苏科版苏州市八年级期上册末数学试卷
苏科版八年级上册数学《期末考试试题》含答案解析
[解析]
[分析]
因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;
[详解]底角:(180°−80°)÷2=100°÷2=50°
它的底角为50度
故答案为50.
[点睛]此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答.
12.已知一次函数 与 的图像交点坐标为(−1,2),则方程组 的解为____.
[答案] .
[解析]
[分析]
直接根据一次函数和二元一次方程组的关系求解.
[详解]解:∵一次函数 与 的图象的交点的坐标为(−1,2),
∴方程组 的解是 .
[点睛]本题考查了一次函数和二元一次方程(组)的关系:要准确的将一次函数问题的条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.
A. 甲和乙B. 甲和丙C. 乙和丙D. 只有乙
[答案]B
[解析]
[分析]
根据三角形全等的判定定理SSS、SAS、AAS、ASA、HL逐个进行分析即可.
[详解]解:甲三角形有两条边及夹角与△ABC对应相等,根据SAS可以判断甲三角形与△ABC全等;
乙三角形只有一条边及对角与△ABC对应相等,不满足全等判定条件,故乙三角形与△ABC不能判定全等;
丙三角形有两个角及夹边与△ABC对应相等,根据ASA可以判定丙三角形与△ABC全等;
所以与△ABC全等的有甲和丙,
故选:B.
[点睛]本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.
6.下列图形中,表示一次函数 与正比例函数 ( 、 为常数,且 )的图象的是()
苏州市苏科版八年级数学上 期末测试题(Word版 含答案)
苏州市苏科版八年级数学上 期末测试题(Word 版 含答案)一、选择题1.如图,在正方形网格中,若点(1,1)A ,点(3,2)C -,则点B 的坐标为( )A .(1,2)B .(0,2)C .(2,0)D .(2,1)2.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62°3.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( )A .x>12B .12<x<32C .x<32D .0<x<324.如图,点P 在长方形OABC 的边OA 上,连接BP ,过点P 作BP 的垂线,交射线OC 于点Q ,在点P 从点A 出发沿AO 方向运动到点O 的过程中,设AP=x ,OQ=y ,则下列说法正确的是( )A .y 随x 的增大而增大B .y 随x 的增大而减小C .随x 的增大,y 先增大后减小D .随x 的增大,y 先减小后增大 5.下列长度的三条线段不能组成直角三角形的是( )A .1.5,2.5,3B .13 2C .6,8,10D .3,4,5 6.正比例函数y kx =的图象经过第一、三象限,则一次函数y x k =+的图象大致是()A.B.C.D.7.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>08.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣19.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A.SSS B.SAS C.AAS D.ASA10.如图,在R △ABC 中,∠ACB =90°,AC =6,BC =8,E 为AC 上一点,且AE =85,AD 平分∠BAC 交BC 于D .若P 是AD 上的动点,则PC +PE 的最小值等于( )A .185B .245C .4D .265二、填空题11.如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,OC =__.12.地球的半径约为6371km ,用科学记数法表示约为_____km .(精确到100km )13.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____.14.点A (3,-2)关于x 轴对称的点的坐标是________.15.如图,一艘轮船由海平面上的A 地出发向南偏西45º的方向行驶50海里到达B 地,再由B 地向北偏西15º的方向行驶50海里到达C 地,则A 、C 两地相距____海里.16.如图,等边△OAB 的边长为2,以它的顶点O 为原点,OB 所在的直线为x 轴,建立平面直角坐标系.若直线y =x +b 与△OAB 的边界总有两个公共点,则实数b 的范围是____.17.如图,在长方形ABCD 中,5,6AB BC ==,将长方形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则AE 的长为__________.18.4的平方根是 .19.在△ABC 中,AB =AC =5,BC =6,若点P 在边AB 上移动,则CP 的最小值是_____.20.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.三、解答题21.如图,ABC ∆中,90BAC ∠=,8AC cm =,DE 是BC 边上的垂直平分线,ABD ∆的周长为14cm ,求BC 的长.22.小明用30元买水笔,小红用45元买圆珠笔,已知每支圆珠笔比水笔贵2元,那么小明和小红能买到相同数量的笔吗?23.已知△ABC 中,AB =17,AC =10,BC 边上得高AD=8,则边BC 的长为________24.已知甲,乙两名自行车骑手均从P 地出发,骑车前往距P 地60千米的Q 地,当乙骑手出发了1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q 地后立即又原路返回P 地甲,乙两名骑手距P 地的路程y (千米)与时间x (时)的函数图象如图所示.(其中折线O ﹣A ﹣B ﹣C ﹣D (实线)表示甲,折线O ﹣E ﹣F ﹣G (虚线)表示乙)(1)甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2)求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3)在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.25.计算:(1)2a b aa b b a ++--;(2)221(1)11xx x-÷+-.四、压轴题26.已知ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM至点D,使DM=BM,连接AD.(1)如图①,求证:DAM≌BCM;(2)已知点N是BC的中点,连接AN.①如图②,求证:ACN≌BCM;②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.27.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.28.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点(3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.29.在Rt ABC 中,ACB =∠90°,30A ∠=︒,点D 是AB 的中点,连结CD .(1)如图①,BC 与BD 之间的数量关系是_________,请写出理由;(2)如图②,若P 是线段CB 上一动点(点P 不与点B 、C 重合),连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,请猜想BF ,BP ,BD 三者之间的数量关系,并证明你的结论;(3)若点P 是线段CB 延长线上一动点,按照(2)中的作法,请在图③中补全图形,并直接写出BF ,BP ,BD 三者之间的数量关系.30.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据点(1,1)A ,点(3,2)C -建立平面直角坐标系,再结合图形即可确定出点B 的坐标.【详解】解:∵点A 的坐标是:(1,1),点C 的坐标是:(3,-2),∴点B 的坐标是:(2,0).故选:C .【点睛】本题主要考查了点的坐标,点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.2.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B.【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.3.B解析:B【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx 时,(m ﹣2)x+1<mx ,解得x >12, ∴不等式组mx ﹣2<kx+1<mx 的解集为12<x <32, 故选B .【点睛】 本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.4.C解析:C【解析】【分析】连接BQ ,由矩形的性质,设BC=AO=a ,AB=OC=b ,利用勾股定理得到222PQ PB BQ +=,然后得到y 与x 的关系式,判断关系式,即可得到答案.【详解】解,如图,连接BQ ,由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形,在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则OP=a x -,CQ b y =-,由勾股定理,得:222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,∵222PQ PB BQ +=,∴222222()()y a x x b a b y +-++=+-,整理得:2by x ax =-+, ∴221()24a a y x b b=--+, ∵10b-<, ∴当2a x =时,y 有最大值24a b;∴随x 的增大,y 先增大后减小;故选择:C.【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与x 的关系式,从而得到答案.5.A解析:A【解析】【分析】根据勾股定理的逆定理,分别判断即可.【详解】解:A 、2221.5 2.5=8.53+≠,故A 不能构成直角三角形;B 、22212+=,故B 能构成直角三角形;C 、22268=10+,故C 能构成直角三角形;D 、22234=5+,故D 能构成直角三角形;故选:A.【点睛】本题考查的是勾股定理的逆定理的应用,勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.6.A解析:A【解析】【分析】根据正比例函数的图象及性质即可求出k 的取值范围,然后根据一次函数的图象及性质即可判断.【详解】解:∵正比例函数y kx =的图象经过第一、三象限,∴0k >∵一次函数y x k =+中,1>0, 0k >∴一次函数y x k =+经过一、二、三象限故选A .【点睛】此题考查的是正比例函数的图象及性质和一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.7.D解析:D【解析】画函数的图象,选项A, 点(1,0)代入函数,01=,错误.由图可知,B ,C 错误,D,正确. 选D.8.D解析:D【解析】因为函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-可求出1m =-,所以点A (-1,2),然后把点A 代入23y ax =+解得1a =, 不等式23x ax ->+, 可化为23x x ->+,解不等式可得:1x <-,故选D.9.D解析:D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA .故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.10.D解析:D【解析】【分析】如图,作点E 关于AD 的对称点E ′,连接CE ′交AD 于P ′,连接EP ′,此时EP ′+CP ′的值最小,作CH ⊥AB 于H .求出CE ′即可.【详解】如图,作点E 关于AD 的对称点E ′,连接CE ′交AD 于P ′,连接EP ′,此时EP ′+CP ′的值最小,作CH ⊥AB 于H .∵∠ACB=90°,AC=6,BC=8,∴AB22AC BC+2268+,∴CH=AC BCAB⋅=245,∴AH22AC CH-=222465⎛⎫- ⎪⎝⎭185,∴AE=AE′=85,∴E′H=AH-AE′=2,∴P′C+P′E=CP′+P′E′=CE22CH E H'+222425⎛⎫+⎪⎝⎭=265,故选:D.【点睛】此题主要考查利用对称性以及勾股定理的运用,解题关键是做好辅助线,转换等量关系.二、填空题11..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB 为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC 2=AC 2,即32+a 2=22+(4﹣a )2,化简得8a =11,解得a =118. 故OC =118, 故答案为:118. 【点睛】 本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.12.4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km≈6.4×103 km (精确到100km ).故答解析:4×103.【解析】【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371 km =6.371×103 km ≈6.4×103 km (精确到100km ).故答案为:6.4×103【点睛】本题主要考查科学记数法和近似数,掌握科学记数法的定义和近似数精确度的意义是解题的关键.13.【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数的图象向上平移3个单位长度可得:.故答案为:【点睛】本题考查了函数图像平移,解决本解析:31y x =-【解析】【分析】根据函数图像平移规律:上加下减常数项,左加右减自变量,变形即可.【详解】解:一次函数34y x =-的图象向上平移3个单位长度可得:34331y x x =-+=-. 故答案为:31y x =-【点睛】本题考查了函数图像平移,解决本题的关键是熟练掌握函数图像的平移规律,要与点的坐标平移区别开.14.(3,2)【解析】试题分析:点A (3,﹣2)关于x 轴对称的点的坐标是(3,2).故答案为(3,2).考点:关于x 轴、y 轴对称的点的坐标.解析:(3,2)【解析】试题分析:点A (3,﹣2)关于x 轴对称的点的坐标是(3,2).故答案为(3,2). 考点:关于x 轴、y 轴对称的点的坐标.15.50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上, ∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC 是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC 是等边三角形是解题的关键.16.【解析】【分析】由题意,可知点A 坐标为(1,),点B 坐标为(2,0),由直线与△OAB 的边界总有两个公共点,有截距b 在线段CD 之间,然后分别求出点C 坐标和点D 坐标,即可得到答案.【详解】解解析:231b -<<-【解析】【分析】由题意,可知点A 坐标为(1,3),点B 坐标为(2,0),由直线y x b =+与△OAB 的边界总有两个公共点,有截距b 在线段CD 之间,然后分别求出点C 坐标和点D 坐标,即可得到答案.【详解】解:如图,过点A 作AE ⊥x 轴,.∵△ABC 是等边三角形,且边长为2,∴OB=OA=2,OE=1,∴22213AE -=∴点A 为(13B 为(2,0);当直线y x b =+经过点A (13ABC 边界只有一个交点,则13b +=31b =,∴点D 的坐标为(31);当直线y x b =+经过点B (2,0)时,与△ABC 边界只有一个交点,则20b +=,解得:2b =-,∴点C 的坐标为(0,2-);∴直线y x b =+与△OAB 的边界总有两个公共点时,截距b 在线段CD 之间,∴实数b 的范围是:21b -<<;故答案为:21b -<<.【点睛】 本题考查了等边三角形的性质,一次函数的图形和性质,解题的关键是掌握一次函数的图像和性质,掌握直线与等边三角形有一个交点是临界点,注意分类讨论.17.【解析】【分析】结合长方形与折叠的性质在在中根据勾股定理可得的长,设设,可知,中,由勾股定理得方程,求出x 值即可.【详解】解:四边形ABCD 是长方形由折叠的性质可得在中,根据勾股解析:6【解析】【分析】结合长方形与折叠的性质在在'Rt BAC 中根据勾股定理可得'AC 的长,设设AE x =,可知',6,A E x DE x CE x ==-=+Rt CDE △中,由勾股定理得方程222(6)5(x x -+=+,求出x 值即可.【详解】 解:四边形ABCD 是长方形90,5,6A D AB CD AD BC ︒∴∠=∠=====由折叠的性质可得''',5,90A E AE A B AB EA B A ︒===∠=∠=在'Rt BAC 中,根据勾股定理得'AC ==设AE x =,则',6,A E x DE x CE x ==-=+在Rt CDE △中,根据勾股定理得222DE CD CE +=即222(6)5(x x -+=+可得2236122511x x x -++=++12)50x ∴=6)6x ∴====-=故答案为:6【点睛】本题考查了勾股定理,灵活利用折叠三角形的性质结合勾股定理求线段长是解题的关键. 18.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2. 考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.19.8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF ⊥BC 于点F ,作解析:8【解析】【分析】作BC 边上的高AF ,利用等腰三角形的三线合一的性质求BF =3,利用勾股定理求得AF 的长,利用面积相等即可求得AB 边上的高CP 的长.【详解】解:如图,作AF ⊥BC 于点F ,作CP ⊥AB 于点P ,根据题意得此时CP 的值最小;解:作BC 边上的高AF ,∵AB =AC =5,BC =6,∴BF =CF =3,∴由勾股定理得:AF =4,∴S △ABC =12AB •PC =12BC •AF =12×5CP =12×6×4 得:CP =4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用. 20.12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件.三、解答题BC=21.10【解析】【分析】由垂直平分线的性质得到BD=CD,则得到AB+AC=14,然后求出AB,由勾股定理即可求出BC的长度.【详解】解:∵DE是BC边上的垂直平分线,∴BD=CD,∆的周长为14cm,∵ABD∴AB+AD+DB=14,∴AB+AD+DC=AB+AC=14,∵8AC=,∴1486AB=-=,在Rt△ABC中,由勾股定理,得226810BC=+=.【点睛】本题考查了垂直平分线的性质定理,勾股定理,解题的关键是掌握由垂直平分线的性质定理,求出AB的长度.22.小明和小红不能买到相同数量的笔【解析】【分析】首先设每支水笔x元,则每支圆珠笔(x+2)元,根据题意可得等量关系:30元买水笔的数量=用45元买圆珠笔的数量,求出每支水笔的价钱,再算出购买的水笔的数量,数量是整数就可以,不是整数就不合题意.【详解】设每支水笔x元,则每支圆珠笔(2)x+元.假设能买到相同数量的笔,则30452 x x=+.解这个方程,得4x=.经检验,4x=是原方程的解.但是,3047.5÷=,7.5不是整数,不符合题意,答:小明和小红不能买到相同数量的笔.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出分式方程,注意要检验.23.21或9【解析】【分析】由题意得出∠ADB=∠ADC=90°,由勾股定理求出BD、CD,分两种情况,容易得出BC的长.【详解】分两种情况:①如图1所示:∵AD是BC边上的高,∴∠ADB=∠ADC=90°,2222222217815,1086BD AB AD CD AC AD=-=-==-=-=∴BC=BD+CD=15+6=21;②如图2所示:同①得:BD=15,CD=6,∴BC=BD-CD=15-6=9;综上所述:BC的长为21或9.【点睛】本题考查了勾股定理、分类讨论思想;熟练掌握勾股定理,并能进行推理计算是解决问题的关键.24.(1)1小时,30千米/时;(2)y=24x﹣24(1≤x≤3.5);(3)x=17 3 27【解析】【分析】(1)根据题意结合图象解答即可;(2)求出乙的速度,再利用待定系数法解答即可;(3)根据(2)的结论列方程解答即可.【详解】(1)由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6﹣4)=30(千米/时),故答案为:1;30.(2)甲从P地到Q地的速度为20(千米/时),所以乙的速度为:(6+1.5×20)÷1.5=24(千米/时),60÷24=2.5(小时),设乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y=24x+b,则24+b=0,解得b=﹣24.∴乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式为y=24x﹣24(1≤x≤3.5).(3)根据题意得,30(x﹣4)+(24x﹣24)=60﹣8,解得x=17327.答:乙两人相遇前,当时间x=17327时,甲,乙两骑手相距8千米.【点睛】此题考查了一次函数与一元一次方程的综合运用,熟练掌握,即可解题.25.(1)1-;(2)1x x -. 【解析】【分析】(1)根据异分母分式的加减法法则计算即可;(2)先把括号里的通分,再根据分式的除法法则计算即可.【详解】解:(1)原式=2a b a a b a b +--- =2a b a a b +-- =b a a b-- a b a b-=-- =1-; (2)原式=211(1)(1)1x x x x x +-+-⋅+ =1x x-. 【点睛】本题考查了分式的混合运算,在运算过程中,分子、分母能进行因式分解的先因式分解,熟练掌握分式的加减乘除运算是解题的关键.四、压轴题26.(1)见解析;(2)①见解析;②见解析【解析】【分析】(1)由点M 是AC 中点知AM=CM ,结合∠AMD=∠CMB 和DM=BM 即可得证; (2)①由点M ,N 分别是AC ,BC 的中点及AC=BC 可得CM=CN ,结合∠C=∠C 和BC=AC 即可得证;②取AD 中点F ,连接EF ,先证△EAF ≌△ANC 得∠NAC=∠AEF ,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE ≌△DFE 得∠EAD=∠EDA=∠ANC ,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM 即可得证.【详解】解:(1)∵点M 是AC 中点,∴AM=CM ,在△DAM 和△BCM 中,∵AM CM AMD CMB DM BM =⎧⎪∠=∠⎨⎪=⎩,∴△DAM ≌△BCM (SAS );(2)①∵点M 是AC 中点,点N 是BC 中点,∴CM=12AC ,CN=12BC , ∵△ABC 是等腰直角三角形,∴AC=BC ,∴CM=CN ,在△BCM 和△ACN 中,∵CM CN C C BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△BCM ≌△ACN (SAS );②证明:取AD 中点F ,连接EF ,则AD=2AF ,∵△BCM ≌△ACN ,∴AN=BM ,∠CBM=∠CAN ,∵△DAM ≌△BCM ,∴∠CBM=∠ADM ,AD=BC=2CN ,∴AF=CN ,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC ,由(1)知,△DAM ≌△BCM ,∴∠DBC=∠ADB ,∴AD ∥BC ,∴∠EAF=∠ANC ,在△EAF 和△ANC 中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ANC (SAS ),∴∠NAC=∠AEF ,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F 为AD 中点,∴AF=DF ,在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.27.(1)b=72;(2)①△APQ 的面积S 与t 的函数关系式为S=﹣32t +272或S=32t ﹣272;②7<t <9或9<t <11,③存在,当t 的值为3或9+或9﹣或6时,△APQ 为等腰三角形.【解析】分析:(1)把P (m ,3)的坐标代入直线1l 的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线2l 的解析式得出C 的坐标,①根据题意得出9AQ t =-,然后根据12P S AQ y =⋅即可求得APQ 的面积S 与t 的函数关系式;②通过解不等式273322t -<或327 3.22t -<即可求得7<t <9或9<t <11.时,APQ 的面积小于3;③分三种情况:当PQ =PA 时,则()()()2222(71)032103,t -++-=++-当AQ =PA 时,则()()222(72)2103,t --=++-当PQ =AQ 时,则()222(71)03(72)t t -++-=--,即可求得.详解:解;(1)∵点P (m ,3)为直线l 1上一点,∴3=−m +2,解得m =−1,∴点P 的坐标为(−1,3),把点P 的坐标代入212y x b =+ 得,()1312b =⨯-+,解得72b =; (2)∵72b =; ∴直线l 2的解析式为y =12x +72,∴C 点的坐标为(−7,0),①由直线11:2l y x =-+可知A (2,0),∴当Q 在A . C 之间时,AQ =2+7−t =9−t , ∴11273(9)32222S AQ yP t t =⋅=⨯-⨯=-; 当Q 在A 的右边时,AQ =t −9, ∴11327(9)32222S AQ yP t t ;=⋅=⨯-⨯=- 即△APQ 的面积S 与t 的函数关系式为27322S t =-或327.22S t =- ②∵S <3, ∴273322t -<或327 3.22t -< 解得7<t <9或9<t <11. ③存在;设Q (t −7,0),当PQ =PA 时,则()()()2222(71)032103,t -++-=++-∴22(6)3t -=,解得t =3或t =9(舍去), 当AQ =PA 时,则()()222(72)2103,t --=++-∴2(9)18,t -=解得9t =+9t =- 当PQ =AQ 时,则()222(71)03(72)t t -++-=--,∴22(6)9(9)t t -+=-, 解得t =6.故当t 的值为3或9+9-6时,△APQ 为等腰三角形.点睛:属于一次函数综合题,考查了一次函数图象上点的坐标特征,待定系数法求函数解析式,等腰三角形的性质以及三角形的面积,分类讨论是解题的关键.28.(1)①);②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵2a =, ∴11b b ==-=',∴坐标为:),故答案为:); ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,, ∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x xb x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.29.(1)BC BD =,理由见解析;(2)BF BP BD +=,证明见解析;(3)BF BP BD +=.【解析】【分析】(1)利用含30的直角三角形的性质得出12BC AB =,即可得出结论; (2)同(1)的方法得出BC BD =进而得出BCD ∆是等边三角形,进而利用旋转全等模型易证DCP DBF ∆≅∆,得出CP BF =即可解答;(3)同(2)的方法得出结论.【详解】解:(1)90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,故答案为:BC BD =;(2)BF BP BD +=,理由:90ACB ∠=︒,30A ∠=︒,60CBA ∴∠=︒,12BC AB =, 点D 是AB 的中点,BC BD ∴=,DBC ∴∆是等边三角形,60CDB ∴∠=︒,DC DB =,线段DP 绕点D 逆时针旋转60︒,得到线段DF ,60PDF ∴∠=︒,DP DF =,CDB PDB PDF PDB ∴∠-∠=∠-∠,CDP BDF ∴∠=∠,在DCP ∆和DBF ∆中, DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,DCP DBF ∴∆≅∆,CP BF ∴=,CP BP BC+=,BF BP BC∴+=,BC BD=,BF BP BD∴+=;(3)如图③,BF BD BP=+,理由:90ACB∠=︒,30A∠=︒,60CBA∴∠=︒,12BC AB=,点D是AB的中点,BC BD∴=,DBC∴∆是等边三角形,60CDB∴∠=︒,DC DB=,线段DP绕点D逆时针旋转60︒,得到线段DF,60PDF∴∠=︒,DP DF=,CDB PDB PDF PDB∴∠+∠=∠+∠,CDP BDF∴∠=∠,在DCP∆和DBF∆中,DC DBCDP BDFDP DF=⎧⎪∠=∠⎨⎪=⎩,DCP DBF∴∆≅∆,CP BF∴=,CP BC BP=+,BF BC BP∴=+,BC BD=,BF BD BP∴=+.【点睛】此题是三角形综合题,主要考查了含30的直角三角形的性质,等边三角形的判定,全等三角形的判定和性质,旋转的性质,解本题的关键是判断出DCP DBF∆≅∆,是一道中等难度的中考常考题.30.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【解析】【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论; (3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.。
苏科版数学八年级上册《期末考试试卷》及答案
(3)求四边形 的面积.
24.甲、乙两公司为“2019东台西溪·国际半程马拉松比赛”各制作6400个相同的纪念牌,已知甲公司的人数比乙公司人数少20%,乙公司比甲公司人均少做20个,甲、乙两公司各有多少人?
25.已知:如图, 的平分线与 的垂直平分线交于点 , ,垂足分别为 .
A. 且 B. 且 C. D.
[答案]A
[解析]
[分析]
分式方程去分母转化为整式方程,求出整式方程的解得到含有a的x的值.
[详解]
方程两边同时乘以(x-1)得:
x+a-2a=2(x-1),
解得:x=2-a,
∵方程的解不小于0,
∴2-a≥0,
解得:a≤2,
∵分式方程分母不为0,
∴2-a≠1,
解得:a≠1,
A. B.1C. D.2
[答案]B
[解析]
[分析]
根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF,根据全等三角形的性质得到FH=AE,GF=AG,得到AH=BE=EF,设AE=x,则AH=BE=EF=4-x,根据勾股定理即可得到结论.
[详解]∵将△CBE沿CE翻折至△CFE,
∴∠F=∠B=∠A=90°,BE=EF,
16.如图,小明把一张三角形纸片折叠,使点 、点 都与点 重合,折痕分别为 ,此时测得 ,则 的度数为________°.
17.已知点 ,点 是直线 上的一个动点,当以 为顶点的三角形面积是3时,点 的坐标为_____________.
18.如图,已知等边 的边长是6,点 在 上,且 = 4.延长 到 ,使 ,连接 .点 分别是 的中点,连接 ,则 的长为__________.
