高考数学、高中数学易错易误易忘题分类汇总及解析(高三复习资料)(共61页)
高中高考数学易错易混易忘题分类汇总及解析
高中高考数学易错易混易忘题分类汇总及解析“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。
本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。
【易错点1】忽视空集是任何非空集合的子集导致思维不全面。
例1、设,,若,求实数a组成的集合的子集有多少个?【易错点分析】此题由条件易知,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a值产生漏解现象。
解析:集合A化简得,由知故(Ⅰ)当时,即方程无解,此时a=0符合已知条件(Ⅱ)当时,即方程的解为3或5,代入得或。
综上满足条件的a组成的集合为,故其子集共有个。
【知识点归类点拔】(1)在应用条件A∪B=BA∩B=AAB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。
有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:,,其中,若求r的取值范围。
将集合所表达的数学语言向自然语言进行转化就是:集合A表示以原点为圆心以2的半径的圆,集合B表示以(3,4)为圆心,以r为半径的圆,当两圆无公共点即两圆相离或内含时,求半径r的取值范围。
思维马上就可利用两圆的位置关系来解答。
此外如不等式的解集等也要注意集合语言的应用。
【练1】已知集合、,若,则实数a的取值范围是。
答案:或。
【易错点2】求解函数值域或单调区间易忽视定义域优先的原则。
高中高考数学易错易混易忘题分类汇总及解析(精品)
高中高考数学易错易混易忘题分类汇总例1、设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集有多少个?【练1】已知集合{}2|40A x x x =+=、(){}22|2110B x x a x a =+++-=,若B A ⊆,则实数a 的取值范围是 。
例2、已知()22214y x ++=,求22x y +的取值范围 【练2】若动点(x,y )在曲线22214x y b+=()0b >上变化,则22x y +的最大值为() (A )()()2404424b b b b ⎧+<<⎪⎨⎪≥⎩(B )()()2402422b b b b ⎧+<<⎪⎨⎪≥⎩(C )244b +(D )2b 例3、()2112x xa f x ⋅-=+是R 上的奇函数,(1)求a 的值(2)求的反函数()1f x - 【练3】函数()()111f x x x =-≥的反函数是()A 、()2221y x x x =-+< B 、()2221y x x x =-+≥ C 、()221y x x x =-< D 、()221y x x x =-≥例4、已知函数()121x f x x-=+,函数()y g x =的图像与()11y f x -=-的图象关于直线y x =对称,则()y g x =的解析式为() A 、()32x gx x -=B 、()21x g x x -=+C 、()12x g x x -=+D 、()32g x x=+ 【练4】已知函数y=log 2x 的反函数是y=f -1(x),则函数y= f -1(1-x)的图象是()例5、 判断函数()2lg 1()22x f x x -=--的奇偶性。
【练5】判断下列函数的奇偶性:①()2244f x x x =-+-()(111xf x x x+=--()1sin cos 1sin cos x x f x x x ++=+-例6、 函数()2221211log 22x x f x x x -+⎛⎫=<-> ⎪⎝⎭或的反函数为()1f x -,证明()1f x -是奇函数且在其定义域上是增函数。
2022高三数学高考易错易混易忘题分类汇总及解析
2022高三数学高考易错易混易忘题分类汇总及解析高中高考数学易错易混易忘题“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。
本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。
【易错点1】忽视空集是任何非空集合的子集导致思维不全面。
