六年级下学期数学广角——鸽巢问题
六年级下册数学教案-5.1数学广角——鸽巢问题|人教版(5)
六年级下册数学教案5.1 数学广角——鸽巢问题|人教版 (5)一、教学内容今天我们要学习的是人教版六年级下册数学的第五章第一节《数学广角——鸽巢问题》。
这一节主要让我们了解鸽巢问题的概念,学会用一种全新的思路去解决问题。
我们会通过生活中的实例,了解鸽巢问题的实质,以及如何运用它来解决实际问题。
二、教学目标通过这一节课的学习,我希望同学们能够理解并掌握鸽巢问题的解题思路,能够运用它来解决实际问题。
同时也希望同学们能够提高自己的逻辑思维能力,增强自己的解决问题的能力。
三、教学难点与重点本节课的重点是让学生理解并掌握鸽巢问题的解题思路。
难点在于如何让学生理解并接受这种全新的解决问题的方法。
四、教具与学具准备为了更好地进行课堂教学,我已经准备好了相关的教具和学具,包括PPT、鸽巢模型等。
五、教学过程1. 通过一个实际问题引入:假设有一个鸽巢,里面有n只鸽子,我们要如何计算出最多能有多少只鸽子在同一个鸽巢里?2. 引导学生思考,尝试用自己的方法解决问题。
3. 引导学生发现,当我们解决问题的方法不够科学时,可能会得出错误的结论。
4. 引入鸽巢问题的概念,讲解鸽巢问题的解题思路。
5. 通过例题讲解,让学生理解并掌握鸽巢问题的解题思路。
6. 通过随堂练习,让学生运用所学的知识解决实际问题。
六、板书设计板书设计主要包括鸽巢问题的定义、解题思路等关键信息。
七、作业设计作业题目:1. 如果有5只鸽子,最多能有多少只鸽子在同一个鸽巢里?2. 如果有10只鸽子,最多能有多少只鸽子在同一个鸽巢里?答案:1. 5只鸽子2. 10只鸽子八、课后反思及拓展延伸通过这一节课的学习,我发现同学们对鸽巢问题的理解还有待提高。
在今后的教学中,我需要更加深入地引导同学们理解并掌握鸽巢问题的解题思路,提高他们的解决问题的能力。
同时,我也可以尝试引入更多实际问题,让学生更好地理解鸽巢问题的应用。
重点和难点解析一、实际问题引入在教学过程中,我使用了实际问题引入的方法,这是非常重要的一个步骤。
六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)
第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。
二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。
模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。
【练习1】把4支铅笔放进3个笔筒中,有()种放法。
【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。
【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。
【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。
【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。
规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。
那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。
你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。
人教版六年级下数学数学广角——鸽巢问题
人教版六年级下数学数学广角——鸽巢问题第十二周数学广角——鸽巢问题鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用。
鸽巣原理的最简单表达形式是:物体个数÷鸽巣个数=商……余数,至少个数=商+1.举例来说,如果有3个苹果放在2个盒子里,共有四种不同的放法,但无论哪一种放法,都可以说“必有一个盒子放了两个或两个以上的苹果”。
类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。
如果有6封信,任意投入5个信箱里,那么一定有一个信箱至少有2封信。
摸2个同色球的计算方法是:要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1.物体数=颜色数×(至少数-1)+1.另外,可以使用极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
在填空题中,可以通过运用鸽巣原理来解决问题。
例如,鱼岳三小六年级有30名学生是二月份出生的,那么六年级至少有3名学生的生日是在二月份的同一天。
又如,有3个同学一起练投篮,如果他们一共投进16个球,那么一定有1个同学至少投进了6个球。
把6只鸡放进5个鸡笼,至少有2只鸡要放进同1个鸡笼里。
某班有个小书架,40个同学可以任意借阅,小书架上至少要有14本书,才可以保证至少有1个同学能借到2本或2本以上的书。
在解决问题时,我们可以运用鸽巣原理来求解。
例如,六(1)班有50名同学,至少有6名同学是同一个月出生的。
书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本科技书,一次至少要拿出4本书。
把16支铅笔最多放入3个铅笔盒里,可以保证至少有1个铅笔盒里的铅笔不少于6支。
在拓展应用中,我们可以通过鸽巣原理来解决更加复杂的问题。
例如,把27个球最多放在4个盒子里,可以保证至少有1个盒子里有7个球。
教师引导学生规范解答:2、假设先取5只,全是红的,不符合题意,要继续取;假设再取5只,5只有全是黄的,这时再取一只一定是蓝色的,这样取5×2+1=11(只)可以保证每种颜色至少有1只。
人教版六年级下册数学第五单元《数学广角》鸽巢问题
人教版六年级下册数学第五单元《数学广角 》
2)如果把158个苹果放进 3个抽屉里,不管怎么放, 总有一个抽屉里至少有几 个苹果?