A.(-2,3)B.(2,-3)C.(2,3)D.(-2,-3)
苏科版苏州市初二数学上学期期末试卷
苏科版苏州市初二数学上学期期末试卷 一、选择题 1.下列四个实数:223,0.1010017π,3,,其中无理数的个数是( ) A .1个B .2个C .3个D .4个 2.下列四组数,可作为直角三角形三边长的是 A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 3.若分式12x x -+的值为0,则x 的值为( ) A .1 B .2- C .1- D .24.下列四个实数中,属于无理数的是( )A .0B .9C .23D .12 5.若2149x kx ++是完全平方式,则实数k 的值为( ) A .43 B .13 C .43± D .13± 6.中国传统服装历史悠远,下列服装中,是轴对称的是()A .B .C .D .7.下列图案属于轴对称图形的是( )A .B .C .D .8.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .49.在下列黑体大写英文字母中,不是轴对称图形的是( )A .B .C .D .10.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数 11.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( )A .AC =2CDB .AD =2CDC .AD =3BD D .AB =2BC 12.下列各式成立的是( )A .93=±B .235+=C .()233-=±D .()233-=13.如图,已知AB AD =,下列条件中,不能作为判定ABC ≌ADC 条件的是A .BC DC =B .BAC DAC ∠=∠ C .90BD ︒∠=∠= D .ACB ACD ∠=∠14.如图:若△ABE ≌△ACD ,且AB =6,AE =2,则EC 的长为( )A .2B .3C .4D .6 15.已知点(,)P a b 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标是( )A .(3,6)-B .(6,3)-C .(3,6)-D .()3,3-或(6,6)-二、填空题16.若函数4y kx =-的图象平行于直线2y x =-,则函数的表达式是________.17.矩形ABCD 中,其中三个顶点的坐标分别是(0,0)、(5,0)、(5,3),则第四个顶点的坐标是______.18.1x -在实数范围内有意义的条件是__________. 19.对于分式23x a b a b x++-+,当1x =时,分式的值为零,则a b +=__________. 20.在平面直角坐标系中,(2,3)A -、(4,4)B ,点P 是x 轴上一点,且PA PB =,则点P 的坐标是__________.21.若直线y x m =+与直线24y x =-+的交点在y 轴上,则m =_______.22.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.23.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .24.如图,等腰直角三角形ABC 中, AB=4 cm.点是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.25.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.三、解答题26.如图,一次函数的图像经过点P (1,3),Q (0,4).(1)求该函数的表达式;(2)该图像怎样平移后经过原点?27.观察下列等式: 112()(2)()(2)22⨯---=-⨯-;4422233⨯-=⨯;111123232⨯-=⨯;…… 根据上面等式反映的规律,解答下列问题:(1)请根据上述等式的特征,在括号内填上同一个实数: 2⨯( )-5=( )5⨯; (2)小明将上述等式的特征用字母表示为:2x y xy -=(x 、y 为任意实数).①小明和同学讨论后发现:x 、y 的取值范围不能是任意实数.请你直接写出x 、y 不能取哪些实数.②是否存在x 、y 两个实数都是整数的情况?若存在,请求出x 、y 的值;若不存在,请说明理由.28.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.29.如图,AD ∥BC ,∠A =90°,E 是AB 上的一点,且AD =BE ,∠1=∠2.(1)求证:△ADE≌△BEC;(2)若AD=3,AB=9,求△ECD的面积.30.已知:如图点A、B、C、D在一条直线上,EA∥FB,EC∥FD,AB=CD,求证:EA=FB.31.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于x轴对称的图形△A1B1C1;②将△A1B1C1向右平移7个单位得到△A2B2C2.(2)△A2B2C2中顶点B2坐标为.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据无理数的定义解答即可.227,0.101001是有理数;3.故选B.【点睛】本题考查了无理数的识别,无限不循环小数叫无理数,初中范围内常见的无理数有三类:①π类,如2π,3等;②③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.2.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A 、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B 、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C 、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D 、∵12+)2=)2,∴此组数据能构成直角三角形,故本选项正确. 故选:D .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.3.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A .【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.解析:D【解析】【分析】根据无理数的定义,即可得到答案.【详解】=D正确;03=,23是有理数,故ABC错误;故选择:D.【点睛】本题考查了无理数的定义,解题的关键是熟记定义.5.C解析:C【解析】【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k的值.【详解】由完全平方式的形式(a±b)2=a2±2ab+b2可得:kx=±2•2x•13,解得k=±43.故选:C【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b)2=a2±2ab+b2是关键.6.B解析:B【解析】【分析】直接利用轴对称图形的定义判断即可.【详解】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:B.【点睛】此题主要考查了轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,7.D解析:D【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D有一条对称轴,由此即可得出结论.详解:A、不能找出对称轴,故A不是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、能找出一条对称轴,故D是轴对称图形.故选D.点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.8.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9.C解析:C【解析】【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A.“E”是轴对称图形,故本选项不合题意;B.“M”是轴对称图形,故本选项不合题意;C.“N”不是轴对称图形,故本选项符合题意;D.“H”是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重10.D解析:D【解析】【分析】根据无理数的定义判断各选项即可.【详解】A中,例如42,是有理数,错误;B中,例如π,是无理数,错误;C中,无限循环小数是有理数,错误;D正确,无限不循环的小数是无理数故选:D【点睛】本题考查无理数的定义,注意含有π和根号开不尽的数通常为无理数.11.B解析:B【解析】【分析】在Rt△ABC中,由∠A的度数求出∠B的度数,在Rt△BCD中,可得出∠BCD度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD,由BD的长求出BC 的长,在Rt△ABC中,同理得到AB=2BC,于是得到结论.【详解】解:∵△ABC中,∠ACB=90°,∠A=30°,∴AB=2BC;∵CD⊥AB,∴AC=2CD,∴∠B=60°,又CD⊥AB,∴∠BCD=30°,在Rt△BCD中,∠BCD=30°,CD3,在Rt△ABC中,∠A=30°,AD3=3BD,故选:B.【点睛】此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键.解析:D【解析】【分析】根据算术平方根的定义对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对C、D进行判断.【详解】=,所以A选项错误;解:A3B B选项错误;=,所以C选项错误;C3D、(23=,所以D选项正确.故选D.【点睛】此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.13.D解析:D【解析】【分析】利用全等三角形的判定定理:SSS、SAS、ASA、AAS、HL进行分析即可.【详解】解:A、AB=AD,BC=DC,再加上公共边AC=AC可利用SSS判定△ABC≌△ADC,故此选项不符合题意;B、AB=AD,∠BAC=∠DAC再加上公共边AC=AC可利用SAS判定△ABC≌△ADC,故此选项不合题意;C、AB=AD,∠B=∠D=90°再加上公共边AC=AC可利用HL判定△ABC≌△ADC,故此选项不合题意;D、AB=AD,∠ACB=∠ACD再加上公共边AC=AC不能判定△ABC≌△ADC,故此选项合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.C解析:C【解析】【分析】根据全等三角形的对应边相等解答即可.【详解】解:∵△ABE≌△ACF,∴AC=AB=6,∴EC=AC﹣AE=6-2=4,故选:C.【点睛】本题考查的知识点是全等三角形的性质,熟记性质内容是解此题的关键.15.B解析:B【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.二、填空题16.y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2解析:y=-2x-4【解析】【分析】两个一次函数的图象平行,则一次项系数一定相同,则解析式即可求得.【详解】解:∵函数y=kx-4的图象平行于直线y=-2x,∴k=-2,函数的表达式为y=-2x-4.故答案为:y=-2x-4.【点睛】本题考查了两条直线平行的问题,一次函数平行系数的特点是解题的关键.17.(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直解析:(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直,对边平行.本题画出图后可很快求解.18.【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】解:式子在实数范围内有意义的条件是:x-1>0,解得:x>1.故答案为:.【点睛】此题主要考查了二次根式有意x解析:1【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】在实数范围内有意义的条件是:x-1>0, 解得:x >1.故答案为:1x >.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.19.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出+a b 的值.【详解】解:∵分式23x a b a b x ++-+,当1x =时,分式的值为零, ∴10a b 且230a b ,∴1a b +=-,且5233ab , 故答案为:-1且5233ab ,. 【点睛】 此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.20.(,0)【解析】【分析】画图,设点的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB根据勾解析:(1912,0)【解析】【分析】画图,设点P的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点P的坐标是(x,0),因为PA=OB根据勾股定理可得:AC2+PC2=BD2+PD2所以32+(x+2)2=42+(4-x)2解得1912 x所以点P的坐标是(1912,0)故答案为:(1912,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键.21.4【解析】【分析】先求出直线与y轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入即可求出m 的值.【详解】解:当x=0时,=4,则直线与y 轴的交点坐标为(0,4),把(解析:4【解析】【分析】先求出直线24y x =-+与y 轴的交点坐标为(0,4),然后根据两直线相交的问题,把(0,4)代入y x m =+即可求出m 的值.【详解】解:当x=0时,24y x =-+=4,则直线24y x =-+与y 轴的交点坐标为(0,4), 把(0,4)代入y x m =+得m=4,故答案为:4.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.22.3;【解析】【分析】过D 作DE⊥AB 于E ,D F⊥AC 于F ,由面积可求得DE ,根据角平分线的性质可求得DF ,可求得△ACD 的面积,进而求△ABC 的面积.【详解】解:过点D 作DE⊥AB 于E ,解析:3;【解析】【分析】过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,由面积可求得DE ,根据角平分线的性质可求得DF ,可求得△ACD 的面积,进而求△ABC 的面积.【详解】解:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F ,∵S △ABD =2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.23..【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,解析:(21),.【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).24.【解析】试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴AC=AB ,AE=AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=解析:42【解析】 试题解析:连接CE ,如图:∵△ABC 和△ADE 为等腰直角三角形,∴2AB ,2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3, ∵2AC AE AB AD== ∴△ACE ∽△ABD ,∴∠ACE=∠ABC=90°, ∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,22,当点D 运动到点C 时,2,∴点E 移动的路线长为2cm .25..【解析】【分析】由线段垂直平分线的性质可知EA =EB ,由等边对等角的性质及外角的性质可得∠AEC =45°,易知△ACE 为等腰直角三角形,可得CA 长,利用三角形面积公式求解即可.【详解】解解析:12.【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解:∵DE垂直平分AB交BC于点E,∴EA=EB,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∵∠C=90°,∴△ACE为等腰直角三角形,∴CA=CE=1,∴三角形ACE的面积=12×1×1=12.故答案为:12.【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键.三、解答题26.(1)y=-x+4;(2)向下平移4个单位长度(或向上平移-4个单位长度);向左平移4个单位长度;或先向左平移1个单位长度,再向下平移3个单位长度;或先向下平移3个单位长度,再向左平移1个单位长度(此问答案不唯一).【解析】【分析】(1)设y=kx+b(k≠0),直接将P(1,3),Q(0,4)代入,即可用待定系数法求得函数解析式;(2)平移后经过原点,则平移之后解析式为y=-x,根据函数y=-x+4变形为y=-x的过程,结合函数的平移符合“左加右减,上加下减”即可得出平移方式(答案不唯一).【详解】(1)设y=kx+b(k≠0),所以43bk b=⎧⎨=+⎩,解得14k b =-⎧⎨=⎩所以函数表达式为y =-x +4.(2)若平移后经过原点,则平移后函数的解析式为y=-x.∵y =-x +4-4=-x ,∴可向下平移4个单位长度(或向上平移-4个单位长度); ∵y=-( x+4)+4=- x,∴可向左平移4个单位长度;∵y =-(x+1)+4-3,∴可先向左平移1个单位长度,再向下平移3个单位长度或先向下平移3个单位长度,再向左平移1个单位长度.【点睛】本题考查用待定系数法求一次函数解析式,一次函数的平移问题.(1)熟练掌握用待定系数法求一次函数解析式是解题关键;(2)中函数的平移满足“左加右减,上加下减”. 27.(1) 53-;(2)①x 不能取-1,y 不能取2;②x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4; 【解析】【分析】(1)设所填数为x,则2x-5=5x ;(2)①假如2x y xy -=,则2,12x y y x x y ==+-,根据分式定义可得;②由①可知21x y x =+或2y x y =-,x≠-1,y≠2,代入尝试可得. 【详解】(1)设所填数为x,则2x-5=5x解得x=53- 所以所填数是53-(2)①假如2x y xy -= 则2,12x y y x x y==+- 所以x≠-1,y≠2即:x 不能取-1,y 不能取2;②存在, 由①可知21x y x =+或2y x y =-,x≠-1,y≠2 所以x,y 可取的整数是:x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4;【点睛】考核知识点:分式的值.理解分式定义是关键.28.(1)证明见解析;(2)21.【解析】【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,∵CD 平分∠ACB ,∴A′点落在CB 上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D -∠B=30°,即∠A′DB=∠B ,∴A′D=A′B ,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC 关于AC 的对称图形△AD′C .∴D′A=DA=9,D′C=DC=10,∵AC 平分∠BAD ,∴D′点落在AB 上,∵BC=10,∴D′C=BC ,过点C 作CE ⊥AB 于点E ,则D′E=BE ,设D′E=BE=x ,在Rt △CEB 中,CE 2=CB 2-BE 2=102-x 2,在Rt △CEA 中,CE 2=AC 2-AE 2=172-(9+x )2.∴102-x 2=172-(9+x )2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B 不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.29.(1)见解析;(2)452【解析】【分析】(1)根据已知可得到∠A =∠B =90°,DE =CE ,AD =BE 从而利用HL 判定两三角形全等; (2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC =90°,由已知我们可求得BE 、AE 的长,再利用勾股定理求得ED 的长,利用三角形面积公式解答即可.【详解】(1)∵AD ∥BC ,∠A =90°,∠1=∠2,∴∠A =∠B =90°,DE =CE .∵AD =BE ,在Rt △ADE 与Rt △BEC 中 AD BE DE CE=⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.又∵AD =3,AB =9,∴BE =AD =3,AE =9﹣3=6.∵∠1=∠2,∴ED =EC∴△CDE 的面积=14522⨯=. 【点睛】 此题主要考查全等三角形的判定与性质的运用,熟练掌握,即可解题.30.用ASA 证明△EAC ≌△FBD 即可.【解析】【分析】首先利用平行线的性质得出,∠A=∠FBD ,∠D=∠ECA ,根据AB=CD 即可得出AC=BD ,进而得出△EAC ≌△FBD .【详解】证明:∵EA ∥FB ,∴∠A =∠FBD ,∵EC ∥FD ,∴∠D =∠ECA ,∵AB =CD ,∴AC =BD ,在△EAC 和△FBD 中,ECA D A FBD AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EAC ≌△FBD (AAS),∴EA =FB .【点睛】考查全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定方法是解题的关键.31.(1)①详见解析;②详见解析;(2)(1,﹣1).【解析】【分析】(1)①分别作出点A 、B 、C 关于x 轴的对称点,再首尾顺次连接即可;②分别作出△A 1B 1C 1的3个顶点向右平移7个单位所得对应点,再首尾顺次连接即可得;(2)由所作图形可得.【详解】(1)①如图所示,△A 1B 1C 1即为所求;②如图所示,△A 2B 2C 2即为所求;(2)由图知,△A 2B 2C 2中顶点B 2坐标为(1,﹣1),故答案为:(1,﹣1).【点睛】本题主要考查作图-平移变换和轴对称变换,解题的关键是掌握平移变换和轴对称变换的定义和性质,并据此得出变换后的对应点.。
苏科版数学八年级上册《期末测试题》含答案
苏科版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是无理数的是()A.0 B.1.010010001C.πD.2.已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,已知△ABC的3条边和3个角,则能判断和△ABC全等的是()A.甲和乙B.乙和丙C.只有乙D.只有丙4.如图,正方形ABCD的边长为4,点C的坐标为(3,3),则点D的坐标为()A.(﹣1,3) B.(1,3) C.(3,1) D.(3,﹣1)5.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y;④y=(1)x.A.1个B.2个C.3个D.4个6.如图,两个三角形是全等三角形,x的值是()A.30 B.45 C.50 D.857.如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.8.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.9.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2) B.(1,2) C.(1,﹣2) D.(﹣2,1)10.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是()A.L l=L2B.L1>L2C.L2>L1D.无法确定第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2018的值为.12.将函数y=3x的图象向上平移2个单位,所得函数图象的解析式为.13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.14.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)15.一个等腰三角形的顶角为80°,则它的一个底角为.16.如图,五边形ABCDE中有一等边三角形ACD.若AB=DE,BC=AE,∠E=115°,则∠BAE的度数是°.17.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为.18.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共10小题,满分96分)19.求x的值:(1)(x+1)2=64(2)8x3+27=0.20.已知点P(﹣m,﹣2m+1)是第二象限的点,求m的取值范围.21.如图,在△ABC中,AB=AC,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.求证:BD=CE.22.如图,在Rt△ABC中,∠ACB=90°.(1)用直尺和圆规作∠A的平分线交BC于点P(保留作图的痕迹,不写作法);(2)当∠CAB为度时,点P到A,B两点的距离相等.23.如图,已知AB=AC,AD=AE.求证:BD=CE.24.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.25.如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG.(1)△GEF是等腰三角形吗?请说明理由;(2)若CD=4,GD=8,求HF的长度.26.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.x(kg) …30 40 50 …y(元) … 4 6 8 …(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是.27.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)28.如图,一次函数y x+3的图象分别与x轴、y轴交于A、B两点.动点P从A点开始沿折线AO ﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为1,,2(长度单位/秒);动点E从O点开始以(长度单位/秒)的速度沿线段OB运动.设P、E两点同时出发,运动时间为t(秒), 当点P沿折线AO﹣OB﹣BA运动一周时,动点E和P同时停止运动.过点E作EF∥OA,交AB于点F.(1)求线段AB的长;(2)求证∠ABO=30°;(3)当t为何值时,点P与点E重合?(4)当t=时,PE=PF.答案与解析第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是无理数的是()A.0 B.1.010010001C.πD.[答案]C[解析]A.0是整数,属于有理数;B.1.010010001是有限小数,即分数,属于有理数;C.π是无理数;D.是分数,属于有理数;故选:C.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数以及像0.1010010001…,等有这样规律的数.2.已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限[答案]D[解析]∵a>0,b<0,∴点P(a,b)在第四象限.故选:D.[点睛]本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.3.如图,已知△ABC的3条边和3个角,则能判断和△ABC全等的是()A.甲和乙B.乙和丙C.只有乙D.只有丙[答案]B[解析]如图:在△ABC和△DEF中,,∴△ABC≌△EFD(SAS);在△ABC和△MNK中,,∴△ABC≌△MNK(AAS).∴甲、乙、丙三个三角形中和△ABC全等的图形是:乙或丙.故选:B.[点睛]此题考查了全等三角形的判定,解题的关键是注意掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.如图,正方形ABCD的边长为4,点C的坐标为(3,3),则点D的坐标为()A.(﹣1,3) B.(1,3) C.(3,1) D.(3,﹣1)[答案]A[解析]如图,∵正方形ABCD的边长为4,点C的坐标为(3,3),∴点D的纵坐标为3,点D的横坐标为3﹣4=﹣1,∴点D的坐标为(﹣1,3).故选:A.[点睛]本题考查了正方形的性质,坐标与图形的性质,根据图形明确正方形的边长与点的坐标的关系是解题的关键.5.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y;④y=(1)x.A.1个B.2个C.3个D.4个[答案]D[解析]①y=﹣2x+1,k=﹣2<0;②y=6﹣x,k=﹣1<0;③y,k0;④y=(1)x,k=(1)<0.所以四函数都是y随x的增大而减小.故选:D.[点睛]本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.6.如图,两个三角形是全等三角形,x的值是()A.30 B.45 C.50 D.85[答案]A[解析]∠A=180°﹣105°﹣45°=30°,∵两个三角形是全等三角形,∴∠D=∠A=30°,即x=30,故选:A.[点睛]本题考查的是全等三角形的性质,三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.7.如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.[答案]B[解析]①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;③当P点在OA段运动时,OP长度越来越大,B答案符合.故选:B.[点睛]本题主要考查动点问题的函数图象,解决这类问题要考虑动点在不同的时间段所产生的函数意义,分情况讨论,动中找静是通用方法.8.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.[答案]C[解析]设CD=x,则DE=a﹣x,∵HG=b,∴AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,∴x,∴BC=DE=a,∴BD2=BC2+CD2=()2+()2,∴BD,故选:C.[点睛]本题考查了勾股定理,全等三角形的性质,正确的识别图形是解题的关键.9.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2) B.(1,2) C.(1,﹣2) D.(﹣2,1)[答案]C[解析]∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故选:C.[点睛]此题主要考查了关于y轴对称点的性质以及平移变换,正确掌握相关平移规律是解题关键.10.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是()A.L l=L2B.L1>L2C.L2>L1D.无法确定[答案]A[解析]∵等边三角形各内角为60°,∴∠B=∠C=60°,∵∠BPD=∠CPE=30°,∴在Rt△BDP和Rt△CEP中,∴BP=2BD,CP=2CE,∴BD+CE BC,∴AD+AE=AB+AC BC BC,∴BD+CE+BC BC,L1BC+DE,L2BC+DE,即得L1=L2,故选:A.[点睛]本题考查了直角三角形中特殊角的正弦函数值,考查了等边三角形各边相等的性质,本题中求证L1BC+DE,L2BC+DE是解题的关键.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2018的值为.[答案]1[解析]∵点A(x,1)与点B(2,y)关于y轴对称,∴x=﹣2,y=1,故(x+y)2018=(﹣2+1)2018=1.故答案为:1.[点睛]此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.12.将函数y=3x的图象向上平移2个单位,所得函数图象的解析式为.[答案]y=3x+2[解析]由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为y=3x+2.故答案为:y=3x+2.[点睛]本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.[答案]2.5[解析]∵∠ACB=90°,AC=3,BC=4,由勾股定理得:AB5,∵CD是△ABC中线,∴CD AB5=2.5,故答案为:2.5.[点睛]本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD AB是解此题的关键.14.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)[答案]AB=CD[解析]∵AB∥DC,∴∠ABD=∠CDB,又BD=BD,①若添加AB=CD,利用SAS可证两三角形全等;②若添加AD∥BC,利用ASA可证两三角形全等.(答案不唯一)故填AB=CD等(答案不唯一)[点睛]本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.15.一个等腰三角形的顶角为80°,则它的一个底角为.[解析]∵等腰三角形的顶角为80°,∴它的一个底角为(180°﹣80°)÷2=50°.故填50°[点睛]此题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.16.如图,五边形ABCDE中有一等边三角形ACD.若AB=DE,BC=AE,∠E=115°,则∠BAE的度数是°.[答案]125[解析]∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,在△ABC与△AED中,∴△ABC≌△AED(SSS),∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故答案为:125[点睛]此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.17.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为.[解析]∵直线y=2x与线段AB有公共点,∴2n≥4,∴n≥2故答案为:n≥2[点睛]本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.18.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.[答案]20[解析]∵将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处,∴∠ADC=∠ADE=90°,DE=CD CE,∵BC=10,BE=2∴CE=8,∴CD=DE=4,BD=6,在Rt△ABD中,AB2=AD2+BD2,在Rt△ACD中,AC2=AD2+CD2,∴AB2﹣AC2=BD2﹣CD2=20,故答案为:20[点睛]本题考查了翻折变换,勾股定理,熟练运用折叠的性质是本题的关键.三.解答题(共10小题)19.求x的值:(1)(x+1)2=64(2)8x3+27=0.[解析](1)x+1=±8(2)8x3=﹣27x3x[点睛]本题考查立方根与平方根的定义,解题的关键是熟练运用平方根与立方根的定义,本题属于基础题型.20.已知点P(﹣m,﹣2m+1)是第二象限的点,求m的取值范围.[解析]∵点P(﹣m,﹣2m+1)在第二象限,∴,解不等式①得,m>0,解不等式②得,m,所以,不等式组的解集是0<m.故m的取值范围为:0<m.[点睛]本题主要考查解一元一次不等式组,解题的关键是掌握各象限内点的坐标的符号特点及解一元一次不等式组的能力.21.如图,在△ABC中,AB=AC,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.求证:BD=CE.[解答]证明:∵△ABD和△ACE是等腰直角三角形,∴AB=AD,AC=AE,∵AB=AC,∴AD=AE,在△ADB和△ACE中,∵,∴△ADB≌△ACE,∴BD=CE.[点睛]本题考查了全等三角形的判定和性质,解题的关键是找出SAS所需要的三个条件.22.如图,在Rt△ABC中,∠ACB=90°.(1)用直尺和圆规作∠A的平分线交BC于点P(保留作图的痕迹,不写作法);(2)当∠CAB为60度时,点P到A,B两点的距离相等.[解析](1)如图所示,点P即为所求.(2)当∠CAB=60°时,P A=PB,∵∠C=90°,∠CAB=60°,∴∠B=30°,∵AP平分∠CAB,∴∠P AB=30°,∴∠P AB=∠B=30°,∴P A=PB.故答案为:60.[点睛]本题主要考查作图﹣复杂作图,解题的关键是掌握角平分线的尺规作图和性质及三角形的内角和定理.23.如图,已知AB=AC,AD=AE.求证:BD=CE.[解答]证明:作AF⊥BC于F,∵AB=AC(已知),∴BF=CF(三线合一),又∵AD=AE(已知),∴DF=EF(三线合一),∴BF﹣DF=CF﹣EF,即BD=CE(等式的性质).[点睛]本题考查了等腰三角形的性质;做题中用到了等量减等量差相等得到答案.24.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.[解答]证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.[点睛]本题考查全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG.(1)△GEF是等腰三角形吗?请说明理由;(2)若CD=4,GD=8,求HF的长度.[解析](1)∵长方形纸片ABCD,∴AD∥BC,∴∠GFE=∠FEC,∵∠FEC=∠GEF,∴∠GFE=∠GEF,∴△GEF是等腰三角形.(2)∵∠C=∠H=90°,HF=DF,GD=8,设HF长为x,则GF长为(8﹣x),在Rt△FGH中,x2+42=(8﹣x)2,解得x=3,∴HF的长为3.[点睛]本题主要考查的是翻折的性质、勾股定理的应用,掌握翻折的性质是解题的关键.26.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.x(kg) …30 40 50 …y(元) … 4 6 8 …(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是.[解析](1)∵y是x的一次函数,∴设y=kx+b(k≠0)将x=30,y=4;x=40,y=6分别代入y=kx+b,得,解得:∴函数表达式为y=0.2x﹣2,(2)将y=0代入y=0.2x﹣2,得0=0.2x﹣2,∴x=10,(3)把y=2代入解析式,可得:x=20,把y=7代入解析式,可得:x=45,所以可携带行李的质量x(kg)的取值范围是20≤x≤45,故答案为:20≤x≤45.[点睛]本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.27.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)[解析](1)设线段BC所在直线的函数表达式为y=kx+b(k≠0),∵B(,0),C(,)在直线BC上,,得,即线段BC所在直线的函数表达式为y=20x;(2)设甲的速度为m km/h,乙的速度为n km/h,,得,∴点A的纵坐标是:3010,即点A的坐标为(,10),点A的实际意义是当甲骑电动车行驶h时,距离M地为10km;(3)由(2)可知,甲的速度为30km/h,乙的速度为50千米/小时,则乙从M地到达N地用的时间为:小时,∵,∴乙在图象中的时,停止运动,甲到达N地用的时间为:小时,补全的函数图象如右图所示.[点睛]本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.28.如图,一次函数y x+3的图象分别与x轴、y轴交于A、B两点.动点P从A点开始沿折线AO ﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为1,,2(长度单位/秒);动点E从O点开始以(长度单位/秒)的速度沿线段OB运动.设P、E两点同时出发,运动时间为t(秒), 当点P沿折线AO﹣OB﹣BA运动一周时,动点E和P同时停止运动.过点E作EF∥OA,交AB于点F.(1)求线段AB的长;(2)求证∠ABO=30°;(3)当t为何值时,点P与点E重合?(4)当t=或时,PE=PF.[解析](1)令y=0,得A(3,0),令x=0,求得B(0,3),∴OA=3,OB=3,∵∠AOB=90°,∴AB6,(2)证明:取AB的中点C,连接OC,∵∠AOB=90°,C为AB的中点,∴OC=BC=CA=3,∵OA=3,∴OC=CA=OA,∴△OAC是等边三角形,∴∠OAB=60°,∵∠AOB=90°,∴∠ABO=30°;(3)由题意得t(t﹣3),解得:t所以当t时,点P与点E重合;(4)取EF的中点H,过点H作PP′∥y轴,此时,P(P′)E=P(P′)F,①当点P在线段OA时,EH=OP,∵∠OBA=30°,设:EF=m,则FB=2m,BE m,即EF BE,EH EF BE•(3t)OP=OA﹣AP=3﹣t,解得:t,②当点P(点P′)在线段AB时,作P′O′⊥OB于点O′,此时点P′运动的时间为t,其中在AO、OB运动时间均为3,则在AB上运动的时间为t﹣6,则BP′=2(t﹣6),同理O′P′B′P′=t﹣6,由①得:EH(3t)=O′P′=t﹣6,同理可得:t,故答案是:或.[点睛]本题考查的是一次函数综合运用,涉及到解直角三角形、勾股定理运用等知识点,难度不大.。
苏科版苏州市八年级上第一学期期末数学试卷
苏科版苏州市八年级上第一学期期末数学试卷 一、选择题 1.估计11的值应在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.计算3329a b a b a b a-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89ab 3.某种鲸的体重约为,关于这个近似数,下列说法正确的是( ) A .精确到百分位B .精确到0.01C .精确到千分位D .精确到千位 4.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是( )A .∠B =∠C B .BE =CD C .AD =AE D .BD =CE5.满足下列条件的△ABC ,不是直角三角形的是( )A .a :b :3c =:4:5B .A ∠:B ∠:9C ∠=:12:15 C .C A B ∠=∠-∠D .222b a c -=6.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4)7.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .10 8.在同一平面直角坐标系中,函数y x =-与34y x =-的图像交于点P ,则点P 的坐标为( )A .(1,1)-B .(1,1)-C .(2,2)-D .(2,2)-9.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( ) A .1- B .0 C .1D .2 10.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .411.下列标志中,不是轴对称图形的是( ) A . B . C . D .12.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( ) A .AC =2CD B .AD =2CD C .AD =3BD D .AB =2BC13.已知:如图,点P 在线段AB 外,且PA=PB ,求证:点P 在线段AB 的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A .作∠APB 的平分线PC 交AB 于点CB .过点P 作PC ⊥AB 于点C 且AC=BCC .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C14.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC 上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm15.如图:若△ABE ≌△ACD ,且AB =6,AE =2,则EC 的长为( )A .2B .3C .4D .6二、填空题16.若点(1,35)P m m +-在x 轴上,则m 的值为________.17.如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么CD =_____.18.3.145精确到百分位的近似数是____.19.点()2,3A 关于y 轴对称点的坐标是______.20.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.21.如图,在平面直角坐标系中,函数y=﹣2x 与y=kx+b 的图象交于点P (m ,2),则不等式kx+b >﹣2x 的解集为_____.22.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a 与b 的大小关系是__________。
苏科版江苏省苏州市八年级上第一学期期末数学试卷
