推荐-直线与圆练习 精品

合集下载

直线与圆的位置关系经典例题

直线与圆的位置关系经典例题

直线与圆的位置关系经典例题一、点与圆的位置关系结合图形认识直线与圆的位置关系,比较OA 与r 的大小关系若点A 在⊙O 内OA r 若点A 在⊙O 上OA r 若点A 在⊙O 外OA r小练习:1.在△ABC 中,90C ∠=︒,AC=2,BC=4,如果以点A 为圆心,AC 为半径作⊙A,那么斜边中点D 与⊙A 的位置关系是()(A)D 在圆外(B)D 在圆上(C)D 在圆内(D)无法确定二、直线与圆的位置关系(1)实验创境:用移动的观点认识如果我们把太阳看作一个圆,那么太阳在升起的过程中,太阳和海平面就有图中的几种位置关系。

(可让学生用硬币自己操作演示)根据直线与圆公共点的个数可以得到三种位置关系:、、。

(2)用数量关系判断从以上的一个例子,可以看到,直线与圆的位置关系只有以下三种,如下图所示:若要判断圆与直线的位置关系,可以将______与_____进行比较大小,由比较的结果得出结论。

典型例题:例1、已知圆的半径等于5厘米,圆心到直线MN 的距离是:(1)4厘米;(2)5厘米;(3)6厘米。

分别说出直线MN 与圆的位置关系以及直线MN 和圆分别有几个公共点?例2.Rt △ABC 中,∠C=90°,AC=3,BC=4,若以C 为圆心,r 为半径作圆,当3,4.2,2===r r r 时,⊙C 与直线AB 分别是怎样的位置关系?★①直线l 和⊙O 相交d r ②直线l 和⊙O 相切d r ③直线l 和⊙O 相离d r1、如果⊙O 的直径为10厘米,圆心O 到直线AB 的距离为10厘米,那么⊙O 与直线AB有怎样的位置关系是2、已知:⊙A 的直径为6,点A 的坐标为)4,3(--,则⊙A 与x 轴的位置关系是;⊙A 与y 轴的位置关系是。

三、切线的判定实验探究:在练习纸上画⊙O ,在⊙O 上任取一点A ,连结OA ,过A 点作直线l ⊥OA ,判断直线l 是否与⊙O 相切?为什么?当直线和圆有唯一公共点时,直线是圆的切线;当直线和圆的距离等于该圆半径时,直线是圆的切线;那么,直接从直线和圆的位置上观察,具备什么条件的直线也是圆的切线呢?两个条件缺一不可(1)经过半径外端(2)垂直于这条半径切线判定定理:经过直径外端并且于这条直径的直线是圆的切线。

直线与圆(典型例题和练习题)

直线与圆(典型例题和练习题)

直线与圆1.本单元知识点本单元的学习重点包括:直线的斜率、直线的方程、直线与直线的位置关系,圆的方程、圆与圆的位置关系,直线与圆的位置关系,直线与圆的距离问题,其中直线与圆的位置关系是高考热点.2.典型例题选讲例1. 过点M (0,1)作直线,使它被两直线082:,0103:21=-+=+-y x l y x l 所截得的线段恰好被M 所平分,求此直线的方程.说明:直线方程有三种基本形式:点斜式、两点式、一般式,求直线方程时应根据题目条件灵活选择,并注意不同形式的适用范围. 如采用点斜式,需要注意讨论斜率不存在的情况. 例2.已知圆0822:221=-+++y x y x C 与圆024102:222=-+-+y x y x C 交于A,B 两点.(1)求直线AB 的方程;(2)求过A 、B 两点且面积最小的圆的方程.说明:应用两圆相减求两圆公共弦的方法,可避免通过求两个交点再求公共弦方程. 另外,在求解与圆有关的问题时,应注意多利用圆的相关几何性质,这样利于简化解题步骤.例3.若过点A (4,0)的直线l 与曲线1)2(22=+-y x 有公共点,求直线l 的斜率k 的取值范围. (一题多解)说明:直线与圆的位置关系问题,可以从几何和代数两方面入手. 相切问题应抓住角度问题求斜率;相交问题应抓住半径r 、弦心距d 、半弦长2l 构造的直角三角形使问题简化. 例4.设定点M (-3,4),动点N 在圆422=+y x 上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.说明:轨迹方程在必修2第122页有例题,求动点的轨迹方程要特别注意考虑轨迹与方程间的等价性,有时求得方程后还要添上或去掉某些点.3.自测题选择题:1.过点A (1,-1)且与线段)11(0323≤≤-=--x y x 相交的直线的倾斜角的取值范围是( )A. ]2,4[ππ B. ],2[ππ C. ],2[]4,0(πππ D.),2[]4,0[πππ2.若直线02)1(2=-++ay x a 与直线012=++y ax 垂直,则=a ( )A.-2B.0C.-1或0D.222±3.若P (2,1)为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y xC.03=-+y xD.052=--y x4.已知圆1)3()2(:221=-+-y x C ,圆9)4()3(:222=-+-y x C ,M ,N 分别是圆上的动点,P 为x 轴上的动点,则PN PM +的最小值为( )A. 425-B.117-C.226-D.175.已知)3,0(),0,3(B A -,若点P 在0222=-+x y x 上运动,则PAB ∆面积的最小值为( )A.6B. 26C. 2236+D.2236-6.曲线241x y -+=与直线4)2(+-=x k y 有两个交点,则实数k 的取值范围是( )A. )125,0(B.),125(+∞C. ]43,31(D.]43,125(填空题:7.圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦长为32,则圆C 的标准方程为______________8.若圆422=+y x 与圆)0(06222>=-++a ax y x 的公共弦长为32,则=a _______9.设圆05422=--+x y x 的弦AB 的中点为P(3,1),则直线AB 的方程为_____________10.已知P 是直线0843=++y x 上的动点,PA 、PB 是圆012222=+--+y x y x 的两切线,A 、B 是切点,C 是圆心,则四边形PACB 的面积的最小值为__________解答题:11. 在ABC ∆中,)1,3(-A ,AB 边上的中线CM 所在直线方程为059106=-+y x ,B ∠的平分线BT 的方程为0104=+-y x .(1)求顶点B 的坐标; (2)求直线BC 的方程.12.已知点)3,2(--P ,圆9)2()4(:22=-+-y x C ,过P 点作圆C 的两条切线,切点分别为A 、B.(1)求过P 、A 、B 三点的圆的方程;(2)求直线AB 的方程.。

直线与圆的方程培优试题

直线与圆的方程培优试题
单击此处添加标题
已知圆 C 的方程为 x^2 + y^2 - 2x - 4y - 4 = 0,求圆 C 的圆心坐标 和半径。
直线方程的一般式和点斜式,以及它们的转换关系 圆的方程的三种形式及其特点 直线与圆的位置关系:相切、相交和相离 求解直线与圆的交点坐标
解析步骤:先确 定圆心和半径, 再利用点到直线 距离公式求出圆 心到直线的距离, 最后根据距离判 断直线与圆的位
圆的参数方程:$(x=a+rcos\theta, y=b+rsin\theta)$,其中 $ ( r, \ t h e t a ) $ 为 参 数
圆的切线方程:圆的切线方程有三种形式,分别为点斜式、斜截式和两点 式
相交:直线与圆有两个交点 相切:直线与圆有一个交点 相离:直线与圆没有交点 相交、相切、相离的判定方法
直接法:根据题意,直接列出 直线方程
点斜式:已知一点和斜率,写 出直线方程
斜截式:已知斜率和y轴截距, 写出直线方程
两点式:已知两点坐标,写出 直线方程
直接法:根据题 意,直接写出圆 的方程
待定系数法:先 假设圆的方程, 再根据条件求出 待定系数
几何法:根据题 意,利用几何性 质确定圆心和半 径,进而写出圆 的方程
XX,a click to unlimited possibilities
01 单 击 添 加 目 录 项 标 题 02 直 线 与 圆 的 基 本 概 念 03 直 线 与 圆 的 方 程 解 题 方 法 04 直 线 与 圆 的 方 程 培 优 练 习 05 直 线 与 圆 的 方 程 培 优 试 题 解 析 06 直 线 与 圆 的 方 程 培 优 试 题 总 结
置关系。
解析方法:通过 观察直线与圆的 位置关系,选择 合适的解析方法, 如代数法或几何

完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案

完整版)直线与圆综合练习题含答案直线与圆的方程训练题1.选择题:1.直线x=1的倾斜角和斜率分别是()A。

45,1B。

不存在C。

不存在D。

-12.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A。

a+b=1B。

a-b=1C。

a+b=√2D。

a-b=√23.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A。

2x+y-1=0B。

2x+y-5=0C。

x+2y-5=0D。

x-2y+7=04.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A。

4x+2y=5B。

4x-2y=5C。

x+2y=5D。

x-2y=55.直线xcosθ+ysinθ+a=0与xsinθ-ycosθ+b=0的位置关系是()θ的值有关A。

平行B。

垂直C。

斜交D。

与a,b,θ的值有关6.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()A。

4B。

13√10C。

26√5D。

207.如果直线l沿x轴负方向平移3个单位再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是()A。

-1/3B。

-3C。

1D。

38.直线l与两直线y=1和x-y-7=0分别交于A,B两点,若线段AB的中点为M(1,-1),则直线l的斜率为()A。

2/3B。

-3/2C。

-2D。

-39.若动点P到点F(1,1)和直线3x+y-4=0的距离相等,则点P的轨迹方程为()A。

3x+y-6=0B。

x-3y+2=0C。

x+3y-2=0D。

3x-y+2=010.若P(2,-1)为(x-1)+y^2=25圆的弦AB的中点,则直线AB的方程是()A。

x-y-3=0B。

2x+y-3=0C。

x+y-1=0D。

2x-y-5=011.圆x^2+y^2-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。

2B。

1+√2C。

1+2√2D。

1+2√512.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。

直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案一、选择题1. 在平面上,已知点A(4,-2),圆心O(1,3),半径R=5. 则点A与圆的位置关系是:A. A在圆内B. A在圆上C. A在圆外答案: A. A在圆内2. 已知直线L的方程为2x - 3y = 6,圆C的方程为x^2 + y^2 = 25.则直线L与圆C的位置关系是:A. 直线L与圆C相切B. 直线L与圆C相交于两点C. 直线L与圆C不相交答案: B. 直线L与圆C相交于两点3. 在平面上,已知两个圆C1与C2,圆C1的半径为3,圆心坐标为(1,1),圆C2的半径为2,圆心坐标为(-2,-3). 则两个圆的位置关系是:A. 两个圆相交于两点B. 两个圆内切C. 两个圆相离答案: C. 两个圆相离二、填空题1. 已知圆C的半径为2,圆心坐标为(3,5). 则圆心到原点的距离是______.答案: sqrt(3^2 + 5^2) = sqrt(34)2. 在平面上,已知直线L的方程为y = 2x + 1,圆C的半径为4,圆心坐标为(-1,2). 则直线L与圆C的位置关系可以表示为______.答案: (x+1)^2 + (y-2)^2 = 16三、解答题1. 如图所示,在平面上有一个圆C,其圆心坐标为(2,3),半径为4. 请写出圆C的方程,并确定点A(-3,4)与圆C的位置关系。

