【精品提分练习】新版高中数学北师大版1习题:第二章函数 2.2.3

合集下载

最新北师大版高中数学必修一第二单元《函数》测试(答案解析)(2)

最新北师大版高中数学必修一第二单元《函数》测试(答案解析)(2)

一、选择题1.下列各函数中,表示相等函数的是( ) A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C .1y =与1y x =-D .y x =与log xa y a =(0a >且1a ≠)2.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦3.已知定义域为(0,)+∞的函数()f x 满足:()()()1f xy f x f y =++,当1x >时,()1f x <-,且128f ⎛⎫= ⎪⎝⎭,则不等式()(3)3f x f x +->-的解集为( )A .(0,3)B .(1,2)C .(1,3)D .(0,1)(2,3)4.已知的2()(1)()f x x x x ax b =+++图象关于直线1x =对称,则()f x 的值域为( ) A .[]4,-+∞B .9,4⎡⎫-+∞⎪⎢⎣⎭C .9,44⎡⎤-⎢⎥⎣⎦D .[]0,45.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .26.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞7.定义在(0,)+∞上的函数()f x 满足:()()1122120x f x x f x x x -<-且()24f =,则不等式()80f x x->的解集为( ) A .(2,)+∞ B . ()0,2C .(0,4)D .(,2)-∞8.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( ) A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确9.已知函数的定义域为R ,且对任意的12,x x ,且12x x ≠都有()()()12120f x f x x x -->⎡⎤⎣⎦成立,若()()2211f x f m m +>--对x ∈R 恒成立,则实数m 的取值范围是( ) A .(1,2)- B .[1,2]-C .(,1)(2,)-∞-+∞D .(,1][2,)-∞-+∞10.已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是( )A .()2,+∞B .[)(]2,00,2-C .(](),22,-∞-+∞ D .()()2,00,2-11.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.已知存在[1,)x ∈+∞,不等式2212a x x x ≥-+成立,则实数a 的取值范围是__________.14.若函数f (x )=(x +a )(bx +a )(常数a ,b ∈R)是偶函数,且它的值域为(,1]-∞,则a=_____.15.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.16.设函数2222,0(),0x x x f x x x ⎧++=⎨->⎩,若(())2f f a =,则a =___________.17.已知函数()2(1)mf x m m x =--是幂函数,且()f x 在(0,)+∞上单调递增,则实数m =________.18.若函数()y f x = 的定义域为[-1,3],则函数()()211f xg x x +=-的定义域 ___________19.已知函数2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,,则不等式()()f x f x >-的解集为_______________.20.若y =y 的取值范围是________三、解答题21.已知函数()2112f x a a x=+-,实数a R ∈且0a ≠. (1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;(2)设0m n <<且0a > 时,()f x 的定义域和值域都是[],m n ,求n m -的最大值; (3)若1≥x 时不等式()22a f x x ≤恒成立,求实数a 的取值范围.22.已知函数1()(1)1x x a f x a a -=>+,求:(1)判断函数的奇偶性;(2)证明()f x 是R 上的增函数; (3)求该函数的值域. 23.(1)已知函数()f x =,求()f x 的定义域; (2)已知函数1()2f x x x=-+,依据函数单调性的定义证明()f x 在(0,)+∞上单调递减,并求该函数在[1,3]上的值域.24.已知函数22()3mx f x x n+=+是奇函数,且()523f =(1)求实数m 和n 的值;(2)利用“函数单调性的定义”判断()f x 在区间[]2,1--上的单调性,并求()f x 在该区间上的最值.25.已知一次函数()y f x =满足()12f x x a -=+, . 在所给的三个条件中,任选一个补充到题目中,并解答. ①()5f a =,②142a f ⎛⎫=⎪⎝⎭,③()()41226f f -=. (1)求函数()y f x =的解析式;(2)若()()()g x x f x f x x λ=⋅++在[]0,2上的最大值为2,求实数λ的值.26.已知函数()()222f x x ax a a =-+∈R .(1)若1a =,[]2,2x ∀∈-,()f x m 成立,求实数m 的取值范围;(2)若0a <,()()1212,0,x x x x ∀∈+∞≠,()()1212||2||f x f x x x ->-成立,求实数a 的最大值;(3)函数()()1g x f x x=+在区间()1,2上单调递减,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数1y =值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确. 故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.2.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。

高中数学 2.2.3映射同步测试 北师大版必修1-北师大版高一必修1数学试题

高中数学 2.2.3映射同步测试 北师大版必修1-北师大版高一必修1数学试题

第二章§22.3映射一、选择题1.下列从集合A 到集合B 的对应中为映射的是( ) A .A =B =N +,对应法则f :x →y =|x -2|B .A =R ,B ={0,1},对应法则f :x →y =⎩⎪⎨⎪⎧1x ≥00x <0C .A =B =R ,对应法则f :x →y =±xD .A =Z ,B =Q ,对应法则f :x →y =1x[答案] B[解析]A 中元素2无象,排除A ;C 中一个x 对应两个y ,与映射定义不符,排除C ;D 中元素0无像,排除D ,故只有B 正确.2.下列对应为A 到B 的函数的是( ) A .A =R ,B ={x |x >0},f :x →y =|x | B .A =Z ,B =N +,f :x →y =x 2C .A =Z ,B =Z ,f :x →y =xD .A =[-1,1],B ={0},f :x →y =0 [答案] D[解析] 由函数的定义可知,对于A,0∈R , 且|0|=0∉B ,故A 不是f :A →B 的函数; 对于B,0∈Z ,且02=0∉N +, 故B 不是f :A →B 的函数;对于C ,当x <0时,如-2∈Z ,但-2无意义, 故C 不是f :A →B 的函数; 对于D ,是多对一的情形,符合函数的定义,是f :A →B 的函数.3.下列各图中表示的对应,其中能构成映射的个数是( )A .4B .3C .2D .1[答案] D[解析] 所谓映射,是指“多对一”或“一对一”的对应,且A 中每一个元素都必须参与对应.只有图(3)所表示的对应符合映射的定义,即A 中的每一个元素在对应法则下,B 中都有唯一的元素与之对应.4.已知(x ,y )在映射下的像是(x +y ,x -y ),则像(1,2)在f 下的原像为( ) A .(52,32)B .(-32,12)C .(-32,-12)D .(32,-12)[答案] D[解析] 根据题意得⎩⎪⎨⎪⎧x +y =1x -y =2,∴⎩⎪⎨⎪⎧x =32y =-12.5.设A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列能表示从集合A 到集合B 的映射的是( )[答案] D[解析] 对于A ,当x =0,y =0∉{y |1≤y ≤2},不是从A 到B 的映射;对于B ,当x =2时y =0∉{y |1≤y ≤2},也不是从A 到B 的映射;对于C ,当x =0时,y =1且y =2,即集合A 中的一个元素0与集合B 中的两个元素1和2相对应,所以也不是从A 到B 的映射;对于D ,集合A 中的任何一个元素在集合B 中都有唯一的元素和它对应,所以是从A 到B 的映射.6.下列对应是集合M 到集合N 的一一映射的是( ) A .M =N =R ,f :x →y =-1x,x ∈M ,y ∈NB .M =N =R ,f :x →y =x 2,x ∈M ,y ∈N C .M =N =R ,f :x →y =1|x |+x ,x ∈M ,y ∈ND .M =N =R ,f :x →y =x 3,x ∈M ,y ∈N [答案] D[解析] 用排除法,A 中集合M 的元素0,在f 下,N 中没有元素与之对应,所以这个对应不是映射;B 中集合M 的元素±1,在f 下的像都是1,故排除B ;C 中,负实数及0在f 下没有元素和它对应,应排除;故选D.二、填空题7.已知集合A ={a ,b },B ={m ,n },则由A 到B 的一一映射的个数为________. [答案] 2[解析] 由题意可知如图:共有2个一一映射.8.已知f :x →y =|x |+1是从集合A =R 到集合B ={正实数}的一个映射,则B 中的元素8在A 中的原像是________.[答案] ±7[解析] 由题意,得|x |+1=8,∴|x |=7, ∴x =±7.∴B 中的元素8在A 中的原像是±7. 三、解答题9.已知映射f :(x ,y )→(x +y ,xy ). (1)求(-2,3)的像; (2)求(2,-3)的原像. [解析] (1)∵x =-2,y =3,∴x +y =-2+3=1,xy =-2×3=-6, ∴(-2,3)的像是(1,-6). (2)由题意⎩⎪⎨⎪⎧x +y =2xy =-3,解得⎩⎪⎨⎪⎧x =3y =-1或⎩⎪⎨⎪⎧x =-1y =3,∴(2,-3)的原像是(3,-1)或(-1,3).10.已知集合A ={0,2,4},B ={0,4,m 2},x ∈A ,y ∈B ,映射f :A →B 使A 中元素x 和B 中元素y =2x 对应,某某数m 的值.[解析] 由对应关系f 可知,集合A 中元素0,2分别和集合B 中的元素0,4对应,所以集合A 中的元素4和集合B 中的元素m 2对应.于是m 2=2×4,解得m =±2 2.一、选择题1.已知A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列对应不表示从A 到B 的映射的是( ) A .f :x →y =12xB .f :x →y =13xC .f :x →y =32xD .f :x →y =x[答案] C[解析] 对于A ,当0≤x ≤4时,0≤12x ≤2,f :x →y =12x 能构成A 到B 的映射;对于B,0≤13x ≤43,也能构成集合A 到集合B 的映射;对于C,0≤32x ≤6,而[0,6]⃘[0,2],所以不能构成从A 到B 的映射;对于选项D,0≤x ≤2,能构成从A 到B 的映射.2.已知映射f :A →B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中的元素在映射f 下的像,且对任意的a ∈A ,在B 中和它对应的元素是|a |,则集合B 中的元素的个数是( )A .4B .5C .6D .7[答案] A[解析]∵a ∈A ,∴|a |=1,2,3,4, 即B ={1,2,3,4}. 二、填空题3.已知集合A ={a ,b ,c },B ={0,1},若映射f :A →B 满足f (a )+f (b )=f (c ),则这样的映射的个数是________.[答案] 3[解析] 由于f (a )+f (b )=f (c ),所以只能有f (a )=0,f (b )=1,f (c )=1,或f (a )=1,f (b )=0,f (c )=1,或f (a )=f (b )=f (c )=0,即这样的映射有3个.4.下列对应是集合A 到集合B 的一一映射的是________(填正确序号). (1)A =N ,B ={-1,1},x ∈A ,y ∈B ,f :x →y =(-1)x; (2)A ={x |0≤x ≤3},B ={y |0≤y ≤1},f :x →y =13x ;(3)A ={x |0≤x ≤1},B ={y |y ≥1},f :x →y =1x;(4)A ={三角形},B =R ,f :三角形与它面积的对应. [答案] (2)[解析] (1)(2)(4)为映射,(3)不是映射(因为(3)中集合A 中的元素0没有像),只有(2)是一一映射.三、解答题5.设f ,g 都是由A 到A 的映射(其中A ={1,2,3}),其对应关系如下表:设a =g (f (3)) [解析]∵a =g (f (3))=g (1)=2,b =g (g (2))=g (1)=2,c =f (g (f (1)))=f (g (2))=f (1)=2,∴a =b =c .6.下列对应是不是从A 到B 的函数?是不是从A 到B 的映射?(1)A =B =N ,f :x →|x -3|;(2)A ={x |x 是三角形},B ={x |x 是圆},f :三角形的内切圆;(3)A =R ,B ={1},f :x →y =1;(4)A =[-1,1],B =[-1,1],f :x →y =1x.[解析] (1)当x ∈N 时,则|x -3|∈N ,即A 中的元素在B 中都有像,所以(1)是映射,也是函数.(2)由于A ,B 不是数集,所以(2)不是函数,但每个三角形都有唯一的内切圆,所以(2)是A 到B 的映射.(3)A 中的每一个数都与B 中的数1对应,因此,(3)是A 到B 的函数,它是A 到B 的映射.(4)取x =0,y =10没有意义,即A 中元素0在B 中没有像,所以(4)不是函数,也不是映射.规律技巧总结:(1)函数是一种特殊的映射,是非空数集间的一种映射.(2)有的同学问:关系式y =1是y 关于x 的函数,那么关系式x =1是y 关于x 的函数吗?对于关系式x =1,显然有x ∈{1},y ∈R ,则1与全体实数建立对应关系,不符合函数的定义,因此,“x =1”不是y 关于x 的函数.7.已知:集合A ={x |-2≤x ≤2},B ={x |-1≤x ≤1}.对应f :x →y =ax .若在f 的作用下能够建立从A 到B 的映射f :A →B ,某某数a 的取值X 围.[解析]①当a ≥0时,集合A 中元素的像满足-2a ≤ax ≤2a .若能够建立从A 到B 的映射,则[-2a,2a ]⊆[-1,1],即⎩⎪⎨⎪⎧-2a ≥-1,2a ≤1,∴0≤a ≤12.②当a <0时,集合A 中元素的像满足2a ≤ax ≤-2a ,若能建立从A 到B 的映射,则[2a ,-2a ]⊆[-1,1],即⎩⎪⎨⎪⎧2a ≥-1,-2a ≤1,∴-12≤a <0.综合①②可知-12≤a ≤12.。

新课程北师大版高中数学必修1第二章《函数》单元测试题[含解答]

新课程北师大版高中数学必修1第二章《函数》单元测试题[含解答]

高中数学必修1第二章《函数》单元测试题一、选择题(本大题共12小题,每小题5分,共60分) 1.若()f x (3)f = ( )A 、2B 、4 C、、10 2.对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来.A 、1个B 、2个C 、3个D 、4个 3.下列各组函数是同一函数的是 ( )①()f x =()g x = ②()f x x =与()g x =③0()f x x =与1()g x x=; ④2()21f x x x =--与2()21g t t t =--. A .①② B 、①③ C 、③④ D 、②④4.二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5.函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6.下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7.若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个xx(1)(2)(3)(4)8.)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、()1()f x f x =-- 9.若函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,则实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥510.设函数x x xf =+-)11(,则)(x f 的表达式为 ( ) A .x x -+11 B . 11-+x x C .x x +-11 D .12+x x11.定义在R 上的函数()f x 对任意两个不等实数,a b 总有()()0f a f b a b->-成立,则必有( )A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 12.下列所给4个图像中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

北师大版高中数学必修一第二单元《函数》测试题(有答案解析)(2)

北师大版高中数学必修一第二单元《函数》测试题(有答案解析)(2)