苏科版江苏省苏州市八年级上第一学期期末数学试卷一、选择题1.如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A .(-3,2)B .(2,-3)C .(1,-2)D .(-1,2)2.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .13.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62° 4.若分式15x -在实数范围内有意义,则实数x 的取值范围是( ) A .5x ≠ B .5x = C .5x > D .5x <5.下列实数中,无理数是( )A .0B .﹣4C .5D .17 6.某种鲸的体重约为,关于这个近似数,下列说法正确的是( ) A .精确到百分位 B .精确到0.01 C .精确到千分位 D .精确到千位7.如图,将△ABC 折叠,使点A 与BC 边中点D 重合,折痕为MN ,若AB=9,BC=6,则△DNB 的周长为( )A .12B .13C .14D .15 8.把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,则分式的值… ( ) A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的129.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )A .①②③B .①②④C .①③④D .①②③④ 10.4 的算术平方根是( )A .16B .2C .-2D .2± 11.已知A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点,m =(a ﹣c )(b ﹣d ),则当m <0时,k 的取值范围是( )A .k <3B .k >3C .k <2D .k >212.下列式子中,属于最简二次根式的是( )A 12B 0.5C 5D 1213.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b 的图象大致是( )A .B .C .D .14.如图,在平面直角坐标系xOy 中,直线y =﹣43x +4与x 轴、y 轴分别交于点A 、B ,M 是y 轴上的点(不与点B 重合),若将△ABM 沿直线AM 翻折,点B 恰好落在x 轴正半轴上,则点M 的坐标为( )A .(0,﹣4 )B .(0,﹣5 )C .(0,﹣6 )D .(0,﹣7 )15.下列分式中,x 取任意实数总有意义的是( )A .21x x +B .221(2)x x -+C .211x x -+D .2x x + 二、填空题 16.已知直线l 1:y =x +a 与直线l 2:y =2x +b 交于点P (m ,4),则代数式a ﹣12b 的值为___.17.写出一个比4大且比5小的无理数:__________.18.在311,2π,122-,0,0.454454445…,319中,无理数有______个. 19.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.20.计算222m m m+--的结果是___________21.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.22.如图,在△ABC 中,PH 是AC 的垂直平分线,AH =3,△ABP 的周长为11,则△ABC 的周长为_____.23.如图,△ABC 中,AB =AC ,AB 的垂直平分线分别交边AB ,BC 于D ,E 点,且AC =EC ,则∠BAC =_____.24.平行四边形的周长是20,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大2,则AB 的长为_____.25.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .三、解答题26.已知一次函数的图象经过点P (0,-2),且与两条坐标轴截得的直角三角形的面积为6,求这个一次函数的解析式.27.如图,点D 、B 、C 在一直线上,ABC ∆和ADE ∆都是等边三角形.试找出图中的一对全等三角形,并证明.a-+(b﹣8)2=0.28.若△ABC的三边分别为a,b,c,其中a,b满足6(1)求边长c的取值范围,(2)若△ABC是直角三角形,求△ABC的面积.y+与x成正比,当x=1时,y=﹣6.29.已知2(1)求y与x之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a的值.30.如图,己知,A(0, 4),B (t,0)分别在y轴,x轴上,连接AB,以AB为直角边分别作等腰Rt△ABD和等腰Rt△ABC.直线BC交y轴于点E. 点G(-2,3)、H(-2,1)在第二象限内.(1)当t =-3时,求点D的坐标.(2)若点G、H位于直线AB的异侧,确定t的取值范围.(3)①当t取何值时,△ABE与△ACE的面积相等.②在①的条件下,在x轴上是否存在点P,使△PCB为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.31.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)若△DAF的周长为10,求BC的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.【详解】如图所示:点A的对应点A2的坐标是:(2,﹣3).故选B.2.D解析:D【解析】【分析】图中直线y=x+b与x轴负半轴,y轴正半轴分别交于A,B两点,可以根据两点的坐标得出OA=OB,由此可证明△AOD≌△OBE,证出OC=AD,BE=OD,在Rt△OBE中,运用勾股定理可求出BE的长,再根据线段的差可求出DE的长.【详解】直线y=x+b(b>0)与x轴的交点坐标A为(-b,0)与y轴的交点坐标B为(0,-b),所以,OA=OB,又∵AD⊥OC,BE⊥OC,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB,在△DAO和△BOE中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键. 3.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B .【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.4.A解析:A【解析】【分析】根据分式的定义即可求解.【详解】依题意得50x -≠,解得5x ≠,故选A.【点睛】此题主要考查分式的性质,解题的关键是熟知分式的性质.5.C解析:C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【详解】解:0,﹣4是整数,属于有理数;17 故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 6.D解析:D【解析】【分析】先写出其原数,看看近似数的最末一位在原数什么数位上,那么它就是精确到了哪个数位.【详解】解:1.36×105kg =136000kg 的最后一位的6表示6千,即精确到千位.故选D .【点睛】本题考查了近似数,掌握用科学记数法表示的数的精确度是解题关键.近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.7.A解析:A【解析】【分析】根据中点的定义可得BD=3,由折叠的性质可知DN=AN ,即DN+BN=AB=9,可得△DNB 的周长.【详解】解:∵D 是BC 的中点,BC=6,∴BD=3,由折叠的性质可知DN=AN ,∴△DNB 的周长=DN+BN+BD=AN+BN+BD=AB+BD=9+3=12.故选A.【点睛】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等8.A解析:A【解析】 把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xy x y x y x y ⋅==---,由此可得分式的值不变,故选A. 9.A解析:A【解析】【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160,②正确;当乙在B 休息1h 时,甲前进80km ,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.10.B解析:B【解析】【分析】根据算术平方根的定义直接求解即可.【详解】解:42=,故选B.【点睛】本题考查了算术平方根的定义,正确把握定义是解题关键. 11.A解析:A【解析】【分析】将点A,点B坐标代入解析式可求k−3=b da c--,即可求解.【详解】∵A(a,b),B(c,d)是一次函数y=kx﹣3x+2图象上的不同两个点,∴b=ka﹣3a+2,d=kc﹣3c+2,且a≠c,∴k﹣3=b da c --.∵m=(a﹣c)(b﹣d)<0,∴k<3.故选:A.【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−3=b d a c --是关键,是一道基础题.12.C解析:C【解析】,被开方数含分母,不是最简二次根式,故本选项错误;D.故选C.13.A解析:A【解析】试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选A.考点:一次函数的图象.14.C解析:C【解析】【分析】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,则有AB=AC,而AB的长度根据已知可以求出,所以C点的坐标由此求出;又由于折叠得到CM=BM,在直角△CMO中根据勾股定理可以求出OM,也就求出M的坐标.【详解】设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,∵直线y=﹣43x+4与x轴、y轴分别交于点A、B,∴A(3,0),B(0,4),∴AB=223+4=5,设OM=m,由折叠知,AC=AB=5,CM=BM=OB+OM=4+m,∴OC=8,CM=4+m,根据勾股定理得,64+m2=(4+m)2,解得:m=6,∴M(0,﹣6),故选:C.【点睛】本题主要考查一次函数的图象,图形折叠的性质以及勾股定理,通过勾股定理,列方程,是解题的关键.15.C解析:C【解析】【分析】根据分式有意义的条件是分母不等于零即可判断.【详解】A.x=0时,x2=0,A选项不符合题意;B.x=﹣2时,分母为0,B选项不符合题意;C.x取任意实数总有意义,C选项符号题意;D.x=﹣2时,分母为0.D选项不符合题意.故选:C.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.二、填空题16.【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣b的值. 【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2解析:【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣12b的值.【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2=m+12b②,∴①﹣②得,a﹣12b=2,故答案为:2.【点睛】本题考查了一次函数,一次函数图像上的点适合该函数的解析式,熟练掌握函数图像上的点与函数解析式的关系是解题的关键.17.答案不唯一,如:【解析】【分析】根据无理数的定义即可得出答案.【详解】∵42=16,52=25,∴到之间的无理数都符合条件,如:.故答案为答案不唯一,如:.【点睛】本题考查了无理数的解析:【解析】【分析】根据无理数的定义即可得出答案.【详解】∵42=16,52=25.故答案为.【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,,0.454454445…,为无理数,共3个.故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无解析:3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,2 ,0.4544544453个.故答案为:3.本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.19..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k1x+b1与y =k2x+b2的图象的交点坐标为(2,1),∴关于x ,y 的方程组的解是.解析:21x y =⎧⎨=⎩. 【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.20.-1.【解析】【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】=故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分解析:-1.【解析】原式变形后,利用同分母分式的减法法则计算即可得到结果. 【详解】222m m m +--=222 1.2222m m m m m m m ---==-=----- 故答案为-1.【点睛】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母.21.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435∵C (0,-1),∴OC=1,∴BC=3+1=4,∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.22.17【解析】【分析】根据线段垂直平分线的性质得到,,根据三角形的周长公式计算,得到答案.【详解】解:是的垂直平分线,,,的周长为11,,的周长,故答案为:17.【点睛】本题考解析:17【解析】【分析】根据线段垂直平分线的性质得到PA PC =,26AC AH ==,根据三角形的周长公式计算,得到答案.【详解】解:PH 是AC 的垂直平分线,PA PC ∴=,26AC AH ==,ABP ∆的周长为11, 11AB BP PA AB BP BC AB BC ∴++=++=+=,ABC ∆∴的周长17AB BC AC =++=,故答案为:17.【点睛】本题考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.23.108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB解析:108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB=AC,∴∠B=∠C,∵AB的垂直平分线分别交边AB,BC于D,E点,∴AE=BE,∴∠B=∠BAE,∵AC=EC,∴∠EAC=∠AEC,设∠B=x°,则∠EAC=∠AEC=2x°,则∠BAC=3x°,在△AEC中,x+2x+2x=180,解得:x=36,∴∠BAC=3x°=108°,故答案为:108°.【点睛】此题主要考查等腰三角形的性质,解题关键是利用三角形内角和构建方程.24.6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-解析:6【解析】【分析】由已知可得到AB比BC长2,根据平行四边形的周长可得到AB与BC的和,从而不难求得AB的长.【详解】解:∵△AOB的周长比△BOC的周长大2,∴OA+OB+AB-OB-OC-BC=2,∵ABCD是平行四边形,∴OA=OC,∴AB-BC=2,∵平行四边形ABCD的周长是20,∴AB+BC=10,∴AB=6.故答案为:6.【点睛】此题主要考查学生对平行四边形的性质的理解及运用,熟记性质是解题的关键.25.50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三解析:50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.三、解答题26.y=-13x-2或y=13x-2. 【解析】【分析】 分一次函数与x 轴交点Q 在正半轴与负半轴两种情况确定出Q 的坐标,即可确定出一次函数解析式.【详解】解:设一次函数与x 轴的交点为Q,则①当一次函数与x 轴交点Q 在x 轴负半轴时,由OP=2,与两坐标所围成的直角三角形面积为6,得到Q (-6,0),设一次函数解析式为y=kx+b ,将P 与Q 坐标代入得:2,60,b k b -⎧⎨-+⎩==解得1,32.k b ⎧=-⎪⎨⎪=-⎩ 此时一次函数解析式为y=-13x-2; ②当一次函数与x 轴交点在x 轴正半轴时,由OP=2,与两坐标所围成的直角三角形面积为6,得到Q (6,0),设一次函数解析式为y=mx+n ,将P 与Q 坐标代入得:2,60,n m n -⎧⎨+⎩==解得1,32.m b ⎧=⎪⎨⎪=-⎩ 此时一次函数解析式为y=13x-2. 故所求一次函数解析式为:y=-13x-2或y=13x-2. 【点睛】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.27.ABE ACD ∆≅∆,证明详见解析.【解析】【分析】根据等边三角形的性质证明ΔABE ≅ΔACD 即可.【详解】ΔABE ≅ΔACD .证明如下:∵ΔABC 、ΔADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°,∴∠BAC +∠BAD =∠DAE +∠BAD ,即∠CAD =∠BAE .在ΔABE 和ΔCAD .∵AB =AC ,∠BAE =∠CAD ,AE =AD ,∴ΔABE ≅ΔACD .【点睛】本题考查了等边三角形的性质和全等三角形的判定.掌握等边三角形的性质是解答本题的关键.28.(1)2<c <14;(2)△ABC 的面积为24或.【解析】【分析】(1)先根据非负数的性质求出a 、b 的值,再由三角形的三边关系即可得出结论;(2)分b 是直角边和斜边两种情况,利用勾股定理求出另一直角边,然后根据三角形的面积公式列式计算即可得解.【详解】解:(1)∵a ,b (b ﹣8)2=0,∴a ﹣6=0,b ﹣8=0,∴a =6,b =8,∴8﹣6<c <8+6,即2<c <14.故边长c 的取值范围为:2<c <14;(2)b =8是直角边时,6是直角边,△ABC 的面积=12×6×8=24;b =8,△ABC 的面积=12×6×.综上所述,△ABC 的面积为24或.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.同时考查了勾股定理,难点在于要分情况讨论.29.(1)y =-4x-2;(2)a =-1.【解析】【分析】(1)设y+2=kx ,将x=1、y=-6代入y+2=kx 可得k 的值;(2)将点(a ,2)的坐标代入函数的解析式求a 的值.【详解】解:(1)∵y+2与x 成正比,∴设y+2=kx ,将x=1、y=-6代入y+2=kx 得-6+2=k×1,∴k=-4,∴y=-4x-2(2)∵点(a ,2)在函数y=-4x-2图象上,∴2=-4a-2,∴a=-1.【点睛】本题主要考查函数解析式的求法.如果事先知道函数的形式,可先设函数的解析式,再采用待定系数法求解.30.(1)D (-7,3);(2)88-3t -<<;(3)①-2;②存在,P(6,0),P(12,0),P(-,0),,0)【解析】【分析】(1)当t=-3时,过点D 作DM ⊥x 轴于点M ,证明△ABO ≌△BDM ,得出DM=BO 和MB=OA ,从而得出点D 坐标.(2)设出AB 解析式y=kx+4,分别求出点G ,H 在线段AB 上的时点B 的坐标; (3)①假设△ABE 与△ACE 的面积相等,利用等底同高求出t 值;②根据等腰三角形的性质,分BP=BC 、CP=CB 、PC=PB 三种情况讨论.【详解】(1)当t=-3时,过点D 作DM ⊥x 轴于点M,∵△ABD 为等腰直角三角形,AB=BD ,∠ABD=90°∴∠ABO+∠DBM=180°-90°=90°又∵DM ⊥x 轴于点M∴∠DMB=90°∴∠DBM+∠MDB=90°∴∠MDB=∠ABO在△ABO 和△BDM 中 ABO BDM AB BDDMB BOA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABO ≌△BDM∴DM=BO=3,MB=OA=4∴MO=MB+BO=4+3=7∴D (-7,3)(2)∵A (0,4),B (t,0),设直线AB 的解析式为y=kx+4当点G (-2,3)在直线AB 上时 3=-2k+4,12k = 此时AB 的解析式142y x =+ 当y=0时,1042x =+,x=-8 此时B (-8,0) 当点H (-2,1)在直线AB 上时 1=-2k+4,32k 此时AB 的解析式243y x =+ 当y=0时,3042x =+,x=83- 此时B (83-,0)∵点G, H 位于直线AB 的异侧,∴由图像可知直线AB 与线段MN 相交,且点M ,N 不在直线AB 上∴88-3t -<< (3)①t=-2时,△ABE 与△ACE 的面积相等.如图,过点B 做x 轴垂线,构造直角三角形ARB 和直角三角形BQC ,∵∠RAB+∠ABR=90°,∠ABR+∠BCQ=90°∴∠ABR=∠BCQ ,在△ARB 和△BQC 中,=R Q ABR BCQ AB BC ∠=∠⎧⎪∠∠⎨⎪=⎩,∴△ARB≌△BQC(AAS)∴AR=BQ,BR=QC=4,若△ABE与△ACE的面积相等,则BE=EC,∴BO=CN=2,∴B(-2,0)②P(6,0),P(12,0),5,0),5,0)由②可得C(2,-2)当BP=BC时,224225∴BP=25∴5,0)或5,0)当CP=CB时,BP=8,∴P(6,0)当PC=PB时,如图,过E作BC的垂线,交x轴于点P,过C作x轴垂线于点S,设BP=m=PC,则PS=4-m,在△PSC中,PS2+SC2=PC2,即22+(4- m)2= m 2,解得m=52,∴OP=52-2=12,∴P(12,0).综上:P(6,0),P(12,0),5,0),5,0).【点睛】本题是一道综合性较强的题,难点在于等腰三角形的存在性问题,同时根据图像数形结合来得出t的取值范围.31.(1)20°;(2)10.【解析】【分析】(1)根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质得到DA=DB,FA=FC,得到∠DAB=∠ABC=30︒,∠FAC=∠ACB=50︒,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【详解】(1)∠BAC=180︒﹣∠ABC﹣∠ACB=180︒﹣30︒﹣50︒=100︒,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30︒,∵FG是AC的垂直平分线,∴FA=FC,∴∠FAC=∠ACB=50︒,∴∠DAF=∠BAC﹣(∠DAB+∠FAC)=20︒;(2)∵△DAF的周长为10,∴AD+DF+FC=10,∴BC=BD+DF+FC=AD+DF+FC=10.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.。
苏科版苏州市八年级期上册末数学试卷
苏科版苏州市八年级期上册末数学试卷一、选择题1.正方形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .四个角都是直角 2.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .2 3.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =-- 4.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( ) A .仍是直角三角形B .一定是锐角三角形C .可能是钝角三角形D .一定是钝角三角形 5.若分式12x x -+的值为0,则x 的值为( ) A .1B .2-C .1-D .2 6.下列长度的三条线段能组成直角三角形的是( )A .3,4,4B .3,4,5C .3,4,6D .3,4,8 7.如图,我们知道数轴上的点与实数一一对应,由图中的信息可知点P 表示的数是( )A .132-B .132C 132D .13-8.用科学记数法表示0.000031,结果是( )A .53.110-⨯B .63.110-⨯C .60.3110-⨯D .73110-⨯ 9.在下列分解因式的过程中,分解因式正确的是( )A .-xz +yz =-z(x +y)B .3a 2b -2ab 2+ab =ab(3a -2b)C .6xy 2-8y 3=2y 2(3x -4y)D .x 2+3x -4=(x +2)(x -2)+3x10.以下关于多边形内角和与外角和的表述,错误的是( )A .四边形的内角和与外角和相等B .如果一个四边形的一组对角互补,那么另一组对角也互补C .六边形的内角和是外角和是2倍D .如果一个多边形的每个内角是120︒,那么它是十边形.11.已知a >0,b <0,那么点P(a ,b)在( )A .第一象限B .第二象限C .第三象限D .第四象限12.下列各点中,在函数y=-8x 图象上的是( ) A .(﹣2,4) B .(2,4)C .(﹣2,﹣4)D .(8,1) 13.点P(-2,3)关于x 轴的对称点的坐标为( )A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2)14.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( )A .48 kgB .48.9 kgC .49 kgD .49.0 kg15.下列各数中,无理数是( )A .πB .C .D .二、填空题16.已知直线l 1:y =x +a 与直线l 2:y =2x +b 交于点P (m ,4),则代数式a ﹣12b 的值为___.17.已知点(,5)A m -和点(2,)B n 关于x 轴对称,则m n +的值为______. 18.若1712a +=,则352020a a -+=__________. 19.36的算术平方根是 . 20.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.21.如图,△ABC 中,AD 平分∠BAC ,AB =4,AC =2,且△ABD 的面积为2,则△ABC 的面积为_________.22.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿y 轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为____.23.一个正方形的边长增加2cm ,它的面积就增加24cm ,这个正方形的边长是______cm .24.如图,已知ABD CBD ∠∠=,若以“SAS”为依据判定ABD ≌CBD ,还需添加的一个直接条件是______.25.如图,将一张三角形纸片折叠,使得点A 、点C 都与点B 重合,折痕分别为DE 、FG ,此时测得∠EBG =36°,则∠ABC =_____°.三、解答题26.已知函数y=(2m +1)x+m ﹣3.(1)若函数图象经过原点,求m 的值;(2)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限,求m 的取值范围.27.某天早上爸爸骑车从家送小明去上学.途中小明发现忘带作业本,于是他立即下车,下车后的小明匀速步行继续赶往学校,同时爸爸加快骑车速度,按原路匀速返回家中取作业本(拿作业本的时间忽略不计),紧接着以返回时的速度追赶小明.最后两人同时达到学校. 如图是小明离家的距离()y m 与所用时间()min x 的函数图像.请结合图像回答下列问题:(1)小明家与学校距离为______m ,小明步行的速度为______/min m ;(2)求线段AB 所表示的y 与x 之间的函数表达式;(3)在同一坐标系中画出爸爸离家的距离()y m 与所用时间()min x 的关系的图像.(标注..相关数据....) 28.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.29.如图,在ABC ∆中,110ACB ∠=,B A ∠>∠,D ,E 为边AB 上的两个点,且BD BC =,AE AC =.(1)若30A ∠=,求DCE ∠的度数;(2)DCE ∠的度数会随着A ∠度数的变化而变化吗?请说明理由.30.已知一次函数y kx b =+的图象经过点()3,3P ,()1,3Q -.(1)求这个一次函数表达式;(2)若函数y kx b =+的图象与x 轴的交点是A ,与y 轴交于点B ,求ABO ∆的面积(其中O 为坐标原点).31.如图,△ABC 中,∠ABC =30°,∠ACB =50°,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G 分别为垂足.(1)求∠DAF 的度数;(2)若△DAF 的周长为10,求BC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:正方形四个角都是直角,对角线互相垂直平分且相等;矩形四个角都是直角,对角线互相平分且相等.考点:(1)、正方形的性质;(2)、矩形的性质2.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P (a ,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C .【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.3.D解析:D【解析】【分析】根据左加右减,上加下减的平移规律解题.【详解】解:把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为3(2)4y x =-++,整理得:32y x =--,故选D.【点睛】本题考查了直线的平移变换,属于简单题,熟悉直线的平移规律是解题关键.4.A解析:A【解析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k 倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a 、b ,斜边为c .则满足a 2+b 2=c 2.若各边都扩大k 倍(k >0),则三边分别为ak 、bk 、ck(ak )2+(bk )2=k 2(a 2+b 2)=(ck )2∴三角形仍为直角三角形.故选:A .【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.5.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A .【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.6.B解析:B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.7.A解析:A【解析】 【分析】根据可知AP=AB ,在直角三角形ABC 中,由勾股定理可求AB 的长度,由点P 在0的左边,即可得到答案.【详解】解:如图所示,由图可知,AP=AB ,△ABC 是直角三角形,∵AC=2,BC=3,由勾股定理,得:22222313AB AC BC -+=, ∴13AP AB ==∴132PC =,∵点P 在点C 的左边,点C 表示的数为0,∴点P 表示的数为:132)132-=;故选择:A.【点睛】本题考查了利用数轴表示无理数,解题的关键是掌握利用数轴表示有理数,依据掌握勾股定理计算长度.8.A解析:A【解析】【分析】根据科学记数法的表示形式10(1||10)na a ⨯≤<(n 为整数)即可求解【详解】0.000031-5=3.110⨯,故选:A .【点睛】本题主要考查了绝对值小于1的数的科学记数法,熟练掌握科学记数法的表示方法是解决本题的关键.9.C解析:C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】-xz +yz =-z(x-y),故此选项错误;3a 2b -2ab 2+ab =ab(3a -2b+1),故此选项错误;6xy 2-8y 3=2y 2(3x -4y)故此选项正确;x 2+3x -4=(x +2)(x -2)+3x ,此选项没把一个多项式转化成几个整式积的形式,此选项错误.故选:C .【点睛】因式分解的意义.10.D解析:D【解析】【分析】根据多边形的内角和和外角和定理,逐一判断排除即可得解.【详解】A.四边形的内角和为360°,外角和也为360°,A 选项正确;B.根据四边形的内角和为360°可知,一组对角互补,则另一组对角也互补,B 选项正确;C.六边形的内角和为62180720()-⨯︒=︒,外角和为360°,C 选项正确;D.假设是n 边形,(2)180120n n -⨯︒=︒解得610n =≠,D 选项错误. 故选:D.【点睛】本题主要考查了多边形的内角和、外角和定理,熟练掌握计算公式是解决本题的关键. 11.D解析:D【解析】试题分析:根据a >0,b <0和第四象限内的坐标符号特点可确定p 在第四象限. ∵a >0,b <0,∴点P (a ,b )在第四象限,故选D.考点:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点点评:解答本题的关键是掌握好四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.A解析:A【解析】【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上【详解】解:-2×4=-8故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.13.B解析:B【解析】【分析】根据平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【详解】解:根据平面直角坐标系中对称点的规律可知,点P(-2,3)关于x轴的对称点坐标为(-2,-3).故选:B.【点睛】主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.D解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D.【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.15.A解析:A【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A. π是无理数;B. =2,是有理数;C. 是有理数;D. =2,是有理数.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.二、填空题16.【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣b的值. 【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2解析:【解析】【分析】将点P代入y=x+a和y=2x+b中,再进行适当变形可得代数式a﹣12b的值.【详解】解:把点P(m,4)分别代入y=x+a和y=2x+b得:4=m+a①,4=2m+b,∴2=m+12b②,∴①﹣②得,a﹣12b=2,故答案为:2.【点睛】本题考查了一次函数,一次函数图像上的点适合该函数的解析式,熟练掌握函数图像上的点与函数解析式的关系是解题的关键.17.7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵和点关于轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+解析:7【解析】【分析】根据关于x 轴对称的点的坐标特征,即横坐标相同,纵坐标相反,列式分别求出m ,n 即可解决.【详解】解:∵(,5)A m 和点(2,)B n 关于x 轴对称,∴m=2,-5+n=0,∴m=2,n=5,∴m+n=7.故答案为7.【点睛】本题考查了点的坐标特征,解决本题的关键是熟练掌握关于x 轴对称的点的坐标特征,要与关于y 轴对称的点的坐标特征相区别.18.2024【解析】【分析】,代入a 值,根据乘法法则进行计算即可.【详解】===4+2020=2024故答案为:2024【点睛】考核知识点:二次根式运算.掌握运算法则,运用乘法公解析:2024【解析】【分析】352020a a -+=()252020a a -+,代入a 值,根据乘法法则进行计算即可.【详解】352020a a -+=()2211520205202022a a ⎡⎤⎛⎫⎢⎥-+=⨯-+ ⎪ ⎪⎢⎥⎝⎭⎣⎦=1185202024⎡⎤+⨯-+⎢⎥⎣⎦=2020 =4+2020=2024故答案为:2024【点睛】 考核知识点:二次根式运算.掌握运算法则,运用乘法公式是关键.19.【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6. 考点:算术平方根.解析:【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.20.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0 解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435 ∵C (0,-1),∴OC=1,∴BC=3+1=4, ∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.21.3;【解析】【分析】过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,由面积可求得DE ,根据角平分线的性质可求得DF ,可求得△ACD 的面积,进而求△ABC 的面积.【详解】解:过点D 作DE ⊥AB 于E ,解析:3;【解析】【分析】过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,由面积可求得DE ,根据角平分线的性质可求得DF ,可求得△ACD 的面积,进而求△ABC 的面积.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F,∵S△ABD=2∴12AB•DE=2,又∵AB=4∴12×4×DE=2,解得DE=1,∵AD平分∠BAC,且DE⊥AB,DF⊥AC ∴DF=DE=1,∴S△ACD=12AC•DF=12×2×1=1,∴S△ABC=S△ABD+S△ACD=2+1=3故答案为:3.【点睛】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.22.(2,).【解析】【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为解析:(232019).【解析】【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.【详解】∵△ABC是等边三角形,AB=3﹣1=2,∴点C到y轴的距离为1+2×12=2,点C到AB2221-3,∴C(23,把等边△ABC先沿y轴翻折,得C’(-2,再向下平移1个单位得C’’( -2故经过一次变换后,横坐标变为相反数,纵坐标减1,故第2020次变换后的三角形在y轴右侧,点C的横坐标为2,+1﹣﹣2019,所以,点C的对应点C'的坐标是(22019).故答案为:(22019).【点睛】本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y轴右侧是解题的关键.23.a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有解析:a=5【解析】【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有(a+2)2-a2=24,(a+2)2-a2=(a+2+a)(a+2-a)=4a+4=24,解得a=5.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.24.AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD解析:AB=BC【解析】【分析】利用公共边BD以及∠ABD=∠CBD,依据两边及其夹角分别对应相等的两个三角形全等,即可得到需要的条件.【详解】如图,∵在△ABD与△CBD中,∠ABD=∠CBD,BD=BD,∴添加AB=CB时,可以根据SAS判定△ABD≌△CBD,故答案为AB=CB.【点睛】本题考查了全等三角形的判定.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.25.【解析】【分析】根据折叠的性质得到∠ABE=∠A,∠CBG=∠C,根据三角形的内角和定理,得到∠A+∠C=180°﹣∠ABC,列方程即可得到结论.【详解】∵把一张三角形纸片折叠,使点A、点解析:【解析】【分析】根据折叠的性质得到∠ABE=∠A,∠CBG=∠C,根据三角形的内角和定理,得到∠A+∠C =180°﹣∠ABC,列方程即可得到结论.【详解】∵把一张三角形纸片折叠,使点A、点C都与点B重合,∴∠ABE=∠A,∠CBG=∠C,∵∠A+∠C=180°﹣∠ABC,∵∠ABC=∠ABE+∠CBG+∠EBG,∴∠ABC=∠A+∠C+36°=180°﹣∠ABC+36°,∴∠ABC=108°,故答案为:108.【点睛】本题主要考查三角形的内角和定理与图形折叠的性质,根据角的和差关系,列出关于∠ABC的方程,是解题的关键.三、解答题26.(1)m=3;(2)m<-12;(3)m≥3【解析】试题分析:(1)根据待定系数法,只需把原点代入即可求解;(2)直线y=kx+b 中,y 随x 的增大而减小说明k <0;(3)根据图象不经过第四象限,说明图象经过第一、三象限或第一、二、三象限要分情况讨论.(1)把(0,0)代入,得m-3=0,m=3;(2)根据y 随x 的增大而减小说明k <0,即2m+1<0,m <-; (3)若图象经过第一、三象限,得m=3.若图象经过第一、二、三象限,则2m+1>0,m-3>0,解得m >3,综上所述:m≥3.考点:本题考查的是待定系数法求一次函数解析式,一次函数的性质点评:能够熟练运用待定系数法确定待定系数的值,还要熟悉在直线y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.能够根据k ,b 的符号正确判断直线所经过的象限.27.(1)2500,100;(2)100500y x =+;(3)见解析【解析】【分析】(1)看图得到小明家与学校距离为2500米,小明步行路程为(2500-1000)米,步行时间为(20-5)分,从而求出小明的步行速度;(2)用待定系数法求函数解析式;(3)由题意分析,爸爸在点(5,1000)处返回家中,再至爸爸到达学校共用时15分,行驶2500+1000=3500米,所以可以求出此时爸爸的速度为3500700153=米/分,然后求出爸爸返回家中时间为70030100037÷=分,所以爸爸于开始出发后的3065577+=分到达家中,从而画出爸爸离家的距离()ym 与所用时间()min x 的关系的图像.【详解】 解:(1)有图可知:小明家与学校距离为2500米,小明步行路程为(2500-1000)米,步行时间为(20-5)分∴小明的步行速度为25001000100205-=-米/分 故答案为:2500;100 (2)设AB 的表达式为y kx b =+,将A 、B 分别代入AB 的表达式得到51000202500k b k b +=⎧⎨+=⎩,解得100500k b =⎧⎨=⎩. ∴表达式100500y x =+.(3)由题意,爸爸在点(5,1000)处返回家中,∵最后两人同时达到学校所以爸爸从开始返回家中至到达学校共用时15分,行驶2500+1000=3500米,所以此时爸爸的速度为3500700153=米/分,爸爸返回家中时间为70030100037÷=分, 所以爸爸于开始出发后的3065577+=分到达家中 即函数图像过点(657,0)(20,2500) 如图:【点睛】本题考查一次函数的实际应用,理清图中每个关键点的实际含义,利用数形结合思想解题是本题的解题关键.28.24m 2.【解析】【分析】连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形, 根据△ABC 的面积减去△ACD 的面积就是所求的面积.【详解】解:连接AC∵AD DC ⊥∴90ADC ∠=︒在Rt ADC ∆中,根据勾股定理2222435(m)AC AD CD =+=+=在ABC ∆中,∵22222251213AC BC AB +=+==ABC ∆是直角三角形∴()25123424m 22ABC AC A CD D B S S S ∆∆⨯⨯=-=-=四边形.【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.29.(1)35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【解析】【分析】(1)根据等腰三角形性质求出∠ACE=∠AEC ,∠BCD=∠BDC ,得∠BCE=∠ACB-∠ACE =110°-75°=35°;再根据∠DCE=∠BCD-∠BCE 可得;(2)解题方法如(1),求∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()1807018022A B --∠-∠=,∠BCE=∠ACB-∠ACE ,所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A ). 【详解】因为BD BC =,AE AC =所以∠ACE=∠AEC=180180307522A -∠-== ; ∠BCD=∠BDC=180180407022B -∠-==所以∠BCE=∠ACB-∠ACE=110°-75°=35°所以∠DCE=∠BCD-∠BCE=70°-35°=35°;(2)DCE ∠的度数不会随着A ∠度数的变化而变化,理由:因为在ABC ∆中,110ACB ∠=,所以18011070;B A A ∠=--∠=-∠因为BD BC =,AE AC =所以∠ACE=∠AEC=180∠2A ;∠BCD=∠BDC=()18070180110222A B A --∠-∠+∠== 所以∠BCE=∠ACB-∠ACE=110°-180∠2A所以∠DCE=∠BCD-∠BCE=1102A +∠-(110°-180∠2A )=35° 故DCE ∠的度数不会随着A ∠度数的变化而变化,是35°.【点睛】考核知识点:等腰三角形.理解等腰三角形边角关系是关键.30.(1)36y x =-;(2)6.【解析】【分析】(1)将P 点和Q 点分别代入,直接利用待定系数法即可求得一次函数解析式;(2)先分别求得A 、B 的坐标,由坐标即可求得AO 和BO 的长度,继而求得ABO ∆的面积.【详解】解:(1)分别将()3,3P ,()1,3Q -代入y kx b =+得333k b k b =+⎧⎨-=+⎩,解得33k b =⎧⎨=-⎩, ∴一次函数的表达式为:36y x =-;(2)当y=0时,036x =-,解得2x =,故(2,0)A ,OA=2,当x=0时,066y =-=-,故(0,6)B -,OB=6,∴ABO ∆的面积为:1126 6.22OA OB ⋅=⨯⨯= 【点睛】本题考查待定系数法求一次函数解析式,熟知待定系数法求一次函数解析式一般步骤是解决此题的关键.31.(1)20°;(2)10.【解析】【分析】(1)根据三角形内角和定理求出∠BAC ,根据线段垂直平分线的性质得到DA =DB ,FA =FC ,得到∠DAB =∠ABC =30︒,∠FAC =∠ACB =50︒,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【详解】(1)∠BAC =180︒﹣∠ABC ﹣∠ACB =180︒﹣30︒﹣50︒=100︒,∵DE 是AB 的垂直平分线,∴DA =DB ,∴∠DAB =∠ABC =30︒,∵FG 是AC 的垂直平分线,∴FA =FC ,∴∠FAC =∠ACB =50︒,∴∠DAF =∠BAC ﹣(∠DAB +∠FAC )=20︒;(2)∵△DAF的周长为10,∴AD+DF+FC=10,∴BC=BD+DF+FC=AD+DF+FC=10.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.。
苏科版江苏省苏州市八年级(上)期末数学试卷