解答:圆C的方程为:(x-2)^2 + (y-3)^2 = 16点A(-3,4)与圆C的位置关系可以通过计算点A到圆心的距离来判断。

点A到圆心的距离为:distance = sqrt((-3-2)^2 + (4-3)^2) = sqrt(25) = 5比较点A到圆C的距离与圆的半径的关系:若 distance < 4,则点A在圆内;若 distance = 4,则点A在圆上;若 distance > 4,则点A在圆外。

因为 distance = 5 > 4,所以点A在圆外。

初中直线与圆的位置关系经典练习题

初中直线与圆的位置关系经典练习题

圆与直线的基本性质一、定义[例1]在ABCRt∆中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm。

[例2]在ABC∆中,BC=6cm,∠B=30°,∠C=45°,以A为圆心,当半径r多长时所作的⊙A与直线BC相切?相交?相离?[变式题]已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是【】A.相切B.相离C.相离或相切D.相切或相交二、性质例1:如图,AB是⊙O的直径,C.D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于【】A.40°B.50°C.60°D.70°变式1:如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠ACP=【】A.30B.45C.60D.67.5例3:如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是【】A.80° B.110°C.120° D.140°变式2:如图,圆周角∠BAC=55°,分别过B,C两点作⊙O的切线,两切线相交与点P,则∠BPC =°.1 / 4例5:如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.变式3:如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若AB的长为8cm,则图中阴影部分的面积为cm2.例7:如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.变式4:如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF 于点H,交⊙O于点C,连接BD.(1)求证:BD平分∠ABH;(2)如果AB=12,BC=8,求圆心O到BC的距离.2 / 4三、切线的判定定理:例1:如图,AB是⊙O的直径,AC和BD是它的两条切线,CO平分∠ACD.(1)求证:CD是⊙O的切线;(2)若AC=2,BC=3,求AB的长.例2:如图,已知AB=AC,∠BAC=120º,在BC上取一点O,以O 为圆心OB为半径作圆,①且⊙O过A点,过A作AD∥BC交⊙O于D,求证:(1)AC是⊙O的切线;(2)四边形BOAD是菱形。