一、选择题1.函数()f x 的定义域为D ,若对于任意的12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00f =;②()132x f f x ⎛⎫= ⎪⎝⎭;③()()11f x f x -=-,则12017f ⎛⎫⎪⎝⎭等于( ) A .116B .132 C .164D .11282.已知函数(1)f x +为偶函数,当0x >时,23()f x x x =+,则(2)f -=( ) A .4-B .12C .36D .803.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞4.定义,min(,),a a ba b b a b ≤⎧=⎨>⎩,例如:min(1,2)2--=-,min(2,2)2=,若2()f x x =,2()46g x x x =--+,则()min((),())F x f x g x =的最大值为( )A .1B .8C .9D .105.函数sin y x x =的图象可能是( )A .B .C .D .6.已知定义在R 上的函数()2||·x f x x e =, ()35a f log =, 312b f log ⎛=⎫ ⎪⎝⎭,()ln3c f = ,则a ,b ,c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .c b a >>7.已知函数()()1,12,1xmx x f x n x +<⎧⎪=⎨-≥⎪⎩,在R 上单调递增,则mn 的最大值为( ) A .2B .1C .94D .148.设()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,则()0f x x<的解集是( )A .{2002}xx x -<<<<∣或 B .{22}xx x <->∣或 C .{202}xx x <-<<∣或 D .{202}xx x -<<>∣或 9.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞10.已知函数()f x 的定义域为R ,(1)f x -是奇函数,(1)f x +为偶函数,当11x -≤≤时,()13131x x f x +-=+,则以下各项中最小的是( )A .()2018fB .()2019fC .()2020fD .()2021f11.如图是定义在区间[]5,5-上的函数()y f x =的图象,则下列关于函数()f x 的说法错误的是( )A .函数在区间[]53-,-上单调递增 B .函数在区间[]1,4上单调递增 C .函数在区间][3,14,5⎡⎤⋃⎣⎦-上单调递减 D .函数在区间[]5,5-上没有单调性12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.函数()2f x x a =- 在区间[]1,1-上的最大值()M a 的最小值是__________.14.已知函数211,0,22()13,,12x x f x x x ⎧⎡⎫+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩,若存在12x x <,使得()()12f x f x =,则()12x f x ⋅的取值范围为_____________.15.已知存在[1,)x ∈+∞,不等式2212a x x x ≥-+成立,则实数a 的取值范围是__________.16.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________17.已知二次函数f (x )=ax 2﹣2x +1在区间[1,3]上是单调函数,那么实数a 的取值范围是_____.18.定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩,若[4,2)x ∈--时,1()42t f x t ≥-恒成立,则实数t 的取值范围是______.19.已知函数()4f x x a a x=-++,若当[]1,4x ∈时,()5f x ≤恒成立,则实数a 的取值范围是______.20.已知函数22, 1()+1, 1x ax x f x ax x ⎧-+≤=⎨>⎩,若()f x 在定义域上不是单调函数,则实数a 的取值范围是_______.三、解答题21.已知函数()f x x x a =-,a ∈R ,()21g x x =-.(1)当1a =-时,解不等式()()f x g x ≥;(2)当4a >时,记函数()f x 在区间[]0,4上的最大值为()F a ,求()F a 的表达式. 22.已知函数()2mf x x x=++(m 为实常数). (1)当4m =时,试判断函数在[)2,+∞上的单调性,并用定义证明;(2)设0m <,若不等式()f x kx ≤在1[,1]2x ∈有解,求实数k 的取值范围. 23.已知11012x f x x x ⎛⎫⎛⎫=<≤⎪ ⎪-⎝⎭⎝⎭. (1)求()f x 的表达式;(2)判断()f x 在其定义域内的单调性,并证明. 24.已知函数()()90f x x x x=+≠. (1)当()3,x ∈+∞时,判断并证明()f x 的单调性; (2)求不等式()()2330f xf x +≤的解集.25.已知a R ∈,奇函数()f x 与偶函数()g x 的定义域均为(,0)(0,)-∞+∞,且满足()()2af xg x x x-=+-. (1)分别求()f x 和()g x 的解析式: (2)若对任意[1,),()()0x f x g x ∞∈++>恒成立,试求实数a 的取值范围. 26.已知定义在()1,1-上的奇函数2()1ax bf x x +=+,且1225f ⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)证明:()f x 在0,1上是增函数; (3)解不等式()2(120)f t f t -+<.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由③可得()11f =,1122f ⎛⎫=⎪⎝⎭,然后由②可得111113232n n n f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭,然后结合()f x 在[0,1]上非减函数可得答案. 【详解】由③得(10)1(0)1f f -=-=,111122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,∴()11f =,1122f ⎛⎫= ⎪⎝⎭. 由②得()12201111111111323232322n n n n n n f f f f f --⎛⎫⎛⎫⎛⎫⎛⎫======⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 12231011111111232232232232n n n n n f f f f ----⎛⎫⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭⎝⎭⎝⎭. ∵761113201723<<⨯且61123128f ⎛⎫= ⎪⨯⎝⎭,7113128f ⎛⎫= ⎪⎝⎭. 又()f x 在[0,1]上非减函数,∴112017128f ⎛⎫= ⎪⎝⎭, 故选:D 【点睛】关键点睛:解答本题的关键是由条件得到111113232n n n f f -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭. 2.D解析:D 【分析】首先根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+,所以有(2)(4)f f -=,结合题中所给的函数解析式,代入求得结果. 【详解】∵函数(1)f x +为偶函数,所以图象关于y 轴对称,即(1)(1)f x f x +=-+, 构造(2)(31)(31)(4)f f f f -=-+=+=,而40>, 所以23(4)4+4=16(14)80f =⨯+=. 故选:D. 【点睛】思路点睛:该题考查的是有关函数的问题,解题思路如下: (1)根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+; (2)根据(1)(1)f x f x +=-+,得到(2)(4)f f -=; (3)结合当0x >时,23()f x x x =+,将4x =代入求得结果.3.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题 4.C解析:C 【分析】根据定义确定()F x 的解析式及单调性后可得最大值. 【详解】由2246x x x <--+得2230x x +-<,31x -<<,所以()22,3146,31x x F x x x x x ⎧-<<=⎨--+≤-≥⎩或,所以()F x 在(,3)-∞-和(0,1)上都是增函数,在(3,0)-和(1,)+∞上都是减函数,(3)9F -=,(1)1F =,所以max ()9F x =. 故选:C . 【点睛】关键点点睛:本题考查求函数的最大值.解题关键是根据新函数定义确定新函数的解析式,单调性.结合单调性易得最值.5.A解析:A 【分析】先判断函数奇偶性,排除CD ,再结合函数在()0,π的正负选出正确答案 【详解】设()sin y f x x x ==,求得()sin f x x x -=,故函数为偶函数,排除CD ,由三角函数图像特征可知在()0,π时sin 0x >,故在()0,π时()0f x >,故A 正确 故选:A 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.6.A解析:A 【分析】可看出()f x 在(0,)+∞上单调递增,且得出3(log 2)b f =,并且可得出33ln 3log log 2>,根据增函数的定义即可得出a ,b ,c 的大小关系.【详解】0x >时,2()x f x x e =是增函数,且()()f x f x -=,33(log 2)(log 2)b f f ∴=-=,33330log 1log 2log log 31=<<<=,ln3ln 1e >=,∴33ln 3log log 2>>,∴33(ln 3)(log (log 2)f f f >>,c a b ∴>>. 故选:A . 【点睛】解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7.D解析:D 【分析】现根据分段函数单调增,列出不等式组,得出011m n m n >⎧⎪<⎨⎪+≤⎩,再根据基本不等式即可求解.【详解】由题意可知,函数在R 上单调递增,则02112m n m n>⎧⎪->⎨⎪+≤-⎩,解得011m n m n >⎧⎪<⎨⎪+≤⎩,则由基本不等式可得2211224m n mn +⎛⎫⎛⎫≤≤= ⎪ ⎪⎝⎭⎝⎭,当且仅当m=n=12时取等号.故选:D 【点睛】本题主要考查分段函数的单调性,和基本不等式,属于中档题,解题是应注意分段函数单调递增:左边增,右边增,分界点处左边小于等于右边.8.A解析:A 【分析】由()0f x x <对0x >或0x <进行讨论,把不等式()0f x x<转化为()0f x >或()0f x <的问题解决,根据()f x 是奇函数,且在(0,)+∞内是增函数,又(2)0f -=,把函数值不等式转化为自变量不等式,求得结果. 【详解】 解:()f x 是R 上的奇函数,且在(0,)+∞内是增函数,∴在(,0)-∞内()f x 也是增函数,又(2)0f -=,()20f ∴=,∴当(x ∈-∞,2)(0-⋃,2)时,()0f x <;当(2x ∈-,0)(2⋃,)+∞时,()0f x >;∴()0f x x <的解集是{|20x x -<<或02}x <<. 故选:A . 【点睛】本题考查函数的奇偶性的应用,解决此类问题的关键是理解奇偶函数在关于原点对称的区间的单调性,奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反;9.B解析:B 【分析】计算出()24f -=,并由()()()0x y f x f y ⎡⎤--<⎣⎦可得出函数()y f x =在R 上为减函数,再由()()234f x f x-⋅≥,可得出()()232f xx f -≥-,再由函数()y f x =在R 上的单调性可得出232x x -≤-,解出该不等式即可. 【详解】由于对任意的实数x 、y ,()()()f x y f x f y +=⋅且()0f x >. 令0x y ==,可得()()()000f f f =⋅,且()00f >,解得()01f =.令y x =-,则()()()01f x f x f ⋅-==,()()1f x f x -=,()()1121f f -==. ()()()211224f f f ∴-=-⋅-=⨯=.设x y <,则0x y -<,由()()()0x y f x f y ⎡⎤--<⎣⎦,得()()f x f y >. 所以,函数()y f x =在R 上为减函数,由()()234f x f x-⋅≥,可得()()232f x x f -≥-.所以232x x -≤-,即2320x x -+≤,解得12x ≤≤. 因此,不等式()()234f x f x -⋅≥的解集为[]1,2.故选B. 【点睛】本题考查抽象函数的单调性解不等式,解题的关键就是将不等式左右两边转化为函数的两个函数值,并利用函数的单调性进行求解,考查分析问题和解决问题的能力,属于中等题.10.D解析:D 【分析】利用已知条件可知(2)()0f x f x --+=、(2)()f x f x -=,进而得到(8)()f x f x +=,即周期为8,应用周期性结合已知区间解析式,即可知()2018f 、()2019f 、()2020f 、()2021f 中最小值.【详解】(1)f x -是奇函数,即(1)f x -关于(0,0)对称,()f x ∴的图象关于点(1,0)-对称,即(2)()0f x f x --+=.又)1(f x +为偶函数,即(1)f x +关于0x =对称,()f x ∴的图象关于直线1x =对称,即(2)()f x f x -=.(2)(2)0f x f x --+-=,(2)(2)0f x f x ∴-++=,即(8)()f x f x +=,函数()y f x =的周期为8, (2018)(2)(0)1f f f ∴===,(2019)(3)(1)0f f f ==-=,(2020)(4)(2)(0)1f f f f ==-=-=-,(2021)(5)(3)(1)2f f f f ==-=-=-,故(2021)f 最小.故选:D 【点睛】本题考查了函数的性质,根据已知奇偶性推导函数的周期,应用函数周期求函数值,进而比较大小,属于基础题.11.C解析:C【详解】由图象可知,函数在[-5,-3]和[1,4]两个区间单调递增,则A 、B 选项是正确的; 又因为函数在[-3,1]和[4,5]两个区间上分别单调递减, 但在区间[-3,1]∪[4,5]上没有单调性,则C 选项错误; 观察函数图象可知函数在[-5,5]上没有单调性,则D 选项正确. 故选C.要知道四个选项中哪个是错误的,考虑先根据函数图象写出函数的单调区间; 根据题意可知,函数在[-5,-3]和[1,4]两个区间单调递增,据此可判断A 、B 选项; 函数在[-3,1]和[4,5]上单调递减,据此判断其余选项,试试吧!12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.【分析】由题意函数为偶函数分和去掉绝对值然后根据单调性求出最大值再根据单调性求出的最小值【详解】解:由题意函数为偶函数①当时在上单调递增则;②当时当即时在上单调递减则;当即时在上单调递减在上单调递增 解析:12【分析】由题意,函数()2f x x a =-为偶函数,分0a ≤和0a >去掉绝对值,然后根据单调性求出最大值()M a ,再根据单调性求出()M a 的最小值. 【详解】解:由题意,函数()2f x x a =-为偶函数,①当0a ≤时,()2f x x a =-,()f x 在[]0,1上单调递增,则()()()111M a f f a ==-=-;②当0a >时,()22,,x a x x f x a x x ⎧-≤≥⎪=⎨-<<⎪⎩或1即1a ≥时,()f x 在[]0,1上单调递减,则()()0M a f a ==;1<即01a <<时,()f x在⎡⎣上单调递减,在⎤⎦上单调递增,∵()0f a =,()11f a =-, 由1a a 得112a <<,此时()M a a =; 由1a a ≤-得102a <≤,此时()1M a a =-; ∴()11,21,2a a M a a a ⎧-≤⎪⎪=⎨⎪>⎪⎩,∴()min 1122M a M ⎛⎫== ⎪⎝⎭, 故答案为:12. 【点睛】关键点点睛:本题主要考查利用函数的单调性求函数的最值,本题的关键在于分类讨论去掉绝对值,然后再根据单调性求出最值,属于中档题.14.【分析】根据条件作出函数图象求解出的范围利用和换元法将变形为二次函数的形式从而求解出其取值范围【详解】由解析式得大致图象如下图所示:由图可知:当时且则令解得:又令则即故答案为:【点睛】思路点睛:根据解析:31,162⎡⎫⎪⎢⎣⎭【分析】根据条件作出函数图象求解出1x 的范围,利用()()12f x f x =和换元法将()12x f x ⋅变形为二次函数的形式,从而求解出其取值范围. 【详解】由解析式得()f x 大致图象如下图所示:由图可知:当12x x <时且()()12f x f x =,则令211322x ⎛⎫+=⋅ ⎪⎝⎭,解得:14x =, 111,42x ⎡⎫∴∈⎪⎢⎣⎭,又()()12f x f x =,221221333,124x x x ⎛⎫⎡⎫∴+=∈⎪ ⎪⎢⎣⎭⎝⎭,()2222121332x f x x x ⎛⎫∴⋅=⋅- ⎪⎝⎭,令2233,14x t ⎡⎫=∈⎪⎢⎣⎭,则()()2211113,124164x f x g t t t t t ⎛⎫⎛⎫⎛⎫⎡⎫⋅==-=--∈ ⎪ ⎪⎪ ⎪⎢⎝⎭⎝⎭⎣⎭⎝⎭,()31,162g t ⎡⎫∴∈⎪⎢⎣⎭,即()2131,162x f x ⎡⋅⎫∈⎪⎢⎣⎭.故答案为:31,162⎡⎫⎪⎢⎣⎭ 【点睛】思路点睛:根据分段函数的函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.15.【分析】问题转化为即可由令问题转化为求的最大值根据二次函数的性质求出的最大值从而求出的范围即可【详解】若存在不等式成立即即可由令问题转化为求的最大值而的最大值是2故故故答案为:【点睛】方法点睛:本题解析:1[,)2+∞【分析】问题转化为22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x=-+,[1,)x ∈+∞,问题转化为求()f x 的最大值,根据二次函数的性质求出()f x 的最大值,从而求出a 的范围即可.【详解】若存在[1,)x ∈+∞,不等式2212a x x x -+成立,即22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x =-+,[1,)x ∈+∞,问题转化为求()f x 的最大值, 而2117()2()48f x x=-+,[1,)x ∈+∞的最大值是2, 故221()22min x x x =-+,故12a, 故答案为:1[,)2+∞ 【点睛】方法点睛:本题考查函数的有解问题, 一般通过变量分离,将不等式有解问题转化为求函数的最值问题:()f x m >有解max ()f x m ⇔>;()f x m <有解min ()f x m ⇔<.16.【分析】当时可得可求出结合可求出时的表达式进而可得出答案【详解】当时;当时所以则所以故答案为:【点睛】本题考查分段函数解析式的求法考查学生的推理能力属于中档题解析:1,023,20x x x x +≤≤⎧⎨---≤<⎩【分析】当[)2,0x ∈-时,可得[)20,2x +∈,可求出(2)3f x x +=+,结合()(2)f x f x =-+,可求出[)2,0x ∈-时,()f x 的表达式,进而可得出答案.【详解】当[]0,2x ∈时,()1f x x =+;当[)2,0x ∈-时,[)20,2x +∈,所以(2)3f x x +=+, 则()(2)3f x f x x =-+=--.所以1,02()3,20x x f x x x +≤≤⎧=⎨---≤<⎩. 故答案为:1,023,20x x x x +≤≤⎧⎨---≤<⎩. 【点睛】本题考查分段函数解析式的求法,考查学生的推理能力,属于中档题.17.【分析】根据二次函数的性质列不等式解不等式求得的取值范围【详解】由于为二次函数所以其对称轴为要使在区间上是单调函数则需其对称轴在区间两侧即或解得或或所以的取值范围是故答案为:【点睛】本小题主要考查二解析:()[)1,00,1,3⎛⎤-∞⋃⋃+∞ ⎥⎝⎦【分析】根据二次函数的性质列不等式,解不等式求得a 的取值范围. 【详解】由于()f x 为二次函数,所以0a ≠,其对称轴为1x a=, 要使()f x 在区间[]1,3上是单调函数,则需其对称轴1x a=在区间[]1,3两侧, 即11a≤或13a ≥,解得0a <,或1a ≥,或103a <≤, 所以a 的取值范围是()[)1,00,1,3⎛⎤-∞⋃⋃+∞ ⎥⎝⎦故答案为:()[)1,00,1,3⎛⎤-∞⋃⋃+∞ ⎥⎝⎦.【点睛】本小题主要考查二次函数的单调性,属于中档题.18.【分析】由分段函数根据单调性求得在的最小值根据求出的最小值将问题转化为解不等式即可得出结果【详解】根据已知当时则当时在处取到最小值当时在处取到最小值所以在时在处取到最小值又因为可知当时在时取到最小值 解析:(,2](0,1]-∞-⋃【分析】由分段函数根据单调性求得()f x 在[0,2)x ∈的最小值,根据(2)2()f x f x +=求出[4,2)x ∈--,()f x 的最小值,将问题转化为min 1()42t f x t≥-解不等式即可得出结果. 【详解】根据已知,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩, 则当[0,1)x ∈时,()f x 在0.5x =处取到最小值(0.5)0.25f =-, 当[1,2)x ∈时,()f x 在 1.5x =处取到最小值(1.5)1f =-, 所以()f x 在[0,2)x ∈时在 1.5x =处取到最小值(1.5)1f =-, 又因为(2)2()f x f x +=, 可知当[4,2)x ∈--时, ()f x 在 2.5x =-时取到最小值,且(1.5)2(0.5)4( 2.5)f f f =-=-, 则1( 2.5)(1.5)0.254f f -=⨯=-. 为使[4,2)x ∈--,1()42t f x t≥-恒成立, 需11424t t -≤-, 当0t >时,可整理为220t t +-≤, 解得(0,1)t ∈; 当0t <时,可整理为220t t +-≥, 解得(,2]t ∈-∞-. 故答案为(,2](0,1]-∞-⋃. 【点睛】本题考查分段函数的应用,考查函数的单调性,将恒成立问题转化为函数的最值问题是解题的关键,属于中档题.19.【分析】对分段讨论去绝对值计算求解【详解】当时可得当时符合题意;当时则不符合题意;当时此时不符合题意综上的取值范围是故答案为:【点睛】本题考查函数不等式的恒成立问题解题的关键是对分段讨论求解 解析:(],1-∞【分析】对a 分段讨论去绝对值计算求解. 【详解】当1a ≤时,()44f x x a a x x x=-++=+,可得当[]1,4x ∈时,()45f x ≤≤,符合题意;当14a <<时,()42,14,4a x x a xf x x a x x ⎧-+≤<⎪⎪=⎨⎪+≤≤⎪⎩,则()1325f a =+>,不符合题意;当4a ≥时,()42f x a x x=-+,此时()13211f a =+≥,不符合题意, 综上,a 的取值范围是(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数不等式的恒成立问题,解题的关键是对a 分段讨论求解.20.【分析】结合二次函数的图象与性质按照分类再由分段函数的单调性即可得解【详解】因为函数的图象开口朝下对称轴为且所以当时函数在上不单调符合题意;当时函数在上均单调递增若要使在定义域上不是单调函数则解得故 解析:(),1(2,)-∞+∞【分析】结合二次函数的图象与性质,按照1a <、1a ≥分类,再由分段函数的单调性即可得解. 【详解】因为函数22y x ax =-+的图象开口朝下,对称轴为x a =,且22,?1()+1,?1x ax x f x ax x ⎧-+≤=⎨>⎩,所以当1a <时,函数()f x 在(],1-∞上不单调,符合题意; 当1a ≥时,函数()f x 在(],1-∞,()1,+∞上均单调递增, 若要使()f x 在定义域上不是单调函数,则2121a a -+>+,解得2a >,故2a >符合题意; 综上,实数a 的取值范围是(),1(,)2-∞⋃+∞. 故答案为:(),1(,)2-∞⋃+∞. 【点睛】解决本题的关键是将分段函数不单调转化为两种情况,分类求解.三、解答题21.(1){}1x x ≥-;(2)()2,484416,8a x F a a a ⎧<<⎪=⎨⎪-≥⎩【分析】(1)由1a =-,得211x x x +≥-,进而分1x ≥-和1x <-两种情况,分别解不等式,进而可求出原不等式的解集;(2)由[]0,4x ∈,且4a >,可得()2f x x ax =-+,进而结合二次函数的性质,分类讨论,可求出()f x 在区间[]0,4上的最大值的表达式. 【详解】(1)当1a =-时,()1f x x x =+,则211x x x +≥-.①当1x ≥-时,不等式为221x x x +≥-,解得1x ≥-,所以1x ≥-; ②当1x <-时,不等式为221x x x --≥-,解得112x ≤≤-,所以解集为空集. 综上,不等式的解集为{}1x x ≥-.(2)因为[]0,4x ∈,且4a >,所以()()2f x x a x x ax =-=-+,①当48a <<时,242a <<,则()224a aF a f ⎛⎫== ⎪⎝⎭;②当8a ≥时,42a≥,则()()4416F a f a ==-. 综上()2,48{4416,8a a F a a a <<=-≥.【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (2)根据对称轴与区间的位置关系,进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析.22.(1)增函数;证明见解析;(2)当23m ≤-时,[)45,k m ∈++∞; 当203-<<m 时, [)3,k m ∈++∞ 【分析】(1)用函数单调性的定义进行证明得解; (2)参变分离得到221m k x x++≤,再换元转化为二次函数求最值得解. 【详解】(1)()f x 为[)2,+∞上的增函数 证明如下:任取[)12,2,x x ∈+∞,且12x x < 则()121212121212444()()x x f x f x x x x x x x x x --=-+-=- 21120,4x x x x ->>所以12()()f x f x <;所以()f x 为[)2,+∞上的增函数 (2)由()f x kx ≤,得2mx kx x++≤ 212[,1],12m x k x x∈∴++≤令1t x =,[]2211()21()1,(1,2)g t mt t m t t m m =++=++-∈ 则1[,1]2x ∈有解,当且仅当[]min ()(1,2)k g t t ≥∈0m <当132m ->即203-<<m 时,min ()(1)3g t g m ==+ 当1302m <-≤即23m ≤-时,min ()(2)45g t g m ==+ 综上, 当23m ≤-时,[)45,k m ∈++∞. 当203-<<m 时, [)3,k m ∈++∞ 【点睛】函数不等式恒成立问题通常转化为函数最值问题,注意对参数进行讨论. 23.(1)()1(2)1f x x x =≥-;(2)()f x 在[)2,+∞上递减,证明见解析. 【分析】 (1)令1(2)t t x =≥,则1x t=,求得()1(2)1f t t t =≥-,从而可得答案. (2)()f x 在[)2,+∞上递减,证任取122x x >≥,则210x x -<,1110x ->>,2110x -≥>,可证明()()120f x f x -<,从而可得结论.【详解】 (1)令1(2)t t x =≥,则1x t= 因为11012x f x x x ⎛⎫⎛⎫=<≤⎪ ⎪-⎝⎭⎝⎭所以()111(2)11t tf t t t ==≥--, 所以()1(2)1f x x x =≥-;(2)()f x 在[)2,+∞上递减,证明如下:任取122x x >≥,则210x x -<,1110x ->>,2110x -≥>, 因为()()12121111f x f x x x -=--- ()()()()21121111x x x x ---=--()()2112011x x x x -=<--所以()()12f x f x <, 则()f x 在[)2,+∞上递减. 【点睛】方法点睛:利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取21x x >;(2)作差()()21f x f x -;(3)判断()()21f x f x -的符号(往往先分解因式,再判断各因式的符号),()()210f x f x -> 可得()f x 在已知区间上是增函数,()()210f x f x -< 可得()f x 在已知区间上是减函数.24.(1)单调递增,证明见解析;(2){}1-. 【分析】(1)根据函数单调性定义,判断当123x x <<时,()()120,0?f x f x -><即可; (2)法一:根据函数()()90f x x x x=+≠得到()()233f x f x +解析式,解关于x 的二次型不等式即可.法二:根据函数为奇函数,和定义域内的单调性,将()()2330f xf x +≤转化为解()()233f x f x ≤-,分0x >,1x =-,1x <-,10x -<<讨论使得()()233f x f x ≤-成立x 时的范围为其解集. 【详解】解:(1)设123x x <<,则()()()()121212121212999x x x x f x f x x x x x x x --⎛⎫⎛⎫-=+-=⎪ ⎪⎝⎝⎭+⎭ 因为12120,90x x x x -<->, 所以()()120f x f x -<, 所以()f x 在(3,)+∞上单调递增. (2)法一:原不等式可化为2233330x x x x+++,即21120x x x x ⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭, 所以121x x -+, 当0x >时,12x x+,不合题意,舍去; 当0x <时,只需解12x x-+,可化为2(1)0x +,所以1x =-. 综上所述,不等式的解集为{}1-.法二:由(1)的解答过程知()f x 在(0,3)上单调递减,在()3,+∞上单调递增, 又()f x 为奇函数,()()2330f x f x +≤,所以()()()2333f xf x f x ≤-=-,当0x >时,2(3)0,(3)0f x f x >-<,与上式矛盾,故舍去; 当1x =-时,上式成立;当1x <-时,2333x x >->,则()()233f x f x >-,与上式矛盾,故舍去;当10x -<<时,20333x x <<-<,则()()233f x f x >-,与上式矛盾,故舍去;综上所述,不等式的解集为{}1-. 【点睛】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性. 25.(1)(),()2,(,0)(0,)af x xg x x x∞∞=+=∈-⋃+;(2)3a >-. 【分析】(1)利用函数的奇偶性,列方程组,求函数的解析式;(2)由(1)知,()()2,[1,)af xg x x x x∞+=++∈+,方法一,讨论a 的正负,以及函数的单调性,转化为求函数的最小值大于0,求a 的取值范围;方法二,利用参变分离,()22a x x >-+,转化为求函数最大值,即求a 的取值范围. 【详解】(1)由已知条件()()2af xg x x x-=+-——①①式中以x -代替x ,得()()2a f x g x x x---=---——② 因为()f x 是奇函数,()g x 是偶函数,故 ()(),()()f x f x g x g x -=--=②可化为()()2a f x g x x x --=---——③ ①-③,得22()2a f x x x =+故(),()2,(,0)(0,)a f x x g x x x∞∞=+=∈-⋃+ (2)由(1)知,()()2,[1,)a f x g x x x x ∞+=++∈+ 当0a ≥时,函数()()f x g x +的值恒为正;当0a <时,函数()()2a f x g x x x +=++在[1,)+∞上为增函数 故当1x =时,()f x 有最小值3a +故只需30a +>,解得30a -<<.综上所述,实数a 的取值范围是(3,)-+∞法二:由(1)知,()()2a f x g x x x+=++ 当[1,)x ∈+∞时,()()0f x g x +>恒成立,等价于()22a x x >-+而二次函数()222(1)1y x x x =-+=-++在[1,)+∞上单调递减 1x =时,max 3y =-故3a >-【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围. 26.(1)2()1x f x x =+;(2)证明见解析;(3)102t <<. 【分析】(1)由题意可得(0)0f =,可求出b 的值,再由1225f ⎛⎫=⎪⎝⎭可求出a 的值,从而可求出函数()f x 的解析式;(2)利用增函数的定义证明即可;(3)由于函数是奇函数,所以()2(120)f t f t -+<可化为()2()12f t t f <-,再利用单调性可求解不等式【详解】(1)解:因为()f x 是()1,1-上的奇函数,所以(0)0f =,即01b =,得0b =, 因为1225f ⎛⎫= ⎪⎝⎭,所以1221514a =+,解得1a =, 所以2()1x f x x =+ (2)证明:1x ∀,2(0,1)x ∈,且12x x <,则()()()()()()122112122222121211111x x x x x x f x f x x x x x ---=-=++++, 因为1201x x ,所以2212211210,0,(1)(1)0x x x x x x -<->++>,所以()()120f x f x -<,即()()12f x f x <所以()f x 在(0,1)上是增函数.(3)解:因为()f x 在(0,1)上是增函数,且()f x 是()1,1-上的奇函数,所以()f x 是(1,1)-上的奇函数且是增函数,所以()2(120)f t f t -+<可化为()2()12f t t f <-, 所以2211112121t t t t -<-<⎧⎪-<<⎨⎪<-⎩,解得102t <<. 【点睛】关键点点睛:此题函数的奇偶性和单调性的应用,第(3)问解题的关键是利用奇函数的性质将不等式()2(120)f t f t -+<转化为()2()12f t t f <-,进而利用单调性解不等式,考查转化思想和计算能力,属于中档题。

