所有线段的和为4×1=2×2×1, 第二个图形由4个小正方形组成,所有线段的和为6×2=2×3×2, 第三个图形由9个小正方形组成,所有线段的和为8×3=2×4×3, 第4个图形由16个小正方形组成,所有线段的和为10×4=2×5×4,…由此发现规律是:第n 个图形由n 2个小正方形组成,所有线段的和为2(n +1)·n =2n 2+2n .11. 127 【解析】第一代勾股树中正方形个数=20+21;第二代勾股树中正方形个数=20+21+22;第三代勾股树中正方形个数=20+21+22+23;第四代勾股树中正方形个数=20+21+22+23+24,…,∴第六代勾股树中正方形个数=20+21+22+23+24+25+26=127.12. 45 【解析】由题图可知,题图④前三层点数分别是:1=4×1-3,5=4×2-3,9=4×3-3,…,∴第n 层的点数是4n -3,∴第n 个正六边形数是1+5+9+…+4n -3=4×1-3+4×2-3+4×3-3+…+4n -3=2n 2-n ,∴题图④中第五个正六边形数是2×52-5=45.13. C 【解析】在Rt △AOB 中,∠AOB =30°,∵cos ∠AOB =OA OB ,∴OB =23OA .同理可得OC =23 OB ,∴OC =(23 )2OA ,…,∴OG =(23)6OA ,由题图可知△GOH 与△AOB 位似且位似比为(23 )6.∵S △AOB =1,∴S △GOH =[(23 )6]2=(43 )6. 14. A 【解析】第一次操作后S 四边形A 1B 1C 1D 1=12 S 矩形ABCD =12ab ,第二次操作后S 四边形A 2B 2C 2D 2=12 S 四边形A 1B 1C 1D 1=12 ×12 ab =ab 22 ,第三次操作后S 四边形A 3B 3C 3D 3=12S 四边形A 2B 2C 2D 2=ab 23 ,…,第n 次操作后S 四边形A n B n C n D n =ab 2n . 15. C 【解析】∵正方形ABCD 边长为1,∴AB =BC =1,∴AC =2 ,∴以AC 为边作第2个正方形ACEF 的边长为2 ;∵CF 是正方形ACEF 的对角线,∴CF =2 ×2 =(2 )2=2,∴以CF 为边作第3个正方形FCGH 的边长为2;又∵GF 是正方形FCGH 的对角线,∴GF =2 ×2 ×2 =(2 )3=22 ,以GF 为边作第4个正方形FGMN 的边长为22 ,…∴依此规律可知下一个正方形的边长是原来正方形边长的2 倍,即第n 个正方形的边长为(2 )n -1,∴第6个正方形的边长为(2 )5.16. 2022π 【解析】由题图可知,题图中由一段90°的弧组成的,弧所在圆的半径每次增加12 ,则弧C 1D 1的半径=12 ×4=12 ×4×1,弧C 2D 2的半径=12 ×8=12×4×2,弧C 3D 3的半径=12 ×12=12 ×4×3…,弧C 2022D 2022的半径=12×4×2022=4044,∴弧C 2022D 2022的长=90π180×4044=2022π. 17. 3 (1+3 )2022 【解析】∵∠AOB =60°,OP 1=1,∴P 1K 1=3 OP 1=3 ,∴P 1P 2=P 1K 1=3 ,∴OP 2=1+3 .∵P 2K 2=3 OP 2,∴P 2K 2=3 (1+3 ),∴OP 3=(1+3 )2,∴P 3K 3=3 OP 3=3 (1+3 )2,…,∴依此规律可得P 2023K 2023=3 (1+3 )2022.18. B 【解析】根据两枚跳棋跳动规则可知,红跳棋每过6秒钟跳动回顶点A ,黑跳棋每过18秒钟跳动回顶点A ,∵2022÷6=337,∴经过2022秒后,红跳棋在顶点A 处;∵2022÷18=112……6,6÷3=2,∴经过2022秒钟后,黑跳棋在顶点E 处.如解图,连接AE ,过点F 作FG ⊥AE 于点G ,∵六边形ABCDEF 是边长为2的正六边形,∴∠AFE =120°,FE =AF ,∴∠F AE =30°,∴AG =EG =AF ·cos 30°=2×32 =3 ,∴AE =23 ,即两枚跳棋之间的距离是23 .第18题解图19. B 【解析】如解图,连接OB ,∵AB ∥x 轴,∴AB ⊥y 轴,∵六边形ABCDEF 是正六边形,点O 是中心,∴OB =OA ,∠AOB =60°,∴∠AOP =30°,AP =12AB =1,∴OP =3 ,∴点A (1,3 ),将△AOP 绕点O 顺时针每次旋转90°,则第1次结束点A 的坐标为(3 ,-1),第2次结束点A 的坐标为(-1,-3 ),第3次结束点A 的坐标为(-3 ,1),第4次结束点A 的坐标为(1,3 ),…,∴每4次一个循环,∵2022=4×505+2,∴第2022次旋转结束时,相当于第2次结束,∴点A 的坐标为(-1,-3 ).第19题解图20. (-1,11) 【解析】由图象可知,A 5(5,1),将点A 5向左平移6个单位,再向上平移6个单位,可得A 6(-1,7),将点A 6向左平移7个单位,再向下平移7个单位,可得A 7(-8,0),将点A 7向右平移8个单位,再向下平移8个单位,可得A 8(0,-8),将点A 8向右平移9个单位,再向上平移9个单位,可得A 9(9,1),将点A 9向左平移10个单位,再向上平移10个单位,可得A 10(-1,11).21. 240433 【解析】∵S 1=1×32 = 20×32 ,S 2=2×232 = 22×32,… ,依此规律可得S n = 22(n -1)×32 ,∴S 2023= 22×(2023-1)×32= 240433 . 22. 2021 +2022 【解析】∵点A 是函数y =x 与y =1x的图象在第一象限的交点,∴点A 的坐标为(1,1),又∵AB 垂直于直线y =x ,∴点B 坐标为(2,0),又∵BA 1∥OA ,∴BA 1的解析式为y =x -2,与y =1x 联立,解得x =1+2 (负值已舍),即点A 1的横坐标为1+2 ;同理可得B 1的横坐标为22 ,∵B 1A 2∥BA 1,∴B 1A 2的解析式为y =x -22 ,与y =1x 联立,解得A 2的横坐标为2 +3 (负值已舍);…;依此按规律可得A 2021的横坐标为2021 +2022 .23. 2 【解析】由题可得a 1=OA =1,而y =x 与y 轴的正方向的夹角是45°,O 1A ⊥y 轴,∴O 1A =OA =1,∴ 点O 1的横坐标是1,对于y =12 x +1,当x =1时,y =32,∴a 2=O 1A 1=12 ,∴tan ∠A 1AO 1=O 1A 1O 1A =12 ,依次得出A 1O 2=A 1O 1=12 ,a 3=A 2O 2=12 A 1O 2=(12)2,…,可以得出A n -1O n -1=(12 )n -1,∴a 1+a 2+…+a n -1+a n =1+12 +…+(12 )n -2+(12)n -1①,①×2得2×(a 1+a 2+…+a n -1+a n )=2+1+12 +…+(12 )n -3+(12)n -2②,②-①得a 1+a 2+…+a n -1+a n =2-(12 )n -1,∴S ≥2-(12)n -1,∴S 的最小值是2. 24. 解:(1)2;【解法提示】观察题图②与题图③,每增加1块正方形地砖,则增加2块等腰直角三角形地砖.(2)2n +4;【解法提示】在题图②中,正方形地砖1块,等腰直角三角形地砖(4+2)块;在题图③中,正方形地砖2块,等腰直角三角形地砖(4+2×2)块;正方形地砖若有3块,则等腰直角三角形地砖(4+2×3)块;…;依此按规律可得正方形地砖若有n 块,则等腰直角三角形地砖有(4+2n )块.(3)设需要正方形地砖n块,∴2n+4≤2021,解得n≤1008.5,∵n为正整数,∴n最大取1008,答:需要正方形地砖1008块.。