高考数学专题《直线与圆的位置关系》习题含答案解析

高考数学专题《直线与圆的位置关系》习题含答案解析

专题9.2 直线与圆的位置关系1.(福建高考真题(理))直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A 【解析】由1k =时,圆心到直线:1l y x =+的距离d =..所以1122OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时,OAB ∆的面积为12.所以不要性不成立.故选A.2.(2018·北京高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( )A .1B .2C .3D .4【答案】C 【解析】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.3.(2021·全国高二单元测试)已知直线l 与直线1y x =+垂直,且与圆221x y +=相切,切点位于第一象限,则直线l 的方程是( ).A.0x y +=B .10x y ++=C .10x y +-=D.0x y +=【答案】A 【分析】根据垂直关系,设设直线l 的方程为()00x y c c ++=<,利用直线与圆相切得到参数值即可.【详解】由题意,设直线l 的方程为()00x y c c ++=<.练基础圆心()0,0到直线0x y c ++=1,得c =c =,故直线l 的方程为0x y +=.故选:A4.(2020·北京高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .7【答案】A 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.5.【多选题】(2021·吉林白城市·白城一中高二月考)若直线0x y m ++=上存在点P ,过点P 可作圆O :221x y +=的两条切线PA ,PB ,切点为A ,B ,且60APB ∠=︒,则实数m 的取值可以为( )A .3B .C .1D .-【答案】BCD 【分析】先由题意判断点P 在圆224x y +=上,再联立直线方程使判别式0∆≥解得参数范围,即得结果.【详解】点P 在直线0x y m ++=上,60APB ∠=︒,则30APO OPB ∠=∠=︒,由图可知,Rt OPB V 中,22OP OB ==,即点P 在圆224x y +=上,故联立方程224x y x y m ⎧+=⎨++=⎩,得222240x mx m ++-=,有判别式0∆≥,即()2244240m m -⨯-≥,解得m -≤≤A 错误,BCD 正确.故选:BCD.6.(2022·江苏高三专题练习)已知大圆1O 与小圆2O 相交于(2,1)A ,(1,2)B 两点,且两圆都与两坐标轴相切,则12O O =____【答案】【分析】由题意可知大圆1O 与小圆2O 都在第一象限,进而设圆的圆心为(,)(0)a a a >,待定系数得5a =或1a =,再结合两点间的距离求解即可.【详解】由题知,大圆1O 与小圆2O 都在第一象限,设与两坐标轴都相切的圆的圆心为(,)(0)a a a >,其方程为222()()x a y a a -+-=,将点(1,2)或(2,1)代入,解得5a =或1a =,所以221:(5)(5)25O x y -+-=,222:(1)(1)1O x y -+-=,可得1(5,5)O ,2(1,1)O ,所以12||O O ==故答案为:7.(江苏高考真题)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________.【答案】43【解析】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d,2d 即3k 2≤4k,∴0≤k≤43,故可知参数k 的最大值为43.8.(2018·全国高考真题(文))直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为22(1)4x y ++=,所以圆的圆心为(0,1)-,且半径是2,根据点到直线的距离公式可以求得d ==,结合圆中的特殊三角形,可知AB ==,故答案为.9.(2021·湖南高考真题)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=,所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12,所以所求直线的方程为:()1022y x -=-,即220x y --=,故答案为:220x y --=.10.(2020·浙江省高考真题)设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.【解析】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C到直线的距离等于半径,即1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.1.(2020·全国高考真题(理))若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.练提升故选:D.2.【多选题】(2021·全国高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142xy+=,即240x y +-=,圆心M 到直线AB 4=>,所以,点P 到直线AB 42-<,410<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,=,4MP =CD 选项正确.故选:ACD.3.【多选题】(2021·肥城市教学研究中心高三月考)已知圆22:230A x y x +--=,则下列说法正确的是()A .圆A 的半径为4B .圆A 截y 轴所得的弦长为C .圆A 上的点到直线34120x y -+=的最小距离为1D .圆A 与圆22:88230B x y x y +--+=相离【答案】BC 【分析】将圆的一般方程转化为标准方程即可得半径可判断A ;利用几何法求出弦长可判断B ;求出圆心A 到直线的距离再减去半径可判断C ;求出圆B 的圆心和半径,比较圆心距与半径之和的大小可判断D ,进而可得正确选项.【详解】对于A :由22230x y x +--=可得()2214x y -+=,所以A 的半径为2r =,故选项A 不正确;对于B :圆心为()1,0到y 轴的距离为1d =,所以圆A 截y 轴所得的弦长为==B 正确;对于C :圆心()1,0到直线34120x y -+=3,所以圆A 上的点到直线34120x y -+=的最小距离为3321r -=-=,故选项C 正确;对于D :由2288230x y x y +--+=可得()()22449x y -+-=,所以圆心()4,4B ,半径3R =,因为5AB r R ===+,所以两圆相外切,故选项D 不正确;故选:BC.4.(2021·全国高三专题练习)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是_______.【答案】403k ≤≤【分析】求出圆C 的圆心和半径,由题意可得圆心到直线的距离小于或等于两圆的半径之和即可求解.【详解】由228150x y x +-+=可得22(4)1x y -+=,因此圆C 的圆心为(4,0)C ,半径为1,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需点(4,0)C 到直线2y kx =-的距离112d =≤+=,即22(21)1k k -≤+,所以2340k k -≤,解得403k ≤≤,所以k 的取值范围是403k ≤≤,故答案为:403k ≤≤.5.(2021·富川瑶族自治县高级中学高一期中(理))直线()20y kx k =+>被圆224x y +=截得的弦长为________.【答案】60 【分析】由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k ,然后利用斜率等于倾斜角的正切值求解.【详解】直线()20y kx k =+>被圆224x y +=截得的弦长为所以,圆心()0,0O 到直线20kx y -+=的距离1d ==,1=,解得)0k k =>.设直线的倾斜角为()0180θθ≤<,则tan θ=,则60θ= .因此,直线()20y kx k =+>的倾斜角为60 .故答案为:60 .6.(2021·昆明市·云南师大附中高三月考(文))已知圆O : x 2+y 2=4, 以A (1,为切点作圆O 的切线l 1,点B 是直线l 1上异于点A 的一个动点,过点B 作直线l 1的垂线l 2,若l 2与圆O 交于D , E 两点,则V AED 面积的最大值为_______.【答案】2【分析】由切线性质得2//OA l ,O 到直线2l 的距离等于A 到2l 的距离,因此ADEODE S S =!!,设O 到2l 距离为d ,把面积用d 表示,然后利用导数可得最大值.【详解】根据题意可得图,1OA l ⊥,所以2//OA l ,因此O 到直线2l 的距离等于A 到2l 的距离,ADEODE S S =!!,过点(00)O ,作直线2l 的垂线,垂足为F ,记||(20)OF d d =>>,则弦||DE =角形ADE 的面积为S ,所以12S d =g g ,将S 视为d 的函数,则S '=+ 1(2)2d d -当0d <<时,0S '>,函数()S d 2d <<时,0S '<,函数()S d 单调递减,所以函数()S d 有最大值,当d =max ()2S d =,故AED V 面积的最大值为2.故答案为:2.7.(2021·全国高三专题练习)已知ABC V 的三个顶点的坐标满足如下条件:向量(2,0)OB →=,(2,2)OC →=,,CA α→=)α,则AOB ∠的取值范围是________【答案】5,1212ππ⎡⎤⎢⎥⎣⎦【分析】先求出点A 的轨迹是以(2,2)C . 过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,得到MOB NOB θ∠∠…….所以15BOM ∠=︒,75BON ∠=︒,即得解.【详解】由题得||CA →=所以点A 的轨迹是以(2,2)C .过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,则向量OA →与OB →的夹角θ的范围是MOB NOB θ∠∠…….由图可知45COB ∠=︒.∵||OC →=1||||||2CM CN OC →→→==知30COM CON ∠=∠=︒,∴453015BOM ∠=︒-︒=︒,453075BON ∠=︒+︒=︒.∴1575θ︒︒…….故AOB ∠的取值范围为{}1575θθ︒≤≤︒丨.故答案为:{}π5π15751212θθ⎡⎤︒≤≤︒⎢⎥⎣⎦丨或,8.(2021·全国高三专题练习)已知x 、y R ∈,2223x x y -+=时,求x y +的最大值与最小值.【答案】最小值是1,最大值是1+【分析】根据2223x x y -+=表示圆()2214x y -+=,设x y b +=表示关于原点、x 轴、y 轴均对称的正方形,然后由直线与圆的位置关系求解.【详解】2223x x y -+=的图形是圆()2214x y -+=,既是轴对称图形,又是中心对称图形.设x y b +=,由式子x y +的对称性得知x y b +=的图形是关于原点、x 轴、y 轴均对称的正方形.如图所示:当b 变化时,图形是一个正方形系,每个正方形四个顶点均在坐标轴上,问题转化为正方形系中的正方形与圆有公共点时,求b 的最值问题.当1b <时,正方形与圆没有公共点;当1b =时,正方形与圆相交于点()1,0-,若令直线y x b =-+与圆()2214x y -+=相切,2,解得1b =±所以当1b =+当1b >+故x y +的最小值是1,最大值是1+.9.(2021·黑龙江哈尔滨市·哈尔滨三中)已知ABC V 的内切圆的圆心M 在y 轴正半轴上,半径为1,直线210x y +-=截圆M (1)求圆M 方程;(2)若点C 的坐标为()2,4,求直线AC 和BC 的斜率;(3)若A ,B 两点在x 轴上移动,且AB 4=,求ABC V 面积的最小值.【答案】(1)22(1)1y x +-=;(2)2;(3)163.【分析】(1)设ABC V 的内切圆的圆心()0,M b ,先求得圆心到直线210x y +-=的距离,再根据直线截圆M (2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,易知不成立;当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,然后由圆心到直线的距离等于半径求解; (3)根据AB 4=,设()()(),0,4,040A t B t t +-<<,进而得到直线AC 和直线 BC 的斜率,写出直线AC 和BC 的方程,联立求得点C 的坐标,进而得到坐标系的最小值求解.【详解】(1)设ABC V 的内切圆的圆心()0,,0M b b >,圆心到直线210x y +-=的距离为d又因为直线截圆M21+=,解得1b =,所以圆M 方程()2211x y +-=;(2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,则圆心到直线的距离 0221d r =-=≠=,不成立,当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,即 240kx y k --+=,圆心到直线的距离d ,解得2k =(3)因为AB 4=,设()()(),0,4,040A t B t t +-<<,所以直线AC 的斜率为:2222tan 2111ACt t k MAO t t-=∠==---,同理直线BC 的斜率为: ()()222241411BCt t k t t --+==+-- ,所以直线AC 的方程为:()221ty x t t =---,直线BC 的方程为:()()()224441t y x t t -+=--+- ,由()()()()222124441t y x t t t y x t t ⎧=--⎪-⎪⎨-+⎪=--⎪+-⎩,解得 22224412841t x t t t t y t t +⎧=⎪⎪++⎨+⎪=⎪++⎩,即2222428,4141t t t C t t t t ⎛⎫++ ⎪++++⎝⎭,又 ()2222282222414123t t y t t t t t +==-=-+++++-,当2t =-时,点C 的纵坐标取得最小值83,所以ABC V 面积的最小值.18164233ABC S =⨯⨯=V .10.(2021·新疆乌鲁木齐市·乌市八中高二期末(文))已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方(1)求圆C 的方程;(2)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)存在,()4,0N .【分析】(1)设出圆心坐标(),0C a ,根据直线与圆相切可得圆心到直线的距离等于半径,由此求解出a 的值(注意范围),则圆C 的方程可求;(2)当直线AB 的斜率不存在时,直接根据位置关系分析即可,当直线AB 的斜率存在时,设出直线方程并联立圆的方程,由此可得,A B 坐标的韦达定理形式,根据AN BN k k =-结合韦达定理可求点N 的坐标.【详解】解:(1)设圆心(),0C a ,∵圆心C 在l 的上方,∴4100a +>,即52a >-,∵直线l :43100x y ++=,半径为2的圆C 与l 相切,∴d r =,即41025a +=,解得:0a =或5a =-(舍去),则圆C 方程为224x y +=;(2)当直线AB x ⊥轴,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设AB 的方程为()1y k x =-,(),0N t ,()11,A x y ,()22,B x y ,由224(1)x y y k x ⎧+=⎨=-⎩得,()22221240k x k x k +-+-=,所以212221k x x k +=+,212241k x x k -=+若x 轴平分ANB ∠,则AN BN k k =-,即()()1212110k x k x x tx t--+=--,整理得:()()12122120x x t x x t -+++=,即()()222224212011k k t t k k -+-+=++,解得:4t =,当点()4,0N ,能使得ANM BNM ∠=∠总成立.1.(2021·山东高考真题)“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A .充分没必要条件B .必要不充分条件C .充要条件D .既不充分也没必要条件【答案】C 【分析】由直线与圆相切的等价条件,易判断【详解】由于“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,因此充分性成立;“直线与圆相切”⇒“圆心到直线的距离等于圆的半径”,故必要性成立;可得“圆心到直线的距离等于圆的半径”是“直线与圆相切”的充要条件故选:C2.(2021·北京高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m = A .±1B.C.D .2±【答案】C 【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =则弦长为||MN =则当0k =时,弦长|MN取得最小值为2=,解得m =故选:C.3.(2020·全国高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )练真题A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d >,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAM PM AB S PA AM PA ⋅==⨯⨯⨯=V,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D.4.【多选题】(2021·全国高考真题)已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD 【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l的距离d =若点(),A a b 在圆C 上,则222a b r +=,所以d =则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以d =则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以d =则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以d =l 与圆C 相切,故D 正确.故选:ABD.5.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解【详解】由于22670x my m +--=是圆,1m ∴=即:圆22670x y x +--=其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】(x -1)2+y 2=4.【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =-1,以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.。

高中直线与圆练习题

高中直线与圆练习题

高中直线与圆练习题一、选择题1. 在平面直角坐标系中,直线l的方程为y = 2x + 1,圆C的方程为(x 1)² + (y + 2)² = 16,则直线l与圆C的位置关系是:A. 相离B. 相切C. 相交D. 无法确定2. 已知直线y = kx + b与圆(x 2)² + (y + 3)² = 1相交于A、B两点,若|AB| = 2,则k的值为:A. 0B. 1C. 2D. 33. 直线y = 3x 2与圆x² + y² = 9的位置关系是:A. 相离B. 相切C. 相交D. 无法确定二、填空题1. 已知直线l:2x 3y + 6 = 0,圆C:(x 1)² + (y + 2)² = 25,则直线l与圆C的交点坐标为______。

2. 圆(x 3)² + (y + 4)² = 16的圆心坐标为______,半径为______。

3. 若直线y = kx + 1与圆x² + y² = 4相交,则k的取值范围是______。

三、解答题1. 已知直线l:x + 2y 5 = 0,圆C:(x 2)² + (y + 3)² = 16,求直线l与圆C的交点坐标。

2. 设直线l的方程为y = kx + b,圆C的方程为(x 1)² + (y +2)² = 9,若直线l与圆C相切,求k和b的值。

3. 已知直线l:y = 2x + 3,圆C:(x 2)² + (y + 1)² = 25,求直线l与圆C的公共弦长。

4. 在平面直角坐标系中,直线l的方程为y = kx + 1,圆C的方程为(x 3)² + (y + 4)² = 16,若直线l与圆C相交,求k的取值范围。

5. 已知直线l:2x y + 3 = 0,圆C:(x 2)² + (y + 1)² = 9,求直线l与圆C的交点坐标及弦心距。

直线和圆的方程精选练习题

直线和圆的方程精选练习题

直线和圆的方程精选练习题1.直线x+3y-3=的倾斜角是多少?答:倾斜角为π/6.2.若圆C与圆(x+2)+(y-1)=1关于原点对称,则圆C的方程是什么?答:圆C的方程为(x-2)^2+(y+1)^2=1.3.直线ax+by+c同时要经过第一、第二、第四象限,则a、b、c应满足什么条件?答:ab0.4.直线3x-4y-9=与圆x+y=4的位置关系是什么?答:相交但不过圆心。