精品课件
抽屉原理(二)
把 a 个 物 体 放 进 n 个 抽 屉,若a÷n=b……c
(c≠0 ,c<n )
则一定有一个抽屉至少 放了______ 个物体。 精品课件
比一比:两个抽屉原理有 何区别?
“原理1”和“原理2”的区别 是:原理1苹果多,抽屉少,数 量比较接近;原理2虽然也是 苹果多,抽屉少,但是数量相 差较大,苹果个数比抽屉个数 的几倍还多几。
2、从任意5双手套中任取6只,其中至少有2只 恰为一双手套 ,对吗?
3、从数1,2,。。。,10中任取6个数,其中 至少有2个数为奇偶性相同。
4、体育用品仓库里有许多足球、排球和篮球, 某班 50名同学来仓库拿球,规定每个人至少拿 1个球,至多拿2个球,问至少有几名同学所 拿的球种类是一致的?
精品课件
例:把一些铅笔放进3个文具盒中,保证其中 一个文具盒至少有4枝铅笔,原来至少有多少
枝铅笔?至少:只有一个文具盒有 4 枝,
其余都是(4-1)枝
3 +1
3
3
3
3×(4-1)+1=10(枝)
求总数=抽屉×(至少-1)+1
要分的份精数品课件 其中一个多1
鸽巢问题 (二)
六年级下册数学广角鸽巢问题
1
把4支铅笔放进3个笔筒中,不管怎么放,总
有一个笔筒里至少有2 支铅笔。
“总有”和“至少” 是什么意思?
为什么呢?
“总有”就是说“一定有一个笔筒。 “至少”就是说“不少于2支,可能是2支,也可能多于2支”。
第一种:
我们可以摆一摆。
0 0
第二种:
我们可以摆一摆。
0
第三种:
我们可以摆一摆。
0
第四种:
把四种颜色看作4个抽屉,把取出的球看作物品,那 么至少取4+1=5个球可以保证取到两个颜色相同的 球。
5.任意给出3个不同的自然数,其中一定有2个数的和 是偶数,请说明理由。
因为自然数可以分成奇数、偶数两类。把奇数、偶数看作两 个抽屉,把任意给出的3个不同自然数看作3个物品。至少有 一个抽屉里放了两个数。又因为奇数+奇数=偶数,偶数+偶 数=偶数,所以,任意给出3个不同的自然数,其中一定有2个 数的和是偶数。
假如1个鸽笼里飞进1只鸽子,3个鸽笼最多飞进3只 鸽子,还剩下2只鸽子,所以,无论怎么飞,总有1 个鸽笼里至少飞进2只鸽子。
做一做2
我给大家表演一个“魔术”。 一副牌,取出大小王,还剩 52 张牌,你们5 人每人随意 抽一张,我知道至少有2 张 牌是同花色的。
你理解上面扑克牌魔术的道理了吗?
至少有2张牌是同花色。
六年级下册数学广角鸽巢问题
抽屉原理是组合数学中的一个重要原理,它最早由德国数学
家狄里克雷(Dirichlet)提出并运用于解决数论中的问题,所以该原 理又称“狄里克雷原理”。抽屉原理有两个经典案例,一个是把10 个苹果放进9 个抽屉里,总有一个抽屉里至少放了2个苹果,所以这 个原理称作“抽屉原理”;另一个是6 只鸽子飞进5个鸽巢,总有一 个鸽巢至少飞进2只鸽子,所以也称为“鸽巢原理”。
六年级下册数学教案-5.1 数学广角——鸽巢问题|人教版 (1)
六年级下册数学教案-5.1 数学广角——鸽巢问题|人教版 (1)教学目标:1. 理解鸽巢原理的基本概念,掌握其在数学中的应用。
2. 能够运用鸽巢原理解决实际问题,提升逻辑思维能力。
3. 培养学生对数学的兴趣,激发探究欲望。
教学内容:1. 鸽巢原理的引入2. 鸽巢原理的定义及证明3. 鸽巢原理的应用4. 练习与拓展教学步骤:一、引入(5分钟)1. 教师通过展示一些生活中的例子,如:10个苹果放入9个篮子,让学生观察并思考,是否会有一个篮子里放入两个或以上的苹果。
2. 学生通过观察和思考,得出结论:必定会有一个篮子里放入两个或以上的苹果。
二、定义及证明(15分钟)1. 教师给出鸽巢原理的定义:如果有n个鸽子,要放入m个巢中(n>m),那么至少有一个巢中会有两个或以上的鸽子。
2. 教师引导学生通过反证法来证明鸽巢原理。
三、应用(15分钟)1. 教师给出一些实际问题,如:有13个学生,要分配到4个小组中,请学生运用鸽巢原理来解决问题。
2. 学生通过运用鸽巢原理,得出结论:至少有一个小组中有4个或以上的学生。
四、练习与拓展(15分钟)1. 教师给出一些练习题,让学生独立完成。
2. 教师对学生的答案进行点评,并引导学生思考更深入的问题。
教学反思:通过本节课的教学,学生对鸽巢原理有了深入的理解,并能够运用其解决实际问题。
在教学过程中,教师应注重引导学生思考,激发学生的探究欲望,提升学生的逻辑思维能力。
同时,教师还应注重培养学生的数学兴趣,使其在学习中感受到数学的魅力。