全国各地中考数学试卷分类汇编:规律探索.docx
规律探索一.选择题1.(2013 -泰安,20, 3 分)观察下列等式:31=3, 32=9, 33=27, 34=81, 35=243, 36 =729, 37=2187...解答下列问题:3+32+33+34...+32013的末位数字是( )A. 0B. 1C. 3D. 7http://www.qiujieda.eom/exeTcise/math/l 11757/?mty2.(2013四川绵阳,12, 3分)把所有正奇数从小到大排列,并按如下规律分组:(1), (3,5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27, 29, 31),…,现用等式A M= (i,j) 表示正奇数M是第i组第j个数(从左往右数),如A?= (2, 3),则A2013= ( C )A. (45, 77)B. (45, 39)C. (32, 46)D. (32, 23)/exercise/math/266357/7mtv3.(2013湖南益阳,13,4分)下表中的数字是按一定规律填写的,表中a的值应是___________ .httu://www・aiiijieda・com/exei*dse/math/268520/?mty4. (2013重庆市(A), 10, 4分)下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm2,第(2)个图形的面积为8 cm2,第(3)个图形的面积为18 enr,..... ,第(10)个图形的面积为()D. 256 cm2/exercise/rnath/262717/7mty5. (2013山东德州,12, 3分)如图,动点P从(0, 3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A 、(1, 4)B 、(5, 0)C 、(6, 4)D 、(8, 3) /exercise/math/266613/7mty 二2013山东日照,11, 4分)如图,下列各图形中的三个数之间均具有相同的规律.根据此 规律,图形中M 与m 、n 的关系是/exercise/math/266635/7rnty 7. (2013湖南永州,8, 3分)我们知道,一元二次方程* =—1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“”,使其满足z 2 =-1(即方程1有一个根 为),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍 然成立,于是有 z 1 = z, z 2 = —1, z 3 = z'2 -i = (―l )i = —i, i 4= (Z 2)2 = (-1)2 = 1.从而对任 意正整数n,我们可得到严+i =z 4,I .z = (z 4),,.z = z,同理可得严"+2 =-l,z 4n+3 =-i,i 4" =1,那 么,z + z 2+z 3+z 4+---z 2012+z 2013 的值为A. 0B. 1C. -1D. /exercise/math/268463/7mty8. (2013重庆,11, 4分)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个 图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥ 个图形中棋子的颗数为( )D. M=m(n+1)A. M=mnC. M=mn+1 B. M=n(m+1)图①图②(第11题图)A. 51B. 70C. 76D. 81/exercise/math/269295/7rnty二.填空题1.(2013江西,11, 3分)观察下列图形中点的个数,若按其规律再画下去,可以得到第"个图形中所有的个数为________ (用含"的代数式表示).& 1 图2 图3(第11/exercise/math/267696/2nity2.(2013兰州,19, 4分)如图,在直角坐标系中,已知点A (-3, 0)、B (0, 4),对△连续作旋转变换,依次得到△]、厶2、―、A 4-..则△2013的直角顶点的坐标为____________________ .专题:规律型.分析:根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2013除以3,根据商为671可知第2013个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可./exercise/math/268644/7mty3.(2013广东珠海,10, 4分)如图,正方形ABCD的边长为1,顺次连接正方形ABCD四边的中点得到第一个正方形AiBiCiD”由顺次连接正方形AiBiCiDi四边的中点得到第二个正方形A2B2C2D2...,以此类推,则第六个正方形A6B6C6D6周长是_____ ./exercise/math/267051/2mty4.(2013贵州安顺,18, 4分)直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有________________ 个点.http://www. qiujieda. com/exercise/math/268922/?mty5.(2013湖北孝感,17, 3分)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数•例如:称图中的数1, 5, 12, 22...为五边形数,则第6个五边形数是51 .12 22/exeTcise/math/268063/7mty6 . (2013湖南娄底,18, 4分)如图,是用火柴棒拼成的图形,则第n个图形需2n+l根火柴棒./exeTcise/math/40303/?mty7. (2013 贵州省黔东南州,16, 4 分)观察规律:1=2; 1+3=22; 1+3+5=32; 1+3+5+7=42;则1+3+5+...+2013 的值是1014049 .http: // w w w. qiuj ieda. com/ exercise/math/269041/? mty8. (2013 河北省,20, 3 分)如图12, 一段抛物线:y=—x(x—3) (0<x<3),记为Cl,它与X轴交于点O, Al;将Cl绕点Al旋转180。
历年初三数学中考规律探索问题试题汇编及答案
中考数学规律探索问题试题汇编一、选择题 1、如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )。
B2、按右边33⨯方格中的规律,在下面4个符号中选择一个填入方格左上方的空格内( )A3、为庆祝“六g 一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A A .26n + B .86n + C .44n + D .8n4、某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是( )C A. 31 B. 33 C. 35 D. 37 二、填空题1、把正整数1,2,3,4,5,……,按如下规律排列:1 2,3, 4,5,6,7,8,9,10,11,12,13,14,15,… … … …按此规律,可知第n行有 个正整数.2n-12、将正整数按如图所示的规律排列下去。