5.已知直线ax+by+c=(abc≠0)与圆x+y=1相切,则三条边长分别为a、b、c的三角形是什么类型的?答:是锐角三角形。

6.过两点(-1,1)和(3,9)的直线在x轴上的截距是多少?答:截距为2/5.7.点(2,5)到直线y=2x的距离是多少?答:距离为1/√5.8.由点P(1,3)引圆x+y=9的切线的长度是多少?答:长度为2.9.如果直线ax+2y+1=与直线x+y-2=互相垂直,那么a的值等于多少?答:a的值等于-1/3.10.若直线ax+2y+2=与直线3x-y-2=平行,那么系数a等于多少?答:a的值等于-3/2.11.直线y=3x绕原点按逆时针方向旋转30度后所得直线与圆(x-2)^2+y^2=33的位置关系是什么?答:直线与圆相交,但不过圆心。

12.若直线ax+y+1=与圆x^2+y^2-2x=相切,则a的值为多少?答:a的值为-1.13.圆O1:x^2+y^2-4x+6y=0和圆O2:x^2+y^2-6x=0交于A、B两点,则AB的垂直平分线的方程是什么?答:垂直平分线的方程为2x-y-5=0.14.以点(1,3)和(5,-1)为端点的线段的中垂线的方程是什么?答:中垂线的方程为2x+y=7.15.过点(3,4)且与直线3x-y+2平行的直线的方程是什么?答:由于两条直线平行,所以它们的斜率相同。

直线3x-y+2的斜率为3,所以过点(3,4)且与直线3x-y+2平行的直线的斜率也是3.带入点(3,4)和斜率3,可以得到直线的方程为y-4=3(x-3),即y=3x-5.16.直线3x-2y+6在x、y轴上的截距分别是多少?答:当x=0时,直线3x-2y+6的方程化为-2y+6=0,解得y=3,所以直线在y轴上的截距是3.当y=0时,直线3x-2y+6的方程化为3x+6=0,解得x=-2,所以直线在x轴上的截距是-2.17.三点(2,-3)、(4,3)和(5,k)在同一条直线上,求k的值。

中职直线与圆练习题

中职直线与圆练习题

中职直线与圆练习题一、选择题(每题2分,共20分)1. 直线与圆相切时,圆心到直线的距离等于:A. 圆的半径B. 圆的直径C. 圆的周长D. 圆的面积2. 圆的方程为 \( (x-3)^2 + (y-4)^2 = 16 \),圆心坐标是:A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)3. 直线 \( y = 2x + 3 \) 与 \( y = -3x + 5 \) 的交点坐标是:A. (1, 5)B. (-1, 5)C. (1, -1)D. (-1, -1)4. 直线 \( x + 2y - 6 = 0 \) 与 \( 3x - 4y + 5 = 0 \) 的夹角是:A. 30°B. 45°C. 60°D. 90°5. 圆的半径为5,圆心在坐标原点,圆上一点P(x, y)到圆心的距离是:A. \( \sqrt{x^2 + y^2} \)B. \( \sqrt{(x-5)^2 + y^2} \)C. \( \sqrt{x^2 + (y-5)^2} \)D. \( \sqrt{(x+5)^2 + y^2} \)二、填空题(每题3分,共15分)6. 若直线 \( ax + by + c = 0 \) 与圆 \( x^2 + y^2 = r^2 \) 相切,则 \( a^2 + b^2 \) 等于______。

7. 圆心在(2, 3),半径为4的圆的方程是 \( (x-2)^2 + (y-3)^2 =______ \)。

8. 若直线 \( 2x - 3y + 5 = 0 \) 与圆 \( x^2 + y^2 = 9 \) 相切,则圆心(0, 0)到直线的距离是______。

9. 直线 \( 3x + 4y - 7 = 0 \) 与圆 \( x^2 + y^2 = 25 \) 相交,交点A和B的距离是______。

10. 若圆 \( (x-1)^2 + (y+2)^2 = 9 \) 与直线 \( y = x \) 相切,则切点的坐标是______。

2.5 直线与圆、圆与圆的位置关系(精练)(原卷版)

2.5 直线与圆、圆与圆的位置关系(精练)(原卷版)

2.5 直线与圆、圆与圆的位置关系(精练)【题组一 直线与圆的位置关系】1.(2021·江西南昌市)直线4320x y --=与圆+-+-=2224110x y x y 的位置关系是( )A .相交B .相切C .相离D .以上都不对2.(2021·全国)直线1x y +=和圆221x y +=的位置关系是( ) A .相交B .相切C .相离D .不确定3.(2021·白银市第十中学)直线l :10mx y m -+-=与圆C :22(1)5x y +-=的位置关系是( ) A .相交B .相切C .相离D .不确定4.(2021·北京高二期末)已知直线10l kx y k -+-=:和圆C :2240x y x +-=,则直线l 与圆C 的位置关系为( ) A .相交B .相切C .相离D .不能确定5.(2021·北京高二期末)直线34x y b +=与圆22(1)(1)1x y -+-=相切,则b 的值是( ) A .-2或12B .2或-12C .-2或-12D .2或126.(2021·全国高二课时练习)若直线0x y +=与圆()()2212x m y -+-=相切,则m =( ) A .1B .1-C .1-或3D .3-或17.(2021·浙江高二期末)已知直线y x b =+与曲线3y =b 的取值范围是( )A .[1,1-+B .(1-+C .(1-D .(11]--8.(2021·浙江高二期末)直线()20ax y a a R --=∈与圆229x y +=的位置关系是( ) A .相离B .相交C .相切D .不确定9.(2021·全国)(多选)直线l 与圆C 有公共点,则直线l 与圆C 的位置关系可能是( ) A .相交 B .相切 C .相离 D .不能确定10.(2021·全国)(多选)已知圆x 2+y 2-2x +4y +3=0与直线x -y =1,则( )A .圆心坐标为(1,-2)B .圆心到直线的距离为2C .直线与圆相交 D11.(2021·内蒙古包头市·高二月考(理))已知(),P a b 是圆221x y +=内一点,则直线1ax by +=与圆221x y +=公共点的个数为( )A .0B .1C .2D .以上都有可能【题组二 直线与圆的弦长】1.(2021·陕西安康市·高二期末(理))设直线1y x =+与圆22(1)4x y ++=交于A ,B 两点,则||AB = 。

直线与圆的练习题

直线与圆的练习题

直线与圆的练习题一、选择题1. 已知直线l与圆O相交于A、B两点,圆的半径为r,线段AB的长度为d,若d=r,则直线l与圆O的位置关系是?A. 相切B. 相交C. 相离D. 包含2. 直线y=kx+b与圆x^2+y^2=r^2相交,圆心到直线的距离d满足什么条件时,直线与圆相交?A. d<rB. d≤rC. d>rD. d≥r3. 圆的方程为(x-a)^2+(y-b)^2=r^2,直线的方程为Ax+By+C=0,若直线经过圆心(a,b),则A和B的关系是?A. A=BB. A=-BC. A+B=0D. A-B=0二、填空题4. 若直线2x-3y+6=0与圆x^2+y^2=9相交,求圆心到直线的距离d。

5. 已知圆的方程为(x-1)^2+(y+2)^2=25,直线方程为3x-4y+12=0,求直线与圆的交点坐标。

三、解答题6. 已知圆的半径为5,圆心在(1,1),求过点(2,3)的直线方程,使得该直线与圆相切。

7. 已知直线l1: x-2y-1=0与l2: 3x+y+2=0相交于点P,求点P的坐标,并判断点P与圆x^2+y^2=10的位置关系。

四、证明题8. 证明:如果两条直线都与一个圆相切,那么这两条直线的斜率互为相反数。

9. 已知圆的方程为x^2+y^2=25,直线l的方程为y=x+3,求证直线l 与圆相切。

五、计算题10. 已知圆的方程为(x-3)^2+(y+1)^2=9,直线l的方程为2x-y-5=0。

求直线l被圆所截的弦长。

11. 已知圆的方程为x^2+y^2=r^2,直线l的方程为Ax+By+C=0,若直线l与圆相交于A、B两点,且AB的中点为M,求M的坐标。

六、综合题12. 在平面直角坐标系中,圆C的方程为(x-3)^2+(y+2)^2=20,直线l 的方程为2x-3y-6=0。

求直线l与圆C的交点A、B的坐标,并计算AB 的长度。

13. 已知圆的方程为x^2+y^2=25,直线l的方程为y=-x+5。

(完整版)直线与圆综合练习题含答案

(完整版)直线与圆综合练习题含答案

直线与圆的方程训练题一、选择题:1.直线1x =的倾斜角和斜率分别是( )A .B .C . ,不存在D . ,不存在 2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a3.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( )A .平行B .垂直C .斜交D .与的值有关 6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4 BCD7.如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .-13B .3-C .13D .38.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23 B .32 C .32- D . 23-9.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( ) A .360x y +-= B .320x y -+= C .320x y +-= D .320x y -+=10.若 为 圆的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB. 032=-+y xC. 01=-+y x D . 052=--y x11.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .221+D .221+ 12.在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( )0135,1-045,10900180,,a b θ(2,1)P -22(1)25x y -+=A .1条B .2条C .3条D .4条 13.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x14.直线032=--y x 与圆9)3()2(22=++-y x 交于,E F 两点,则∆EOF (O 是原点)的面积为( ) A.23 B.43C.52 D.55615.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y xC .03222=-++x y xD .0422=-+x y x16.若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是( )A. 50<<k B. 05<<-k C. 130<<k D. 50<<k 17.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是( ) A.30x y ++= B .250x y --= C .390x y --= D .4370x y -+=18.入射光线在直线1:23l x y -=上,经过x 轴反射到直线2l 上,再经过y 轴反射到直线3l 上,若点P是1l 上某一点,则点P 到3l 的距离为( )A .6 B .3 C D 二、填空题:19.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________;20.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.21.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

