华南理工大学 线性代数与解析几何 试卷 (14)

合集下载

线性代数与空间解析几何试题

线性代数与空间解析几何试题

20XX 年线性代数与空间解析几何试题(A )一. 填空题(每小题3分,共15分)1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200540321A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=132015001B ,则行列式=AB .2.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t A 23402211,若3阶非零方阵B 满足0=AB ,则=t .3.已知3阶方阵A 的行列式3||=A ,则行列式=--|2|1A4.设3阶方阵A 的三个特征值分别为1、2、3,又方阵E A A B +-=22,则方阵B 的特征值为.5.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a a A 0001012为正定矩阵,则a 的取值范围是.二. 单项选择题(每小题3分,共15分)1. 齐次线性方程组0=Ax 有非零解的充分必要条件【 】(A)A 的行向量组线性相关; (B) A 的列向量组线性相关;(C) A 的行向量中有一个为零向量; (D)A 为方阵且其行列式为零.2. 设n 维行向量)21,0,,0,21( =α,矩阵ααT -=I A ,ααT 2+=I B ,其中I 为 n 阶单位阵,则=AB 【 】(A) 0; (B)I -; (C)I ; (D) ααT +I .3. 设321,,ααα是齐次方程组0=Ax 的基础解系,则下列向量组中也可作为0=Ax 的基础解系的是【 】(A)32132212,,ααααααα++++; (B) 133221,,αααααα-++;(C) ;(D) .4. 已知线性方程组有无穷多个解,则【 】 (A) 2; (B) ; (C) 1; (D).5. 设矩阵的秩,下述结论中正确的是.【 】(A)的任意个列向量必线性无关;(B)的任意一个阶子式不等于零;(C)齐次方程组只有零解;(D)非齐次方程组必有无穷多解.321211,,αααααα+++3221,0,αααα--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡211111111321x x x a a a =a 2-1-n m A ⨯n m A r <=)(A m A m 0=Ax b Ax =三. (10分)已知方阵,试求行列式及逆矩阵. 四.(10分)设方阵,已知,求.五. (12分)讨论为何值时,方程组(1)有唯一解?(2)无解?(3)有无穷多解?并在有无穷多解时求出其通解.六.(10分)设向量组:,,,,试求此向量组秩和一个极大无关组,并将其余向量用极大无关组线性表示.七. (12分)用正交变换化二次型为标准型,并求出所用的正交变换及的标准型.八. (8分)已知3阶方阵满足:,,其中为元素的代数余子式,求九.(8分)设两向量组:,的秩为,证明:向量组的秩为3.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2000011202310216A ||A 1-A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=310120002A BA A ABA +=26B λ⎪⎩⎪⎨⎧=+++=+++=+++λλλλ321321321)1(3)1(0)1(x x x x x x x x x T 1)1,1,1(-=αT 2)2,4,3(-=αT 3)0,4,2(=αT 4)1,1,0(=α322322213214332),,(x x x x x x x x f +++=f )(ij a A =ij ij A a =011≠a ij A ij a .||A 321,,)I (ααα421,,)II (ααα3)II (,2)I (==r r 4321,,αααα+20XX 年线性代数与空间解析几何试题(B )一、填空题(每小题3分,共15分)1.设矩阵,,则行列式.2.设,若3阶非零方阵满足,则.3.齐次线性方程组的基础解系为_. 4.曲线绕轴旋转一周所得旋转面的方程为. 5.若矩阵为正定矩阵,则的取值范围是.二. 单项选择题(每小题3分,共15分)1. 齐次线性方程组有非零解的充分必要条件是【 】(A)的行向量组线性相关; (B) 的列向量组线性相关;(C) 的行向量中有一个为零向量; (D)为方阵且其行列式为零.2. 设维行向量,矩阵,,其中为阶单位阵,则【 】(A) 0; (B);(C); (D) .3. 设是齐次方程组的基础解系,则下列向量组中也可作为的基础解系的是【 】(A); (B) ;(C) ;(D) .6. 已知线性方程组有无穷多个解,则【 】(A) 2; (B) ; (C) 1; (D).7. 设矩阵的秩,下述结论中正确的是【 】(A)的任意个列向量必线性无关;(B)的任意一个阶子式不等于零;(C)齐次方程组只有零解;(D)非齐次方程组必有无穷多解.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200540321A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=132015001B =AB ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t A 23402211B 0=AB =t ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-000201421321x x x ⎩⎨⎧≤≤==)31( 0x z e x yox ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a a A 0001012a 0=Ax A A A A n )21,0,,0,21( =αααT -=I A ααT 2+=I B I n =AB I -I ααT +I 321,,ααα0=Ax 0=Ax 32132212,,ααααααα++++133221,,αααααα-++133221,,αααααα+++3221,0,αααα--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡211111111321x x x a a a =a 2-1-n m A ⨯n m A r <=)(A m A m 0=Ax b Ax =三. (10分)已知3阶方阵可逆且,试求的伴随矩阵的逆矩阵.四.(12分)证明直线与直线在同一平面上,并求与交点的坐标,及平面的方程.五. (12分)设向量,,,,,问取何值时,向量可由向量组线性表示?并在可以线性表示时求出此线性表示式.六.(8分)设两向量组:,的秩为,证明:向量组的秩为3.七. (10分)已知方阵的特征值为(1) 求的值;(2) 是否可以对角化?若可以,求可逆矩阵及对角矩阵,使得.一. (12分)用正交变换化二次型为标准型,并求出所用的正交变换及的标准型九. 证明题(6分)(两题中选做一题)1. 设3维欧几里德有两个标准正交基,.已知可由线性表示为,试证:矩阵为正交矩阵. 2. 设为阶方阵,表示矩阵的秩,试证:A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-3330221011A A 112131:1+=+=+z y x L 243514:2-=-+=-z y x L π1L 2L πT 1)4 ,2 ,1 ,1(-=αT 2)2 ,3 ,1 ,0(=αT 3)14 ,10 ,2 ,3(+-=a αT 4)5 ,2 ,1 ,1(+-=a αT )10 ,6 ,1 ,2(+-=b βb a ,β4321,,,αααα321,,)I (ααα421,,)II (ααα3)II (,2)I (==r r 4321,,αααα+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=3000201a b A .0,3321===λλλb a ,A P D D AP P =-1323121232221321828878),,(x x x x x x x x x x x x f +-++-=f V 321,,)I (ααα321,,)II (βββ)II ()I (⎪⎩⎪⎨⎧++=++=++=333223113333222211223312211111αααβαααβαααβa a a a a a a a a 33)(⨯=ij a A A n )(A R A ).()(1+=n n A R A R20XX 年线性代数与空间解析几何试题(C )一. 填空题(每小题3分,共30分)1. 已知3阶方阵的行列式,则行列式.2. 已知3阶方阵,其中为的列向量组,若行 列式,则行列式.3. 已知阶方阵,满足,为单位阵,则.4.设矩阵,为的伴随阵,则_____.5.设,若3阶非零方阵满足,则____.6. 设向量组:,,线性相关,则___.7.设是维向量,令,,,则 向量组的线性相关性是.8. 设为的矩阵且秩为2,又3维向量是方程组的两个 不等的解,则对应的齐次方程组的通解为.9. 设3阶可逆方阵有特征值2,则方阵必有一个特征值为.10. 若二次型为正定二次型,则的取值范围是______________.二. (8分)已知方阵,试求行列式. 三.(12分)设方阵,又已知,求以及.四. (12分)讨论为何值时,方程组(1) 有唯一解?(2) 无解?(3) 有无穷多解?并在此时求出其通解. 五.(10分)设向量组:,,,,试求此向量组的秩和一个极大无关组,并将其余向量用极大无关组线性表示.