苏科版江苏省苏州市八年级(上)期末数学试卷 一、选择题 1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .2 2.已知实数,a b 满足2|2|(4)0a b -+-=,则以,a b 的值为两边的等腰三角形的周长是( )A .10B .8或10C .8D .以上都不对 3.将直角三角形的三条边的长度都扩大同样的倍数后得到的三角形( ) A .仍是直角三角形B .一定是锐角三角形C .可能是钝角三角形D .一定是钝角三角形 4.下列长度的三条线段能组成直角三角形的是( ) A .3,4,4 B .3,4,5 C .3,4,6 D .3,4,85.估计11的值应在( ) A .2和3之间 B .3和4之间 C .4和5之间 D .5和6之间 6.计算3329a b a b a b a-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89ab 7.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1) 8.下列等式从左到右的变形,属于因式分解的是( ) A .()a x y ax ay -=-B .()()311x x x x x -=+-C .()()21343x x x x ++=++D .()22121x x x x ++=++ 9.若+1x 有意义,则x 的取值范围是( ).A .x >﹣1B .x ≥0C .x ≥﹣1D .任意实数10.甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A .10:35B .10:40C .10:45D .10:50 11.4 的算术平方根是( )A .16B .2C .-2D .2± 12.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0) 13.若3n +3n +3n =19,则n =( ) A .﹣3B .﹣2C .﹣1D .0 14.到ABC ∆的三顶点距离相等的点是ABC ∆的是( ) A .三条中线的交点B .三条角平分线的交点C .三条高线的交点D .三条边的垂直平分线的交点 15.将直线y =12x ﹣1向右平移3个单位,所得直线是( ) A .y =12x +2 B .y =12x ﹣4 C .y =12x ﹣52 D .y =12x +12二、填空题16.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____.17.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 18.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 19.在平面直角坐标系中,(2,3)A -、(4,4)B ,点P 是x 轴上一点,且PA PB =,则点P 的坐标是__________.20.在一次函数(1)5y k x =-+中,y 随x 的增大而增大,则k 的取值范围__________.21.若等腰三角形的顶角为100︒,则这个等腰三角形的底角的度数__________.22.如图,已知直线l 1:y=kx+4交x 轴、y 轴分别于点A (4,0)、点B (0,4),点C 为x 轴负半轴上一点,过点C 的直线l 2:12y x n =+经过AB 的中点P ,点Q (t ,0)是x 轴上一动点,过点Q 作QM ⊥x 轴,分别交l 1、l 2于点M 、N ,当MN=2MQ 时,t 的值为_____.23.化简 2(0,0)3b a b a>≥结果是_______ . 24.如图,等边△ABC 的周长是18,D 是AC 边上的中点,点E 在BC 边的延长线上.如果DE =DB ,那么CE 的长是_____.25.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.三、解答题26.直角三角形ABC 中,90ABC ∠=︒,点D 为AC 的中点,点E 为CB 延长线上一点,且BE CD =,连接DE .(1)如图1,求证2C E ∠=∠(2)如图2,若6AB =、5BE =,ABC ∆的角平分线CG 交BD 于点F ,求BCF ∆的面积.27.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t值为_______.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.28.分别画出满足下列条件的点:(尺规作图,请保留作图痕迹,不写作法.作图痕迹请加粗加黑!)(1)在边BC上找一点P,使P到AB和AC的距离相等;=.(2)在射线AP上找一点Q,使QA QC29.求下列各式中的x:x-=;(1)()2116x+=.(2)32130.如图,已知直线l1:y1=x+b经过点A(﹣5,0),交y轴于点B,直线l2:y2=﹣2x﹣4与直线l1:y1=x+b交于点C,交y轴于点D.(1)求b的值;(2)求△BCD的面积;(3)当0≤y2<y1时,则x的取值范围是.(直接写出结果)31.小明从家出发沿一条笔直的公路骑自行车前往图书馆看书,他与图书馆之间的距离y (km)与出发时间t(h)之间的函数关系如图1中线段AB所示,在小明出发的同时,小明的妈妈从图书馆借书结束,沿同一条公路骑电动车匀速回家,两人之间的距离s(km)与出发时间t(h)之间的函数关系式如图2中折线段CD﹣DE﹣EF所示.(1)小明骑自行车的速度为km/h、妈妈骑电动车的速度为km/h;(2)解释图中点E的实际意义,并求出点E的坐标;(3)求当t为多少时,两车之间的距离为18km.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.A解析:A【解析】【分析】先根据非负数的性质求出a 和b 的值,然后分两种情况求解即可.【详解】∵2|2|(4)0a b -+-=,∴a-2=0,b-4=0,∴a=2,b=4,当a 为腰时,2+2=4,不合题意,舍去;当b 为腰时,2+4>4,符合题意,∴周长=4+4+2=10.故选A.【点睛】此题主要考查了等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键. 3.A解析:A【解析】【分析】由于三角形是直角三角形,所以三边满足勾股定理,当各边扩大或者缩小k 倍时,再利用勾股定理的逆定理判断三角形的形状.【详解】设直角三角形的直角边分别为a 、b ,斜边为c .则满足a 2+b 2=c 2.若各边都扩大k 倍(k >0),则三边分别为ak 、bk 、ck(ak )2+(bk )2=k 2(a 2+b 2)=(ck )2∴三角形仍为直角三角形.故选:A .【点睛】本题主要考查了勾股定理和勾股定理的逆定理.勾股定理:直角三角形的两直角边的平方和等于斜边的平方;勾股定理的逆定理:若三角形两边的平方和等于第三边的平方,则该三角形是直角三角形.4.B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B 、∵2223+4=5,∴三条线段能组成直角三角形,正确;C 、∵2223+46≠,∴三条线段不能组成直角三角形,错误;D 、∵2223+48≠,∴∴三条线段不能组成直角三角形,错误;故选:B .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.5.B解析:B【解析】【分析】直接利用32=9,42=16的取值范围.【详解】∵32=9,42=16,在3和4之间.故选:B .【点睛】本题考查了估算无理数的大小,正确得出接近无理数的有理数是解题的关键.6.A解析:A【解析】【分析】23a b a a b a ⨯⨯即可求解.【详解】解:∵a >0,b >0,23a b a a b a ⨯⨯=故选:A .本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.7.C解析:C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.8.B解析:B【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A、不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、不是因式分解,故本选项不符合题意;D、不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.9.C解析:C【解析】【分析】根据二次根式的意义可得出x+1≥0,即可得到结果.【详解】解:由题意得:x +1≥0,解得:x ≥﹣1,故选:C .【点睛】本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.10.B解析:B【解析】【分析】根据图象可知走前一半路程用了1小时,由此可得走前一半路程的速度为40km/h ,从而可得走后一半路程的速度为60km/h ,根据时间=路程÷速度即可求得答案.【详解】由图象知走前一半路程用的时间为1小时,所以走前一半路程时的速度为40km/h ,因为匀速行驶了一半的路程后将速度提高了20km/h ,所以以后的速度为20+40=60km/h ,时间为4060×60=40分钟, 故该车到达乙地的时间是当天上午10:40,故选B .【点睛】 本题考查了函数的图象,读懂图象,从中找到必要的信息是解题的关键.11.B解析:B【解析】【分析】根据算术平方根的定义直接求解即可.【详解】解:42=,故选B.【点睛】本题考查了算术平方根的定义,正确把握定义是解题关键.12.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+,此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.13.A解析:A【解析】【分析】直接利用负整数指数幂的性质结合同底数幂的乘法运算法则将原式变形得出答案.【详解】 解:13339n n n ++=, 1233n +-∴=,则12n +=-,解得:3n =-.故选:A .【点睛】此题主要考查了负整数指数幂的性质以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.14.D解析:D【解析】【分析】根据垂直平分线的性质进行判断即可;【详解】∵到△ABC 的三个顶点的距离相等,∴这个点在这个三角形三条边的垂直平分线上,即这点是三条垂直平分线的交点.故答案选D .【点睛】本题主要考查了垂直平分线的性质,准确理解性质是解题的关键.15.C解析:C【解析】【分析】直接根据“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=12x﹣1向右平移3个单位,所得直线的表达式是y=12(x﹣3)﹣1,即y=12x﹣52.故选:C.【点睛】此题主要考查一次函数的平移,熟练掌握平移规律,即可解题.二、填空题16.【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】本题考查的是正比例函数的定义,一般解析:【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】本题考查的是正比例函数的定义,一般地形如y kx(k是常数,k≠0)的函数叫做正比例函数.17..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.解析:x 2≠.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.18.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.(,0)【解析】【分析】画图,设点的坐标是(x,0),因为PA=OB ,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB 根据勾解析:(1912,0)【解析】【分析】画图,设点P的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点P的坐标是(x,0),因为PA=OB根据勾股定理可得:AC2+PC2=BD2+PD2所以32+(x+2)2=42+(4-x)2解得1912 x所以点P的坐标是(1912,0)故答案为:(1912,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键. 20.【解析】【分析】根据一次函数的性质,即可求出k的取值范围.【详解】解:∵一次函数中,随的增大而增大,∴,∴;故答案为:.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次解析:1k >【解析】【分析】根据一次函数的性质,即可求出k 的取值范围.【详解】解:∵一次函数(1)5y k x =-+中,y 随x 的增大而增大,∴10k ->,∴1k >;故答案为:1k >.【点睛】本题考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质进行解题.21.40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为∴这个等腰三角形的底角为(180°-100°)=40°故答案为:40°.【点睛解析:40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为100︒ ∴这个等腰三角形的底角为12(180°-100°)=40° 故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形的内角和,掌握等边对等角和三角形的内角和定理是解决此题的关键. 22.10或【解析】【分析】先求出的值,确定的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;解析:10或227 【解析】【分析】先求出k n ,的值,确定12l l ,的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;【详解】解:把()40A ,代入到4y kx =+中得:440k +=,解得:1k =-, ∴1l 的关系式为:4y x =-+,∵P 为AB 的中点,()40A ,,()0,4B ∴由中点坐标公式得:()2,2P ,把()2,2P 代入到12y x n =+中得:1222n ⨯+=,解得:1n =, ∴2l 的关系式为:112y x =+, ∵QM x ⊥轴,分别交直线1l ,2l 于点M N 、,()0Q t ,, ∴(),4M t t -+,1,12N t t ⎛⎫+ ⎪⎝⎭,∴()1341322MN t t t ⎛⎫=-+-+=- ⎪⎝⎭,44MQ t t =-+=-, ∵2MN MQ =, ∴33242t t -=-, 分情况讨论得:①当4t ≥时,去绝对值得:()33=242t t --, 解得:10t =;②当24t ≤<时,去绝对值得:()33=242t t --, 解得:227t =; ③当2t <时,去绝对值得:()33=242t t --, 解得:102t =>,故舍去;综上所述:10t =或227t =; 故答案为:10或227. 【点睛】本题属于一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,两点间的距离公式等知识点,能够表示出线段的长度表达式,合理的使用分类讨论思想是解决本题的关键,有一定的难度.23.【解析】【分析】首先将被开方数的分子和分母同时乘以3a ,然后再依据二次根式的性质化简即可.【详解】解:原式=,故答案为:.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知【解析】【分析】首先将被开方数的分子和分母同时乘以3a ,然后再依据二次根式的性质化简即可.【详解】解:原式=故答案为:3a. 【点睛】 本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.24.3【解析】【分析】由△ABC 为等边三角形,D 为AC 边上的中点可得∠DBE=30°,由DE=DB 得∠E =30°,再证出∠CDE=∠E,得出CD=CE=AC=3即可.∵△ABC为等边解析:3【解析】【分析】由△ABC为等边三角形,D为AC边上的中点可得∠DBE=30°,由DE=DB得∠E =30°,再证出∠CDE=∠E,得出CD=CE=12AC=3即可.【详解】∵△ABC为等边三角形,D为AC边上的中点,∴BD为∠ABC的平分线,且∠ABC=60°,∴∠DBE=30°,又DE=DB,∴∠E=∠DBE=30°,∵等边△ABC的周长为18,∴AC=6,且∠ACB=60°,∴∠CDE=∠ACB-∠E=30°,∴∠CDE=∠E,∴CD=CE=12AC=3.故答案为:3.【点睛】此题考查了等边三角形的性质、等腰三角形的判定以及三角形的外角性质等知识;熟练掌握等边三角形的性质,证明CD=CE是解题的关键.25..【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解解析:12.【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.解:∵DE 垂直平分AB 交BC 于点E ,∴EA =EB ,∴∠EAB =∠B =22.5°,∴∠AEC =∠EAB +∠B =45°,∵∠C =90°,∴△ACE 为等腰直角三角形,∴CA =CE =1,∴三角形ACE 的面积=12×1×1=12. 故答案为:12. 【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键. 三、解答题26.(1)见解析(2)9613 【解析】【分析】(1)连接BD ,依题意得BD=CD ,所以∠C=∠CBD ,可证明∠CBD=2E ∠,进而可得结论; (2)过点F 作FM BC ⊥,FN AC ⊥,根据已知求出CD=5,AC=10,由勾股定理求出BC=8,求出S △BCD =12S △ABC ,再根据BCD BCF CDF S S S ∆∆∆=+,即111222CD FN BC FM =⋅+⋅可求出FM ,从而可得结论. 【详解】(1)连接BD点D 为AC 中点,且90ABC ∠=︒,12BD AC CD AD ∴===, CD BE =,BE BD ∴=,BDE E ∴∠=∠,又BD CD ∴=,C DBC ∴∠=∠,2C DBC BDE E E ∴∠=∠=∠+∠=∠,(2)过点F 作FM BC ⊥,FN AC⊥.CG 平分ABC ∠,FM FN ∴=,5BE =,5,10CD AD BE AC ∴====,又6AB =∴在Rt ABC ∆中,222AB BC AC +=,8BC ∴=BD 为ABC ∆中线,11111681222222BCD ABC S S AB BC ∆∆∴==⨯⨯=⨯⨯⨯=, 又BCD BCF CDF S S S ∆∆∆=+,111222CD FN BC FM ∴=⋅+⋅, 11581222FM FM ∴⨯⨯+⨯⨯=, 2413FM ∴=, 1124968221313BCF S BC FM ∆∴=⋅=⨯⨯=, 【点睛】 此题考查了直角三角形的性质,角平分线的性质以及三角形中线的性质,熟练掌握这些性质是解题的关键.27.(1)50;80;3(2)()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩(3)货车出发3小时或5小时后两车相距90千米【解析】【分析】(1)观察图象即可解决问题;(2)分别求出得A 、B 、C 的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.【详解】解:(1)车的速度是50千米/小时;轿车的速度是:()4007280÷-=千米/小时;240803t =÷=.故答案为:50;80;3;(2)由题意可知:()3,240A ,()4,240B ,()7,0C ,设直线OA 的解析式为()110y k x k =≠,∴()8003y x x =≤≤,当34x ≤≤时,240y =,设直线BC 的解析式为()20y k x b k =+≠,把()4,240B ,()7,0C 代入得:22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, ∴80560y =-+,∴()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩; (3)设货车出发x 小时后两车相距90千米,根据题意得:()5080140090x x +-=-或()5080240090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米.【点睛】本题主要考查根据图象的信息来解答问题,关键在于函数的解析式的解答,这是这类题的一个难度,必须分段研究.28.(1)见解析;(2)见解析.【解析】【分析】(1)根据角平分线的性质可知,角平分线上的点到角两边的距离相等,故做角A 的角平分线交BC 于点P ,P 点即为所求.(2)根据垂直平分线的性质,垂直平分线上的点到线段两端点的距离相等,故作出线段AC 的垂直平分线,交射线AP 与点Q ,Q 点即为所求.【详解】1.以点A 为圆心,以任意长为半径画弧,两弧交角BAC 两边于点M ,N.2.分别以点M ,N 为圆心,以大于12MN 的长度为半径画弧,两弧交于点D. 3.作射线AD ,交BC 与点P ,如图所示,点P 即为所求.(2)作法:1.以线段的AC 两个端点为圆心,以大于AC 一半长度为半径分别在线段两边画相交弧; 2得出相交弧的两个交点F 、E ;3用直尺连接这两个交点,所画得的直线与射线AP 交与点Q ,如图所示,点Q 即为所求.【点睛】本题考查了角平分线的性质和垂直平分线的性质,根据角平分线和垂直平分线的作法即可解决问题,能够熟练掌握二者的作法是解决本题的关键.29.(1)5x =或-3;(2)1x =-【解析】【分析】(1)根据平方根的定义求解;(2)先移项,再根据立方根的定义求解.【详解】解:(1)(x-1)2=16,x-1=±4,x=5或x=-3;(2)321x +=,x=-1.【点睛】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型.30.(1)b=5;(2)272;(3)﹣3<x≤﹣2【解析】【分析】(1)把点A的坐标代入直线l1:y1=x+b,列出方程并解答;(2)利用两直线相交求得点C的坐标,由直线l2、l1求得点B、D的坐标,根据三角形的面积公式解答;(3)结合图形直接得到答案.【详解】(1)把A(﹣5,0)代入y1=x+b,得﹣5+b=0解得b=5;(2)由(1)知,直线l1:y1=x+5,且B(0,5).根题意知,524 y xy x=+⎧⎨=--⎩.解得32xy=-⎧⎨=⎩,即C(﹣3,2).又由y2=﹣2x﹣4知,D(0,﹣4).所以BD=9.所以S△BCD=12BD•|x C|=1932⨯⨯=272;(3)由(2)知,C(﹣3,2).当y=0时,﹣2x﹣4=0,此时x=﹣2.所以由图象知,当0≤y2<y1时,则x的取值范围是﹣3<x≤﹣2.故答案是:﹣3<x≤﹣2.【点睛】此题主要考查一次函数性质的综合应用,熟练掌握,即可解题.31.(1)16,20;(2)点E表示妈妈到了甲地,此时小明没到,E(95,1445);(3)12或3 2【解析】【分析】(1)由点A,点B,点D表示的实际意义,可求解;(2)理解点E表示的实际意义,则点E的横坐标为小明从家到图书馆的时间,点E纵坐标为小明这个时间段走的路程,即可求解;(3)根据题意列方程即可得到结论.【详解】解:(1)由题意可得:小明速度=362.25=16(km/h)设妈妈速度为xkm/h由题意得:1×(16+x)=36,∴x=20,答:小明的速度为16km/h,妈妈的速度为20km/h,故答案为:16,20;(2)由图象可得:点E表示妈妈到了家,此时小明没到,∴点E的横坐标为:369 205,点E的纵坐标为:95×16=1445∴点E(95,1445);(3)根据题意得,(16+20)t=(36﹣18)或(16+20)t=36+18,解得:t=12或t=32,答:当t为12或32时,两车之间的距离为18km.【点睛】本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型.。
苏科版苏州市八年级期上册末数学试卷
苏科版苏州市八年级期上册末数学试卷 一、选择题1.低碳环保理念深入人心,共享单车已经成为出行新方式下列共享单车图标中,是轴对称图形的是( )A .B .C .D .2.变量x 、y 有如下的关系,其中y 是x 的函数的是( )A .28y x =B .||y x =C .1y x =D .412x y = 3.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是( )A .B .C .D .4.下列实数中,无理数是( )A .227B .3πC .4-D .3275.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是( )A .AB DC = B .BE CE = C .AC DB =D .A D ∠=∠6.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A .62︒B .56︒C .34︒D .124︒7.下列实数中,无理数是( )A .0B .﹣4C .5D .178.下列交通标识中,是轴对称图形的是( )A .B .C .D . 9.64的立方根是( ) A .4B .±4C .8D .±8 10.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b的图象大致是( ) A . B . C . D .11.给出下列实数:227、25-、39、 1.44、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),其中无理数有( ) A .2个 B .3个 C .4个 D .5个12.一辆货车从甲地匀速驶往乙地用了2.7h ,到达后用了0.5h 卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y (km )关于时间x (h )的函数图象如图所示,则a 等于( )A .4.7B .5.0C .5.4D .5.8 13.一次函数y =﹣2x+3的图象不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 14.下列各数中,无理数的是( )A .0B .1.01001C .πD 4 15.下列各式成立的是( )A 93=±B 235=C ()233-=±D .(233-=二、填空题16.点P (﹣5,12)到原点的距离是_____.17.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.18.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 19.如图,在平面直角坐标系中,函数y mx n =+的图像与y kx b =+的图像交于点(1,2)P -,则方程组,y mx n y kx b=+⎧⎨=+⎩的解为________.20.比较大小:10_____3.(填“>”、“=”或“<”)21.若等腰三角形的顶角为100︒,则这个等腰三角形的底角的度数__________.22.如图,点E ,F 在AC 上,AD=BC ,DF=BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是________(添加一个即可)23.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________24.比较大小:5-6-25.若分式2223x x -+的值为零,则x 的值等于___. 三、解答题26.解方程:21142x x x x --=-+ 27.如图,直线l 与x 轴、y 轴分别交于点(3,0)A 、点(0,2)B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,90BAC ∠=,点(1,)P a 为坐标系中的一个动点.(1)请直接写出直线l 的表达式;(2)求出ABC ∆的面积;(3)当ABC ∆与ABP ∆面积相等时,求实数a 的值.28.如图,在平面直角坐标系中,点B 的坐标是()0,2,动点A 从原点O 出发,沿着x 轴正方向移动,以AB 为斜边在第一象限内作等腰直角三角形ABP ∆,设动点A 的坐标为()(),00t t ≥.(1)当2t =时,点P 的坐标是 ;当1t =时,点P 的坐标是 ;(2)求出点P 的坐标(用含t 的代数式表示);(3)已知点C 的坐标为()1,1,连接PC 、BC ,过点P 作PQ y ⊥轴于点Q ,求当t 为何值时,当PQB ∆与PCB ∆全等.29.已知2y +与x 成正比,当x =1时,y =﹣6.(1)求y 与x 之间的函数关系式;(2)若点(a ,2)在这个函数图象上,求a 的值.30.甲、乙两车从A 城出发沿一条笔直公路匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示. ()1A ,B 两城相距______千米,乙车比甲车早到______小时;()2甲车出发多长时间与乙车相遇?()3若两车相距不超过20千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?31.如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.求证:AB=AC.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.2.C解析:C【解析】【分析】根据函数的定义:对于x 的每一个取值,y 都有唯一确定的值与之对应即可确定有几个函数.【详解】A. 28y x =,y 不是x 的函数,故错误;B. ||y x =,y 不是x 的函数,故错误;C. 1y x =,y 是x 的函数,故正确; D. 412x y =,y 不是x 的函数,故错误; 故选C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.3.A解析:A【解析】【分析】由题意知x 表示时间,y 表示壶底到水面的高度,然后根据x 、y 的初始位置及函数图象的性质来判断.【详解】由题意知:开始时,壶内盛一定量的水,所以y 的初始位置应该大于0,可以排除B 选项,由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C 、D 选项, 故选A .【点睛】本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.4.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】 A.227是有理数,不符合题意; B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.5.C解析:C【解析】【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,根据定理逐个判断即可.【详解】A .AB =DC ,∠ABC =∠DCB ,BC =BC ,符合SAS ,即能推出△ABC ≌△DCB ,故本选项错误; B .∵BE =CE ,∴∠DBC =∠ACB .∵∠ABC =∠DCB ,BC =CB ,∠ACB =∠DBC ,符合ASA ,即能推出△ABC ≌△DCB ,故本选项错误;C .∠ABC =∠DCB ,AC =BD ,BC =BC ,不符合全等三角形的判定定理,即不能推出△ABC ≌△DCB ,故本选项正确;D .∠A =∠D ,∠ABC =∠DCB ,BC =BC ,符合AAS ,即能推出△ABC ≌△DCB ,故本选项错误.故选:C .【点睛】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解答此题的关键,注意:全等三角形的判定方法有SAS ,ASA ,AAS ,SSS .6.A解析:A【解析】【分析】由AB=AC ,利用等边对等角得到一对角相等,再由BF=CD ,BD=CE ,利用SAS 得到三角形FBD 与三角形DEC 全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF 与∠A 之间的等量关系,进而求解.【详解】解:∵AB=AC ,∴∠B=∠C ,在△BFD 和△EDC 中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩=== ∴△BFD ≌△EDC (SAS ),∴∠BFD=∠EDC ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A ︒-∠=90°+12∠A , 则∠EDF=180°-(∠FDB+∠EDC )=90°-12∠A=62°. 故选:A .【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键. 7.C解析:C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【详解】解:0,﹣4是整数,属于有理数;17 故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 8.B解析:B【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B 是轴对称图形,故选B9.A解析:A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.10.A解析:A【解析】试题分析:根据一次函数的性质得到k <0,而kb <0,则b >0,所以一次函数y=kx+b 的图象经过第二、四象限,与y 轴的交点在x 轴是方.解:∵一次函数y=kx+b ,y 随着x 的增大而减小,∴k <0,∴一次函数y=kx+b 的图象经过第二、四象限;∵kb <0,∴b >0,∴图象与y 轴的交点在x 轴上方,∴一次函数y=kx+b 的图象经过第一、二、四象限.故选A .考点:一次函数的图象.11.B解析:B【解析】【分析】根据无理数是无限不循环小数,可得答案.【详解】解:−5,实数:227、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个02π、-0.1010010001…(每相邻两个1之间依次多一个0)共3个.故选:B .【点睛】 本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.12.B解析:B【解析】【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t ,进而求得a 的值.【详解】解:设甲乙两地的路程为s ,从甲地到乙地的速度为v ,从乙地到甲地的时间为t , 则 2.71.5v s vt s =⎧⎨=⎩解得,t =1.8∴a =3.2+1.8=5(小时),故选B .【点睛】本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.13.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.14.C解析:C【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】解:A.0是整数,属于有理数;B.1.01001是有限小数,属于有理数;C.π是无理数;2=,是整数,属于有理数.故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.15.D解析:D【解析】【分析】根据算术平方根的定义对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对C、D进行判断.【详解】=,所以A选项错误;解:A3B B选项错误;=,所以C选项错误;C3D、(23=,所以D选项正确.故选D.【点睛】此题考查了算术平方根和二次根式的性质以及二次根式的加减,熟练掌握二次根式的性质是解题的关键.二、填空题16.13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离==13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,解析:13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离=13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.17.(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,解析:(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.18..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围..解析:x2【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.19.【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】∵函数的图像与的图像交于点,则关于x,y的二元一次方程组的解是,故答案为:.【点睛】本题考查了解析:12x y =-⎧⎨=⎩【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】∵函数y mx n =+的图像与y kx b =+的图像交于点(1,2)P -,则关于x ,y 的二元一次方程组,y mx n y kx b =+⎧⎨=+⎩的解是12x y =-⎧⎨=⎩, 故答案为:12x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.20.>.【解析】【分析】先求出3=,再比较即可.【详解】∵32=9<10,∴>3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.解析:>.【解析】【分析】先求出【详解】∵32=9<10,3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.21.40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.解:∵等腰三角形的顶角为∴这个等腰三角形的底角为(180°-100°)=40°故答案为:40°.【点睛解析:40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为100∴这个等腰三角形的底角为12(180°-100°)=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形的内角和,掌握等边对等角和三角形的内角和定理是解决此题的关键.22.∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, D解析:∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, DF=BE,∴只要添加∠D=∠B,根据“SAS”即可证明△ADF≌△CBE.故答案为∠D=∠B.【点睛】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS).【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比例函数的定义,形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.24.>【解析】【分析】先把两个数分别平方,再根据两个负数的比较方法比较即可.【详解】解:∵,∵5<6∴.【点睛】本题考查实数的大小比较,解答本题的关键是熟练掌握两个负数的比较方法:两个解析:>【解析】【分析】先把两个数分别平方,再根据两个负数的比较方法比较即可.【详解】解:∵2(5=,2(6=∵5<6 ∴>【点睛】本题考查实数的大小比较,解答本题的关键是熟练掌握两个负数的比较方法:两个负数,绝对值大的反而小.25.【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】解:∵分式的值为零,且∴x ﹣2=0,解得:x =2.故答案为:2.【点睛】本题考查了分式值为0的解析:【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】 解:∵分式2223x x -+的值为零,且2230x +≥ ∴x ﹣2=0,解得:x =2.故答案为:2.【点睛】 本题考查了分式值为0的条件,灵活利用分式值为0的条件是解题的关键.三、解答题26.3x =【解析】【分析】将分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21142x x x x --=-+,方程两边同时乘以(2)(2)x x +-,得2(1)(2)4x x x x ---=-,解这个方程,得3x =.验证:当3x =时,(2)(2)0x x +-≠∴原方程的解为:3x =.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.27.(1)223y x =-+;(2)132ABC S =;(3)当ABC ∆与ABP ∆面积相等时,实数a 的值为173或3-. 【解析】【分析】 (1)设y=kx+b ,把(3,0)A 、点(0,2)B 代入,用待定系数法求解即可;(2)先根据勾股定理求出AB 的长,然后根据三角形的面积公式求解即可;(3)分点P 在第一象限和点P 在第四象限两种情况求解即可.【详解】解:(1)设y=kx+b ,把(3,0)A 、点(0,2)B 代入,得302k b b +=⎧⎨=⎩, 解得223b k =⎧⎪⎨=-⎪⎩, ∴223y x =-+ ; (2)∵(3,0)A 、(0,2)B , ∴OA=3,OB=2,在Rt ABC ∆中,依勾股定理得:222223213AB OA OB =+=+=,∵ABC ∆为等腰直角三角形,∴21322ABC AB S ==; (3)连接,,BP PO PA ,则:①若点P 在第一象限时,如图:∵1=23ABO OA SOB ⋅=,2213APO O S A a a ⋅==,1=121BOP OB S ⨯=, ∴132ABP BOP APO ABOS S S S =+-=, 即3131322a +-=,解得173a =; ②若点P 在第四象限时,如图:∵3312ABO APO BOP SS a S ==-=,,, ∴132ABP ABO APO BOP S S S S =+-=, 即3133122a --=,解得3a =-, ∴当ABC ∆与ABP ∆面积相等时,实数a 的值为173或3-. 【点睛】 本题考查了待定系数法求一次函数解析式,勾股定理,三角形的面积公式,以及分类讨论的数学思想,分类讨论是解答本题的关键.28.(1) (2,2);(32,32); (2) P(2t 2+,2t 2+);(3) 22+2. 【解析】【分析】(1) 当2t =时,三角形AOB 为等腰直角三角形, 所以四边形OAPB 为正方形,直接写出结果;当1t =时,作PN ⊥y 轴于N ,作PM ⊥x 轴与M ,求出△BNP ≌△AMP ,即可得到ON+OM=OB-BN+OA+AM=OB+OA ,即可求出;(2) 作PE ⊥y 轴于E ,PF ⊥x 轴于F ,求出△BEP ≌△AFP ,即可得到OE+OF=OB+BE+OA+AF=OB+OA,即可求出;(3) 根据已知求出BC值,根据上问得到OQ=2t2+,△PQB≌△PCB,BQ=BC,因为OQ=BQ+OB,即可求出t.【详解】(1) 当2t=时,三角形AOB为等腰直角三角形如图所以四边形OAPB为正方形,所以P(2,2)当1t=时,如图作PN⊥y轴于N,作PM⊥x轴与M∴四边形OMPN为矩形∵∠BPN+∠NPA=∠APM+∠NPA=90°∴∠BPN =∠APM∵∠BNP=∠AMP∴△BNP≌△AMP∴PN=PM BN=AM∴四边形OMPN为正方形,OM=ON=PN=PM∴ON+OM=OB-BN+OA+AM=OB+OA=2+1=3∴OM=ON=PN=PM=32∴ P(32,32)(2) 如图作PE ⊥y 轴于E ,PF ⊥x 轴于F ,则四边形OEPF 为矩形 ∵∠BPE+∠BPF=∠APF+∠BPF=90°∴ ∠BPE =∠APF∵∠BEP=∠AFP∴ △BEP ≌△AFP∴PE=PF BE=AF∴四边形OEPF 为正方形,OE=OF=PE=PF∴OE+OF=OB+BE+OA+AF=OB+OA=2+t∴ OE=OF=PE=PF=2t 2+ ∴ P(2t 2+,2t 2+); (3) 根据题意作PQ ⊥y 轴于Q ,作PG ⊥x 轴与G∵ B(0,2) C(1,1)∴2由上问可知P(2t 2+,2t 2+),OQ=2t 2+ ∵△PQB ≌△PCB ∴2∴2+2=2t 2+ 解得 t=22+2.【点睛】此题主要考查了正方形的性质、全等三角形、直角坐标系等概念,关键是作出正方形求出相应的全等三角形.29.(1)y =-4x-2;(2)a =-1.【解析】【分析】(1)设y+2=kx ,将x=1、y=-6代入y+2=kx 可得k 的值;(2)将点(a ,2)的坐标代入函数的解析式求a 的值.【详解】解:(1)∵y+2与x 成正比,∴设y+2=kx ,将x=1、y=-6代入y+2=kx 得-6+2=k×1,∴k=-4,∴y=-4x-2(2)∵点(a ,2)在函数y=-4x-2图象上,∴2=-4a-2,∴a=-1.【点睛】本题主要考查函数解析式的求法.如果事先知道函数的形式,可先设函数的解析式,再采用待定系数法求解.30.(1)300千米,1小时(2)2.5小时(3)1小时【解析】【分析】(1)根据函数图象可以直接得到A ,B 两城的距离,乙车将比甲车早到几小时;(2)由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,求得两函数图象的交点即可(3)再令两函数解析式的差小于或等于20,可求得t 可得出答案.【详解】(1)由图象可知A 、B 两城市之间的距离为300km , 甲比乙早到1小时,(2)设甲车离开A 城的距离y 与t 的关系式为y 甲=kt ,把(5,300)代入可求得k=60,∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt+n ,把(1,0)和(4,300)代入可得04300m n m n +=⎧⎨+=⎩, 解得:100100m n =⎧⎨=-⎩, ∴y 乙=100t-100,令y甲=y乙,可得:60t=100t-100,解得:t=2.5,即甲、乙两直线的交点横坐标为t=2.5,∴甲车出发2.5小时与乙车相遇(3)当y甲- y乙=20时60t-100t+100=20,t=2当y乙- y甲=20时100t-100-60t=20,t=3∴3-2=1(小时)∴两车都在行驶过程中可以通过无线电通话的时间有1小时【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,特别注意t是甲车所用的时间.31.证明见解析.【解析】【分析】欲证明AB=AC,只要证明∠ABC=∠ACB即可,根据“HL”证明Rt△BDE≌Rt△CDF,由全等三角形的性质可证∠EBD=∠FCD,再由等腰三角形的性质∠DBC=∠DCB,从而可证∠ABC=∠ACB.【详解】∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF(HL),∴∠EBD=∠FCD,∵BD=CD,∴∠DBC=∠DCB,∴∠DBC+∠EBD=∠DCB+∠FCD,即∠ABC=∠ACB,∴AB=AC.【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
苏科版苏州市八年级上学期期末数学试题