若用有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示实数9,则(7,2)表示的实数是 。
233、试观察下列各式的规律,然后填空:1)1)(1(2-=+-x x x 1)1)(1(32-=++-x x x x1)1)(1(423-=+++-x x x x x ……则=++++-)1)(1(910x x xx ΛΛ_______________。
111-x 。
4、观察下列各式:(第01题图) A B C D11235...22151(11)1005225=⨯+⨯+= 22252(21)1005625=⨯+⨯+= 22353(31)10051225=⨯+⨯+=……依此规律,第n 个等式(n 为正整数)为 .22(105)(1)1005n n n +=+⨯+5、意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两上数的和。
2022全国各地中考数学解析汇编-第36章规律探索型问题
2022全国各地中考数学解析汇编-第36章规律探索型问题12.(2020山东省滨州,12,3分)求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22020,因此2S ﹣S=22020﹣1.仿照以上推理,运算出1+5+52+53+…+52020的值为( )A .52020﹣1B .52020﹣1C .D .【解析】设S=1+5+52+53+…+52020,则5S=5+52+53+54+…+52020, 因此,5S ﹣S=52020﹣1, S=.【答案】选C .【点评】本题考查同底数幂的乘法,以及类比推理的能力.两式同时乘以底数,再相减可得s的值.(2020广东肇庆,15,3)观看下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ .【解析】通过观看不难发觉,各分数的分子与分母均相差1,分子为连续偶数,分母为连续奇数. 【答案】122 k k【点评】本题是一道规律探究题目,考查了用代数式表示一样规律,难度较小.18. ( 2020年四川省巴中市,18,3)观看下列面一列数:1,-2,3,-4,5,-6,…依照你发觉的规律,第2020个数是___________ 【解析】观看知: 下列面一列数中,它们的绝对值是连续正整数,第2020个数的绝对值是2020,值偶数项是负数,故填-2020. 【答案】-2020【点评】本题是找规律的问题,确定符号是本题的难点.20.(2020贵州省毕节市,20,5分)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形。
解析:观看图案不难发觉,图案中的正方形按照从上到下成奇数列排布,写出第n个图案的正方形的个数,然后利用求和公式写出表达式,再把n=10代入进行运算即可得解.答案:解:第1个图案中共有1个小正方形,第2个图案中共有1+3=4个小正方形,第3个图案中共有1+3+5=9个小正方形,…,第n个图案中共有1+3+5+…+(2n-1)=2)121(-+nn=n2个小正方形,因此,第10个图案中共有102=100个小正方形.故答案为:100.点评:本题是对图形变化规律的考查,依照图案从上到下的正方形的个数成奇数列排布,得到第n个图案的正方形的个数的表达式是解题的关键.18.(2020贵州六盘水,18,4分)图7是我国古代数学家杨辉最早发觉的,称为“杨辉三角形”.它的发觉比西方要早五百年左右,由此可见我国古代数学的成确实是专门值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行的数字正好对应了()na b+(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如222()2a b a ab b+=++展开式中的系数1、2、1恰好对应图中第三行的数字;再入,33223()33a b a a b ab b+=+++展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观看此图,写出4()a b+的展开式.4()a b+=▲.分析:该题属规律型,通过观看可发觉第五行的系数是:1、4、6、4、1,再依照例子中字母的排列规律即得到答案.解答:解:由题意,4432234()464a b a a b a b ab b+=++++,故填432234464a a b a b ab b ++++.点评:本题考查了数字的变化规律,从整体观看还要考虑字母及字母指数的变化规律,从而得到答案.17. (2020山东莱芜, 17,4分) 将正方形ABCD 的各边按如图所示延长,从射线AB 开始,分别在各射线上标记点321,,A A A ….,按此规律,则点A 2020在射线 上.【解析】依照表格中点的排列规律,能够得到点的坐标是每16个点排列的位置一循环, 2020=16×125+12,因此点A 2020所在的射线和点12A 所在的直线一样。
中考数学真题分类汇编第一期专题36规律探索试题含解析
规律研究一、选择题1.〔2021·重庆(A) ·4分〕把三角形按以以下图的规律拼图案,其中第①个图案中有4 个三角形,第②个图案中有6 个三角形,第③个图案中有8 个三角形,⋯,按此规律排列下去,那么第⑦个图案中三角形的个数为A.12 B.14 C.16 D.18【考点】图形的变化规律【解析】∵第1 个图案中的三角形个数为:2+2=2 ×2=4;第2 个图案中的三角形个数为:2+2+2=2 ×3=6;第3 个图案中的三角形个数为:2+2+2+2=2 ×4=8;⋯⋯∴第7 个图案中的三角形个数为:2+2+2+2+2+2+2+2=2 ×8=16;【谈论】此题观察图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,进而计算出正确结果。
比较简单。
2〔2021·台湾·分〕假设小舒从1~50 的整数中优选4 个数,使其由小到大排序后形成一等差数列,且4 个数中最小的是7,那么以下哪一个数不可以能出现在小舒优选的数之中?〔〕A.20 B.25 C.30 D.35【解析】A、找出7,20、33 、46为等差数列,进而可得出20 可以出现,选项A 不吻合题意;B、找出7、16、25、34为等差数列,进而可得出25 可以出现,选项B 不吻合题意;C、由30﹣7=23,23为质数,30+23>50,进而可得出30 不可以能出现,选项C吻合题意;D、找出7、21、35、49为等差数列,进而可得出35 可以出现,选项D不吻合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20 可以出现,选项A 不吻合题意;B、∵7、16、25、34为等差数列,∴25 可以出现,选项B 不吻合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30 不可以能出现,选项C吻合题意;D、∵7、21、35、49为等差数列,∴35 可以出现,选项D不吻合题意.应选:C.【谈论】此题观察了规律型中数字的变化类,依照等差数列的定义结合四个选项中的数字,13〔2021·广东广州·3 分〕在平面直角坐标系中,一个智能机器人接到以下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断搬动,每次搬动1 m,其行走路线如图所示,第1 次搬动到,第2 次搬动到⋯⋯,第n 次搬动到,那么△的面积是〔〕A.504B.C.D.