六. (12分)用正交变换化二次型为标准型,并求出所用的正交变换及的标准型.A 0||≠=a A =-|2|A ),,(321βββ=B 321,,βββB 2||-=B =-|,3,2|1213ββββn A 02=--E A A E =-1A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100010321A *A A =-*1)(A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=12032211t A B 0=AB =t T 1)0,0,1(=αT 2)4,2,0(=αT 3),3,1(t -=α=t 21,ααn 1212ααβ-=211ααβ+=211ααβ-=321,,βββA 34⨯21,ηηb Ax =0=Ax A 12)(-A 212322213212)1(2),,(x x x x x x x x f --++=λλλ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+=y x x x x x y x x x x x y x x x x x y x A 322||A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=200010002,100011021B A BA AX =X A ,1-5X λ⎪⎩⎪⎨⎧=+++=+++=+++λλλλ321321321)1(3)1(0)1(x x x x x x x x x T 1)1,1,1(-=αT 2)2,4,3(-=αT 3)0,4,2(=αT 4)1,1,0(=α32232221321222),,(x x x x x x x x f +++=f七. (8分)设方阵为阶正交阵且,为阶单位阵,试求行列式八.(8分)设两向量组:,的秩为,证明:可由向量组线性表出.A n 0||<A E n .||E A +321,,)I (ααα4321,,,)II (αααα3)II ()I (==r r 4α321,,ααα20XX 年线性代数与空间解析几何试题(A )符号说明:)det(A 指方阵A 的行列式;*A 指方阵A 的伴随矩阵;TA 指矩阵A 的转置矩阵;r )(A 指矩阵A 的秩;I 为单位矩阵;n x ]F[指次数不超过n 的一元多项式全体构成的线性空间. 一、填空题 (每小题3分,共12分)(1) 若3阶方阵A 、B 的行列式分别为3)det(,2)det(==B A ,则=--)2det(*1B A __________.(2) 设4阶可逆方阵A 按列分块为][4321αααα =A ,方阵][2314αααα =B ,已知线性方程组b Bx =有唯一解为T ) , , 753,1(=x ,则方程组b Ax =的解为x =__________ .(3) 设3阶实对称矩阵A 的特征值为1,221-===3 λλλ,T )3,2,1(1=α及T )4,3,2(2=α均为A 的对应于特征值2的特征向量,则A 的对应于特征值1-的特征值向量为_________________.(4) 设矩阵A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301,22310321b t p ,已知线性方程组b Ax =无解,则常数p 与t 满足的关系式是____________.二、单项选择题(每小题3分,共12分)(1) 设m 阶方阵A 的秩为m ,n m ⨯矩阵B 的秩为s ,则(A) (r AB s <). (B) (r AB s >).(C) (r AB s =). (D) (r AB n >). 【 】(2) 设方阵A 与B 相似,即存在可逆方阵P ,使B AP P =-1,已知ξ为A 的对应于特征值λ的特征向量,则B 的对应于特征值λ的特征向量为(A) ξP . (B) ξT P . (C) ξ. (D)ξ1-P . 【 】 (3) 设A 为实对称矩阵,则0)det(>A 是A 为正定矩阵的(A) 充分而非必要条件. (B) 必要而非充分条件.(C) 充分必要条件. (D) 既非充分又非必要的条件. 【 】(4) 设321 , ,ααα是齐次线性方程组0=Ax 的基础解系,则向量组(A) 133221 , , αααααα+++不能作为0=Ax 的基础解系.(B) 133221 , ,αααααα++-可作为0=Ax 的基础解系.(C) 133221 , , αααααα--+可作为0=Ax 的基础解系.(D) 132121 , , αααααα++-不能作为0=Ax 的基础解系. 【 】三、(12分) 已知方阵=A 33)(⨯ij a 的第1行元素分别为111=a ,212=a ,113-=a ,且知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=524735947*A ,求)det(A 及A . 四、(12分)设有向量组(I):T 1)5 ,3 ,1 ,2(-=α,T 2)4,3 ,2 ,3(-=α,T 3)3,1,3 ,4(-=α,T 4)17 ,15 ,1 ,4(-=α.问向量T )0 ,7 ,6 ,7(-=β能否表示成向量组(I)的线性组合?若能,求出此表示式.五、(12分)求直线L :z y x -==-11在平面π:12=+-z y x 上的投影直线0l (即L 上各点在π上的垂足点全体所形成的直线)的方程.六、(13分) 已知矩阵=A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡a b 32132143214321相似于对角矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00010D . (1) 求常数a 、b 的值;(2) 求一个可逆矩阵P ,使D AP P =-1.七、(13分)求一个正交变换,将二次型323121321222),,(x x x x x x x x x f ++=化成标准形,并指出二次曲面0),,(321=x x x f 的名称.八、(8分)(注意:学习过第8章“线性变换”者做第2题,其余的做第1题).1. 设矩阵⎥⎦⎤⎢⎣⎡-=31211A ,⎥⎦⎤⎢⎣⎡-=41102A ,⎥⎦⎤⎢⎣⎡--=101013A ,⎥⎦⎤⎢⎣⎡-=62734A . 证明:元素组321,,A A A 线性无关,而4321,,,A A A A 线性相关,并指出数域F 上线性空间1{k W = +1A +4k 4A |}4,,1 F, =∈i k i 的基与维数.2. 设T 为3]F[x 上的线性算子,定义为() )()1()(x f x f x f T -+=,3]F[)( x x f ∈∀ 求T 在3]F[x 的基:32 , , ,1x x x 下的矩阵,并指出T 的秩及T 的零度.九、(6分)设n 阶方阵A 的秩为1-n . 证明:A 的伴随矩阵*A 相似于对角矩阵的充要条件是02211≠+++nn A A A ,其中ii A 为)det(A 的),(i i 元素的代数余子式.20XX 年线性代数与空间解析几何试题(B )符号说明:)det(A 指方阵A 的行列式;*A 指方阵A 的伴随矩阵;TA 指矩阵A 的转置矩阵;r )(A 指矩阵A 的秩;I 为单位矩阵;n x ]F[指次数不超过n 的一元多项式全体构成的线性空间. 一、填空题 (每小题3分,共12分)(1) 若3阶方阵A 的行列式为2)det(=A ,则1*det(2)A A --=________.(2) 设A 为43⨯的矩阵,秩3)(=A r ,已知方程组b Ax =有两个不等的特解21,ηη,则方程组0=Ax 的通解为x =__________ .(3) 设3阶实对称矩阵A 的特征值为2,1321===λλλ,又T )0,0,2(1=α为A 的对应于特征值1的特征向量,则A 为_________________.(4) 设A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=t 22310321,已知非零矩阵B 满足0=AB ,则t =_________.二、单项选择题(每小题3分,共12分)(1) 设m 阶方阵A 的秩为2-m ,则矩阵*A 的秩为(A) 2-m . (B)2. (C) 1. (D) 0. 【 】(2) 设三阶方阵A 可逆,且各行元素之和均为2,则A 必有特征值(A) 1. (B) 2. (C) -1. (D) -2. 【 】(3) 2=a 是T 3T 2T 1),2,2,1( ,,0)(1,0, ,(1,1,-1,1)a a ===ααα线性无关的(A) 充分而非必要条件. (B) 必要而非充分条件.(C) 充分必要条件. (D) 既非充分又非必要的条件. 【 】(4) 设A 为n m ⨯矩阵且n m <,则下述结论正确的是(A) )0(≠=b b Ax 必有解. (B) 0=Ax 必有无穷多组解.(C) 0=Ax 只有零解. (D) )0(≠=b b Ax 必无解. 【 】三、(12分) 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100000001,410530602B A ,又三阶方阵X 满足X AB B XA +=+,求101X .四、(12分)已知方程组⎪⎩⎪⎨⎧=+-+=+++=+++122242432143214321x x x x ax x x x b x x x x ,讨论b a ,为何值时方程组(1) 有解?(2)无解?并在有解时求出其通解.五、(12分)求过点(1,2,3)且与直线L :z y x -==-11垂直相交的直线方程.六、(13分) 已知矩阵=A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡210012003204321t 可以相似于对角矩阵, (1) 求常数t 的值;(2) 求一个可逆矩阵P ,使AP P 1-为对角阵.七、(13分)求一个正交变换,将二次型31212221321222),,(x x x x x x x x x f -++=化成标准形,并指出二次曲面1),,(321=x x x f 的名称.八、(8分)(注意:学习过第8章“线性变换”者做第2题,其余的做第1题).1.设矩阵⎥⎦⎤⎢⎣⎡-=31211A ,⎥⎦⎤⎢⎣⎡-=41102A ,⎥⎦⎤⎢⎣⎡=70113A ,⎥⎦⎤⎢⎣⎡--=12314A . 试求数域F 上线性空间1{k W = +1A +4k 4A |}4,,1 F, =∈i k i 的基与维数.。