苏科版苏州市八年级上学期期末数学试题 一、选择题 1.估计11的值应在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是( )A .B .C .D .3.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4)4.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )A .22320m mn n -++=B .2220m mn n +-=C .22220m mn n -+=D .2230m mn n --= 6.在3π-,3127-,7,227-,中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个7.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD8.如图,将边长为1的正方形OABC 沿x 轴正方向连续翻转2020次,点A 依次落在点1A 、2A 、3A 、4A …2020A 的位置上,则点2020A 的坐标为( )A .2019,0()B .2019,1()C .2020,0()D .2020,1()9.在22、0.3•、227-、38中,无理数的个数有( ) A .1个B .2个C .3个D .4个 10.下列四组线段a 、b 、c ,能组成直角三角形的是( )A .4a =,5b =,6c =B .3a =,4b =,5c =C .2a =,3b =,4c =D .1a =,2b =,3c =11.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .1512.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,0 13.下列计算,正确的是( )A .a 2﹣a=aB .a 2•a 3=a 6C .a 9÷a 3=a 3D .(a 3)2=a 6 14.下列各数中,无理数是( )A .πB .C .D .15.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .二、填空题16.如图所示的棋盘放置在某个平面直角坐标系内,棋子A 的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C 的坐标是_____.17.如图,在平面直角坐标系中,函数y mx n =+的图像与y kx b =+的图像交于点(1,2)P -,则方程组,y mx n y kx b=+⎧⎨=+⎩的解为________.18.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.19.已知实数x 、y 满足|3|20x y ++-=,则代数式()2019x y +的值为______.20.如图,一艘轮船由海平面上的A 地出发向南偏西45º的方向行驶50海里到达B 地,再由B 地向北偏西15º的方向行驶50海里到达C 地,则A 、C 两地相距____海里.21.公元前3世纪,我国数学家赵爽曾用“弦图”证明了勾股定理.如图,“弦图”是由四个全等的直角三角形(两直角边长分别为a 、b 且a <b )拼成的边长为c 的大正方形,如果每个直角三角形的面积都是3,大正方形的边长是13,那么b -a =____.22.点(−1,3)关于x 轴对称的点的坐标为____.23.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.24.观察中国象棋的棋盘,以红“帅”(红方“5”的位置)为坐标原点建立平面直角坐标系后,发现红方“马”的位置可以用一个数对(2,4)来表示,则红“马”到达B 点后,B 点的位置可以用数对表示为__________.25.如图,一次函数y kx b =+与y mx n =+的图像交于点(2,1)P -,则由函数图像得不等式kx b mx n +≥+的解集为________.三、解答题26.如图,在平面直角坐标系xOy 中,已知正比例函数43y x =与一次函数7y x =-+的 图像交于点A .(1)求点A 的坐标;(2)在y 轴上确定点M ,使得△AOM 是等腰三角形,请直接写出点M 的坐标;(3)如图,设x 轴上一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交43y x =和7y x =-+的图像于点B 、C ,连接OC ,若BC =145OA ,求△ABC 的面积及点B 、点C 的坐标;(4)在(3)的条件下,设直线7y x =-+交x 轴于点D ,在直线BC 上确定点E ,使得△ADE 的周长最小,请直接写出点E 的坐标.27.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,ADE ∆与CFE ∆全等吗?试说明理由.28.如图,一次函数()40y kx k k =+≠的图像与x 轴交于点A ,与y 轴交于点B ,且经过点()2C m ,.(1)当92m =时; ①求一次函数的表达式;②BD 平分ABO ∠交x 轴于点D ,求点D 的坐标;(2)若△AOC 为等腰三角形,求k 的值;(3)若直线42y px p =-+也经过点C ,且24p ≤<,求k 的取值范围.29.解方程:(1)22(1)8x -= (2)214111x x x +-=-- 30.如图,一次函数1y x b =+的图像与x 轴y 轴分别交于点A 、点B ,函数1y x b =+,与243y x =-的图像交于第二象限的点C ,且点C 横坐标为3-. (1)求b 的值;(2)当120y y <<时,直接写出x 的取值范围;(3)在直线243y x =-上有一动点P ,过点P 作x 轴的平行线交直线1y x b =+于点Q ,当145PQ OC =时,求点P 的坐标.31.已知一次函数y=2x+b.(1)它的图象与两坐标轴所围成的图形的面积等于4,求b 的值;(2)它的图象经过一次函数y=-2x+1、y=x+4图象的交点,求b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用32=9,42=16得出11的取值范围.【详解】∵32=9,42=16,∴估计11在3和4之间.故选:B.【点睛】本题考查了估算无理数的大小,正确得出接近无理数的有理数是解题的关键.2.D解析:D【解析】【分析】易得所求的图形与看到的图形关于水平的一条直线成轴对称,找到相应图形即可.【详解】解:如下图,∴正确的图像是D;故选择:D.【点睛】解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形,也可根据所给图形的特征得到相应图形.3.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.4.C解析:C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.5.B解析:B【解析】【分析】作图,根据等腰三角形的性质和勾股定理可得2220m mn n+-=,整理即可求解【详解】解:如图,222m m n m,22222m n mn m,2220m mn n +-=.故选:B .【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.6.B解析:B【解析】【分析】根据无理数的定义判断即可.【详解】解:3π-1-3 ,227-可以化成分数,不是无理数. 故选 B【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.7.D解析:D【解析】A .添加∠A =∠D 可利用AAS 判定△ABC ≌△DCB ,故此选项不合题意;B .添加AB =DC 可利用SAS 定理判定△ABC ≌△DCB ,故此选项不合题意;C .添加∠ACB =∠DBC 可利用ASA 定理判定△ABC ≌△DCB ,故此选项不合题意;D .添加AC =BD 不能判定△ABC ≌△DCB ,故此选项符合题意.故选D .8.A解析:A【解析】【分析】根据题意分别求出1A 、2A 、3A 、4A …横坐标,再总结出规律即可得出.【详解】解:根据规律1A (0,1)、2A (2,1)、3A (3,0)、4A (3,0),5A (4,1)、6A (6,1)、7A (7,0)、8A (7,0) …每4个一个循环,可以判断2020A 在505次循环后与4A 一致,即与2019A 相等,坐标应该是(2019,0)故选 A【点睛】此题主要考查了通过图形观察规律的能力,并根据规律进行简单计算的能力.9.A解析:A【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.【详解】解:在实数2、•0.3、227-中,•0.3循环小数,是有理数;227-是分数,是有理数;=2,是整数,是有理数;所以无理数共1个.故选:A .【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.10.B解析:B【解析】【分析】根据勾股定理的逆定理,依次对各选项进行分析即可得答案.【详解】解:A.因为42+52≠62,所以不能围成直角三角形,此选项错误;B.因为32+42=52,所以能围成直角三角形,此选项正确;C. 因为22+32≠42,所以不能围成直角三角形,此选项错误;D. 因为12+2≠32,所以不能围成直角三角形,此选项错误;故选:B.【点睛】本题考查了勾股定理的逆定理. 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.能依据这一定理判断三角形是否为直角三角形是解决此题的关键.11.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE ;接下来,依据AE=CE 可将△ABE 的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE 是AC 的垂直平分线,∴AE=CE ,∴△ABE 的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC 的周长为24,ABE 的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 12.B解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.13.D解析:D【解析】【详解】A、a2-a,不能合并,故A错误;B、a2•a3=a5,故B错误;C、a9÷a3=a6,故C错误;D、(a3)2=a6,故D正确,故选D.14.A解析:A【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A. π是无理数;B. =2,是有理数;C. 是有理数;D. =2,是有理数.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.A解析:A【解析】【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题16.(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,解析:(2,1)【解析】【分析】先由点A、B坐标建立平面直角坐标系,进而可得点C坐标.【详解】解:由点A、B坐标可建立如图所示的平面直角坐标系,则棋子C的坐标为(2,1).故答案为:(2,1).【点睛】本题考查了坐标确定位置,根据点A、B的坐标确定平面直角坐标系是解题关键.17.【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】∵函数的图像与的图像交于点,则关于x,y的二元一次方程组的解是,故答案为:.【点睛】本题考查了解析:12x y =-⎧⎨=⎩【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】∵函数y mx n =+的图像与y kx b =+的图像交于点(1,2)P -,则关于x ,y 的二元一次方程组,y mx n y kx b =+⎧⎨=+⎩的解是12x y =-⎧⎨=⎩, 故答案为:12x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.18.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3,∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴5 ∵C (0,-1),∴OC=1,∴BC=3+1=4, ∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =. 故答案为:165. 【点睛】 此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD 的长.19.-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出的值即可.【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴=(-3+2)2019=(-1)2019=解析:-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出()2019x y +的值即可. 【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴()2019x y +=(-3+2)2019=(-1)2019=-1. 故答案为:-1.【点睛】本题考查的是非负数的性质,熟知算术平方根具有非负性是解答此题的关键.20.50【解析】【分析】由已知可得△ABC是等边三角形,从而不难求得AC的距离.【详解】解:∵点B在点A的南偏西45°方向上,点C在点B的北偏西15°方向上,∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC是等边三角形,从而不难求得AC的距离.【详解】解:∵点B在点A的南偏西45°方向上,点C在点B的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC是等边三角形是解题的关键.21.1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解解析:1【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知c ,则大正方形的面积为13,每个直角三角形的面积都是3,可以得出小正方形的面积,进而求出答案.【详解】解:根据题意,可知,∵c =,132ab =, ∴221()42b a ab c -+⨯=,213c =, ∴2()13431b a -=-⨯=,∴1b a -=±;∵a b <,即0b a ->,∴1b a -=;故答案为:1.【点睛】此题主要考查了勾股定理、完全平方公式、四边形和三角形面积的计算,利用数形结合的思想是解题的关键.22.(-1,-3).【解析】【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,解析:(-1,-3).【解析】【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x 轴对称的点的坐标为(-1,-3),故答案是:(-1,-3).【点睛】此题主要考查了关于x 轴的对称点的坐标,关键是掌握点的坐标变化规律.23.【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标解析:()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P的坐标为(-3,4).考点:象限内点的坐标特征.24.【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B点的位置.【详解】解:∵红方“马”的位置可以用一个数对来表示,则建立平面直角坐标系,如图:∴B点的位解析:(1,6)【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B点的位置.【详解】解:∵红方“马”的位置可以用一个数对(2,4)来表示,则建立平面直角坐标系,如图:∴B点的位置为(1,6).故答案为:(1,6).【点睛】本题考查了坐标确定位置,理解平面直角坐标系的定义,准确确定出点的位置是解题的关键.25.【解析】【分析】观察函数图象得到,当x2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,由此得到不等式kx+bmx+n的解集.【详解】∵当x2时,一次函数y=kx+b的解析:2x≥【解析】【分析】观察函数图象得到,当x≥2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,由此得到不等式kx+b≥mx+n的解集.【详解】∵当x≥2时,一次函数y=kx+b的图象都在一次函数y=mx+n的图象的上方,∴不等式kx+b≥mx+n的解集为x≥2.故答案是:x≥2.【点睛】考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题26.(1)(3,4);(2)点M为(0,5)、(0,﹣5)、(0,8)、(0,258);(3)点B(9,12)、C(9,﹣2);(4)点E坐标为(9,1).【解析】试题分析:(1)联立方程组,求解.(2)分类讨论在y轴上确定点OM= OA,OM=AM,总共有4种可能性.(3)设点B(a,43a),C(a,﹣a+7),利用BC=145OA,求a值.过点A作AQ⊥BC,求得△ABC的面积及点B、点C的坐标.(4)利用对称求最小值.试题解析:解:(1)联立得:437y xy x⎧=⎪⎨⎪=-+⎩,解得:34xy=⎧⎨=⎩,则点A的坐标为(3,4).(2)根据勾股定理得:OA5,如图1所示,分四种情况考虑:当OM1=OA=5时,M1(0,5);当OM2=OA=5时,M2(0,﹣5);当AM3=OA=5时,M3(0,8);当OM4=AM4时,M4(0,258),综上,点M为(0,5)、(0,﹣5)、(0,8)、(0,258);(3)设点B(a,43a),C(a,﹣a+7),∵BC=145OA=145×5=14,∴43a﹣(﹣a+7)=14,解得:a=9,过点A作AQ⊥BC,如图2所示,∴S△ABC=12BC•AQ=12×14×(9﹣3)=42,当a=9时,43a=43×9=12,﹣a+7=﹣9+7=﹣2,∴点B(9,12)、C(9,﹣2).(4)如图3所示,作出D关于直线BC的对称点D′,连接AD′,与直线BC交于点E,连接DE,此时△ADE 周长最小,对于直线y=﹣x+7,令y=0,得到x=7,即D(7,0),由(3)得到直线BC为直线x=9,∴D′(11,0),设直线AD′解析式为y=kx+b,把A与D′坐标代入得:34110k bk b+=⎧⎨+=⎩,解得:12112kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AD′解析式为y=﹣12x+112,令x=9,得到y=1,则此时点E坐标为(9,1).点睛:1.平面上最短路径问题(1)归于“两点之间的连线中,线段最短”.凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”.凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.(3)平面图形中,直线同侧两点到直线上一点距离之和最短问题.2.平面直角坐标系下,两个一次函数图像的交点坐标问题,可以看作二元一次方程组的解的问题.3.待定系数法求函数的解析式.27.证明见解析.【解析】【分析】先根据平行线的性质证明A C ∠=∠,ADE CFE ∠=∠ ,然后根据“AAS ”即可证明ADE ∆与CFE ∆全等.【详解】解:AED CFE ∆≅∆,∵//FC AB ,∴A ACC ∠=∠,ADE CFE ∠=∠ ,在AED ∆与CFE ∆中A ACF ADE CFE DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AED CFE ∆≅∆.【点睛】本题考查了平行线的性质,以及全等三角形的判定,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )是解题的关键.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.28.(1)①334y x =+;②(-32,0);(2) 3k =;(3) 113k -<≤-. 【解析】【分析】(1)①把x=2,y=92代入4y kx k =+中求出k 值即可; ②作DE ⊥AB 于E ,先求出点A 、点B 坐标,继而求出OA 、OB 、AB 的长度,由角平分线的性质可得到OD=DE,于是BE=OB 可求BE 、AE 的长,然后在Rt AED ∆中用勾股定理可列方程,解方程即可求得OD 的长;(2)求得点A 坐标是(-4,0),点C 坐标是(2,6k ),由△AOC 为等腰三角形,可知OC=OA=4,故2222(6)4k +=,解方程即可;(3) 由直线42y px p =-+经过点C ()2m ,, 得242m p p =-+=22p -+,由(2)知6m k =,故226p k -+=,用k 表示p 代入24p ≤<中得到关于k 的不等式,解不等式即可.【详解】解:(1)当92m =时,点C 坐标是922⎛⎫ ⎪⎝⎭,, ①把x=2,y=92代入4y kx k =+中,得9242k k =+, 解得34k =, 所以一次函数的表达式是334y x =+; ②如图,BD 平分ABO ∠交x 轴于点D ,作DE ⊥AB 于E ,∵在334y x =+中,当x=0时,y=3;当y=0时,x=-4, ∴点A 坐标是(-4,0),点B 坐标是(0,3),∴OA=4,OB=3, ∴22345AB +=,∵BD 平分ABO ∠, DE ⊥AB, DO ⊥OB, ∴OD=DE,∵BD=BD,∴OBD EBD ∆≅∆,∴BE=OB=3,∴AE=AB-BE=5-3=2,∵在Rt AED ∆中,222AE DE AD +=,∴2222(4)OD OD +=-,∴OD= 32, ∴点D 坐标是(-32,0), (2) ∵在4y kx k =+中,当y=0时,x=-4;当x=2时,y=6k , ∴点A 坐标是(-4,0),点C 坐标是(2,6k ),∵△AOC 为等腰三角形,∴OC=OA=4,∴2222(6)4k +=,∴13k =,23k =(不合题意,舍去),∴3k =. (3) ∵直线42y px p =-+经过点C ()2m ,,∴242m p p =-+=22p -+,由(2)知6m k =,∴226p k -+=,∴13p k =-,∵24p ≤<,∴2134k ≤-<, ∴113k -<≤-. 【点睛】本题考查了一次函数的综合应用,熟练掌握一次函数的性质及运用数形结合的思想解题是关键.29.(1) x 1=3, x 2=-1 ;(2)无解.【解析】【分析】(1)利用直接开平方法求解即可;(2)方程两边都乘以最简公分母(x+1)(x-1),可把分式方程转化为整式方程求解.【详解】解:(1)22(1)8x -= 2(1)4x -=,12x -=±,1=3x ,2=1-x(2)214111x x x +-=-- ()()()214=11x x x +-+-,2223=1x x x +--,2=2x=1x ,检验:将x=1代入()()11x x +-中,()()11=0x x +-x=1是增根,∴原方程无解.【点睛】本题考查解一元二次方程和解分式方程.注意:(1)利用直接开平方法;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定要验根.30.(1)7b =(2)73x -<<-(3)点P 坐标为(3,4)-或(9,12)-【解析】【分析】(1)将点C 横坐标代入243y x =-求得点C 的纵坐标为4,再把(-3,4)代入1y x b =+求出b 即可;(2)求出点A 坐标,结合点C 坐标即可判断出当120y y <<时, x 的取值范围; (3)设P (a,-43a ),可求出Q (473a --,43a -),即可得PQ=773a +,再求出OC=5,根据145PQ OC =求出a 的值即可得出结论. 【详解】 (1)把3x =-代入243y x =-, 得4y =.∴C (-3,4)把点(3,4)C -代入1y x b =+,得7b =.(2)∵b=7∴y=x+7,当y=0时,x=-7,x=-3时,y=4,∴当120y y <<时,73x -<<-.(3)点P 为直线43y x =-上一动点, ∴设点P 坐标为4(,)3a a -. //PQ x ∵轴,∴把43y a =-代入7y x =+,得473x a =--. ∴点Q 坐标为447,33a a ⎛⎫--- ⎪⎝⎭, 477733PQ a a a ∴=++=+ 又点C 坐标为()3,4-,5OC ∴==14145PQ OC ∴==77143a ∴+= 解之,得3a =或9a =-.∴点P 坐标为(3,4)-或(9,12)-.【点睛】理解点在直线上则它的坐标满足直线的解析式.学会用坐标表示线段的长.31.(1)±4;(2)5【解析】【分析】(1)分别求出一次函数y=2x+b 与坐标轴的交点,然后根据它的图象与坐标轴所围成的图象的面积等于4列出方程即可求出b 的值;(2)由题意可知:三条直线交于一点,所以可先求出一次函数y=-2x+1与y=x+4的交点坐标,然后代入y=2x+b 求出b 的值.【详解】解:(1)令x=0代入y=2x+b ,∴y=b ,令y=0代入y=2x+b ,∴x=-2b , ∵y=2x+b 的图象与坐标轴所围成的图象的面积等于4, ∴12×|b|×|-2b |=4, ∴b 2=16,∴b=±4;(2)联立214y x y x =-+⎧⎨=+⎩, 解得:13x y =-⎧⎨=⎩, 把(-1,3)代入y=2x+b ,∴3=-2+b ,∴b=5,【点睛】本题考查了一次函数与坐标轴的交点,图形与坐标的性质,待定系数求一次函数的解析式,解题的关键是根据条件求出b 的值,本题属于基础题型.。
苏科版八年级上册数学《期末测试卷》附答案
(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.
27.如图,在平面直角坐标系xOy中,直线 与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线AB与直线DC相交于点E.
∴关于x、y的二元一次方程组 的解是 .
故答案为 .
25.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.
(1)求y与x之间的函数表达式,并写出x的取值范围;
在Rt△ABM中,AB=5,BM=3,
∴根据勾股定理得:AM=
=
=4,
又S△AMC= MN•AC= AM•MC,
∴MN=
= .
故选A.
[点睛]综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,认把答案直接写在答题纸相应的位置上.)
[答案]A
[解析]
[分析]
根据立方根、无理数的定义即可得.
[详解] 是无理数,
,是无限循环小数,属于有理数,
是有限小数,属于有理数,
,小数点后的 是无限循环的,是无限循环小数,属于有理数,
苏科版江苏省苏州市八年级上第一学期期末数学试卷
苏科版江苏省苏州市八年级上第一学期期末数学试卷一、选择题1.下列各组数中互为相反数的是( ) A .2-与2B .2-与38-C .2-与12-D .2-与()22-2.4的平方根是( ) A .2 B .2±C .2D .2±3.若分式15x -在实数范围内有意义,则实数x 的取值范围是( ) A .5x ≠B .5x =C .5x >D .5x <4.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )A .31︒B .62︒C .87︒D .93︒5.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)6.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .7.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =,5AC =,7BC =,在ABC ∆所在平面内画一条直线,将ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( ) A .0条 B .1条 C .2条 D .3条 8.中国传统服装历史悠远,下列服装中,是轴对称的是()A .B .C .D .9.一次函数112y x =-+的图像不经过的象限是:( ) A .第一象限B .第二象限C .第三象限D .第四象限 10. 4的平方根是( ) A .2B .±2C .16D .±1611.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA12.如图,折叠Rt ABC ∆,使直角边AC 落在斜边AB 上,点C 落到点E 处,已知6cm AC =,8cm BC =,则CD 的长为( )cm.A .6B .5C .4D .313.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒ 14.在下列黑体大写英文字母中,不是轴对称图形的是( )A .B .C .D .15.下列分式中,x 取任意实数总有意义的是( )A .21x x+B .221(2)x x -+ C .211xx -+ D .2x x + 二、填空题16.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”). 17.已知113-=a b ,则分式232a ab b a ab b+-=--__________. 18.如图,已知直线y =ax ﹣b ,则关于x 的方程ax ﹣1=b 的解x =_____.19.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.20.如图,直线l 上有三个正方形,,a b c ,若,a c 的面积分别为5和11,则b 的面积为__________.21.如图,将长方形纸片ABCD 沿对角线AC 折叠,AD 的对应线段AD ′与边BC 交于点E .已知BE =3,EC =5,则AB =___.22.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.23.在平面直角坐标系中,点()2,0A ,()0,4B ,作BOC ,使BOC 与ABO 全等,则点C 坐标为____.(点C 不与点A 重合)24.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.25.如图,等腰Rt △OAB ,∠AOB =90°,斜边AB 交y 轴正半轴于点C ,若A (3,1),则点C 的坐标为_____.三、解答题26.(13168-;(2)求x 的值:2(2)90x .27.(1)04(51) (2)解方程:23(1)120x --=28.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用四种方法分别在如图方格内再填涂2个小正方形,使这7个小正方形组成的图形是轴对称图29.A ,B 两地相距200千米,甲车从A 地出发匀速行驶到B 地,乙车从B 地出发匀速行驶到A 地.乙车行驶1小时后,甲车出发,两车相向而行.设行驶时间为x 小时(0≤x ≤5),甲、乙两车离A 地的距离分别为y 1,y 2千米,y 1,y 2与x 之间的函数关系图象如图1所示.根据图象解答下列问题: (1)求y 1,y 2与x 的函数关系式;(2)乙车出发几小时后,两车相遇?相遇时,两车离A 地多少千米?(3)设行驶过程中,甲、乙两车之间的距离为s 千米,在图2的直角坐标系中,已经画出了s 与x 之间的部分函数图象.①图中点P 的坐标为(1,m ),则m = ;②求s 与x 的函数关系式,并在图2中补全整个过程中s 与x 之间的函数图象.30.求下列各式中的x : (1)2x 2=8(2)(x ﹣1)3﹣27=0 31.计算:(1)323395)()4--+- (212436122.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D【解析】 【分析】根据相反数的性质判断即可; 【详解】A 中-2=2,不是互为相反数;B 2=-,不是相反数;C 中两数互为倒数;D 中两数互为相反数; 故选:D . 【点睛】本题主要考查了相反数的性质应用,准确分析是解题的关键.2.D解析:D 【解析】 【分析】根据平方根的定义直接作答. 【详解】解:4的平方根是2± 故选:D 【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键.3.A解析:A 【解析】 【分析】根据分式的定义即可求解. 【详解】依题意得50x -≠,解得5x ≠, 故选A. 【点睛】此题主要考查分式的性质,解题的关键是熟知分式的性质.4.C解析:C 【解析】 【分析】根据垂直平分线的性质,可以得到∠C=∠ABC ,再根据角平分线的性质,得到∠ABC 的度数,最后利用三角形内角和即可解决.∵DE 垂直平分BC ,DB DC ∴=,31C DBC ︒∴∠=∠=,∵BD 平分ABC ∠,262ABC DBC ︒∴∠=∠=, 180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C 【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.5.D解析:D 【解析】 【分析】先求出A 点绕点C 顺时针旋转90°后所得到的的坐标A ',再求出A '向右平移3个单位长度后得到的坐标A '',A ''即为变换后点A 的对应点坐标. 【详解】将Rt ABC ∆先绕点C 顺时针旋转90°,得到点坐标为A '(-1,2),再向右平移3个单位长度,则A '点的纵坐标不变,横坐标加上3个单位长度,故变换后点A 的对应点坐标是A ''(2,2). 【点睛】本题考察点的坐标的变换及平移.6.B解析:B 【解析】 【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故错误; B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确; C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误;=过原点,而图中两条直线都不过原点,故错误.D .y kx故选 B【点睛】此题主要考查了一次函数图像的性质,熟记k>0,y随x的增大而增大;k<0,y随x的增大而减小;常数项为0,函数过原点.7.B解析:B【解析】【分析】先根据各边的长度画出三角形ABC,作AD⊥BC,根据勾股定理求出AD,BD,结合图形可分析出结果.【详解】已知如图,所做三角形是钝角三角形,作AD⊥BC,根据勾股定理可得:AC2-CD2=AB2-BD2所以设CD=x,则BD=7-x所以52-x2=(32)2-(7-x)2解得x=4所以CD=4,BD=3,所以,在直角三角形ADC中AD=2222AC CD-=-=543所以AD=BD=3所以三角形ABD是帅气等腰三角形假如从点C或B作直线,不能作出含有边长为3的等腰三角形故符合条件的直线只有直线AD故选:B【点睛】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.8.B解析:B【解析】【分析】直接利用轴对称图形的定义判断即可.【详解】解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:B.【点睛】此题主要考查了轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,9.C解析:C【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像10.B解析:B【解析】【分析】根据平方根的意义求解即可,正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即2±.故选B.【点睛】本题考查了平方根的意义,如果个一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根.11.B解析:B 【解析】试题分析:利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案. 解:A 、∵∠1=∠2,AD 为公共边,若AB=AC ,则△ABD ≌△ACD (SAS );故A 不符合题意;B 、∵∠1=∠2,AD 为公共边,若BD=CD ,不符合全等三角形判定定理,不能判定△ABD ≌△ACD ;故B 符合题意;C 、∵∠1=∠2,AD 为公共边,若∠B=∠C ,则△ABD ≌△ACD (AAS );故C 不符合题意; D 、∵∠1=∠2,AD 为公共边,若∠BDA=∠CDA ,则△ABD ≌△ACD (ASA );故D 不符合题意. 故选B .考点:全等三角形的判定.12.D解析:D 【解析】 【分析】在Rt ABC ∆中,根据勾股定理可求得AB 的长度,依据折叠的性质AE=AC ,DE=CD ,因此可得BE 的长度,在Rt △BDE 中根据勾股定理即可求得CD 的长度. 【详解】解:∵在Rt ABC ∆中,6cm AC =,8cm BC =,∴由勾股定理得,10AB cm ===.由折叠的性质知,AE=AC=6cm ,DE=CD ,∠AED=∠C=90°.∴BE=AB-AE=10-6=4cm , 在Rt △BDE 中,由勾股定理得, DE 2+BE 2=BD 2 即CD 2+42=(8-CD)2, 解得:CD=3cm . 故选:D . 【点睛】本题考查折叠的性质,勾股定理.理解折叠的前后对应边相等,对应角相等,并能依此判断△BDE 是直角三角形,并计算(或用CD 表示)它的三边是解决此题的关键.13.B解析:B 【解析】 【分析】延长AO 交BC 于D ,根据垂直平分线的性质可得到AO=BO=CO ,再根据等边对等角的性质得到∠OAB=∠OBA ,∠OAC=∠OCA ,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA ,∠COD=∠OAC+∠OCA ,从而不难求得∠BOC 的度数. 【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.14.C解析:C【解析】【分析】根据轴对称图形的概念对各个大写字母判断即可得解.【详解】A.“E”是轴对称图形,故本选项不合题意;B.“M”是轴对称图形,故本选项不合题意;C.“N”不是轴对称图形,故本选项符合题意;D.“H”是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.15.C解析:C【解析】【分析】根据分式有意义的条件是分母不等于零即可判断.A.x=0时,x2=0,A选项不符合题意;B.x=﹣2时,分母为0,B选项不符合题意;C.x取任意实数总有意义,C选项符号题意;D.x=﹣2时,分母为0.D选项不符合题意.故选:C.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.二、填空题16.>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y解析:>.【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1<x2,即可得出结论.【详解】∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,且x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为:>.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性,是解题的关键.17.【解析】【分析】首先把两边同时乘以,可得,进而可得,然后再利用代入法求值即可.【详解】解:∵,∴,∴故答案为:【点睛】此题主要考查了分式化简求值,关键是掌握代入求值时, 解析:34【解析】【分析】 首先把113-=a b两边同时乘以ab ,可得3b a ab -= ,进而可得3a b ab -=-,然后再利用代入法求值即可.【详解】 解:∵113-=a b, ∴3b a ab -= ,∴3a b ab -=-, ∴2323263334a b ab a ab bab ab a ab b a b ab ab ab 故答案为:34【点睛】 此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.18.4【解析】【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y =1时,x =4,即ax ﹣b =1时,x =4.故方程ax ﹣1=b 的解是x =4.故答案为4.【点睛】此题考查一次函解析:4【分析】观察图形可直接得出答案.【详解】解:根据图形知,当y =1时,x =4,即ax ﹣b =1时,x =4.故方程ax ﹣1=b 的解是x =4.故答案为4.【点睛】此题考查一次函数与一元一次方程的联系,渗透数形结合的解题思想.19.【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y1=kx+b 在y2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点解析:1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.20.16【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BC【解析】【分析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BCA=∠AED=90°,∴∠ABC=∠DAE,∴ΔBCA≌ΔAED(ASA),∴BC=AE,AC=ED,故AB²=AC²+BC²=ED²+BC²=11+5=16,即正方形b的面积为16.点睛:此题主要考查对全等三角形和勾股定理的综合运用,解题的重点在于证明ΔBCA≌ΔAED,而利用全等三角形的性质和勾股定理得到b=a+c则是解题的关键.21.4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,B解析:4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,BC=AD,∠A=∠B=∠C=∠D=90°,由折叠得:AD=AD′,CD=CD′,∠DAC=∠D′AC,∵∠DAC=∠BCA,∴∠D′AC=∠BCA,∴EA=EC=5,在Rt△ABE中,由勾股定理得,AB4,故答案为:4.【点睛】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形是解此题的关键.22.或【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,解析:1,33⎛⎫⎪⎝⎭或533⎛⎫⎪⎝⎭,【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13;当y=﹣3时,﹣3x+2=﹣3,解得x=53;∴点P的坐标为(﹣13,3)或(53,﹣3).故答案为(﹣13,3)或(53,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.23.或或【解析】【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵,∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2解析:()2,4或()2,0-或()2,4-【解析】【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵()2,0A ,()0,4B∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2∴123C (2,0),C (2,4),C (2,4)-- 故答案为:()2,4或()2,0-或()2,4- 【点睛】本题考查坐标与全等三角形的性质和判定,注意要分多种情况讨论是解题的关键 24.12cm .【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件. 25.(0,)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B (﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣x+,于是得到结论.解析:(0,52)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣12x+52,于是得到结论.【详解】过B作BE⊥y轴于E,过A作AF⊥x轴于F,如图所示:∴∠BCO=∠AFO=90°,∵A(3,1),∴OF=3,AF=1,∵∠AOB=90°,∴∠BOC+∠OBC=∠BOC+∠AOF=90°,∴∠BOC=∠AOF,∵OA=OB,∴△BOE≌△AOF(AAS),∴BE=AF=1,OE=OF=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴3 31k bk b-+=⎧⎨+=⎩,解得:1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=﹣12x+52,当x=0时,y=52,∴点C的坐标为(0,52),故答案为:(0,52).【点睛】此题主要考查全等三角形的判定与性质,解题关键是利用全等得出点坐标进而求得解析式.三、解答题26.(1)6;(2)x=1或x=5-.【解析】【分析】(1)本题涉及算术平方根、立方根2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)移项后,两边直接开平方即可得到x+2=3,x+2=﹣3,求解即可.【详解】(1)原式=4-(-2)=4+2=6;(2)x+2=±3.x+2=3,x+2=-3.x=1或x=-5.【点睛】本题考查了实数运算和直接开平方法解一元二次方程,关键是掌握算术平方根、立方根各知识点.27.(1)3;(2)3x =或1x =-.【解析】【分析】(1)根据实数的运算法则将每一项进行化简然后计算求解即可.(2)根据一元二次方程的解法步骤,将12移到等号右边,然后进行开平方运算求出方程的解即可.【详解】解:(1)计算:04(51)+-原式21=+3=(2)解方程:23(1)120x --=2(1)4x -=12x -=±3x =或1x =-【点睛】本题考查了实数的运算和一元二次方程的解法,解决本题的关键是熟练掌握实数的运算法则,掌握一元二次方程的解法步骤,在选择解法时要注意灵活选择合适的方法.28.详见解析.【解析】【分析】根据轴对称的性质画出图形即可.【详解】解:如图所示:.【点睛】本题考查的利用轴对称设计图案,用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.29.(1)y 1=50x ﹣50,y 2=﹣40x +200;(2)乙车出发259小时后,两年相遇,相遇时,两车离A 地8009千米;(3)①160;②当1≤x ≤259时,s =250﹣90x ;当259<x ≤5时,s =90x ﹣250;图象详见解析.【解析】【分析】(1)用待定系数法可求解析式;(2)将两个函数表达式组成方程组可求解;(3)①由点P 表达的意义可求m 的值;②分相遇前和相遇后两种情况分别求解析式.【详解】解:(1)如图1,甲的图象过点(1,0),(5,200),∴设甲的函数表达式为:y 1=kx+b ,∴02005k b k b =+⎧⎨=+⎩解得:5050k b =⎧⎨=-⎩∴甲的函数表达式为:y 1=50x ﹣50,如图1,乙的图象过点(5,0),(0,200),∴设乙的函数表达式为:y 2=mx+200,∴0=5m+200∴m =﹣40,∴乙的函数表达式为:y 2=﹣40x+200,(2)由题意可得:505040200y x y x =-⎧⎨=-+⎩解得:2598009x y ⎧=⎪⎪⎨⎪=⎪⎩答:乙车出发259小时后,两年相遇,相遇时,两车离A 地8009千米. (3)①由题意可得乙先出发1小时,且速度为40千米/小时,∴m =200﹣40×1=160, 故答案为160;②当1≤x ≤259时,s =200﹣40×1﹣(40+50)(x ﹣1)=250﹣90x ; 当259<x ≤5时,s =90x ﹣250; 图象如下:【点睛】本题考查了一次函数的应用,用待定系数法求解析式,理解函数图象是本题的关键.30.(1)x =±2;(2)x =4【解析】【分析】(1)先将方程化系数为1,然后两边同时开平方即可求解;(2)先移项,再两边同时开立方即可求解.【详解】解:(1)∵2x 2=8,∴x 2=4,∴x =±2;(2)∵(x ﹣1)3﹣27=0∴(x ﹣1)3=27,∴x ﹣1=3,∴x =4.【点睛】本题考查的知识点是平方根与立方根,熟记平方根与立方根的定义是解此题的关键.31.(1)114;(2)2+3. 【解析】【分析】(1)先开方,再依次计算即可;(2)运用二次根式的乘除法法则计算,再根据二次根式的性质化简,最后合并即可.【详解】解:(1)323395)()4-+-=﹣3﹣(﹣5)+34 =114(2==【点睛】本题主要考查了实数的运算及二次根式的运算,熟练掌握开方运算及二次根式的乘除法法则是解题的关键.。
苏科版数学八年级上册《期末测试卷》含答案