需要重点关注的细节是“定义及证明”部分。
这部分内容是本节课的核心,理解鸽巢原理的定义和证明过程对于学生掌握鸽巢原理至关重要。
以下是对这个重点细节的详细补充和说明:二、定义及证明(15分钟)1. 鸽巢原理的定义:在数学中,鸽巢原理(也称为狄利克雷抽屉原理)是一个基础且重要的原理。
它的直观表述是:如果有n个鸽子要放入m个巢中,且n>m,那么至少有一个巢中会有两个或以上的鸽子。
六年级下册数学广角鸽巢问题
六年级下册数学广角鸽巢问题
# 一、鸽巢原理(抽屉原理)的基本概念
1. 定义
把多于公式个的物体放到公式个抽屉里,则至少有一个抽屉里的东西不少于两件。
例如:把公式个苹果放到公式个抽屉里,那么至少有一个抽屉里有公式个苹果。
2. 公式表示
如果物体数除以抽屉数有余数,那么至少有一个抽屉里的物体数等于商加上公式。
用字母表示为:物体数公式抽屉数公式(公式),至少数公式。
# 二、典型题目及解析
(一)简单的鸽巢问题
1. 题目
把公式本书放进公式个抽屉,不管怎么放,总有一个抽屉至少放进几本书?
2. 解析
首先计算公式,这里商是公式,余数是公式。
根据鸽巢原理,至少数公式。
也就是说,总有一个抽屉至少放进公式本书。
(二)求物体数的鸽巢问题
1. 题目
一个抽屉里放着若干个玻璃球,要保证有一个抽屉里至少有公式个玻璃球,那么玻璃球的总数至少有多少个?(这里假设抽屉数为公式个)
2. 解析
已知至少数是公式,抽屉数是公式。
根据公式至少数公式,可以推出公式。
那么物体数(玻璃球总数)至少为公式个。
(三)生活中的鸽巢问题
1. 题目
六(1)班有公式名学生,至少有几名学生的生日在同一个月?
2. 解析
一年有公式个月,相当于公式个抽屉,公式名学生相当于物体数。
公式,商是公式,余数是公式。
至少数公式。
所以至少有公式名学生的生日在同一个月。
人教版六年级下数学数学广角——鸽巢问题
第十二周数学广角——鸽巢问题1、鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用①什么是鸽巣原理, 先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法, 如下表无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”。
这个结论是在“任意放法”的情况下, 得出的一个“必然结果”。
类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式②利用公式进行解题:物体个数÷鸽巣个数=商……余数至少个数=商+12、摸2个同色球计算方法。
①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。
物体数=颜色数×(至少数-1)+1②极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
③公式:两种颜色:2+1=3(个)三种颜色:3+1=4(个)四种颜色:4+1=5(个)1、填一填:(1)鱼岳三小六年级有30名学生是二月份(按28天计算)出生的,六年级至少有()名学生的生日是在二月份的同一天。
(2)有3个同学一起练习投篮,如果他们一共投进16个球,那么一定有1个同学至少投进了()个球。
(3)把6只鸡放进5个鸡笼,至少有()只鸡要放进同1个鸡笼里。
(4)某班有个小书架,40个同学可以任意借阅,小书架上至少要有()本书,才可以保证至少有1个同学能借到2本或2本以上的书。
学生独立思考解答,集体交流纠正。
2、解决问题。
(1)(易错题)六(1)班有50名同学,至少有多少名同学是同一个月出生的?(2)书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本科技书。
一次至少要拿出多少本书?(3)把16支铅笔最多放入几个铅笔盒里,可以保证至少有1个铅笔盒里的铅笔不少于6支?3、拓展应用1、把27个球最多放在几个盒子里,可以保证至少有1个盒子里有7个球?教师引导学生分析:盒子数看作抽屉数,如果要使其中1个抽屉里至少有7个球,那么球的个数至少要比抽屉数的(7-1)倍多1个,而(27-1)÷(7-1)=4...2,因此最多放进4个盒子里,可以保证至少有1个盒子里有7个球。
小学数学人教六年级下册数学广角鸽巢问题鸽
整数的性质在数学中有着广泛的 应用,尤其在解决一些涉及整除