高考数学复习-直线与圆练习试题、参考答案

高考数学复习-直线与圆练习试题、参考答案

高考数学复习-直线与圆练习试题第Ⅰ卷 (选择题 共40分)一、选择题(10×4′=40′)1.直线l 与直线y =1、x-y -7=0分别交于P 、Q 两点,线段PQ 的中点为(1,-1),则直线l 的斜率为( )A.23 B.32 C.-32D.-232.点P 在直线2x +y +10=0上,P A 、PB 与圆422=+y x 分别相切于A 、B 两点,则四边形P AOB 面积的最小值为 ( )A.24B.16C.8D.43.已知直线1l :y =x ,2l :ax -y =0,其中a 为实数,当这两直线的夹角θ∈(0,12π)时,a 的取值范围为 ( )A.(0,1)B.(33,3) C.(33,1)∪(1,3) D.(1,3) 4.设a 、b 、k 、p 分别表示同一直线的横截距、纵截距、斜率和原点到直线的距离,则有( ) A.)1(2222k p k a += B.k =abC.b a 11+=pD.a =-kb5.已知直线x +3y -7=0,kx-y -2=0和x 轴、y 轴围成四边形有外接圆,则实数k 等于 ( ) A.-3 B.3 C.-6 D.66.若圆222r y x =+(r >0)上恰有相异两点到直线4x -3y +25=0的距离等于1,则r 的取值范围是( ) A.[4,6] B.[4,6) C.(4,6] D.(4,6)7.直线1l :0=++c by ax ,2l :0=++p ny mx ,则bnam=-1是1l ⊥2l 的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件8.过圆422=+y x 外一点P(4,-1)引圆的两条切线,则经过两切点的直线方程为 ( ) A.4x -y -4=0 B.4x +y -4=0 C.4x +y +4=0 D.4x -y +4=09.倾斜角为60°,且过原点的直线被圆222)()(r b y a x =-+-(r >0)截得弦长恰好等于圆的半径,则a 、b 、r 满足的条件是 ( )A.)3(|3|3a b b a r ≠-=B.)3(|3|23a b b a r ≠-=C.)3(|3|3a b b a r ≠+=D.)3(|3|23a b b a r ≠-=10.直线y =kx +1与圆0922=--++y kx y x 的两个交点关于y 轴对称,则k 为 ( )A.-1B.0C.1D.任何实数第Ⅱ卷 (非选择题 共60分)二、填空题(4×3′=12′)11.若点P (a ,b )与点Q (b +1,a -1)关于直线l 对称,则直线l 的方程是 .12.已知圆16)1()2(22=-+-y x 的一条直径通过直线x -2y -3=0被圆截弦的中点,则该直径所在直线的方程为 .13.关于x 的方程kx +1=21x -有且只有一个实根,则实数k 的取值范围是 . 14.经过点P (-2,4),且以两圆0622=-+x y x 和422=+y x 的公共弦为一条弦的圆的方程是 .三、解答题(6×8′=48′)15.若直线1l :x+y+a =0,2l :x+ay +1=0,3l :ax+y +1=0能围成三角形,求a 的取值范围.16.已知点P 是直线l 上的一点,将直线l 绕点P 逆时针方向旋转α(0<α<2π)所得直线1l 的方程为3x -y -4=0,若继续绕点P 逆时针方向旋转α-π2,则得2l 的方程为x +2y +1=0,试求直线l 的方程.17.设P 是圆M :1)5()5(22=-+-y x 上的动点,它关于A (9,0)的对称点为Q ,把P 绕原点依逆时针方向旋转90°到点S ,求|SQ |的最值.18.已知点A (3,0),点P 在圆122=+y x 的上半圆周上,∠AOP 的平分线交P A 于Q ,求点Q 的轨迹方程.19.如图,已知⊙A :425)2(22=++y x ,⊙B :41)2(22=+-y x ,动圆P 与⊙A 、⊙B 都外切. (1)求动圆圆心P 的轨迹方程,并说明轨迹是什么曲线;(2)若直线y=kx +1与(1)中的曲线有两个不同的交点1P 、2P ,求k 的取值范围; (3)若直线l 垂直平分(2)中的弦21P P ,求l 在y 轴上的截距b 的取值范围.20.已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使得l 被圆C 截得弦AB 为直径的圆过原点?若存在,求出l 的方程;若不存在,说明理由.参考答案1.C 方法1 设直线l 为y=kx+b ,分别与y =1,x-y -7=0联立解得P (-b k ,1),Q (k b -+17,kb k -+17).由PQ 中点为(1,-1),∴217=-++-k b b k ,且1+kb k -+17=-2,∴k =-32,故选C. 方法2 设P (a ,1),Q (b +7,b ),因PQ 的中点为(1,-1),∴⎪⎪⎩⎪⎪⎨⎧-=+=++121127b b a ,解得⎩⎨⎧-=-=32b a ,故P 为(-2,1),Q 为(4,-3),∴3224131-=+--==PQ k k ,故选C. 2.C 如图,PAOB S =22||||2||2||||21232AO PO PA OA PA PAO -==⋅⋅=⋅∆=24||2-PO . 要求PAOB S 的最小值,只需求|PO |的最小值即可.5212|10002|||22min =+++⨯=PO ,∴8)(min =PAOB S ,故选C.3.C 如图,设直线y=ax 的倾斜角为α, 则α≠4π,∴|α-4π|<12π, ∴6π<α<3π,且α≠4π.a =tan α∈(33,1)∪(1,3).4.A 应用点到直线的距离公式,选A.5.B 如图,设围成四边形为OABC ,因OABC 有外接圆,且∠AOC =90°,故∠ABC =90°. ∴两条直线x +3y -7=0,kx -y -2=0互相垂直,(-31)·k =-1,即k =3,故选B.说明 运用圆的几何性质是解决圆的问题的有效途径.6.D 如图,设l :4x -3y +25=0,与l 平行且距离等于1的直线为4x -3y +b =0. ∴2015|25|=⇒=-b b 或b =30.第2题图解第3题图解第5题图解1l :4x -3y +20=0,2l :4x -3y +30=0.圆心(0,0)到1l 和2l 的距离分别为5201=d =4,5302=d =6. 故满足条件的r 取值范围(4,6).实际上,圆222r y x =+没有点到直线4x -3y +25=0的距离等于1, 则0<r <4,若圆上只有一点到直线4x -3y +25=0的距离等于1,则r =4,类似可求出圆上有三点、四点到直线的距离等于1 的r 的取值范围.7.A 由1-=bnam,可得1l ⊥2l ,∴选A. 8.A 方法1 设切点为A 、B ,则AB ⊥OP , ∵410401-=---=OP k ,∴4=AB k .故排除B 、C. 又由图可知,AB 在y 轴的截距为负,故排除D,所以选A.方法2 设A (1x ,1y ),B (2x ,2y ), 由AP ⊥OA 可得AP k ·OA k =-1, 即1411111-=⋅-+x y x y .∴04112121=+-+y x y x ,又42121=+y x , ∴04411=++-y x .同理可得04422=++-y x ,∴AB 直线为-4x +y +4=0,即4x -y -4=0.方法3 设A (1x ,1y ),B (2x ,2y ),则切线P A 为411=+y y x x ,422=+y y x x . ∴4411=-y x ,4422=-y x ,∴A 、B 在直线4x -y -4=0上.另:此题可推广到一般结论,若P (0x ,0y )为圆222r y x =+ (r >0)外一点,过P 引圆的两条切线,则经过两切点的直线方程为200r y y x x =+.9.A 直线方程为x y 3=,则圆心(a ,b )到直线3x -y =0的距离为d =2|3|b a -,又因截得弦长恰好等于圆的半径,故d =23r ,∴|3a -b |=3r ,故选A. 10.B 方法1 将y =kx +1代入922=-++y kx y x 中有092)1(22=-++kx x k . 设交点为 A (1x ,1y ),B (2x ,2y ),∵A 、B 关于y 轴对称,∴021=+x x , ∴k =0.故选B.方法2 因直线与圆的两个交点A (1x ,1y ),B (2x ,2y )关于y 轴对称 ∴021=+x x ,21y y =,故圆心在y 轴上,∴k =0,故选B.11.x-y -1=0 P 、Q 关于直线l 对称,故1k k PQ ⋅=-1且PQ 中点在l 上, ∴11111=---+-=-=aa bb k k PQ,又PQ 中点为(21++b a ,21-+a b ),第6题图解第8题图解∴l 的方程为y -21-+a b =x -21++b a ,即x-y -1=0.此题也可将a ,b 赋特殊值去求直线l .12.2x +y -3=0 由圆的几何意义知该直径与直线x -2y -3=0垂直.故该直径方程为y +1=-2(x -2),即2x +y -3=0.13.{k |k >1或k =0或k <-1} 画出函数y =kx +1、y =21x -的图象,两曲线相切及只有一个交点时如图所示.14.08622=-++x y x 设圆的方程为0)4(62222=-+λ+-+y x x y x 经过P (-2,4), ∴0]44)2[()2(64)2(2222=-+-λ+--+-, ∴λ=-2,∴所求的圆的方程为08622=-++x y x .15.解 由1l 、2l 相交,需1·a -1·1≠0,得a ≠1,此时解方程组⎩⎨⎧=++=++010ay x a y x ,可解得⎩⎨⎧=-=11y x 即1l 、2l 的交点为(-1-a ,1),由1l 、3l 相交,需1·1-1·a ≠0,∴a ≠1,由2l ,3l 相交,需1·1-a ·a ≠0,∴a ≠±1,又(-1-a ,1)∉3l , ∴a ·(-1-a )+1+1≠0,得a ≠1且a ≠-2,综上所述,a ∈R 且a ≠±1且a ≠-2,能保证三交点(-1-a ,1),(1,-1-a )、(-1-a ,-1+a +2a )互不重合,所以所求a 的范围为a ∈(-∞,-2)∪(-2,-1)∪(-1,1)∪(1,+∞).16.解 由已知条件知P 为直线3x -y -4=0和直线x +2y +1=0的交点,联立两直线方程得⎩⎨⎧=++=--012043y x y x ,∴⎩⎨⎧-==11y x .∴P 点为(1,-1). 又l 与2l 垂直,故l 的方程为y +1=2(x -1),即l 的方程为2x -y -3=0. 17.解 设P (x ,y ),则Q (18-x ,-y ),记P 点对应的复数为x +y i, 则S 点对应的复数为:(x +y i )·i=-y +x i,即S (-y ,x ),∴|SQ |=xy y x xy y x y x x y y x 22363618)()18(2222222+++-+-++=--++- =2222)9()9(2818118182++-⋅=+++-+⋅y x y x y x其中22)9()9(++-y x 可以看作是点P 到定点B (9,-9)的距离,其最大值为|MB |+r =253+1,最小值为|MB |-r =253-1,则|SQ |的最大值为2106+2,|SQ |的最小值为2106-2.第13题图解18.解 方法1 如图,设P (0x ,0y )(0y >0),Q (x ,y ). ∵OQ 为∠AOP 的平分线,∴31||||==OA OP QA PQ , ∴Q 分P A 的比为31.∴⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=000043311031)1(43311313y y y x x x 即⎪⎪⎩⎪⎪⎨⎧=-=y y x x 3413400.又因12020=+y x ,且0y >0,∴1916)43(91622=+-y x . ∴Q 的轨迹方程为169)43(22=+-y x (y >0). 方法2 设∠AOP =α,α∈(0,π),则P (cos α,sin α),∠AOQ =2α, 则OQ 直线方程为y =x ·tan2α=kx ① 3cos sin -αα=PA k ,∴直线P A 方程为y =3cos sin -αα(x -3) ②由Q 满足①②且k =tan2α. 由②得y =12)3()3(311122222+--=-⋅-+-+k x k x k k k k.消去k 有y =12)3(22+--x y x x y,∴02322=-+x y x ,由图知y >0. 故所求Q 点轨迹方程为02322=-+x y x (y >0). 说明 上述两种方程为求轨迹的基本方法、相关点及参数法. 19.解 (1)如图,设⊙P 的圆心P (x ,y ),半径为R , 由题设,有|P A |=R +25,|PB |=R +21,∴|P A |-|PB |=2. ∴⊙P 的圆心轨迹是实轴长为2,焦点在x 轴上,且焦距长 为4的双曲线的右支,其方程为1322=-y x (x >0).第18题图解第19题图解(2)由方程组⎪⎩⎪⎨⎧>=-+=)0(13122x y x kx y ,有042)3(22=---kx x k (x >0). ①因为直线与双曲线有两个不同交点,∴⎪⎪⎩⎪⎪⎨⎧≠->⋅>+>∆030022121k x x x x .从而,有⎪⎪⎩⎪⎪⎨⎧><-<3034222k k kk ⇒⎪⎩⎪⎨⎧>-<<<-<<<-3330322k k k k k 或或. ∴-2<k <-3. (3)设21P P 的中点为M (M x 、M y ),则M x =22132k kx x -=+. 又M 在y=kx +1上,∴M y =k M x +1=233k-.∴M (23k k-,233k -).∴21P P 的垂直平分线l 的方程为:y-M y =-k 1(x -M x ),即y -233k -=-k 1(x -23kk -). 令x =0,得截距b =234k-,k ∈(-2,-3),又-2<k <-3,∴-1<3-2k <0.∴b <-4.20.解 假设存在这样的直线,设直线l 方程为y=x+b .方法1 将y=x+b 代入圆的方程有0222)1(22=+-+++b b x b x .由题设知OA ⊥OB ,设A (1x ,1y ),B (2x ,2y ),∴1x 2x +1y 2y =0.又1y 2y =(1x +b )(2x +b )=1x 2x +b (1x +2x )+2b ,∴21x 2x +b (1x +2x )+2b =0. 又∵1x +2x =-(b +1),1x 2x =2b -2+22b ,∴2(22b +2b -2)-b (b +1)+ 2b =0.∴b =1或b =-4.此时Δ=0)22(4)1(2>--+b b , ∴存在这样的直线l :y=x +1或y=x -4满足题设.方法2 设过圆C 与l 的交点的圆系D 为.0)(44222=+-λ+-+-+b y x y x y x 即04)4()2(22=-λ+λ-+-λ++b y x y x . 圆心为(-22-λ,-24λ-),在直线y=x+b 上,∴-24λ-=-22-λ+b ,即λ=3+b . ①又圆D 过原点,∴b λ-4=0. ② 由①②得,0432=-+b b ,即b =1或b =-4.此时圆D 的方程存在.故存在直线y=x +1或y=x -4.。