苏科版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷(选择题共30分一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列运算正确的是()A. 2 B.|﹣3|=﹣3 C.±2 D. 32.传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中不是轴对称图形的是()A.B.C.D.3.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC4.点A(3,5)关于x轴的对称点的坐标为()A.(3,﹣5) B.(﹣3,﹣5) C.(﹣3,5) D.(﹣5,3)5.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣76.下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,137.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣48.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm9.如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接P A、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个10.已知一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是() A.m>0 B.m<0 C.m>1 D.m<1第Ⅱ卷(非选择题共120)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.若一个数的立方根是﹣3,则这个数是.12.如图,已知:AB=AC,D是BC边的中点,则∠1+∠C=度.13.若12.6389823,则.(精确到0.01).14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成.15.将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为.16.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为.17.如图,点O为线段AB上的任意一点(不与A,B重合),分别以AO,BO为一腰在AB的同侧作等腰△AOC和△BOD,OA=OC,OB=OD,∠AOC与∠BOD都是锐角,且∠AOC=∠BOD,AD与BC相交于点P,∠COD=110°,则∠APB=°.18.如图,直线y=x+6与x轴、y轴分别交于点A和点B,x轴上有一点C(﹣4,0),点P为直线一动点,当PC+PO 值最小时点P的坐标为.三.解答题(共10小题,满分96分)19.(1)已知:2(x﹣3)2=50,求x;(2)计算:20.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.21.已知y﹣1与x+2成正比例,且x=﹣1时,y=3.(1)求y与x之间的关系式;(2)它的图象经过点(m﹣1,m+1),求m的值.22.如图,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E、交AC于D,连接BD.(1)若∠A=40°,求∠DBC的度数;(2)若△BCD的周长为16cm,△ABC的周长为26cm,求BC的长.23.如图,已知△ABC中,AB=AC,BD=CE,(1)求证:△ABE≌△ACD.(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△ACQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.25.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数) 需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.26.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.27.基本图形:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=3,CD=1,则AD的长为.28.阅读下面材料:小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).请回答:(1)在图2中,小明得到的全等三角形是△≌△;BC和AC、AD之间的数量关系是.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.(3)如图4,在平面直角坐标系中,直线y=﹣x+4交x轴于点A,交y轴于点B,C是OA的中点,D为AB上一点,且∠DCA=∠BCO,连接OD,CD,求.答案与解析第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列运算正确的是()A. 2 B.|﹣3|=﹣3 C.±2 D. 3[答案]A[解析]A、2,此选项计算正确;B、|﹣3|=3,此选项计算错误;C、2,此选项计算错误;D、不能进一步计算,此选项错误;故选:A.[点睛]本题主要考查算术平方根,解题的关键是掌握算术平方根和立方根的定义、绝对值性质.2.传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中不是轴对称图形的是()A.B.C.D.[答案]C[解析]A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,不符合题意.故选:C.[点睛]此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.3.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC[答案]C[解析]A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.[点睛]本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.4.点A(3,5)关于x轴的对称点的坐标为()A.(3,﹣5) B.(﹣3,﹣5) C.(﹣3,5) D.(﹣5,3)[答案]A[解析]点A(3,5)关于x轴的对称点的坐标为:(3,﹣5).故选:A.[点睛]此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号是解题关键.5.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是()A.0 B.3 C.﹣3 D.﹣7[答案]B[解析]∵一次函数y=﹣2x+3中k=﹣2<0,∴y的值随x的值增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3.故选:B.[点睛]一次函数y=kx+b的图象的性质:①当k>0,y的值随x的值增大而增大;②当k<0,y的值随x的值增大而减小.6.下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,13[答案]C[解析]A、∵12+12≠22,∴不是勾股数,此选项错误;B、1.5和2.5不是整数,此选项错误;C、∵72+242=252,∴是勾股数,此选项正确;D、∵62+122≠132,∴不是勾股数,此选项错误.故选:C.[点睛]此题考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…7.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣4[答案]A[解析]由题意可得:一次函数y=kx+b中,y<0时,图象在x轴下方,x<5,则关于x的不等式kx+b<0的解集是x<5,故选:A.[点睛]此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想.认真体会一次函数与一元一次不等式之间的内在联系.8.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm[答案]C[解析]连接AM、AN、过A作AD⊥BC于D,∵在△ABC中,AB=AC,∠A=120°,BC=6cm,∴∠B=∠C=30°,BD=CD=3cm,∴AB2cm=AC,∵AB的垂直平分线EM,∴BE AB cm同理CF cm,∴BM2cm,同理CN=2cm,∴MN=BC﹣BM﹣CN=2cm,故选:C.[点睛]本题考查了线段垂直平分线性质,等腰三角形的性质,含30度角的直角三角形性质,解直角三角形等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力.9.如图是由8个全等的小矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接P A、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个[答案]B[解析]如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选:B.[点睛]本题考查了等腰直角三角形的判定,正确的找出符合条件的点P是解题的关键.10.已知一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是() A.m>0 B.m<0 C.m>1 D.m<1[答案]D[解析]∵一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),且x1>x2时,有y1<y2∴m﹣1<0∴m<1故选:D.[点睛]本题考查了一次函数图象上点的坐标特征,利用一次函数增减性解决问题是本题的关键.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.若一个数的立方根是﹣3,则这个数是.[答案]﹣27.[解析]∵(﹣3)3=﹣27,∴﹣27的立方根是﹣3.∴这个数是﹣27.故答案为:﹣27.[点睛]本题主要考查的是立方根的定义,掌握立方根的定义是解题的关键.12.如图,已知:AB=AC,D是BC边的中点,则∠1+∠C=度.[答案]90[解析]∵AB=AC,∴∠B=∠C,∵D是BC边的中点,∴AD⊥BC,∴∠1+∠B=90°,∴∠1+∠C=90°.故答案为:90.[点睛]本题考查了等腰三角形的性质;等腰三角形底边上的中线、高线以及顶角的平分线三线合一的熟练应用是正确解答本题的关键.13.若12.6389823,则.(精确到0.01).[答案]12.64.[解析]∵12.6389823,∴12.64.故答案为:12.64.[点睛]考查了立方根,近似数,关键是熟练掌握四舍五入法求近似数.14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成.[答案](3,4).[解析]∵用(1,4)表示一只眼,用(2,2)表示嘴,∴另一只眼的位置可以表示成:(3,4).故答案为:(3,4).[点睛]此题主要考查了坐标确定位置,利用点的对称性得出对应点坐标是解题关键.15.将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为[答案]y=5x﹣3.[解析]将函数y=5x的图象沿y轴向下平移3个单位长度,所得直线的函数表达式为:y=5x﹣3,故答案为:y=5x﹣3.[点睛]本题考查了一次函数图象与几何变换,利用函数图象的平移规律是解题关键.16.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为[答案]40°或100°[解析]△ABC,AB=AC.有两种情况:(1)顶角∠A=40°,(2)当底角是40°时,∵AB=AC,∴∠B=∠C=40°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣40°﹣40°=100°,∴这个等腰三角形的顶角为40°和100°.故答案为:40°或100°.[点睛]本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论.17.如图,点O为线段AB上的任意一点(不与A,B重合),分别以AO,BO为一腰在AB的同侧作等腰△AOC和△BOD,OA=OC,OB=OD,∠AOC与∠BOD都是锐角,且∠AOC=∠BOD,AD与BC相交于点P,∠COD=110°,则∠APB=145°.[答案]145.[解析]如图,∵∠AOC=∠BOD,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠COB,在△AOD和△COB中,,∴△AOD≌△COB.∵∠COD=110°,∠AOC=∠BOD,∴∠AOC=∠BOD=(180°﹣110°)÷2=35°,∵△AOD≌△COB,∴∠OAD=∠OCB,∴∠CMP=∠AMO,∴∠CPM=∠AOC=35°,∴∠APB=180°﹣∠CPM=180°﹣35°=145°.故答案为:145.[点睛]本题考查了全等三角形的性质与判定,解决本题的关键是证明△AOD≌△COB.18.如图,直线y=x+6与x轴、y轴分别交于点A和点B,x轴上有一点C(﹣4,0),点P为直线一动点,当PC+PO 值最小时点P的坐标为[答案](,)[解析]如图,作点C关于直线y=x+6的对称点C′,连接AC′,OC′交直线y=x+6于点P,则点P即为所求,∵直线y=x+6与x轴、y轴分别交于点A和点B,∴A(﹣6,0),B(0,6),∴∠BAO=45°.∵CC′⊥AB,∴∠ACC′=45°.∵点C,C′关于直线AB对称,∴AB是线段CC′的垂直平分线,∴△ACC′是等腰直角三角形,∴AC=AC′=2,∴C′(﹣6,2).设直线OC′的解析式为y=kx(k≠0),则2=﹣6k,解得k,∴直线OC′的解析式为y x,∴,解得,∴P(,).故答案为:(,).[点睛]本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题(共10小题)19.(1)已知:2(x﹣3)2=50,求x;(2)计算:[分析](1)直接利用平方根的定义计算得出答案;(2)直接利用立方根以及绝对值的性质分别化简得出答案.[解析](1)(x﹣3)2=25,则x﹣3=±5,解得:x=8或x=﹣2;(2)原式=2﹣3﹣(1)=﹣1 1.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.20.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.[分析](1)根据点A及点C的坐标,易得y轴在C的右边一个单位,x轴在C的下方3个单位,建立直角坐标系即可;(2)根据对称轴垂直平分对应点连线,可得各点的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断即可;[解析](1)如图所示:(2)如图所示:△A'B'C'即为所求:C'的坐标为(﹣5,5);(3)∵AB2=1+4=5,AC2=4+16=20,BC2=9+16=25,∴AB2+AC2=BC2,∴△ABC是直角三角形.[点睛]本题考查了轴对称作图的知识及直角坐标系的建立,解答本题的关键是掌握轴对称的性质,准确作图.21.已知y﹣1与x+2成正比例,且x=﹣1时,y=3.(1)求y与x之间的关系式;(2)它的图象经过点(m﹣1,m+1),求m的值.[答案](1)根据y﹣1与x+2成正比例,设y﹣1=k(x+2),把x与y的值代入求出k的值,即可确定出关系式;(2)把点(m﹣1,m+1)代入一次函数解析式求出m的值即可.[解析](1)根据题意:设y﹣1=k(x+2),把x=﹣1,y=3代入得:3﹣1=k(﹣1+2),解得:k=2.则y与x函数关系式为y=2(x+2)+1=2x+5;(2)把点(m﹣1,m+1)代入y=2x+5得:m+1=2(m﹣1)+5解得m=﹣2.[点睛]此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22.如图,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E、交AC于D,连接BD.(1)若∠A=40°,求∠DBC的度数;(2)若△BCD的周长为16cm,△ABC的周长为26cm,求BC的长.[分析](1)首先计算出∠ABC的度数,再根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AD =BD,进而可得∠ABD=∠A=40°,然后可得答案;(2)根据线段垂直平分线的性质可得AD=DB,AE=BE,然后再计算出AC+BC的长,再利用△ABC的周长为26cm可得AB长,进而可得答案.[解析](1)∵AB=AC,∴∠ABC=∠C,∠A=40°,∴∠ABC70°,∵DE是边AB的垂直平分线,∴DA=DB,∴∠DBA=∠A=40°,∴∠DBC=∠ABC﹣∠DBA=70°﹣40°=30°;(2)∵△BCD的周长为16cm,∴BC+CD+BD=16,∴BC+CD+AD=16,∴BC+CA=16,∵△ABC的周长为26cm,∴AB=26﹣BC﹣CA=26﹣16=10,∴AC=AB=10,∴BC=26﹣AB﹣AC=26﹣10﹣10=6cm.[点睛]此题主要考查了线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.23.如图,已知△ABC中,AB=AC,BD=CE,(1)求证:△ABE≌△ACD.(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.[分析](1)由等腰三角形的性质可得∠B=∠C,由BD=CE可得BE=CD,根据“SAS”可证△ABE≌△ACD;(2)根据全等三角形的性质可得∠BAE=∠CAD,可得∠BAD=∠CAE=30°,即可求∠DAE的度数.[解答]证明:(1)∵AB=AC∴∠B=∠C∵BD=CE∴BE=CD,且AB=AC,∠B=∠C,∴△ABE≌△ACD(SAS)(2)由(1)得,△ABE≌△ACD∴∠BAE=∠CAD∴∠BAD=∠CAE=30°∴∠DAE=150[点睛]本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练运用全等三角形的判定是本题的关键.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△ACQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.[分析](1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.[解答]证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠P AQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.[点睛]本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证△ABP≌△ACQ是解题的关键.25.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数) 需付费y元,则y与x的函数表达式为y=4x﹣4;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.[分析](1)连续骑行5h,要分两个阶段计费:前两个小时,按每个小时2元计算,后3个小时按每个小时计算,可得结论;(2)根据超过2h的计费方式可得:y与x的函数表达式;(3)根据题意可知:里程超过2个小时,根据(2)的表达式可得结果.[解析](1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.[点睛]本题是一次函数的应用,考查了分段函数的知识,属于基础题,解答本题的关键是仔细审题,得出各段的收费标准.26.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.[分析](1)由图象可知:汽车行驶400千米,剩余油量30升,行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升),故加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,300)坐标代入可得:k=﹣0.1,b=70,求出解析式,当y=5 时,可得x=650.[解析](1)由图象可知:汽车行驶400千米,剩余油量30升,∵行驶时的耗油量为0.1升/千米,则汽车行驶400千米,耗油400×0.1=40(升)∴加满油时油箱的油量是40+30=70升.(2)设y=kx+b(k≠0),把(0,70),(400,30)坐标代入可得:k=﹣0.1,b=70∴y=﹣0.1x+70,当y=5 时,x=650即已行驶的路程的为650千米.[点睛]该题是根据题意和函数图象来解决问题,考查学生的审题识图能力和待定系数法求解析式以及根根解析式求值.27.基本图形:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=3,CD=1,则AD的长为2.[分析](1)结论:BC=DC+EC.证明△BAD≌△CAE(SAS)即可解决问题.(2)结论:BD2+CD2=DE2.由△BAD≌△CAE,推出BD=CE,∠ACE=∠B,可得∠DCE=90°,利用勾股定理即可解决问题.(3)法一:构造如图所示图形,△ADE是等腰直角三角形,易得△ABE≌△ACD,BE=CD,∠BEA=∠ADC=45°,再得△BED是直角三角形,得,所以AD=2.法二:作AE⊥AD,使AE=AD,连接CE,DE.由△BAD≌△CAE(SAS),推出BD=CE=3,由∠ADC=45°,∠EDA=45°,可得∠EDC=90°,再利用勾股定理即可解决问题.[解析](1)结论:BC=DC+EC.理由:如图①中,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∴BC=BD+CD=EC+CD,即:BC=DC+EC;(2)结论:BD2+CD2=DE2.理由:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2.(3)法一:构造如图所示图形,△ADE是等腰直角三角形,易得△ABE≌△ACD,BE=CD,∠BEA=∠ADC=45°,再得△BED是直角三角形,得,所以AD=2.法二:作AE⊥AD,使AE=AD,连接CE,DE.∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=3,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE,∵∠DAE=90°,∴AD2+AE2=DE2∴AD=2.故答案为2.[点睛]本题属于几何变换综合题,考查了等腰直角三角形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.28.阅读下面材料:小明遇到这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.小明发现,利用轴对称做一个变化,在BC上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).请回答:(1)在图2中,小明得到的全等三角形是△ADC≌△A′DC;BC和AC、AD之间的数量关系是BC=AC+AD.(2)参考小明思考问题的方法,解决问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.(3)如图4,在平面直角坐标系中,直线y=﹣x+4交x轴于点A,交y轴于点B,C是OA的中点,D为AB上一点,且∠DCA=∠BCO,连接OD,CD,求.[分析](1)由CD平分∠ACB知∠ACD=∠A′CD,结合CA=CA′,CD=CD即可判定△ADC≌△A′DC;由全等性质知AC=A′C,AD=A′D,再证A′B=AD可得答案;(2)在AB上截取AE=AD,连接CE,先证△ADC≌△AEC得AE=AD=9,CE=CD=10=BC,作CF⊥AB,设EF=BF=x,利用勾股定理求得x=6,根据AB=AE+EF+FB可得答案;(3)在BC上取D′,使得CD=CD′,先证△ACD≌△OCD′得AD=OD′,∠CAD=∠COD′,再证△OBD′≌△AOD得BD′=OD,根据BC=BD′+CD′=OD+CD代入求解可得.[解析](1)在图2中,∵CD平分∠ACB,∴∠ACD=∠A′CD,∵CA=CA′,CD=CD,∴△ADC≌△A′DC(SAS),即小明得到的全等三角形是△ADC≌△A′DC,∴AC=A′C,AD=A′D,∠A=∠CA′D=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,∴∠A′DB=∠B=30°,∴A′D=A′B,∴A′B=AD,∵BC=A′C+A′B,∴BC=AC+AD,故答案为:ADC,A′DC,BC=AC+AD.(2)在AB上截取AE=AD,连接CE,如图3所示:∵AC平分∠BAD,∴∠DAC=∠EAC.在△AEC和△ADC中,∵∴AE=AD=9,CE=CD=10=BC,过点C作CF⊥AB于点F,∴EF=BF,设EF=BF=x.在Rt△CFB中,∠CFB=90°,由勾股定理得CF2=CB2﹣BF2=102﹣x2,在Rt△CF A中,∠CF A=90°,由勾股定理得CF2=AC2﹣AF2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2.解得:x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB的长为21.(3)在BC上取D′,使得CD=CD′,∵C是OA中点,∴CO=CA,∵∠ACD=∠OCD′,∴△ACD≌△OCD′(SAS),∴AD=OD′,∠CAD=∠COD′,∵y=﹣x+4与x轴的交点A(4,0),与y轴的交点B(0,4),∴OA=OB=4,∠OAB=∠OBA=45°=∠COD′,∴∠BOD′=∠OAD=45°,在△OBD′和△AOD中,∵,∴BD′=OD,则BC=BD′+CD′=OD+CD,∴1.[点睛]本题是一次函数的综合问题,解题的关键是掌握全等三角形的判定与性质,勾股定理的运用及一次函数图象上点的坐标特征等知识点.。
苏科版八年级上册数学《期末检测题》含答案解析
A. B.
C. D.
[答案]D
[解析]
[分析]
根据勾股定理逆定理,即若三角形中两边到的平方和等于第三边的平方,那么这个三角形是直角三角形,对每项进行计算判断即可.
[详解]解:A. ,
B. ,
C. ,
.
[点睛]本题考查了勾股定理的逆定理,解决本题的关键是熟练掌握勾股定理逆定理,正确计算出每项的结果.
(2)在射线 上找一点 ,使 .
19.已知:如图,点B,D在线段AE上,AD=BE,AC∥EF,∠C=∠H.求证:BC=DH.
20.如图,在 中, , , , .求 的长.
21.如图,在 网格中,每个小正方形 边长都为1,画图请加粗加黑.
(1)图中格点 的面积为______.
(2)在图中建立适当 平面直角坐标系,使点 , .
24.一次函数 的图象经过点 和点 .
(1)求一次函数的表达式;
(2)若此一次函数的图像与 轴交于点 ,求 的面积.
25.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.
x
···
1
2
3
5
7
9
···
y
···
1.98
3.95
2.63
1.58
1.13
0.88
···
小腾根据学习一次函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
A. B. C. D.
4.下列四组线段 、 、 ,不能组成直角三角形的是( )
A. B.
C. D.
5.若 , 是一次函数 的图象上的两个点,则 与 的பைடு நூலகம்小关系是( )
苏科版苏州市八年级上学期期末数学试卷 (解析版)
苏科版苏州市八年级上学期期末数学试卷 (解析版) 一、选择题1.下列各组数中互为相反数的是( )A .2-与2B .2-与38-C .2-与12-D .2-与()22- 2.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-23.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .54.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )A .31︒B .62︒C .87︒D .93︒5.如图,D 为ABC ∆边BC 上一点,AB AC =,56BAC ∠=︒,且BF DC =,EC BD =,则EDF ∠等于( )A .62︒B .56︒C .34︒D .124︒6.在平面直角坐标系中,点(1,2)P 到原点的距离是( ) A .1 B .3 C .2D .5 7.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .10 8.下列各组数不是勾股数的是( ) A .3,4,5B .6,8,10C .4,6,8D .5,12,13 9.如图,已知△ABC 的三条边和三个角,则甲、乙、丙三个三角形中和△ABC 全等的是( )A .甲和乙B .甲和丙C .乙和丙D .只有乙 10.64的立方根是( )A .4B .±4C .8D .±8 11.下列四组线段a 、b 、c ,能组成直角三角形的是( )A .4a =,5b =,6c =B .3a =,4b =,5c =C .2a =,3b =,4c =D .1a =,2b =,3c =12.如图,直线(0)y x b b =+>分别交x 轴、y 轴于点A 、B ,直线(0)y kx k =<与直线(0)y x b b =+>交于点C ,点C 在第二象限,过A 、B 两点分别作AD OC ⊥于D ,BE OC ⊥于E ,且8BE BO +=,4=AD ,则ED 的长为( )A .2B .32C .52D .113.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .414.下列各点中,位于平面直角坐标系第四象限的点是( )A .(1,2)B .(﹣1,2)C .(1,﹣2)D .(﹣1,﹣2)15.已知正比例函数y =kx 的图象经过点(﹣2,1),则k 的值( )A .﹣2B .﹣12C .2D .12二、填空题16.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 17.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____. 18.已知实数x 、y 满足|3|20x y ++-=,则代数式()2019x y +的值为______.19.已知点P (m ﹣2,2m ﹣1)在第二象限,则实数m 的取值范围是_____.20.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.21.计算:8的平方根______,-8的立方根是_____.22.点A (2,-3)关于x 轴对称的点的坐标是______.23.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是_____.24.如图,△ABC 中,AB =AC ,AB 的垂直平分线分别交边AB ,BC 于D ,E 点,且AC =EC ,则∠BAC =_____.25.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是10,频率是0.2,那么该班级的人数是_____人.三、解答题26.如图,一次函数23y mx m =++的图像与12y x =-的图像交于点C ,与x 轴和y 轴分别交于点A 和点B ,且点C 的横坐标为3-.(1)求m 的值与AB 的长;(2)若点Q 为线段OB 上一点,且14OCQ BAO S S ∆∆=,求点Q 的坐标.27.小丽骑车从甲地到乙地,小明骑车从乙地到甲地,小丽的速度小于小明的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离(km)y 与小丽的行驶时间(h)x 之间的函数关系.请你根据图像进行探究:(1)小丽的速度是______km/h ,小明的速度是_________km/h ;(2)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若两人相距20km ,试求小丽的行驶时间?28.计算:(1)23(5)427-(212426(8)18. 29.如图,矩形ABCD 中,6AB =,8AD =,点P 从点A 出发,以每秒一个单位的速度沿A B C →→的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B C D →→的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t =______时,两点停止运动;(2)当t 为何值时,BPQ ∆是等腰三角形?30.如图,平面直角坐标系中,ABC ∆的顶点都在网格点上,其中C 点坐标为()3,2.(1)填空:点A 的坐标是__________,点B 的坐标是________;(2)将ABC ∆先向左平移3个单位长度,再向上平移1个单位长度,画出平移后的111A B C ∆;(3)求ABC ∆的面积.31.解方程:32322x x x -=+-【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据相反数的性质判断即可;【详解】 A 中-2=2,不是互为相反数;B 382-=-,不是相反数;C 中两数互为倒数;D 中两数互为相反数;故选:D.【点睛】本题主要考查了相反数的性质应用,准确分析是解题的关键.2.B解析:B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,2),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1bk b=-+=,解得2{1bk==,该一次函数的表达式为y=x+2.故选B.3.C解析:C【解析】【分析】延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.【详解】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=4,BC=3,∴AB=5,∵∠ACB=90°,CE为中线,∴CE=AE=BE=12.5 2AB=,∴∠ACF=∠BAC,又∵∠AFC=∠BCA=90°,∴△ABC ∽△CAF , ∴CF AC AC BA =,即445CF =, ∴CF=3.2,∴EF=CF-CE=0.7,由折叠可得,AC=DC ,AE=DE ,∴CE 垂直平分AD ,又∵E 为AB 的中点,∴EF 为△ABD 的中位线,∴BD=2EF=1.4,∵AE=BE=DE , ∴∠DAE=∠ADE ,∠BDE=∠DBE ,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt △ABD 中,245==, 故选:C .【点睛】本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题. 4.C解析:C【解析】【分析】根据垂直平分线的性质,可以得到∠C=∠ABC ,再根据角平分线的性质,得到∠ABC 的度数,最后利用三角形内角和即可解决.【详解】∵DE 垂直平分BC ,DB DC ∴=,31C DBC ︒∴∠=∠=,∵BD 平分ABC ∠,262ABC DBC ︒∴∠=∠=,180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.5.A解析:A【解析】【分析】由AB=AC ,利用等边对等角得到一对角相等,再由BF=CD ,BD=CE ,利用SAS 得到三角形FBD 与三角形DEC 全等,利用全等三角形对应角相等得到一对角相等,再根据三角形内角和定理以及外角的性质,可以找出∠EDF 与∠A 之间的等量关系,进而求解.【详解】解:∵AB=AC ,∴∠B=∠C ,在△BFD 和△EDC 中,,,,BF DC B C BD CE ⎧⎪∠∠⎨⎪⎩=== ∴△BFD ≌△EDC (SAS ),∴∠BFD=∠EDC ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°-∠B=180°-1802A ︒-∠=90°+12∠A , 则∠EDF=180°-(∠FDB+∠EDC )=90°-12∠A=62°. 故选:A .【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键. 6.D解析:D【解析】【分析】根据:(1)点P(x ,y)到x 轴的距离等于|y|; (2)点P(x ,y)到y 轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点(1,2)P=故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.7.B解析:B【解析】根据正方形的面积公式及勾股定理即可求得结果.【详解】因为是以Rt ABC ∆的三边为边,分别向外作正方形,所以AB 2=AC 2+BC 2所以123S S S =+因为12316S S S ++=所以1S =8故选:B【点睛】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.8.C解析:C【解析】【分析】根据勾股数的定义:有a 、b 、c 三个正整数,满足a 2+b 2=c 2,称为勾股数.由此判定即可.【详解】解:A 、32+42=52,能构成勾股数,故选项错误;B 、62+82=102,能构成勾股数,故选项错误C 、42+62≠82,不能构成勾股数,故选项正确;D 、52+122=132,能构成勾股数,故选项错误.故选:C .【点睛】本题考查勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.9.B解析:B【解析】【分析】根据三角形全等的判定定理SSS 、SAS 、 AAS 、ASA 、HL 逐个进行分析即可.【详解】解:甲三角形有两条边及夹角与△ABC 对应相等,根据SAS 可以判断甲三角形与△ABC 全等;乙三角形只有一条边及对角与△ABC 对应相等,不满足全等判定条件,故乙三角形与△ABC 不能判定全等;丙三角形有两个角及夹边与△ABC 对应相等,根据ASA 可以判定丙三角形与△ABC 全等; 所以与△ABC 全等的有甲和丙,故选:B .本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.10.A解析:A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.11.B解析:B【解析】【分析】根据勾股定理的逆定理,依次对各选项进行分析即可得答案.【详解】解:A.因为42+52≠62,所以不能围成直角三角形,此选项错误;B.因为32+42=52,所以能围成直角三角形,此选项正确;C. 因为22+32≠42,所以不能围成直角三角形,此选项错误;D. 因为12+2≠32,所以不能围成直角三角形,此选项错误;故选:B.【点睛】本题考查了勾股定理的逆定理. 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.能依据这一定理判断三角形是否为直角三角形是解决此题的关键. 12.D解析:D【解析】【分析】图中直线y=x+b与x轴负半轴,y轴正半轴分别交于A,B两点,可以根据两点的坐标得出OA=OB,由此可证明△AOD≌△OBE,证出OC=AD,BE=OD,在Rt△OBE中,运用勾股定理可求出BE的长,再根据线段的差可求出DE的长.【详解】直线y=x+b(b>0)与x轴的交点坐标A为(-b,0)与y轴的交点坐标B为(0,-b),所以,OA=OB,又∵AD⊥OC,BE⊥OC,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠DOB,在△DAO和△BOE中,DAO BOE ADO BEO OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAO ≌EOB ,∴OD=BE.AD=OE ,∵AD=4,∴OE=4,∵BE+BO=8,∴B0=8-BE ,在Rt △OBE 中,222BO BE OE =+,∴222(8)BE BE OE -=+解得,BE=3,∴OD=3,∴ED=OE-OD=4-3=1.【点睛】此题主要考查了一次函数的应用以及全等三角形的判定与性质,根据全等三角形的性质求出OD=BE 是解题的关键. 13.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.14.C解析:C【解析】【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【详解】A 、(1,2)在第一象限,故本选项错误;B 、(﹣1,2)在第二象限,故本选项错误;C 、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.B解析:B【解析】【分析】将点(﹣2,1)代入y=kx即可求出k的值.【详解】解:∵正比例函数y=kx的图象经过点(﹣2,1),∴1=﹣2k,解得k=﹣12,故选:B.【点睛】本题考查了正比例函数,熟练掌握求正比例函数解析式的方法是解题的关键.二、填空题16.【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1解析:12a a>≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为: a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x 的值再进行分析17.1【解析】∵点P (a ,b )在一次函数y=x+1的图象上,∴b=a+1,∴b -a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a ,b )代入一次函数解析:1【解析】∵点P (a ,b )在一次函数y=x +1的图象上,∴b=a+1,∴b -a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a ,b )代入一次函数的解析式.18.-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出的值即可.【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴=(-3+2)2019=(-1)2019=解析:-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出()2019x y +的值即可. 【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴()2019x y +=(-3+2)2019=(-1)2019=-1. 故答案为:-1.【点睛】本题考查的是非负数的性质,熟知算术平方根具有非负性是解答此题的关键.19.<m<2.【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣2,2m﹣1)在第二象限,∴,解不等式①得,m<2,解不等式解析:12<m<2.【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P(m﹣2,2m﹣1)在第二象限,∴20210mm-<⎧⎨->⎩①②,解不等式①得,m<2,解不等式②得,m>12,所以,不等式组的解集是12<m<2,故答案为12<m<2.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).20.(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标解析:(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),故填:(-1,-3).【点睛】本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.21.-2【解析】【分析】根据平方根以及立方根的定义即可直接求解.【详解】解:∵(±2)2=8,∴8的平方根是:±2;∵(-2)3=-8,∴-8的立方根是:-2.故答案是:±2,解析:-2【解析】【分析】根据平方根以及立方根的定义即可直接求解.【详解】解:∵(±)2=8,∴8的平方根是:±;∵(-2)3=-8,∴-8的立方根是:-2.故答案是:±,-2.【点睛】本题主要考查了立方根的概念的运用.如果一个数x的立方等于a,即x的三次方等于a (x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a 叫做被开方数,3叫做根指数.22.(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.23.15【解析】【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分解析:15【解析】【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是:12×DE×BC=12×10×3=15,故答案为15.考点:角平分线的性质.24.108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB解析:108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB=AC,∴∠B=∠C,∵AB的垂直平分线分别交边AB,BC于D,E点,∴AE=BE,∴∠B=∠BAE,∵AC=EC,∴∠EAC=∠AEC,设∠B =x °,则∠EAC =∠AEC =2x °,则∠BAC =3x °,在△AEC 中,x +2x +2x =180,解得:x =36,∴∠BAC =3x °=108°,故答案为:108°.【点睛】此题主要考查等腰三角形的性质,解题关键是利用三角形内角和构建方程.25.50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50. 故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与解析:50【解析】【分析】利用数据的总数=该组的频数÷该组的频率解答即可.【详解】解:该班级的人数为:10÷0.2=50.故答案为:50.【点睛】本题考查了频数与频率,熟练掌握数据的总数与频数、频率的关系是解题的关键.三、解答题26.(1) 32m =,AB =(2) (0,2)Q . 【解析】【分析】(1)把点C 的横坐标代入正比例函数解析式,求得点C 的纵坐标,然后把点C 的坐标代入一次函数解析式即可求得m 的值,从而得到一次函数的解析式,则易求点A 、B 的坐标,然后根据勾股定理即可求得AB ;(2)由14OCQ BAO S S ∆∆=得到OQ 的长,即可求得Q 点的坐标. 【详解】(1)∵点C 在直线12y x =-上,点C 的横坐标为−3, ∴点C 坐标为3(3,)2-,又∵点C 在直线y =mx +2m +3上,∴33232m m -++=, ∴32m =, ∴直线AB 的函数表达式为362y x =+, 令x =0,则y =6,令y =0,则3602x +=,解得x =−4, ∴A (−4,0)、B (0,6),∴2246213AB =+=;(2)∵14OCQ BAO S S ∆∆=,∴111346242OQ ⨯⋅=⨯⨯⨯, ∴OQ =2,∴点Q 坐标为(0,2).【点睛】 考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大.27.(1)10;20;(2)3030y x =-(1 1.5)x ≤≤;(3)13小时或2小时 【解析】【分析】(1)根据题意和函数图象中的数据可以分别求得小丽和小明的速度;(2)根据(1)中的结果和图象中的数据可以求得点C 的坐标,从而可以解答本题 (3)根据题意分情况讨论即可求解.【详解】(1)从AB 可以看出:两人从相距30千米的两地相遇用了1个小时时间,则30V V +=小丽小明千米/时,小丽用了3个小时走完了30千米的全程,∴10V =小丽千米/时,∴20V =小明千米/时;故答案为:10;20;(2)C 点的意义是小明骑车从乙地到甲地用了3020 1.5÷=小时,此时小丽和小明的距离是()1.513015-⨯=∴C 点坐标是(1.5,15).设BC 对应的函数表达式为y kx b =+,则将点()10B ,,()1.5,15C 分别代入表达式得01.515k b k b +=⎧⎨+=⎩, 解得:3030k b =⎧⎨=-⎩, ∴BC 解析式为3030y x =-,(1 1.5)x ≤≤ (3)①当两人相遇前:1(3020)(2010)3-÷+=(小时); ②当两人相遇后:1.55102+÷=(小时). 答:小丽出发13小时或2小时时,两人相距20公里. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.28.(1)6;(2)3. 【解析】【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用二次根式的乘除法则计算,合并即可得到结果.【详解】解:(1)原式=5﹣2+3=6;(2)原式=3 =3. 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.(1)7秒;(2)当t 为2秒或225秒时,BPQ ∆是等腰三角形. 【解析】【分析】(1)分别计算P 、Q 到达终点的时间,根据当其中一点到达终点后两点都停止运动,取时间较短的;(2)分三种情况讨论,利用等腰三角形的定义可求解.【详解】解:(1)∵四边形ABCD 为矩形,6AB =,8AD =,∴6DC AB ==,8BC AD ==,∴点P 运动到终点所需(6+8)÷1=14秒,Q 运动到终点所需(6+8)÷2=7秒,∴当t =7时,两点停止运动;(2)①当t ≤4时,P 点在线段AB 上,Q 点在线段BC 上时,若Rt BPQ ∆是等腰三角形,则BP=BQ,即6-t=2t ,解得t=2秒;②当P 点在线段AB 上,Q 点在线段CD 上时,此时4<t≤6,如下图,若BPQ ∆是等腰三角形,则PQ=BQ,此时作PE ⊥DC,∵四边形ABCD 为矩形,∴∠C=∠ABC=90°,∴四边形BCEP 为矩形,∴EC=PB=6-t ,EP=BC ,∵PQ=BQ ,∴Rt △EPQ ≌Rt △CBQ (HL ),∴EQ=QC ,即6282t t -=-,解得225t =, ③当P 点在线段BC 上,Q 点在线段CD 上时,此时6<t≤7如下图,BP=t-6,QC=2t-8, ∵当6<t≤7时,QC-BP=2t-8-(t-6)=t-2>0,∴BQ>QP>QC>BP ,BPQ ∆不可能是等腰三角形,综上所述,当t 为2秒或225秒时,BPQ ∆是等腰三角形. 【点睛】本题考查矩形的性质和判定,全等三角形的性质和判定,一元一次方程的应用,等腰三角形的定义.掌握方程思想和分类讨论思想是解决此题的关键.30.(1)()41-,,()5,3;(2)画图见解析;(3)72【解析】【分析】(1)利用点的坐标的表示方法写出A 点和B 点坐标;(2)利用点的坐标平移规律写出点1A 、1B 、1C 的坐标,然后描点得到111A B C ∆; (3)用一个矩形的面积分别减去三个三角形的面积可得到△ABC 的面积.【详解】解:(1)()41-,;()5,3(2)如图所示:111A B C ∆即为所求;(3)37S 421222ABC ∆=⨯---=. 【点睛】 此题考查坐标与图形变化——平移,解题关键在于掌握在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.31.x=1【解析】试题分析:按照解分式方程的步骤求解即可.试题解析:去分母得,3x(x-2)-2(x+2)=3(x+2)(x-2)去括号得,3x2-6x-2x-4=3x2-12移项,合并同类项得:-8x=-8∴x=1经检验:x=1是原方程的根,考点:解分式方程.。