【答案】A【考点】研究图形规律【解析】【解答】解:依题可得:A2〔1,1 〕,A4〔2,0〕,A8〔4,0 〕,A12〔6,0 〕⋯⋯∴A4n〔2n,0〕,∴A2021=A4×504〔1008,0 〕,∴A2021〔1009,1 〕,∴A2A2021=1009-1=1008,∴S△= ×1×1008=504〔〕.故答案为:A.〔1008,0 〕,进而得A2021〔1009,1 〕,【解析】依照图中规律可得A4n〔2n,0〕,即A2021=A4×504再依照坐标性质可得A2A2021=1008, 由三角形面积公式即可得出答案.4 (2021 四川省绵阳市) 将全体正奇数排成一个三角形数阵13 57 9 1113 15 17 1921 23 25 27 29⋯⋯⋯⋯⋯⋯依照以上排列规律,数阵中第25 行的第20 个数是〔〕A.639B.637C.635D.633【答案】 A【考点】研究数与式的规律【解析】【解答】解:依题可得:第25 行的第一个数为:1+2+4+6+8+⋯⋯+2×24=1+2×=601,∴第25 行的第第20 个数为:601+2×19=639.故答案为: A.【解析】依照规律可得第25 行的第一个数为,再由规律得第25 行的第第20 个数.5.〔2021 年湖北省宜昌市3 分〕1261 年,我国南宋数学家杨辉用图中的三角形讲解二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角〞,请观察图中的数字排列规律,那么a,b,c 的值分别为〔〕A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【解析】依照图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c的值.【解答】解:依照图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,应选:B.【谈论】此题是一道找规律的题目,这类题型在中考中经常出现.关于找规律的题目第一应找出哪些局部发生了变化,是依照什么规律变化的.二. 填空题1〔2021 年四川省内江市〕如图,直线y=﹣x+1 与两坐标轴分别交于A,B 两点,将线段OA 分成n 等份,分点分别为P1,P2,P3,⋯,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,⋯,T n﹣1,用S1,S2,S3,⋯,S n﹣1 分别表示Rt △T1OP1,Rt△T2P1P2,⋯,Rt△T n﹣1P n﹣2P n﹣1 的面积,那么S1+S2+S3+⋯+S n﹣1=﹣.【考点】F8:一次函数图象上点的坐标特色;D 2:规律型:点的坐标.【解析】如图,作T1M⊥OB于M,T2N⊥P1T1 .由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1 是矩形,四边形P1NT2P2 是矩形,推出= ××= ,S1= ,S2= ,可得S1+S2+S3+⋯+S n﹣1= 〔S△AOB﹣n 〕.【解答】解:如图,作T1M⊥O B于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1 是矩形,四边形P1NT2P2 是矩形,4∴= ××= ,S1= ,S2 = ,∴S1+S2+S3+⋯+S n﹣1= 〔S△AOB﹣n 〕= ×〔﹣n×〕=﹣.故答案为﹣.【谈论】此题观察一次函数的应用,规律型﹣点的坐标、三角形的面积、矩形的判断和性质等知识,解题的要点是灵便运用所学知识解决问题,学会用切割法求阴影局部面积.2〔2021?广西桂林?3 分〕将从1 开始的连续自然数按右图规律排列:规定位于第m行,第n 列的自然数10记为〔3,2〕,自然数15记为〔4,2〕...... 按此规律,自然数2021记为__________【答案】〔505,2〕【解析】解析:由表格数据排列可知,4 个数一组,奇数行从左向右数字逐渐增大,偶数行从右向左数字逐渐增大,用2021 除以4,商确定所在的行数,余数确定所行家的序数,然后解答即可.详解:2021÷4=504 ??2.∴2021 在第505 行,第2 列,∴自然数2021记为〔505,2〕.故答案为:〔505,2〕.点睛:此题是对数字变化规律的观察,观察出实质有4 列,但每行数字的排列序次是解题的要点,还要注意奇数行与偶数行的排列序次正好相反.线PA,现要分别以APB ,3〔2021?河北?6 分〕如图10 1,作BPC 均分线的反向延长APC ,BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不相同花纹后成为一个图案.比方,假设以BPC为内角,可作出一个边长为1 的正方形,此时BPC 90 ,而90245是360 〔多边形外角和〕的18,这样就恰好可作出两个边长均为1 的正八边形,填充花纹后获取一个吻合要求的图案,如图10 2所示.图10 2中的图案外轮廓周长是;在所有吻合要求的图案中选一个外轮廓周长最大的定为会标,那么会标的外轮廓周长是.4〔2021·广东·3 分〕如图,等边△O A1B1,极点A1 在双曲线y= 〔x>0〕上,点B1的坐标为〔2,0〕.过B1 作B1A2∥O A1 交双曲线于点A2,过A2 作A2B2∥A1B1 交x轴于点B2,得到第二个等边△B1A2B2;过B2 作B2A3∥B1A2 交双曲线于点A3,过A3 作A3B3∥A2B2 交x轴于点B3,获取第三个等边△B2A3B3;以此类推,⋯,那么点B6 的坐标为〔2 ,0〕.【解析】依照等边三角形的性质以及反比率函数图象上点的坐标特色分别求出B2、B3、B4 的坐标,得出规律,进而求出点B6 的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,那么A2C= a,OC=O1B+B1C=2+a,A2〔2+a,a〕.∵点A2 在双曲线y= 〔x>0〕上,∴〔2+a〕?a= ,解得a=﹣1,或a=﹣﹣1〔舍去〕,∴OB2=OB1+2B1C=2+2﹣2=2 ,∴点B2 的坐标为〔2 ,0〕;作A3D⊥x轴于点D,设B2D=b,那么A3D= b,OD=O2B+B2D=2 +b,A2〔2 +b,b〕.∵点A3 在双曲线y= 〔x>0〕上,∴〔2 +b〕?b= ,解得b=﹣+ ,或b=﹣﹣〔舍去〕,∴OB3=OB2+2B2D=2﹣2 +2 =2 ,∴点B3 的坐标为〔2 ,0〕;同理可得点B4 的坐标为〔2 ,0〕即〔4,0〕;⋯,∴点B n 的坐标为〔2 ,0〕,∴点B6 的坐标为〔2 ,0〕.故答案为〔2 ,0〕.【谈论】此题观察了反比率函数图象上点的坐标特色,等边三角形的性质,正确求出B2、B3、B4 的坐标进而得出点B n 的规律是解题的要点.5〔2021·浙江临安·3 分〕:2+ =2 2×,3+ =32×,4+ =42×,5+ =52×,⋯,假设10+ =10 2×吻合前面式子的规律,那么a+b= 109 .【考点】等式的变化规律【解析】要求a+b 的值,第一应该仔细仔细地观察题目给出的4 个等式,找到它们的规律,即中,b=n+1,a=〔n+1〕 2﹣1.【解答】解:依照题中资料可知= ,∵10+ =10 2×,∴b=10,a=99,a+b=109.【谈论】解题要点是要读懂题目的意思,依照题目给出的条件,找出式子的规律.6〔2021·浙江衢州·4 分〕定义:在平面直角坐标系中,一个图形先向右平移a 个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ〔a,θ〕变换.如图,等边△ABC的边长为1,点A 在第一象限,点B 与原点O重合,点C在x轴的正半轴上.