直线和圆的位置关系练习题(带答案)

直线和圆的位置关系练习题(带答案)

直线和圆的位置关系练习题(一)班别:____________ 姓名:_____________ 座号:_____ 成绩:_____________一、选择题:(每小题5分,共50分,每题只有一个正确答案)1.已知⊙O 的半径为10cm ,如果一条直线和圆心O 的距离为10cm ,那么这条直 线和这个圆的位置关系为( ) A. 相离 B. 相切 C. 相交 D. 相交或相离 2.如右图,A 、B 是⊙O 上的两点,AC 是⊙O 的切线, ∠B=70°,则∠BAC 等于( ) A. 70°B. 35°C. 20°D. 10°3.如图,PA 切⊙O 于A ,PB 切⊙O 于B ,OP 交⊙O 于C , 下列结论中,错误的是( ) A. ∠1=∠2 B. PA=PBC. AB ⊥OPD. =2PA PC ·PO4.如图,已知⊙O 的直径AB 与弦AC 的夹角为30°,过C 点的切线PC 与AB 的延长线交于P ,PC=5,则⊙O 的半径为( )A.335 B. 635 C. 10 D. 55.已知AB 是⊙O 的直径,弦AD 、BC 相交于点P ,那么CD ︰AB 等于∠BPD 的( A. 正弦B. 余弦C. 正切D. 余切6.A 、B 、C 是⊙O 上三点,AB ⌒的度数是50°,∠OBC=40°,则∠OAC 等于( )A. 15°B. 25°C. 30°D. 40°8.内心与外心重合的三角形是( )A. 等边三角形B. 底与腰不相等的等腰三角形C. 不等边三角形D. 形状不确定的三角形9.AD 、AE 和BC 分别切⊙O 于D 、E 、F ,如果AD =20,则△ABC 的周长为( )A. 20B. 30C. 40D. 2135二、填空题:(每小题5分,共30分)11.⊙O 的两条弦AB 、CD 相交于点P ,已知AP=2cm ,BP=6cm ,CP ︰PD =1︰3,则DP=___________. 12.AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,P 是BA 的延长线上的点,连结PC ,交⊙O 于F ,如果PF=7,FC=13,且PA ︰AE ︰EB = 2︰4︰1,则CD=_________.13.从圆外一点P 引圆的切线PA ,点A 为切点,割线PDB 交⊙O 于点D 、B ,已知PA=12,PD=8,则=∆∆DAP ABP S S :__________.B DAC EF3题图)4题图)DCBAP14.⊙O 的直径AB=10cm ,C 是⊙O 上的一点,点D 平分BC ⌒,DE=2cm ,则AC=_____.15.如图,AB 是⊙O 的直径,∠E=25°,∠DBC=50°,则∠CBE=________. 16.点A 、B 、C 、D 在同一圆上,AD 、BC 延长线相交于点Q ,AB 、 DC 延长线相交于点P ,若∠A=50°,∠P =35°,则∠Q=________.三、解答题:(共7小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.如图,MN 为⊙O 的切线,A 为切点,过点A 作AP ⊥MN ,交⊙O 的弦BC 于点P. 若PA=2cm ,PB=5cm ,PC=3cm ,求⊙O 的直径.18.如图,AB 为⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,CE=BE ,E 在BC 上. 求证:PE 是⊙O 的切线.APDBABCD EOABCDE OABCDQP19.AB 、CD 是两条平行弦,BE//AC ,交CD 于E ,过A 点的切线交DC 的延长线于P , 求证:AC 2=PC ·CE .20.点P 为圆外一点,M 、N 分别为AB ⌒、CD ⌒的中点,求证:∆PEF 是等腰三角形.21.ABCD 是圆内接四边形,过点C 作DB 的平行线交AB 的延长线于E 点,求证:BE ·AD=BC ·CD .22.已知∆ABC 内接于⊙O ,∠A 的平分线交⊙O 于D ,CD 的延长线交过B 点的切线于E .求证:CEDE BC CD 22=.E A B DC23.如图,⊙O 1与⊙O 2交于A 、B 两点,过A 作⊙O 2的切线交⊙O 1于C ,直线CB 交⊙O 2于D ,直线DA 交⊙O 1于E ,求证:CD 2 =CE 2+DA ·DE .参考答案基础达标验收卷 一、选择题:二、填空题: 1. 相交或相切 2. 13. 54. 35°5.251+ 6. 667. 2 8. 109. 3 10. 6三、解答题:1. 解:如右图,延长AP 交⊙O 于点D . 由相交弦定理,知PC PB PD PA ··=. ∵P A =2cm ,PB =5cm ,PC =3cm , ∴2PD =5×3. ∴PD =7.5. ∴AD =PD +P A =7.5+2=9.5.∵MN 切⊙O 于点A ,AP ⊥MN , ∴AD 是⊙O的直径. ∴⊙O 的直径是9.5cm.2. 证明:如图,连结OP 、BP .∵AB 是⊙O 的直径,∴∠APB =90°.又∵CE =BE ,∴EP =EB . ∴∠3=∠1. ∵OP =OB ,∴∠4=∠2.∵BC 切⊙O 于点B ,∴∠1+∠2=90°. ∠3+∠4=90°.又∵OP 为⊙O 的半径, ∴PE 是⊙O 的切线.3.(1)△QCP 是等边三角形.证明:如图2,连结OQ ,则CQ ⊥OQ .N A∵PQ =PO ,∠QPC =60°, ∴∠POQ =∠PQO =60°. ∴∠C =︒=︒-︒603090.∴∠CQP =∠C =∠QPC =60°. ∴△QCP 是等边三角形. (2)等腰直角三角形. (3)等腰三角形.4. 解:(1)PC 切⊙O 于点C ,∴∠BAC =∠PCB =30°. 又AB 为⊙O 的直径,∴∠BCA =90°. ∴∠CBA =90°.(2)∵PCB PCB CBA P ∠=︒=︒-︒=∠-∠=∠303060,∴PB =BC .又362121=⨯==AB BC ,∴9=+=AB PB PA .5. 解:(1)连结OC ,证∠OCP =90°即可. (2)∵∠B =30°,∴∠A =∠BGF =60°. ∴∠BCP =∠BGF =60°. ∴△CPG 是正三角形. ∴34==CP PG .∵PC 切⊙O 于C ,∴PD ·PE =48)34(22==PC . 又∵36=BC ,∴12=AB ,33=FD ,3=EG . ∴32=PD .∴3103832=+=+PE PD .∴以PD 、PE 为根的一元二次方程为0483102=+-x .(3)当G 为BC 中点时,OD ⊥BC ,OG ∥AC 或∠BOG =∠BAC ……时,结论BO BE BG ·2=成立. 要证此结论成立,只要证明△BFC ∽△BGO 即可,凡是能使△BFC ∽△BGO 的条件都可以.能力提高练习1. CD 是⊙O 的切线;BA DB CD ·2;︒=∠90ACB ;AB =2BC ;BD =BC 等. 2. (1)①∠CAE =∠B ,②AB ⊥EF ,③∠BAC +∠CAE =90°,④∠C =∠F AB ,⑤∠EAB =∠F AB . (2)证明:连结AO 并延长交⊙O 于H ,连结HC ,则∠H =∠B . ∵AH 是直径,∴∠ACH =90°.∵∠B =∠CAE ,∴∠CAE +∠HAC =90°.∴EF ⊥HA . 又∵OA 是⊙O 的半径, ∴EF 是⊙O 的切线. 3. D.4. 作出三角形两个角的平分线,其交点就是小亭的中心位置.5. 略.6.(1)假设锅沿所形成的圆的圆心为O ,连结OA 、OB . ∵MA 、MB 与⊙O 相切,∴∠OAM =∠OBM =90°.又∠M =90°,OA =OB ,∴四边形OAMB 是正方形. ∴OA =MA .量得MA 的长,再乘以2,就是锅的直径.(2)如右图,MCD 是圆的割线,用直尺量得MC 、CD 的长,可求得MA 的长. ∵MA 是切线,∴MD MC MA ·2=,可求得MA 的长. 同上求出锅的直径. 7. 60°.8. (1)∵BD 是切线,DA 是割线,BD =6,AD =10,由切割线定理,得AB CDMDA DE DB ·2=.∴6.310622===DA DB DE .(2)设是上半圆的中点,当E 在BM 上时,F 在直线AB 上;E 在AM 上时,F 在BA 的延长线上;当E 在下半圆时,F 在AB 的延长线上,连结BE . ∵AB 是直径,AC 、BD 是切线,∠CEF =90°, ∴∠CAE =∠FBE ,∠DBE =∠BAE ,∠CEA =∠FEB . ∴Rt △DBE ∽Rt △BAE ,Rt △CAE ∽Rt △FBE . ∴AE BE BA DB =,AE BE AC BF =. 根据AC =AB ,得BD =BF .。