最新北师大版高中数学必修一第二单元《函数》测试(包含答案解析)(1)

最新北师大版高中数学必修一第二单元《函数》测试(包含答案解析)(1)

一、选择题1.函数()(3)()f x x ax b =--为偶函数,且在(0,)+∞上单调递增,则(2)0f x ->的解集为( ) A .{|22}x x -<< B .{|5x x >或1}x <- C .{|04}x x << D .{|4x x >或0}x <2.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4 B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞3.若函数()f x =在[]1,3-上具有单调性,则实数a 的可能取值是( )A .4-B .5C .14D .234.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3x y =具有性质M ; ②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =. 其中正确的个数是( ) A .0个B .1个C .2个D .3个5.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B.y =C .2x y =D .||y x x =-6.如果函数()()()2121f x a x b x =-+++(其中2b a -≥)在[]1,2上单调递减,则32a b +的最大值为( )A .4B .1-C .23D .67.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦ C .41,152⎡⎤⎢⎥⎣⎦ D .152,4⎡⎤⎢⎥⎣⎦8.已知函数()f x 是R 上的单调函数,且对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立,则()2020f 的值是( )A .202021- B .202021+C .202020202121+-D .202020202121-+9.某兴趣小组对函数()f x 的性质进行研究,发现函数()f x 是偶函数,在定义域R 上满足(1)(1)(1)f x f x f +=-+,且在区间[1,0]-为减函数.则(3)f -与5()2f -的关系为( )A .5(3)()2f f -≥- B .5(3)()2f f ->- C .5(3)()2f f -≤- D .5(3)()2f f -<-10.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .11.若函数()()12311ax f x x a x x ⎧>⎪=⎨⎪-+≤⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭12.函数()()2212f x x a x =+--在(],4-∞上是减函数,则实数a 的取值范围是( ) A .3a ≤-B .3a ≥-C .5a ≥D .3a ≥二、填空题13.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________14.函数1,1()32,12x a x f x a x x ⎧+>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 取值范围为________.15.已知函数()f x 对于任意实数x 满足条件()()12f x f x +=-,若()113f =- ,则()2019f = _________.16.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________17.已知(2)1(1)()(1)xa x x f x a x -+<⎧=⎨≥⎩满足对任意121212()(),0f x f x x x x x -≠>-都有成立,那么a 的取值范围是_______18.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ .19.定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2)x ∈时,21.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩,若[4,2)x ∈--时,1()42t f x t ≥-恒成立,则实数t 的取值范围是______.20.设2(),0()1,0x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩,若(0)f 是()f x 的最小值,是a 的取值范围为________________.三、解答题21.已知函数()1f x x x=+. (1)判断函数()f x 的奇偶性;(2)证明:函数()f x 在[)1,+∞上是增函数; (3)求函数()f x 在[]41--,上的最大值与最小值. 22.已知函数()243f x x x =-+.(1)若函数()f x 在区间[]1,2t t ++上是单调的,求t 的取值范围;(2)在区间[]1,1-上,()y f x =的图象恒在22y x m =+-的图象上方,求实数m 的取值范围.23.已知函数()bf x ax x=+的是定义在()0,∞+上的函数,且图象经过点()1,1A ,()2,1B -.(1)求函数()f x 的解析式;(2)证明:函数()f x 在()0,∞+上是减函数; (3)求函数()f x 在[]2,5的最大值和最小值.24.已知函数()81f x x =- (1)求函数()f x 的定义域并求()2f -,()6f ;(2)已知()4211f a a+=+,求a 的值. 25.已知函数()()20f x ax x c a =++>满足:①函数14f x ⎛⎫-⎪⎝⎭是偶函数;②关于x 的不等式()0f x <的解集是()(),11m m <. (1)求函数()f x 的解析式;(2)求函数()()()()43g x f x k x k R =++∈在[]1,3上的最小值()h k .26.设函数()()2288f x x x ax a R x x=++-+∈. (1)若函数()f x 为偶函数,求实数a 的值; (2)若关于x 的不等式()16f x x ≤-在区间0,上有解,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据函数是偶函数,求出a ,b 关系,结合单调性确定a 的符号即可得到结论. 【详解】2()(3)()(3)3f x x ax b ax a b x b =--=-++为偶函数, 所以22()(3)3(3)3f x ax a b x b ax a b x b -=+++-=++ 30a b ∴+=,即3b a =-,则2()(3)(3)(3)(3)9f x x ax a a x x ax a =-+=-+=-, 在(0,)+∞上单调递增,0a ∴>,则由(2)(1)(5)0f x a x x -=--->,得(1)(5)0x x +->, 解得1x <-或5x >,故不等式的解集为{|1x x <-或5}x >. 故选:B 【点睛】思路点睛:解答本题只要按部就班化简转化函数为偶函数和单调性即可得解.由函数的奇偶性得到3b a =-,由函数的单调性得到0a >.2.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.3.C解析:C 【分析】令函数()218g x x ax =-++,则只需使当[]1,3x ∈-时,()0g x ≥且单调,然后针对()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230a g ⎧≤-⎪⎨⎪≥⎩两种情况讨论求解. 【详解】由题意可设()218g x x ax =-++,则当[]1,3x ∈-时,()218g x x ax =-++单调,且()0g x ≥恒成立,因为()218g x x ax =-++的对称轴方程为2a x =, 则()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩,解得617a ≤≤或32a --≤≤,即[][]6,173,2a ∈--,则只有14满足题意. 故选:C . 【点睛】本题考查根据复合函数的单调性求参数的取值范围,解答时注意不仅要使原函数在所给区间上单调,且必须使原函数在所给区间上有意义.4.C解析:C 【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断. 【详解】解:对于①:3xy =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=, 所以函数3xy =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=,所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =, 故③正确; 故选:C. 【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.5.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误; 选项B中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2xy =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-,当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).6.C解析:C 【分析】分10a -=、10a -<、10a ->,根据题意可得出关于a 、b 的不等式组,由此可解得32a b +的最大值. 【详解】分以下几种情况讨论:(1)当10a -=时,即当1a =时,()()21f x b x =++在[]1,2上单调递减,可得20b +<,解得2b <-,12b a b -=-≥,可得3b ≥,不合乎题意; (2)当10a -<时,即当1a <时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2121b a +-≤-,可得222b a +≤-,即20a b +≤,可得2b a ≤-,由2b a -≥,可得2a b ≤-, 所以,()()323222436a b b a a b +≤-+⨯-=-+-,当且仅当22b a a b =-⎧⎨=-⎩时,即当2343a b ⎧=-⎪⎪⎨⎪=⎪⎩时,等号成立,则2423232333a b ⎛⎫+≤⨯-+⨯= ⎪⎝⎭; (3)当10a ->时,即当1a >时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2221b a +-≥-,可得42a b +≤,即24b a ≤-,2b a -≥,即2b a ≥+,224a b a ∴+≤≤-,解得0a ≤,不合乎题意.综上所述,32a b +的最大值为23. 故选:C.【点睛】关键点点睛:根据首项系数为变数的二次函数在区间上的单调性求参数,要对首项系数的符号进行分类讨论,在首项系数不为零的前提下,要根据函数的单调性确定对称轴与区间的位置关系,构建不等式(组)求解.7.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】 易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减, 则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥, 当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.8.D解析:D 【分析】采用换元法可构造方程()21213t f t t =-=+,进而求得()f x 解析式,代入2020x =即可得到结果. 【详解】由()f x 是R 上的单调函数,可设()221xf x t +=+,则()13f t =恒成立, 由()221x f x t +=+得:()221x f x t =-+,()21213t f t t ∴=-=+,解得:1t =, ()22112121x x xf x -∴=-=++,()2020202021202021f -∴=+. 故选:D . 【点睛】本题考查函数值的求解问题,解题关键是能够采用换元的方式,利用抽象函数关系式求解得到函数的解析式.9.B解析:B 【分析】对于(1)(1)(1)f x f x f +=-+,令0x =,可推出(1)(1)0f f =-=;令2x =-,推出(3)0f -=;令32x =-,推出51()()22f f -=-,最后结合()f x 的单调性得解.【详解】解:对于(1)(1)(1)f x f x f +=-+,令0x =,则(1)(1)(1)f f f =-+,(1)0f ∴-=,()f x 是偶函数,∴(1)(1)0f f =-=,令2x =-,则(21)(21)(1)f f f -+=--+,即(1)(3)(1)f f f -=-+,(3)0f ∴-=, 令32x =-,则33(1)(1)(1)22f f f -+=--+,51()()22f f ∴-=-,()f x 在区间[1-,0]为减函数,51()()(1)0(3)22f f f f ∴-=-<-==-,故选:B . 【点睛】函数的单调性与奇偶性的综合运用,灵活运用赋值法是解题的关键.10.D解析:D 【解析】 因为()sin()sin sin()sin 11()2222x x x xf x y f x ---=+==+=,所以函数sin sin 122xxy =+是定义在R 上的偶函数,排除A 、B 项;又sin2sin2115()222222f πππ=+=+=,排除C ,综上,函数sin sin 122xxy =+大致的图象应为D 项,故选D.11.C解析:C 【分析】由函数是R 上的减函数,列出不等式,解出实数a 的取值范围. 【详解】因为()f x 是R 上的减函数,故023033a a a a>⎧⎪-<⎨⎪-≥⎩,故2334a <≤,故选:C 【点睛】本题考查函数的单调性的应用,考查分段函数,属于中档题.12.A解析:A 【分析】分析函数()()2212f x x a x =+--的图象和性质,结合已知可得41a ≤-,解得答案.【详解】函数()()2212f x x a x =+--的图象是开口朝上,且以直线1x a =-为对称轴的抛物线,若函数()()2212f x x a x =+--在(],4-∞上是减函数,41a ∴≤-, 解得: 3a ≤-, 故选:A 【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.二、填空题13.100【分析】分析得出得解【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键解析:100 【分析】分析得出(2)()2f x f x -+=得解. 【详解】1()1x f x x +=- 211211(2)()2f x f x x x x x -+∴-+=++=--- ∴135199()()()()100100100100f f f f ++++ 1199319799101[()()][()()][()()]100100100100100100f f f f f f =+++++250100=⨯=故答案为:100. 【点睛】由函数解析式得到(2)()2f x f x -+=是定值是解题关键.14.【分析】根据指数函数和一次函数的性质得出关于的不等式组即可求解【详解】由题意函数是上的单调递增函数可得解得即实数取值范围故答案为:【点睛】利用函数的单调性求解参数的取值范围:根据函数的单调性将题设条解析:8[,6)3【分析】根据指数函数和一次函数的性质,得出关于a 的不等式组,即可求解. 【详解】由题意,函数1,1()32,12x a x f x a x x ⎧+>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 可得13021322a a a a ⎧⎪>⎪⎪->⎨⎪⎪+≥-+⎪⎩,解得863a ≤<,即实数a 取值范围8[,6)3.故答案为:8[,6)3. 【点睛】利用函数的单调性求解参数的取值范围:根据函数的单调性,将题设条件转化为函数的不等式(组),即可求出参数的值或范围; 若分段函数是单调函数,则不仅要保证在各区间上单调性一致,还要确保在整个定义域内是单调的.15.3【分析】根据题意求得函数的周期性得出函数的周期然后利用函数的周期和的值即可求解得到答案【详解】由题意函数对任意实数满足条件则即函数是以4为周期的周期函数又由令则即所以【点睛】本题主要考查了抽象函数解析:3 【分析】根据题意,求得函数的周期性,得出函数的周期,然后利用函数的周期和()1f 的值,即可求解,得到答案. 【详解】由题意,函数()f x 对任意实数x 满足条件1(2)()f x f x +=-, 则()1(4)[(2)2](2)f x f x f x f x +=++=-=+,即函数()f x 是以4为周期的周期函数,又由()113f =-,令1x =-,则1(12)(1)f f -+=--,即1(1)3(1)f f -==, 所以()2019(14505)(1)3f f f =-+⨯=-=. 【点睛】本题主要考查了抽象函数的应用,以及函数的周期性的判定和函数值的求解,其中解答中根据题设条件求得函数的周期是解答本题的关键,着重考查了推理与运算能力,属于基础题.16.【分析】当时可得可求出结合可求出时的表达式进而可得出答案【详解】当时;当时所以则所以故答案为:【点睛】本题考查分段函数解析式的求法考查学生的推理能力属于中档题解析:1,023,20x x x x +≤≤⎧⎨---≤<⎩【分析】当[)2,0x ∈-时,可得[)20,2x +∈,可求出(2)3f x x +=+,结合()(2)f x f x =-+,可求出[)2,0x ∈-时,()f x 的表达式,进而可得出答案.【详解】当[]0,2x ∈时,()1f x x =+;当[)2,0x ∈-时,[)20,2x +∈,所以(2)3f x x +=+, 则()(2)3f x f x x =-+=--.所以1,02()3,20x x f x x x +≤≤⎧=⎨---≤<⎩. 故答案为:1,023,20x x x x +≤≤⎧⎨---≤<⎩. 【点睛】本题考查分段函数解析式的求法,考查学生的推理能力,属于中档题.17.【解析】由对任意成立可知函数在定义域上为增函数所以:解得答案为:解析:3[,2)2【解析】由对任意()()121212,0f x f x x x x x -≠>-都有成立可知,函数()y f x =在定义域上为增函数,所以:20121a a a a ->⎧⎪>⎨⎪≥-+⎩,解得322a ≤<答案为:3,22⎡⎫⎪⎢⎣⎭.18.7【解析】由函数的周期为3可得因为若则可得出又根据为奇函数则又可得出又函数是定义在R 上的奇函数可得出从而在中令得出又根据是定义在R 上的奇函数得出从而得到即故从而共7个解解析:7 【解析】由函数的周期为3可得(3)()f x f x +=,因为(2)0f =, 若(0,6)x ∈,则可得出(5)=(2)0f f =, 又根据()f x 为奇函数,则(-2)=-(2)0f f =, 又可得出(4)=(1)(-2)=0f f f =,又函数()f x 是定义在R 上的奇函数,可得出(0)0f =, 从而(3)=(0)0f f =,在(3)()f x f x +=中, 令32x =-,得出33()()22f f -=,又根据()f x 是定义在R 上的奇函数,得出33()-()22f f -=, 从而得到33()-()22f f =,即3()02f =, 故933()(+3)()=0222f f f ==,从而93()()=(4)(1)(3)(5)(2)022f f f f f f f ======,共7个解.19.【分析】由分段函数根据单调性求得在的最小值根据求出的最小值将问题转化为解不等式即可得出结果【详解】根据已知当时则当时在处取到最小值当时在处取到最小值所以在时在处取到最小值又因为可知当时在时取到最小值 解析:(,2](0,1]-∞-⋃【分析】由分段函数根据单调性求得()f x 在[0,2)x ∈的最小值,根据(2)2()f x f x +=求出[4,2)x ∈--,()f x 的最小值,将问题转化为min 1()42t f x t≥-解不等式即可得出结果. 【详解】 根据已知,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩, 则当[0,1)x ∈时,()f x 在0.5x =处取到最小值(0.5)0.25f =-,当[1,2)x ∈时,()f x 在 1.5x =处取到最小值(1.5)1f =-, 所以()f x 在[0,2)x ∈时在 1.5x =处取到最小值(1.5)1f =-, 又因为(2)2()f x f x +=, 可知当[4,2)x ∈--时, ()f x 在 2.5x =-时取到最小值,且(1.5)2(0.5)4( 2.5)f f f =-=-, 则1( 2.5)(1.5)0.254f f -=⨯=-. 为使[4,2)x ∈--,1()42t f x t≥-恒成立, 需11424t t -≤-, 当0t >时,可整理为220t t +-≤, 解得(0,1)t ∈; 当0t <时,可整理为220t t +-≥, 解得(,2]t ∈-∞-. 故答案为(,2](0,1]-∞-⋃. 【点睛】本题考查分段函数的应用,考查函数的单调性,将恒成立问题转化为函数的最值问题是解题的关键,属于中档题.20.【分析】利用定义可知在上递减在上递增所以当时取得最小值为再根据是的最小值可知且解得结果即可得解【详解】当时任设则当时所以所以当时所以所以所以在上递减在上递增所以当时取得最小值为又因为是的最小值所以且 解析:02a ≤≤【分析】利用定义可知1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增,所以当1x =时,1()f x x a x=++取得最小值为2a +,再根据(0)f 是()f x 的最小值,可知0a ≥且2(0)2a a -≤+,解得结果即可得解.【详解】当0x >时,1()f x x a x=++, 任设120x x <<,则12121211()()f x f x x a x a x x -=++---12121()(1)x x x x =--,当120x x <<1<时,120x x -<,12110x x -<,所以12121()(1)0x x x x -->,所以12()()f x f x >,当121x x <<时,120x x -<,12110x x ->,所以12121()(1)0x x x x --<,所以12()()f x f x <,所以1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增, 所以当1x =时,1()f x x a x=++取得最小值为2a +, 又因为(0)f 是()f x 的最小值,所以0a ≥且2(0)2a a -≤+,解得02a ≤≤.故答案为:02a ≤≤. 【点睛】本题考查了利用定义判断函数的单调性,考查了根据函数的最值点求参数的取值范围,考查了分段函数的性质,属于中档题.三、解答题21.(1)奇函数;(2)证明见解析;(3)172,4-- 【分析】(1)直接利用函数的奇偶性定义判断即可;(2)利用单调性定义进行判断证明:取值、作差、定号、得结论; (3)利用(2)的结论,得到函数在区间上的单调性,进一步求得最值. 【详解】 函数1()f x x x=+的定义域为(-∞,0)(0⋃,)+∞ (1)因为对任意的0x ≠,都有11()()()()()f x x x f x x x-=+-=-+=--, 故函数()f x 为奇函数.(2)对区间[)1,+∞上的任意两个数1x 、2x ,且12x x <, 则121212121212111()()()()()x x f x f x x x x x x x x x --=+-+=-. 由于1x 、[)21x ∈+∞,且12x x <,则121x x >,1210x x ->,120x x -<. 从而12())0(f x f x -<即12()()f x f x <,因此函数()f x 在区间[)1,+∞上为增函数. (3)由(2)知,函数()f x 在区间[)1,+∞上为增函数,由(1)知,函数()f x 是奇函数,所以函数()f x 在区间(],1-∞-上为增函数,则函数()f x 在区间[]41--,上为增函数, 故()min f x =()1744f -=-,()()12max f x f =-=-. 【点睛】方法点睛:判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为奇函数);(2)和差法, ()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) . 22.(1)(][),01,-∞⋃+∞;(2) 【分析】(1)分函数()f x 在区间[]1,2t t ++上单调递增和单调递减两种情况讨论,可得出关于实数t 的不等式,由此可解得实数t 的取值范围;(2)由题意可得出24322x x x m -+>+-对任意的[]1,1x ∈-恒成立,利用参变量分离法可得出265m x x <-+,利用二次函数求出函数()265g x x x =-+在区间[]1,1-上的最小值,由此可得出实数m 的取值范围. 【详解】(1)二次函数()243f x x x =-+的图象开口向上,对称轴为直线2x =.①若函数()f x 在区间[]1,2t t ++上单调递增,则12t +≥,解得1t ≥; ②若函数()f x 在区间[]1,2t t ++上单调递减,则22t +≤,解得0t ≤. 综上所述,实数t 的取值范围是(][),01,-∞⋃+∞;(2)由题意可得出24322x x x m -+>+-对任意的[]1,1x ∈-恒成立, 则265m x x <-+对任意的[]1,1x ∈-恒成立,令()()226534g x x x x =-+=--,则函数()g x 在区间[]1,1-上单调递减,所以,()()min 10g x g ==,0m ∴<. 因此,实数m 的取值范围是(),0-∞. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥. 23.(1)()()20f x x x x=-+≠;(2)证明见解析;(3)()max 1f x =-,()min 235f x =-. 【分析】(1)将点坐标代入解析式,求出,a b 的值;(2)设任意1x ,()20,x ∈+∞,且12x x <,判断()()12f x f x >即可; (3)利用函数的单调性,将端点值代入,即可得答案; 【详解】(1)由()f x 的图象过A 、B ,则1212a b b a +=⎧⎪⎨+=-⎪⎩,解得12a b =-⎧⎨=⎩, ()()20f x x x x=-+≠. (2)证明:设任意1x ,()20,x ∈+∞,且12x x <,∴()()()12122112122222f x f x x x x x x x x x ⎛⎫⎛⎫-=-+--+=-+- ⎪ ⎪⎝⎭⎝⎭()()()()2121122112122=2x x x x x x x x x x x x --+-+=由1x ,()20,x ∈+∞,得120x x >,1220x x +>. 由12x x <,得210x x ->. ()()12 0f x f x ∴->,即()()12f x f x >.∴函数()f x 在()0,∞+上为减函数.(3)由(2)知函数为减函数,∴()()max 21f x f ==-,()()min 2355f x f ==-. 【点睛】利用待定系数法求函数的解析式,利用定义证明函数的单调性注意取值的任意性,及作差、因式分解、判断符号的步骤.24.(1){|3x x ≥-且}1x ≠,()523f -=-,()2365f =;(2)23-.【分析】(1)要使解析式有意义可得1030x x -≠⎧⎨+≥⎩,解不等式组,即可得答案;(2)求出()21f a +的表达式,进而得到方程441a a=+,即可得答案; 【详解】 (1)由1030x x -≠⎧⎨+≥⎩解得13x x ≠⎧⎨≥-⎩,∴函数()f x 的定义域为{|3x x ≥-且}1x ≠, ∴()523f -=-,()2365f =. (2)()4211f a a +=+,∴441a a+=+, 23a ∴=-.【点睛】函数的定义域是指使得解析式有意义的自变量的取值的集合,注意要写成集合或区间的形式.25.(1)()223f x x x =+-;(2)()21227,4245,4243,2k k h k k k k k k +≤-⎧⎪=----<<-⎨⎪+≥-⎩.【分析】(1)由①可知函数()f x 的图象关于直线14x =-对称,由②可知()10f =,可得出关于a 、c 的方程组,进而可得出函数()f x 的解析式;(2)求得()()22413g x x k x =++-,求得该函数的对称轴为直线()1x k =-+,对实数k 的取值进行分类讨论,分析函数()g x 在区间[]1,3上的单调性,进而可求得()h k 关于k的表达式. 【详解】(1)由①可得,函数14f x ⎛⎫-⎪⎝⎭是偶函数, 将函数14f x ⎛⎫- ⎪⎝⎭的图象向左平移14个单位长度可得到函数()f x 的图象,所以,函数()f x 的图象关于直线14x =-对称,则有1124a -=-,可得2a =. 由②可得:1x =是方程20ax x c ++=的一个解,则有10a c ++=,得3c =-.于是:()223f x x x =+-;(2)依题意有:()()22413g x x k x =++-,对称轴为()1x k =-+.当()13k -+≥时,即4k ≤-时,()g x 在[]1,3单调递减,于是()()min 31227g x g k ==+;当()113k <-+<时,即4-<<-2k 时,()g x 在()1,1k -+⎡⎤⎣⎦单调递减,在()1,3k -+⎡⎤⎣⎦单调递增,于是()()2min 1245g x g k k k =--=---;当()11k -+≤时,即2k ≥-时,()g x 在[]1,3单调递增, 于是()()min 143g x g k ==+.综上:()21227,4245,4243,2k k h k k k k k k +≤-⎧⎪=----<<-⎨⎪+≥-⎩.【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果. 26.(1)0;(2)1a ≤-. 【分析】(1)由()f x 为偶函数有()(11)f f -=即可求a 的值;(2)由绝对值不等式及函数不等式在区间有解,讨论2,02x x ><≤,应用参变分离将问题转化为不等式能成立问题即可求a 的取值范围. 【详解】(1)因为()f x 为偶函数,则有()(11)f f -=,即1616a a -=+,解得0a =. (2)①当2x >时,()16f x x ≤-有解,即2216x ax x +≤-有解,1621a x x≤--+,所以max 16211a x x ⎛⎫≤--+=- ⎪⎝⎭当且仅当x =②当02x <≤时,()16f x x ≤-有解,即1616ax x x+≤-有解, 216161a x x≤--+,所以2max 1616111a x x ⎛⎫≤--+=- ⎪⎝⎭当2x =时等号成立; 综上,实数a的取值范围是1a ≤-.【点睛】结论点睛:本题考查不等式的有解问题,可按如下规则转化:一般地,将函数不等式转化为()a f x ≤或()a f x ≥在区间能成立.(1)()a f x ≤即在相应区间内仅需()max a f x ≤即可. (2)()a f x ≥即在相应区间内仅需()min a f x ≥即可.。