线性代数与几何答案华南理工大

线性代数与几何答案华南理工大

线性代数与几何答案华南理工大【篇一:华南理工大学线性代数与解析几何试卷(14)】s=txt>华南理工大学期末考试《线性代数-2007》试卷a注意事项:1. 考前请将密封线内填写清楚;2. 所有答案请直接答在试卷上(或答题纸上); 3.考试形式:开(闭)卷;一、单项选择题(每小题2分,共30分)。

1.设矩阵a1 2??3 4??, b1 23??456??, c??14?25,则下列矩阵运算无意义的是【】36??a. bacb. abcc. bcad. cab2.设n阶方阵a满足a2–e =0,其中e是n阶单位矩阵,则必有【】a. a=a-1b. a=-ec. a=ed. det(a)=13.设a为3阶方阵,且行列式det(a)=?12,则a*【】 a. ?14b. 14c. ?1d. 1 4.设a为n阶方阵,且行列式det(a)=0,则在a的行向量组中【】a.必存在一个行向量为零向量b.必存在两个行向量,其对应分量成比例c. 存在一个行向量,它是其它n-1个行向量的线性组合d. 任意一个行向量都是其它n-1个行向量的线性组合5.设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是【】 a.a1?a2,a2?a3,a3?a1 b. a1,a2,2a1?3a2 c. a2,2a3,2a2?a3 d.a1,a2,a1?a36.向量组(i): a1,?,am(m?3)线性无关的充分必要条件是【】a.(i)中任意一个向量都不能由其余m-1个向量线性表出b.(i)中存在一个向量,它不能由其余m-1个向量线性表出 c.(i)中任意两个向量线性无关d.存在不全为零的常数k1,?,km,使k1a1kmam?0【】a.a的行向量组线性相关 b. a的列向量组线性相关 c. a的行向量组线性无关 d. a的列向量组线性无关a1x1a2x2a3x308.设ai、bi均为非零常数(i=1,2,3),且齐次线性方程组?bx?bx?bx?02233?11的基础解系含2个解向量,则必有【】a.a1a2b2b30 b.a1a2b1b20 c.a1a3a1a2a30 d.b1b2b1b2b3【】9.方程组?x?2x?x?1 有解的充分必要的条件是1233 x3x2xa123?2x1x2x31a. a=-3b. a=-2c. a=3d. a=2【】a. 方程组有无穷多解b. 方程组可能无解,也可能有无穷多解c. 方程组有唯一解或无穷多解d. 方程组无解12. n阶方阵a相似于对角矩阵的充分必要条件是a有n个【】a.互不相同的特征值b.互不相同的特征向量c.线性无关的特征向量d.两两正交的特征向量13. 下列子集能作成向量空间rn的子空间的是【】a. {(a1,a2,?,an)|a1a2?0}b. {(a1,a2,?,an)|c. {(a1,a2,?,an)|a1?1}d. {(a1,a2,?,ana)|?an1i?nii0} 1}14.【】1001?1 2a. 011b. ?5?2-10 1 -1c. ?1 -11 0d.0 -10 -11 0 015.若矩阵a?0 2 a正定,则实数a的取值范围是【】 0 a 8?? a.a 8b. a>4c.a<-4 d.-4 <a<4二、填空题(每小题2分,共20分)。

华南理工大学线性代数 课后习题答案

华南理工大学线性代数 课后习题答案

n
0 0 0
0
0 0 0
解:D (1) n 1 0
习题一部分讲解
第 一 章 7 题 : 求 A 2 和 A 2 n 1 , 其 中 1 1 A 1 1 1 1 2 解: A 1 1 4 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 4 0 0 0 1 4 0 0 0 4 0 0 0 4 0 0 1 1 1 1
T
a11 证: 设A a n1 c11 T 令AA C c n1
a1n ann c1n O cnn
n k 1
n k 1
n k 1
aik aik aik 2 =0 (i=1,2,...,n) cii aik aki 则 aik 0 (i 1, 2,..., n; k 1, 2,..., n) 0 0 所以,A O 0 0 第一章14 题: (E A)(E A A A ) E
(是方阵)
(2) (En uu )(En uu ) En ( (u u ) )uu En
T T T T

当u O, 矩阵uu T O, 则数( (u T u ) ) 0 当 u u 1 0,
T
uT u 1
第一章25题 : 设 A为 n阶矩阵, x是每个元素都是1的 n维列向量。 证明:(1) 列向量 Ax的 第 i个 元 素等于 A的 第 i行 元素之和 ; 1 a11 a1n 证: 记 A , x a n1 ann 1 a11 a12 a1n 1 n a1 j A第1行 元素之和 a21 a22 a2 n j 1 Ax 1 n A第 n行 元素之和 a a 1 nj a a n2 nn n1 j 1 所以,列向量 Ax的第 i个元素等于 A的第 i行 元素之和

华工2006-2007线性代数试题及解答

华工2006-2007线性代数试题及解答

华南理工大学期末考试《 2006线性代数 》试卷A一、填空题(每小题4分,共20分)。

0.已知正交矩阵P 使得100010002T P AP ⎛⎫⎪=- ⎪ ⎪-⎝⎭,则2006()T P A E A P +=1.设A 为n 阶方阵,12,,n λλλ⋅⋅⋅⋅⋅⋅是A 的n 个特征根,则det( 2A )=2.设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有无数多个解的充分必要条件是:rank(A)=rank(A,B)<n 3.4.若向量组α=(0,4,2),β=(2,3,1),γ=(t ,2,3)的秩为2,则t=-85.231511523()5495827x D x xx -=-,则0)(=x D 的全部根为:1、2、-3二、 选择题(每小题4分,共20分)1.行列式001010100⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅的值为( c )。

DA , 1,B ,-1C ,(1)2(1)n n -- D ,(1)2(1)n n +-2.对矩阵n m A ⨯施行一次行变换相当于( A )。

A , 左乘一个m 阶初等矩阵,B ,右乘一个m 阶初等矩阵C , 左乘一个n 阶初等矩阵,D ,右乘一个n 阶初等矩阵3.若A 为m ×n 矩阵,()r A r n =<,{|0,}nM X AX X R ==∈。