苏科版江苏省苏州市八年级期上册末数学试卷
苏科版江苏省苏州市八年级期上册末数学试卷一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )A .B .C .D .2.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .2 3.下列各点中在第四象限的是( )A .()2,3--B .()2,3-C .()3,2-D .()3,2 4.下列有关一次函数y =-3x +2的说法中,错误的是( )A .当x 值增大时,y 的值随着x 增大而减小B .函数图象与y 轴的交点坐标为C .当时,D .函数图象经过第一、二、四象限5.下列图形中的五边形ABCDE 都是正五边形,则这些图形中的轴对称图形有( )A .1个B .2个C .3个D .4个6.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1) B .(1,﹣4) C .(4,﹣1) D .(﹣1,4) 7.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A.甲的速度是4km/h B.乙的速度是10km/h C.乙比甲晚出发1h D.甲比乙晚到B地3h 8.下列图案属于轴对称图形的是()A. B.C.D.9.给出下列实数:227、25-、39、 1.44、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),其中无理数有()A.2个B.3个C.4个D.5个10.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣111.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C12.10的说法中,错误的是()A10B.3104<C.1010D10是10的算术平方根 13.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在x 轴,y 轴的正半轴上,点B (6,3),现将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P .则点P 的坐标为( )A .(94,3) B .(32,3) C .(125,3) D .(5,32) 14.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-15.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .15B .13C .58D .38二、填空题16.如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠C =70°,则∠B =_____°.17.等边三角形绕一点至少旋转_____°与自身完全重合.18.3x -有意义的x 的取值范围是__________.19.观察中国象棋的棋盘,以红“帅”(红方“5”的位置)为坐标原点建立平面直角坐标系后,发现红方“马”的位置可以用一个数对(2,4)来表示,则红“马”到达B 点后,B 点的位置可以用数对表示为__________.20.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E .若3,5BD DE ==,则线段EC 的长为______.21.若函数y=kx +3的图象经过点(3,6),则k=_____.22.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是_____.23.如图,△ABC 中,AB =AC ,AB 的垂直平分线分别交边AB ,BC 于D ,E 点,且AC =EC ,则∠BAC =_____.24.在平面直角坐标系中,已知线段AB 的两个端点坐标分别是A (-4,-1),B (1,1),将线段AB 平移后得到线段A B ''(点A 的对应点为A '),若点A '的坐标为(-2,2)则点B '的坐标为________________25.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =1,则三角形ACE 的面积为__.三、解答题26.如图是88⨯的正方形网格,每个小方格都是边长为1的正方形,在网格中建立平面直角坐标系xOy ,使点A 坐标为()2,3-,点B 坐标为()41-,.(1)试在图中画出这个直角坐标系;(2)标出点()1,1C ,连接AB 、AC ,画出ABC ∆关于y 轴对称的111A B C ∆.27.如图,在ABC ∆中,AD BC ⊥,15AB =,12AD =,13AC =.求BC 的长.28.(1)求x 的值:225x =(223(2)816-29.已如,在平面直角坐标系中,点A 的坐标为()6,0、点B 的坐标为(0,8),点C 在y 轴上,作直线AC .点B 关于直线AC 的对称点B ′刚好在x 轴上,连接CB '.(1)写出一点B ′的坐标,并求出直线AC 对应的函数表达式;(2)点D 在线段AC 上,连接DB 、DB '、BB ',当DBB ∆'是等腰直角三角形时,求点D 坐标;(3)如图②,在(2)的条件下,点P 从点B 出发以每秒2个单位长度的速度向原点O 运动,到达点O 时停止运动,连接PD ,过D 作DP 的垂线,交x 轴于点Q ,问点P 运动几秒时ADQ ∆是等腰三角形.30.如图,在△ABC中,AB=AC=2,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E.(1)当∠BDA=128°时,∠EDC=,∠AED=;(2)线段DC的长度为何值时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.31.如图,平面直角坐标系中,直线AB:y=kx+3(k≠0)交x轴于点A(4,0),交y轴正半轴于点B,过点C(0,2)作y轴的垂线CD交AB于点E,点P从E出发,沿着射线ED向右运动,设PE=n.(1)求直线AB的表达式;(2)当△ABP为等腰三角形时,求n的值;(3)若以点P为直角顶点,PB为直角边在直线CD的上方作等腰Rt△BPM,试问随着点P 的运动,点M是否也在直线上运动?如果在直线上运动,求出该直线的解析式;如果不在直线上运动,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意根据剩余油量等于油箱中的原有的油量减去用去的油量,列出y、x的关系式,然后根据一次函数的图象选择答案即可.【详解】解:∵油箱中有油4升,每小时耗油0.5升,∴y=4-0.5x,∵4-0.5x≥0,∴x≤8,∴x的取值范围是0≤x≤8,所以,函数图象为:故选:D.【点睛】本题考查一次函数的应用,一次函数的图象,比较简单,难点在于根据实际意义求出自变量x的取值范围.2.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.3.C解析:C【解析】【分析】根据第四象限点的坐标特点,在选项中找到横坐标为正,纵坐标为负的点即可.【详解】解:A.(-2,-3)在第三象限;B.(-2,3)在第二象限;C.(3,-2)在第四象限;D.(3,2)在第一象限;故选:C.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,用到的知识点为:点在第四象限内,那么横坐标大于0,纵坐标小于0.4.C解析:C【解析】【分析】根据一次函数的性质可以判断各个选项是否正确,从而可以解答本题.【详解】A、∵k=-3<0,∴当x值增大时,y的值随着x增大而减小,正确;B、函数图象与y轴的交点坐标为(0,2),正确;C、当x>0时,y<2,错误;D、∵k<0,b>0,图象经过第一、二、四象限,正确;故选C.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.5.D解析:D【解析】分析:直接利用轴对称图形的性质画出对称轴得出答案.详解:如图所示:直线l即为各图形的对称轴.,故选:D.点睛:此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.6.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.7.C解析:C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.8.D解析:D【解析】分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D有一条对称轴,由此即可得出结论.详解:A、不能找出对称轴,故A不是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、能找出一条对称轴,故D是轴对称图形.故选D.点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.9.B解析:B【解析】【分析】根据无理数是无限不循环小数,可得答案.【详解】解:−5,实数:227、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个02π、-0.1010010001…(每相邻两个1之间依次多一个0)共3个.故选:B .【点睛】 本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.10.D解析:D【解析】因为函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-可求出1m =-,所以点A (-1,2),然后把点A 代入23y ax =+解得1a =, 不等式23x ax ->+, 可化为23x x ->+,解不等式可得:1x <-,故选D.11.B解析:B【解析】【分析】利用判断三角形全等的方法判断即可得出结论.【详解】A 、利用SAS 判断出△PCA ≌△PCB ,∴CA=CB ,∠PCA=∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;B 、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C 、利用SSS 判断出△PCA ≌△PCB ,∴CA=CB ,∠PCA=∠PCB=90°,∴点P 在线段AB 的垂直平分线上,符合题意;D 、利用HL 判断出△PCA ≌△PCB ,∴CA=CB ,∴点P 在线段AB 的垂直平分线上,符合题意,故选B .【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.12.C解析:C【解析】试题解析:A 是无理数,说法正确;B 、3<4,说法正确;C 、10,故原题说法错误;D 是10的算术平方根,说法正确;13.A解析:A【解析】【分析】由折叠的性质和矩形的性质证出OP =BP ,设OP =BP =x ,则PC =6﹣x ,再用勾股定理建立方程9+(6﹣x )2=x 2,求出x 即可.【详解】∵将△OAB 沿OB 翻折至△OA ′B 位置,OA ′交BC 于点P ,∴∠A 'OB =∠AOB ,∵四边形OABC 是矩形,∴BC ∥OA ,∴∠OBC =∠AOB ,∴∠OBC =∠A 'OB ,∴OP =BP ,∵点B 的坐标为(6,3),∴AB =OC =3,OA =BC =6,设OP =BP =x ,则PC =6﹣x ,在Rt △OCP 中,根据勾股定理得,OC 2+PC 2=OP 2,∴32+(6﹣x )2=x 2,解得:x =154, ∴PC =6﹣154=94, ∴P (94,3), 故选:A .【点睛】此题主要考查折叠和矩形的性质以及利用勾股定理构建方程,熟练掌握,即可解题. 14.D解析:D【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x ≥-时,3kx b +≥,故选:D .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度15.C解析:C【解析】【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球,故摸到红球的概率为58,故选:C.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= mn,难度适中.二、填空题16.【解析】【分析】根据等腰三角形的性质得到∠ADC=70,再根据三角形外角的性质和等腰三角形可求∠B的度数.【详解】∵AC=AD,∠C=70,∴∠ADC=∠C=70,∵AD=DB,∴∠解析:【解析】【分析】根据等腰三角形的性质得到∠ADC=70︒,再根据三角形外角的性质和等腰三角形可求∠B 的度数.【详解】∵AC=AD,∠C=70︒,∴∠ADC=∠C=70︒,∵AD=DB,∴∠B=∠BAD,∴∠B=12∠ADC=35︒.【点睛】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.17.120【解析】分析:等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.详解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,所以,旋转角解析:120【解析】分析:等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.详解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,所以,旋转角为360°÷3=120°,故至少旋转120度才能与自身重合.故答案为:120.点睛:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.18.【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.故答案为【点睛】考查二次根式有意义的条件:二次根式的x解析:3【解析】【分析】根据以上信息可得到关于不等式x-3≥0,求解便能得到x的取值范围.【详解】根据题意,得x-3≥0,解得x≥3.【点睛】考查二次根式有意义的条件:二次根式的被开方数是非负数;19.【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B点的位置.【详解】解:∵红方“马”的位置可以用一个数对来表示,则建立平面直角坐标系,如图:∴B点的位解析:(1,6)【解析】【分析】根据题意,先确定坐标原点的位置,然后建立平面直角坐标系,即可得到B点的位置.【详解】解:∵红方“马”的位置可以用一个数对(2,4)来表示,则建立平面直角坐标系,如图:∴B点的位置为(1,6).故答案为:(1,6).【点睛】本题考查了坐标确定位置,理解平面直角坐标系的定义,准确确定出点的位置是解题的关键.20.2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC,∠ECF=∠FCB,由平行线的性质可得∠DFB=∠FBC,∠EFC=∠FCB,等量代换可得∠DFB=∠DBF,∠EFC=∠ECF,根 解析:2【解析】【分析】根据角平分线的定义可得∠DBF=∠FBC ,∠ECF=∠FCB ,由平行线的性质可得∠DFB=∠FBC ,∠EFC=∠FCB ,等量代换可得∠DFB=∠DBF ,∠EFC=∠ECF ,根据等角对等边可得到DF=DB ,EF=EC ,再由ED=DF+EF 结合已知即可求得答案.【详解】∵BF 、CF 分别是∠ABC 和∠ACB 的角平分线,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∵DE ∥ BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∴∠DFB=∠DBF ,∠EFC=∠ECF ,∴DF=DB ,EF=EC ,∵ED=DF+EF ,3,5BD DE ==,∴EF=2,∴EC=2故答案为:2【点睛】本题考查了等腰角形的判定与性质,平行线的性质,角平分线的定义等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.21.1【解析】∵函数y=kx+3的图象经过点(3,6),∴,解得:k=1.故答案为:1.解析:1【解析】∵函数y=kx+3的图象经过点(3,6),∴336k +=,解得:k=1.故答案为:1.22.15【解析】【分析】试题分析:过D 作DE ⊥BC 于E ,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D 作DE ⊥BC 于E ,∵∠A=90°,∴DA⊥AB,∵BD平分解析:15【解析】【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是:12×DE×BC=12×10×3=15,故答案为15.考点:角平分线的性质.23.108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB解析:108°【解析】【分析】连接AE,多次利用等腰三角形的等边对等角的性质得到相等的角,然后在三角形ABC中利用三角形内角和求得∠C的度数,从而求得答案.【详解】连接AE,如图所示:∵AB=AC,∴∠B=∠C,∵AB的垂直平分线分别交边AB,BC于D,E点,∴AE=BE,∴∠B=∠BAE,∵AC=EC,∴∠EAC=∠AEC,设∠B=x°,则∠EAC=∠AEC=2x°,则∠BAC=3x°,在△AEC中,x+2x+2x=180,解得:x=36,∴∠BAC=3x°=108°,故答案为:108°.【点睛】此题主要考查等腰三角形的性质,解题关键是利用三角形内角和构建方程.24.(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向解析:(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向右平移2个单位,再向上平移3个单位,∴点B′的坐标为(3,4).点睛:本题主要考查的是线段的平移法则,属于基础题型.线段的平移法则就是点的平移法则,属于基础题型.25..【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可. 【详解】解解析:12.【解析】【分析】由线段垂直平分线的性质可知EA=EB,由等边对等角的性质及外角的性质可得∠AEC=45°,易知△ACE为等腰直角三角形,可得CA长,利用三角形面积公式求解即可.【详解】解:∵DE垂直平分AB交BC于点E,∴EA=EB,∴∠EAB=∠B=22.5°,∴∠AEC=∠EAB+∠B=45°,∵∠C=90°,∴△ACE为等腰直角三角形,∴CA=CE=1,∴三角形ACE的面积=12×1×1=12.故答案为:12.【点睛】本题主要考查了线段垂直平分线的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等,等腰三角形的两底角相等,灵活利用这两个性质是解题的关键.三、解答题26.(1)详见解析;(2)详见解析.【解析】【分析】(1)由点A的坐标可建立平面直角坐标系;(2)先作出点C,再分别作出点A、B、C关于y轴的对称点,顺次连接即可得.【详解】如图所示;(2)如图所示.【点睛】本题考查了作图﹣轴对称变换,熟知轴对称变换的性质是解答此题的关键.27.BC=14.【解析】【分析】根据垂直的性质和勾股定理,先求出线段BD 的长度,再求出线段CD 的长度,最后求和即可.【详解】解:AD BC ⊥,90ADB ADC ∴∠=∠=︒∴在Rt ABD ∆中,222215129BD AB AD =-=-=∴在Rt ACD ∆中,222213125CD AC AD ∴=--=9514BC BD CD =+=+=∴【点睛】本题考查了垂直的性质,勾股定理,解决本题的关键是正确理解垂直的性质,熟练掌握勾股定理中三边之间的关系.28.(1)5x =±;(2)4【解析】【分析】(1)直接开平方,即可得到答案;(2)先根据二次根式的性质进行化简,然后合并同类项即可.【详解】解:(1)225x =,∴5x =±;(223(2)816-2244=-+=; 【点睛】本题考查了二次根式的性质,立方根,以及直接开平方法解方程,解题的关键是熟练掌握二次根式的性质进行解题.29.(1)(4,0)B '-,132y x =-+(2)点D 坐标为(2,2),(3)点P 运动时间为1秒秒或3.75秒. 【解析】【分析】(1)由勾股定理求出AB=10,即可求出A B '=10,从而可求出(4,0)B '-,设C (0,m ),在直角三角形COB '中,运用勾股定理可求出m 的值,从而确定点C 的坐标,再利用待定系数法求出AC 的解析式即可;(2)由AC 垂直平分BB '可证90BDB ∠'=°,过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F ,证明FDB EDB ∆∆'≌可得DE=DF ,设D (a ,a )代入132y x =-+求解即可; (3)分三种情况:①当DQ DA =时,②当AQ AD =时,③当QD QA =时,分类讨论即可得解:【详解】(1)(6,0),(0,8)A B ,6,8OA OB ∴==,90AOB ︒∠=,222OA OB AB ∴+=,22268AB ∴+=,10AB ∴=,点B ′、B 关于直线AC 的对称,AC ∴垂直平分BB ',,10CB CB AB AB ''∴===,(4,0)B '∴-,设点C 坐标为(0,)m ,则OC m =,8CB CB m '∴==-,在Rt COB ∆'中,COB ∠'=90°,222OC OB CB ''∴+=,2224(8),m m ∴+=-3m ∴=,∴点C 坐标为(0,3).设直线AC 对应的函数表达式为(0)y kx b k =+≠,把(6,0),(0,3)A C 代入,得603k b b +=⎧⎨=⎩, 解得123k b ⎧=-⎪⎨⎪=⎩,∴直线AC 对应的函数关系是为132y x =-+, (2)AC 垂直平分BB ',DB DB ='∴,BDB ∆'∴是等腰直角三角形,90BDB ∠'=∴° 过点D 作DE x ⊥轴于点E ,DF y ⊥轴于点F .90DFO DFB DEB '︒∴∠=∠=∠=,360EDF DFB DEO EOF ︒∠=-∠-∠-∠,90EOF ︒∠=,90EDF ︒∴∠=,EDF BDB '∴∠=∠,BDF EDB '∴∠=∠,FDB EDB ∴∆∆'≌,DF DE ∴=,∴设点D 坐标为(,)a a ,把点(,)D a a 代入132y x =-+, 得0.53a a =-+2a ∴=, ∴点D 坐标为(2,2),(3)同(2)可得PDF QDE ∠=∠又2,90DF DE PDF QDE ︒==∠=∠=PDF QDE ∴∆∆≌PF QE ∴=①当DQ DA =时,DE x ⊥∵轴,4QE AE ==∴ 4PF QE ∴==642BP BF PF ∴=-=-=∴点P 运动时间为1秒.②当AQ AD =时,(6,0),(2,2)A D20,AD ∴=204AQ ∴=-,204PF QE ∴==-6(204)1020BP BF PF ∴=-=--=-∴点P 运动时间为1020-秒.③当QD QA =时,设QE n =,则4QD QA n ==-在Rt DEQ ∆中,90DEQ ∠=°,222DE EQ DQ ∴+=2222(4), 1.5n n n ∴+=-∴=1.5PF QE ∴==6 1.57.5BP BF PF ∴=+=+=∴点P 运动时间为3.75秒.综上所述,点P 运动时间为1秒或102秒或3.75秒. 【点睛】此题涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键,第三问题要注意分类讨论,不要丢解.30.(1)16°;52°;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)当∠BDA 的度数为108°或72°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理和等腰三角形的性质,得到答案;(2)当DC =2时,利用∠DEC +∠EDC =144°,∠ADB +∠EDC =144°,得到∠ADB =∠DEC ,根据AB =DC =2,证明△ABD ≌△DCE ;(3)分DA =DE 、AE =AD 、EA =ED 三种情况,根据等腰三角形的性质、三角形内角和定理计算.【详解】(1)∵AB =AC ,∴∠C =∠B =36°.∵∠ADE =36°,∠BDA =128°.∵∠EDC =180°﹣∠ADB ﹣∠ADE =16°,∴∠AED =∠EDC +∠C =16°+36°=52°.故答案为:16°;52°;(2)当DC =2时,△ABD ≌△DCE ,理由:∵AB =2,DC =2,∴AB =DC .∵∠C =36°,∴∠DEC +∠EDC =144°.∵∠ADE =36°,∴∠ADB +∠EDC =144°,∴∠ADB =∠DEC ,在△ABD 和△DCE 中,ADB DEC B CAB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△DCE (AAS);(3)当∠BDA 的度数为108°或72°时,△ADE 的形状是等腰三角形,①当DA =DE 时,∠DAE =∠DEA =72°,∴∠BDA =∠DAE +∠C =70°+40°=108°;②当AD =AE 时,∠AED =∠ADE =36°,∴∠DAE =108°,此时,点D 与点B 重合,不合题意;③当EA =ED 时,∠EAD =∠ADE =36°,∴∠BDA =∠EAD +∠C =36°+36°=72°;综上所述:当∠BDA 的度数为108°或72°时,△ADE 的形状是等腰三角形.【点睛】本题考查的是等腰三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.31.(1)y =﹣34x +3;(2)n =56或8343;(3)在直线上,理由见解析 【解析】【分析】 (1)将点A 的坐标代入直线AB :y =kx +3并解得:k =﹣34,即可求解; (2)分AP =BP 、AP =AB 、AB =BP 三种情况,分别求解即可;(3)证明△MHP ≌△PCB (AAS ),求出点M (n +73,n +103),即可求解. 【详解】 (1)将点A 的坐标代入直线AB :y =kx +3并解得:k =﹣34, 故AB 的表达式为:y =﹣34x +3; (2)当y =2时,x =43,故点E (43,2),则点P (n +43,2), 而点A 、B 坐标分别为:(4,0)、(0,3),则AP 2=(43+n ﹣4)2+4;BP 2=(n +43)2+1,AB 2=25, 当AP =BP 时,(43+n ﹣4)2+4=(n +43)2+1,解得:n =56; 当AP =AB 时,同理可得:n=83+(不合题意值已舍去);当AB=BP时,同理可得:n=﹣43+26;故n=56或83+21或﹣43+26;(3)在直线上,理由:如图,过点M作MD⊥CD于点H,∵∠BPC+∠PBC=90°,∠BPC+∠MPH=90°,∴∠CPB=∠MPH,BP=PM,∠MHP=∠PCB=90°∴△MHP≌△PCB(AAS),则CP=MH=n+43,BC=1=PH,故点M(n+73,n+103),n+73+1= n+103,故点M在直线y=x+1上.【点睛】此题主要考查了平面直角坐标系中一次函数与全等三角形、等腰三角形的综合应用,熟练掌握,即可解题.。
苏科版江苏省苏州市八年级期上册末数学试卷
苏科版江苏省苏州市八年级期上册末数学试卷一、选择题1.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( )A .1-B .0C .1D .22.如图,在正方形网格中,若点(1,1)A ,点(3,2)C -,则点B 的坐标为( )A .(1,2)B .(0,2)C .(2,0)D .(2,1) 3.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0<4.分式221x x -+的值为0,则x 的值为( ) A .0B .2C .﹣2D .125.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( ) A .x>12B .12<x<32C .x<32D .0<x<326.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是( )A .B .C .D .7.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3) B .(1,﹣3) C .(2,2) D .(5,﹣1) 8.已知:△ABC ≌△DCB ,若BC=10cm ,AB=6cm ,AC=7cm ,则CD 为( ) A .10cm B .7cm C .6cm D .6cm 或7cm 9.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为( ) A .21B .22或27C .27D .21或2710.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =ADC 2B ∠=∠,则BC 的长为( )A .51-B .51+C .31-D .31+11.下列条件中,不能判断△ABC 是直角三角形的是( )A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:2:312.估计()-⋅1230246的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间13.已知A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点,m =(a ﹣c )(b ﹣d ),则当m <0时,k 的取值范围是( ) A .k <3B .k >3C .k <2D .k >2 14.下列各点中,在第四象限且到x 轴的距离为3个单位的点是( ) A .(﹣2,﹣3)B .(2,﹣3)C .(﹣4,3)D .(3,﹣4)15.下列四个图案中,不是轴对称图案的是( ) A .B .C .D .二、填空题16.若函数y =2x +3﹣m 是正比例函数,则m 的值为_____. 17.已知点P (a ,b )在一次函数y=x +1的图象上,则b ﹣a=_____.18.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.19.如图,一艘轮船由海平面上的A 地出发向南偏西45º的方向行驶50海里到达B 地,再由B 地向北偏西15º的方向行驶50海里到达C 地,则A 、C 两地相距____海里.20.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.21.当a =_______时,分式2123a a a +--的值为1.22.若等腰三角形的一个角为70゜,则其顶角的度数为_____ . 23.3的平方根是_________.24.在第二象限内的点P 到x 轴的距离是1,到y 轴的距离是4,则点P 的坐标是_________.25.某人一天饮水1679mL ,精确到100mL 是_____.三、解答题26.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米处,已知木杆原长25米,求木杆断裂处离地面多少米?27.A ,B 两地相距200千米,甲车从A 地出发匀速行驶到B 地,乙车从B 地出发匀速行驶到A 地.乙车行驶1小时后,甲车出发,两车相向而行.设行驶时间为x 小时(0≤x ≤5),甲、乙两车离A 地的距离分别为y 1,y 2千米,y 1,y 2与x 之间的函数关系图象如图1所示.根据图象解答下列问题: (1)求y 1,y 2与x 的函数关系式;(2)乙车出发几小时后,两车相遇?相遇时,两车离A 地多少千米?(3)设行驶过程中,甲、乙两车之间的距离为s 千米,在图2的直角坐标系中,已经画出了s 与x 之间的部分函数图象.①图中点P 的坐标为(1,m ),则m = ;②求s 与x 的函数关系式,并在图2中补全整个过程中s 与x 之间的函数图象.28.某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元, 每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x (件),销售甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式;(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润. 29.在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC 的三个顶点的坐标分别为(3,6)A -,(1,2)B -,(5,4)C - (1)作出三角形ABC 关于y 轴对称的三角形111A B C (2)点1A 的坐标为 .(3)①利用网络画出线段AB 的垂直平分线L ;②P 为直线上L 上一动点,则PA PC +的最小值为 .30.小江利用计算器计算15×15,25×25,…,95×95,有如下发现: 15×15=225=1×2×100+25, 25×25=625=2×3×100+25 35×35=1225=3×4×100+25,小江观察后猜测:如果用字母a 代表一个正整数,则有如下规律:(a×10+5)2=a (a+1)×100+25.但这样的猜测是需要证明之后才能保证它的正确性.请给出证明. 31.甲、乙两个工程队同时挖掘两段长度相等的隧道,如图是甲、乙两队挖掘隧道长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题:()1在前2小时的挖掘中,甲队的挖掘速度为 米/小时,乙队的挖掘速度为 米/小时. ()2①当26x <<时,求出y 乙与x 之间的函数关系式;②开挖几小时后,两工程队挖掘隧道长度相差5米?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可. 【详解】∵点P (a ,2a-1)在一、三象限的角平分线上, ∴a=2a-1, 解得a=1. 故选:C . 【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.2.C解析:C 【解析】 【分析】根据点(1,1)A ,点(3,2)C -建立平面直角坐标系,再结合图形即可确定出点B 的坐标. 【详解】解:∵点A 的坐标是:(1,1),点C 的坐标是:(3,-2), ∴点B 的坐标是:(2,0). 故选:C .【点睛】本题主要考查了点的坐标,点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.3.B解析:B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,∴k-2>0,∴k>2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y 随x的增大而增大;当k<0时,y随x的增大而减小.4.B解析:B【解析】【分析】直接利用分式的值为零,则分子为零进而得出答案.【详解】解:∵分式22 1x x -+的值为0,∴x﹣2=0,解得:x=2.故选:B.【点睛】此题主要考查了分式为零的条件,正确把握分式为零的条件是解题关键.5.B解析:B【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.6.D解析:D【解析】【分析】易得所求的图形与看到的图形关于水平的一条直线成轴对称,找到相应图形即可.【详解】解:如下图,∴正确的图像是D;故选择:D.【点睛】解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形,也可根据所给图形的特征得到相应图形.7.C解析:C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.8.C解析:C【解析】【分析】全等图形中的对应边相等.【详解】根据△ABC≌△DCB,所以AB=CD,所以CD=6,所以答案选择C项.【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.9.C解析:C【解析】【分析】分两种情况分析:当腰取5,则底边为11;当腰取11,则底边为5;根据三角形三边关系分析.【详解】当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=27.故选C.【点睛】考核知识点:等腰三角形定义.理解等腰三角形定义和三角形三边关系是关键.10.B解析:B 【解析】 【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1. 【详解】解:∵∠ADC 为三角形ABD 外角 ∴∠ADC=∠B+∠DAB ∵ADC 2B ∠=∠ ∴∠B=∠DAB∴BD AD ==在Rt △ADC 中,由勾股定理得:DC 1===∴1 故选B 【点睛】本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.11.B解析:B 【解析】 【分析】A 、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B 、根据角的比值求出各角的度数,便可判断出三角形的形状;C 、根据三角形的内角和为180度,即可计算出∠C 的值;D 、根据比值结合勾股定理的逆定理即可判断出三角形的形状. 【详解】A 、因为a :b :c=3:4:5,所以设a=3x ,b=4x ,c=5x ,则(3x )2+(4x )2=(5x )2,故为直角三角形,故A 选项不符合题意;B 、因为∠A :∠B :∠C=3:4:5,所以设∠A=3x ,则∠B=4x ,∠C=5x ,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B 选项符合题意;C 、因为∠A+∠B=∠C ,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C 选项不符合题意;D 、因为a :b :c=1:2,所以设a=x ,b=2x ,x ,则x 2+x )2=(2x )2,故为直角三角形,故D 选项不符合题意, 故选B. 【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.12.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,所以2<2-<3,所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.13.A解析:A【解析】【分析】将点A,点B坐标代入解析式可求k−3=b da c--,即可求解.【详解】∵A(a,b),B(c,d)是一次函数y=kx﹣3x+2图象上的不同两个点,∴b=ka﹣3a+2,d=kc﹣3c+2,且a≠c,∴k﹣3=b da c --.∵m=(a﹣c)(b﹣d)<0,∴k<3.故选:A.【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−3=b d a c --是关键,是一道基础题.14.B【解析】【分析】首先确定各点所在象限,再根据到x轴的距离为3个单位可得此点的纵坐标的绝对值为3,进而可得答案.【详解】A、(﹣2,﹣3)在第三象限,故此选项不合题意;B、(2,﹣3)在第四象限,到x轴的距离为3个单位,故此选项符合题意;C、(﹣4,3)在第二象限,故此选项不合题意;D、(3,﹣4)在第四象限,到x轴的距离为4个单位,故此选项不符合题意;故选:B.【点睛】此题主要考查根据象限判定坐标,熟练掌握,即可解题.15.B解析:B【解析】【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【详解】解:A.此图案是轴对称图形,不符合题意;B.此图案不是轴对称图形,符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是轴对称图形,不符合题意;故选:B.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题16.【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.本题考查的是正比例函数的定义,一般解析:【解析】【分析】直接利用正比例函数的定义得出答案.【详解】∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.【点睛】(k是常数,k≠0)的函数叫做正比本题考查的是正比例函数的定义,一般地形如y kx例函数.17.1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P (a,b)代入一次函数解析:1【解析】∵点P(a,b)在一次函数y=x+1的图象上,∴b=a+1,∴b-a=1,故答案为1.【点睛】本题主要考查了一次函数图象上点的坐标特征,解题的关键是把点P(a,b)代入一次函数的解析式.18..【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组的解是.解析:21x y =⎧⎨=⎩. 【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩. 故答案为21x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.19.50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上, ∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC 是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC 是等边三角形是解题的关键.20.(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点先向右平移个单位长度, 再向下平移个单位长度后所得到的点坐标为(-3+2,2-2),即(解析:(-1,0)【解析】【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a).21.-3【解析】【分析】根据题意列出方程,解出a 即可.【详解】解:根据题意得:=1,即可得到解得 :根据中 得到舍弃所以故答案为:-3.【点睛】此题主要考查了可化为一元解析:-3【解析】【分析】根据题意列出方程,解出a 即可.【详解】解:根据题意得:2123a a a +--=1, 即可得到 2123a a a +-=-解得 :3a =± 根据2123a a a +--中 30a -≠ 得到3a ≠ 舍弃3a =所以3a =-故答案为:-3.【点睛】此题主要考查了可化为一元二次方程的分式方程,关键是根据题意列出分式方程. 22.70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为:解析:70°或40°【解析】【分析】分顶角是70°和底角是70°两种情况求解即可.【详解】当70°角为顶角,顶角度数即为70°;当70°为底角时,顶角=180°-2×70°=40°.答案为: 70°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键. 23.【解析】试题解析:∵()2=3,∴3的平方根是.故答案为.解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为24.(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P到x轴的距离是1,到y轴的距离是4,解析:(-4,1).【解析】【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】∵第二象限的点P到x轴的距离是1,到y轴的距离是4,∴点P的横坐标是-4,纵坐标是1,∴点P的坐标为(-4,1).故答案为:(-4,1).【点睛】此题考查点的坐标,解题关键在于熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度.25.7×103ml【解析】【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL=1.679×103mL,所以1679mL精确到100mL是1.7×103mL.故答案为:1.解析:7×103ml【解析】【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL=1.679×103mL,所以1679mL精确到100mL是1.7×103mL.故答案为:1.7×103mL.【点睛】本题考查了近似数和有效数字,属于基本题型,掌握求解的方法是解题关键.三、解答题26.木杆断裂处离地面12米.【解析】【分析】设木杆断裂处离地面x米,根据勾股定理列出方程求解即可.【详解】解:设木杆断裂处离地面x米,由题意得:x2+52=(25−x)2,解得x=12,答:木杆断裂处离地面12米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合思想的应用.27.(1)y1=50x﹣50,y2=﹣40x+200;(2)乙车出发259小时后,两年相遇,相遇时,两车离A地8009千米;(3)①160;②当1≤x≤259时,s=250﹣90x;当259<x≤5时,s=90x﹣250;图象详见解析.【解析】【分析】(1)用待定系数法可求解析式;(2)将两个函数表达式组成方程组可求解;(3)①由点P表达的意义可求m的值;②分相遇前和相遇后两种情况分别求解析式.【详解】解:(1)如图1,甲的图象过点(1,0),(5,200),∴设甲的函数表达式为:y1=kx+b,∴2005k bk b =+⎧⎨=+⎩解得:5050 kb=⎧⎨=-⎩∴甲的函数表达式为:y1=50x﹣50,如图1,乙的图象过点(5,0),(0,200),∴设乙的函数表达式为:y2=mx+200,∴0=5m+200∴m=﹣40,∴乙的函数表达式为:y2=﹣40x+200,(2)由题意可得:505040200y xy x=-⎧⎨=-+⎩解得:2598009xy⎧=⎪⎪⎨⎪=⎪⎩答:乙车出发259小时后,两年相遇,相遇时,两车离A地8009千米.(3)①由题意可得乙先出发1小时,且速度为40千米/小时,∴m=200﹣40×1=160,故答案为160;②当1≤x≤259时,s=200﹣40×1﹣(40+50)(x﹣1)=250﹣90x;当259<x≤5时,s=90x﹣250;图象如下:【点睛】本题考查了一次函数的应用,用待定系数法求解析式,理解函数图象是本题的关键.28.(1) y=-0.1x+100 (2) 该商场销售甲50件,乙150件时,能获得最大利润.【解析】【分析】(1) 根据题意即可列出一次函数,化简即可;(2) 设甲的件数为x,那么乙的件数为:200-x,根据题意列出不等式0.6x+0.8(200-x)≤150,解出,根据y=-0.1x+100的性质,即可求出.【详解】解:(1)由题意可得:y=0.4x+0.5×(200-x)得到:y=-0.1x+100所以y与x之间的函数表达式为y=-0.1x+100(2)设甲的件数为x,那么乙的件数为:200-x,依题意可得:0.6x+0.8(200-x)≤150由y=-0.1x+100得到y 随x 的增大而减小所以当利润最大时,x 值越小利润越大所以甲产品x=50 乙产品200-x=150答:该商场销售甲50件,乙150件时,能获得最大利润.【点睛】此题主要考查了一次函数及一元一次不等式,熟练掌握实际生活转化为数学模式是解题的关键.29.(1)见解析(2)点1A 的坐标为(3,6);(3)①见解析②20.【解析】【分析】(1)首先确定A 、B 、C 三点关于y 轴的对称点位置A 1、B 1、C 1,再连接即可得到△ABC 关于y 轴对称的△A 1B 1C 1;(2)根据平面直角坐标系写出点1A 的坐标;(3)①根据垂直平分线的定义画图即可;②根据轴对称的性质以及两点之间线段最短得PA PC +的最小值为BC 的长,再由勾股定理求解即可.【详解】(1)如图所示:(2)点1A 的坐标为(3,6);(3)①如图所示:②PA PC +的最小值为BC 的长,即2224+=20【点睛】此题主要考查了作图--轴对称变换,以及三角形的面积,关键是掌握几何图形都可看作是由点组成,画一个图形的轴对称图形时,就是确定一些特殊的对称点.30.见解析【解析】根据完全平方公式将左边展开,再将前两项分解因式即可得证.【详解】解:左边2(105)a =+210010025a a =++(1)10025a a =+⨯+=右边,2(105)(1)10025a a a ∴⨯+=+⨯+.【点睛】本题主要考查了完全平方公式的运用,解题的关键是掌握完全平方公式和因式分解的能力.31.(1)10;15; (2) ①520z y x =+;②挖掘1小时或3小时或5小时后两工程队相距5米.【解析】【分析】(1)分别根据速度=路程除以时间列式计算即可得解;(2)①设,y kx b =+乙 然后利用待定系数法求一次函数解析式解答即可;②求出甲队的函数解析式,然后根据-=5-=5y y y y 甲乙乙甲, 列出方程求解即可.【详解】()1甲队:60610÷=米/小时,乙队: 30215÷=米/小时:故答案为:10,15;()2①当26x <<时,设z y kx b =+,则230650k b k b +=⎧⎨+=⎩, 解得520k b =⎧⎨=⎩, ∴当26x <<时,520z y x =+;②易求得:当02x ≤≤时,15z y x =, 当26x ≤≤时,520z y x =+;当06x ≤≤时=10y x 甲,由()10520x x =+解得4x =,1° 当02x ≤≤, 15105x x -=,解得:1x =,2°当24x <≤,()520105x x +-=解得:3x =,3°当46x <≤,()105205x x -+=,解得: 5x =答:挖掘1小时或3小时或5小时后,两工程队相距5米.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一-次函数解析式,准确识图获取必要的信息是解题的关键,也是解题的难点.。