△A1B1C1 就是△ABC经γ〔1,180°〕变换后所得的图形.假设△ABC经γ〔1,180°〕变换后得△A1B1C1,△A1B1C1经γ〔2,180°〕变换后得△A2B2C2,△A2B2C2经γ〔3,180°〕变换后得△A3B3C3,依此类推⋯⋯△A n﹣1B n﹣1C n﹣1经γ〔n,180°〕变换后得△A n B n C n,那么点A1 的坐标是〔﹣,﹣〕,点A2021 的坐标是〔﹣,〕.【考点】坐标的变化规律.【解析】解析图形的γ〔a,θ〕变换的定义可知:对图形γ〔n,180°〕变换,就是先进行向右平移n 个单位变换,再进行关于原点作中心对称变换.向右平移n 个单位变换就是横坐标加n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.【解答】解:依照图形的γ〔a,θ〕变换的定义可知:对图形γ〔n,180°〕变换,就是先进行向右平移n 个单位变换,再进行关于原点作中心对称变换.△ABC经γ〔1,180°〕变换后得△A1B1C1,A1 坐标〔﹣,﹣〕△A1B1C1经γ〔2,180°〕变换后得△A2B2C2,A2 坐标〔﹣,〕△A2B2C2经γ〔3,180°〕变换后得△A3B3C3,A3 坐标〔﹣,﹣〕△A3B3C3经γ〔3,180°〕变换后得△A4B4C4,A4 坐标〔﹣,〕依此类推⋯⋯可以发现规律:A n 横坐标存在周期性,每3 次变换为一个周期,纵坐标为当n=2021时,有2021÷3=672 余2所以,A2021 横坐标是﹣,纵坐标为故答案为:〔﹣,﹣〕,〔﹣,〕.【谈论】此题是规律研究题,又是资料阅读理解题,要点是能正确理解图形的γ〔a,θ〕变换的定义后运用,要点是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不相同的规律,需要分别来研究.7〔2021·四川自贡·4 分〕观察以以下图中所示的一系列图形,它们是按必然规律排列的,依照此规律,第2021 个图形共有6055 个○.【解析】每个图形的最下面一排都是1,别的三面随着图形的增加,每面的个数也增加,据此可得出规律,那么可求得答案.【解答】解:观察图形可知:第1 个图形共有:1+1×3,第2 个图形共有:1+2×3,第3 个图形共有:1+3×3,⋯,第n 个图形共有:1+3n,∴第2021 个图形共有1+3×2021=6055,故答案为:6055.【谈论】此题为规律型题目,找出图形的变化规律是解题的要点,注意观察图形的变化.8〔2021?湖北荆门?3 分〕将数1 个1,2 个,3 个,⋯,n 个〔n为正整数〕按次排成一列:1,,⋯,记a1=1,a2= ,a3= ,⋯,S1=a1,S2=a1 +a2,S3=a1+a2+a3,⋯,S n=a1+a2+⋯+a n,那么S2021= 63 .【解析】由1+2+3+⋯+n=结合+2=2021,可得出前2021 个数里面包含:1个1,2 个,3 个,⋯,63 个,2 个,进而可得出S2021=1×1+2×+3×+⋯+63×+2×=63 ,此题得解.【解答】解:∵1+2+3+⋯+n= ,+2=2021,∴前2021 个数里面包含:1 个1,2 个,3 个,⋯,63 个,2 个,∴S2021=1×1+2×+3×+⋯+63×+2×=1+1+⋯+1+ =63 .故答案为:63 .【谈论】此题观察了规律型中数字的变化类,依照数列中数的排列规律找出“前2021 个数里面包含:1 个1,2 个,3 个,⋯,63 个,2 个〞是解题的要点.9〔2021?甘肃白银,定西,武威?3 分〕如图是一个运算程序的表示图,假设开始输入的值为625,那么第2021 次输出的结果为__________.【答案】1【解析】【解析】依次求出每次输出的结果,依照结果得出规律,即可得出答案.【解答】当x=625时,当x=125时, =25,当x=25时, =5,当x=5时, =1,当x=1时,x+4=5,当x=5时, =1,当x=1时,x+4=5,当x=5时, =1,⋯(2021 - 3) ÷2=1007⋯1,即输出的结果是1,故答案为:1.【谈论】观察代数式的求值,找出其中的规律是解题的要点.10. 〔2021?山东滨州?5 分〕观察以下各式:=1+ ,=1+ ,=1+ ,⋯⋯请利用你所发现的规律,计算+ + +⋯+ ,其结果为9 .【解析】直接依照数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+ + +⋯+=1+ +1+ +1+ +⋯+1+=9+〔1﹣+﹣+﹣+⋯+﹣〕=9+=9 .故答案为:9 .【谈论】此题主要观察了数字变化规律,正确将原式变形是解题要点.11. 〔2021·山东泰安·3 分〕观察“田〞字中各数之间的关系:那么c 的值为270 或28+14 .【解析】依次观察每个“田〞中相同地址的数字,即可找到数字变化规律,再观察同一个“田〞中各个地址的数字数量关系即可.【解答】解:经过观察每个“田〞左上角数字依此是1,3,5,7 等奇数,此地址数为15 时,恰好是第8 个奇数,即此“田〞字为第8 个.观察每个“田〞字左下角数据,可以发现,规律是2,22,23,24 等,那么第8 数为28.观察左下和右上角,每个“田〞字的右上角数8字依次比左下角大0,2,4,6 等,到第8 个图多14.那么c=2 +14=270故应填:270 或28+14【谈论】此题以研究数字规律为背景,观察学生的数感.解题时注意相同地址的数字变化规律,用代数式表示出来.12. 〔2021·山东威海·3 分〕如图,在平面直角坐标系中,点A1 的坐标为〔1,2〕,以点O为圆心,以O A1长为半径画弧,交直线y= x 于点B1.过B1 点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y= x 于点B2;过点B2 作B2A3∥y轴,交直线y=2x 于点A3,以点O为圆心,以O A3长为半径画弧,交直线y= x 于点B3;过B3 点作B3A4∥y轴,交直线y=2x 于点A4,以点O为圆心,以OA4长为半径画弧,交直线y= x 于点B4,⋯依照这样规律进行下去,点B2021的坐标为〔22021,22021〕.12【解析】依照题意可以求得点B1 的坐标,点A2 的坐标,点B2 的坐标,尔后即可发现坐标变化的规律,进而可以求得点B2021的坐标.【解答】解:由题意可得,点A1 的坐标为〔1,2〕,设点B1 的坐标为〔a,a 〕,,解得,a=2,∴点B1 的坐标为〔2,1〕,同理可得,点A2 的坐标为〔2,4〕,点B2 的坐标为〔4,2〕,点A3 的坐标为〔4,8〕,点B3 的坐标为〔8,4〕,⋯⋯∴点B2021 的坐标为〔2 2021,22021〕,故答案为:〔2 2021,22021〕.【谈论】此题观察一次函数图象上点的坐标特色、点的坐标,解答此题的要点是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.13. 〔2021·山东潍坊·3 分〕如图,点A1 的坐标为〔2,0〕,过点A1 作x轴的垂线交直线l :y= x 于点B1,以原点O为圆心,O B1 的长为半径画弧交x轴正半轴于点A2;再过点A2 作x轴的垂线交直线l 于点B2,以原点O为圆心,以O B2的长为半径画弧交x轴正半轴于点A3;⋯.按此作法进行下去,那么的长是.13【解析】先依照一次函数方程式求出B1 点的坐标,再依照B1 点的坐标求出A2 点的坐标,得出B2 的坐标,以此类推总结规律即可求出点A2021的坐标,再依照弧长公式计算即可求解,.