【精品提分练习】新版高中数学北师大版1习题:第二章函数 2.3.2

【精品提分练习】新版高中数学北师大版1习题:第二章函数 2.3.2

第2课时函数的单调性的应用课时过关·能力提升1函数y=(a-1)x在[1,3]上的最大值是2,则a=()A.1B.C.2D.3解析:当a-1>0时,函数y=(a-1)x在[1,3]上是增加的,∴由y max=3(a-1)=2,得a=.当a-1<0时,函数y=(a-1)x在[1,3]上是减少的,∴由y max=a-1=2,得a=3(舍去).综上所述,a=,故选B.答案:B2函数f(x)=在[1,b](b>1)上的最小值是,则b=()A.2B.3C.4D.5解析:由于函数f(x)在[0,+∞)上是减少的,所以f(x)在[1,b]上是减少的,所以f(x)min=f(b)=,所以b=4.故选C.答案:C3若不等式-x+a+1≥0对一切x∈成立,则a的最小值为()A.0B.-2C.-D.-答案:D4已知函数f(x)是R上的增函数,A(0,-2),B(3,2)是其图像上的两点,那么|f(x+1)|<2的解集是() A.(1,4) B.(-1,2)C.(-∞,1)∪[4,+∞)D.(-∞,-1)∪[2,+∞)答案:B★5函数f(x)=2+bx在[-2,2]上的最大值与最小值的差为4,则b的值是()A.1B.-1C.1或-1D.0解析:由题意知b≠0,当b>0时,f(x)max=2+2b,f(x)min=2-2b,∴2+2b-(2-2b)=2+2b-2+2b=4b,∴4b=4,∴b=1.当b<0时,f(x)max=2-2b,f(x)min=2+2b,∴2-2b-(2+2b)=-4b,∴-4b=4,∴b=-1,综上,b=1或-1.答案:C6函数f(x)=在[3,5]上的最大值为-,则a=.解析:由题意知,a>0时,f(x)=在[3,5]上的函数值为正,a=0时,f(x)=0无最值,所以a<0,f(x)=在[3,5]上是增加的,f(5)==-,a=-2.答案:-27已知函数y=f(x)的定义域为[a,b],a<c<b,当x∈[a,c]时,f(x)是减少的;当x∈[c,b]时,f(x)是增加的,则下列说法正确的有(填序号).①f(x)的最大值为f(c);②f(x)的最小值为f(c);③f(x)有最小值但无最大值;④f(x)既有最大值,又有最小值;⑤f(x)的最大值为f(a).解析:∵函数y=f(x)在区间[a,c]上是减少的,在区间[c,b]上是增加的,∴f(x)min=f(c).由于无法比较f(a)与f(b)的大小,故无法确定f(x)的最大值,但函数f(x)在[a,b]上定存在最大值,故②④正确.答案:②④8若f(x)=∈-∈求f(x)的最大值和最小值.解由题意知,当x∈[1,2]时,f(x)=2x+6,函数是增加的,∴f(x)=2x+6的最大值、最小值分别为10,8;∵x∈[-1,1]时,f(x)=x+7,函数f(x)是增加的,∴f(x)=x+7的最大值、最小值分别为8,6.∴f(x)的最大值、最小值分别为10,6.9已知函数f(x)=x2-2ax+5(a>1),若f(x)的定义域和值域均是[1,a],求实数a的值.解∵f(x)的图像开口向上,对称轴方程x=a>1,∴f(x)在[1,a]上是减少的,∴f(x)的最大值为f(1)=6-2a,f(x)的最小值为f(a)=5-a2,∴6-2a=a,5-a2=1,解得a=2.10求函数f(x)=x+在x∈[1,2]上的最大值与最小值.解设任意x1,x2∈[1,2],且x1<x2,则f(x1)-f(x2)==(x1-x2)+---.∵1≤x1<x2≤2,∴x1x2>0,x1-x2<0,x1x2-4<0.∴f(x1)-f(x2)>0,即f(x1)>f(x2),∴f(x)在区间[1,2]上是减少的.∴当x=1时,f(x)max=f(1)=5;当x=2时,f(x)min=f(2)=2+=4.★11已知函数f(x)=x2+ax+3在区间[-1,1]上的最小值为-3,求实数a的值.解∵f(x)=x2+ax+3=+3,对称轴为直线x=-,∴当-<-1,即a>2时,f(x)min=f(-1)=4-a=-3,得a=7.当-1≤-≤1,即-2≤a≤2时,f(x)min=f-=-+3=-3,∴a=±2(舍去);当->1,即a<-2时,f(x)min=f(1)=4+a=-3,∴a=-7.综上所述,a=±7.★12已知函数f(x)的定义域为R,对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),f(x)=-f(-x),且当x>0时,f(x)<0,若f(-1)=2.(1)求证:f(x)是R上的减函数;(2)求函数f(x)在区间[-2,4]上的值域.(1)证明任取x1,x2∈R,且x1<x2,则f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1).又x2-x1>0,∴f(x2-x1)<0,∴f(x2)-f(x1)<0,即f(x1)>f(x2).故f(x)是R上的减函数.(2)解∵f(-1)=2,∴f(-2)=f(-1)+f(-1)=4.又f(x)=-f(-x),∴f(2)=-f(-2)=-4,∴f(4)=f(2)+f(2)=-8.由(1)知f(x)是R上的减函数,∴当x=-2时,f(x)取得最大值,最大值为f(-2)=4;当x=4时,f(x)取得最小值,最小值为f(4)=-8.∴函数f(x)在区间[-2,4]上的值域为[-8,4].。

高中数学北师大版必修1习题:第二章函数 2.2.3 Word版含解析

高中数学北师大版必修1习题:第二章函数 2.2.3 Word版含解析

2.3映射课时过关·能力提升1映射f:A→B,在f作用下A中元素(x,y)与B中元素(x-1,3-y)对应,则与B中元素(0,1)对应的A中元素是()A.(-1,2)B.(0,3)C.(1,2)D.(-1,3)答案:C2下列从集合A到集合B的对应中为映射的是()A.A=B=N+,对应关系f:x→y=|x-3|B.A=R,B={0,1},对应关系f:x→y=C.A={x|x>0},B={y|y∈R},对应关系f:x→y=±D.A=Z,B=Q,对应关系f:x→y=答案:B3集合A={a,b},B={-1,0,1},从A到B的映射f:A→B满足f(a)+f(b)=0,那么这样的映射f:A→B的个数为()A.2B.3C.5D.8解析:存在的映射有-1+1=0,1+(-1)=0,0+0=0共3个.答案:B4已知A=B=R,x∈A,y∈B,f:x→y=ax+b是从A到B的映射,若3和7的原像分别是5和9,则6在f下的像是() A.3 B.4 C.5 D.6解析:因为3和7的原像分别是5和9,所以解得-即f:x→y=x-2,所以当x=6时,y=6-2=4,故选B.答案:B5已知映射f:A→B,其中集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中的元素在映射f下的像,且对任意的a ∈A,在B中和它对应的元素是|a|,则集合B中的元素的个数是()A.4B.5C.6D.7解析:对应关系是f:a→|a|,因此3和-3对应的像是3;-2和2对应的像是2;1和-1对应的像是1;4对应的像是4,所以B={1,2,3,4}.答案:A6若A到B的映射f:x→3x-1,B到C的映射g:y→,则A到C的映射h:x→.解析:由题意,得y=3x-1,.--.故h:x→-答案:-7设集合A和B都是自然数集,映射f:A→B把A中的元素n映射到B中的元素2n+n,则在映射f下,A中的元素对应B中的元素3.解析:对应关系为f:n→2n+n,根据2n+n=3,可得n=1.答案:18设a,b为实数,集合M=,N={a,0},f:x→x表示把集合M中的元素x映射到集合N中仍为x,则a+b的值为.解析:∵f:x→x,∴M=N,∴=0,a=1,b=0.故a+b=1.答案:19设f,g都是由A到A的映射(其中A={1,2,3}),其对应关系如下表:设a=g(f(3)),b=g(g(2)),c=f(g(f(1))).试判断a,b,c的大小关系.解∵a=g(f(3))=g(1)=2,b=g(g(2))=g(1)=2,c=f(g(f(1)))=f(g(2))=f(1)=2,∴a=b=c.10设f:A→B是A到B的一个映射,其中A=B={(x,y)|x,y∈R},f:(x,y)→(x-y,x+y).(1)求A中元素(-1,2)的像;(2)求B中元素(-1,2)的原像.解(1)A中元素(-1,2)在B中对应的元素为(-1-2,-1+2),即A中元素(-1,2)的像为(-3,1).(2)设A中元素(x,y)与B中元素(-1,2)对应,则由--解得所以B中元素(-1,2)的原像为.11已知从集合A到集合B={0,1,2,3}的映射f:x→-,试问集合A中的元素最多有几个?写出元素最多时的集合A.解∵f:x→-是从集合A到集合B的映射,∴A中每一个元素在集合B中都有像.令-=0,则该方程无解,故0没有原像.分别令-=1,2,3可得x=±2,±,±.故集合A中的元素最多为6个,即A=---.★12设映射f:A→B,其中A=B={(x,y)|x,y∈R},f:(x,y)→(3x-2y+1,4x+3y-1).(1)求A中元素(3,4)的像.(2)求B中元素(5,10)的原像.(3)A中是否存在这样的元素(a,b)使它的像仍是它本身?若有,求出这个元素;反之,说明理由.解(1)因为所以--所以集合A中元素(3,4)的像是(2,23).(2)因为--所以所以集合B中元素(5,10)的原像是(2,1).(3)因为--即--解得所以存在元素使它的像仍是它本身.。

【精品提分练习】新版高中数学北师大版1习题:第二章函数 检测

【精品提分练习】新版高中数学北师大版1习题:第二章函数 检测

第二章检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1设M={x|0≤x ≤2},N={y|0≤y ≤2},下列的四个图形中能表示从集合M 到集合N 的函数关系的为( )解析:由函数的定义知A 不是,因为集合M 中1≤x ≤2时,在N 中无元素与之对应;C 选项中的x=2对应的元素y=3∉N ,所以C 不是;D 选项中的x=1时,在N 中有两个元素与之对应,D 也不是. 答案:B2函数f (x )=(m+2)x m 是幂函数,则实数m=( )A.0B.1C.-1D.2解析:由m+2=1,得m=-1.答案:C3设集合M={x|0≤x ≤6},N={y|0≤y ≤2},从M 到N 的对应法则f 不是映射的是( ) A.f :x →y=12x B.f :x →y=13x C.f :x →y=14xD.f :x →y=16x解析:A 不是映射,按照对应法则f ,集合M 中的元素6,在后一个集合B 中没有元素与之对应,故不满足映射的定义.B,C,D 是映射,因为按照对应法则f ,集合M 中的每一个元素,在后一个集合N 中都有唯一的一个元素与之对应,故B,C,D 满足映射的定义,故选A . 答案:A4下列各组函数中,表示同一函数的是( )A.y=x 2-1x+1与y=x-1 B.y=√x 33与y=√x 2C.y=x 0与y=1x0 D.y=x 2|x |与y=x解析:选项A,D 中,两个函数的定义域不同;选项B 中,两个函数的定义域相同,但是对应关系不同;选项C 中,两个函数的定义域与对应关系均相同,故选C. 答案:C5已知函数f (x )={x -x 2,x ≤5,f (x -4),x >5,则f (6)=( )A.-3B.-1C.1D.-2解析:f (6)=f (6-4)=f (2)=2-22=-2,故选D .答案:D6函数f (x )=11-x +√1+x 的定义域是( ) A.[-1,+∞) B.[-1,1)∪(1,+∞) C.(1,+∞)D.(-∞,+∞)解析:要使f (x )有意义,只需{1-x ≠0,1+x ≥0,解得x ≥-1,且x ≠1.答案:B7函数y=ax 2+bx 与y=ax+b (ab ≠0)在同一坐标系中的图像只能是( )答案:C8下列函数中,在(0,2)上是增加的是( ) A.y=-3x+1 B.y=x 2-2x+3 C.y=√xD.y=4x解析:选项A 中y=-3x+1,为一次函数,易知在区间(0,2)上是减少的;选项B 中y=x 2-2x+3,为二次函数,开口向上,对称轴为x=1,所以在区间(0,2)上是先减少后增加; 选项C 中y=√x ,为幂函数,易知在区间(0,2)上是增加的;选项D 中y=4x ,为反比例函数,易知在(-∞,0)和(0,+∞)上均为减少的,所以函数在(0,2)上是减少的;综上可知,y=√x在区间(0,2)上是增加的,故选C.答案:C9若奇函数y=f(x)在区间[3,7]上是增加的,且最小值为5,则在区间[-7,-3]上是()A.增加的且有最小值-5B.增加的且有最大值-5C.减少的且有最小值-5D.减少的且有最大值-5解析:因为f(x)是奇函数,在区间[3,7]上是增加的,且最小值为5,所以f(x)在[-7,-3]上也是增加的,又奇函数图像关于原点对称,所以f(x)在[-7,-3]上有最小值-5,故选B.答案:B10已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=0解析:由f(0)=f(4)得4a+b=0,所以b=-4a.又f(0)>f(1),所以a+b<0.所以-3a<0,即a>0.答案:A11若函数f(x)=x2+bx+c对任意实数x都有f(2+x)=f(2-x),则()A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)解析:由f(2+x)=f(2-x)可知,函数f(x)的对称轴为x=2,由二次函数f(x)开口方向向上,可得f(2)最小,又f(4)=f(2+2)=f(2-2)=f(0),当x<2时,y=f(x)是减少的,由0<1<2,得f(0)>f(1)>f(2),即f(2)<f(1)<f(4).答案:A12已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有)=()xf(x+1)=(x+1)f(x),则f(52A.0B.12C.1D.52,解析:因为xf(x+1)=(x+1)f(x),所以当x≠0时,有f(x+1)=(x+1)f(x)x令x=-12,则f (12)=(-12+1)f (-12)-12,即f (12)=-f (-12). 又f (x )是偶函数,所以f (12)=0,f (52)=f (1+32)=(32+1)f (32)32=53f (32)=53·(1+12)f (12)12=5f (12)=0,故选A . 答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13已知集合A={1,2,m }与集合B={4,7,13},若f :x →y=3x+1是从A 到B 的映射,则m 的值为 .解析:若3m+1=4,则m=1与集合A={1,2,m }矛盾,若3m+1=7,则m=2,同理舍去, 所以3m+1=13,即m=4. 答案:414如果函数g (x )={2x -3,x >0,f (x ),x <0是奇函数,那么f (x )= .解析:设x<0,则-x>0,g (-x )=-2x-3.∵g (x )为奇函数, ∴f (x )=g (x )=-g (-x )=2x+3.答案:2x+315已知函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x (x+1).若f (a )=-2,则实数a= . 解析:令x<0,则-x>0,所以f (-x )=-x (1-x ).又f (x )为奇函数,所以当x<0时,有f (x )=x (1-x ). 令f (a )=a (1-a )=-2,得a 2-a-2=0, 解得a=-1或a=2(舍去),故答案为-1. 答案:-116已知函数f (x )=x 21+x 2,则f (1)+f (2)+f (3)+f (4)+f (12)+f (13)+f (14)的值为 .解析:∵f (x )=x 21+x 2, ∴f (1x )=11+x 2. ∴f (x )+f (1x )=1.再由f (1)=12,可得f (1)+f (2)+f (3)+f (4)+f (12)+f (13)+f (14)=f (1)+3=72.答案:72三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17(10分)已知二次函数f (x )=x 2+2(1-2a )x+6在区间(-∞,-1)上是减少的. (1)求f (2)的取值范围; (2)比较f (2a-1)与f (0)的大小.解:(1)∵二次函数f (x )图像的对称轴方程为x=2a-1,∴函数在(-∞,2a-1]上是减少的. ∴-1≤2a-1.∴a ≥0.而f (2)=22+2(1-2a )×2+6=-8a+14,∴f (2)=14-8a ≤14.(2)∵当x=2a-1时,函数y=f (x )取最小值,∴f (2a-1)≤f (0).18(12分)已知函数f (x )={3-x 2,x ∈[-1,2],x -3,x ∈(2,5].(1)在如图给定的直角坐标系内画出f (x )的图像;(2)写出f (x )的递增区间. 解:(1)函数f (x )的图像如图.(2)由图像可知,函数f (x )的递增区间为[-1,0]和[2,5]. 19(12分)已知函数f (x )=2x -1x+1,x ∈[3,5]. (1)判断f (x )在区间[3,5]上的单调性并证明; (2)求f (x )的最大值和最小值.解:(1)f (x )在区间[3,5]上是增加的,证明如下:f (x )=2x -1x+1=2(x+1)-3x+1=2-3x+1, 任取x 1,x 2∈[3,5],且x 1<x 2,则f (x 1)-f (x 2)=(2-3x 1+1)−(2-3x 2+1) =3x 2+1−3x 1+1=3(x 1-x 2)(x 1+1)(x 2+1).∵x 1,x 2∈[3,5],∴x 1+1>0,x 2+1>0,即(x 1+1)(x 2+1)>0.又x 1<x 2,∴x 1-x 2<0.∴f (x 1)<f (x 2).∴f (x )=2x -1x+1在区间[3,5]上是增加的.(2)由(1)知,f (x )的最小值为f (3)=2×3-13+1=54;f (x )的最大值为f (5)=2×5-15+1=32.20(12分)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1-x ). (1)求函数的解析式,并画出函数图像; (2)写出函数的单调区间及值域. 解:(1)∵x ≥0时,f (x )=x (1-x ),∴当x<0时,-x>0, ∴f (-x )=-x (1+x ),又∵f (x )为奇函数,∴f (-x )=-f (x ),∴-f (x )=-x (1+x ),即f (x )=x (1+x ).综上可知,f (x )={x (1-x ),x ≥0,x (1+x ),x <0.由函数的解析式可得其图像,如图.(2)由函数的图像可知,f (x )在[-12,12]上是增加的,在(-∞,-12)和(12,+∞)上是减少的,f (x )的值域为R . 21(12分)已知函数f (x )=x 2-2ax (a>0),求函数f (x )在[0,2]上的最大值g (a ). 解:函数f (x )=x 2-2ax=(x-a )2-a 2(a>0)的对称轴为直线x=a.①当0<a ≤1时,g (a )=f (2)=4-4a ; ②当a>1时,g (a )=f (0)=0;故g (a )={4-4a ,0<a ≤1,0,a >1.22(12分)已知函数f (x )的定义域为[-1,1],且f (1)=1,若x ,y ∈[-1,1],有(x-y )·[f (x )-f (y )]>0. (1)判断f (x )的单调性,并加以证明; (2)解不等式f (x +12)<f (1-2x );(3)若f (x )≤m 2-2am+1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数m 的取值范围. 解:(1)f (x )在[-1,1]上是增加的.证明如下:任取x 1,x 2∈[-1,1],且x 1<x 2,则x 2-x 1>0, 由题意(x 2-x 1)[f (x 2)-f (x 1)]>0, 得f (x 2)-f (x 1)>0,即f (x 2)>f (x 1). 故f (x )在[-1,1]上是增加的. (2)由题意,得{ -1≤x +12≤1,-1≤1-2x ≤1,x +12<1-2x ,解得0≤x<16.(3)由f (x )在[-1,1]上是增加的, 得f (x )max =f (1)=1. 由题意,1≤m 2-2am+1,即m 2-2am ≥0对任意a ∈[-1,1]恒成立. 令g (a )=-2ma+m 2,a ∈[-1,1], 则{g (-1)=2m +m 2≥0,g (1)=-2m +m 2≥0, 解得m=0或m ≤-2或m ≥2.综上所述,m ∈{m|m=0或m ≤-2或m ≥2}.。