苏科版苏州市八年级上学期期末数学试卷 (解析版)
苏科版苏州市八年级上学期期末数学试卷 (解析版) 一、选择题1.低碳环保理念深入人心,共享单车已经成为出行新方式下列共享单车图标中,是轴对称图形的是( )A .B .C .D .2.下列长度的三条线段能组成直角三角形的是( )A .3,4,4B .3,4,5C .3,4,6D .3,4,8 3.已知等腰三角形的两边长分别为3和4,则它的周长为( )A .10B .11C .10或11D .7 4.下列根式中是最简二次根式的是( )A .23B .3C .9D .125.下列图案中,不是轴对称图形的是( )A .B .C .D .6.估计()-⋅1230246的值应在( ) A .1和2之间 B .2和3之间C .3和4之间D .4和5之间 7.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )A .①②③B .①②④C .①③④D .①②③④8.下列各点中,在函数y=-8x 图象上的是( ) A .(﹣2,4) B .(2,4)C .(﹣2,﹣4)D .(8,1)9.在直角坐标系中,将点(-2, -3)向左平移2个单位长度得到的点的坐标是( ) A .(-2,-5)B .(-4,-3)C .(0,-3)D .(-2,1) 10.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( )A .0.001cmB .0.0001cmC .0.00001cmD .0.000001cm 11.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 12.点(2,-3)关于原点对称的点的坐标是( ) A .(-2,3)B .(2,3)C .(-3,-2)D .(2,-3) 13.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( )A .7cmB .9cmC .9cm 或12cmD .12cm 14.估算x =5值的大小正确的是( )A .0<x <1B .1<x <2C .2<x <3D .3<x <415.下列各数:4,﹣3.14,227,2π,3无理数有( ) A .1个 B .2个 C .3个 D .4个二、填空题16.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b <ax +3的解集为_____.17.计算112242⨯+=__________. 18.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN .连接FN ,并求FN 的长__________.19.点(2,1)P 关于x 轴对称的点P'的坐标是__________.20.如图,在ABC 中,∠A =60°,D 是BC 边上的中点,DE ⊥BC ,∠ABC 的平分线BF 交DE 于ABC 内一点P ,连接PC ,若∠ACP =m °,∠ABP =n °,则m 、n 之间的关系为______.21.在△ABC 中,AB =AC =5,BC =6,若点P 在边AB 上移动,则CP 的最小值是_____.22.在ABC 中,,AB AC BD =是高,若40ABD ∠=︒,则C ∠的度数为______.23.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.24.如图,在Rt ABC ∆中,90B =∠,6AB =,8BC =,将ABC ∆折叠,使点B 恰好落在斜边AC 上,与点'B 重合,AE 为折痕,则'EB 的长度是__________.25.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.三、解答题26.小红驾车从甲地到乙地,她出发第xh 时距离乙地ykm ,已知小红驾车中途休息了1小时,图中的折线表示她在整个驾车过程中y 与x 之间的函数关系.(1)B 点的坐标为( , );(2)求线段AB 所表示的y 与x 之间的函数表达式;(3)小红休息结束后,以60km/h 的速度行驶,则点D 表示的实际意义是 .27.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米处,已知木杆原长25米,求木杆断裂处离地面多少米?28.已知2y -与x 成正比例,当2x =时,6y =. (1)求y 与x 的函数关系式;(2)当6y >时,求x 的取值范围.29.如图,已知ABC ∆各顶点的坐标分别为()3,2A -,()4,3B --,()1,1C --,直线l 经过点()1,0-,并且与y 轴平行,111A B C ∆与ABC ∆关于直线l 对称.(1)画出111A B C ∆,并写出点1 A 的坐标 . (2)若点()P m n ,是ABC ∆内一点,点1P 是111 A B C ∆内与点P 对应的点,则点1P 坐标 .30.老师在黑板上写了一个代数式的正确计算结果,随后用“黑板擦”遮住原代数式的一部分,如图:232222x x x x x +⎫-÷=⎪-+-⎭ (1)求被“黑板擦”遮住部分的代数式,并将其化简;(2)原代数式的值能等于1-吗?请说明理由.31.已知一次函数y =(1﹣2m )x +m +1及坐标平面内一点P (2,0);(1)若一次函数图象经过点P (2,0),求m 的值;(2)若一次函数的图象经过第一、二、三象限;①求m 的取值范围;②若点M (a ﹣1,y 1),N (a ,y 2),在该一次函数的图象上,则y 1 y 2(填“>”、”=”、”<”).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据轴对称图形的概念求解.【详解】A 、是轴对称图形.故选项正确;B 、不是轴对称图形.故选项错误;C 、不是轴对称图形.故选项错误;D 、不是轴对称图形.故选项错误.故选:A .【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.2.B解析:B【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、∵2223+44≠,∴三条线段不能组成直角三角形,错误;B、∵2223+4=5,∴三条线段能组成直角三角形,正确;C、∵222≠,∴三条线段不能组成直角三角形,错误;3+46D、∵222≠,∴∴三条线段不能组成直角三角形,错误;3+48故选:B.【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.3.C解析:C【解析】【分析】可分3是腰长与底边,两种情况讨论求解即可.【详解】解:①3是腰长时,三角形的三边分别为:3、3、4,能组成三角形,周长=3+3+4=10,②3是底边时,三角形的三边分别为3、4、4,能组成三角形,周长=3+4+4=11,∴三角形的周长为10或11.故选择:C.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键,难点在于要分情况讨论.4.B解析:B【解析】【分析】【详解】ABC,故此选项错误;D=故选B.考点:最简二次根式.5.D解析:D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意.故选:D.【点睛】此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.6.B解析:B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】(==2,而,-<3,所以2<2所以估计(2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.7.A解析:A【解析】【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m 的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.8.A解析:A【解析】【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上【详解】解:-2×4=-8故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.9.B解析:B【解析】【分析】直接利用平移的性质得出答案.【详解】(−2,−3)向左平移2个单位长度得到的点的坐标是:(−4,−3).故选B.【点睛】考查点的平移,掌握上下改变纵坐标,左右横左标变化是解题的关键.10.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5⨯=0.00008,810-∴近似数5⨯是精确到十万分位,即0.00001.810-故选:C.此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.11.D解析:D【解析】=,错误.画函数的图象,选项A,点(1,0)代入函数,01由图可知,B,C错误,D,正确. 选D.12.A解析:A【解析】【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数,∴点(2,-3)关于原点对称的点的坐标是(-2,3).故选A.【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.13.D解析:D【解析】【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.【详解】解:当三边是2cm,2cm,5cm时,不符合三角形的三边关系;当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,此时周长是5+5+2=12cm.故选:D.考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.14.C解析:C【解析】【分析】.【详解】∴23,故选:C.【点睛】此题主要考查无理数的估值,熟练掌握,即可解题.15.B解析:B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】无理数有2π2个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.二、填空题16.x<1【解析】【分析】当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;解析:x<1【解析】【分析】当直线y=x+b 的图象在直线y=ax+3的上方时,不等式x+b >ax+3成立;【详解】由于两直线的交点横坐标为:x=1,观察图象可知,当x<1时,x+b<ax+3;故答案为x<1.考点: 一次函数与一元一次不等式.17.【解析】【分析】先计算乘法,然后合并同类二次根式即可.【详解】解:.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.解析:【解析】【分析】先计算乘法,然后合并同类二次根式即可.【详解】 1122426.【点睛】本题考查了二次根式的化简求值,熟悉二次根式的计算法则是解题的关键.18.【解析】【分析】设,则,由翻折的性质可知,在Rt△ENC 中,由勾股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt△ADN 中由勾股定理求得AN 的长即可.【详解】【解析】【分析】设NC x =,则8DN x ,由翻折的性质可知8EN DN x ==-,在Rt △ENC 中,由勾股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt △ADN 中由勾股定理求得AN 的长即可.【详解】解:如图所示,连接AN ,设NC x =,则8DNx , 由翻折的性质可知:8EN DN x ==-,在Rt ENC 中, 有222EN EC NC =+,()22284x x -=+,解得:3x =,即5DN cm .在Rt 三角形ADN 中, 22228589AN AD ND , 由翻折的性质可知89FNAN .【点睛】 本题主要考查的是翻折的性质、勾股定理,利用勾股定理的到关于x 的方程是解题的关键.19.(2,-1)【解析】【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.解析:(2,-1)【解析】【分析】关于x 轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点(2,1)P 关于x 轴对称的点P'的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称. 理解:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;20.m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【解析:m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【详解】解:∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,∠+∠+∠=︒180,A ABC ACB∴∠PBC+∠PCB+∠ABP=120°-m°,∴3∠ABP=120°-m°,∴3n°+m°=120°,故答案为:m+3n=120.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.21.8【解析】【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【详解】解:如图,作AF⊥BC于点F,作解析:8【解析】【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【详解】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,∴S△ABC=12AB•PC=12BC•AF=12×5CP=12×6×4得:CP=4.8故答案为4.8.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知勾股定理及三角形的面积公式的运用. 22.65°或25°【解析】【分析】分两种情况:①当为锐角三角形;②当为钝角三角形.然后先在直角△ABD 中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度解析:65°或25°【解析】【分析】分两种情况:①当ABC为锐角三角形;②当ABC为钝角三角形.然后先在直角△ABD中,利用三角形内角和定理求得∠BAC的度数,然后利用等边对等角以及三角形内角和定理求得∠C的度数.【详解】解:①当ABC为锐角三角形时:∠BAC=90°-40°=50°,∴∠C=12(180°-50°)=65°;②当ABC为钝角三角形时:∠BAC=90°+40°=130°,∴∠C=12(180°-130°)=25°;故答案为:65°或25°.【点睛】此题考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形性质是解题的关键.23.或【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,解析:1,33⎛⎫⎪⎝⎭或533⎛⎫⎪⎝⎭,【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13;当y=﹣3时,﹣3x+2=﹣3,解得x=53;∴点P的坐标为(﹣13,3)或(53,﹣3).故答案为(﹣13,3)或(53,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.24.3【解析】【分析】首先根据折叠可得BE=EB′,AB′=AB=6,然后设BE=EB′=x,则EC=8-x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理列方程即可算解析:3【解析】【分析】首先根据折叠可得BE=EB′,AB′=AB=6,然后设BE=EB′=x,则EC=8-x,在Rt△ABC中,由勾股定理求得AC的值,再在Rt△B′EC中,由勾股定理列方程即可算出答案.【详解】解:根据折叠可得BE=EB′,AB′=AB=6,设BE=EB′=x,则EC=8-x,∵∠B=90°,AB=6,BC=8,∴在Rt△ABC中,由勾股定理得,AC=10,∴B′C=10-6=4,在Rt△B′EC中,由勾股定理得,x2+42=(8-x)2,解得x=3,故答案为:3.【点睛】此题主要考查了翻折变换,以及勾股定理,关键是分析清楚折叠以后哪些线段是相等的.直角三角形两条直角边的平方和等于斜边的平方.25.11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222345,CD CE DE=+=+=∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.三、解答题26.(1)点B的坐标为(3,120);(2)y与x之间的函数表达式:y=-100x+420;(3)D点表示此时小红距离乙地0km,即小红到达乙地.【解析】分析:(1)由图象可知C点坐标,根据小红驾车中途休息了1小时可得B点坐标;(2)利用待定系数法,由A、B两点坐标可求出函数关系式;(3)D点表示小红距离乙地0km,即小红到达乙地.本题解析:(1)由图象可知,C(4,120),∵小红驾车中途休息了1小时,∴点B的坐标为(3,120);(2)设y与x之间的函数表达式为y=kx+b.根据题意,当x=0时,y=420;当x=3时,y=120.∴42001203k bk b=+⎧⎨=+⎩,∴100420kb=-⎧⎨=⎩,∴y与x之间的函数表达式:y=-100x+420.(3)D点表示此时小红距离乙地0km,即小红到达乙地.点睛:本题主要考查学生结合题意读懂图象的基本能力和待定系数法求函数表达式的技能,属基础题.27.木杆断裂处离地面12米.【解析】【分析】设木杆断裂处离地面x米,根据勾股定理列出方程求解即可.【详解】解:设木杆断裂处离地面x米,由题意得:x2+52=(25−x)2,解得x=12,答:木杆断裂处离地面12米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合思想的应用.28.(1) y=2x+2 (2) 6y>时,x>2【解析】【分析】(1) 根据正比例函数的定义设y-2=kx(k≠0)然后把x,y的值代入求出k,即可求出解析式;(2)根据 (1)中的解析式,判断即可.【详解】(1)∵y-2与x成正比例函数∴设 y-2=kx(k≠0)将x=2,y=6 代入得,2k=6-2 k=2∴ y-2=2x∴y=2x+2(2)根据函数解析式 y=2x+2得到y 随x 的增加而增大∵ y=6时 x=2∴6y >时,x >2.【点睛】此题主要考查了待定系数法求一次函数解析式及判断函数取值范围,熟练掌握相关概念是解题的关键.29.(1) (1,2) ; (2) ()2,m n --.【解析】【分析】(1)根据轴对称的性质找到各点的对应点,然后顺次连接即可,画出图形即可直接写出坐标.(2)根据轴对称的性质可以直接写出1P .【详解】(1)如图所示:直接通过图形得到1A (1,2)(2) 由题意可得:由于()P m n ,与1P 关于x=-1 对称所以()12,P m n --.【点睛】此题主要考查了轴对称作图的知识,注意掌握轴对称的性质,找准各点的对称点是关键.30.(1)232x x --;(2)原代数式的值不能等于1-;理由详见解析 【解析】【分析】(1)设被遮住的部分为A ,进而通过分式的化简即可得解;(2)令212x x +=--,求得x 的值,进行判断即可的解.【详解】(1)设被遮住的部分为A,即232 ()222x xAx x x+ -÷=-+-∴2232323+=222222 x x x xAx x x x x x+-=⋅-=-+----;(2)令212xx+=--,解得0x=,当0x=时,02xx=+∵除数不能为0∴原代数式的值不能等于1-.【点睛】本题主要考查了分式的化简及分式的意义,熟练掌握分式的相关计算是解决本题的关键.31.(1)m的值是1;(2)①﹣1<m<12;②<【解析】【分析】(1)根据一次函数y=(1﹣2m)x+m+1图象经过点P(2,0),可以求得m的值;(2)①一次函数y=(1﹣2m)x+m+1的图象经过第一、二、三象限,可以得到关于m的不等式,从而可以求得m的取值范围;②根据一次函数y=(1﹣2m)x+m+1的图象经过第一、二、三象限和一次函数的性质,可以判断y1和y2的大小关系.【详解】(1)∵一次函数y=(1﹣2m)x+m+1图象经过点P(2,0),∴0=(1﹣2m)×2+m+1,解得,m=1,即m的值是1;(2)①∵一次函数y=(1﹣2m)x+m+1的图象经过第一、二、三象限,∴12010mm->⎧⎨+>⎩,解得,﹣1<m<12;②∵一次函数y=(1﹣2m)x+m+1的图象经过第一、二、三象限,∴1﹣2m>0,∴该函数y随x的增大而增大,∵点M(a﹣1,y1),N(a,y2)在该一次函数的图象上,a﹣1<a,∴y1<y2,故答案为:<.【点睛】此题主要考查一次函数性质的综合应用,熟练掌握,即可解题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版苏州市八年级期上册末数学试卷一、选择题1.如图,△ABC ≌△ADE ,∠B=20°,∠E=110°,则∠EAD 的度数为( )A .80°B .70°C .50°D .130°2.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .1,2,5B .3,4,5C .3,6,9D .23,7,613.下列四个实数中,属于无理数的是( ) A .0 B .9C .23D .124.在3π-,3127-,7,227-,中,无理数的个数是( ) A .1个B .2个C .3个D .4个5.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( ) A . B .C .D .6.下列图形是轴对称图形的是( )A .B .C .D .7.如图,在△ABC 中,分别以点A ,B 为圆心,大于12AB 长为半径画弧,两弧相交于点E ,F ,连接AE ,BE ,作直线EF 交AB 于点M ,连接CM ,则下列判断不正确...的是A .AM =BMB .AE =BEC .EF ⊥ABD .AB =2CM 8.64的立方根是( )A .4B .±4C .8D .±89.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )A .①②③B .①②④C .①③④D .①②③④ 10.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cm B .0.0001cmC .0.00001cmD .0.000001cm11.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x >12.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .413.如果0a b -<,且0ab <,那么点(),a b 在( ) A .第一象限B .第二象限C .第三象限D .第四象限14.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是( )A .SSSB .SASC .AASD .ASA15.估算x =5值的大小正确的是( ) A .0<x <1B .1<x <2C .2<x <3D .3<x <4二、填空题16.如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,OC =__.17.如图,在平面直角坐标系中,长方形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 、y 轴的正半轴上:OA =3,OC =4,D 为OC 边的中点,E 是OA 边上的一个动点,当△BDE 的周长最小时,E 点坐标为_____.18.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 19.在一个不透明的袋子中装有2个黄球和3个红球,每个除颜色外完全相同,将球摇匀从中任取一球:①恰好取出白球;②恰好取出红球;③恰好取出黄球,根据你的判断,将这些事件按发生的可能性从小到大顺序排列___________(只需填写序号).20.如图,在Rt △ABO 中,∠OBA=90°,AB=OB ,点C 在边AB 上,且C (6,4),点D 为OB 的中点,点P 为边OA 上的动点,当∠APC=∠DPO 时,点P 的坐标为 ____.21.如图,AD 是ABC ∆的角平分线,DE AB ⊥于E ,若18AB =,12AC =,ABC ∆的面积等于30,则DE =_______.22.在平面直角坐标系中,(2,3)A -、(4,4)B ,点P 是x 轴上一点,且PA PB =,则点P 的坐标是__________.23. 在实数范围内分解因式35x x -=___________. 24.36的算术平方根是 .25.一个等腰三角形的两边分别是4和9,则这个等腰三角形的周长是_________.三、解答题26.已知一次函数的图象经过点P (0,-2),且与两条坐标轴截得的直角三角形的面积为6,求这个一次函数的解析式.27.已知y 是x 的函数,自变量x 的取值范围是x >0,下表是y 与x 的几组对应值.x ··· 1 2 3 5 7 9 ··· y···1.983.952.631.581.130.88···小腾根据学习一次函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出: ①x =4对应的函数值y 约为________; ②该函数的一条性质:__________________.28.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.29.先化简,再求值22333x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中2x =-30.如图,己知,A (0, 4),B (t ,0)分别在y 轴,x 轴上,连接AB ,以AB 为直角边分别作等腰Rt △ABD 和等腰Rt △ABC .直线BC 交y 轴于点E. 点G (-2,3)、H (-2,1)在第二象限内.(1)当t =-3时,求点D的坐标.(2)若点G、H位于直线AB的异侧,确定t的取值范围.(3)①当t取何值时,△ABE与△ACE的面积相等.②在①的条件下,在x轴上是否存在点P,使△PCB为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.31.某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)6045租金(元/辆)550450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据全等的性质知∠D=∠B=20°,再根据三角形的内角和即可求出∠EAD.【详解】∵△ABC≌△ADE,∠B=20°,∠E=110°,∴∠D=∠B=20°,∴∠EAD=180°-20°-110°=50°,故选C. 【点睛】本题是对三角形全等知识的考查,熟练掌握全等知识及三角形的内角和是解决本题的关键.2.C解析:C 【解析】 【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可. 【详解】解:A 、∵12+222,故A 选项能构成直角三角形; B 、∵32+42=52,故B 选项能构成直角三角形; C 、∵32+62≠92,故C 选项不能构成直角三角形;D 、∵72+()22,故D 选项能构成直角三角形. 故选:C . 【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.D解析:D 【解析】 【分析】根据无理数的定义,即可得到答案. 【详解】=D 正确;03=,23是有理数,故ABC 错误; 故选择:D. 【点睛】本题考查了无理数的定义,解题的关键是熟记定义.4.B解析:B 【解析】 【分析】根据无理数的定义判断即可. 【详解】解:3π-1-3,227-可以化成分数,不是无理数.【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.5.B解析:B 【解析】 【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故错误; B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确; C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误; D .y kx =过原点,而图中两条直线都不过原点,故错误. 故选 B 【点睛】此题主要考查了一次函数图像的性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小;常数项为0,函数过原点.6.B解析:B 【解析】 【分析】根据轴对称图形的概念,一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形. 据此进行选择即可. 【详解】根据轴对称图形定义,图形A 、C 、D 中不是轴对称图形,而B 是轴对称图形. 故选B 【点睛】本题主要考查了轴对称图形的辨识,解答本题的关键是熟练掌握轴对称图形的概念.7.D解析:D 【解析】 【分析】由作图可知EF 是AB 的垂直平分线,据此对各项进行分析可得答案.解:由作图可知EF是AB的垂直平分线,所以AM=BM,AE=BE,EF⊥AB,即选项A,B,C均正确,CM是AB边上的中线,AB=2CM错误.故选:D【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.8.A解析:A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.9.A解析:A【解析】【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m 的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.10.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.∵5810-⨯=0.00008,∴近似数5810-⨯是精确到十万分位,即0.00001. 故选:C . 【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.11.A解析:A 【解析】 【分析】由图知:一次函数y=kx+b 的图象与y 轴的交点为(0,2),且y 随x 的增大而增大,由此得出当x >0时,y >2,进而可得解. 【详解】根据图示知:一次函数y=kx+b 的图象与y 轴的交点为(0,2),且y 随x 的增大而增大; 即当x >0时函数值y 的范围是y >2;因而当不等式kx+b-2>0时,x 的取值范围是x >0. 故选:A . 【点睛】本题主要考查的是一次函数与一元一次不等式,在解题时,认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.12.C解析:C 【解析】 【分析】根据轴对称图形的概念求解. 【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个, 故选:C . 【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.13.B解析:B 【解析】 【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵0a b -<,且0ab <,∴a 0,0b <>∴点(),a b 在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).14.D解析:D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA .故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.15.C解析:C【解析】【分析】.【详解】∴23,故选:C .【点睛】此题主要考查无理数的估值,熟练掌握,即可解题.二、填空题16..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB 为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC2=AC2,即32+a2=22+(4﹣a)2,化简得8a=11,解得a=11 8.故OC=11 8,故答案为:11 8.【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.17.(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x 轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD解析:(1,0)【解析】【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE= D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:342k bb+=⎧⎨=-⎩,解得,22kb=⎧⎨=-⎩,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.18..【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.解析:x2≠.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.19.①③②【解析】【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】解:根据题意,袋子中共5个球, 2个黄球和3个红球,故将球摇匀,从中解析:①③②【解析】【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】解:根据题意,袋子中共5个球, 2个黄球和3个红球,故将球摇匀,从中任取1球,则①恰好取出白球的可能性为0,②恰好取出红球的可能性为35,③恰好取出黄球的可能性为25,故这些事件按发生的可能性从小到大的顺序排列是①③②.故答案为:①③②.【点睛】本题主要考查了可能性大小计算,即概率的计算方法,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.20.(,)【解析】【分析】根据题意,△ABO为等腰直角三角形,由点C坐标为(6,4),可知点B为(6,0),点A为(6,6),则直线OA为,作点D关于OA的对称点E,点E 恰好落在y轴上,连接CE,解析:(185,185)【解析】【分析】根据题意,△ABO为等腰直角三角形,由点C坐标为(6,4),可知点B为(6,0),点A为(6,6),则直线OA为y x=,作点D关于OA的对称点E,点E恰好落在y轴上,连接CE,交OA于点P,则点E坐标为(0,3),然后求出直线CE的解析式,联合y x=,即可求出点P的坐标.【详解】解:在Rt△ABO中,∠OBA=90°,AB=OB,∴△ABO是等腰直角三角形,∵点C在边AB上,且C(6,4),∴点B为(6,0),∴OB=6=AB,∴点A坐标为:(6,6),∴直线OA的解析式为:y x=;作点D关于OA的对称点E,点E恰好落在y轴上,连接CE,交OA于点P,∴∠APC=∠OPE=∠DPO,OD=OE,∵点D是OB的中点,∴点D的坐标为(3,0),∴点E的坐标为:(0,3);设直线CE的解析式为:y kx b=+,把点C、E代入,得:643k bb+=⎧⎨=⎩,解得:163kb⎧=⎪⎨⎪=⎩,∴直线CE的解析式为:136y x=+;∴136y xy x⎧=+⎪⎨⎪=⎩,解得:185185xy⎧=⎪⎪⎨⎪=⎪⎩,∴点P的坐标为:(185,185);故答案为:(185,185).【点睛】本题考查了一次函数的图像和性质,等腰直角三角形的性质,以及线段动点问题,正确的找到P点的位置是解题的关键.21.2【解析】【分析】延长AC,过D点作DF⊥AF于F,根据角平分线的性质得到DE=DF,由即可求出. 【详解】解:如图延长AC,过D点作DF⊥AC于F∵是的角平分线,DE⊥AB,解析:2【解析】【分析】延长AC ,过D 点作DF ⊥AF 于F ,根据角平分线的性质得到DE=DF,由ABC ABD ACDSS S =+即可求出.【详解】解:如图延长AC ,过D 点作DF ⊥AC 于F∵AD 是ABC ∆的角平分线,DE⊥AB,∴DE =DF∵ABC ABD ACD SS S =+=30 ∴113022AB DE DF AC ⋅+⋅= ∵18AB =,12AC = ,DE =DF∴1118123022DE DE ⨯⋅+⨯= 得到 DE=2故答案为:2.【点睛】 此题主要考查了角平分线的性质,熟记概念是解题的关键.22.(,0)【解析】【分析】画图,设点的坐标是(x,0),因为PA=OB ,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB根据勾解析:(1912,0) 【解析】画图,设点P 的坐标是(x,0),因为PA=OB ,根据勾股定理可得:AC 2+PC 2=BD 2+PD 2.【详解】已知如图所示;设点P 的坐标是(x,0),因为PA=OB根据勾股定理可得:AC 2+PC 2=BD 2+PD 2所以32+(x+2)2=42+(4-x)2解得1912x = 所以点P 的坐标是(1912,0) 故答案为:(1912,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键.23.【解析】提取公因式后利用平方差公式分解因式即可,即原式=.故答案为解析:(55x x x -【解析】提取公因式后利用平方差公式分解因式即可,即原式=2(5)(5)(5)x x x x x -=-.故答案为(55.x x x24.【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6. 考点:算术平方根.解析:【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.25.22【分析】等腰三角形两边的长为4cm 和9cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当解析:22【解析】【分析】等腰三角形两边的长为4cm 和9cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】①当腰是4,底边是9时:不满足三角形的三边关系,因此舍去.②当底边是4,腰长是9时,能构成三角形,则其周长=4+9+9=22.故答案为22.【点睛】考查等腰三角形的性质以及三边关系,熟练掌握等腰三角形的性质是解题的关键.三、解答题26.y=-13x-2或y=13x-2. 【解析】【分析】 分一次函数与x 轴交点Q 在正半轴与负半轴两种情况确定出Q 的坐标,即可确定出一次函数解析式.【详解】解:设一次函数与x 轴的交点为Q,则①当一次函数与x 轴交点Q 在x 轴负半轴时,由OP=2,与两坐标所围成的直角三角形面积为6,得到Q (-6,0),设一次函数解析式为y=kx+b ,将P 与Q 坐标代入得:2,60,b k b -⎧⎨-+⎩==解得1,32.k b ⎧=-⎪⎨⎪=-⎩ 此时一次函数解析式为y=-13x-2; ②当一次函数与x 轴交点在x 轴正半轴时,由OP=2,与两坐标所围成的直角三角形面积为6,得到Q (6,0),设一次函数解析式为y=mx+n ,将P 与Q 坐标代入得:2,60,n m n -⎧⎨+⎩==解得1,32.m b ⎧=⎪⎨⎪=-⎩ 此时一次函数解析式为y=13x-2. 故所求一次函数解析式为:y=-13x-2或y=13x-2. 【点睛】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键. 27.(1)作图见解析;(2)①2(2.1到1.8之间都正确);②该函数有最大值(其他正确性质都可以).【解析】试题分析:(1)描点即可作出函数的图象;(2)①观察图象可得出结论;②观察图象可得出结论.试题解析:(1)如下图:(2)①2(2.1到1.8之间都正确)②该函数有最大值(其他正确性质都可以).考点:函数图象,开放式数学问题.28.24m 2.【解析】【分析】连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形, 根据△ABC 的面积减去△ACD 的面积就是所求的面积.【详解】解:连接AC∵AD DC ⊥∴90ADC ∠=︒在Rt ADC ∆中,根据勾股定理2222435(m)AC AD CD =+=+=在ABC ∆中,∵22222251213AC BC AB +=+==ABC ∆是直角三角形∴()25123424m 22ABC AC A CD D B S S S ∆∆⨯⨯=-=-=四边形.【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.29.29x ,92【解析】【分析】 原式括号内两项通分并利用同分母分式的减法运算法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值. 【详解】22333x x x x x ⎛⎫-+÷ ⎪++⎝⎭, 22(3)(3)333x x x x x x x⎛⎫-++=-⋅ ⎪++⎝⎭ 2933x x x +=⋅+ 29x = 当2x =2992x == 【点睛】此题考查了分式的化简和求值,熟练掌握运算法则是解本题的关键.30.(1)D (-7,3);(2)88-3t -<<;(3)①-2;②存在,P(6,0),P(12,0),P(-5,0),5,0)【解析】【分析】(1)当t=-3时,过点D 作DM ⊥x 轴于点M ,证明△ABO ≌△BDM ,得出DM=BO 和MB=OA ,从而得出点D 坐标. (2)设出AB 解析式y=kx+4,分别求出点G ,H 在线段AB 上的时点B 的坐标; (3)①假设△ABE 与△ACE 的面积相等,利用等底同高求出t 值;②根据等腰三角形的性质,分BP=BC 、CP=CB 、PC=PB 三种情况讨论.【详解】(1)当t=-3时,过点D 作DM ⊥x 轴于点M,∵△ABD 为等腰直角三角形,AB=BD ,∠ABD=90°∴∠ABO+∠DBM=180°-90°=90°又∵DM ⊥x 轴于点M∴∠DMB=90°∴∠DBM+∠MDB=90°∴∠MDB=∠ABO在△ABO 和△BDM 中ABO BDM AB BDDMB BOA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABO ≌△BDM∴DM=BO=3,MB=OA=4∴MO=MB+BO=4+3=7∴D (-7,3)(2)∵A (0,4),B (t,0),设直线AB 的解析式为y=kx+4当点G (-2,3)在直线AB 上时3=-2k+4,12k = 此时AB 的解析式142y x =+当y=0时,1 042x=+,x=-8此时B(-8,0)当点H(-2,1)在直线AB上时1=-2k+4,32k此时AB的解析式243y x=+当y=0时,3042x=+,x=83-此时B(83-,0)∵点G, H位于直线AB的异侧,∴由图像可知直线AB与线段MN相交,且点M,N不在直线AB上∴88-3t-<<(3)①t=-2时,△ABE与△ACE的面积相等.如图,过点B做x轴垂线,构造直角三角形ARB和直角三角形BQC,∵∠RAB+∠ABR=90°,∠ABR+∠BCQ=90°∴∠ABR=∠BCQ,在△ARB和△BQC中,=R QABR BCQAB BC∠=∠⎧⎪∠∠⎨⎪=⎩,∴△ARB≌△BQC(AAS)∴AR=BQ,BR=QC=4,若△ABE与△ACE的面积相等,则BE=EC,∴BO=CN=2,∴B(-2,0)②P(6,0),P(12,0),P(-25-2,0),P(25-2,0)由②可得C(2,-2)当BP=BC时,BC=2242=25,∴BP=25∴P(-25-2,0)或P(25-2,0)当CP=CB时,BP=8,∴P(6,0)当PC=PB时,如图,过E作BC的垂线,交x轴于点P,过C作x轴垂线于点S,设BP=m=PC,则PS=4-m,在△PSC中,PS2+SC2=PC2,即22+(4- m)2= m 2,解得m=52,∴OP=52-2=12,∴P(12,0).综上:P(6,0),P(12,0),P(-25-2,0),P(25-2,0).【点睛】本题是一道综合性较强的题,难点在于等腰三角形的存在性问题,同时根据图像数形结合来得出t的取值范围.31.(1)y=100x+3150;(2)5,3650.【解析】【分析】(1)y=租甲种车的费用+租乙种车的费用,由题意代入相关数据即可得;(2)根据题意确定出x的取值范围,再根据一次函数的增减性即可得.【详解】解:(1)由题意,得y=550x+450(7﹣x),化简,得y=100x+3150,即y(元)与x(辆)之间的函数表达式是y=100x+3150;(2)由题意,得60x+45(7﹣x)≥380,解得,x≥133.∵y=100x+3150,∴k=100>0,∴x=5时,租车费用最少,最少为:y=100×5+3150=3650(元),即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.。