直线与圆专题训练

直线与圆专题训练

直线与圆专题训练一:斜率、倾斜角与直线方程1.过点(3, 0)和点(4,3)的斜率是( )A .3B .-3C .33D . -332.过点(3, 0)和点(0, 3)的倾斜角是( )A .045B .-045C .0135D .- 01353.过点P(-2, m)和Q(m, 4)的直线斜率等于1,那么m 的值等于 ( ) A .1或3 B .4 C .1 D .1或4 4.在直角坐标系中,直线y= -3x+1的倾斜角为( )A .0120B .-030C .060D .- 0605.过点(-3, 0)和点(-4,3)的倾斜角是( )A .030 B .0150 C .060 D .0120 6.如图,直线l1、l2、l3的斜率分别是k1、k2、k3,则有( ) A .k1<k2<k3 B .k3<k1<k2 C .k3<k2<k1 D .k1<k3<k27.若两直线a,b 的倾斜角分别为21αα,,则下列四个命题中正确的是( ) A . 若21αα<, 则两直线斜率k1< k2 B . 若21αα=, 则两直线斜率k1= k2 C .若两直线斜率k1< k2, 则21αα< D .若两直线斜率k1= k2, 则21αα= 8.下列命题:(1)若点P (x1,y1),Q (x2,y2), 则直线PQ 的斜率为1212x x y y k --=;(2)任意一条直线都存在唯一的倾斜角,但不一定都存在斜率; (3)直线的斜率k 与倾斜角α之间满足αtan =k ;(4)与x 轴平行或重合的直线的倾斜角为00.以上正确的命题个数是( ) A .0个 B . 1个 C . 2个 D .3个9.若直线1x =的倾斜角为α,则α( )A .等于0B .等于4πC .等于2πD .不存在10.已知θ∈R,则直线sin 10x θ+=的倾斜角的取值范围是( )A .[0°,30°]B . [)150,180C .[0°,30°]∪[)150,180D .[30°,150°]12.如果ab>0,直线ax +by +c=0的倾斜角为α,且sin α2)A . 43 B . -43 C . ±43 D . ±34 13.直线0cos 20sin 2030x y +-=的倾斜角是( )A .200B .1600C .700D .1100 14.直线倾斜角α的取值范围是 .15.直线l 的倾斜角α=1200,则直线l 的斜率等于 __________.16.若直线的倾斜角α满足33<tan 3<α,则α的取值范围是______________.17.直线l 过点A(0, 1)和B(-2, -1),直线l 绕点A 逆时针旋转450得直线l ‘,那么l ’的斜率是 __________ .18.(1)当且仅当m 为何值时,经过两点A (-m ,6)、B (1,3m )的直线的斜率是12. (2)当且仅当m 为何值时,经过两点A (m ,2)、B (-m ,2m-1)的直线的倾斜角是600.19.(1)若三点(2,3),(3,a ),(4,b )在同一直线上,求a 、b 的关系;(2)已知三点A(a ,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a 的值.20.在直角坐标系中,ABC ∆三个顶点A (0,3)、B (3,3)、C (2,0),若直线x a =将ABC ∆分割成面积相等的两部分,求实数a 的值.21.已知两点A (3,2),B (-4,1),求过点C (0,-1)的直线l 与线段AB 有公共点求直线l 的斜率k 的取值范围.直线与圆专题训练二:直线方程与位置关系1.下列命题中正确的是( )A .平行的两条直线的斜率一定相等B .平行的两条直线的倾斜角相等C .斜率相等的两直线一定平行D .两直线平行则它们在y 轴上截距不相等2.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m,n 的值分别为( ) A .4和3 B .-4和3 C .-4和-3 D .4和-3 3.直线1 :kx+y+2=0和2 :x-2y-3=0, 若21|| ,则1 在两坐标轴上的截距的和( ) A .-1 B .-2 C .2 D .6 4.两条直线mx+y-n=0和x+my+1=0互相平行的条件是( )A. m=1 B .m=±1 C .⎩⎨⎧-≠=11n m D .⎩⎨⎧-≠-=11n m 或⎩⎨⎧≠=11n m5.如果直线ax+(1-b)y+5=0和(1+a)x-y-b=0同时平行于直线x-2y+3=0,则a 、b 的值为( )A .a=21, b=0B .a=2, b=0C .a=-21, b=0D . a=-21, b=2 6.若直线ax+2y+6=0与直线x+(a-1)y+(a2-1)=0平行但不重合,则a 等于( )A .-1或2B .-1C .2D .327.已知两点A (-2,0),B (0,4),则线段AB 的垂直平分线方程是( )A .2x+y=0B .2x-y+4=0C .x+2y-3=0D .x-2y+5=0 8.原点在直线 上的射影是P (-2,1),则直线 的方程为( )A .x+2y=0B .x+2y-4=0C .2x-y+5=0D .2x+y+3=0 9.两条直线x+3y+m=0和3x-y+n=0的位置关系是( )A .平行B .垂直C .相交但不垂直D .与m,n 的取值有关 10.方程x2-y2=1表示的图形是( )A .两条相交而不垂直的直线B .一个点C .两条垂直的直线D .两条平行直线11.已知直线ax -y +2a =0与直线(2a -1)x +ay +a =0互相垂直,则a 等于( ) A .1 B .0 C .1或0 D .1或-1 12.点(4,0)关于直线5x+4y+21=0对称的点是( )A .(-6,8)B .(-8,-6)C .(6,8)D .(-6,-8) 13.已知点P (a,b )和点Q(b-1,a+1)是关于直线 对称的两点,则直线 的方程为( ) A .x+y=0 B .x-y=0 C .x+y-1=0 D .x-y+1=014.过点M (3,-4)且与A (-1,3)、B (2,2)两点等距离的直线方程是__________________. 15.若两直线ax +by +4=0与(a -1)x +y +b =0垂直相交于点(0, m),则a +b +m 的值是_____________________. 16.若直线 1:2x-5y+20=0和直线 2:mx-2y-10=0与坐标轴围成的四边形有一个外接圆,则实数m 的值等于 ________. 17.已知点P 是直线 上一点,若直线 绕点P 沿逆时针方向旋转角α(00<α<900)所得的直线方程是x-y-2=0,若将它继续旋转900-α,所得的直线方程是2x+y-1=0, 则直线 的方程是___________.18.平行于直线2x+5y-1=0的直线 与坐标轴围成的三角形面积为5,求直线 的方程.19.若直线ax+y+1=0和直线4x+2y+b=0关于点(2,-1)对称,求a 、b 的值.20.已知三点A(1,0),B(-1,0),C(1,2),求经过点A 并且与直线BC 垂直的直线 的方程.21.已知定点A (-1,3),B (4,2),在x 轴上求点C ,使AC ⊥BC .直线与圆专题训练三:直线交点与平面距离1.两条直线A1x+B1y+C1=0与A2x+B2y+C2=0交点坐标就是方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的实数解,以下四个命题:(1)若方程组无解,则两直线平行 (2)若方程组只有一解,则两直线相交 (3)若方程组有两个解,则两直线重合 (4)若方程组有无数多解,则两直线重合。