则( C )。

DA ,M 是m 维向量空间,B , M 是n 维向量空间C ,M 是m-r 维向量空间,D ,M 是n-r 维向量空间4.若n 阶方阵A 满足,2A =0,则以下命题哪一个成立( A )。

DA , ()0r A =,B , ()2n r A =C , ()2n r A ≥,D ,()2n r A ≤5.若A 是n 阶正交矩阵,则以下命题那一个不成立( D )。

A ,矩阵A T 为正交矩阵,B ,矩阵1A -为正交矩阵C ,矩阵A 的行列式是±1,D ,矩阵A 的特征根是±1三、解下列各题(每小题6分,共30分) 1.若A 为3阶正交矩阵,*A 为A 的伴随矩阵, 求det (*A )2.计算行列式111111111111a a a a。

华南理工大学 华南理工2009年641线性代数 考研真题及答案解析

华南理工大学 华南理工2009年641线性代数 考研真题及答案解析

1 1 ( ai ≠ 0, i = 1, 2,L , n ) 。 M 1 + an
⎛1 1 0 ⎞ ⎜ ⎟ * 2、设矩阵 A = 0 1 0 ,且满足方程 A* BA = 2 BA − 9 E ,其中 A 为 A 的伴随矩 ⎜ ⎟ ⎜ 0 0 −1⎟ ⎝ ⎠
阵,试求矩阵 B 。
⎧ x1 − ax2 − 2 x3 = −1 ⎪ 3、 问: a 为何值时, 线性方程组 ⎨ x1 − x2 + ax3 = 2 有唯一解, 无解, 有无穷多解? ⎪ 5x − 5x − 4x = 1 2 3 ⎩ 1
(C) k1 ( β 2 + β 1 )+ k 2 ( β 2 + β 3 )+ k 3 ( β 3 + β 1 ) ; (D) k1 ( β 1 - β 2 )+ k 2 ( β 2 - β 3 ) 。 4、设向量组 α1 , α 2 , α 3 , α 4 线性无关,则下列向量组线性相关的是 (A) α1 , 2α 2 ,3α 3 , 4α 4 ; (B) α1 , α1 + α 2 , α1 + α 2 + α 3 , α1 + α 2 + α 3 + α 4 ; (C) α 4 , α 3 − α 4 , α 2 − α 3 , α1 − α 2 ; (D) α1 + α 2 , α 2 + α 3 , α 3 + α 4 , α 4 + α1 。 。
第 4 页
并在有无穷多解的情况下,用基础解系表示其通解。 4、已知 R 线性变换 T 在基 η1 = (−1,1,1) , η 2 = (1, 0, −1) , η3 = (0,1,1) 下的矩阵为
3
⎛ 1 0 1⎞ ⎜ ⎟ ⎜ 1 1 0 ⎟ ,求 T 在基 ε1 = (1, 0, 0) , ε 2 = (0,1, 0) , ε 3 = (0, 0,1) 下的矩阵。 ⎜ −1 2 1 ⎟ ⎝ ⎠

大学线性代数与解析几何习题

大学线性代数与解析几何习题
(2)detA≠0→A可逆
→齐次线性方程组Ax=0只有零解
AB=0→B的列向量是齐次线性方程组Ax=0的解→B=0
或:A可逆,即A-1存在→根据AB=0→A-1A B= A-10→B= A-1
三、空间解析几何部分
(一)填空题
1.已知 ,则 .
提示:a0=a/|a|
2.设 则 =.
提示:|a×b|=|a||b|sin→cos→a.b=|a||b|cos
2.
(A) (B)
(C) (D)
提示:|AB|=|A||B|=|BA|
3.设 阶矩阵 ,若矩阵 的秩为 ,则 必为
()
提示:参见书本及作业上的例子。
4.
提示:参见前面的内容。
5. ()
提示:(AB)2=I→ABAB=I→A(BAB)=I→A-1=BAB
(AB)2=I→ABAB=I→(ABA)B=I→B-1=ABA
4.设 ,则 .
提示:对矩阵A施行初等行变换,非零行的行数即为矩阵A的秩。
5.设 ,则当 满足条件时, 可逆.
提示:矩阵A的行列式detA≠0时,矩阵可逆。
(二)选择题
1.设 阶矩阵 ,则必有()
(A) (B) (C) (D)
提示:A的逆矩阵为BC
2. ()
提示:P的列为齐次线性方程组Qx=0的解,P非零,Qx=0有非零解,故Q的行列式detQ=0
2.设向量 ( )
提示:Prjba=|a|cos,|a|=3→cos→cosa.b)/(|a||b|)
3. ( )
提示:向量平行,对应坐标分量成比例。
4.设向量 且 ( )
提示:向量混合积的计算方法。
5. ( )
提示:根据向量乘法运算律展开,并考察向量积的方向特性。

华南理工大学线代考试题2008

华南理工大学线代考试题2008

研究生《线性代数》考试题 2008年12月姓名 院(系) 学号一、单项选择题:(每小题 4分,共24分)1、已知A 是n 阶方阵,则|A **|=_________,其中A **是指A 的伴随矩阵的伴随矩阵(a ) |A|1-n (b ) ()21-n A(c ) |A|1+n (d )||1A2、设n 阶方阵A 满足A 2+2A +3E =0,其中E 是n 阶单位矩阵,则必有_________。

A. 矩阵A 是实矩阵B. A=-EC. det(A)=1D. -1是矩阵A 的一个特征值3、下列结论成立的是_______________(a )1α,……,s α线性无关,则任一向量i α不能由其余向量线性表示 (b )1α,……,s α线性相关,则任一向量i α可由其余向量线性表示 (c )1α,……,s α线性相关,至少存在某两向量成比例(d )1α,……,s α中任意两向量不成比例,则1α,……,s α线性无关4、已知矩阵A 53⨯的秩为3,1β ,2β,3β是线性方程组AX =B 的三个线性无关的解,则 AX =B 的通解可表示为:_____________(a )1k 1β+2k 2β+3k 3β (b )1k (2β-1β)+2k (3β-1β)+1β (c )1k (2β+1β)+2k (2β+3β)+3k (3β+1β) (d )1k (1β-2β)+2k (2β-3β)5、设向量组321,,a a a 线性无关,则下列向量组中线性无关的是_________。

A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 1321,,a a a a -6、n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个_________A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量二、填空题(每小题 4分,共24分)1、设矩阵,1 00 2,1 0 23 1- 1⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=B A 记T A 为A 的转置,*B 为B 的伴随矩阵,则*B A T= 。

华南理工大学期中考试

华南理工大学期中考试

华南理工大学线性代数与解析几何期中考试
一.选择题
1.设A 为n 阶对称矩阵, B 为n 阶反对称矩阵, 则下列矩阵中为反对称矩阵的是( ).
(A)BA AB -; (B)BA AB +; (C)2)(AB ; (D)BAB ;
2.均为n 阶方阵, 则下面结论正确的是( ).
(A)若A 或B 可逆, 则AB 必可逆; (B)若A 或B 不可逆, 则AB 必不可逆; (C)若B A 、均可逆, 则B A +必可逆; (D)若B A 、均不可逆, 则B A +必不可逆.
3.若n 阶方阵B A 、都可逆, 且BA AB =, 则下列( )结论错误.
(A)11--=BA B A ; (B)A B AB 11--=; (C)1111----=A B B A ; (D)11--=AB BA ;
4.设C B A 、、为同阶方阵, 且E ABC =, 则下列各式中不成立的是( ).
(A)E CAB =; (B)E C A B =---111; (C)E BCA =; (D)E B A C =---111.
二.填空题
2. 求此平面方程
3.设n i a i ,3,2,1,0=≠, 且⎥⎥⎥⎥⎥
⎥⎦

⎢⎢⎢⎢⎢
⎢⎣⎡=-00
000000000121
n
n a a a a A ,则1-A
=
三.解答题 1.设n 阶矩阵A 和B 满足:
AB B A =+.
(1)证明: E A -为可逆矩阵, 其中E n 阶单位矩阵; (2)证明: BA AB =
;
(3)已知⎥⎥
⎥⎦

⎢⎢⎢⎣⎡-=200012031B , 求矩阵A .
2.(附加题)计算下面行列式。

05华工线代试题及答提示

05华工线代试题及答提示

2005年华南理工大学线性代数期考试卷姓名 班级 成绩单序号一. 填空题(15分)1.若*A 是6阶方阵A 的伴随矩阵,且rank(A)=4, 则rank(*A )=( ).2.设cos sin sin cos A αααα-⎛⎫=⎪⎝⎭,则100A =( )。

3.设12,3123{(,)|230}T V x x x x x x =-+=是3R 的子空间,则空间V 的维数是( )。

4.对称矩阵A 的全部特征根是4,-5,3,2,若已知矩阵A E β+为正定矩阵,则常数β必须大于数值( )。

5.已知n 阶矩阵100...0010...0001...0..................000...1000...01A λλλλ⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,0λ≠,则矩阵A 的逆是二.选择题(15分)1.若A,B 是n 阶方阵,下列等式中恒等的表达式是( )A.222()AB A B =,B. 111()AB A B ---=,C. | A+B|=|A|+|B|,D. ***()AB B A =2.若A 是n 阶方阵,则A为正交矩阵的充要条件不是( )A.A的列向量构成n R 的单位正交基,B.A的行向量构成n R 的单位正交基, C.1T A A -=, D.d e t 1A =± 3.若1V 是空间n R 的一个k 维子空间,1,...,k αα是1V 的一组基;2V 是空间m R 的一个k 维子空间, 1,...,k ββ是2V 的一组基.且,,m n k m k n ≠<<,则( ) A.向量组1,...,k αα可以由向量组1,...,k ββ线性表示,B. 向量组1,...,k ββ可以由向量组1,...,k αα线性表示,C. 向量组1,...,k ββ与向量组1,...,k αα可以相互线性表示,D. 向量组1,...,k ββ与向量组1,...,k αα不能相互线性表示.4.若12,λλ是实对称阵A 的两个不同特征根,12,ξξ是对应的特征向量,则下列命题哪一个不成立( )A. 12,λλ都是实数,B. 12,ξξ一定正交,C. 12ξξ+有可能是A 的特征向量。

华南理工大学 线性代数与解析几何 习题 (3)

华南理工大学 线性代数与解析几何 习题 (3)

1 , 2 , , r,1 , 2 , , t 线性表示;
因此,向量组1 1 , 2 2 , , n n 可由向量组1 , 2 , , r,1 , 2 , , t 线性表示, 则rank(1 1 , 2 2 , , n n ) rank(1 , 2 , , r,1 , 2 , , t ) r t 即:rank(A B) r t rank ( A) rank ( B )
三、 (第3章第6题) 证明:若方程组 a11 a11 x1 a12 x2 a1n xn b1 系数矩阵的秩等于矩阵 an1 a x a x a x b nn n n n1 1 n 2 2 b1 的秩,则这个方程组有解。 a12 b2 a1n ann bn a1n b1 bn 0
九、(第四章第14题)证明V {( x1 , x2 , x3 ) | 2 x1 x2 3 x3 0}是R 3的 一个子空间,并求V 的一组基。 证: 设任意向量 =(a1 , a2 , a3 )T , (b1 , b2 , b3 )T V , 任意k , t R, 则 2a1 a2 3a3 0, 2b1 b2 3b3 0 k t (ka1 tb1 , ka2 tb2 , ka3 tb3 )T 由于 2(ka1 tb1 ) (ka2 tb2 ) 3(ka3 tb3 ) =k (2a1 a2 3a3 ) t (2b1 b2 3b3 ) 0 所以,k t V . 则V 是子空间。 x1 c1 x1 1 0 解方程组: 2 x1 x2 3 x3 0 x2 2c1 3c2 x2 c1 2 c2 3 x c x 0 1 2 3 3 则 (1,2,0)T ,(0,3,1)T 是子空间V的一组基。

大学线性代数与解析几何习题

大学线性代数与解析几何习题

《线性代数与解析几何》复习题一、矩阵部分(一)填空题.1.设()1123123,(1,,)αβ==,TT B A βαβα==,,则3___________A =.提示:A 3=βαββαβααββαβααTT T T T T T 3)(==2.设方阵A 满足240,,A A I I +-=其中为单位矩阵,1)_____________A I --=则(. 提示:A 2+A-4I=0→A 2+A-2I-2I=0→(A-I)(A+2I)=2I →(A-I)(A+2I)/2=I 3.设方阵A 满足0322=--I A A ,则=-1A ____________.提示:A 2-2A-3I=0 → A(A-2A)=3I4.设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=1301113111211111A ,则=)(A r . 提示: 对矩阵A 施行初等行变换,非零行的行数即为矩阵A 的秩。

5.设⎪⎪⎪⎭⎫ ⎝⎛=a a a a a a A 111,则当a 满足条件 时,A 可逆.提示:矩阵A 的行列式detA ≠0时,矩阵可逆。

(二)选择题1.设n 阶矩阵,,,A B C ABC I I =满足为单位矩阵,则必有 ( ) (A )I ACB = (B )I BCA = (C )I CBA = (D )I BAC =提示:A 的逆矩阵为BC2.12321,,0,312Q t P QP t ⎛⎫ ⎪=-== ⎪ ⎪⎝⎭已知是三阶非零矩阵且则 ( )()1()1()2()2A B C D --提示:P 的列为齐次线性方程组Qx=0的解,P 非零,Qx=0有非零解,故Q 的行列式detQ=0 3.1112132122232122231112131313233311132123313010,100001a a a a a a A a a a B a a a P a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦⎣⎦设2100010,101P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦则必有 ( )12211221()()()()A APP BB AP P BC PP A BD P P A B ====提示:矩阵B 由矩阵A 经初等行变换得到,故在C 或D 中选择,P1、P2为初等矩阵,P1为交换第1、2行,P2为将第一行的1倍加到第三行,故选C 4.设n 维向量)21,0,,0,21(=α,矩阵ααααT T I B I A 2,+=-=,其中I 为n 阶单位矩阵,则=AB ( )()()()()T A B IC ID I αα-+提示:AB = (I-αT α)(I+2αT α)=I+αT α-2 αT α αT α= I+αT α-2 αT (α αT )α=I5.A 、B 则必有且阶矩阵均为,))((,22B A B A B A n -=-+ ( ) (A ) B=E (B ) A=E (C )A=B (D )AB=BA提示:(A+B)(A-B)=AA-AB-BA-BB6.矩阵==≠≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)(,4,3,2,1,0,0,44342414433323134232221241312111A r i b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a A ii 则其中 ( )A 、1B 、2C 、3D 、4 提示:A=(a 1,a 2,a 3,a 4)T (b 1,b 2,b 3,b 4) (三)计算题1.2101,02010AB I A B A I B ⎛⎫ ⎪+=+= ⎪ ⎪-⎝⎭设,为单位矩阵,求矩阵。

华南理工大学2007线性代数期末试卷A

华南理工大学2007线性代数期末试卷A

,考试作弊将带来严重后果!华南理工大学期末考试(A 卷)《 2007线性代数 》试卷1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷;.设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =无解的充分必要条件是: .已知可逆矩阵P 使得1sin sin con P AP con θθθθ-⎛⎫=⎪-⎝⎭,则12007P A P -= .若向量组α=(0,4,t ),β=(2,3,1),γ=(t ,2,3)的秩为2,则t= . 若A 为2n 阶正交矩阵,*A 为A 的伴随矩阵, 则*A = .设A 为n 阶方阵,12,,,n λλλ⋅⋅⋅⋅⋅⋅是A 的n 个特征根,则1ni i E A λ=-∑=选择题(共20分) .将矩阵n m A ⨯的第i 列乘C 加到第j 列相当于对A :, 左乘一个m 阶初等矩阵, B ,右乘一个m 阶初等矩阵 , 左乘一个n 阶初等矩阵, D ,右乘一个n 阶初等矩阵 .若A 为m ×n 矩阵,B 是m 维 非零列向量,()min{,}r A r m n =<。

集合{:,}n M X AX B X R ==∈则,M 是m 维向量空间, B , M 是n-r 维向量空间 ,M 是m-r 维向量空间, D , A ,B ,C 都不对 .若n 阶方阵A ,B 满足,22A B = ,则以下命题哪一个成立A , AB =±, B , ()()r A r B =C , det det A B =±,D , ()()r A B r A B n ++-≤4.若A 是n 阶正交矩阵,则以下命题那一个成立:A ,矩阵1A -为正交矩阵,B ,矩阵 -1A -为正交矩阵C ,矩阵*A 为正交矩阵,D ,矩阵 -*A 为正交矩阵5.4n 阶行列式111110100-⋅⋅⋅---⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅的值为:A , 1,B ,-1C , nD ,-n三、解下列各题(共30分)1.求向量513β⎛⎫⎪=- ⎪ ⎪⎝⎭,在基1231110,1,1101ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭下的坐标。

《线性代数与解析几何》矩阵部分练习题及答案

《线性代数与解析几何》矩阵部分练习题及答案

《线性代数》练习题矩阵部分一、填空题1.设A 是3阶方阵,A =-3,则2A =______,3A =______2 设A =1203⎛⎫⎪⎝⎭,B =a b c d ⎛⎫⎪⎝⎭,则当b,d 为任意常数,且c=______ a=______时,恒有AB=BA.3.设矩阵A =111022003⎛⎫ ⎪ ⎪ ⎪⎝⎭,T A 为矩阵A 的转置矩阵,则TAA =______, 4.若A =011001000⎛⎫⎪ ⎪ ⎪⎝⎭,f(x)=33x +x,则f(A) =______. 5.设A =120303010-⎛⎫⎪- ⎪ ⎪⎝⎭,则)()(E +A E -A =______。

6.设A =101210325⎛⎫⎪⎪ ⎪--⎝⎭,则)(1E --A =______。

7.设A =5200210000120011⎛⎫ ⎪⎪⎪- ⎪⎝⎭,则1-A =______。

8.n 阶可逆矩阵A,B,若A =3,则1-K B A B =______。

9.对于n 阶方阵A ,若T AA =2E ,则A =______。

10.已知 n 阶矩阵A 可逆,则( )成立。

A ,)(12-A =12-A ; B,)(12--A =112--A ; C,)(12--A =112-A ; D,)(12-A =2A .11.对于n 阶可逆矩阵A,B,则下列等式中( ) 不成立。

A )(1-AB =1-A 1-B B, )(1-AB = 11-A .11-BC, )(1-AB =1-A .1-BD , )(1-AB =1AB12.若A 为n 阶方阵,且3A =0,则矩阵()1-E -A =______。

13.设A 为3阶方阵,且3A =,则212⎛⎫A ⎪⎝⎭=______。

14.设A =[]1,2,3,[]1,1,1B =,则()KT A B =______。

15.设A 为3阶方阵,且2A =,则132-*A -A =______。

线性代数与空间解析几何(144206)

线性代数与空间解析几何(144206)

一、单选题1.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A、k≤3B、k<3C、k=3D、k>3答案: A2.n阶方阵A有n个不同的特征值是A与对角阵相似的()。

A、充分必要条件B、充分而非必要条件C、必要而非充分条件D、既非充分条件也非必要条件答案: B3.A、-6B、6C、2D、-2答案: B4.已知3×4矩阵A的行向量组线性无关,则秩(AT)等于()A、1B、2C、3D、4答案: C5.下列排列中是奇排列的是( )。

A、4321B、1234C、2314D、4123答案: D6.A、m+nB、-(m+n)C、n-mD、m-n答案: D7.关于最大无关组,下列说法正确的是( )。

A、秩相同的向量组一定是等价向量组B、一个向量组的最大无关组是唯一的C、向量组与其最大无关组是等价的D、如果向量组所含向量的个数大于它的秩,则该向量组线性无关答案: C8.设A,B是n阶方阵,A非零,且AB=0 ,则必有()。

A、B=0B、BA=0C、(A+B)2=A2+B2D、|B|=0答案: D9.设A是m*n阶矩阵,齐次线性方程组Ax=0仅有零解的充要条件是()A、A的列向量线性无关B、A的列向量线性相关C、A的行向量线性无关D、A的行向量线性相关答案: A10.设非齐次线性方程组AX=β的系数行列式为零,则()。

A、方程组有无穷多解;B、方程组无解;C、若方程组有解,则有无穷多解;D、方程组有唯一解 .答案: C11.设A,B是n阶方阵,则必有()A、|A+B-1|=|A|+|B|-1B、|A+B|-1=B-1+A-1C、(AB)2=A2B2D、|A'B|=|BA|答案: D12.实二次型f=X'AX为正定二次型的充要条件是()A、f的负惯性指数是0B、存在正交阵P使A=P'PC、存在可逆阵T使A=T'TD、存在矩阵B使A=B'B答案: C13.A、B、C、D、答案: D14.设 A 为 4 阶矩阵,且 | A |=2 ,则 | 2 A -1 |=()A、4B、16C、1D、8答案: D15.设A是m*n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()A、若Ax=0仅有零解,则Ax=b有唯一解B、若Ax=0有非零解,则Ax=b有无穷多个解C、若Ax=b有无穷多个解,则Ax=0仅有零解D、若Ax=b有无穷多个解,则Ax=0有非零解答案: D16.若排列6 i 4 3 j 1为奇排列,则()。

华南理工大学 线性代数与解析几何 试卷 (21)

华南理工大学 线性代数与解析几何 试卷 (21)

代数难题之三15.题目知识点矩阵乘法逆矩阵向量运算解题过程(1)(2)常见错误矩阵乘法概念模糊,没有注意当u是n维向量时,T uu是一个nn⨯矩阵,但u u T是一个数。

事实上,u u T可看作是一个n⨯1矩阵乘以1⨯n矩阵,其结果是11⨯矩阵,即一个数.16.题目知识点零矩阵的概念矩阵乘法解题过程可见常见错误对零矩阵概念不理解,因而不明确:要证明A是零矩阵,必须要证A中每一个元素均为0. 另一方面,没有想到X可取一些特殊的向量.17.题目计算行列式.知识点行列式性质解题过程常见问题本题技巧性强, 首先用按行展开的方法把行列式降阶, 再巧用等式关系找出递推规律, 最后利用递推关系求出行列式的值. 本题的方法不容易想到.18.题目证明知识点行列式性质解题过程常见错误有些同学用加边法进行计算,在其过程中出现n ni ia a a a 211)11(∑=+,这就要求i a 全不为零,但题目给出的条件并没有这种限制,故不适合. 19. 题目设A 为n 阶非零实矩阵(n>2),且A 的每个元素j i a 等于它在det A 中的代数余子式j i A ,求det A. 知识点矩阵运算 行列式按行展开 解题过程因为所以其中因为A为非零实矩阵,所以所以从而常见错误没有利用A是非零实矩阵的条件,推出.20.题目设n阶矩阵A的分块如下:若A11可逆,证明知识点分块矩阵矩阵乘法解题过程若A11可逆,则A11-1存在,因为所以从而常见问题对分块矩阵的运算不熟练,对矩阵的初等行变换与左乘初等方阵的关系不明确,导致不会分解原来的分块矩阵.。

华南理工大学《线性代数与概率统计》随堂练习及答案

华南理工大学《线性代数与概率统计》随堂练习及答案

第一章行列式·1.1 行列式概念1.(单选题)答题: A. B. C. D. (已提交)参考答案:A2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:C8.(单选题)答题: A. B. C. D. (已提交)参考答案:B第一章行列式·1.2 行列式的性质与计算1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:C4.(单选题)答题: A. B. C. D. (已提交)参考答案:D5.(单选题)答题: A. B. C. D. (已提交)参考答案:D6.(单选题)答题: A. B. C. D. (已提交)参考答案:B7.(单选题)答题: A. B. C. D. (已提交)参考答案:A8.(单选题)答题: A. B. C. D. (已提交)参考答案:D9.(单选题)答题: A. B. C. D. (已提交)参考答案:B10.(单选题)答题: A. B. C. D. (已提交)参考答案:C第一章行列式·1.3 克拉姆法则1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)答题: A. B. C. D. (已提交)参考答案:B.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:C第二章矩阵·2.2 矩阵的基本运算1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:D6.(单选题)答题: A. B. C. D. (已提交)参考答案:C7.(单选题)答题: A. B. C. D. (已提交)参考答案:D第二章矩阵·2.3 逆矩阵1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:D4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:B8.(单选题)答题: A. B. C. D. (已提交)参考答案:C9.(单选题)答题: A. B. C. D. (已提交)参考答案:D10.(单选题)答题: A. B. C. D. (已提交)参考答案:B第二章矩阵·2.4 矩阵的初等变换与矩阵的秩1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)答题: A. B. C. D. (已提交)参考答案:A6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:C8.(单选题)答题: A. B. C. D. (已提交)参考答案:C9.(单选题)答题: A. B. C. D. (已提交)参考答案:C10.(单选题)答题: A. B. C. D. (已提交)参考答案:D11.(单选题)答题: A. B. C. D. (已提交)参考答案:B12.(单选题)答题: A. B. C. D. (已提交)参考答案:A13.(单选题)答题: A. B. C. D. (已提交)参考答案:B第三章线性方程组·3.1 线性方程组的解1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A第三章线性方程组·3.2 线性方程组解的结构1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:A6.(单选题)答题: A. B. C. D. (已提交)参考答案:C7.(单选题)答题: A. B. C. D. (已提交)参考答案:A8.(单选题)答题: A. B. C. D. (已提交)参考答案:D9.(单选题)答题: A. B. C. D. (已提交)参考答案:C第四章随机事件及其概率·4.1 随机事件1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:B第四章随机事件及其概率·4.2 随机事件的运算1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:B1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)甲乙两人同时向目标射击,甲射中目标的概率为0.8,乙射中目标的概率是0.85,两人同时射中目标的概率为0.68,则目标被射中的概率为()A.0.8 ;B.0.85;C.0.97;D.0.96.答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:D第四章随机事件及其概率·4.4 条件概率与事件的独立性1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:AA4.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则两粒都发芽的概率为()A.0.8 ; B.0.72 ; C.0.9 ; D.0.27 .答题: A. B. C. D. (已提交)参考答案:B5.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则至少有一粒发芽的概率为()A.0.9 ; B.0.72 ; C.0.98 ; D.0.7答题: A. B. C. D. (已提交)参考答案:C6.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则恰有一粒发芽的概率为()A.0.1 ; B.0.3 ; C.0.27 ; D.0.26答题: A. B. C. D. (已提交)参考答案:D第四章随机事件及其概率·4.5 全概率公式与贝叶斯公式1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:C1.(单选题)答题: A. B. C. D. (已提交)参考答案:A2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B第五章随机变量及其分布·5.2 离散型随机变量1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)从一副扑克牌(52张)中任意取出5张,求抽到2张红桃的概率?A 0.1743;B 0.2743;C 0.3743;D 0.4743答题: A. B. C. D. (已提交)参考答案:B第五章随机变量及其分布·5.3 连续型随机变量1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:A第五章随机变量及其分布·5.4 正态分布1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C。

线性代数习题及答案-华南理工大学工版

线性代数习题及答案-华南理工大学工版

习题一1.计算下列排列的逆序数 1)9级排列 134782695; 2)n 级排列 (1)21n n -。

解:(1)(134782695)04004200010τ=++++++++= ;(2)[(1)21]n n τ-=(1)(1)(2)102n n n n --+-+++=。

2.选择i 和k ,使得: 1)1274i 56k 9成奇排列;2)1i 25k 4897为偶排列。

解:(1)令3,8i k ==,则排列的逆序数为:(127435689)5τ=,排列为奇排列。

从而3,8i k ==。

(2)令3,6i k ==,则排列的逆序数为:(132564897)5τ=,排列为奇排列。

与题意不符,从而6,3i k ==。

3.由定义计算行列式11122122313241424344455152535455000000000a a a a a a a a a a a a aaaa 。

解:行列式=123451234512345()12345(1)j j j j j j j j j j j j j j j a a a a a τ-∑,因为123,,j j j 至少有一个大于3,所以123123j j j a a a中至少有一数为0,从而12345123450j j j j j a a a a a =(任意12345,,,,j j j j j ),于是123451234512345()12345(1)j j j j j j j j j j j j j j j a a a a a τ-=∑。

4.计算行列式:1)402131224---; 2)1111111*********----; 3)41241202105200117;4)1464161327912841512525--;5)2222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++++++++。

华南理工大学线性代数与解析几何习题讲解

华南理工大学线性代数与解析几何习题讲解
( n12( n1))
解:原式 (1)
(1)
a1n a21a32 an,n1
(1) n 1 an 1 1 1
n 1
an
11 利用行列式的性质计算下列行列式: 1 43 (4) 3 3 23
3
2 13 43 33
3
3 23 13 43
3
4 33 23 13
x 2y x 2y x 2y
y x y 0 y 0
y x y
y y x
r 2 r1 r 3r1

( x 2 y)( x y)
2
x y
2.证明下列等式: (1) a c b x dy a c b d a c x y
解:根据二阶行列式的定义: a b x a (d y ) c(b x) c dy ad bc ay cx
3 3

n n n
a2 3
a n 1
1
2
3

n
1 a 1 3 n (n 1)(n 2) (a )1 2 a2 n 2 1 2 3 a n 1
r 2 r1 r 3 r 1 rn r1
1
2
3

n
0 a 1 0 0 (n 1)(n 2) (a )0 0 a 1 0 2 0 0 0 a 1 (n 1)(n 2) [a ](a 1) n 1 2
1735246是偶排列,此时,i 3, j 4 i 4, j 3时, 1745236是奇排列,不符合要求。
5. 如果排列i1i2 in的逆序数为m, 求排列inin1 i2i1 的逆序数。

华南理工大学线性代数与解析几何试卷

华南理工大学线性代数与解析几何试卷

(1)n 矩阵,B 是m维列向量,则方程组AX B 无解是(2) 已知可逆矩阵P 使得P 1APcos sinsin cos,则 P 1A 2007P)封 题… 答… 不… 内… 线… 封…密…A, 乘一个m 阶初等矩阵, B, 右乘一个m 阶初等矩阵诚信应考,考试作弊将带来严重后果!华南理工大学期末考试(A 卷)I《2007线性代数》试卷线一、填空题(共20分)(3) 若向量组口= (0 , 4, t ), B = (2, 3, 1), 丫= (t , 2, 3)的秩为 2,则 t= (4)若A 为2n 阶正交矩阵,A *为A 的伴随矩阵,则A * =n(5)设A 为n 阶方阵,1, 2, , n 是A 的n个特征根,则i E A =i 1选择题(共20分)(1 )将矩阵A m n的第i列乘C加到第j列相当于对A :C, 左乘一个n 阶初等矩阵, D ,右乘一个n 阶初等矩阵 (4) 若A 是n 阶正交矩阵, 则以下命题那一个成立: A ,矩阵A 1为正交矩阵, B ,矩阵-A 1为正交矩阵 C ,矩阵A 为正交矩阵,D ,矩阵-A 为正交矩阵(5)4n 阶行列式A , 1, C , n的值B , -1-n三、解下列各题(共30分)511 1 1 .求向量1,在基10 , 21 , 31下的坐标310 1(3) 若n 阶方阵A , B 满足,A 2 B 2 ,则以下命题哪一个成立 A , A B ,B , r(A) r(B)C , det AdetB ,D ,r(A B) r(A B) n(2) 若A 为m x n 矩阵,B 是m 维 非零列向量,r(A) r min{ m, n} M {X : AX B, X R n }则A , M 是m 维向量空间,B ,M 是n-r 维向量空间C , M 是m-r 维向量空间,D , A , B , C 都不对集合3 5 92527 125 816254.计算矩阵A10 3列向量组生成的空间的一个基b 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

诚信应考,考试作弊将带来严重后果!
华南理工大学期末考试
《 线性代数-2007》试卷A
注意事项:1. 考前请将密封线内填写清楚;
2. 所有答案请直接答在试卷上(或答题纸上); 3.考试形式:开(闭)卷;
一、单项选择题(每小题2分,共30分)。

1.设矩阵⎥⎥⎥⎦

⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=6 35 24 1C ,6 5 43 2 1B ,4 32 1A ,则下列矩阵运算无意义的是【 】
A . BAC B. ABC C . BCA D. CAB
2.设n 阶方阵A 满足A 2
–E =0,其中E 是n 阶单位矩阵,则必有 【 】
A. A=A -1
B. A=-E
C. A=E
D. det(A)=1
3.设A 为3阶方阵,且行列式det(A)=12
-
,则*
A = 【 】 A. 14-
B. 1
4
C. 1-
D. 1 4.设A 为n 阶方阵,且行列式det(A)=0,则在A 的行向量组中 【 】
A.必存在一个行向量为零向量
B.必存在两个行向量,其对应分量成比例
C. 存在一个行向量,它是其它n-1个行向量的线性组合
D. 任意一个行向量都是其它n-1个行向量的线性组合
5.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是 【 】
A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 3121,,a a a a +
6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是 【 】
A.(I)中任意一个向量都不能由其余m-1个向量线性表出
B.(I)中存在一个向量,它不能由其余m-1个向量线性表出
C.(I)中任意两个向量线性无关
D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使
7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是
【 】
A .A 的行向量组线性相关
B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关
8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++00
33221
1332211x b x b x b x a x a x a
的基础解系含2个解向量,则必有 【 】 A.
03
221= b b a a B.
02
121≠ b b a a C.
3
3
2211b a b a b a == D.
02131= b b a a 9.方程组⎪⎩
⎪⎨⎧=++=++=++a
x x x x x x x x x 3213
2132123 3 12 1
2 有解的充分必要的条件是
【 】
A. a=-3
B. a=-2
C. a=3
D. a=2
10. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】
A. 可由η1,η2,η3线性表示的向量组
B. 与η1,η2,η3等秩的向量组
C.η1-η2,η2-η3,η3-η1
D. η1,η1+η3,η1+η2+η3 11. 已知非齐次线性方程组的系数行列式为0,则
【 】
A. 方程组有无穷多解
B. 方程组可能无解,也可能有无穷多解
C. 方程组有唯一解或无穷多解
D. 方程组无解
12. n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】
A.互不相同的特征值
B.互不相同的特征向量
C.线性无关的特征向量
D.两两正交的特征向量
13. 下列子集能作成向量空间R n 的子空间的是 【 】
A. }0|),,,{(2121=a a a a a n
B. }0|),,,{(121∑==n
i i n a
a a a C. 121{(,,,)|1}n a a a a = D. }1|),,,{(21∑=n i
n
a
a a a
14. 下列矩阵中为正交矩阵的是 【 】
A. ⎥⎥⎥⎦

⎢⎢⎢⎣⎡1- 1 01 1 00 0 1 B. ⎥⎦⎤⎢⎣⎡1- 22 151
C. 1 -10 -1⎡⎤⎢
⎥⎣⎦ D. 1 00 -1⎡⎤
⎢⎥
⎣⎦
15.若矩阵⎥⎥⎥⎦

⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是 【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4
二、填空题(每小题2分,共20分)。

16.设矩阵,1 00 2,1 0 23 1- 1⎥
⎦⎤
⎢⎣⎡=⎥⎦⎤⎢
⎣⎡=B A 记T A 为A 的转置,则B A T = 。

17.设矩阵⎥⎦
⎤⎢
⎣⎡=5 32 1A 则行列式det(T
AA )的值为 . 18.行列式
6 7 2 1 5 9 8
3 4 的值为 .
19.若向量组 ), , ( ), a , t, ( ), a , , (a 10064321321===线性相关,则常数
t = .
20. 向量组(1,2),(3,4), (5,6)的秩为 .
21. 齐次线性方程组⎩⎨⎧=+-=++0320 321
321x x x x x x 的基础解系所含解向量的个数为
22. 已知T
, , x )201(1=、T
, , x )54(32=是3元非齐次线性方程组b Ax =的两个解向
量,则对应齐次线性方程0=Ax 有一个非零解ξ= .
23. 矩阵
⎥⎥
⎥⎦

⎢⎢⎢⎣⎡=6- 0 05 4 03 2 1A 的全部特征值为 。

24. 设λ是3阶实对称矩阵A 的一个一重特征值,T 1) 3 1, 1, (ξ=、T
2) 12 a, 4, (ξ=是A 的属于特征值λ的特征向量,则实常数a= .
25. 已知向量组123(1,0,1),(1,1,0),(0,1,1)a a a ===为3R 的一组基,求向量(2,2,2)
x =在该组基下的坐标为 .
三、计算题(共50分)
26.计算行列式123
1231
2
3x
D y z
+=
++的值。

…………………………………5分
27.设A 可逆,且*
1
B =A +B A -,其中*
A 为A 的伴随矩阵,证明
B 可逆,当
260 026002A ⎛⎫ ⎪
= ⎪ ⎪⎝⎭
时,求矩阵B 。

…………………………………………………10分
28.求方程组123412341
234 21
367224223
x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩的基础解系与通解。

…………………………10分
29.a 取何值时,方程组⎪⎩

⎨⎧=-=++=+a
x x x x x x x 3232121 107432 有解?在有解时求出方程组的通解。

…10分
30.用正交变换,x Qy =将二次型2
2
2
123232334,f x x x x x =+++化为标准形,并求正交矩阵
(15分)。

相关文档
最新文档