【解答】解:直线y= x,点A1 坐标为〔2,0〕,过点A1 作x轴的垂线交直线于点B1 可知B1 点的坐标为〔2,2 〕,以原O为圆心,OB1长为半径画弧x轴于点A2,O A2=OB1,O A2 = =4,点A2 的坐标为〔4,0〕,这类方法可求得B2 的坐标为〔4,4 〕,故点A3 的坐标为〔8,0〕,B3〔8,8 〕以此类推即可求出点A2021 的坐标为〔2 2021,0〕,那么的长是= .故答案为:.【谈论】此题主要观察了一次函数图象上点的坐标特色,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.14. 〔2021?山东枣庄?4 分〕将从1 开始的连续自然数按以下规律排列:第1 行1第2 行2 3 4第3 行9 8 7 6 5第4 行10 11 12 13 14 15 16第5 行25 24 23 22 21 20 19 18 17⋯那么2021 在第45 行.142【解析】经过观察可得第n 行最大一个数为n ,由此估计2021 所在的行数,进一步计算得出答案即可.【解答】解:∵442=1936,452=2025,∴2021 在第45 行.故答案为:45.【谈论】此题观察了数字的变化规律,解题的要点是经过观察,解析、归纳并发现其中的规律,并应用发现的规律解决问题.15. 〔2021?山东淄博?4 分〕将从1 开始的自然数按以下规律排列,比方位于第3 行、第4列的数是12,那么位于第45 行、第8 列的数是2021 .【考点】37:规律型:数字的变化类.【解析】观察图表可知:第n 行第一个数是n2,可得第45 行第一个数是2025,推出第45 行、第8 列的数是2025﹣7=2021;【解答】解:观察图表可知:第n 行第一个数是n2,∴第45 行第一个数是2025,∴第45 行、第8 列的数是2025﹣7=2021,故答案为2021.【谈论】此题观察规律型﹣数字问题,解题的要点是学会观察,研究规律,利用规律解决问题.1 6〔2021?四川成都?3 分〕,,,,,,⋯〔即当为大于1 的奇数时,;当为大于1 的偶数时,〕,按此规律,________.【答案】【考点】研究数与式的规律15【解析】【解答】解:∵,∴S2=- -1=∵,∴S3=1÷〔〕=∵,∴S4=-〔〕-1=∴S5=-a-1 、S6=a、S7= 、S8= ⋯∴2021÷4=54⋯2∴S2021=故答案为:【解析】依照求出S2= ,S3= ,S4= 、S5=-a-1 、S6=a、S7= 、S8= ⋯可得出规律,按此规律可求出答案。
全国中考数学试题分类汇编-探索规律问题含答案
探索规律问题1.(浙江台州)课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( )C A .第3天 B .第4天C .第5天D .第6天2.(云南省)用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖块,第n 个图形中需要黑色瓷砖块(用含n 的代数式表示).答案:10,3n+13.(山西省)如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形,则第n 层有 白色正六边形。
答案:6n4.(山东省)将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =(用含n 的代数式表示).答案:13 n(第9题)(1)(2)(3)……(第19题)5(山东泰安)如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点1232008P P P P ,,,,的位置,则点2008P 的横坐标为.答案:20086.(山东威海)如图,在平面直角坐标系中,点A 1是以原点O 为圆心,半径为2的圆与过点(0,1)且平行于x 轴的直线l 1的一个交点;点A是以原点O 为圆心,半径为3的圆与过点(0,2)且 平行于x 轴的直线l 2的一个交点;……按照这样的规 律进行下去,点A n 的坐标为. 答案:(12+n ,n ).7.(山东潍坊)下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)上有(2)n n ≥个圆点时,图案的圆点数为n S .按此规律推断n S 关于n 的关系式为:.8.(青海省)观察下列图形的排列规律(其中☆,□,●分别表示五角星、正方形、圆).●□☆●●□☆●□☆●●□☆●若第一个图形是圆,则第2008个图形是(填名称).答案:正方形9.(沈阳)观察下列图形的构成规律,根据此规律,第8个图形中有 65 个圆.224n S ==, 338n S ==,4412n S ==,10.(江苏淮安)如图,点O(0,0),B(0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2……,依次下去,则点B 6的坐标是.11.(江苏连云港)如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,,依此类推,则由正n 边形“扩展”而来的多边形的边数为.答案:(1)n n12.(湖北孝感)一个质点在第一象限及x 轴、y 轴上运动.在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动﹝即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…﹞,且每秒移动一个单 位,那么第35秒时质点所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)13.(湖北仙桃)如图,矩形ABCD 的面积为5,它的两条对角线第1个……第2个 第3个 第4个① ② ③ ④(第16题图)……(第12题图)A BC1O D 1C2O2C……(第15题图)交于点1O ,以AB 、1AO 为两邻边作平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为两邻边作平行四边形22O ABC ,……,依次类推,则平行四边形n n O ABC 的面积为. 答案:n 2514.(湖北宜昌)如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色3个正方形组成,第27个正方形组成,……那么组成第6个 ). A .22 B .23 C .24 D .25 答案 B(第10题)。
中考数学试题分类汇编:规律探索(含解析)
(•衡阳)观察下列按顺序排列的等式:,,,,…,试猜想第n个等式(n为正整数):a n= ﹣.考点:规律型:数字的变化类.分析:根据题意可知a 1=1﹣,a2=﹣,a3=﹣,…故a n=﹣.解答:解:通过分析数据可知第n个等式为:a n=﹣.故答案为:﹣.点评:本题考查了数字变化规律,培养学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.(,娄底)如图,是用火柴棒拼成的图形,则第n个图形需__________根火柴棒.(•益阳)下表中的数字是按一定规律填写的,表中a的值应是21 .1 2 3 5 8 13 a …2 3 5 8 13 21 34 …考点:规律型:数字的变化类.分析:根据第一行第3个数是前两个数值之和,进而得出答案.解答:解:根据题意可得出:a=13+5=21.故答案为:21.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.(,永州)电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,此WORD中为方便大家识别与印刷,我还是把图乙中的0都标出来吧,以示与未掀开者的区别),如图甲中的“3”表示它的周围八个方块中仅有3个埋有雷.图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有 .(请填入方块上的字母)(•荆州)观察下面的单项式:a ,﹣2a 2,4a 3,﹣8a 4,…根据你发现的规律,第8个式子是 ﹣128a 8. 考点: 规律型:数字的变化类.专题: 规律型.分析: 根据单项式可知n 为双数时a 的前面要加上负号,而a 的系数为2(n ﹣1),a 的指数为n . 解答: 解:第八项为﹣27a 8=﹣128a 8.点评: 本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.(•达州)如图,在△ABC 中,∠A=m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠ABC 和∠ACD 的平分线交于点A ,则∠A= 度。