【精编】新版高中数学北师大版1习题:第二章函数2.3.1

【精编】新版高中数学北师大版1习题:第二章函数2.3.1

§3函数的单调性第1课时函数单调性的定义与判断课时过关·能力提升1设函数f(x)在区间(a,b),(c,d)上是增加的,且x1∈(a,b),x2∈(c,d),x1<x2,则f(x1)与f(x2)的大小关系是()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不能确定答案:D2若y=f(x)是R上的增函数,且f(2m)<f(9-m),则实数m的取值范围是()A.(3,+∞)B.(-∞,3)C.(-∞,0)D.(-3,3)解析:依题意,得2m<9-m,解得m<3.答案:B3设函数f(x)是定义在R上的减函数,若a∈R,则()A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+a)<f(a)D.f(a2+1)<f(a)解析:D项中,∵a2+1>a,且f(x)是(-∞,+∞)上的减函数,∴f(a2+1)<f(a).而其他选项中,当a=0时,自变量均是0,应取等号.故选D.答案:D则函数f(x)()4已知函数f(x)=-A.在(0,+∞)上是减少的B.在(-∞,0)上是增加的,在(0,+∞)上是减少的C.不能判断单调性D.在(-∞,+∞)上是增加的解析:如图,通过画函数f(x)的图像,可知D项正确.答案:D5已知函数f(x)=,则y=f(x-1)+1的递减区间为()A.(0,1)B.(-∞,0)C.{x|x≠1}D.(-∞,1)和(1,+∞)解析:因为f(x)=的递减区间是(-∞,0)和(0,+∞),又y=f(x-1)+1=-+1,故可知y=-+1的递减区间是(-∞,1)和(1,+∞).答案:D★6若函数f(x)=--是(-∞,+∞)上的减函数,则实数a的取值范围是()A.(-2,0)B.[-2,0)C.(-∞,1]D.(-∞,0)解析:由当x≥1时,f(x)=-x2+2ax-2a是减少的,得a≤1,由当x<1时,函数f(x)=ax+1是减少的,得a<0,分段点1处的值应满足-12+2a×1-2a≤1×a+1,解得a≥-2,故-2≤a<0.答案:B7函数y=--的递增区间是.解析:由y=--作出该函数的图像(草图)如图,观察图像知函数在区间上是增加的.答案:8设函数f(x)满足:对任意的x1,x2∈R都有(x1-x2)·[f(x1)-f(x2)]>0,则f(-3)与f(-π)的大小关系是.解析:由题意知,当x1>x2时,f(x1)>f(x2),当x1<x2时,f(x1)<f(x2),所以f(x)在定义域上是增函数.由-3>-π,所以f(-3)>f(-π).答案:f(-3)>f(-π)9函数f(x+1)=x2-2x+1的定义域是[-2,0],则f(x)的递减区间是.答案:[-1,1]10已知函数f(x)=a-.(1)若2f(1)=f(2),求a的值;(2)判断f(x)在(-∞,0)上的单调性并用定义证明.解(1)∵2f(1)=f(2),∴2(a-2)=a-1,∴a=3.(2)f(x)在(-∞,0)上是增加的,证明如下:任取x1,x2∈(-∞,0),且x1<x2,则f(x1)-f(x2)=--=-.∵x1,x2∈(-∞,0),∴x1x2>0.又x1<x2,∴x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)=a-在(-∞,0)上是增加的.★11函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(4)=5,解不等式f(3m2-m-2)<3.(1)证明任取x1,x2∈R,且x1<x2,则x2-x1>0,f(x2-x1)>1.∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0.∴f(x2)>f(x1).故f(x)在R上是增函数.(2)解∵f(4)=f(2+2)=f(2)+f(2)-1=5,∴f(2)=3.∴原不等式可化为f(3m2-m-2)<f(2).∵f(x)在R上是增函数,∴3m2-m-2<2,解得-1<m<.故不等式的解集为-.★12已知函数f(x)=x-在(1,+∞)上是增加的,求实数a的取值范围.分析:利用函数单调性的定义求参数的取值范围.解任取x1,x2∈(1,+∞),且x1<x2.∵函数f(x)在(1,+∞)上是增加的,∴f(x1)-f(x2)=x1--=(x1-x2)<0.又x1-x2<0,∴1+>0,即a>-x1x2.∵1<x1<x2,∴x1x2>1,-x1x2<-1.∴a≥-1.∴实数a的取值范围是[-1,+∞).。

【精品】高中数学北师大版必修1习题:第二章函数2.2.2.1

【精品】高中数学北师大版必修1习题:第二章函数2.2.2.1

2.2函数的表示法第1课时函数的三种表示方法课时过关·能力提升1已知函数f(x),g(x)分别由下表给出:则f(g(1))=()A.2B.1C.3D.不确定解析:由已知得g(1)=3,所以f(g(1))=f(3)=1.答案:B2去年国庆长假期间,某日8时至16时累计参观故宫人数的折线图如图所示,那么在8时~9时,9时~10时,…,15时~16时的八个时段中,入宫人数最多的时段是()A.8时~9时B.11时~12时C.13时~14时D.15时~16时解析:结合函数图像可知,在8时~9时,9时~10时,…,15时~16时的八个时段中,图像变化最快的,增加得最快的是11时~12时之间,故选B.答案:B3若f,则当x≠0,且x≠1时,f(x)=()A. B.C. D.-1答案:B4下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x解析:因为f(2x)=|2x|=2|x|=2f(x),所以A满足要求;因为f(2x)=2x-|2x|=2(x-|x|)=2f(x),所以B满足要求;因为f(2x)=2x+1≠2(x+1)=2f(x),所以C不满足要求;因为f(2x)=-2x=2f(x),所以D满足要求.故选C.答案:C5若函数y=f(x)的定义域是[0,2],则函数y=f(2x-1)的定义域是()A.[0,1]B.[0,2]C.D.[-1,3]解析:因为函数y=f(x)的定义域是[0,2],即0≤x≤2,所以0≤2x-1≤2,解得≤x≤.因此y=f(2x-1)的定义域是.答案:C6已知函数g(x)=1-2x,f[g(x)]=(x≠0),则f(0)等于()A.-3B.-C.D.3解析:令g(x)=1-2x=0,则x=,则f(0)==3.故选D.答案:D7函数f(n)对任意实数n满足条件f(n+3)=,若f(1)=6,则f(7)的值为.解析:由f(n+3)=得,f(7)==f(1)=6.答案:6★8若2f(x)+f=2x+(x≠0),则f(2)=.答案:9如图,函数f(x)的图像是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),那么f的值等于.解析:由函数f(x)的图像,知f(1)=2,f(3)=1,则f=f(1)=2.答案:210求下列函数的解析式:(1)已知f(x+1)=x2-3x+2,求f(x);(2)已知f(1-x)=,求f(x).解(1)∵f(x+1)=x2-3x+2=(x+1)2-5x+1=(x+1)2-5(x+1)+6,∴f(x)=x2-5x+6.(2)令1-x=t,则x=1-t.又1-x2≥0,∴-1≤x≤1,∴0≤1-x≤2,即0≤t≤2.∴f(t)=(0≤t≤2).∴f(x)=(0≤x≤2).★11已知函数f(x)=(a,b为常数,且a≠0),满足f(2)=1,且f(x)=x有唯一解,(1)求函数y=f(x)的解析式.(2)求f(f(-3))的值.解(1)∵f(2)=1,∴=1,即2a+b=2.①又f(x)=x有唯一解,即=x有唯一解,∴ax2+(b-1)x=0有两个相等的实数根,∴Δ=(b-1)2=0,∴b=1,代入①得a=,∴f(x)=.(2)由(1)知f(-3)==6,故f(f(-3))=f(6)=.★12已知f(x)对任意的实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0)与f(1)的值;(2)求证:f=-f(x);(3)若f(2)=p,f(3)=q(p,q均为常数),求f(36).(1)解令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0;令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.(2)证明令a=,b=x,得f(1)=f+f(x)=0,即f=-f(x).(3)解令a=b=2,得f(4)=f(2)+f(2)=2p,令a=b=3,得f(9)=f(3)+f(3)=2q.令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.。

【精品提分练习】新版高中数学北师大版必修1习题:第二章函数 2.12.2.1

【精品提分练习】新版高中数学北师大版必修1习题:第二章函数 2.12.2.1

第二章函数§1生活中的变量关系§2对函数的进一步认识2.1函数概念课时过关·能力提升1已知函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=()-A.{x|x≥-2}B.{x|x<2}C.{x|-2<x<2}D.{x|-2≤x<2}答案:D2函数f(x)=(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]解析:由x2+1≥1,得0<≤1,故函数f(x)的值域为(0,1].答案:B3已知函数y=f(x)的定义域为(-1,3),则在同一坐标系中,函数f(x)的图像与直线x=2的交点有() A.0个 B.1个 C.2个 D.0个或多个解析:函数y=f(x)的定义域为(-1,3),则在同一坐标系中,函数f(x)的图像与直线x=2的交点个数有1个,故选B.答案:B4已知等腰三角形ABC的周长为10,且底边长y关于腰长x的函数关系为y=10-2x,则此函数的定义域为()A.RB.{x|x>0}C.{x|0<x<5}D.解析:∵等腰三角形的周长为10,∴--<x<5.答案:D5已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如下表,则方程g(f(x))=x的解集为()x123A.{1}B.{2}C.{3}D.⌀解析:当x=1时,g(f(1))=g(2)=2,不符合题意;当x=2时,g(f(2))=g(3)=1,不符合题意;当x=3时,g(f(3))=g(1)=3,符合题意.故选C.答案:C★6若函数f(x)=(a2-2a-3)x2+(a-3)x+1的定义域和值域都为R,则a的值是()A.a=-1或a=3B.a=-1C.a=3D.a不存在解析:因为函数f(x)的定义域和值域都为R,所以函数f(x)为一次函数,即---解得a=-1.故选B.答案:B7函数y=的定义域是.解析:要使该函数有意义,则x+2≥0,故x≥-2.答案:{x|x≥-2}8已知集合M={x|y=x2+1},集合N={y|y=x2+1},则M∩N=.解析:∵M=R,N={y|y≥1},∴M∩N={y|y≥1}.答案:{y|y≥1}9函数f(x)=(--2)0+-的定义域是.答案:{x|x>1,且x≠5}10已知函数f(x)=.(1)求f(2);(2)求函数f(x)的值域.解(1)f(2)=.(2)f(x)=-=1-,又≠0,∴1-≠1,∴f(x)≠1,故函数f(x)的值域是(-∞,1)∪(1,+∞).11若f{f[f(x)]}=27x+26,求一次函数f(x)的解析式.解设f(x)=ax+b(a≠0),则f[f(x)]=a2x+ab+b,f{f[f(x)]}=a(a2x+ab+b)+b=a3x+a2b+ab+b,所以解得则f(x)=3x+2.★12已知函数f(x)=.(1)求f(2)与f,f(3)与f.(2)由(1)中求得的结果,你能发现f(x)与f的关系吗?并证明你的发现.(3)求f(1)+f(2)+f(3)+…+f(2 016)+f+f+…+f.解(1)∵f(x)=,∴f(2)=,f,f(3)=,f.(2)由(1)中的结果发现f(x)+f=1.证明如下:f(x)+f==1.(3)f(1)=.由(2)知f(2)+f=1,f(3)+f=1,…f(2 016)+f=1,∴原式=…=2 015+.个。

新版高中数学北师大版1习题:第二章函数 2.2.2.2

新版高中数学北师大版1习题:第二章函数 2.2.2.2

第2课时分段函数课时过关·能力提升1已知f(x)=则f(f(f(-3)))=()A.0B.πC.π+1D.2π解析:因为-3<0,所以f(-3)=0,所以f(f(-3))=f(0)=π,又π>0,所以f(f(f(-3)))=f(π)=π+1.答案:C2函数f(x)=x+的图像是()解析:f(x)=-故选C.答案:C3某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km为1.6元(不足1 km,按1 km计费),若出租车行驶在不需等待的公路上,则出租车的费用y(元)与行驶的里程x(km)之间的函数图像大致为()解析:由题意,当0<x≤3时,y=10;当3<x≤4时,y=11.6;当4<x≤5时,y=13.2;……当n-1<x≤n时,y=10+(n-3)×1.6,故选C.答案:C4已知f(x)=则f+f-等于()A.-2B.4C.2D.-4答案:B5已知f(x)=g(x)=3-2x,则f(g(2))=()A.-3B.-2C.3D.-1解析:因为g(x)=3-2x,所以g(2)=3-2×2=-1<0,所以f(g(2))=f(-1)=-1+4=3.答案:C6拟定从甲地到乙地通话m min的话费y(元)满足y=其中[m]是不超过m的最大整数,如[3.74]=3,从甲地到乙地通话5.2 min的话费是()A.3.71元B.4.24元C.4.77元D.7.95元解析:f(5.2)=1.06×(0.5×[5.2]+2)=4.77.答案:C7若函数f(x)=则f(-3)=.解析:f(-3)=f(-3+2)=f(-1)=f(-1+2)=f(1)=f(1+2)=f(3)=2×3=6.答案:6若f(1-a)=f(1+a),则a的值为.8已知实数a≠0,函数f(x)=--答案:---9已知函数f(x)=(1)求f-,f,f的值;(2)作出函数f(x)的简图;(3)求函数f(x)的值域.分析:给出的函数是分段函数,应注意在不同的自变量取值范围内函数有不同的解析式.(1)根据自变量的值所在的区间,选用相应的关系式求函数值.(2)函数f(x)在不同区间上的关系式都是常见的基本初等函数,因而可利用常见函数的图像完成作图.(3)函数的值域是各段函数值的集合的并集.解函数的定义域为[-1,0)∪[0,1)∪[1,2]=[-1,2].(1)∵-1≤x<0时,f(x)=-x,∴f-=--.∵0≤x<1时,f(x)=x2,∴f.∵1≤x≤2时,f(x)=x,∴f.(2)在同一平面直角坐标系中分段画出函数f(x)的图像,如图.(3)由(2)中函数f(x)的图像可知,函数的值域为[0,2].★10某市范围内住宅电话通话费为前3 min 0.20元,以后每分0.10元(不足3 min按3 min计,以后不足1 min按1 min 计).(1)在直角坐标系内,画出一次通话在6 min内(包括6 min)的通话费y(元)关于通话时间t(min)的函数图像;(2)如果一次通话t min(t>0),写出通话费y(元)关于通话时间t(min)的函数关系式(可用[t]表示不小于t 的最小整数).解(1)如图:(2)由(1)知,话费与时间t的关系是分段函数,当0<t≤3时,话费为0.2元;当t>3时,话费应为[0.2+([t]-3)×0.1]元,所以y=-★11已知函数的图像由两条射线及开口向下的抛物线的一部分(包括端点)组成,如图,试求函数的解析式.解设左射线所在直线的解析式为y=kx+b,因为点(1,1),(0,2)在直线上,故由得-所以左射线的解析式为y=-x+2(x<1).同理可得右射线的解析式为y=x-2(x>3).再设抛物线的解析式为y=a(x-2)2+2,因为点(1,1)在此抛物线上,所以a+2=1,a=-1,所以中间抛物线的解析式为y=-(x-2)2+2=-x2+4x-2,1≤x≤3.综上所述,所求函数的解析式为y=----。

最新北师大版高中数学必修一第二单元《函数》测试卷(含答案解析)(2)

最新北师大版高中数学必修一第二单元《函数》测试卷(含答案解析)(2)