(完整版)直线与圆练习题(带答案解析)

(完整版)直线与圆练习题(带答案解析)

..直线方程、直线与圆练习1.如果两条直线l 1:260ax y ++=与l 2:(1)30x a y +-+=平行,那么a 等 A .1 B .-1 C .2 D .23【答案】B 【解析】试题分析:两条直线平行需满足12211221A B A B A C A C =⎧⎨≠⎩即122112211A B A B a AC A C =⎧⇒=-⎨≠⎩,故选择B考点:两条直线位置关系2. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是 A .4y x =-+ B .y x = C .4y x =+ D .y x =- 【答案】A 【解析】试题分析:由题意可得:AB 中点C 坐标为()2,2,且31131AB k -==-,所以线段AB 的垂直平分线的斜率为-1,所以直线方程为:()244y x y x -=--⇒=-+,故选择A考点:求直线方程3.如图,定圆半径为a ,圆心为(,)b c ,则直线0ax by c ++=与直线10x y +-=的交点在A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D 【解析】试题分析:由图形可知0b a c >>>,由010ax by c x y ++=⎧⎨+-=⎩得0b c x b a a c y b a +⎧=>⎪⎪-⎨--⎪=<⎪-⎩所以交点在第四象限考点:圆的方程及直线的交点4.若点(,0)k 与(,0)b 的中点为(1,0)-,则直线y kx b =+必定经过点 A .(1,2)- B .(1,2) C .(1,2)- D .(1,2)-- 【答案】A 【解析】试卷第2页,总48页试题分析:由中点坐标公式可得2k b +=-,所以直线y kx b =+化为()212y kx k k x y =--∴-=+,令10,201,2x y x y -=+=∴==-,定点(1,2)-考点:1.中点坐标公式;2.直线方程5.过点(1,3)P -且平行于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x【答案】D 【解析】试题分析:设直线方程:02=+-c y x ,将点(1,3)P -代入方程,06-1-=+c ,解得7=c ,所以方程是072=+-y x ,故选D . 考点:直线方程 6.设(),P x y 是曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)上任意一点,则y x 的取值范围是()A .3,3⎡⎤-⎣⎦B .(),33,⎤⎡-∞-⋃+∞⎦⎣C .33,33⎡⎤-⎢⎥⎣⎦ D .33,,33⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭【答案】C 【解析】试题分析:曲线2cos :sin x C y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤<)的普通方程为:()()2221,,x y P x y ++=是曲线()22:21C x y ++=上任意一点,则yx 的几何意义就是圆上的点与坐标原点连线的斜率, 如图:33,33y x ⎡⎤∈-⎢⎥⎣⎦.故选C .考点:1.直线与圆的位置关系;2.直线的斜率;3.圆的参数方程.7.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +..(A )最小值为15 (B )最小值为55 (C )最大值为15 (D )最大值为55【答案】A【解析】试题分析:直线ax+by=1与线段AB 有一个公共点,则点A(1,0)B(2,1)应分布在直线ax+by-1=0两侧,将(1,0)与(2,1)代入,则(a-1)(2a+b-1)≤0,以a 为横坐标,b 为纵坐标画出区域如下图:则原点到区域内点的最近距离为OA ,即原点到直线2a+b-1=0的距离,OA=55,22a b +表示原点到区域内点的距离的平方,∴22a b +的最小值为15,故选A.考点:线性规划.8.点()11-,到直线10x y -+=的距离是( ). A .21 B .23 C .22D .223【答案】D【解析】试题分析:根据点到直线的距离公式,()221(1)132211d --+==+-,故选D 。

直线与圆练习题(精品)

直线与圆练习题(精品)

1.已知点A (1,3),B (﹣2,﹣1).若直线l :y=k (x ﹣2)+1与线段AB 相交,则k 的取值范围是________2.过点(3,﹣6)且在两坐标轴上的截距互为相反数的直线的方程是___________3.l 1:x+my+6=0和l 2:(m ﹣2)x+3y+2m=0,当l 1∥l 2时,m= 当l 1⊥l 2时,m=4.已直线l :x+2y=6.原点O 关于直线l 的对称点为__________;5.已知点A (1,2)、B (5,﹣1),若A ,B 两点到直线l 的距离都为2,则直线l 的方程为________;6.已知直线l 的方程为2x+(1+m)y+2m=0,点P 的坐标为(﹣1,0).(1)求证:直线l 恒过定点,并求出定点坐标; (2)求点P 到直线l 的距离的最大值.7.光线经过点M(-2 , 1)射到x 轴上一点N (1,0)后被x 轴反射,反射光线所在的直线方程为________.8.已知直线l :5x+2y+3=0,直线l ′经过点P (2,1)且与l 的夹角等于45,直线l'的方程为________.9.过点)2,1(A 且与原点距离最大的直线方程为________.10. 21,P P 分别为直线015:,05:21=--=--y x l y x l 上动点,21P P的中点P 到原点距离的最小值为______ 11.一条直线经过点)2,2(-A ,并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.12.将一张坐标纸折叠一次,使得点)2,0(与点)0,4(重合,点)3,7(与点),(n m 重合,则=+n m ________.13.已知直线04:=+-y x l 与圆2)1()1(:22=-+-y x C ,则圆C 上各点到l 的距离的最小值为________.14.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是________15、已知方程x 2+y 2+4x -2y -4=0,则x 2+y 2的最大值是________16.求圆心在直线230x y --=上,且过点()5,2和()3,2-的圆的方程________17. 从点)3,3(-A 发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆074422=+--+y x y x 相切,求光线l 所在直线的方程________18.若圆224x y +=与圆2220x y ay ++-=的公共弦的长度为a 的值为________19.曲线y =(3)4y k x =-+有两个不同交点时,实数k 的范围是 .20.已知圆22:()(2)4(0)C x a y a -+-=>及直线:30l x y -+=. 当直线l 被圆C 截得的弦长为,求a 的值________21.已知)0,4()3,0(B A 、-,点P 是圆0222=-+y y x 上的动点,则ABP ∆面积的最小值为_________22.过点)1,3(作圆1)1(22=+-y x 的两条切线,切点分别为B A ,,则直线AB 的方程为_________23.已知点),(b a M 在圆1:22=+y x O 外,则直线1=+by ax 与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定 24. 已知点)0,2(),2,0(B A .若点C 在函数2x y =的图象上,则使得ABC ∆的面积为2的点C 的个数为_______25.已知圆5:22=+y x O ,直线)20(1sin cos :πθθθ<<=+y x l .设圆O 上到直线l 的距离等于1的点的个数为k ,则=k ________.26. 已知点),(y x P 在圆1)1(22=-+y x 上运动,则21--x y 的最大值与最小值分别为______. 27已知两圆1022=+y x 和20)3()1(22=-+-y x 相交于B A ,两点,则直线AB 的方程是________.28.设直线l 的方程为b kx y +=(其中k 的值与b 无关),圆M 的方程为04222=--+x y x .(1)如果不论k 取何值,直线l 与圆M 总有两个不同的交点,求b 的取值范围;(2)1=b 时,l 与圆M 交于B A ,两点,求||AB 的最大值和最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直 线 与 圆 练 习
一,选择题:
1,若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是 ( )
A 、03=--y x
B 、032=-+y x
C 、01=-+y x
D 、052=--y x
2,和直线3x-4y+5=0关于x 轴对称的直线的方程是( )
A 、3x+4y-5=0
B 、3x+4y+5=0
C 、-3x+4y-5=0
D 、-3x+4y+5=0 3,圆01)4()3(22=+=-+-y x y x 关于直线对称的圆的方程是( )
A .1)4()3(22=-++y x
B .1)3()4(22=+++y x
C .1)3()4(22=-++y x
D .1)4()3(22=-+-y x
4,已知方程x 2+y 2+kx+(1-k)y+134
=0表示圆,则k 的取值范围 ( ) A k>3 B 2-≤k C -2<k<3 D k>3或k<-2
5,两定点A (-2,-1),B (2,-1),动点P 在抛物线2x y =上移动,则△
PAB 重心G 的轨迹方程是( )
A .312-=x y
B .3232-=x y
C .3222-=x y
D .4
1212-=x y 二,填空题:
6,圆O:x 2+y 2=9与圆C:x 2+y 2-2x +8y -1=0的位置关系是_ ____________ 7,圆心为C (1, 2)且与直线4x+3y-35=0相切的圆的方程是____________ 8, 过点P (1,6)与圆25)2()2(22=-++y x 相切的直线方程为____________ 92216.()34250x y x y x y ++=+若点,在直线上移动,则的最小值为 。

三,解答题:
10,已知直线1l :062=++y m x ,2l :023)2(=++-m my x m .当m 为何值时1l 与2
l (1)相交,(2)平行,(3)重合
答案:
A B B D B
6,相交;7,(x-1)2+(y-2)2=25;8,3x+4y-27=0;9,25; 10,(1)当1-≠m ,3≠,0≠时相交. (2)当1-=m ,0时21//l l .
(3)当3=m 时,1l 与2l 重合.。

相关文档
最新文档