中考数学总复习专题一:探索规律问题含真题分类汇编解析
聚焦泰安类型一数式规律(绥化)古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2,…第n个三角数记为a n,计算a1+a2,a2+a3,a3+a4,…,由此推算a399+a400=.1.(遵义)按一定规律排列的一列数依次为23,1,87,119,1411,1713,…,按此规律,这列数中的第100个数是__________.类型二图形规律这类题目通常是给出一组图形的排列(或通过操作得到一系列的图形),探求图形的变化规律,以图形为载体考查图形所蕴含的数量关系.解决此类问题:先观察图案的变化趋势是增加还是减少,然后从第一个图形进行分析,运用从特殊到一般的探索方式,分析归纳找出增加或减少的变化规律,并用含有字母的代数式进行表示,最后用代入法求出特殊情况下的数值.(重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.64 B.77 C.80 D.85【分析】观察图形特点,可将图形分为两部分:上面的三角形和下面的正方形,因此小圆圈的个数分别是3+12,6+22,10+32,15+42,…,据此总结出规律求解即可.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n =11时,芍药的数量为( )A .84株B .88株C .92株D .121株4.(绵阳)如图,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+…+1a 19的值为( )A.2021B.6184C.589840D.431760 类型三 点的坐标规律这类问题要求探索图形在运动过程中的规律,通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.(东营)如图,在平面直角坐标系中,直线l :y =33x -33与x 轴交于点B 1,以OB 1为边长作等边三角形A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为边长作等边三角形A 2A 1B 2,过点A 2作A 2B 3平行于x 轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2 017的横坐标是.【分析】利用直线的表达式及等边三角形的性质计算出A1,A2,A3,A4的横坐标,得出规律,写出A2 017的横坐标即可.5.如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y=x上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2 018的坐标是( )A.(22 017,22 017) B.(22 018,22 018)C.(22 017,22 018) D.(22 018,22 017)6.(安顺)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n-1B n的顶点B n的横坐标为_________.参考答案【聚焦泰安】【例1】∵a1+a2=1+3=4=22,a2+a3=3+6=9=32,a3+a4=6+10=16=42,…,∴a n+a n+1=(n+1)2.∴a399+a400=4002=160 000.故答案为160 000.变式训练 1.2992012.nn+1【例2】通过观察,得到小圆圈的个数分别是:第①个图形:3+12=(1+2)×22+12=4;第③个图形:10+32=(1+4)×42+32=19;第④个图形:15+42=(1+5)×52+42=31;…所以第n 个图形:(n +1)(n +2)2+n 2.当n =7时,图中小圆圈的个数为(7+2)(7+1)2+72=85.故选D .变式训练 3.B 4.C【例3】 由直线l :y =33x -33与x 轴交于点B 1,可得B 1(1,0),D(0,-33),∴OB 1=1,∠OB 1D =30°.如图,过A 1作A 1A⊥OB 1于A ,则OA =12OB 1=12,由题可得∠A 1B 2B 1=∠OB 1D =30°, ∠B 2A 1B 1=∠A 1B 1O =60°,∴∠A 1B 1B 2=90°,∴A 1B 2=2A 1B 1=2. 过A 2作A 2B⊥A 1B 2于B ,则A 1B =12A 1B 2=1,即A 2的横坐标为12+1=32=22-12.过A 3作A 3C⊥A 2B 3于C ,同理可得,A 2B 3=2A 2B 2=4,A 2C =12A 2B 3=2,即A 3的横坐标为12+1+2=72=23-12.同理可得,A 4的横坐标为12+1+2+4=152=24-12,由此可得,A n 的横坐标为2n -12,∴点A 2 017的横坐标为22 017-12.故答案为22 017-12.变式训练 5.A 6.2n +1-2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规律探索一.选择题1.(2015湖南邵阳第10题3分)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()考点:旋转的性质;弧长的计算..专题:规律型.分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.解答:解:转动一次A转动第四次的路线长是:0,转动五次A以此类推,每四次循环,故顶点Aπ=6π,2015÷4=503余3顶点A转动四次经过的路线长为:6π×504=3024π.故选:D.点评:本题主要考查了探索规律问题和弧长公式的运用,发现规律是解决问题的关键.2.(2015湖北荆州第10题3分)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A.(31,50)B.(32,47)C.(33,46)D.(34,42)考点:规律型:数字的变化类.分析:先计算出2015是第1008个数,然后判断第1008个数在第几组,再判断是这一组的第几个数即可.解答:解:2015个数,设2015在第n组,则1+3+5+7+…+(2n﹣1)≥1008,,解得:n当n=31时,1+3+5+7+…+61=961;当n=32时,1+3+5+7+…+63=1024;故第1008个数在第32组,第1024个数为:2×1024﹣1=2047,第32组的第一个数为:2×962﹣1=1923,则2015)=47个数.