和取余的问题时非常有用。
03 鸽巢问题解题方法
列举法
通过一一列举的方式,将每种可能的 情况都列出来,然后判断哪种情况符 合题目的要求。这种方法适用于问题 规模较小,可以穷举所有情况的问题 。
例如,有3只鸽子飞进2个鸽巢,列举 出所有可能的情况:第一个鸽巢1只 ,第二个鸽巢2只;第一个鸽巢2只, 第二个鸽巢1只;第一个鸽巢3只,第 二个鸽巢0只。由此可以得出至少有 一个鸽巢有2只或以上的鸽子。
04 鸽巢问题经典案例
物品分配问题
将多于n个物品放入n个容器,至少有一个容器包含两个或 以上的物品。
例如,将5个苹果放入4个盘子中,至少有一个盘子中会有 两个苹果。
鸽巢与信鸽问题
如果n个鸽子飞进n-1个鸽巢,那么至少有一个鸽巢中有两只鸽子。
类似地,如果有n封信要放入n-1个信箱,则至少有一个信箱中会有两封信。
05 鸽巢问题拓展与应用
拓展到多个抽屉情况
当有n个抽屉和m个鸽子(m>n)时 ,至少有一个抽屉里至少有⌈m/n⌉只 鸽子。
VS
如果每个抽屉里放k-1个鸽子,那么 最多可以放(k-1)n个鸽子,当第(k1)n+1个鸽子放入时,必然有一个抽 屉里至少有k个鸽子。
应用到实际生活中问题
生日悖论
在一个班级中,如果有23个或更 多的学生,那么至少有两个学生 同月同日出生的概率大于50%。
小学数学人教六年级下册数学广角 鸽巢问题鸽
目录
• 鸽巢问题简介 • 鸽巢问题基本原理 • 鸽巢问题解题方法 • 鸽巢问题经典案例 • 鸽巢问题拓展与应用 • 学生自主思考与探究
01 鸽巢问题简介
六年级下数学小学数学六年级下 数学广角——鸽巢问题
3.(分放的物体总数-1)÷(其中一个鸽笼里至少有的物体个数-1)=a……b(b<a),a就是所求的鸽笼数。
4.利用“鸽巢问题”解决问题的思路和方法:①构造“鸽巢”,建立“数学模型”;②把物体放入“鸽巢”,进行比较分析;③说明理由,得出结论。
例如:有4只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
提示:解决“鸽巢问题”的关键是找准谁是“鸽笼”,谁是“鸽子”。
数学学习技巧:良好习惯、终身受益 小学阶段是儿童正式接受学习的最初阶段,是良好学习习惯形成的关键时期,培养良好的学习习惯是形成学生学习能力的重要方面,也是发展个性的重要方面,因此掌握良好的学习方法是获得成功的关键。
一、鸽巢放进n个“鸽笼”中,总有一个“鸽笼”至少放进了2个物体。
2.把多于kn(k、n都是大于0的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进(k+1)个物体。
二、鸽巢问题的应用
1.如果有n(n是大于0的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了2个物品,那么至少需要有n+1个物品。
六年级下数学广角鸽巢问题知识点
第五单元:数学广角-鸽巢问题【知识点一】“鸽巢原理”(一)“鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非0自然数,且m>n),那么一定有一个鸽巢中至少放进了2个物体。
【知识点二】“鸽巢原理”(二)“鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是非0自然数),那么一定有一个鸽巢中至少放进了(k+1)个物体。
【知识点三】应用“鸽巢原理”解决简单的实际问题应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题转化成“鸽巢问题”,即弄清楚“鸽巢”(“鸽巢”是什么,有几个鸽巢)和分放的物体。
(2)设计“鸽巢”的具体形式。
(3)运用原理得出某个“鸽巢”中至少分放的物体个数,最终解决问题。
【误区警示】误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉中,总有一个抽屉里至少放5本书。
(√)错解分析此题错在把这个抽屉至少放的书的本数用“3(商)+2(余数)”计算了,应该是“3(商)+1”。
错解改正×误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同色的?5×3÷3=5(个)错解分析此题错在把小球的总数作为要分放物体的数量了,求得的结果也是与问题要求不符。
本题属于已知鸽巢数量(3中颜色即3个鸽巢)和分的结果(保证一个鸽巢里至少有2个同色的),求要分放物体的数量,各种颜色小球的数量并与参与运算。
错解改正3+1=4(个)【方法运用】运用逆推法解决鸽巢问题典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数量求出平均每个鸽巢里所放物体的数量和余数,其中至少有一个鸽巢中有(平均每个鸽巢里所放物体的数量+1)个物体。
此题可以把玻璃球的总数看成分放的物体总数,把盒子数看成鸽巢数,要使其中一个鸽巢里至少有5个玻璃球,则玻璃球的个数至少要比鸽巢数的(5-1)倍多1个。
人教版六年级数学下《数学广角──鸽巢问题》教学反思
《数学广角──鸽巢问题》教学反思一、教学目标达成情况通过本节课的教学,学生能够理解鸽巢问题的基本原理,掌握鸽巢问题的概念,并能够运用鸽巢问题解决实际问题。
同时,通过小组讨论和案例分析,学生的数学思维和解决问题的能力得到了提高。
二、教学内容和方法本节课的教学内容是鸽巢问题,这是一种与抽屉原理相关的数学问题。
通过实物鸽巢和鸽子模型,学生能够直观地理解鸽巢与鸽子的关系,从而引入鸽巢问题的概念。
在讲解过程中,我采用了讲解、示范、小组讨论和案例分析等多种教学方法,使学生能够深入理解鸽巢问题的基本原理和应用。
三、学生活动和表现在小组讨论环节,学生的参与度较高,能够积极发表自己的观点和看法。
通过案例分析,学生能够运用所学知识解决实际问题,提高了他们的思维能力和解题技巧。
同时,我也鼓励学生提出自己的问题和困惑,进行有针对性的指导和帮助。
四、教学亮点和不足本节课的教学亮点在于通过实物演示和小组讨论等多种教学方法,使学生能够深入理解鸽巢问题的基本原理和应用。
同时,我也注重学生的个体差异和需求,采用更加灵活多样的教学方法和手段,激发学生的学习兴趣和积极性。
然而,在教学过程中也存在一些不足之处。
例如,部分学生在理解鸽巢问题的基本原理时还存在一些困惑,需要进一步加强讲解和练习。
同时,在小组讨论环节,部分学生的参与度不够高,需要加强对学生的引导和激励。
五、改进措施和展望为了改进教学效果,我将进一步加强学生的讲解和练习,特别是对于存在困惑的学生要给予更多的指导和帮助。
同时,我也将注重学生的个体差异和需求,采用更加灵活多样的教学方法和手段,激发学生的学习兴趣和积极性。
展望未来,我希望能够继续探索更多与数学广角相关的数学问题,并将其应用于实际生活中,解决实际问题。
同时,我也希望能够在数学教学中提高学生的思维能力和解决问题的能力,为他们的未来学习和生活打下坚实的基础。
六年级下册数学教案-数学广角—鸽巢问题教案-人教新课标 (5)
六年级下册数学教案:数学广角—鸽巢问题教案一、教学目标1. 让学生了解鸽巢原理的基本概念,理解其在数学中的应用。
2. 培养学生运用鸽巢原理解决问题的能力,提高逻辑思维能力。
3. 培养学生团队合作精神,增强沟通交流能力。
二、教学内容1. 鸽巢原理的基本概念2. 鸽巢原理的应用3. 鸽巢原理在实际问题中的求解方法三、教学重点与难点1. 教学重点:鸽巢原理的基本概念,鸽巢原理的应用。
2. 教学难点:鸽巢原理在实际问题中的求解方法。
四、教学方法1. 讲授法:讲解鸽巢原理的基本概念和应用。
2. 案例分析法:通过具体案例,让学生了解鸽巢原理在实际问题中的应用。
3. 小组讨论法:分组讨论,让学生在合作中掌握鸽巢原理的求解方法。
五、教学过程1. 导入:通过一个简单的例子,引入鸽巢原理的概念。
2. 讲解:详细讲解鸽巢原理的基本概念,以及其在数学中的应用。
3. 案例分析:通过具体案例,让学生了解鸽巢原理在实际问题中的应用。
4. 小组讨论:分组讨论,让学生在合作中掌握鸽巢原理的求解方法。
5. 总结:对鸽巢原理的学习进行总结,强调其在数学中的重要性。
六、作业布置1. 课后练习:布置相关的课后练习,让学生巩固鸽巢原理的知识。
2. 案例分析:布置一个案例分析题,让学生运用鸽巢原理解决问题。
七、教学反思1. 教师应在教学过程中,注重启发学生的思维,引导学生主动探究。
2. 教师应关注学生的学习反馈,及时调整教学方法和进度。
3. 教师应鼓励学生积极参与讨论,培养学生的团队合作精神。
八、教学评价1. 过程评价:观察学生在课堂上的表现,如提问、回答问题、参与讨论等。
2. 练习评价:检查学生的课后练习完成情况,了解学生对鸽巢原理的掌握程度。
3. 案例分析评价:评价学生在案例分析题中的表现,了解学生运用鸽巢原理解决问题的能力。
九、教学资源1. 教材:六年级下册数学教材。
2. 辅导资料:相关的辅导书籍和资料。
3. 多媒体资源:PPT、视频等。
小学六年级下册数学《数学广角鸽巢问题》教案
小学六年级下册数学《数学广角鸽巢问题》教案小学六年级下册数学《数学广角──鸽巢问题》教案篇一教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。
2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。
3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决相关问题的能力和兴趣。
教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。
教学难点:理解“总有”“至少”的意义,理解鸽巢原理,并对一些简单的实际问题加以模型化。
教学准备:多媒体课件、扑克牌、3个笔筒。
教学过程:一、魔术游戏激趣导入:1、老师这个魔术需要请1名同学来配合,谁愿意?向学生介绍这是一幅扑克牌,取出大小王、还剩52张,(请学生随意抽出5张牌)好,见证奇迹的时刻到了,你手里有5张牌至少有两张牌的花色是一样的。
(学生打开牌让大家看)课件出示:至少有2张是同一花色。
“至少”表示什么意思?引导:老师为什么能作出准确的判断呢?因为这个有趣的魔术中蕴含着一个数学原理,这节课我们就一起来研究这个问题。
板演:鸽巢问题二、合作探究(一)列举法:课件出示:同学们,如果把3支笔放进2个笔筒中,会有哪几种摆放的结果?找一组学生上前实物模拟操作摆放情况。
师问:同学们,你们谁能把摆放的情况用“总有……至少……”这个句式来概括出来吗?“总有”、“至少”分别又是什么意思呢?概括得出:总有1个笔筒至少放2支笔。
(及时肯定学生们的回答:你的。
逻辑思维能力真强)课件出示:如果把4支笔放进3个笔筒中呢?快和你的小伙伴们交流探索一下:1、分组探究,教师巡视指导。
预设学生会出现以下几种情况:(1)实物模拟;(2)图示;(3)数的分解。
2、学生汇报,讲台展示。
3、学生概括得出:总有1个笔筒至少放2支笔。
六年级下册数学教案-5数学广角——鸽巢问题 人教新课标
六年级下册数学教案:数学广角——鸽巢问题教学目标:1. 知识与技能:让学生掌握鸽巢原理,理解其在实际生活中的应用。
2. 过程与方法:通过实际操作,培养学生运用鸽巢原理解决问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生严密的逻辑思维。
教学重点:1. 理解并掌握鸽巢原理。
2. 能够运用鸽巢原理解决实际问题。
教学难点:1. 理解鸽巢原理的内涵。
2. 在实际问题中灵活运用鸽巢原理。
教学准备:1. 教学课件。
2. 习题。
教学过程:一、导入(5分钟)1. 通过生活中的实例,如:有10个苹果要放到9个篮子里,引导学生思考是否每个篮子都会有苹果。
2. 提出问题,让学生进行讨论。
二、新课导入(10分钟)1. 通过导入的问题,引导学生理解鸽巢原理。
2. 给出鸽巢原理的正式定义。
3. 通过实例,让学生进一步理解鸽巢原理。
三、巩固练习(10分钟)1. 让学生完成教材上的习题。
2. 对学生的答案进行讲解,确保学生理解。
四、实际应用(10分钟)1. 通过生活中的实例,让学生运用鸽巢原理解决问题。
2. 引导学生进行思考,如何将鸽巢原理应用到实际问题中。
五、总结(5分钟)1. 对本节课的内容进行总结。
2. 强调鸽巢原理在实际生活中的应用。
课后作业:1. 完成教材上的习题。
2. 思考鸽巢原理在实际生活中的应用。
教学反思:通过本节课的教学,学生应该能够理解并掌握鸽巢原理,能够运用鸽巢原理解决实际问题。
在教学过程中,教师应注重学生的实际操作,让学生在实践中理解鸽巢原理。
同时,教师也应注重培养学生的逻辑思维能力,让学生能够严密的思考问题。
在以上的教案中,需要重点关注的是“巩固练习”环节。
这个环节不仅是学生对新知识的实践运用,也是教师检验教学效果和学生对鸽巢原理理解程度的重要步骤。
因此,对于这个重点细节,我们需要进行详细的补充和说明。
巩固练习(10分钟)1. 设计意图巩固练习环节的设计旨在让学生在理解鸽巢原理的基础上,通过解决具体问题来加深对原理的理解,并能够将原理应用到实际问题中。
六年级下册数学教案- 5数学广角——鸽巢问题 人教版
六年级下册数学教案:数学广角——鸽巢问题(人教版)教学目标1. 知识与技能:理解鸽巢原理,能够应用鸽巢原理解决实际问题。
2. 过程与方法:通过实际操作和小组讨论,培养学生观察、分析和解决问题的能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养合作精神和探究精神。
教学重点1. 理解鸽巢原理:学生能够理解鸽巢原理的基本概念。
2. 应用鸽巢原理解决实际问题:学生能够将鸽巢原理应用于解决实际问题。
教学难点1. 鸽巢原理的理解:学生可能难以理解鸽巢原理的抽象概念。
2. 实际问题的应用:学生可能难以将鸽巢原理应用于解决实际问题。
教学准备1. 教学材料:教科书、练习册、教学卡片。
2. 教学工具:黑板、粉笔、多媒体设备。
教学过程1. 导入(5分钟)- 教师通过一个简单的例子引入鸽巢原理的概念。
- 学生分享他们对鸽巢原理的理解。
2. 新课导入(10分钟)- 教师通过讲解和演示,向学生详细介绍鸽巢原理。
- 学生通过小组讨论,探讨鸽巢原理的应用。
3. 实践应用(10分钟)- 学生分组,每组解决一个实际问题,应用鸽巢原理。
- 教师巡回指导,解答学生的疑问。
4. 总结与拓展(5分钟)- 教师总结鸽巢原理的概念和应用。
- 学生分享他们在实践应用中的体会和收获。
5. 作业布置(5分钟)- 教师布置相关的练习题,巩固学生对鸽巢原理的理解和应用。
教学反思1. 教学效果:观察学生在课堂上的参与程度和作业完成情况,评估学生对鸽巢原理的理解和应用能力。
2. 教学改进:根据学生的反馈和学习情况,调整教学方法和教学内容,以提高教学效果。
通过本节课的学习,学生应能够理解鸽巢原理,并能够应用鸽巢原理解决实际问题。
同时,通过小组合作和实际操作,培养学生的观察、分析和解决问题的能力。
在以上的教案中,需要重点关注的是“实践应用”环节。
这个环节是学生将理论知识转化为实际操作能力的关键步骤,也是检验学生对鸽巢原理理解程度的重要环节。
以下对“实践应用”环节进行详细的补充和说明。
六年级下册数学教案-5.1数学广角——鸽巢问题|人教版(4)
六年级下册数学教案5.1 数学广角——鸽巢问题|人教版 (4)一、教学内容今天我们要学习的是六年级下册数学的第五章第一节内容,也就是“数学广角——鸽巢问题”。
这一节内容主要介绍了鸽巢问题的基本概念、原理和解决方法。
通过学习,学生将能够理解鸽巢问题的实质,掌握解决鸽巢问题的基本方法,并能够应用于实际问题中。
二、教学目标1. 知识与技能:学生能够理解鸽巢问题的定义,掌握解决鸽巢问题的方法,能够将鸽巢问题应用于实际情境中。
2. 过程与方法:通过探究鸽巢问题的解决方法,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:学生能够体验到数学与生活的紧密联系,增强对数学的兴趣和自信心。
三、教学难点与重点重点:学生能够理解鸽巢问题的实质,掌握解决鸽巢问题的基本方法。
难点:学生能够将鸽巢问题应用于实际问题中,灵活运用解决方法。
四、教具与学具准备教具:多媒体课件、黑板、粉笔学具:笔记本、笔五、教学过程1. 情景引入上课之初,我给学生讲述了一个关于鸽巢问题的故事,引发学生的兴趣。
例如:“有一天,小明在公园里看到了一群鸽子,他很好奇这些鸽子是如何安排它们的巢的,于是他决定解决这个问题。
”2. 探究鸽巢问题的定义和原理3. 解决鸽巢问题的方法然后,我向学生介绍解决鸽巢问题的基本方法。
我通过示例和讲解,让学生理解并掌握这些方法。
例如,我可以通过PPT展示一些具体的鸽巢问题,并引导学生思考如何解决。
4. 随堂练习在学生理解了鸽巢问题的解决方法后,我设计了一些随堂练习题,让学生亲自动手解决实际问题。
我会给予学生一定的时间,然后请他们分享他们的解题过程和答案。
5. 应用拓展我会给学生一些实际问题,让他们运用所学的鸽巢问题解决方法进行解决。
我会鼓励学生发挥创意,提出不同的解决策略,并进行讨论和交流。
六、板书设计在课堂上,我会利用黑板进行板书设计,将鸽巢问题的定义、原理和解决方法进行清晰的展示。
我会用简洁的语言和图示,帮助学生理解和记忆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、把6根铅笔放进5个杯子里,总有一个 杯子里至少放进( 2)根铅笔。
2、把7根铅笔放进6个杯子里,总有一个杯子 里至少放进( 2 )根铅笔? 把8根铅笔放进7个杯子里呢?
把9根铅笔放进8个杯子里呢? ……
把100根铅笔放进99个杯子里呢? ……
3、把5根铅笔放进3个杯子里,总有一 个杯子里至少放进( 2 )根铅笔。
人教版六年级下册——鸽巢问题
游戏规则:
老师宣布开始,4位同学就围着凳 子转圈,老师喊“停”的时候,四个人 每个人都必须坐在凳子上。准备好了 吗?
学习目标
1.理解最简单的“鸽巢问题”及“鸽 巢问题”的一般形式。 2. 让学生采用操作的方法进行枚举 及假设探究“鸽巢问题”。 3.会用“鸽巢问题”解决简单的实 际问题。
总结全课:
认真分析,先找出在每一道题中的“待分物体及 其数量”和“抽屉及其数量”,再平均分。
7只鸽子飞回5个鸽舍,至少有( 2 ) 只鸽子要飞进同一个鸽舍。为什么?
7÷5=1……2
8只鸽子飞回3个鸽舍,至少有( 3 ) 只鸽子要飞进同一个鸽舍。为什么?
8÷3=2……2
1、 三个小朋友同行,其中必有 两个小朋友性别相同,为什么?
相当于“2个抽屉” “两种性别”
相当于“3个待分物体” “三个小朋友”
1、把3根铅笔放进2个杯子里,有几 种方法?试试看。你有什么发现?
2、把4根铅笔放进3个杯子里,不管怎么 放,总有一个杯子里至少放进2根铅笔。 这是为什么?
2、把4根铅笔放进3个杯子里,不管怎么 放,总有一个杯子里至少放进2根铅笔。 这是为什么?
2、把4根铅笔放进3个杯子里,不管怎么 放,总有一个杯子里至少放进2根铅笔。 这是为什么?
2、 从全校学生中任意找 来13位同学,至少有两个人 属相相同,为什么?
“12个属相” 相当 “ 12个抽屉” 于 “13个人” 相当 “13个待分物体”
于
3、一副扑克牌(除去大小王)52张中有四种 花色,从中随意抽5张牌,无论怎么抽,为什 么总有两张牌是同一花色的?
铅笔 杯子 总有一个杯子里至少有 (商+1) 3 ÷ 2 = 1……1 2 4 ÷ 3 = 1……1 2 5 ÷ 4 = 1……1 2 6 ÷ 5 = 1……1 2 10 0 ÷ 9 9 = 1……1 2 ( n+1) ÷n =1 ……1 2 5 ÷ 3 = 1……2 2 5 ÷ 2 = 2……1 3 7 ÷ 2 = 3……1 4 15 ÷ 4 = 3……3 4 a ÷ n = b……c(c≠0) (b+1)
2、把4根铅笔放进3个杯子里,不管怎么 放,总有一个杯子里至少放进2根铅笔。 这是为什么?
2、把4根铅笔放进3个杯子里,不管怎么放, 总有一个杯子里至少放进2根铅笔。这是为什么? 2根以上 2根
不管怎么放,一定有一个杯子里放进了2根或2根以上。
平均分
把4根铅笔放进3个杯子里: 如果每个杯子里先各放1根铅笔,3个杯子中 最多放3根,剩下的1根不管放进哪一个杯子中, 总有一个杯子里至少放进2根铅笔。
3、(1) 把5本书进2个抽屉中,不管怎么放,总有一个 抽屉至少放进3本书。这是为什么?
5÷2=2……1
(3本)
(2) 把7本书进2个抽屉中,结果会怎样? (4本) 7÷2=3……1 (3) 把15本书进4个抽屉中,结果又会怎样? (4本) 15÷4=3……3
拓展资料
“抽屉原理”又称“鸽笼原理”, 最先是由19世纪的德国数学家狄利克 雷提出来的,所以又称“狄里克雷原 理”,也称为“鸽巢原理”。这一原 理在解决实际问题中有着广泛的应用。 “抽屉原理”的应用是千变万化的, 用它可以解决许多有趣的问题,并且 常常能得到一些令人惊异的结果。