一、选择题1.我们把定义域为[)0,+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:①对任意的[)0,x ∈+∞,总有()0f x ≥;②若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,给出下列四个结论:(1)若()f x 为“Ω函数”,则()00f =;(2)若()f x 为“Ω函数”,则()f x 在[)0,+∞上为增函数;(3)函数()0,1,x Qg x x Q∈⎧=⎨∉⎩在[)0,+∞上是“Ω函数”(Q 为有理数集);(4)函数()2g x x x =+在[)0,+∞上是“Ω函数”;其中正确结论的个数是( ) A .1B .2C .3D .4 2.已知函数(1)f x +为偶函数,当0x >时,23()f x x x =+,则(2)f -=( ) A .4- B .12C .36D .803.函数()(3)()f x x ax b =--为偶函数,且在(0,)+∞上单调递增,则(2)0f x ->的解集为( ) A .{|22}x x -<< B .{|5x x >或1}x <- C .{|04}x x << D .{|4x x >或0}x <4.若函数()f x =在[]1,3-上具有单调性,则实数a 的可能取值是( )A .4-B .5C .14D .235.对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零,则x 的取值范围是( ) A .13x <<B .1x <或3x >C .12x <<D .1x <或2x >6.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞7.已知定义在R 上的函数()f x 满足:对任意的[)()1212,2,x x x x ∈+∞≠,有()()21210f x f x x x ->-,且()2f x +是偶函数,不等式()()121f m f x +≥-对任意的[]1,0x ∈-恒成立,则实数m 的取值范围是( )A .[]4,6-B .[]4,3-C .(][),46,-∞-+∞ D .(][),43,-∞-⋃+∞8.某兴趣小组对函数()f x 的性质进行研究,发现函数()f x 是偶函数,在定义域R 上满足(1)(1)(1)f x f x f +=-+,且在区间[1,0]-为减函数.则(3)f -与5()2f -的关系为( )A .5(3)()2f f -≥- B .5(3)()2f f ->- C .5(3)()2f f -≤- D .5(3)()2f f -<-9.若函数()f x =0,,则实数m 的取值范围是( ) A .()1,4 B .()(),14,-∞⋃+∞C .(][)0,14,+∞ D .[][)0,14,+∞10.已知函数22|1|,7,()ln ,.x x e f x x e x e --⎧+-≤<=⎨≤≤⎩若存在实数m ,使得2()24f m a a =-成立,则实数a 的取值范围是( ) A .[-1,+∞) B .(-∞,-1]∪[3,+∞) C .[-1,3] D .(-∞,3] 11.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( )A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确12.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( ) A .()()()211f f f <-< B .()()()121f f f <<- C .()()()112f f f <-<D .()()()211f f f <<-二、填空题13.函数()f x 的定义域是__________.14.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________15.已知对于任意实数x ,函数f (x )都满足f (x )+2f (2-x )=x ,则f (x )的解析式为______.16.定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩,若[4,2)x ∈--时,1()42t f x t ≥-恒成立,则实数t 的取值范围是______. 17.若函数211x y x -=-的值域是()[),03,-∞+∞,则此函数的定义域是____.18.若233()1x x f x x -+=-,()2g x x =+,求函数()()y f g x =的值域________.19.定义:如果函数()y f x =在定义域内给定区间[],a b 上存在()00x a x b <<,满足()()0)(f b f a f x b a-=-,则称函数()y f x =是[],a b 上的“平均值函数”.0x 是它的一个均值点,若函数()2f x x mx =+是[]1,1-上的平均值函数,则实数m 的取值范围是___________.20.设()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是减函数,若()()21f m f m ->,则实数m 的取值范围是__________ 三、解答题21.设函数()f x 的定义域是(0,)+∞,且对任意的正实数,x y 都有()()()f xy f x f y =+恒成立,已知(2)1f =,且1x >时,()0f x >. (1)求12f ⎛⎫⎪⎝⎭的值; (2)判断()y f x =在(0,)+∞上的单调性,并给出你的证明;(3)解不等式2()(86)1f x f x >--.22.已知函数()4f x x x=+. (1)用单调性的定义证明()f x 在()0,2上单调递减; (2)判断()f x 在71,2⎡⎤⎢⎥⎣⎦上的单调情况,并求最值.23.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由.24.已知定义在R 上的函数()f x 的单调递增函数,且对∀x ,y ∈R ,都有()()()1f x y f x f y +=++,f (2)=5.(1)求f (0),f (1)的值;(2)若对11,32x ⎡⎤∈⎢⎥⎣⎦∀,都有2()(21)1f kx f x +-<成立,求实数k 的取值范围.25.(1)已知函数()f x =,求()f x 的定义域; (2)已知函数1()2f x x x=-+,依据函数单调性的定义证明()f x 在(0,)+∞上单调递减,并求该函数在[1,3]上的值域. 26.已知函数()24f x x ax =-.(1)当1a =时,求函数()f x 的值域; (2)解关于x 的不等式()230f x a +>;(3)若对于任意的[)2,x ∈+∞,()21f x x >-均成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用“Ω函数”的定义依次判断即可,必须同时满足“Ω函数”的两个条件,才是“Ω函数”. 【详解】解:对(1),由①得()00f ≥, 在②中令0x y ==, 即()()020f f =, 解得:()00f ≤,()00f ∴=,故(1)正确;对(2),当()0f x =时,满足①②,但在[)0,+∞不是增函数,故(2)错误; 对(3),当x ,y 都为正无理数时,不满足②,故(3)错误; 对(4),()2g x x x =+,当[)0,x ∈+∞时,min ()(0)00g x g ==≥, 即满足条件①,222()()()()20g x y g x g y x y x y x x y y xy +--=+++----=≥,即满足条件②,∴函数2()g x x x =+在[0,)+∞上是“Ω函数”,故(4)正确.故选:B. 【点睛】关键点点睛:本题解题的关键是理解“Ω函数”的定义,必须同时满足“Ω函数”的两个条件,才是“Ω函数”.2.D解析:D 【分析】首先根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+,所以有(2)(4)f f -=,结合题中所给的函数解析式,代入求得结果. 【详解】∵函数(1)f x +为偶函数,所以图象关于y 轴对称,即(1)(1)f x f x +=-+, 构造(2)(31)(31)(4)f f f f -=-+=+=,而40>, 所以23(4)4+4=16(14)80f =⨯+=. 故选:D. 【点睛】思路点睛:该题考查的是有关函数的问题,解题思路如下: (1)根据函数(1)f x +为偶函数,得到(1)(1)f x f x +=-+; (2)根据(1)(1)f x f x +=-+,得到(2)(4)f f -=; (3)结合当0x >时,23()f x x x =+,将4x =代入求得结果.3.B解析:B 【分析】根据函数是偶函数,求出a ,b 关系,结合单调性确定a 的符号即可得到结论. 【详解】2()(3)()(3)3f x x ax b ax a b x b =--=-++为偶函数, 所以22()(3)3(3)3f x ax a b x b ax a b x b -=+++-=++ 30a b ∴+=,即3b a =-,则2()(3)(3)(3)(3)9f x x ax a a x x ax a =-+=-+=-, 在(0,)+∞上单调递增,0a ∴>,则由(2)(1)(5)0f x a x x -=--->,得(1)(5)0x x +->, 解得1x <-或5x >,故不等式的解集为{|1x x <-或5}x >. 故选:B 【点睛】思路点睛:解答本题只要按部就班化简转化函数为偶函数和单调性即可得解.由函数的奇偶性得到3b a =-,由函数的单调性得到0a >.4.C解析:C 【分析】令函数()218g x x ax =-++,则只需使当[]1,3x ∈-时,()0g x ≥且单调,然后针对()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩两种情况讨论求解. 【详解】由题意可设()218g x x ax =-++,则当[]1,3x ∈-时,()218g x x ax =-++单调,且()0g x ≥恒成立,因为()218g x x ax =-++的对称轴方程为2a x =, 则()3210a g ⎧≥⎪⎨⎪-≥⎩或()1230ag ⎧≤-⎪⎨⎪≥⎩,解得617a ≤≤或32a --≤≤,即[][]6,173,2a ∈--,则只有14满足题意. 故选:C . 【点睛】本题考查根据复合函数的单调性求参数的取值范围,解答时注意不仅要使原函数在所给区间上单调,且必须使原函数在所给区间上有意义.5.B解析:B 【分析】将函数()f x 的解析式变形为()2()244f x x a x x =-+-+,并构造函数()2()244g a x a x x =-+-+,由题意得出()()1010g g ⎧->⎪⎨>⎪⎩,解此不等式组可得出实数x 的取值范围 【详解】对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零设()()2244g a x a x x =-+-+,即()0g a >在[]1,1a ∈-上恒成立.()g a 在[]1,1a ∈-上是关于a 的一次函数或常数函数,其图象为一条线段.则只需线段的两个端点在x 轴上方,即()()2215601320g x x g x x ⎧-=-+>⎪⎨=-+>⎪⎩,解得3x >或1x < 故选:B 【点睛】关键点睛:本题考查不等式在区间上恒成立问题,解答本题的关键是构造函数()()2244g a x a x x =-+-+,将问题转化为()0g a >在[]1,1a ∈-上恒成立,从而得到()()1010g g ⎧->⎪⎨>⎪⎩,属于中档题.6.C解析:C 【分析】由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b-≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.7.C解析:C 【分析】根据已知条件可知()f x 在(,2]-∞上单调递减,在[2,)x ∈+∞上单调递增,由不等式在[]1,0x ∈-恒成立,结合()f x 的单调性、对称性即可求m 的取值范围.【详解】对任意的[)()1212,2,x x x x ∈+∞≠,有()()21210f x f x x x ->-,知:()f x 在[2,)x ∈+∞上单调递增,()2f x +是偶函数,知:()f x 关于2x =对称,∴()f x 在(,2]-∞上单调递减,在[2,)x ∈+∞上单调递增;∵不等式()()121f m f x +≥-对任意的[]1,0x ∈-恒成立,且3211x -≤-≤-, ∴max (1)(21)(3)f m f x f +≥-=-即可,而根据对称性有(1)(7)f m f +≥, ∴综上知:13m +≤-或17m +≥,解得(][),46,x ∈-∞-+∞,故选:C 【点睛】结论点睛:注意抽象函数单调性、对称性判断对任意的()1212,x x x x ≠:()()21210f x f x x x ->-有()f x 单调递增;()()21210f x f x x x -<-有()f x 单调递减;当()f x n +是偶函数,则()f x 关于x n =对称;思路点睛:对称型函数不等式在一个闭区间上恒成立:在对称轴两边取大于或小于该闭区间最值即可,结合函数区间单调性求解.8.B解析:B 【分析】对于(1)(1)(1)f x f x f +=-+,令0x =,可推出(1)(1)0f f =-=;令2x =-,推出(3)0f -=;令32x =-,推出51()()22f f -=-,最后结合()f x 的单调性得解.【详解】解:对于(1)(1)(1)f x f x f +=-+,令0x =,则(1)(1)(1)f f f =-+,(1)0f ∴-=,()f x 是偶函数,∴(1)(1)0f f =-=,令2x =-,则(21)(21)(1)f f f -+=--+,即(1)(3)(1)f f f -=-+,(3)0f ∴-=, 令32x =-,则33(1)(1)(1)22f f f -+=--+,51()()22f f ∴-=-,()f x 在区间[1-,0]为减函数,51()()(1)0(3)22f f f f ∴-=-<-==-,故选:B . 【点睛】函数的单调性与奇偶性的综合运用,灵活运用赋值法是解题的关键.9.D解析:D 【分析】令t =()0,t ∈+∞()0,+∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围. 【详解】令t =1y t=的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞()0,+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()24240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D.10.C解析:C 【分析】根据函数()f x 的图象,得出值域为[2-,6],利用存在实数m ,使2()24f m a a =-成立,可得22246a a --,求解得答案. 【详解】作出函数22|1|,7()ln ,x x e f x x e x e--⎧+-<=⎨⎩的图象如图: (7)6f -=,2()2f e -=-,∴值域为[2-,6],若存在实数m ,使得2()24f m a a =-成立,22246a a ∴--,解得13a -,∴实数a 的取值范围是[1-,3].故选:C【点睛】本题考查分段函数的性质,考查函数值域的求解方法,同时考查了数形结合思想的应用,属于中档题.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.11.D解析:D 【分析】可举出反例判断①错误;根据奇偶性的性质可判断②正确,结合选项可得答案. 【详解】①错误,可举反例:21()31xx f x x x ⎧=⎨-+>⎩,230()30121x x g x x x x x +⎧⎪=-+<⎨⎪>⎩,0()20x x h x x x -⎧=⎨>⎩,均不是增函数;但()()f x g x +、()()f x h x +、()()g x h x +均为增函数; 故①错误; ②()()f x g x +,()()f x h x +,()()g x h x +均是奇函数;()()()()[()()]2()f x g x f x h x g x h x f x ∴+++-+=为奇函数;()f x ∴为奇函数;同理,()g x ,()h x 均是奇函数; 故②正确. 故选:D . 【点睛】本题考查增函数的定义,一次函数和分段函数的单调性,举反例说明命题错误的方法,以及奇函数的定义与性质,知道()f x 和()g x 均是奇函数时,()()f x g x ±也是奇函数.12.B解析:B 【分析】由已知得函数f (x )图象关于x=1对称且在(-∞,1]上单调递减,在(1,+∞)上单调递增,从而可判断出大小关系. 【详解】解:∵当x 1,x 2∈(-∞,1](x 1≠x 2)时有(x 1-x 2)(f (x 1)-f (x 2))<0, ∴f (x )在(-∞,1]上单调递减, ∵f (x )=f (2-x ),∴函数f (x )的图象关于x=1对称,则f (x )在∈(1,+∞)上单调递增, ∴f (-1)=f (3)>f (2)>f (1) 即f (-1)>f (2)>f (1) 故选B . 【点睛】本题考查函数的对称性及单调性的应用,解题的关键是函数性质的灵活应用.二、填空题13.【解析】由得所以所以原函数定义域为故答案为 解析:(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞.14.【分析】当时可得可求出结合可求出时的表达式进而可得出答案【详解】当时;当时所以则所以故答案为:【点睛】本题考查分段函数解析式的求法考查学生的推理能力属于中档题解析:1,023,20x x x x +≤≤⎧⎨---≤<⎩【分析】当[)2,0x ∈-时,可得[)20,2x +∈,可求出(2)3f x x +=+,结合()(2)f x f x =-+,可求出[)2,0x ∈-时,()f x 的表达式,进而可得出答案.【详解】当[]0,2x ∈时,()1f x x =+;当[)2,0x ∈-时,[)20,2x +∈,所以(2)3f x x +=+, 则()(2)3f x f x x =-+=--.所以1,02()3,20x x f x x x +≤≤⎧=⎨---≤<⎩.故答案为:1,023,20x x x x +≤≤⎧⎨---≤<⎩. 【点睛】本题考查分段函数解析式的求法,考查学生的推理能力,属于中档题.15.【分析】用2-x 换上f (x )+2f (2-x )=x①中的x 得到f (2-x )+2f (x )=2-x②这样①②联立即可解出f (x )【详解】由题意因为f (x )+2f (2-x )=x①;∴f (2-x )+2f (x ) 解析:()4f x x 3=- 【分析】用2-x 换上f (x )+2f (2-x )=x①中的x 得到,f (2-x )+2f (x )=2-x②,这样①②联立即可解出f (x ). 【详解】由题意,因为f (x )+2f (2-x )=x①; ∴f (2-x )+2f (x )=2-x②; ①②联立解得()43f x x =-. 故答案为()43f x x =-. 【点睛】本题主要考查了函数的解析式的求解,其中解答中根据题意,联立方程组求解是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档试题.16.【分析】由分段函数根据单调性求得在的最小值根据求出的最小值将问题转化为解不等式即可得出结果【详解】根据已知当时则当时在处取到最小值当时在处取到最小值所以在时在处取到最小值又因为可知当时在时取到最小值 解析:(,2](0,1]-∞-⋃【分析】由分段函数根据单调性求得()f x 在[0,2)x ∈的最小值,根据(2)2()f x f x +=求出[4,2)x ∈--,()f x 的最小值,将问题转化为min 1()42t f x t≥-解不等式即可得出结果. 【详解】 根据已知,当[0,2)x ∈时,2 1.5,[0,1)()0.5,[1,2)x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩, 则当[0,1)x ∈时,()f x 在0.5x =处取到最小值(0.5)0.25f =-, 当[1,2)x ∈时,()f x 在 1.5x =处取到最小值(1.5)1f =-, 所以()f x 在[0,2)x ∈时在 1.5x =处取到最小值(1.5)1f =-,又因为(2)2()f x f x +=, 可知当[4,2)x ∈--时, ()f x 在 2.5x =-时取到最小值,且(1.5)2(0.5)4( 2.5)f f f =-=-, 则1( 2.5)(1.5)0.254f f -=⨯=-. 为使[4,2)x ∈--,1()42t f x t≥-恒成立, 需11424t t -≤-, 当0t >时,可整理为220t t +-≤, 解得(0,1)t ∈; 当0t <时,可整理为220t t +-≥, 解得(,2]t ∈-∞-. 故答案为(,2](0,1]-∞-⋃. 【点睛】本题考查分段函数的应用,考查函数的单调性,将恒成立问题转化为函数的最值问题是解题的关键,属于中档题.17.【分析】先计算当和时的值然后分析原函数的图象性质根据函数的图象性质判断定义域【详解】令得令得函数则原函数在上单调递减在上递减画出函数的图象如图所示:由函数的图象可知当值域为时定义域应为故答案为:【点解析:(]1,11,22⎛⎫⋃ ⎪⎝⎭【分析】先计算当0y =和3y =时x 的值,然后分析原函数的图象性质,根据函数的图象性质判断定义域. 【详解】 令2101x y x -==-得12x =,令2131x y x -==-得2x =,函数2122112111x x y x x x --+===+---,则原函数在(),1-∞上单调递减,在()1,+∞上递减,画出函数211x y x -=-的图象如图所示:由函数211x y x -=-的图象可知,当值域为()[),03,-∞+∞时,定义域应为(]1,11,22⎛⎫⋃ ⎪⎝⎭. 故答案为:(]1,11,22⎛⎫⋃ ⎪⎝⎭. 【点睛】解答本题时,要先根据函数值域的端点求出自变量的值,然后通过原函数的图象及性质分析自变量的取值情况,其中将原函数解析式化为121y x =+-,结合反比例函数的图象性质分析211x y x -=-的性质是关键. 18.【分析】将代入得到的解析式然后利用换元法求出值域【详解】要使函数成立则即将函数代入得:令则所以又或故函数的值域为故答案为:【点睛】求解复合函数的值域的一般方法如下:(1)若函数的形式比较简单可先将的 解析:(][),31,-∞-+∞【分析】将()2g x x =+代入,得到()()y f g x =的解析式,然后利用换元法求出值域. 【详解】要使函数()()y f g x =成立,则21x +≠,即1x ≠-,将函数()2g x x =+代入233()1x x f x x -+=-得: ()()()()222323111x x x x y f g x x x +-++++===++,令1x t ,则1x t =-,所以22(1)111t t t t y t t t t-+-+===-+,又111t t -+≥或113t t -+≤-,故函数()()f g x 的值域为(][),31,-∞-+∞.故答案为:(][),31,-∞-+∞.【点睛】求解复合函数()()f g x 的值域的一般方法如下:(1)若函数()g x 的形式比较简单,可先将()()f g x 的解析式表示出来,然后设法求出其值域,解答时注意定义域;(2)采用换元法,令()g x t =,计算()g x 的值域即t 的取值范围,然后计算()f t 的值域.19.【分析】根据新定义可得在区间上有解利用分离变量法即可求出答案【详解】解:设∴在区间上有解即在区间上有解∵令单调递减时单调递增所以所以实数的取值范围是故答案为:【点睛】关键点点睛:此题考查了函数的新定 解析:[)0,+∞【分析】根据新定义可得2x mx m +=在区间()1,1-上有解,利用分离变量法即可求出答案. 【详解】解:设11x -<<,()()()()1111f f f x m --==--,∴2x mx m +=在区间()1,1-上有解,即21x m x=-在区间()1,1-上有解,∵()()()()22212112211121111x x x x x y x x x x x-+----+====-+-----, 令()10,2x t -=∈,12y t t∴=+-,(]0,1t ∈单调递减,[)1,2t ∈时单调递增,所以120y t t=+-≥,所以实数m 的取值范围是[)0,+∞. 故答案为:[)0,+∞. 【点睛】关键点点睛:此题考查了函数的新定义题目,解题的关键是将问题转化为2x mx m +=在区间()1,1-上有解,分离参数求解,意在考查了分析能力、数学运算.20.【分析】根据函数奇偶性和单调性之间的关系将不等式进行转化即可得到结论【详解】解:是定义在上的偶函数且在上是减函数不等式等价为即所以即即解得即故答案为:【点睛】本题主要考查不等式的求解根据函数奇偶性和解析:1,13⎛⎫⎪⎝⎭【分析】根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论. 【详解】 解:()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞上是减函数,∴不等式()()21f m f m ->,等价为()()21f m f m ->,即21m m -<,所以()2221m m -<,即()22210m m --<,即()()3110m m --<,解得113m << 即1,13m ⎛⎫∈ ⎪⎝⎭故答案为:1,13⎛⎫ ⎪⎝⎭【点睛】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系,将不等式进行等价转化是解决本题的关键,属于中档题.三、解答题21.(1)1-; (2)函数单调递增,证明见解析; (3)3{|14x x <<或3}x >. 【分析】(1)利用赋值法,即可求得所求的函数值,得到答案;(2)首先判定函数为增函数,然后利用函数的单调性的定义和所给条件进行证明即可; (3)利用函数的单调性和所得函数值对应的自变量得到函数不等式,得出不等式组,即可求解. 【详解】(1)由题意,函数()f x 对任意的正实数x ,y 都有()()()f xy f x f y =+恒成立, 令1x y ==,可得(1)(1)(1)f f f =+,所以()10f =, 令12,2x y ==,可得1(1)(2)()2f f f =+,即11()02f +=,解得1()12f =-. (2)函数()f x 为增函数,证明如下: 设12,(0,)x x ∈+∞且12x x <, 令211,x x x y x ==,根据题意,可得2121()()()x f x f f x x +=,即2211()()()x f x f x f x -=, 又由1x >时,()0f x >,因为211x x >,可得21()0x f x >,即21()()0f x f x ->,即21()()f x f x >, 所以函数()y f x =在(0,)+∞上的单调性.(3)由题意和(1)可得11(86)1(86)()[(86)](43)22f x f x f f x f x --=-+=-=-, 又由不等式2()(86)1f x f x >--,即2()(43)f x f x >-,可得243430x x x ⎧>-⎨->⎩,解得314x <<或3x >,即不等式2()(86)1f x f x >--的解集为3{|14x x <<或3}x >. 【点睛】求解函数有关的不等式的方法及策略: 解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.22.(1)证明见解析;(2)()f x 在[)1,2上单调递减,在72,2⎡⎤⎢⎥⎣⎦上单调递增,最小值4,最大值5.【分析】(1)任取1x 、()20,2x ∈且12x x <,作差()()12f x f x -、因式分解,判断()()12f x f x -的符号,进而可证得结论成立;(2)同(1)可证函数()f x 在区间()2,+∞上为增函数,由此可判断出函数()f x 在71,2⎡⎤⎢⎥⎣⎦上的单调性,并由此可求得函数()f x 在71,2⎡⎤⎢⎥⎣⎦上的最大值和最小值. 【详解】(1)证明:任取1x 、()20,2x ∈且12x x <,则()()()()()121212121212121244444x x x x f x f x x x x x x x x x x x --⎛⎫⎛⎫⎛⎫-=+-+=-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 1202x x <<<,120x x ∴-<,1204x x <<,1240x x ∴-<,()()()()1212121240x x x x f x f x x x --∴-=>,即()()12f x f x >,因此,函数()4f x x x=+在()0,2上单调递减;(2)由(1)可知,()f x 在()0,2上单调递减,同理(1)可证()f x 在()2,+∞上单调递增,当71,2x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 在[)1,2上为减函数,在72,2⎛⎤ ⎥⎝⎦上为增函数,故当2x =时,()f x 取最小值4, 又()15f =,765214f ⎛⎫= ⎪⎝⎭且65514>,故当1x =时,()f x 取最大值5. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.23.(1)()22f x x x =-+;(2)()12-∞,;(3)存在,所求区间为:[]4,0-. 【分析】(1)根据题意,用待定系数法,列方程组,求出解析式;(2)恒成立问题用分离参数法转化为求函数的最值,即可求实数k 的取值范围; (3)对于存在性问题,可先假设存在区间[],m n ,再利用二次函数的单调性,求出m 、n 的值,如果出现矛盾,说明假设不成立,即不存在. 【详解】(1)对于()2f x ax bx c =++,由(1)1f =得到:0a b c ++=①;∵对任意的x ∈R ,(5)(3)f x f x -+=-均成立,取x =3,得:(2)(0)f f = 即42=a b c c ++②又方程()42f x x =-有唯一实数解,得:()()2=2440b a c ∆+--=③①②③联立,解得:1,2,0a b c =-==(其中259a =-舍去) 所以()22f x x x =-+.(2)不等式不等式()2160f x kx k +--<可化为:不等式()22216k x x x -<-+∴当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,∴26()2161=22,21,20x x k x x x x -+<-++--∈+∞记()1622,2(10,)g x x x x -++=∈+∞-,只需()min k g x < 对于()16222g x x x =-++-在(10,)+∞上单调递增,∴()()min =10=12g x g ∴12k <,即k 的取值范围为()12-∞,. (3)假设存在区间[],()m n m n <符合题意。

北师版高中数学必修第一册课后习题 第2章函数 3 函数的单调性和最值 (2)

北师版高中数学必修第一册课后习题 第2章函数 3 函数的单调性和最值 (2)

§3函数的单调性和最值课后训练巩固提升1.(多选题)若函数f(x)在区间[a,b]上单调递增,则对于任意x1,x2∈[a,b](x1≠x2),下列结论正确的是( ).>0A.f(x1)-f(x2)x1-x2B.(x1-x2)[f(x1)-f(x2)]>0C.f(a)<f(x1)<f(x2)≤f(b)D.f(x1)≠f(x2),函数f(x)在给定区间上单调递增,则x1-x2与f(x1)-f(x2)同号,由此可知,选项A,B正确;对于C,若x1>x2,则f(x1)>f(x2),故C不正确;对于D,因为f(x)在区间[a,b]上单调,且x1≠x2,所以f(x1)≠f(x2),故D正确.2.若函数f(x)=ax+1在R上是减函数,则函数g(x)=a(x2-4x+3)的单调递增区间是( ).A.[2,+∞)B.(-∞,2]C.[-2,+∞)D.(-∞,-2]f(x)=ax+1在R上是减函数,所以a<0,所以g(x)=a(x2-4x+3)的单调递增区间为函数h(x)=x2-4x+3的单调递减区间.又函数h(x)=x2-4x+3的单调递减区间为(-∞,2],故g(x)=a(x2-4x+3)的单调递增区间是(-∞,2].3.若函数f(x)=4x2-kx-8在区间[5,8]上是单调函数,则实数k的取值范围是( ).A.(-∞,40]B.(40,64)C.(-∞,40]∪[64,+∞)D.[64,+∞)f(x)=4x2-kx-8=4(x-k8)2−k216-8,得函数图象的对称轴为直线x=k8,又函数f(x)在区间[5,8]上是单调函数,则k8≤5或k8≥8,解得k≤40或k≥64.4.(多选题)下列关于函数f(x)=x+|x-1|的说法正确的有( ).A.有最小值,且最小值为1B.没有最小值C.有最大值,且最大值为10D.没有最大值{2x -1,x ≥1,1,x <1,其图象如图所示:(第4题答图)由图象可知f(x)的最小值为1,没有最大值.5.已知函数f(x)={(a +3)x -5,x ≤1,2a x,x >1是(-∞,+∞)上的增函数,那么实数a 的取值范围是 .{a +3>0,2a <0,(a +3)×1-5≤2a ,解得-2≤a<0.故实数a 的取值范围是[-2,0).6.某社区积极响应党的二十大关于推进城乡人居环境整治的号召,改善社区居民的居住环境.如图,欲在一块锐角三角形空地中,建一座内接矩形花园(阴影部分).设该矩形花园的一边长为x m,则当2.,且0<y<40,则由题意可得x40=40-y40,即y=40-x(0<x<40),于是矩形花园的面积S=x(40-x)=-x2+40x=-(x-20)2+400(0<in{a,b,c}表示a,b,c三个数中的最小值,则函数f(x)=min{4x+1,x+4,-x+8}的最大值是.f(x)=min{4x+1,x+4,-x+8}的图象,如图所示.由图象可知,函数f(x)在x=2时取得最大值6.8.已知函数y=f(x)(x>0)满足:f(xy)=f(x)+f(y),当x<1时,f(x)>0,且f (12)=1. (1)证明:y=f(x)是区间(0,+∞)上的减函数; (2)解不等式f(x-3)>f (1x)-2.0<x 1<x 2,则0<x 1x 2<1,由题意得,f(x 1)-f(x 2)=f (x 1x 2·x 2)-f(x 2)=f (x 1x 2)+f(x 2)-f(x 2)=f (x1x2)>0,即f(x 1)>f(x 2),∴y=f(x)是区间(0,+∞)上的减函数.f(x)的定义域知{x -3>0,1x>0,解得x>3.又f (12)=1,∴f (14)=f (12×12)=f (12)+f (12)=1+1=2.由f(x-3)>f (1x )-2,得f(x-3)+2>f (1x ),即f(x-3)+f (14)>f (1x ),即f (x -34)>f (1x ),由(1)得x -34<1x,解得0<x<4.综上所述,所求不等式的解集为(3,4).。

(常考题)北师大版高中数学必修一第二单元《函数》测试题(包含答案解析)(1)

(常考题)北师大版高中数学必修一第二单元《函数》测试题(包含答案解析)(1)

一、选择题1.对于每个实数x ,设()f x 取24y x =-+,41y x =+,2y x =+三个函数值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值83,最小值1 C .有最大值3,无最小值 D .有最大值83,无最小值 2.定义,min(,),a a ba b b a b≤⎧=⎨>⎩,例如:min(1,2)2--=-,min(2,2)2=,若2()f x x =,2()46g x x x =--+,则()min((),())F x f x g x =的最大值为( )A .1B .8C .9D .103.高斯函数属于初等函数,以大数学家约翰·卡尔·弗里德里希·高斯的名字命名,其图形在形状上像一个倒悬着的钟,高斯函数应用范围很广,在自然科学、社会科学、数学以及工程学等领域都能看到它的身影,设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.14-=-,[]4.84=.则函数21()122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为( ) A .{}0,1B .{}1,1-C .{}1,0-D .{}1,0,1-4.已知定义在R 上的函数()2||·x f x x e =, (a f log =, 312b f log ⎛=⎫ ⎪⎝⎭,()ln3c f = ,则a ,b ,c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .c b a >>5.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .26.已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为( ) A .](2-∞,B .[)2,+∞C .[]24-,D .[]14, 7.已知函数()f x 是R 上的单调函数,且对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立,则()2020f 的值是( ) A .202021- B .202021+C .202020202121+-D .202020202121-+8.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2C .()1,2D .(],1-∞ 9.设函数()y f x =在(),-∞+∞上有定义,对于给定的正数K ,定义函数(),()()()k f x f x K f x K f x K≤⎧=⎨>⎩,, 取函数()||()1x f x a a -=>,当1K a =时,函数()k f x 在下列区间上单调递减的是( )A .(),0-∞B .(),a -+∞C .(),1-∞-D .()1,+∞10.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .11.函数2log xy x x=的大致图象是( ) A . B . C . D .12.函数()()2212f x x a x =+--在(],4-∞上是减函数,则实数a 的取值范围是( )A .3a ≤-B .3a ≥-C .5a ≥D .3a ≥二、填空题13.设函数()42x f x e x =-()g x mx =,若对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立,则实数m 的取值范围是_________.14.自然下垂的铁链;空旷的田野上,两根电线杆之间的电线等这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()xxf ae ex b -=+(其中a ,b 是非零常数,无理数 2.71828e =…)(1)如果()f x 为单调函数.写出满足条件的一-组值:a =______,b =______. (2)如果()f x 的最小值为2,则+a b 的最小值为______.15.若函数()f x 满足()()1f x f x =-,()()13f x f x +=--当且仅当(]1,3x ∈时,()3log f x x =,则()57f =______.16.已知函数()2(1)mf x m m x =--是幂函数,且()f x 在(0,)+∞上单调递增,则实数m =________.17.若函数2()f x x k =+,若存在区间[,](,0]a b ⊆-∞,使得当[,]x a b ∈时,()f x 的取值范围恰为[,]a b ,则实数k 的取值范围是________.18.设集合10,2A ⎡⎫=⎪⎢⎣⎭,1,12B ⎡⎤=⎢⎥⎣⎦,函数()()1,221,x x A f x x x B⎧+∈⎪=⎨⎪-∈⎩,若()()0f f x A ∈,则0x 的取值范围是__________.19.已知函数()2()10f x x ax a =++>,若“()f x 的值域为[)0,+∞”为真命题,则()3f =________.20.对于函数()f x ,若在定义域内存在..实数x ,满足()()f x f x -=-,称()f x 为“局部奇函数”,若()12423xx f x m m +=-+-为定义域R 上的“局部奇函数”,则实数m 的取值范围是______三、解答题21.设函数()f x 的定义域是(0,)+∞,且对任意的正实数,x y 都有()()()f xy f x f y =+恒成立,已知(2)1f =,且1x >时,()0f x >. (1)求12f ⎛⎫⎪⎝⎭的值; (2)判断()y f x =在(0,)+∞上的单调性,并给出你的证明;(3)解不等式2()(86)1f x f x >--.22.已知函数1()(1)1x x a f x a a -=>+,求:(1)判断函数的奇偶性;(2)证明()f x 是R 上的增函数; (3)求该函数的值域. 23.已知函数()2()01axf x a x =≠+. (1)判断函数()f x 在()1,1-上的单调性,并用单调性的定义加以证明; (2)若2a =,函数满足44()55f x -≤≤,求x 的取值范围. 24.已知函数2()21,[1,3]f x ax bx x =++∈(,a b ∈R 且,a b 为常数) (1)若1a =,求()f x 的最大值;(2)若0a >,1b =-,且()f x 的最小值为4-,求a 的值. 25.已知a R ∈,函数2()25f x x ax =-+.(1)若不等式()0f x >对任意的x ∈R 恒成立,求实数a 的取值范围; (2)若1a >,且函数()f x 的定义域和值域都是[1,]a ,求实数a 的值; (3)函数()f x 在区间[1,1]a +的最大值为()g a ,求()g a 的表达式. 26.已知一次函数()y f x =满足()12f x x a -=+, . 在所给的三个条件中,任选一个补充到题目中,并解答. ①()5f a =,②142a f ⎛⎫=⎪⎝⎭,③()()41226f f -=. (1)求函数()y f x =的解析式;(2)若()()()g x x f x f x x λ=⋅++在[]0,2上的最大值为2,求实数λ的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】作出函数()f x 的图象,结合图象可得出结论. 【详解】由已知可得(){}min 24,41,2f x x x x =-+++,作出函数()f x 的图象如下图所示:函数()f x 的图象如上图中的实线部分,联立224y x y x =+⎧⎨=-+⎩,解得2383x y ⎧=⎪⎪⎨⎪=⎪⎩,由图象可知,函数()f x 有最大值83,无最小值. 故选:D. 【点睛】关键点点睛:本题考查函数最值的求解,解题的关键就是结合函数()f x 的定义,进而作出函数()f x 的图象,利用图象得出结论.2.C解析:C 【分析】根据定义确定()F x 的解析式及单调性后可得最大值. 【详解】由2246x x x <--+得2230x x +-<,31x -<<,所以()22,3146,31x x F x x x x x ⎧-<<=⎨--+≤-≥⎩或,所以()F x 在(,3)-∞-和(0,1)上都是增函数,在(3,0)-和(1,)+∞上都是减函数,(3)9F -=,(1)1F =,所以max ()9F x =.故选:C . 【点睛】关键点点睛:本题考查求函数的最大值.解题关键是根据新函数定义确定新函数的解析式,单调性.结合单调性易得最值.3.C解析:C 【分析】先求出函数()21122x x f x =-+的值域,再根据题干中要求即可得出()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域. 【详解】()21121111=122122212x x x x xf x +-=--=-+++, ()121,x +∈+∞,()10,112x∴∈+, ()11,012x∴-∈-+, 1111,21222x⎛⎫∴-∈- ⎪+⎝⎭, 即函数()21122x xf x =-+的值域为11,22⎛⎫- ⎪⎝⎭, 由高斯函数定义可知:函数()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为{}1,0- 故选:C. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.4.A解析:A 【分析】可看出()f x 在(0,)+∞上单调递增,且得出3(log 2)b f =,并且可得出33ln 3log log 2>,根据增函数的定义即可得出a ,b ,c 的大小关系.【详解】0x >时,2()x f x x e =是增函数,且()()f x f x -=,33(log 2)(log 2)b f f ∴=-=,33330log 1log 2log log 31=<<<=,ln3ln 1e >=,∴33ln 3log log 2>>,∴33(ln 3)(log (log 2)f f f >>,c a b ∴>>. 故选:A . 【点睛】解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.5.B解析:B 【分析】由已知结合对称轴与区间端点的远近可判断二次函数取得最值的位置,从而可求. 【详解】解:因为2()2af x x ax =-+的开口向上,对称轴2a x =, ①122a即1a 时,此时函数取得最大值()()112a g a f ==-,②当122a >即1a >时,此时函数取得最大值()()02ag a f ==,故()1,12,12aa g a a a ⎧-⎪⎪=⎨⎪>⎪⎩,故当1a =时,()g a 取得最小值12. 故选:B . 【点睛】本题主要考查了二次函数闭区间上最值的求解,体现了分类讨论思想的应用,属于中档题.6.C解析:C 【分析】根据题意可得()f x 在[0,)+∞上为减函数,结合奇偶性以及()31f =-可得(|1|)f x f ⇒-|1|3x -,解出x 的取值范围,即可得答案.【详解】函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数, 所以()f x 在(,0)-∞上是增函数,由f (3)1=-,则不等式(1)10(1)1(1)f x f x f x f -+⇒--⇒-(3)(|1|)f x f ⇒-(3)|1|3x ⇒-, 解之可得24x -, 故不等式的解集为[2-,4]. 故选:C . 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.7.D解析:D 【分析】采用换元法可构造方程()21213tf t t =-=+,进而求得()f x 解析式,代入2020x =即可得到结果. 【详解】由()f x 是R 上的单调函数,可设()221x f x t +=+,则()13f t =恒成立, 由()221x f x t +=+得:()221x f x t =-+,()21213t f t t ∴=-=+,解得:1t =, ()22112121x x xf x -∴=-=++,()2020202021202021f -∴=+. 故选:D . 【点睛】本题考查函数值的求解问题,解题关键是能够采用换元的方式,利用抽象函数关系式求解得到函数的解析式.8.B解析:B 【分析】计算出()24f -=,并由()()()0x y f x f y ⎡⎤--<⎣⎦可得出函数()y f x =在R 上为减函数,再由()()234f x f x-⋅≥,可得出()()232f xx f -≥-,再由函数()y f x =在R 上的单调性可得出232x x -≤-,解出该不等式即可. 【详解】由于对任意的实数x 、y ,()()()f x y f x f y +=⋅且()0f x >.令0x y ==,可得()()()000f f f =⋅,且()00f >,解得()01f =. 令y x =-,则()()()01f x f x f ⋅-==,()()1f x f x -=,()()1121f f -==. ()()()211224f f f ∴-=-⋅-=⨯=.设x y <,则0x y -<,由()()()0x y f x f y ⎡⎤--<⎣⎦,得()()f x f y >. 所以,函数()y f x =在R 上为减函数,由()()234f x f x-⋅≥,可得()()232f x x f -≥-.所以232x x -≤-,即2320x x -+≤,解得12x ≤≤. 因此,不等式()()234f x f x -⋅≥的解集为[]1,2.故选B. 【点睛】本题考查抽象函数的单调性解不等式,解题的关键就是将不等式左右两边转化为函数的两个函数值,并利用函数的单调性进行求解,考查分析问题和解决问题的能力,属于中等题.9.D解析:D 【分析】作出函数()y f x =与1y a=的图象,数形结合可得()k f x ,即可得解. 【详解】 令||1()x f x aa-==,解得1x =±, 在同一直角坐标系中作出()y f x =与1y a=的图象,如图,所以,11()11,1x k x a x f x x a a x --⎧≤-⎪⎪=-<<⎨⎪⎪≥⎩,,所以函数()k f x 的单调减区间为()1,+∞. 故选:D. 【点睛】本题考查了函数图象的应用及函数单调性的求解,考查了运算求解能力与数形结合思想,属于中档题.10.D解析:D 【解析】 因为()sin()sin sin()sin 11()2222x x x xf x y f x ---=+==+=,所以函数sin sin 122xxy =+是定义在R 上的偶函数,排除A 、B 项;又sin2sin2115()222222f πππ=+=+=,排除C ,综上,函数sin sin 122xxy =+大致的图象应为D 项,故选D.11.D解析:D 【解析】()222log ,0log log ,0x x x y x x x x >⎧==⎨--<⎩,所以当0x >时,函数22log log x y x x x ==为增函数,当0x <时,函数()22log log xy x x x==--也为增函数,故选D. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.12.A解析:A 【分析】分析函数()()2212f x x a x =+--的图象和性质,结合已知可得41a ≤-,解得答案.【详解】函数()()2212f x x a x =+--的图象是开口朝上,且以直线1x a =-为对称轴的抛物线,若函数()()2212f x x a x =+--在(],4-∞上是减函数,41a ∴≤-, 解得: 3a ≤-, 故选:A 【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.二、填空题13.【分析】首先判断函数的单调性依题意只需再对参数分三种情况讨论即可求出参数的取值范围;【详解】解:因为在定义域上单调递增又在定义域上单调递减所以根据复合函数的单调性可得在定义域上单调递减所以在定义域上解析:1,2⎛⎫-∞- ⎪⎝⎭【分析】首先判断函数()f x 的单调性,依题意只需()()12min min f x g x >,再对参数m 分三种情况讨论,即可求出参数的取值范围; 【详解】解:因为xy e =、y =42y x =-在定义域上单调递减,所以根据复合函数的单调性可得y =在定义域上单调递减,所以()x f x e =-[]0,1上单调递增,所以()()001min f x f e ===-对于[]10,1x ∀∈,总[]21,2x ∃∈,使得()()12f x g x >恒成立, 则只需()()12min min f x g x >因为()g x mx =,[]1,2x ∈,当0m =时()0g x =,而()1min f x =-,不符合题意; 当0m >时,()g x mx =,在[]1,2x ∈上单调递增,则()()min 1g x g m ==,所以1m <-矛盾,舍去;当0m <时,()g x mx =,在[]1,2x ∈上单调递减,则()()min 22g x g m ==,所以210m m <-⎧⎨<⎩解得12m <- 故m 的取值范围为1,2⎛⎫-∞-⎪⎝⎭故答案为:1,2⎛⎫-∞- ⎪⎝⎭【点睛】本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .14.2【分析】(1)取结合函数是单调函数利用复合函数的单调性求解的值即可;(2)根据的最小值为2分类讨论确定结合基本不等式进行求解即可【详解】(1)令则是增函数是减函数要使是单调函数只需综上当时时为增函解析:1- 2 【分析】(1)取1a =,结合函数是单调函数,利用复合函数的单调性求解b 的值即可; (2)根据()f x 的最小值为2,分类讨论确定0a >,0b >,结合基本不等式进行求解即可. 【详解】(1)令1a =,则()x x f x e be -=+,x y e =是增函数,x y e -=是减函数,要使()x x f x e be -=+是单调函数, 只需1b =-.综上,当1a =时,1b =-时,()xxf x e e -=-为增函数. (2)当0ab 时,()f x 为单调函数,此时函数没有最小值, 当0a <,0b <,()f x 有最大值,无最小值, 所以,若()f x 有最小值为2,则必有0a >,0b >,此时()22x x x f x ae be ae be -=+⨯,1=,即1ab =,则22a b ab +=,当1a b ==时等号成立, 即+a b 的最小值为2. 故答案为:1,1,2- 【点睛】利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).15.2【分析】根据函数满足的关系可得是以6最小正周期的周期函数根据代入解析式即可【详解】根据已知条件进而有于是显然则是以6最小正周期的周期函数∵当时则故答案为:2【点睛】本题以抽象函数为载体研究抽象函数解析:2 【分析】根据函数满足的关系可得()f x 是以6最小正周期的周期函数,根据()()573f f =代入解析式即可. 【详解】根据已知条件()()()()113f x f x f x f x ⎧=-⎪⎨+=--⎪⎩,进而有()()()()()1133f x f x f x f x f x =-=+-=⎡⎤⎡⎤⎣⎦⎣⎦---=-+, 于是()()3+=-f x f x ,显然()()()()()6333f x f x f x f x f x +=++=-⎡⎤⎡⎤+=--⎦⎦=⎣⎣, 则()f x 是以6最小正周期的周期函数, ∵当(]1,3x ∈时()f x x =,则()()()57693332f f f =⨯+===.故答案为:2. 【点睛】本题以抽象函数为载体,研究抽象函数的结构特征,且挖掘暗含条件,巧妙地对复合函数的连续变形,体现了数学抽象,数学化归等关键能力与学科素,属于中档题.16.2【分析】由函数是幂函数求得或结合幂函数的性质即可求解【详解】由题意函数是幂函数可得即解得或当时函数此时在上单调递增符合题意;当时函数此时在上单调递减不符合题意故答案为:【点睛】本题主要考查了幂函数解析:2 【分析】由函数()2(1)mf x m m x =--是幂函数,求得2m =或1m =-,结合幂函数的性质,即可求解. 【详解】由题意,函数()2(1)mf x m m x =--是幂函数,可得211m m --=,即220m m --=,解得2m =或1m =-,当2m =时,函数()2f x x =,此时()f x 在(0,)+∞上单调递增,符合题意;当1m =-时,函数()1f x x -=,此时()f x 在(0,)+∞上单调递减,不符合题意,故答案为:2. 【点睛】本题主要考查了幂函数的定义及图像与性质的应用,其中解答中熟记幂函数的定义,结合幂函数的图象与性质进行判定是解答的关键,着重考查运算能力.17.【分析】根据二次函数的单调性得出是上的减函数从而有整理得即关于的方程在区间内有实数解记由二次函数的单调性和零点存在定理建立不等式组可求得范围【详解】∵函数是上的减函数∴当时即两式相减得即代入得由且得解析:31,4⎡⎫--⎪⎢⎣⎭【分析】根据二次函数的单调性得出2()f x x k =+是(,0]-∞上的减函数,从而有()()f a bf b a =⎧⎨=⎩,整理得22a k b b k a⎧+=⎨+=⎩,即关于a 的方程210a a k +++=,在区间11,2⎡⎫--⎪⎢⎣⎭内有实数解,记2()1h a a a k =+++,由二次函数的单调性和零点存在定理建立不等式组,可求得范围.【详解】∵函数2()f x x k =+是(,0]-∞上的减函数,∴当[,]x a b ∈时,()()f a bf b a =⎧⎨=⎩,即22a k bb k a ⎧+=⎨+=⎩, 两式相减得22a b b a -=-,即(1)b a =-+,代入2a k b +=得210a a k +++=, 由0a b <≤,且(1)b a =-+得112a -≤<-, 故关于a 的方程210a a k +++=,在区间11,2⎡⎫--⎪⎢⎣⎭内有实数解, 记2()1h a a a k =+++,所以函数()h a 在11,2⎡⎫--⎪⎢⎣⎭上单调递减,则()10102h h ⎧-≥⎪⎨⎛⎫-< ⎪⎪⎝⎭⎩,即()()221110111022k k ⎧-+-++≥⎪⎨⎛⎫⎛⎫-+-++<⎪ ⎪ ⎪⎝⎭⎝⎭⎩,解得31,4k ⎡⎫∈--⎪⎢⎣⎭, 故答案为:31,4⎡⎫--⎪⎢⎣⎭. 【点睛】关键点点睛:在解决二次函数的值域问题,关键在于得出二次函数的对称轴与区间的关系,也即是判断出二次函数在区间上的单调性.18.【分析】采用换元法令分别在和两种情况下求得的范围进而继续通过讨论和来求得结果【详解】令则①若则解得:不满足舍去;②若则解得:即若则解得:;若则解得:综上所述:的取值范围为故答案为:【点睛】思路点睛:解析:15,48⎛⎫⎪⎝⎭【分析】采用换元法,令()0f x t =,分别在t A ∈和t B ∈两种情况下求得t 的范围,进而继续通过讨论0x A ∈和0x B ∈来求得结果. 【详解】令()0f x t =,则()f t A ∈. ①若t A ∈,则()12f t t =+,11022t ∴≤+<,解得:102t -≤<,不满足t A ∈,舍去;②若t B ∈,则()()21f t t =-,()10212t ∴≤-<,解得:314t <≤,即()0314f x <≤, 若0x A ∈,则()0012f x x =+,031142x ∴<+≤,解得:01142x <≤,011,42x ⎛⎫∴∈ ⎪⎝⎭; 若0x B ∈,则()()0021f x x =-,()032114x ∴<-≤,解得:01528x ≤<,015,28x ⎡⎫∴∈⎪⎢⎣⎭.综上所述:0x 的取值范围为15,48⎛⎫ ⎪⎝⎭. 故答案为:15,48⎛⎫⎪⎝⎭. 【点睛】思路点睛:求解复合函数()()f g x 类型的不等式或方程类问题时,通常采用换元法,令()g x t =,通过求解不等式或方程得到t 满足的条件,进一步继续求解x 所满足的条件. 19.16【分析】二次函数的值域为得到求得值得解【详解】因为的值域为所以则又所以故答案为:16【点睛】二次函数的值域为得到是解题关键解析:16 【分析】二次函数()f x 的值域为[)0,+∞得到240a ∆=-=求得a 值得解 【详解】因为()2()10f x x ax a =++>的值域为[0,)+∞,所以240a ∆=-=,则2a =±.又0a >,所以2,a =.22()21,(3)323116f x x x f ∴=++∴=+⨯+=故答案为:16 【点睛】二次函数()f x 的值域为[)0,+∞得到0∆=是解题关键.20.【解析】∵局部奇函数∴存在实数满足即令则即在上有解再令则在上有解函数的对称轴为分类讨论:①当时∴解得;②当时解得综合①②可知点睛:新定义主要是指即时定义新概念新公式新定理新法则新运算五种然后根据此新解析:1m ≤【解析】∵()f x “局部奇函数”,∴存在实数x 满足()()f x f x -=-,即2242234223x x x x m m m m ---⨯+-=-+⨯-+,令2(0)xt t =>, 则222112()260t m t m t t +-++-=, 即2211()2()280t m t m tt+-++-=在(0,)t ∈+∞上有解,再令1(2)h t h t=+≥,则22()2280g h h mh m =-+-=在[2,)h ∈+∞上有解,函数的对称轴为h m =,分类讨论:①当2m ≥时,()()g h g m ≥,∴222()2280g m m m m =-+-≤,解得2m ≤≤②当2m <时,()()2g h g ≥,2(2)44280g m m ∴=-+-≤,解得12m -≤<.综合①②,可知1m ≤点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.三、解答题21.(1)1-; (2)函数单调递增,证明见解析; (3)3{|14x x <<或3}x >. 【分析】(1)利用赋值法,即可求得所求的函数值,得到答案;(2)首先判定函数为增函数,然后利用函数的单调性的定义和所给条件进行证明即可; (3)利用函数的单调性和所得函数值对应的自变量得到函数不等式,得出不等式组,即可求解. 【详解】(1)由题意,函数()f x 对任意的正实数x ,y 都有()()()f xy f x f y =+恒成立, 令1x y ==,可得(1)(1)(1)f f f =+,所以()10f =, 令12,2x y ==,可得1(1)(2)()2f f f =+,即11()02f +=,解得1()12f =-. (2)函数()f x 为增函数,证明如下: 设12,(0,)x x ∈+∞且12x x <, 令211,x x x y x ==,根据题意,可得2121()()()x f x f f x x +=,即2211()()()x f x f x f x -=,又由1x >时,()0f x >,因为211x x >,可得21()0x f x >,即21()()0f x f x ->,即21()()f x f x >, 所以函数()y f x =在(0,)+∞上的单调性.(3)由题意和(1)可得11(86)1(86)()[(86)](43)22f x f x f f x f x --=-+=-=-, 又由不等式2()(86)1f x f x >--,即2()(43)f x f x >-,可得243430x x x ⎧>-⎨->⎩,解得314x <<或3x >,即不等式2()(86)1f x f x >--的解集为3{|14x x <<或3}x >. 【点睛】求解函数有关的不等式的方法及策略: 解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解. 22.(1)奇函数;(2)证明见解析;(3)()1,1-. 【分析】(1)根据函数奇偶性的定义即可判断函数的奇偶性; (2)结合单调性的定义可证明()f x 是R 上的增函数; (3)根据指数函数的性质即可求该函数的值域. 【详解】解:(1)函数的定义域为R ,则111()()111x x x x xx a a a f x f x a a a ------===-=-+++,则函数()f x 是奇函数;(2)1122()1111x x x x xa a f x a a a -+-===-+++,1a >,x y a ∴=是增函数,设12x x <,则()()()()()12122121122222211111111x x x x x xx x a a f x f x a a a a a a -⎛⎫⎛⎫-=---=-= ⎪ ⎪++++++⎝⎭⎝⎭, 因为120x x a a <<,所以()()120f x f x -<,即()()12f x f x <, 即2()11xf x a =-+为增函数,即()f x 是R 上的增函数; (3)1122()1111x x x x xa a f x a a a -+-===-+++,1a >, 11x a ∴+>,则1011x a <<+,所以2021x a <<+,即2201x a -<-<+, 所以21111x a -<-<+,即11y -<<,故函数的值域为(1,1)-. 【点睛】 方法点睛:高一阶段求函数的单调性常用的思路有:一、紧扣单调性的定义;二、画出函数的图象,结合图象进行求解;三、结合函数单调性的性质,如增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数. 23.(1)答案见解析;(2)(][)11,2,2,22⎡⎤-∞--+∞⎢⎥⎣⎦.【分析】(1)先设﹣1<x 1<x 2<1,然后利用作差法比较f (x 2)与f (x 1)的大小即可判断函数的单调性,(2)把a =2代入后,然后把分式不等式转化为二次不等式组求解即可. 【详解】(1)当0a >时,函数()f x 在()1,1-上是增函数;当0a <时,()f x 在()1,1-上是减函数. 理由如下:当0a >时,任取1211x x -<<<,21212221()()11ax ax f x f x x x -=-++ 21122221()(1)(1)(1)a x x x x x x --=++. 因为111x -<<,211x -<<,∴1211x x -<<,1210x x ->,2212(1)(1)0x x ++>,210x x ->,所以21122212()(1)0(1)(1)x x x x x x -->++,当0a >时,得21()()f x f x >,故函数()f x 在()1,1-上是增函数;同理可证,当0a <时,21()()f x f x <,所以函数()f x 在()1,1-上是减函数,得证.(2)2a =时,得22()1xf x x =+, ∴44()55f x -≤≤,即2424515x x -≤≤+,∴222520112,,2222520x x x x x x x ⎧++≥⇒≤--≤≤≥⎨-+≥⎩. 由此可得,x 的取值范围是(][)11,2,2,22⎡⎤-∞--+∞⎢⎥⎣⎦.【点睛】过程点睛:用定义证明单调性时,第一步,任取12,x x 并规定大小;第二步,将函数值作差并化简;第三步,判断每个因式符号进而得到函数值大小;第四步,下结论. 24.(1)答案见解析;(2)19. 【分析】(1)讨论2b -<和2b -≥两种情况根据二次函数性质求解; (2)讨论11a ≤,113a<<和13a ≥三种情况结合二次函数的单调性求解.【详解】(1)1a =时,2()21f x x bx =++,对称轴为x b =-,二次函数()f x 的图象开口向上,当2b -<,即2b >-时,max ()(3)106f x f b ==+; 当2b -≥,即2b ≤-时,max ()(1)22f x f b ==+.(2)2()21f x ax x =-+,对称轴为1x a=,二次函数()f x 的图象开口向上, 当11a≤,即1a ≥时,()f x 在[]1,3单调递增,()()min 114f x f a ==-=-,解得3a =-,不符合;当113a <<,即113a <<时,2min 112()14f x f a a a a ⎛⎫⎛⎫==⋅-+=- ⎪ ⎪⎝⎭⎝⎭,解得15a =,不符合;当13a ≥,即103a <≤时,()f x 在[]1,3单调递减,()()min 3954f x f a ==-=-,解得19a =,符合,综上,19a =. 【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路; (1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b+的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解.25.(1)(a ∈;(2)2;(3)()g a 262,26,2a a a a ->⎧=⎨-⎩. 【分析】(1)利用二次函数的性质列出关系式求解即可.(2)根据二次函数定义域和值域之间的关系进行判断即可. (3)对对称轴分类讨论,得到最大值. 【详解】解:(1)a R ∈,函数2()25f x x ax =-+.开口向上,不等式()0f x >对任意的x ∈R 恒成立,可得:24200a -<,解得(a ∈.(2)函数2()25f x x ax =-+的对称轴为x a =,则函数在[1,]a 上为减函数,函数的值域为[1,]a ,∴()1f a =,即22251a a -+=,即24a =, 解得2a =-(舍)或2a =.(3)函数2()25f x x ax =-+的对称轴为x a =,开口向上,①当12a a +,即2a 时,()f x 在区间[1,1]a +上的最大值为2(1)6f a a +=-; ②2a >时,()f x 在区间[1,1]a +上的最大值为(1)f 62a =-.所以()g a 262,26,2a a a a ->⎧=⎨-⎩. 【点睛】方法点睛:求二次函数的最值或值域时,关键在于确定二次函数的对称轴与所求的区间的关系,也即是二次函数在所求区间上的单调性,利用单调性求得值域. 26.(1)()23f x x =+(2)2λ=- 【分析】利用待定系数法求出()22f x x a =++,(1)根据所选条件,都能求出1a =,可得()23f x x =+;(2)根据对称轴与区间中点值的大小分两种情况讨论求出最大值,结合已知最大值可求得λ的值.【详解】设()f x kx b =+(0)k ≠,则(1)2k x b x a -+=+,即2kx k b x a -+=+, 所以2k =,2b a ,所以()22f x x a =++,若选①,(1)由()5f a =得225a a ++=,得1a =,所以()23f x x =+.(2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++, 区间[]0,2的中点值为1,对称轴为()22x λ+=-, 当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max ()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-.若选②,(1)由142a f ⎛⎫= ⎪⎝⎭得14222a a =⨯++,解得1a =,所以()23f x x =+; (2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++,区间[]0,2的中点值为1,对称轴为()22x λ+=-, 当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max ()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-.若选③,(1)由()()41226f f -=得4(22)2(42)6a a ++-++=,解得1a =,所以()23f x x =+;(2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++,区间[]0,2的中点值为1,对称轴为()22x λ+=-, 当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-; 当()212λ+->,即4λ<-时,max ()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-.【点睛】关键点点睛:第二问,讨论对称轴与区间中点值的大小求最大值是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 映 射
课时过关·能力提升
1映射f :A →B ,在f 作用下A 中元素(x ,y )与B 中元素(x-1,3-y )对应,则与B 中元素(0,1)对应的A 中元素是( )
A.(-1,2)
B.(0,3)
C.(1,2)
D.(-1,3)
答案:C
2下列从集合A 到集合B 的对应中为映射的是( )
A.A=B=N +,对应关系f :x →y=|x-3|
B.A=R ,B={0,1},对应关系f :x →y={0,x ≥0,1,x <0
C.A={x|x>0},B={y|y ∈R },对应关系f :x →y=±√x
D.A=Z ,B=Q ,对应关系f :x →y=1x
答案:B
3集合A={a ,b },B={-1,0,1},从A 到B 的映射f :A →B 满足f (a )+f (b )=0,那么这样的映射f :A →B 的个数为( )
A.2
B.3
C.5
D.8 解析:存在的映射有-1+1=0,1+(-1)=0,0+0=0共3个.
答案:B
4已知A=B=R ,x ∈A ,y ∈B ,f :x →y=ax+b 是从A 到B 的映射,若3和7的原像分别是5和9,则6在f 下的像是( )
A.3
B.4
C.5
D.6
解析:因为3和7的原像分别是5和9,所以{5a +b =3,9a +b =7,解得{a =1,b =-2.
即f :x →y=x-2,所以当x=6时,y=6-2=4,故选B .
答案:B
5已知映射f :A →B ,其中集合A={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中的元素在映射f 下的像,且对任意的a ∈A ,在B 中和它对应的元素是|a|,则集合B 中的元素的个数是( )
A.4
B.5
C.6
D.7
解析:对应关系是f :a →|a|,因此3和-3对应的像是3;-2和2对应的像是2;1和-1对应的像是1;4对应的像是4,所以B={1,2,3,4}.
答案:A
6若A 到B 的映射f :x →3x-1,B 到C 的映射g :y →12y+1
,则A 到C 的映射h :x → . 解析:由题意,得y=3x-1,
12y+1=12×(3x -1)+1=16x -1
. 故h :x →
16x -1
. 答案:16x -1 7设集合A 和B 都是自然数集,映射f :A →B 把A 中的元素n 映射到B 中的元素2n +n ,则在映射f 下,A 中的元素 对应B 中的元素3.
解析:对应关系为f :n →2n +n ,根据2n +n=3,可得n=1.
答案:1
8设a ,b 为实数,集合M={b a
,1},N={a ,0},f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a+b 的值为 .
解析:∵f :x →x ,∴M=N ,∴b a =0,a=1,b=0.
故a+b=1.
答案:1
9设f ,g 都是由A 到A 的映射(其中A={1,2,3}),其对应关系如下表:
设a=g (f (3)),b=g (g (2)),c=f (g (f (1))).试判断a ,b ,c 的大小关系.
解∵a=g (f (3))=g (1)=2,b=g (g (2))=g (1)=2,
c=f (g (f (1)))=f (g (2))=f (1)=2,∴a=b=c.
10设f :A →B 是A 到B 的一个映射,其中A=B={(x ,y )|x ,y ∈R },f :(x ,y )→(x-y ,x+y ).
(1)求A 中元素(-1,2)的像;
(2)求B 中元素(-1,2)的原像.
解(1)A 中元素(-1,2)在B 中对应的元素为(-1-2,-1+2),即A 中元素(-1,2)的像为(-3,1).
(2)设A 中元素(x ,y )与B 中元素(-1,2)对应,
则由{x -y =-1,x +y =2,解得{x =1
2,y =32.
所以B 中元素(-1,2)的原像为(12,32
).
11已知从集合A 到集合B={0,1,2,3}的映射f :x →1|x |-1,试问集合A 中的元素最多有几个?写出元素最多时的集合A. 解∵f :x →1
|x |-1是从集合A 到集合B 的映射,
∴A 中每一个元素在集合B 中都有像.
令1
|x |-1=0,则该方程无解,故0没有原像.
分别令1
|x |-1=1,2,3可得x=±2,±32,±43.
故集合A 中的元素最多为6个,即
A={2,-2,32,-32,43,-43}.
★12设映射f :A →B ,其中A=B={(x ,y )|x ,y ∈R },f :(x ,y )→(3x-2y+1,4x+3y-1).
(1)求A 中元素(3,4)的像.
(2)求B 中元素(5,10)的原像.
(3)A 中是否存在这样的元素(a ,b )使它的像仍是它本身?若有,求出这个元素;反之,说明理由.
解(1)因为{x =3,y =4,所以{3x -2y +1=2,
4x +3y -1=23,
所以集合A 中元素(3,4)的像是(2,23).
(2)因为{3x -2y +1=5,
4x +3y -1=10,所以{x =2,
y =1,
所以集合B 中元素(5,10)的原像是(2,1).
(3)因为{a =3a -2b +1,b =4a +3b -1,即{2a -2b +1=0,4a +2b -1=0,解得{a =0,
b =12.
所以存在元素(0,12)使它的像仍是它本身.。

相关文档
最新文档