故A2015=(32,47).故选B.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.3.(2015湖北鄂州第10题3分)在平面直角坐标系中,正方形A1B1C1D1 、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3……按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3……在x轴上,已知正方形A1B1C1D1 的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2015B2015C2015D2015的边长是()A B C D【答案】D.考点:1.正方形的性质;2.解直角三角形.4. (2015•山东威海,第12 题3分)如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为()A.B C D考点:正多边形和圆..专题:规律型.分析:连结OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD21D12,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长2,同理可得正六边形A3B3C3D3E3F3的边长=2×2,依此规律可得正六边形A10B10C10D10E10F10的边长=9×2,然后化简即可.解答:解:连结OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD21D12,∴正六边形A2B2C2D2E2F2的边长2,同理可得正六边形A3B3C3D3E3F3的边长=2×2,则正六边形A10B10C10D10E10F10的边长=9×故选D.点评:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.5.(2015•山东日照,第11题3分)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36 B.45 C.55 D.66考点:完全平方公式..专题:规律型.分析:归纳总结得到展开式中第三项系数即可.解答:解:解:(a+b)2=a22+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b)10的展开式第三项的系数为45.故选B.点:此题考查了完全平方公式,熟练掌握公式是解本题的关键6 , (2015•山东临沂,第11题3分)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…. 按照上述规律,第2015个单项式是( )(A ) 2015x 2015. (B ) 4029x 2014. (C ) 4029x 2015. (D ) 4031x 2015. 【答案】C 【解析】试题分析:根据这组数的系数可知它们都是连续奇数,即系数为(2n -1),而后面因式x 的指数是连续自然数,因此关于x所以第2015个单项式的系数为2×2015-1=4029,因此这个单故选C考点:探索规律7.(2015·河南,第8题3分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O2015秒时,点P 的坐标是( ) A .(2014,0) B .(2015,-1) C . (2015,1) D . (2016,0)B 【解析】本题考查直角坐标系中点坐标的规律探索. ∵半圆的半径r =1,∴半圆长度=π, ∴第2015秒点P 2015, 2015÷π=1007…1,∴点P 位于第1008个半圆的中点上,且这个半圆在x 轴的下方. ∴此时点P 的横坐标为:1008×2-1=2015,纵坐标为-1,∴点P (2015,-1) .图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=()A.14 B.15 C.16 D.17考点:规律型:图形的变化类..分析:分析数据可得:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n﹣1)+5.据此可以再求得“龟图”中有245个“○”是n的值.解答:解:第一个图形有:5个○,第二个图形有:2×1+5=7个○,第三个图形有:3×2+5=11个○,第四个图形有:4×3+5=17个○,由此可得第n个图形有:[n(n﹣1)+5]个○,则可得方程:[n(n﹣1)+5]=245解得:n1=16,n2=﹣15(舍去).故选:C.点评:此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.8. (2015•四川省宜宾市,第7题,3分)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、……、20,阴影部分是由第l个圆和第2个圆,第3个圆和第4个圆,……,第l9个圆和第20个圆形成的所有圆环,则阴影部分的面积为(B)A.231πB.210πC.190πD.171π9. (2015•浙江宁波,第10题4分)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC法不断操作下去,经过第2015次操作后得到的折痕D2014E2014到BC,值为【】A. B. C. D.【答案】D.【考点】探索规律题(图形的变化类);折叠对称的性质;三角形中位线定理.【分析】根据题意和折叠对称的性质,DE是△ABC的中位线,D1E1是△A D1E1的中位线,D2E2是△A2D2E1的中位线,……故选D.二.填空题1.(2015•甘肃武威,第18题3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45 ,2016是第63 个三角形数.2. (2015•浙江衢州,第15题4分)已知,正六边形在直角坐标系的位置如图所示,60°,经过2015次翻的坐标是▲ .【考点】探索规律题(图形的变化类----循环问题);正六边形的性质;含30度角角三角形的性质.【分析】如答图,根据翻转的性质,每6次为一个循环组依次循环.∴经过2015次翻转之后,为第336个循环组的第5步.∴∴∴经过20153. (2015•浙江湖州,第16题4分)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推…,若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是__________________________考点:正方形的性质;相似三角形的判定及性质;规律探究题.4. (2015•四川省内江市,第16题,5分)如图是由火柴棒搭成的几何图案,则第n个图案中有2n(n+1)根火柴棒.(用含n的代数式表示)考点:规律型:图形的变化类..专题:压轴题.分析:本题可分别写出n=1,2,3,…,所对应的火柴棒的根数.然后进行归纳即可得出最终答案.解答:解:依题意得:n=1,根数为:4=2×1×(1+1);n=2,根数为:12=2×2×(2+1);n=3,根数为:24=2×3×(3+1);…n=n时,根数为:2n(n+1).点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.(2015·深圳,第15题分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳。