宁夏银川一中2014届高三第一次月考-数学理试题及答案
数学理卷·2014届宁夏银川一中高三上学期第五次月考(2014.01)
A.5 π
B. 2π
C.20 π
D.4 π
11.设方程 lnx=-x 与方程 ex=-x(其中 e 是自然对数的底数)的所有根之和为 m,则( )
A.m<0
B. m=0
C.0<m<1
D.m>1
12. 函 数 f ( x) 对 任 意 x ∈ R都有f ( x + 6) + f ( x) = 2 f (3), y = f ( x −1) 的 图 象关 于 点
13.已知关于
x,
y
的二元一次不等式组
x
−
y
≤
1
,则 3x-y 的最大值为__________
x + 2 ≥ 0
A
14. 曲线 y = x 2 和曲线 y 2 = x 围成的图形面积是____________.
15. 如图, 在 ∆ABC 中, ∠B = 45o , D 是 BC 边上一点,
AD = 5, AC = 7, DC = 3 ,则 AB 的长为
(1)当 x ∈[0, π ] 时,求 f ( x) 的值域; 2
(2)若 ∆ABC 的内角 A, B,C 的对边分别为 a, b, c ,且满足 b = 3 , a
sin(2 A + C) = 2 + 2 cos( A + C) ,求 f (B) 的值. sin A
第2页共9页
18.(本小题满分 12 分)
A.{x|x<-2 或 x>4} B.{x|x<0 或 x>4} C.{x|x<0 或 x>6} D.{x|x<-2 或 x>2}
7.若将函数 y=tanωx+π4(ω>0)的图象向右平移π6个单位长度后,与函数 y=tanωx+π6的
宁夏银川一中2014届高三第二次模拟考试 数学(理) Word版含答案
开始a 输入1,0k S ==1(21)(21)S S k k =+-+1k k =+?S a >否绝密★启用前(银川一中第二次模拟考试)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U=R ,集合⎭⎬⎫⎩⎨⎧<-=01|A x x x ,{}1|≥=x x B ,则集合{}0|≤x x 等于 A .A B ⋂B .A B ⋃C . U C A B ⋂()D .U C A B ⋃()2.若复数z 满足i iz 42+=,则z = A .i 42+B .i 42-C .i 24-D .i 24+3.已知等比数列{}n a 的公比大于1,7273=a a ,2782=+a a ,则=12a A .96B .64C .72D .484.设l ,m ,n 表示不同的直线,α、β、γ表示不同的平面,给出下列四个命题:①若m ∥l ,且m ⊥α,则l ⊥α; ②若m ∥l ,且m ∥α,则l ∥α; ③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=m ,β∩γ=l ,γ∩α=n ,且n ⊂β,则l ∥m . 其中正确命题的个数是A .2B .1C .3D .42014年普通高等学校招生全国统一考试理 科 数 学5.从抛物线x y 42=上一点P 引抛物线准线的垂线, 垂足为M ,且|PM|=5,设抛物线的焦点为F , 则△MPF 的面积( )A .5B .10C .20D .156.阅读如图所示的程序框图,若输入919a =,则输出的k 值是 A .9 B . 10 C . 11 D . 127.将甲、乙、丙等六人分配到高中三个年级,每个年级2人,要求甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为A .18B .15C .12D .9 8.某几何体的三视图如图所示,则该几何体的表面积为 A .π2 B .π22C .(212+)πD .(222+)π9.△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cb <cos A ,则△ABC 为A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形10.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③|cos |y x x =⋅;④2xy x =⋅的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是A .①④②③B .①④③②C .④①②③D .③④②①11.过双曲线12222=-by a x )0,0(>>b a 的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为B , C .若BC AB =2,则双曲线的离心率是A .2B .3C .5D .1012.设函数)(x f y =在(-∞,+∞)内有定义,对于给定的正数k ,定义函数:⎩⎨⎧>≤=))(()(()()(k x f kk x f x f x f k ,取函数xe x xf ---=2)(,若对任意的),(∞+-∞∈x ,恒有)()(x f x f k =,则A. k 的最大值为2B. k 的最小值为2C. k 的最大值为1D. k 的最小值为1oXxxyxyx yx y第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知向量)1,(z x a -=,),2(z y b +=,且b a ⊥,若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥-≥5231y x x y x ,则z 的最大值为14.6)1xx -(的二项展开式中含3x 的项的系数为15.若(0,)απ∈,且3cos 2sin()4παα=-,则sin 2α的值为 .16.在平面直角坐标系中,记抛物线2y x x =-与x 轴所围成的平面区域为M ,该抛物线与直线y =kx (k >0)所围成的平面区域为A ,向区域M 内随机抛掷一点P ,若点P 落在区域A内的概率为827,则k 的值为三、解答题:解答应写出文字说明.证明过程或演算步骤17.(本小题满分12分)设数列{}n a 的各项均为正数,它的前n 项的和为n S ,点(,)n n a S 在函数2111822y x x =++的图像上;数列{}n b 满足1111,()n n n n b a b a a b ++=-=.其中n N *∈. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)设n n na cb =,求证:数列{}nc 的前n 项的和59n T >(n N *∈).18 (本题满分12分)今年年初,我国多个地区发生了持续性大规模的雾霾天气,给我们的身体健康产生了巨大的威胁。
宁夏银川一中高三数学上学期第一次月考试题理(含解析)
2015-2016学年宁夏银川一中高三(上)第一次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x>1},B={0,1,2,4},则(C R A)∩B=()A.{0,1} B.{0} C.{2,4} D.∅2.下列命题中是假命题的是()A.∀x∈R,2x﹣1>0 B.∀x∈N﹡,(x﹣1)2>0 C.∃x∈R,lgx<1 D.∃x∈R,tanx=2 3.,则m等于()A.﹣1 B.0 C.1 D.24.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos2x B.y=log2|x| C.D.y=x3+15.若tanθ+=4,则sin2θ=()A.B.C.D.6.若x∈(0,1),则下列结论正确的是()A.B.C.D.7.已知P、Q是圆心在坐标原点O的单位圆上的两点,分别位于第一象限和第四象限,且P点的纵坐标为,Q点的横坐标为.则cos∠POQ=()A.B.C.﹣D.﹣8.现有四个函数:①y=x•sinx;②y=x•cosx;③y=x•|cosx|;④y=x•2x的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是()A.①④③② B.③④②① C.④①②③ D.①④②③9.设函数,其中,则导数f′(﹣1)的取值范围()A.[3,6] B.C.D.10.函数的图象与x轴的交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位11.若函数f(x)满足,当x∈[0,1]时,f(x)=x,若在区间(﹣1,1]上,g(x)=f(x)﹣mx﹣m有两个零点,则实数m的取值范围是()A.B.C.(0,1)D.12.设函数,且αsinα﹣βsinβ>0,则下列不等式必定成立的是()A.α>βB.α<βC.α+β>0 D.α2>β2二、填空题:本大题共4小题,每小题5分,共20分.13.如图,某港口一天6时到18时的水渠变化曲线近似满足函数y=3sin(x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为.14.已知,,则= .15.已知点P在曲线y=上,a为曲线在点P处的切线的倾斜角,则a的取值范围是.16.给出下列四个命题:①半径为2,圆心角的弧度数为的扇形面积为②若α,β为锐角,,则③是函数y=sin(2x+φ)为偶函数的一个充分不必要条件④函数的一条对称轴是其中正确的命题是.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2015秋•乌拉特前旗校级月考)某同学用五点法画函数f(x)=Asin(ωx+ϕ),(ω>0,|ϕ|<)在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx+ϕ0 π2πxAsin(ωx+ϕ)0 5 ﹣5 0(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)若函数f(x)的图象向左平移个单位后对应的函数为g(x),求g(x)的图象离原点最近的对称中心.18.(12分)(2014•江西)已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f()=0,其中a∈R,θ∈(0,π).(1)求a,θ的值;(2)若f()=﹣,α∈(,π),求sin(α+)的值.19.(12分)(2012•佛山二模)某种产品每件成本为6元,每件售价为x元(x>6),年销量为u万件,若已知与成正比,且售价为10元时,年销量为28万件.(1)求年销售利润y关于x的函数关系式.(2)求售价为多少时,年利润最大,并求出最大年利润.20.(12分)(2014•天津模拟)已知函数f(x)=x3﹣3ax2+b(x∈R),其中a≠0,b∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)设a∈[,],函数f(x)在区间[1,2]上的最大值为M,最小值为m,求M﹣m的取值范围.21.(12分)(2015•大观区校级四模)已知函数f(x)=ax+xlnx(a∈R)(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.(10分)(2015•金昌校级模拟)如图,AB是⊙O的一条切线,切点为B,ADE、CFD都是⊙O 的割线,AC=AB,CE交⊙O于点G.(Ⅰ)证明:AC2=AD•AE;(Ⅱ)证明:FG∥AC.选修4-4:坐标系与参数方程23.(2015•鹰潭一模)选修4﹣4:坐标系与参数方程.极坐标系与直角坐标系xoy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程为(t为参数,0≤α<π),射线θ=φ,θ=φ+,θ=φ﹣与曲线C1交于(不包括极点O)三点A、B、C.(I)求证:|OB|+|OC|=|OA|;(Ⅱ)当φ=时,B,C两点在曲线C2上,求m与α的值.选修4-5:不等式选讲24.(2015•鹰潭一模)已知函数f(x)=|x+2|﹣2|x﹣1|(1)解不等式f(x)≥﹣2;(2)对任意x∈[a,+∞),都有f(x)≤x﹣a成立,求实数a的取值范围.2015-2016学年宁夏银川一中高三(上)第一次月考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x>1},B={0,1,2,4},则(C R A)∩B=()A.{0,1} B.{0} C.{2,4} D.∅考点:交、并、补集的混合运算.专题:计算题.分析:由集合A={x|x>1},B={0,1,2,4},知C R A={x≤1},由此能求出(C R A)∩B.解答:解:∵集合A={x|x>1},B={0,1,2,4},∴C R A={x≤1},∴(C R A)∩B={0,1}.故选A.点评:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.2.下列命题中是假命题的是()A.∀x∈R,2x﹣1>0 B.∀x∈N﹡,(x﹣1)2>0 C.∃x∈R,lgx<1 D.∃x∈R,tanx=2 考点:四种命题的真假关系.专题:简易逻辑.分析:本题考查全称命题和特称命题真假的判断,逐一判断即可.解答:解:B中,x=1时不成立,故选B.答案:B.点评:本题考查逻辑语言与指数函数、二次函数、对数函数、正切函数的值域,属容易题.3.,则m等于()A.﹣1 B.0 C.1 D.2考点:定积分.专题:导数的概念及应用.分析:利用定积分的几何意义计算定积分.解答:解:y=,即(x+1)2+y2=1,表示以(﹣1,0)为圆心,以1为半径的圆,圆的面积为π,∵,∴表示为圆的面积的二分之一,∴m=0,故选:B点评:本题主要考查定积分、定积分的几何意义、圆的面积等基础知识,考查考查数形结合思想.属于基础题.4.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos2x B.y=log2|x| C.D.y=x3+1考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:利用函数奇偶性的定义及基本函数的单调性可作出判断.解答:解:函数y=log2|x|的定义域为(﹣∞,0)∪(0,+∞),关于原点对称,且log2|﹣x|=log2|x|,∴函数y=log2|x|为偶函数,当x>0时,函数y=log2|x|=log2x为R上的增函数,所以在(1,2)上也为增函数,故选B.点评:本题考查函数的奇偶性、单调性,属基础题,定义是解决该类题目的基本方法.5.若tanθ+=4,则sin2θ=()A.B.C.D.考点:二倍角的正弦;同角三角函数间的基本关系.专题:三角函数的求值.分析:先利用正弦的二倍角公式变形,然后除以1,将1用同角三角函数关系代换,利用齐次式的方法化简,可求出所求.解答:解:sin2θ=2sinθcosθ=====故选D.点评:本题主要考查了二倍角公式,以及齐次式的应用,同时考查了计算能力,属于基础题.6.若x∈(0,1),则下列结论正确的是()A.B.C.D.考点:不等式比较大小.专题:不等式.分析:根据指数函数幂函数对数函数的图象与性质,得到不等式与0,1的关系,即可比较大小.解答:解:x∈(0,1),∴lgx<0,2x>1,0<<1,∴2x>>lgx,故选:C.点评:本题考查了不等式的大小比较,以及指数函数幂函数对数函数的图象与性质,属于基础题.7.已知P、Q是圆心在坐标原点O的单位圆上的两点,分别位于第一象限和第四象限,且P点的纵坐标为,Q点的横坐标为.则cos∠POQ=()A.B.C.﹣D.﹣考点:两角和与差的余弦函数;任意角的三角函数的定义.专题:三角函数的求值.分析:由条件利用直角三角形中的边角关系求得sin∠xOP和cos∠xOQ的值,利用同角三角函数的基本关系求得cos∠xOP 和sin∠xOQ,再利用两角和的余弦公式求得cos∠POQ=cos(∠xOP+∠xOQ )的值.解答:解:由题意可得,sin∠xOP=,∴cos∠xOP=;再根据cos∠xOQ=,可得sin∠xOQ=.∴cos∠POQ=cos(∠xOP+∠xOQ )=cos∠xOP•cos∠xOQ﹣sin∠xOP•sin∠xOQ=﹣=﹣,故选:D.点评:本题主要考查直角三角形中的边角关系,同角三角函数的基本关系,两角和的余弦公式的应用,属于基础题.8.现有四个函数:①y=x•sinx;②y=x•cosx;③y=x•|cosx|;④y=x•2x的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是()A.①④③② B.③④②① C.④①②③ D.①④②③考点:函数的图象.专题:函数的性质及应用.分析:从左到右依次分析四个图象可知,第一个图象关于Y轴对称,是一个偶函数,第二个图象不关于原点对称,也不关于Y轴对称,是一个非奇非偶函数;第三、四个图象关于原点对称,是奇函数,但第四个图象在Y轴左侧,图象都在x轴的下方,再结合函数的解析式,进而得到答案.解答:解:分析函数的解析式,可得:①y=x•sinx为偶函数;②y=x•cosx为奇函数;③y=x•|cosx|为奇函数,④y=x•2x为非奇非偶函数且当x<0时,③y=x•|cosx|≤0恒成立;则从左到右图象对应的函数序号应为:①④②③故选:D.点评:本题考点是考查了函数图象及函数图象变化的特点,解决此类问题有借助两个方面的知识进行研究,一是函数的性质,二是函数图象要过的特殊点.9.设函数,其中,则导数f′(﹣1)的取值范围()A.[3,6] B.C.D.考点:三角函数中的恒等变换应用;函数的值域.分析:先对原函数进行求导可得到f′(x)的解析式,将x=﹣1代入可求取值范围.解答:解:∵∴∴=2sin()+4∵∴∴s in∴f′(﹣1)∈[3,6]故选A.点评:本题主要考查函数求导和三角函数求值域的问题.这两个方面都是高考中必考内容,难度不大.10.函数的图象与x轴的交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由题意可得,函数的周期为π,由此求得ω=2,由g(x)=Acosωx=sin[2(x+)+],根据y=Asin(ωx+∅)的图象变换规律得出结论.解答:解:由题意可得,函数的周期为π,故=π,∴ω=2.要得到函数g(x)=Acosωx=sin[2(x+)+]的图象,只需将f(x)=的图象向左平移个单位即可,故选A.点评:本题主要考查y=Asin(ωx+∅)的图象变换规律,y=Asin(ωx+∅)的周期性,属于中档题.11.若函数f(x)满足,当x∈[0,1]时,f(x)=x,若在区间(﹣1,1]上,g(x)=f(x)﹣mx﹣m有两个零点,则实数m的取值范围是()A.B.C.(0,1)D.考点:函数零点的判定定理.专题:函数的性质及应用.分析:根据函数f(x)满足,当x∈[0,1]时,f(x)=x,求出x∈(﹣1,0)时,f(x)的解析式,由在区间(﹣1,1]上,g(x)=f(x)﹣mx﹣m有两个零点,转化为两函数图象的交点,利用图象直接的结论.解答:解:函数f(x)满足,当x∈[0,1]时,f(x)=x,∴x∈(﹣1,0)时,f(x)+1==,f(x)=.因为g(x)=f(x)﹣mx﹣m有两个零点,所以y=f(x)与y=mx+m的图象有两个交点,函数图象如图所示,由图象可得,当0<m≤时,两函数有两个交点,故选 D.点评:此题是个中档题.本题考查了利用函数零点的存在性求变量的取值范围和代入法求函数解析式,体现了转化的思想,以及利用函数图象解决问题的能力,体现了数形结合的思想.也考查了学生创造性分析解决问题的能力,属于中档题.12.设函数,且αsinα﹣βsinβ>0,则下列不等式必定成立的是()A.α>βB.α<βC.α+β>0 D.α2>β2考点:正弦函数的单调性.专题:综合题.分析:构造函数f(x)=xsinx,x∈,利用奇偶函数的定义可判断其奇偶性,利用f′(x)=sinx+xcosx可判断f(x)=xsinx,x∈[0,]与x∈[﹣,0]上的单调性,从而可选出正确答案.解答:解:令f(x)=xsinx,x∈,∵f(﹣x)=﹣x•sin(﹣x)=x•sinx=f(x),∴f(x)=xsinx,x∈为偶函数.又f′(x)=sinx+xcosx,∴当x∈[0,],f′(x)>0,即f(x)=xsinx在x∈[0,]单调递增;同理可证偶函数f(x)=xsinx在x∈[﹣,0]单调递减;∴当0≤|β|<|α|≤时,f(α)>f(β),即αsinα﹣βsinβ>0,反之也成立;故选D.点评:本题考查正弦函数的单调性,难点在于构造函数f(x)=xsinx,x∈,通过研究函数f(x)=xsinx,的奇偶性与单调性解决问题,属于难题.二、填空题:本大题共4小题,每小题5分,共20分.13.如图,某港口一天6时到18时的水渠变化曲线近似满足函数y=3sin(x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为8 .考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:由图象观察可得:y min=﹣3+k=2,从而可求k的值,从而可求y max=3+k=3+5=8.解答:解:∵由题意可得:y min=﹣3+k=2,∴可解得:k=5,∴y max=3+k=3+5=8,故答案为:8.点评:本题主要考查了正弦函数的图象和性质,属于基本知识的考查.14.已知,,则= .考点:两角和与差的正切函数.专题:计算题;三角函数的求值.分析:利用辅助角公式sinα+cosα=sin(α+),可求得sin(α+),结合α的范围,可α+∈(,),利用同角的三角函数关系可求cos(α+),tan(α+)的值.解答:解:∵sinα+cosα=sin(α+)=﹣,∴sin(α+)=﹣,∵α∈(,π),∴α+∈(,),∴cos(α+)=﹣=﹣.∴tan(α+)==.故答案为:.点评:本题考查同角三角函数间的基本关系,考查了计算能力,属于基础题.15.已知点P在曲线y=上,a为曲线在点P处的切线的倾斜角,则a的取值范围是.考点:导数的几何意义.专题:计算题;数形结合.分析:由导函数的几何意义可知函数图象在切点处的切线的斜率值即为其点的导函数值,结合函数的值域的求法利用基本不等式求出k的范围,再根据k=tanα,结合正切函数的图象求出角α的范围.解答:解:根据题意得f′(x)=﹣,∵,且k<0则曲线y=f(x)上切点处的切线的斜率k≥﹣1,又∵k=tanα,结合正切函数的图象由图可得α∈,故答案为:.点评:本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.16.给出下列四个命题:①半径为2,圆心角的弧度数为的扇形面积为②若α,β为锐角,,则③是函数y=sin(2x+φ)为偶函数的一个充分不必要条件④函数的一条对称轴是其中正确的命题是②③④.考点:命题的真假判断与应用;两角和与差的正切函数.专题:三角函数的图像与性质.分析:①利用弧度制的定义可得公式:s扇形=Lr,L=αr,求解即可;②tan(α+2β)=tan(α+β+β)==1,再判断α+2β<180°,得出答案;③考查了周期函数,+2kπ都能使函数y=sin(2x+φ)为偶函数,④考查三角函数对称轴的特征:过余弦函数的最值点都是对称轴,把代入得:y=cosπ=﹣1,是对称轴,解答:解:①s扇形=Lr,L=αr∴s=1,故错误;②tan(α+2β)=tan(α+β+β)==1∵α,β为锐角,,∴α+2β<180°∴,故②正确;③+2kπ都能使函数y=sin(2x+φ)为偶函数,故③正确;④把代入得:y=cosπ=﹣1,是对称轴,故正确;故答案为:②③④.点评:考查了弧度制的定义和三角函数的周期性,对称轴和和角公式,属于基础题型,应熟练掌握.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2015秋•乌拉特前旗校级月考)某同学用五点法画函数f(x)=Asin(ωx+ϕ),(ω>0,|ϕ|<)在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx+ϕ0 π2πxAsin(ωx+ϕ)0 5 ﹣5 0(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)若函数f(x)的图象向左平移个单位后对应的函数为g(x),求g(x)的图象离原点最近的对称中心.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(1)由表中已知数据易得,可得表格和解析式;(2)由函数图象变换可得g (x )的解析式,可得对称中心. 解答: 解:(1)根据表中已知数据,解得数据补全如下表:ωx+ϕ 0 π2πxAsin (ωx+ϕ) 0 5 0 ﹣5 0 ∴函数的解析式为;(2)函数f (x )图象向左平移个单位后对应的函数是g (x )=5sin[2(x+)﹣]=5sin (2x+), 其对称中心的横坐标满足2x+=k π,即x=﹣,k ∈Z ,∴离原点最近的对称中心是点评: 本题考查三角函数解析式的确定和函数图象变换,涉及三角函数的对称性,属基础题.18.(12分)(2014•江西)已知函数f (x )=(a+2cos 2x )cos (2x+θ)为奇函数,且f ()=0,其中a ∈R ,θ∈(0,π). (1)求a ,θ的值; (2)若f ()=﹣,α∈(,π),求sin (α+)的值.考点: 三角函数中的恒等变换应用;函数奇偶性的性质. 专题: 三角函数的求值. 分析: (1)把x=代入函数解析式可求得a 的值,进而根据函数为奇函数推断出f (0)=0,进而求得cos θ,则θ的值可得. (2)利用f ()=﹣和函数的解析式可求得sin,进而求得cos,进而利用二倍角公式分别求得sin α,cos α,最后利用两角和与差的正弦公式求得答案. 解答: 解:(1)f ()=﹣(a+1)sin θ=0,∵θ∈(0,π). ∴sin θ≠0,∴a+1=0,即a=﹣1 ∵f(x )为奇函数,∴f(0)=(a+2)cos θ=0,∴cosθ=0,θ=.(2)由(1)知f(x)=(﹣1+2cos2x)cos(2x+)=cos2x•(﹣sin2x)=﹣,∴f()=﹣sinα=﹣,∴sinα=,∵α∈(,π),∴cosα==﹣,∴sin(α+)=sinαcos+cosαsin=.点评:本题主要考查了同角三角函数关系,三角函数恒等变换的应用,函数奇偶性问题.综合运用了所学知识解决问题的能力.19.(12分)(2012•佛山二模)某种产品每件成本为6元,每件售价为x元(x>6),年销量为u万件,若已知与成正比,且售价为10元时,年销量为28万件.(1)求年销售利润y关于x的函数关系式.(2)求售价为多少时,年利润最大,并求出最大年利润.考点:函数模型的选择与应用.专题:应用题.分析:(1)根据题中条件:“若已知与成正比”可设,再依据售价为10元时,年销量为28万件求得k值,从而得出年销售利润y关于x的函数关系式.(2)利用导数研究函数的最值,先求出y的导数,根据y′>0求得的区间是单调增区间,y′<0求得的区间是单调减区间,从而求出极值进而得出最值即可.解答:解:(1)设,∵售价为10元时,年销量为28万件;∴,解得k=2.∴=﹣2x2+21x+18.∴y=(﹣2x2+21x+18)(x﹣6)=﹣2x3+33x2﹣108x﹣108.(2)y'=﹣6x2+66x﹣108=﹣6(x2﹣11x+18)=﹣6(x﹣2)(x﹣9)令y'=0得x=2(∵x>6,舍去)或x=9显然,当x∈(6,9)时,y'>0当x∈(9,+∞)时,y'<0∴函数y=﹣2x3+33x2﹣108x﹣108在(6,9)上是关于x的增函数;在(9,+∞)上是关于x的减函数.∴当x=9时,y取最大值,且y max=135.∴售价为9元时,年利润最大,最大年利润为135万元.点评:本小题主要考查根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力.属于基础题.20.(12分)(2014•天津模拟)已知函数f(x)=x3﹣3ax2+b(x∈R),其中a≠0,b∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)设a∈[,],函数f(x)在区间[1,2]上的最大值为M,最小值为m,求M﹣m的取值范围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)对于含参数的函数f(x)的单调区间的求法,需要进行分类讨论,然后利用导数求出函数的单调性;(Ⅱ)求出f(x)在[1,2a]内是减函数,在[2a,2]内是增函数,设 g(a)=4a3﹣12a+8,求出g(a)在[]内是减函数,问题得以解决.解答:解:(Ⅰ)f'(x)=3x2﹣6ax=3x(x﹣2a),令f'(x)=0,则x1=0,x2=2a,(1)当a>0时,0<2a,当x变化时,f'(x),f(x)的变化情况如下表:x (﹣∞,0)0 (0,2a)2a (2a,+∞)f'(x)+ 0 ﹣0 +f(x)↗极大值↘极小值↗∴函数f(x)在区间(﹣∞,0)和(2a,+∞)内是增函数,在区间(0,2a)内是减函数.(2)当a<0时,2a<0,当x变化时,f'(x),f(x)的变化情况如下表:x (﹣∞,2a) 2a (2a,0)0 (0,+∞)f'(x)+ 0 ﹣0 +f(x)↗极大值↘极小值↗∴函数f(x)在区间(﹣∞,2a)和(0,+∞)内是增函数,在区间(2a,0)内是减函数.(Ⅱ)由及(Ⅰ),f(x)在[1,2a]内是减函数,在[2a,2]内是增函数,又f(2)﹣f(1)=(8﹣12a+b)﹣(1﹣3a+b)=7﹣9a>0,∴M=f(2),m=f(2a)=8a3﹣12a3+b=b﹣4a3,∴M﹣m=(8﹣12a+b)﹣(b﹣4a3)=4a3﹣12a+8,设 g(a)=4a3﹣12a+8,∴g'(a)=12a2﹣12=12(a+1)(a﹣1)<0(a∈[]),∴g(a)在[]内是减函数,故 g(a)max=g()=2+=,g(a)min=g()=﹣1+4×=.∴≤M﹣m≤.点评:本题考查利用导数研究函数的极值和单调性,涉及构造函数的方法,属中档题.21.(12分)(2015•大观区校级四模)已知函数f(x)=ax+xlnx(a∈R)(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;(2)当a=1且k∈z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:综合题;导数的概念及应用.分析:(1)易求f′(x)=a+1+lnx,依题意知,当x≥e时,a+1+lnx≥0恒成立,即x≥e 时,a≥(﹣1﹣lnx)max,从而可得a的取值范围;(2)依题意,对任意x>1恒成立,令则,再令h(x)=x﹣lnx﹣2(x>1),易知h(x)在(1,+∞)上单增,从而可求得g(x)min=x0∈(3,4),而k∈z,从而可得k的最大值.解答:解:(1)∵f(x)=ax+xlnx,∴f′(x)=a+1+lnx,又函数f(x)在区间[e,+∞)上为增函数,∴当x≥e时,a+1+lnx≥0恒成立,∴a≥(﹣1﹣lnx)max=﹣1﹣lne=﹣2,即a的取值范围为[﹣2,+∞);(2)当x>1时,x﹣1>0,故不等式k(x﹣1)<f(x)⇔k<,即对任意x>1恒成立.令则,令h(x)=x﹣lnx﹣2(x>1),则在(1,+∞)上单增.∵h(3)=1﹣ln3<0,h(4)=2﹣ln4>0,∴存在x0∈(3,4)使h(x0)=0,即当1<x<x0时,h(x)<0,即g′(x)<0,当x>x0时,h(x)>0,即g′(x)>0,∴g(x)在(1,x0)上单减,在(x0,+∞)上单增.令h(x0)=x0﹣lnx0﹣2=0,即lnx0=x0﹣2,=x0∈(3,4),∴k<g(x)min=x0且k∈Z,即k max=3.点评:本题考查利用导数研究函数的单调性及利用导数求闭区间上函数的最值,着重考查等价转化思想与函数恒成立问题,属于难题.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.(10分)(2015•金昌校级模拟)如图,AB是⊙O的一条切线,切点为B,ADE、CFD都是⊙O 的割线,AC=AB,CE交⊙O于点G.(Ⅰ)证明:AC2=AD•AE;(Ⅱ)证明:FG∥AC.考点:与圆有关的比例线段;圆內接多边形的性质与判定.专题:选作题;立体几何.分析:(Ⅰ)利用切线长与割线长的关系及AB=AC进行证明.(Ⅱ)利用成比例的线段证明角相等、三角形相似,得到同位角角相等,从而两直线平行.解答:证明:(Ⅱ)∵AB是⊙O的一条切线,切点为B,ADE,CFD,CGE都是⊙O的割线,∴AB2=AD•AE,∵AB=AC,∴AD•AE=AC2.(Ⅱ)由(Ⅱ)有,∵∠EAC=∠DAC,∴△ADC∽△ACE,∴∠ADC=∠ACE,∵圆的内接四边形对角互补,∴∠ADC=∠EGF,∴∠EGF=∠ACE,∴FG∥AC.点评:本题考查圆的切线、割线长的关系,平面的基本性质.解决这类问题的常用方法是利用成比例的线段证明角相等、三角形相似等知识.选修4-4:坐标系与参数方程23.(2015•鹰潭一模)选修4﹣4:坐标系与参数方程.极坐标系与直角坐标系xoy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程为(t为参数,0≤α<π),射线θ=φ,θ=φ+,θ=φ﹣与曲线C1交于(不包括极点O)三点A、B、C.(I)求证:|OB|+|OC|=|OA|;(Ⅱ)当φ=时,B,C两点在曲线C2上,求m与α的值.考点:简单曲线的极坐标方程;圆的参数方程.专题:直线与圆.分析:(Ⅰ)依题意,|OA|=4cosφ,|OB|=4cos(φ+),|OC|=4cos(φ﹣),利用三角恒等变换化简|OB|+|OC|为4cosφ,=|OA|,命题得证.(Ⅱ)当φ=时,B,C两点的极坐标分别为(2,),(2,﹣).再把它们化为直角坐标,根据C2是经过点(m,0),倾斜角为α的直线,又经过点B,C的直线方程为y=﹣(x ﹣2),由此可得m及直线的斜率,从而求得α的值.解答:解:(Ⅰ)依题意,|OA|=4cosφ,|OB|=4cos(φ+),|OC|=4cos(φ﹣),…(2分)则|OB|+|OC|=4cos(φ+)+4cos(φ﹣)=2(cosφ﹣sinφ)+2(cosφ+sinφ)=4cosφ,=|OA|.…(5分)(Ⅱ)当φ=时,B,C两点的极坐标分别为(2,),(2,﹣).化为直角坐标为B(1,),C(3,﹣).…(7分)C2是经过点(m,0),倾斜角为α的直线,又经过点B,C的直线方程为y=﹣(x﹣2),故直线的斜率为﹣,…(9分)所以m=2,α=.…(10分)点评:本题主要考查把参数方程化为直角坐标方程,把点的极坐标化为直角坐标,直线的倾斜角和斜率,属于基础题.选修4-5:不等式选讲24.(2015•鹰潭一模)已知函数f(x)=|x+2|﹣2|x﹣1|(1)解不等式f(x)≥﹣2;(2)对任意x∈[a,+∞),都有f(x)≤x﹣a成立,求实数a的取值范围.考点:函数恒成立问题;绝对值不等式的解法.专题:函数的性质及应用;不等式的解法及应用;直线与圆.分析:(1)通过对x≤﹣2,﹣2<x<1与x≥1三类讨论,去掉绝对值符号,解相应的一次不等式,最后取其并集即可;(2)在坐标系中,作出的图象,对任意x∈[a,+∞),都有f(x)≤x﹣a成立,分﹣a≥2与﹣a<2讨论,即可求得实数a的取值范围.解答:解:(1)f(x)=|x+2|﹣2|x﹣1|≥﹣2,当x≤﹣2时,x﹣4≥﹣2,即x≥2,∴x∈∅;当﹣2<x<1时,3x≥﹣2,即x≥﹣,∴﹣≤x≤1;当x≥1时,﹣x+4≥﹣2,即x≤6,∴1≤x≤6;综上,不等式f(x)≥﹣2的解集为:{x|﹣≤x≤6} …(5分)(2),函数f(x)的图象如图所示:令y=x﹣a,﹣a表示直线的纵截距,当直线过(1,3)点时,﹣a=2;∴当﹣a≥2,即a≤﹣2时成立;…(8分)当﹣a<2,即a>﹣2时,令﹣x+4=x﹣a,得x=2+,∴a≥2+,即a≥4时成立,综上a≤﹣2或a≥4.…(10分)点评:本题考查绝对值不等式的解法,考查分段函数的性质及应用,考查等价转化思想与作图分析能力,突出恒成立问题的考查,属于难题.。
宁夏银川市第一中学2014高三下第一次模拟考试数学(理)试卷
绝密★启用前2014年普通高等学校招生全国统一考试数学(理)(银川一中第一次模拟考试)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。
第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合M={x|1242x ≤≤},N={x|x-k>0},若M∩N=φ,则k 的取值范围为 A. [)2,+∞ B.(2,+∞) C.(-∞,-1) D.(],1-∞- 2.复数()21i 1i+-等于A .-1-iB .1+iC .1-iD .-1+i3.下列说法正确的是A .命题“R x ∈∃使得0322<++x x ”的否定是:“032,2>++∈∀x x R x ” B .a ∈R,“1a<1”是“a>1”的必要不充分条件 C .“p q ∧为真命题”是“q p ∨为真命题”的必要不充分条件理科数学试卷 第1页(共6页)D .命题p :“2cos sin ,≤+∈∀x x R x ”,则⌝p 是真命题4.等差数列{}n a 中,564a a +=,则10122log (222)aaa⋅⋅⋅⋅= A .10B .20C .40D .2+log 255.如图,长方形的四个顶点为)2,0(),2,4(),0,4(),0,0(C B A O ,曲线x y =经过点B .现将一质点随机投入长方形OABC 中,则质点落在图中阴影区域的概率是 A .125 B .21C .32 D .43 6.要从10名女生和5名男生中选出6名学生组成课外兴趣 小组学习,则按分层抽样组成此课外兴趣小组的概率为A .42105615A A C ⋅B .615615C AC .33105615C C C ⋅D .42105615C C C ⋅ 7.执行如图的程序框图,那么输出S 的值是 A .2 B .21C .-1D .18.已知y x z c y x y x x y x +=⎪⎩⎪⎨⎧≥++-≤+≥302,42,且目标函数满足的最小值是5,则z 的最大值是A .10B .12C .14D .159.若c b a ,,均为单位向量,b a ∙21-=,b y a x c +=,),(R y x ∈,则y x +的最大值是 A . 2B. CD. 110.将函数f (x )=3sin (4x +6π)图象上所有点的横坐标伸长到原来的2倍,再向右平移6π个单位长度,得到函数y =g (x )的图象.则y =g (x )图象的一条对称轴是 A .x =12π B .x =6πC .x =3πD .x =23π 11.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为A .34πB .π3C .πD .π23 12.在直线2-=y 上任取一点Q ,过Q 作抛物线y x 42=的切线,切点分别为A 、B ,则直线AB 恒过的点是A .(0,1)B .(0,2)C .(2,0)D .(1,0)第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.若二项式22nx x ⎛⎫+ ⎪⎝⎭的展开式共7项,则该展开式中的常数项为___________.14.在△ABC 中,AB,AC =1,B =30°,则△ABC 的面积等于 .15.设双曲线22143x y -=的左、右焦点分别为12,F F ,过1F 的直线l 交双曲线左支于,A B 两点,则22BF AF +的最小值为____________.16.已知数列{}n a 的前n 项和为n S ,11a =,12(2)n n a S n -=≥,则n a = .三、解答题:解答应写出文字说明.证明过程或演算步骤17.(本题满分12分)设函数2()sin(π)2cos 1(0).62f x x x ωωω=--+>直线y =()y f x =图象相邻两交点的距离为π.(Ⅰ)求ω的值;(Ⅱ)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若点(,02B)是函数()y f x =图象的一个对称中心,且3b =,求△ABC 周长的取值范围.18.(本题满分12分)如图,在梯形ABCD 中,AB ∥CD ,a CB DC AD ===, 60=∠ABC ,平面⊥ACFE 平面ABCD ,四边形ACFE 是矩形,a AE =,点M 在线段EF 上.(1)求证:⊥BC 平面ACFE ;(2)当EM 为何值时,AM ∥平面BDF ?证明你的结论; (3)求二面角D EF B --的平面角的余弦值.MFECD BA理科数学试卷 第3页(共6页)19.(本小题满分12分)为迎接2012年伦敦奥运会,在著名的海滨城市青岛举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行的7轮比赛的得分如茎叶图所示:(1)若从甲运动员的每轮比赛的得分中任选3个不低于80且不高于90的得分,求甲的三个得分与其每轮比赛的平均得分的差的绝对值都不超过2的概率;(2)若分别从甲、乙两名运动员的每轮比赛不低于80且不高于90的得分中任选1个,求甲、乙两名运动员得分之差的绝对值ξ的分布列与期望.20. (本小题满分12分)已知函数()f x 是奇函数,()f x 的定义域为(,)-∞+∞.当0x <时,()f x ln()ex x-=.(e 为自然对数的底数).(1)若函数()f x 在区间1(,)(0)3a a a +>上存在极值点,求实数a 的取值范围; (2)如果当x ≥1时,不等式()1kf x x ≥+恒成立,求实数k 的取值范围.21.(本小题满分12分)如图,椭圆)0(12222>>=+b a by a x 的一个焦点是F (1,0),O 为坐标原点.(1)已知椭圆短轴的两个三等分点与一个焦点构成 、正三角形,求椭圆的方程;(2)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,则有|OA |2+|OB |2<|AB |2,求a 的取值范围.8甲乙7 95 4 5 4 18 4 4 6 7 4 191请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1: 几何证明选讲.如图,圆1O 与圆2O 相交于A 、B 两点,AB 是圆2O 的直径,过A 点作圆1O 的切线交圆2O 于点E ,并与BO 1的延长线交于点P ,PB 分别与 圆1O 、圆2O 交于C ,D 两点。
新编宁夏银川一中高三第一次月考数学(理)试题及答案
银川一中高三年级第一次月考数学试卷(理)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,{|2},{|1}U R A x x Bx x,则集合()U C AB ()A .{|21}x xB .{|1}x x C .{|21}x xD .{|2}x x 2.下列函数中,在0x 处的导数不等于零的是()A. xy x eB. 2xyxeC. (1)y x x D. 32y xx3.已知133a,21211log ,log 33bc,则()A .a b cB .a cb C .ca bD .c b a4.曲线3()2f x xx 在点P 处的切线的斜率为4,则P 点的坐标为()A. (1,0)B. (1,0)或(1,4)C. (1,8)D. (1,8)或(1,4)5.一元二次方程022a xx有一个正根和一个负根的充分不必要条件是()A.0a B.0a C.1a D.1a 6.已知函数)(x f 是奇函数,当0x时,)10()(aaa x f x且, 且3)4(log 5.0f ,则a 的值为()A.3B. 3C. 9D.237.今有一组实验数据如下表所示:t1.99 3.0 4.0 5.1 6.12 u1.54.047.5 1632.01则最佳体现这些数据关系的函数模型是()A. 2log utB. 1122t u C. 212tuD.22u t 8. 已知奇函数x f 在0,上单调递增,且02f ,则不等式(1)(1)0x f x 的解集是()。
宁夏银川一中高三数学上学期第一次月考试题 文 新人教A版
宁夏银川一中2014届高三数学上学期第一次月考试题 文 新人教A版第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设},0)2(|{},1|{,<-=>==x x x Q x x P R U ,则=⋃)(Q P C UA .1|{≤x x 或}2≥xB .}1|{≤x xC .}2|{≥x xD .}0|{≤x x 2.函数)2sin(sin )(π+=x x x f 的最小正周期为A .4πB .2πC .πD .2π 3.函数)(x f y =的图象如图所示,则导函数)('x f y =的 图象的大致形状是4. 已知复数,321iiz -+=i 是虚数单位,则复数的虚部是 A .i 101 B .101 C .107D .i 1075. 下列大小关系正确的是 A. 3log 34.044.03<< B. 4.03434.03log <<C. 4.04333log 4.0<<D. 34.044.033log <<6. 下列说法正确的是 A. “1>a ”是“)1,0(log )(≠>=a a x x f a 在),0(+∞上为增函数”的充要条件 B. 命题“R x ∈∃使得0322<++x x ”的否定是:“032,2>++∈∀x x R x ”C. “1-=x ”是“0322=++x x ”的必要不充分条件D. 命题p :“2cos sin ,≤+∈∀x x R x ”,则⌝p 是真命题7. 函数)2||,0)(sin()(πϕωϕω<>+=x x f 的部分图像如图所示,如果)3,6(,21ππ-∈x x ,且)()(21x f x f =, 则=+)(21x x f A .21 B .22 C .23 D .1 8. 已知),0(πα∈,且,21cos sin =+αα则α2cos 的值为A .47±B .47C .47- D .43-9. 函数ax x x f +=ln )(存在与直线02=-y x 平行的切线,则实数a 的取值范围是A. ]2,(-∞B. )2,(-∞C. ),2(+∞D. ),0(+∞ 10. 已知函数)2cos()(ϕ+=x x f 满足)1()(f x f ≤对R x ∈恒成立,则A. 函数)1(+x f 一定是偶函数B.函数)1(-x f 一定是偶函数C. 函数)1(+x f 一定是奇函数D.函数)1(-x f 一定是奇函数11. 已知函数),1,0(,,ln )(21ex x x x f ∈=且21x x <则下列结论正确的是 A .0)]()()[(2121<--x f x f x x B .2)()()2(2121x f x f x x f +<+C .)()(1221x f x x f x >D .)()(1122x f x x f x >12. 已知函数)(x f 满足)()1(x f x f -=+,且)(x f 是偶函数,当]1,0[∈x 时,2)(x x f =,若在区间[-1,3]内,函数k kx x f x g --=)()(有4个零点,则实数的取值范围是 A .)31,41[B .)21,0(C .]41,0(D .)21,31( 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13. 已知函数x a x f 2log )(-=的图象经过点A (1,1),则不等式1)(>x f 的解集为______. 14. 已知α为钝角,且53)2cos(-=+απ,则 。
宁夏银川一中2014届高三年级第一次月考数学试卷(理) 含解析
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.2.命题“若00,022===+b a b a且则"的逆否命题是 A .若00,022≠≠≠+b a b a 且则 B .若00,022≠≠≠+b a b a 或则C .若0,0022≠+==b a b a 则且D .若0,0022≠+≠≠b a b a 则或3。
给出下列四个命题:①命题1sin ,:≤∈∀x R x p ,则1sin ,:<∈∃⌝x R x p .②当1≥a 时,不等式a x x <-+-34的解集为非空。
③当1>x 时,有2ln 1ln ≥+xx . ④设复数z 满足(1—i )z =2 i ,则z =1-i其中真命题的个数是A .1B .2C .3D .44。
若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间 ( )A 。
(),b c 和(),c +∞内B 。
(),a -∞和(),a b 内C 。
(),a b 和(),b c 内D.(),a -∞和(),c +∞内考点:1。
函数零点存在性定理。
5.设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件【答案】A.【解析】7。
设点P在曲线x ey=上,点Q在曲线x=上,则|PQ|最小值为y ln。
宁夏银川一中高三第一次月考数学(理)试题
银川一中 高三年级第一次月考数 学 试 题(理)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知全集U=R ,集合A={x|-2≤x<0},B={x|2x-1<41},则C R (A ∩B )= ( )A .(-∞,-2)∪[-1,+∞]B . (-∞,-2]∪(-1,+∞)C .(-∞,+∞)D .(-2,+∞) 2.以下有关命题的说法错误的是( )A .命题“若0232=+-x x 则x=1”的逆否命题为“若023,12≠+-≠x x x 则”B .“1=x ”是“”0232=+-x x 的充分不必要条件C .若q p ∧为假命题,则p 、q 均为假命题D .对于命题01,:,01:22≥++∈∀⌝<++∈∃x x R x p x x R x p 均有则使得3.下列函数中,在),0(+∞上为减函数的是( )A .xx f 3)(= B .xx f 1)(-=C .x x f =)(D .x x f 21log )(=4.若函数)(x f y =的定义域是[0,2],则函数1)2()(-=x x f x g 的定义域是 ( )A .[0,1]B .[0,1]∪(1,4)C .[0,1]D .(0,1) 5.函数xx x f 2)1ln()(-+=的零点所在的大致区间是( )A .(3,4)B .(2,e )C .(1,2)D .(0,1)6. 已知函数f (221)1xx xx +=-则f (3)= ( ) A .8B .9C .10D .11 7.函数[)⎪⎩⎪⎨⎧+∞∈-∞∈=,1,log )1,(,32x x x y x 的值域为( )A .(0,3)B .[0,3]C .(]3,∞-D .[)+∞,08.设a R ∈,函数()xxf x e a e -=+⋅的导函数是'()f x ,且'()f x 是奇函数。
【数学】宁夏银川市银川一中2014届高三模拟测试(理)
AD DC CB a, ABC 60
四 边 形 A B C是 等 腰 梯 形 , 且
M E
DCA DAC 30 , DCB 120
ACB DCB DCA 90 AC BC 又
A C F E 平 面 A B C D, 交 线 为 AC , BC
平面
D
平面
C N
A C F …E…… 4 分
A
B
(Ⅱ)解法一、当 EM
又 EF FC , EF FB ,又 GH // FB , EF GH BE 2 DE 2 DB 2 DGH 是二面角 B EF D 的平面角 .
在 BDE 中 , DE 2a, DB 3a, BE AE 2 AB 2 5a
EDB 90 , DH
5 a . 又 DG
2
5 a,GH
2
2 a . 在 DGH 中,由余弦定
13.若二项式
n
2 x x2 的展开式共 7 项,则该展开式中的常数项为
___________.
14.在△ ABC 中, AB= 3 ,AC= 1, B=30°,则△ ABC 的面积等于
.
15.设双曲线 x2 4
y2 1 的左、右焦点分别为
3
F1, F2 , 过 F1 的直线 l 交双曲线左支于 A, B 两
(Ⅱ )AD=AE .
23. (本小题满分 10 分)选修 4— 4: 坐标系与参数方程.
x 2cos
已知圆锥曲线 C:
y 3 sin
( 为参数)和定点 A(0, 3) , F1, F2 是此圆锥曲线
的左、右焦点。
(Ⅰ )以原点 O 为极点,以 x 轴的正半轴为极轴建立极坐标系,求直线
AF2 的极坐标方程;
宁夏银川一中2024届高三上学期第一次月考数学理科试题及参考答案
银川一中2024届高三年级第一次月考理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1A x x =≤,{}20B x x a =-<,若A B ⊆,则实数a 的取值范围是A .()2,+∞B .[)2,+∞C .(),2-∞D .(],2-∞2.已知复数z 满足i zz =+-112,则复数z 的虚部是A.-1B.iC.1D.-i3.如图,可以表示函数()f x 的图象的是A .B .C .D .4.已知a ,b 为实数,则使得“0a b >>”成立的一个充分不必要条件为A .11a b>B .ln(1)ln(1)a b +>+C .33a b >D 11a b ->-5.函数()214log 2y x x =--的单调递增区间为A .1,2⎛⎫-∞ ⎪⎝⎭B .(),1-∞-C .1,2⎛⎫+∞ ⎪⎝⎭D .()2,+∞6.的大小关系为则,,设c b a c b a ,,,21(31log 2log 3.02131===A .b c a <<B .cb a <<C .ca b <<D .ac b <<7.已知函数ay x=,xy b=,log cy x=的图象如图所示,则A.e e ea c b<<B.e e eb a c<<C.e e ea b c<<D.e e eb c a<<8.若命题“[]()21,3,2130a ax a x a∃∈---+-<”为假命题,则实数x的取值范围为A.[]1,4-B.50,3⎡⎤⎢⎥⎣⎦C.[]51,0,43⎡⎤⎢⎥⎣-⎦D.[)51,0,43⎛⎤- ⎥⎝⎦9.已知函数则函数2,0,()()()1,0,x xf xg x f xxx⎧≥⎪==-⎨<⎪⎩,则函数()g x的图象大致是A.B.C.D.10.已知函数()()()314(1)1a x a xf x axx⎧-+<⎪=⎨≥⎪⎩,满足对任意的实数1x,2x且12x x≠,都有[]1212()()()0f x f x x x--<,则实数a的取值范围为A.1,17⎡⎫⎪⎢⎣⎭B.10,3⎡⎫⎪⎢⎣⎭C.11,63⎡⎫⎪⎢⎣⎭D.1,16⎡⎫⎪⎢⎣⎭11.已知定义在R上的函数()f x在(],2-∞上单调递减,且()2f x+为偶函数,则不等式()()12f x f x->的解集为A.()5,6,3⎛⎫-∞-+∞⎪⎝⎭B.()5,1,3⎛⎫-∞-+∞⎪⎝⎭C.5,13⎛⎫- ⎪⎝⎭D.51,3⎛⎫- ⎪⎝⎭12.已知函数()ln1af x xx=++.若对任意1x,(]20,2x∈,且12x x≠,都有()()21211f x f xx x->--,则实数a的取值范围是A.27,4⎛⎤-∞⎥⎝⎦B.(],2-∞C.27,2⎛⎫-∞⎪⎝⎭D.(],8∞-二、填空题(本大题共4小题,每小题5分.共20分)13.已知lg 2a b +=-,10b a =,则=a ______.14.已知()222,02,0x x x f x x x x ⎧-+≥=⎨+<⎩,满足()()f a f a <-,则a 的取值范围是.15.若函数()21x mf x x +=+在区间[]0,1上的最大值为3,则实数=m _______.16.已知函数()e e 21x x f x x -=--+,则不等式(23)()2f x f x -+>的解集为____________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。
数列专题训练(含答案)
数列专题训练1.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 014的值是A .8B .6C .4D .2 2.(合肥市2014年第一次教学质量检测)已知数列}{n a 的前n 项和为n S ,并满足:n n n a a a -=++122,354a a -=,则=7S ( )A .7B .12C .14D .21 3.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和11S =( ) A .24 B .48 C .66D .1324. 设n S 是等差数列{}n a 的前n 项和,若4540,||a a a <>,则使0n S >成立的最小正整数n 为A .6B .7C .8D .95. (南昌一中、南昌十中2014届高三两校上学期联考)设n S 是等差数列{}n a 的前n 项和,( ) A .1B .-1C . 2D .6.设n S 为等差数列{}n a 的前n 项和,且20101-=a ,32008201120082011=-S S ,则2a =( ) A .2008- B .2012- C .2008 D .2012 7.(2013·江西高考)等比数列x,3x +3,6x +6,…的第四项等于( )A .-24B .0C .12D .248.(成都七中高2014届一诊模拟数学试卷)已知正项等比数列{}n a 满足7652a a a =+。
若存在两项,m n a a14a =,则19m n+的最小值为( ) A 83B 114C 145D 1769.[江苏省苏北四市(徐、淮、连、宿)2012届高三10月抽测试卷]已知一个等比数列的前三项的积为3,后三项的积为9,且所有项的积为243,则该数列的项数为 。
10.(宁夏银川一中2014届高三年级月考)数列{}n a 的通项为(1)sin 12n n n a n π=-⋅⋅+ 前n项和为n S , 则100S =_________.11.已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.12.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.(1)设b n =a n +1-2a n ,证明数列{b n }是等比数列.(2)在(1)的条件下证明⎩⎨⎧⎭⎬⎫a n 2n 是等差数列,并求a n .13.数列{}n a 满足11a =,1122n nn nn a a a ++=+(n N +∈). (Ⅰ)证明:数列2n n a ⎧⎫⎨⎬⎩⎭是等差数列;(Ⅱ)求数列{}n a 的通项公式n a ;(Ⅲ)设(1)n n b n n a =+,求数列{}n b 的前n 项和n S .14. 设等差数列{a n }的前n 项和为S n ,且S n =12na n +a n -c (c 是常数,n ∈N *),a 2=6.(1)求c 的值及数列{a n }的通项公式;(2)证明1a 1a 2+1a 2a 3+…+1a n a n +1<18.15. 设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且3a 2是a 1+3和a 3+4的等差中项. (1)求数列{a n }的通项公式;(2)设b n =a n (a n +1)(a n +1+1),数列{b n }的前n 项和为T n ,求证:T n <12.16. 已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *. (1)求数列{a n }的通项公式; (2)设数列{a n }的前n 项和为S n ,若不等式S n >ka n -2对一切n ∈N *恒成立,求实数k 的取值范围.17. 已知数列{}n a 的前项n 和为n S ,11a =,n S 与13n S +-的等差中项是2()3n N *-∈.(1)证明数列23n S ⎧⎫-⎨⎬⎩⎭为等比数列; (2)求数列{}n a 的通项公式; (3)若对任意正整数n ,不等式n k S ≤恒成立,求实数k 的最大值. 18. 已知数列{}n a 中11=a ,121+=+n n n a a a (+∈N n ). ⑴求证:数列⎭⎬⎫⎩⎨⎧n a 1为等差数列; ⑵设1+⋅=n n n a a b (+∈N n ),数列{}n b 的前n 项和为n S ,求满足20121005>n S 的最小正整数n .19. 设{}n a 是公差不为零的等差数列,n S 为其前n 项和,满足222223457,7a a a a S +=+=.(1)求数列{}n a 的通项公式及前n 项和n S ; (2)试求所有的正整数m ,使得12m m m a a a ++为数列{}n a 中的项. 20.已知N n *∈,数列{}n d 满足2)1(3nn d -+=,数列{}n a 满足1232n n a d d d d =+++⋅⋅⋅+;数列{}n b 为公比大于1的等比数列,且42,b b 为方程064202=+-x x 的两个不相等的实根. (Ⅰ)求数列{}n a 和数列{}n b 的通项公式;(Ⅱ)将数列{}n b 中的第.1a 项,第.2a 项,第.3a 项,……,第.n a 项,……删去后剩余的项按从小到大的顺序排成新数列{}n c ,求数列{}n c 的前2013项和.21.已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.参考答案:1.【解析】 a 1a 2=2×7=14,所以a 3=4,4×7=28,所以a 4=8,4×8=32,所以a 5=2,2×8=16,所以a 6=6,a 7=2,a 8=2,a 9=4,a 10=8,a 11=2,所以从第三项起,a n 成周期排列,周期数为6,2 013=335×6+3,所以a 2 014=a 4=8,故选C.2.【答案】C 由n n n a a a -=++122知数列}{n a 为等差数列,由354a a -=得53174a a a a +==+,所以()1777142a a S +== 3.【答案】 D 由题意可得6613(6)62a d a d +=++,得612a =,又11111611()111322a a S a +===(作为选择题,可以用常数列求解)4.【答案】C 由题意知()()184********=70,0,022a a a a S a a a S ++<+>\==> 5.【答案】A ()()1116111995111111921999112a a a S a a S a +===?+6.【答案】A 【解析】设等差数列{}n a 的公差为d ,由1()2n n n a a S +=得12n n S a a n +=,又32008201120082011=-S S ,所以1201012008322a a a a++-=,得201020086a a -=,所以26d =,解得3d =,所以21201022008a a d =+=-+=-7. A8.【答案】A 【解析】设数列的公比为q ,由7652a a a =+得25552a q a q a =+,解得2(1舍)q q ==-14a =得221124m n a a +-=,所以6m n +=,所以19m n+19199586666633m n m n m n n m +⎛⎫=+=+++≥+= ⎪⎝⎭ 9.【解析】由已知得1233a a a =,129n n n a a a --=,两式相乘得12132()()()27n n n a a a a a a --= 所以由等比数列的性质得12132n n n a a a a a a --==,所以13n a a =.记121n n x a a a a -=gL g ,则121n n x a a a a -=g L g ,两式相乘得 21211211()()()()()n n n n n n x a a a a a a a a a a --==g L g所以由题意可得22433n=,解得10n =.10.【答案】150 【解析】由数列的通项公式得(0141)(4181)n S =++++-++++K ,四项为一组,每组的和都是6,所以100256150S =⨯=11.【解】 (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8.解得⎩⎪⎨⎪⎧a 1=2d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.3分所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7. 故a n =-3n +5,或a n =3n -7.5分(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列;6分 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.7分故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.9分记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;10分 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7) =5+(n -2)[2+(3n -7)]2=32n 2-112n +10.当n =2时,满足此式.12分综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.13分 12. (1)证明:由a 1=1,及S n +1=4a n +2,有a 1+a 2=4a 1+2,a 2=3a 1+2=5, ∴b 1=a 2-2a 1=3.由S n +1=4a n +2 ① 知当n ≥2时,有S n =4a n -1+2② ①-②得a n +1=4a n -4a n -1,∴a n +1-2a n =2(a n -2a n -1)又∵b n =a n +1-2a n ,∴b n =2b n -1,∴{b n }是首项b 1=3,公比为2的等比数列. (2)由(1)可得b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34,∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.∴a n 2n =12+(n -1)34=34n -14,a n =(3n -1)·2n -2. 13.(Ⅰ)由已知可得1122n n n n n a a a ++=+,即11221n n n n a a ++=+,即11221n nn na a ++-=∴ 数列2n n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列……5分(Ⅱ)由(Ⅰ)知122(1)11n n n n a a =+-⨯=+,∴ 21n n a n =+ ……8分 (Ⅲ)由(Ⅱ)知2nn b n =⋅,231222322n n S n =⋅+⋅+⋅++⋅L23121222(1)22n n n S n n +=⋅+⋅++-⋅+⋅L ……10分相减得:231122222222212n nn n n S n n ++-⋅-=++++-⋅=-⋅-L11222n n n ++=--⋅ ………12分∴ 1(1)22n n S n +=-⋅+………13分14.(1)解 因为S n =12na n +a n -c ,所以当n =1时,S 1=12a 1+a 1-c ,解得a 1=2c ,……(2分)当n =2时,S 2=a 2+a 2-c ,即a 1+a 2=2a 2-c ,解得a 2=3c ,……(3分) 所以3c =6,解得c =2;……(4分)则a 1=4,数列{a n }的公差d =a 2-a 1=2,所以a n =a 1+(n -1)d =2n +2.……(6分) (2)证明 因为1a 1a 2+1a 2a 3+…+1a n a n +1=14×6+16×8+…+1(2n +2)(2n +4)=12(14-16)+12(16-18)+…+12(12n +2-12n +4)=12[(14-16)+(16-18)+…+(12n +2-12n +4)]……(8分) =12(14-12n +4)=18-14(n +2).…(10分) 因为n ∈N *,所以1a 1a 2+1a 2a 3+…+1a n a n +1<18.……(12分)15.解:(1)由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,a 1+3+a 3+42=3a 2.解得a 2=2.设数列{a n }的公比为q ,则a 1q =2,∴a 1=2q,a 3=a 1q 2=2q .由S 3=7,可知2q +2+2q =7,∴2q 2-5q +2=0,解得q 1=2,q 2=12.由题意,得q >1,∴q =2.∴a 1=1.故数列{a n }的通项公式为a 2=2n -1.(2)证明:∵b n =a n (a n +1)(a n +1+1)=2n -1(2n -1+1)(2n+1)=12n -1+1-12n +1,∴T n =⎝⎛⎭⎫120+1-121+1+⎝⎛⎭⎫121+1-122+1+122+1-123+1+…+⎝⎛⎭⎫12n -1+1-12n +1=11+1-12n +1=12-12n +1<12. 16.解:(1)设等比数列{a n }的公比为q ,∵a n +1+a n =9·2n -1,n ∈N *,∴a 2+a 1=9,a 3+a 2=18,∴q =a 3+a 2a 2+a 1=189=2,∴2a 1+a 1=9,∴a 1=3.∴a n =3·2n -1,n ∈N *,经验证,满足题意.(2)由(1)知S n =a 1(1-q n )1-q =3(1-2n )1-2=3(2n -1),∴3(2n -1)>k ·3·2n -1-2,∴k <2-13·2n -1.令f (n )=2-13·2n -1,则f (n )随n 的增大而增大,∴f (n )min =f (1)=2-13=53.∴k <53.∴实数k 的取值范围为⎝⎛⎭⎫-∞,53. 17.解:(1)因为n S 和13+-n S 的等差中项是23-, 所以331-=-+n n S S (*N n ∈),即1311+=+n n S S , …………2分 由此得)23(31213123)131(231-=-=-+=-+n n n n S S S S (*N n ∈),………3分即3123231=--+n n S S (*N n ∈), ……………4分 又21232311-=-=-a S , 所以数列}23{-n S 是以21-为首项,31为公比的等比数列. ……………5分(2)由(1)得1)31(2123-⨯-=-n n S ,即1)31(2123--=n n S (*N n ∈),………6分所以,当2≥n 时,121131])31(2123[])31(2123[----=---=-=n n n n n n S S a ,…8分 又1=n 时,11=a 也适合上式,所以)(31*1N n a n n ∈=-. ……………9分 (3)要使不等式n k S ≤对任意正整数n 恒成立,即k 小于或等于n S 的所有值.又因为1)31(2123--=n n S 是单调递增数列, ……………10分且当1=n 时,n S 取得最小值1)31(2123111=-=-S , ……………11分要使k 小于或等于n S 的所有值,即1≤k , ……………13分所以实数k 的最大值为1. ……………14分18.证明与求解:⑴由11=a 与121+=+n nn a a a 得0≠n a ……1分,nn n n a a a a 121211+=+=+……3分, 所以+∈∀N n ,2111=-+nn a a 为常数,⎭⎬⎫⎩⎨⎧n a 1为等差数列……5分 ⑵由⑴得12)1(2111-=-+=n n a a n ……7分 )121121(21)12)(12(11+--=+-=⋅=+n n n n a a b n n n ……8分所以1211111111(1)()()2323522121n n S b b b n n =+++=-+-++--+L L …9分,)1211(21+-=n ……10分,12+=n n……11分, 由20121005>n S 即2012100512>+n n 得2150221005=>n ……13分, 所以满足20121005>n S 的最小正整数503=n ……14分.19.【解析】(1)设公差为d ,则22222543a a a a -=-, 由性质得43433()()d a a d a a -+=+,因为0d ≠,所以430a a +=,即1250a d +=,(3分)又由77S =得176772a d ⨯+=,解得15a =-,2d =,所以数列{}n a 的通项公式27n a n =-,前n 项和26n S n n =-.(2)方法一12m m m a a a ++=(27)(25)23m m m ---,设23m t -=,则12m m m a a a ++=(4)(2)86t t t t t--=+-, 所以t 为8的约数,因为t 是奇数,所以t 可取的值为1±,当1,2t m ==时,863,2573t t +-=⨯-=,是数列{}n a 中的项;当1,2t m =-=时,8615,t t+-=-,是数列{}n a 中的最小项是5-,不符合;所以满足条件的正整数2m =.(12分)方法二 因为1222222(4)(2)86m m m m m m m m a a a a a a a a +++++++--==-+为数列{}n a 中的项, 故28m a +为整数,又由(1)知:2m a +为奇数,所以2231,1,2m a m m +=-=±=即 经检验,符合题意的正整数只有2m =..20.【解析】:(Ⅰ)3(1)2n n d +-=Q ,∴1232n n a d d d d =+++⋅⋅⋅+3232nn ⨯== ……………………………………………3分因为42,b b 为方程064202=+-x x 的两个不相等的实数根.所以2042=+b b ,6442=⋅b b ……………………………………………………………4分解得:42=b ,164=b ,所以:nn b 2=……………………………………………………6分(Ⅱ)由题知将数列{}n b 中的第3项、第6项、第9项……删去后构成的新数列{}n c 中的奇数列与偶数列仍成等比数列,首项分别是12b =,24b =公比均是,8 …………9分201313520132462012()()T c c c c c c c c =+++⋅⋅⋅+++++⋅⋅⋅+1007100610062(18)4(18)208618187⨯-⨯-⨯-=+=-- ………………………………12分 21.【解】 (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得⎩⎪⎨⎪⎧ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8.解得⎩⎪⎨⎪⎧ a 1=2d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.3分所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7. 故a n =-3n +5,或a n =3n -7.5分(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列;6分 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.7分故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.9分记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;10分当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7) =5+(n -2)[2+(3n -7)]2=32n 2-112n +10.当n =2时,满足此式.12分综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.13分。
新编宁夏银川一中高三第一次月考数学(理)试题及答案
银川一中高三年级第一次月考数 学 试 卷(理)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,{|2},{|1}U R A x x B x x ==≤-=≥,则集合()U C AB =( )A .{|21}x x -<<B .{|1}x x ≤C .{|21}x x -≤≤D .{|2}x x ≥- 2.下列函数中,在0x =处的导数不等于零的是( )A. x y x e -=+B. 2xy x e =⋅ C. (1)y x x =- D. 32y x x =+3.已知133a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 4.曲线3()2f x x x =+-在点P 处的切线的斜率为4,则P 点的坐标为( )A. (1,0)B. (1,0)或(1,4)--C. (1,8)D. (1,8)或(1,4)-- 5.一元二次方程022=++a x x 有一个正根和一个负根的充分不必要条件是( ) A. 0<a B. 0>a C. 1-<a D. 1>a6.已知函数)(x f 是奇函数,当0>x 时,)10()(≠>=a a a x f x且 , 且3)4(log 5.0-=f ,则a 的值为( ) A.3 B. 3 C. 9 D.23 7.今有一组实验数据如下表所示:则最佳体现这些数据关系的函数模型是( ) A. 2log u t = B. 1122t u -=- C. 212t u -= D. 22u t =-8. 已知奇函数()x f 在()0,∞-上单调递增,且()02=f ,则不等式(1)(1)0x f x -⋅->的解集是( )A. ),31(-B. )1(--∞C. ),3()1(+∞--∞D. ()()3,11,1 - 9.函数22x y x -=的图象大致是( )AB C D10.若方程2|4|x x m +=有实数根,则所有实数根的和可能是( )A. 246---、、B. 46--、-5、C. 345---、、D. 468---、、 11.当210≤<x 时,x a xlog 4<,则a 的取值范围是( ) A. (0,22) B. (22,1) C. (1,2) D. (2,2) 12.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]--第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分,共20分.13. 已知函数xx x f 2)(⋅=,当)(x f 取最小值时,x = . 14.计算由直线,4-=x y 曲线x y 22=所围成图形的面积=S .15. 要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 (单位:元) 16. 给出下列四个命题:①命题"0cos ,">∈∀x R x 的否定是"0cos ,"≤∈∃x R x ;②函数)10(11)(≠>+-=a a a a x f xx 且在R 上单调递减; ③设)(x f 是R 上的任意函数, 则)(x f |)(x f -| 是奇函数,)(x f +)(x f -是偶函数; ④定义在R 上的函数()x f 对于任意x 的都有4(2)()f x f x -=-,则()x f 为周期函数; ⑤命题p:x R ∃∈,2lg x x ->;命题q :x R ∀∈,20x >。
2014届宁夏银川一中高三4月模拟考试理科数学试题(含答案解析)扫描版
a12 q 2, ……………2 分 2 5 a q 32 , 1
a1 1 , q 2,
………………3 分
∴ an 2 n1 ;…………………5 分 (Ⅱ)由题意可得
b b1 b2 b3 L n 2 n 1 , 1 3 5 2 n 1
第 1 页 共 11 页
第 2 页 共 11 页
第 3 页 共 11 页
第 4 页 共 11 页
(数学理科答案)
一、选择题: A 卷答案:1---5CAACC B 卷答案:1---5DAADD
3
6---10CABDB 6---10DABCB
11-12DB 11-12CB
11.提示:曲线 f ( x) = x + 2 x + 1 关于(0,1)中心对称. 12.提示:函数图象不随 p, q 的变化而变化. 二、填空题: 13.
5 ,
cos ÐP1 BA1 =
A1 B 2 2 5 , = = P1 B 5 5
5
故二面角 P - A B - A1 的平面角的余弦值是 2 5
------12 分
第 6 页 共 11 页
19.解: (Ⅰ)由题意得 2 ´
t t 1 ´ (1 - ) = ,解得 t = 1 .……………3 分 2 2 2
两式相减得
Tn 1 2 2 22 L 2n1 2n 1 2n 2n 3 2n 3 ,
第 5 页 共 11 页
∴ Tn 2n 3 2 3 .…………………12 分(整理结果正确即可,不拘泥于形式)
n
18. (本小题满分 12 分) 如 图, 在 三 棱柱 ABC - A1 B1C1 中, AB ^ AC , 顶 点 A1 在底面 ABC 上的 射影恰 为点 B , AB = AC = A1 B = 2 . (Ⅰ)证明:平面 A1 AC ^ 平面 AB1 B ; (Ⅱ)若点 P 为 B1C1 的中点,求出二面角 P - AB - A1 的余弦值. 证明: (Ⅰ)由题意得: A1B ^ 面 ABC , ∴ A1B ^ AC , 又 AB ^ AC , AB I A1B = B ∴ AC ^ 面 AB1 B , ------3 分 ∴平面 A1 AC ^ 平面 AB1 B ; ------5 分 ∵ AC Ì 面 A1 AC , ------2 分
银川一中2024-2025学年高三上学期第一次月考数学试卷与答案
银川一中2024-2025学年高三上学期第一次月考数学试卷一、单项选择题(共8小题,满分40分,每小题5分)1.命题p :x R ∀∈,2210x mx -+>的否定是A.x R ∀∈,2210x mx -+≤B.x R ∃∈,2210x mx -+<C.x R ∃∈,2210x mx -+> D.x R ∃∈,2210x mx -+≤2.已知函数21(1),()2(1).x x f x x x x -+<⎧=⎨-≥⎩,则()()1ff -的值为()A.2-B.1- C.3D.03.“3a >”是“函数2()(2)2f x a x x =--在(1,+)∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知2081.5.12,,log 42a b c -⎛⎫ ⎝⎭=⎪==,则,,a b c 的大小关系为()A.c a b<< B.c b a<< C.b a c<< D.b c a<<5.在同一个坐标系中,函数()log a f x x =,()xg x a-=,()ah x x =的图象可能是()A. B. C. D.6.函数()f x ax x =的图象经过点(1,1)-,则关于x 的不等式29()(40)f x f x +-<解集为()A.(,1)(4,)-∞-+∞B.(1,4)-C.(,4)(1,)∞∞--⋃+ D.(4,1)-7.中国宋代数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个边长分别为s s 的三角形,其面积S 可由公式S =求得,其中1=)2p a b c ++(,这个公式也被称为海伦-秦九韶公式,现有一个三角形的三边长满足14,6a b c +==,则此三角形面积的最大值为()A.6B. C.12D.8.定义在R 上的偶函数()f x 满足()()1f x f x +=-,当[]0,1x ∈时,()21f x x =-+,设函数()()11132x g x x -⎛⎫=-<< ⎪⎝⎭,则函数()f x 与()g x 的图象所有交点的横坐标之和为A.2B.4C.6D.8二.多项选择题(共3小题,满分18分,每小题6分)9.下列运算正确的是()A.= B.()326a a =C.42log 32log 3= D.2lg5lg2log 5÷=10.已知函数()y f x =是定义域为R 上的奇函数,满足(2)()f x f x +=-,下列说法正确的有()A.函数()y f x =的周期为4B.(0)0f =C.(2024)1f = D.(1)(1)f x f x -=+11.已知函数()24,0,31,0,x x x x f x x -⎧-≥=⎨-<⎩其中()()()f a f b f c λ===,且a b c <<,则()A.()232f f -=-⎡⎤⎣⎦B.函数()()()g x f x f λ=-有2个零点C.314log ,45a b c ⎛⎫++∈+ ⎪⎝⎭D.()34log 5,0abc ∈-三、填空题(共3小题,满分15分,每小题5分)12.已知集合A ={}01x x ≤≤,B ={}13x a x -≤≤,若A ⋂B 中有且只有一个元素,则实数a 的值为_______.13.已知函数()()231m f x m m x+=+-是幂函数,且该函数是偶函数,则f的值是__________.14.已知函数()34x f x x =--在区间[1,2]上存在一个零点,用二分法求该零点的近似值,其参考数据如下:(1.6000)0.200f ≈,(1.5875)0.133f ≈,(1.5750)0.067f ≈,(1.5625)0.003f ≈,(1.5562)0.029f ≈-,(1.5500)0.060f ≈-,据此可得该零点的近似值为________.(精确到0.01)四、解答题(共5小题,满分77分.解答应写出文字说明、证明过程或演算步骤.)15.已知x ,y ,z 均为正数,且246x y z ==.(1)证明:111x y z+>;(2)若6log 4z =,求x ,y 的值,并比较2x ,3y ,4z 的大小.16.已知函数()121(0),,R 4x f x m x x m =>∈+,当121x x =+时,()()1212f x f x +=.(1)求m 的值;(2)已知()120n n a f f f f n n n ⎫⎫⎫⎛⎛⎛=++++⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,求n a 的解析式.17.已知函数2ln(),0,()23,0,a x x f x x x x +-<⎧=⎨-++≥⎩且(e)3f -=.(1)求实数a 的值;(2)若函数()()=-g x f x k 在R 上恰有两个零点,求实数k 的取值范围.18.已知函数()e xf x =与函数()lng x x =,函数()()()11x g x g x ϕ=++-的定义域为D .(1)求()x ϕ的定义域和值域;(2)若存在x D ∈,使得(2)1()mf x f x ≥-成立,求m 的取值范围;(3)已知函数()y h x =的图象关于点(),P a b 中心对称的充要条件是函数()y h x a b =+-为奇函数.利用上述结论,求函数()1ey f x =+的对称中心.19.银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后将利息并入本金,这种计算利息的方法叫做复利.现在某企业进行技术改造,有两种方案:甲方案:一次性向银行贷款10万元,技术改造后第一年可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年向银行贷款1万元,技术改造后第一年可获得利润1万元,以后每年比前一年多获利5000元.(1)设技术改造后,甲方案第n 年的利润..为n a (万元),乙方案第n 年的利润..为n b (万元),请写出n a 、n b 的表达式;(2)假设两种方案的贷款期限都是10年,到期一次性归还本息.若银行贷款利息均以年息10%的复利计算,试问该企业采用哪种方案获得的扣除本息后的净获利更多?(精确到0.1)(净获利=总利润-本息和)(参考数据101.1 2.594≈,101.313.79)≈银川一中2024-2025学年高三上学期第一次月考数学试卷答案1.D 【分析】根据含全称量词命题的否定可直接得到结果.【详解】由含全称量词命题否定可知命题p 的否定为:x R ∃∈,2210x mx -+≤【点睛】本题考查含量词的命题的否定,属于基础题.2.D 【分析】分段函数求值,只需要观察自变量的范围代入对应的解析式即可.【详解】 ()1(1)12f -=--+=∴()()()2122220f f f -==-⨯=3.A 【分析】判断命题“3a >”和“函数2()(2)2f x a x x =--在(1,+)∞上单调递增”之间的逻辑推理关系,即可判断出答案.【详解】当3a >时,21a ->,对于函数2()(2)2f x a x x =--,其图象对称轴为112x a =<-,则函数2()(2)2f x a x x =--在(1,+)∞上单调递增,当=3a 时,2()2f x x x =-图象对称轴为=1x ,故函数在(1,+)∞上单调递增,即“函数2()(2)2f x a x x =--在(1,+)∞上单调递增”推不出“3a >”成立,故“3a >”是“函数2()(2)2f x a x x =--在(1,+)∞上单调递增”的充分不必要条件,4.B 【分析】观察题中,,a b c ,不妨先构造函数2x y =比较,a b 大小,再利用中间量“1”比较c 与,a b 大小即可得出答案.【详解】由题意得0.80.81()22b -==,021=,5log 5=1由函数2x y =在R 上是增函数可得 1.20.8221a b =>=>,由对数性质可知,55log 4log 5=1c =<,所以c b a <<,5.C 【分析】先根据的单调性相反排除AD ,然后根据幂函数图象判断出a 的范围,由此可得答案.【详解】因为在同一坐标系中,所以函数()log a f x x =,()1xxg x a a -⎛⎫== ⎪⎝⎭的单调性一定相反,且图象均不过原点,故排除AD ;在BC 选项中,过原点的图象为幂函数()ah x x =的图象,且由图象可知01a <<,所以()log a f x x =单调递减,()1xxg x a a -⎛⎫== ⎪⎝⎭单调递增,故排除B ,所以C 正确.6.B 【分析】根据图象经过点(1,1)-得到解析式,再判断函数单调性及奇偶性,由此求解不等式即可.【详解】由函数()f x ax x =的图象经过点(1,1)-,得1a =-,则22,0(),0x x f x x x x x ⎧≤=-=⎨->⎩,函数()f x 在(,0]-∞上单调递减,在[0,)+∞上单调递减,则()f x 在R 上单调递减,又()||||()f x x x x x f x -=-==-,即函数()f x 是奇函数,不等式222)9)()(40(3)()4(4f x f x f x f x f x +=-<⇔<---,则243x x -<,即2340x x --<,解得14x -<<,所以原不等式的解集为(1,4)-.7.B 【分析】根据海伦-秦九韶公式化简得S =,再利用基本不等式求最值.【详解】根据海伦-秦九韶公式,S =,其中2a b cp ++=,由题意,可知14,6a b c +==,则614102p +==,又14a b +=,故S ==≤=,当且仅当1010a b -=-,即7a b ==时取等号.8.B 【详解】因为()()1f x f x +=-,所以()f x 周期为2,函数()112x g x -⎛⎫= ⎪⎝⎭关于1x =对称,作图可得四个交点横坐标关于1x =对称,其和为22=4⨯,选B.点睛:涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.9.BD 【分析】运用根式性质,指数幂性质和对数性质化简计算即可.【详解】=A 错误.指数幂性质,知道()326a a =,B 正确;对数运算性质,知道421log 3log 32=,C 错误;换底公式逆用,知道2lg5lg2log 5÷=,D 正确.10.ABD 【分析】根据给定条件,结合奇函数性质逐项分析判断即得.【详解】对于B ,由函数()y f x =是定义在R 上的奇函数,得(0)0f =,B 正确;对于A ,由(2)()f x f x +=-,得(4)(2)()f x f x f x +=-+=,则函数()y f x =的周期为4,A 正确;对于C ,(2024)(0)0f f ==,C 错误;对于D ,由(2)()f x f x +=-,得(2)()f x f x +=-,函数=op 的图象关于直线=1对称,因此(1)(1)f x f x -=+,D 正确.11.ACD 【分析】先作出函数图象,结合图象逐一判定即可.【详解】解:()()2832f f f ⎡⎤-==-⎣⎦,故A 正确;作出函数()f x 的图象如图所示,观察可知,04λ<<,而()()0,4f λ∈,故=,()y fλ=有3个交点,即函数()g x 有3个零点,故B 错误;由对称性,4b c +=,而31log ,05a ⎛⎫∈ ⎪⎝⎭,故314log ,45a b c ⎛⎫++∈+ ⎪⎝⎭,故C 正确;b ,c 是方程240x x λ-+=的根,故bc λ=,令31a λ--=,则()3log 1a λ=-+,故()3log 1abc λλ=-+,而y λ=,()3log 1y λ=+均为正数且在0,4上单调递增,故()34log 5,0abc ∈-,故D 正确,12.【分析】利用A ⋂B 中有且只有一个元素,可得11a -=,可求实数a 的值.【详解】由题意A ⋂B 中有且只有一个元素,所以11a -=,即2a =.故答案为:2.【点睛】本题主要考查集合的交集运算,集合交集的运算本质是存同去异,侧重考查数学运算的核心素养.13.【分析】根据函数为幂函数及函数为偶函数,求出1m =,从而代入求值即可.【详解】由题意得211m m +-=,解得2m =-或1,当2m =-时,()f x x =为奇函数,不合要求,当1m =时,()4f x x =为偶函数,满足要求,故4f==.故答案为:414.【分析】利用零点存在定理即可得解.【详解】因为(1.5625)0.003f ≈,(1.5562)0.029f ≈-,即(1.5625)(1.5562)0f f ⋅<,所以由零点存在定理可知()f x 的零点在()1.55621.5625,之间,近似值为1.56.故答案为:1.56.15.【分析】(1)由已知,通过指对互化,得出2log x k =,4log y k =,6log z k =,再通过对数的运算可得11log 8k x y +=,1log 6k z=,由于1k >,对数函数为增函数,即可得证;(2)由6log 4z =,可得64z =,则244x y ==,即可求得x ,y 的值;由64log 256z =,可得63log 2564<<,而33y =,24=x ,即可比较出2x ,3y ,4z 的大小.【小问1详解】令2461x y z k ===>,则2log x k =,4log y k =,6log z k =,11log 2log 4log 8k k k x y ∴+=+=,1log 6k z =.1k > ,log 8log 6k k ∴>,111x y z∴+>.【小问2详解】6log 4z = ,64z ∴=,则244x y ==,2x ∴=,1y =,4664log 4log 256z ∴==.3462566<< ,63log 2564∴<<,342y z x ∴<<.16.【分析】(1)根据121x x =+,且()()1212f x f x +=代入求解即可(2)利用121x x =+,且()()1212f x f x +=,利用倒序相加法求解即可【小问1详解】()()1212111442x x f x f x m m +=+=++,即()()()()2112242444xxxx m m mm+++=++()()121212242444444x x x x x x m m m +⋅++=+⇒+()()()12122224444442x x x x m m m m ⇒=++=+---,()()()()()121222442024420x x x x m m m m ⇒---+=⇒-++-=,12444x x +≥== ,当且仅当1244x x=,即12x x =取等号,又0m >,124420,2x x m m ∴++->∴=.【小问2详解】由()120n n a f f f f n n n ⎫⎫⎫⎛⎛⎛=++++⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,得()10n n n a f f f n n -⎫⎫⎛⎛=+++⎪ ⎪⎝⎝⎭⎭,又当121x x =+时,()()1212f x f x +=所以两式相加可得()()1112002n n n n n a f f f f f f n n n n ⎡⎤⎡-⎤⎡⎤+⎛⎫⎛⎫⎛⎫⎛⎫=++++++=⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦,所以14n n a +=17.【分析】(1)根据分段函数解析式代入计算可得;(2)由(1)可得()f x 的解析式,即可分析函数在各段的单调性与取值范围,再画出()f x 的图象,依题意函数()y f x =与y k =在上恰有两个交点,数形结合即可求出参数的取值范围.【小问1详解】因为2ln(),0,()23,0,a x x f x x x x +-<⎧=⎨-++≥⎩且(e)3f -=,所以()(e)ln e 3f a -=+=,解得2a =;【小问2详解】由(1)可得22ln(),0()23,0x x f x x x x +-<⎧=⎨-++≥⎩,当0x <时()2ln()f x x =+-,函数()f x 在(),0∞-上单调递减,且()R f x ∈;当0x ≥时()22()2314f x x x x =-++=--+,则()f x 在0,1上单调递增,在1,+∞上单调递减,且()14f =,()03f =,即()(],4f x ∞∈-;所以()f x 的图象如下所示:因为函数()()=-g x f x k 在上恰有两个零点,即函数()y f x =与y k =在上恰有两个交点,由图可知3k <或4k =,即实数k 的取值范围为(){},34∞-⋃.18.【分析】(1)写出的解析式,求解即可;(2)原问题可转化为2min11e e x x m ⎛⎫≥-⎪⎝⎭.利用二次函数性质求解;(3)设()()1ey h x f x ==+的对称中心为(),a b ,则函数()()t x h x a b =+-是奇函数,即()1eex at x b +=-+是奇函数,利用奇函数性质列式求解即可.【小问1详解】由题意可得()()()()()11ln 1ln 1x g x g x x x ϕ=++-=++-.由1010x x +>⎧⎨->⎩,得11x -<<,故()1,1D =-.又()()2ln 1x xϕ=-,且(]210,1x -∈,()x ϕ∴的值域为(],0-∞;【小问2详解】()()21mf x f x ≥-,即2e 1e x x m ≥-,则211e ex x m ≥-. 存在x D ∈,使得()()21mf x f x ≥-成立,2min 11e e x x m ⎛⎫∴≥- ⎪⎝⎭.而2211111e e e 24x x x ⎛⎫-=-- ⎪⎝⎭,∴当11e 2x =,即ln2x D=∈时,211e e x x-取得最小值14-,故14m ≥-;【小问3详解】设()()1ey h x f x ==+的对称中心为(),a b ,则函数()()t x h x a b =+-是奇函数,即()1eex at x b +=-+是奇函数,则()()110e ee e x a x a t x t x b b -++-+=-+-=++恒成立,()()()()1122e e 2e 2e e e e 0e e e ex ax a x a x a a x ax ab +-+-+++-++++-+++∴=++恒成立,所以()()1122ee 2e 2ee e e 0x ax ax ax a a b +-+-+++++-+++=恒成立,所以22(12e)(e e )2(e e e )0x a x a a b b b +-+-++--=,因为上式对任意实数x 恒成立,所以2212e 0e e e 0a b b b -=⎧⎨--=⎩,得12e 1b a ⎧=⎪⎨⎪=⎩,所以函数()1e y f x =+图象的对称中心为11,2e ⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:本题考查了函数值域和定义域的计算,考查了不等式恒成立以及对称关系的应用,第(3)问解题的关键是根据题意设()()1ey h x f x ==+的对称中心为(),a b ,则函数()()t x h x a b =+-是奇函数,然后列等式求解即可,属于较难题.19.【分析】(1)根据已知条件,分别求解1年,2年后,….,进而归纳n 后的利润,即可求解.(2)分别求出两种方案的净收益,再通过比较,即可求解.【小问1详解】对于甲方案,1年后,利润为1(万元).2年后,利润为111(10.3) 1.3+=⨯,3年后,利润为211.3(10.3) 1.3+=⨯(万元),……故n 年后,利润为11.3n -(万元),因此11.3n n a -=,N n *∈对于乙方案,1年后,利润为1(万元).2年后,利润为10.5+,3年后,利润为0.50.510.521++=+⨯(万元),……故n 年后,利润为()10.51n +⨯-(万元),因此()10.510.50.5n b n n =+⨯-=+,N n *∈【小问2详解】甲方案十年共获利109(1.3)11(130%)(130%)42.631.31-+++⋯++==-(万元),10年后,到期时银行贷款本息为1010(10.1)25.94+=(万元),故甲方案的净收益为42.6325.9416.7-≈(万元),乙方案十年共获利1 1.5(190.5)32.5++⋯++⨯=(万元),贷款本息为119101111(110%)(110%)(110%)17.530.1⋅-+++⋯++++=≈(万元),故乙方案的净收益为32.517.5315-=(万元),由16.715>,故采用甲方案获得的扣除本息后的净获利更多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
银川一中2014届高三年级第一次月考数 学 试 卷(理)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 设集合},214|{},,212|{Z k k x x N Z k k x x M ∈+==∈+==则 A. M N = B. M N ⊂ C. M N ⊃ D. M N ⋂=∅ 2. 命题“若00,022===+b a b a 且则”的逆否命题是A .若00,022≠≠≠+b a b a 且则B .若00,022≠≠≠+b a b a 或则C .若则0,0022≠+==b a b a 则且D .若0,0022≠+≠≠b a b a 则或3.给出下列四个命题:①命题1sin ,:≤∈∀x R x p ,则1sin ,:<∈∃⌝x R x p . ②当1≥a 时,不等式a x x <-+-34的解集为非空. ③当1>x 时,有2ln 1ln ≥+xx . ④设复数z 满足(1-i )z =2 i ,则z =1-i 其中真命题的个数是 A .1B .2C .3D .44.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间 A.(),b c 和(),c +∞内 B.(),a -∞和(),a b 内C. (),a b 和(),b c 内D.(),a -∞和(),c +∞内 5. 设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件 6. 曲线2y x=与直线1y x =-及4x =所围成的封闭图形的面积为 A. 2ln 2 B. 2ln 2- C. 4ln 2- D. 42ln 2- 7. 设点P 在曲线x e y =上,点Q 在曲线x y ln =上,则|PQ |最小值为A .12- B.2 C. 21+ D. 2ln8. 若定义在R 上的偶函数()x f 满足()()x f x f =+2且[]1,0∈x 时,(),x x f =则方程()x x f 3log =的零点个数是A. 2个B. 3个C. 4个D. 多于4个9.已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A. (,0]-∞B. (,1]-∞C. [2,1]-D. [2,0]-10.设直线x t =与函数2(),()ln f x x g x x ==的图象分别交于点,M N ,则当||MN 达到最小时t 的值为A .1B .12C D 11.已知函数()f x 定义在R 上的奇函数,当0x <时,()(1)x f x e x =+,给出下列命题:①当0x >时,()(1);x f x e x =- ②函数()f x 有2个零点③()0f x >的解集为(1,0)(1,)-+∞ ④12,x x R ∀∈,都有12|()()|2f x f x -< 其中正确命题个数是 A .1B .2C .3D .412. 已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最大值为B ,则A B -=A .2216a a --B .2216a a +- C .16- D .16第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13. 设集合P ={x |⎠⎜⎛0x (3t 2-10t +6)dt =0,x >0},则集合P 的非空子集个数是 .14. 方程x 3-3x =k 有3个不等的实根, 则常数k 的取值范围是 .15. 已知“命题2:()3()p x m x m ->-”是“命题2:340q x x +-<”成立的必要不充分条件,则实数m的取值范围为_________________.16. 关于函数)0(||1lg)(2≠+=x x x x f ,有下列命题: ①其图象关于y 轴对称;②当x >0时,f (x )是增函数;当x <0时,f (x )是减函数; ③f (x )的最小值是lg 2;④f (x )在区间(-1,0)、(2,+∞)上是增函数; ⑤f (x )无最大值,也无最小值.其中所有正确结论的序号是 .三、解答题:本大题共5小题,共计70分。
解答应写出文字说明.证明过程或演算步骤 17. (本小题满分12分)设命题p :函数f (x )=lg (ax 2-4x +a )的定义域为R ;命题q :不等式2x 2+x >2+ax ,对∀x ∈(-∞,-1)上恒成立,如果命题“p ∨q ”为真命题,命题“p ∧q ”为假命题,求实数a 的取值范围.18. (本小题满分12分) 设函数()(,,)nn f x x bx c n N b c R +=++∈∈(1)设2n ≥,1,1b c ==-,证明:()n f x 在区间1,12⎛⎫⎪⎝⎭内存在唯一的零点;(2) 设2n =,若对任意12,x x [1,1]∈-,有2122|()()|4f x f x -≤,求b 的取值范围;(3)在(1)的条件下,设n x 是)(x f n 在⎪⎭⎫ ⎝⎛1,21内的零点,判断数列 n x x x ,,32的增减性.19. (本小题满分12分)某工厂某种产品的年固定成本为250万元,每生产x 千件..,需另投入成本为)(x C ,当年产量不足80千件时,x x x C 1031)(2+=(万元).当年产量不小于80千件时,14501000051)(-+=xx x C (万元).每件..商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (Ⅰ)写出年利润)(x L (万元)关于年产量x (千件..)的函数解析式; (Ⅱ)年产量为多少千件..时,该厂在这一商品的生产中所获利润最大? 20. (本小题满分12分)设a 为实数,函数()e 22,.x f x x a x =-+∈R (Ⅰ)求()f x 的单调区间与极值;(Ⅱ)求证:当ln 21a >-且0x >时,2e 2 1.xx ax >-+ 21. (本小题满分12分)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+.(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分) 选修4—1;几何证明选讲. 如图,已知PE 切⊙O 于点E ,割线PBA 交⊙O 于A 、B 两点,∠APE 的平分线和AE 、BE 分别交于点C 、D .求证:(Ⅰ)CE DE =; (Ⅱ)CA PECE PB=. 23.(本小题满分10分)选修4—4;坐标系与参数方程.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos (0)C p a a θθ=>过点P(-2,-4)的直线2,2:(4x l t y ⎧=-+⎪⎪⎨⎪=-⎪⎩为参数)与曲线C 相交于点M,N 两点.(Ⅰ)求曲线C 和直线l 的普通方程;(Ⅱ)若|PM|,|MN|,|PN |成等比数列,求实数a 的值 24.(本小题满分10分)选修4—5;不等式选讲.已知函数()|2||1|f x x a x =-+-. (Ⅰ)当a = 3时,求不等式()2f x ≥的解集;(Ⅱ)若()5f x x ≥-对x R ∀∈恒成立,求实数a 的取值范围.银川一中2014届高三第一次月考数学(理科)试卷参考答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDACADBCDDBC二、填空题:本大题共4小题,每小题5分.13. 3 14. -2<k<2 15. (,7][1,)-∞-⋃+∞ 16.①③④三、解答题:本大题共5小题,共计70分。
解答应写出文字说明.证明过程或演算步骤 17. 解:p:∆<0且a>0,故a>2;q:a>2x-2/x+1,对∀x ∈(-∞,-1),上恒成立,增函数(2x-2/x+1)<1此时x=-1,故a ≥1 “p ∨q ”为真命题,命题“p ∧q ”为假命题,等价于p,q 一真一假.故1≤a ≤2 18. 解析:(1)1,1b c ==-,2n ≥时,()1n n f x x x =+-∵111()(1)()10222n n n f f =-⨯<,∴()n f x 在1,12⎛⎫ ⎪⎝⎭内存在零点. 又当1,12x ⎛⎫∈ ⎪⎝⎭时,1()10n n f x nx -'=+> ∴ ()n f x 在1,12⎛⎫ ⎪⎝⎭上是单调递增的,所以()n f x 在1,12⎛⎫⎪⎝⎭内存在唯一零点.(2)当2n =时,22()f x x bx c =++对任意12,[1,1]x x ∈-都有2122|()()|4f x f x -≤等价于2()f x 在[1,1]-上最大值与最小值之差4M ≤,据此分类讨论如下:(ⅰ)当||12b>,即||2b >时, 22|(1)(1)|2||4M f f b =--=>,与题设矛盾(ⅱ)当102b-≤-<,即02b <≤时,222(1)()(1)422b bM f f =---=+≤恒成立(ⅲ)当012b≤≤,即20b -≤≤时,222(1)()(1)422b bM f f =---=-≤恒成立.综上可知,22b -≤≤注:(ⅱ)(ⅲ)也可合并证明如下: 用max{,}a b 表示,a b 中的较大者.当112b-≤≤,即22b -≤≤时, 222max{(1),(1)}()2bM f f f =---22222(1)(1)|(1)(1)|()222f f f f b f -+--=+--21||()4b c b c =++--+2||(1)42b =+≤恒成立(3)证法一 设n x 是()n f x 在1,12⎛⎫⎪⎝⎭内的唯一零点(2)n ≥()1nn n n n f x x x =+-,11111()10n n n n n f x x x +++++=+-=,11,12n x +⎛⎫∈ ⎪⎝⎭于是有11111111()0()11()n nn n n n n n n n n n f x f x x x x x f x ++++++++===+-<+-=又由(1)知()n f x 在1,12⎛⎫⎪⎝⎭上是递增的,故1(2)n n x x n +<≥, 所以,数列23,,,n x x x 是递增数列.证法二 设n x 是()n f x 在1,12⎛⎫⎪⎝⎭内的唯一零点 1111()(1)(1)(111)n n n n n n n f x f x x ++++=+-+- 1110n nn n n n x x x x +=+-<+-=则1()n f x +的零点1n x +在(,1)n x 内,故1(2)n n x x n +<≥, 所以,数列23,,,nx x x 是递增数列.19.解:(Ⅰ)因为每件..商品售价为0.05万元,则x 千件..商品销售额为0.05×1000x 万元,依题意得: 当800<<x 时,2501031)100005.0()(2---⨯=x x x x L 25040312-+-=x x .………………………………2分当80≥x 时,25014501000051)100005.0()(-+--⨯=xx x x L=⎪⎭⎫⎝⎛+-x x 100001200.………………………………………………4分 所以⎪⎪⎩⎪⎪⎨⎧≥⎪⎭⎫ ⎝⎛+-<<-+-=).80(100001200),800(2504031)(2x x x x x x x L …………6分(Ⅱ)当800<<x 时,.950)60(31)(2+--=x x L此时,当60=x 时,)(x L 取得最大值950)60(=L 万元. ………………8分当80≥x 时,100020012001000021200100001200)(=-=⋅-≤⎪⎭⎫⎝⎛+-=xx x x x L此时,当xx 10000=时,即100=x 时)(x L 取得最大值1000万元.………………11分 1000950<所以,当产量为100千件时,该厂在这一商品中所获利润最大,最大利润为1000万元. ………………………………………………………………………………………………12分 20. (1)解:由()e 22,x f x x a x =-+∈R 知,'()e 2,xf x x =-∈R .令'()0f x =,得ln 2x =.于是,当x 变化时,()x f '和()x f 的变化情况如下表:极小值为(ln 2)22ln 22f a =-+.(2)证明:设2()e 21,x g x x ax x =-+-∈R ,于是()e 22,xg x x a x '=-+∈R . 由(1)知,对任意x ∈R ,都有'()0g x >,所以()g x 在R 内单调递增. 于是,当ln21a >-时,对任意(0,)x ∈+∞,都有()(0)g x g >,而(0)0g = ,从而对任意(0,)x ∈+∞,都有()0g x >,即2e 210,x x ax -+->故2e 2 1.x x ax >-+ 21. (Ⅰ)由已知得(0)2,(0)2,(0)4,(0)4fg f g ''====,而()f x '=2x b +,()g x '=()x e cx d c ++,∴a =4,b =2,c =2,d =2; (Ⅱ)由(Ⅰ)知,2()42f x x x =++,()2(1)xg x e x =+,设函数()F x =()()kg x f x -=22(1)42xke x x x +---(2x ≥-),()F x '=2(2)24x ke x x +--=2(2)(1)x x ke +-, 有题设可得(0)F ≥0,即1k ≥,令()F x '=0得,1x =ln k -,2x =-2,(1)若21k e ≤<,则-2<1x ≤0,∴当1(2,)x x ∈-时,()F x <0,当1(,)x x ∈+∞时,()F x >0,即()F x 在1(2,)x -单调递减,在1(,)x +∞单调递增,故()F x 在x =1x 取最小值1()F x ,而1()F x =21112242x x x +---=11(2)x x -+≥0, ∴当x ≥-2时,()F x ≥0,即()f x ≤()kg x 恒成立,(2)若2k e =,则()F x '=222(2)()x e x e e +-,∴当x ≥-2时,()F x '≥0,∴()F x 在(-2,+∞)单调递增,而(2)F -=0, ∴当x ≥-2时,()F x ≥0,即()f x ≤()kg x 恒成立, (3)若2k e >,则(2)F -=222ke--+=222()e k e ---<0,∴当x ≥-2时,()f x ≤()kg x 不可能恒成立, 综上所述,k 的取值范围为[1,2e ].22. (Ⅰ)证明:PE 切⊙O 于点E ,A BEP ∴∠=∠PC 平分A CPA BEP DPE ∴∠+∠=∠+∠,ECD A CPA EDC BEP DPE ∠=∠+∠∠=∠+∠,,ECD EDC EC ED ∴∠=∠∴=(Ⅱ)证明:,,PDB EDC EDC ECD PDB PCE ∠=∠∠=∠∠=∠ ,BPD EPC PBD ∴∠=∠∴∆∽PEC ∆,PE PCPB PD∴=同理PD E ∆∽PCA ∆,PC CAPD DE ∴=PE CAPB DE∴=,CA PEDE CE CE PB=∴=23.24.解:(Ⅰ)3a =时,即求解2312x x -+-≥①当32x ≥时,23122x x x -+-≥∴≥ ②当312x <<时,3212220x x x x -+-≥∴-≥∴<③当1x ≤时,23212323x x x x -+-≥∴≤∴≤∴综上,解集为223x x x ⎧⎫≤≥⎨⎬⎩⎭或5'(Ⅱ)即251x a x x -≥---恒成立令62,1()514,1x x g x x x x -≥⎧=---=⎨<⎩则函数图象为32a∴≥,6a ∴≥10'。