例1、设A某|某28某150,B某|a某10,若ABB,求实数a组成的集合的子集有多少个?【易错点分析】此题由条件ABB易知BA,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a值产生漏解现象。
解析:集合A化简得A3,5,由ABB知BA故(Ⅰ)当B时,即方程a某10无11或。
35解,此时a=0符合已知条件(Ⅱ)当B时,即方程a某10的解为3或5,代入得a综上满足条件的a组成的集合为0,11,,故其子集共有238个。
35B时,要树立起分类讨论的数学思想,【知识点归类点拔】(1)在应用条件A∪B=BA∩B=AA将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。
有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:A某,y|某2y24,2B某,y|某3y42r2,其中r0,若AB求r的取值范围。
将集合所表达的数学语言向自然语言进行转化就是:集合A表示以原点为圆心以2的半径的圆,集合B表示以(3,4)为圆心,以r为半径的圆,当两圆无公共点即两圆相离或内含时,求半径r的取值范围。
高中数学易错题大汇总及其解析
【目录】一、导言二、易错题汇总及解析1. 二次函数的基本性质及应用2. 数列与数学归纳法3. 平面向量的运算及应用4. 不定积分与定积分5. 空间几何与三视图6. 概率统计及应用三、总结与展望【正文】一、导言数学作为一门基础学科,对培养学生的逻辑思维能力、数学建模能力和问题解决能力有着举足轻重的作用。
而在高中阶段,数学的难度也相应提升,很多学生容易在一些常见的易错题上犯错。
本文将对高中数学易错题进行大汇总,并给出详细的解析,希望能够帮助同学们更好地理解和掌握这些知识点。
二、易错题汇总及解析1. 二次函数的基本性质及应用(1)易错题案例:已知二次函数f(x)=ax²+bx+c的图象经过点(1,2),且在点(2,1)处的切线斜率为3,求a、b、c的值。
解析:首先利用已知条件列方程,得到三元一次方程组。
然后利用切线的斜率性质,得到关于a和b的关系式。
最后代入已知条件解方程组即可求得a、b、c的值。
(2)易错题案例:已知函数f(x)=ax²+bx+c的图象经过点a、b、c,求a、b、c的值。
解析:利用函数过定点的性质列方程,再利用函数在定点处的斜率为求得a、b、c的值。
2. 数列与数学归纳法(1)易错题案例:已知等差数列{an}的前n项和为Sn=n²,求an。
解析:利用等差数列的前n项和公式列方程,然后利用数学归纳法求得an的表达式。
(2)易错题案例:已知{an}是等比数列,且a₁=2,a₃=18,求通项公式。
解析:利用等比数列的通项公式列方程,再利用已知条件求出通项公式的值。
3. 平面向量的运算及应用(1)易错题案例:已知向量a=3i+4j,b=5i-2j,求a与b的夹角。
解析:利用向量的夹角公式求出a与b的夹角。
(2)易错题案例:已知平面向量a=2i+j,b=i-2j,求2a-3b的模。
解析:利用向量的运算规则,先求出2a和3b,然后再求它们的差向量,最后求出差向量的模。
高考数学易错题型全归纳
高考数学易错题型全归纳
高考数学易错题型有很多,这里列出了一些常见的类型:
1. 集合问题:这类问题通常涉及对集合的理解,如交集、并集、补集等。
学生容易混淆这些概念,导致错误。
2. 函数性质理解:对于函数的单调性、奇偶性、周期性等性质,学生可能理解不透彻,导致在判断或应用时出错。
3. 等差数列和等比数列的性质理解:等差数列和等比数列是高中数学的重点内容,但学生容易在理解其性质和应用上出错。
4. 三角函数的性质:三角函数具有多种性质,如周期性、单调性、奇偶性等,学生可能对其中某些性质掌握不够,导致解题出错。
5. 立体几何中的空间想象:立体几何需要学生有一定的空间想象能力,对于空间中点、线、面的关系能够准确判断。
但学生往往由于缺乏这种能力而出错。
6. 解析几何中的问题:解析几何涉及直线、圆、椭圆等图形,学生可能在理解这些图形的性质和应用上出错。
7. 概率和统计问题:概率和统计是高考数学的必考内容,学生需要掌握各种概率和统计的基本概念和方法,一旦混淆就可能导致错误。
8. 不等式的性质和应用:不等式是高中数学的重要内容,但学生可能对不等式的性质和应用掌握不够,导致解题出错。
9. 数列的通项和求和公式:数列的通项和求和公式是高考数学的常见考点,学生需要准确理解和掌握这些公式,否则在解题时容易出现错误。
以上只是高考数学中可能出现的一些易错题型,实际上还有很多其他的问题,学生在备考时应全面复习,熟练掌握各种知识点,以应对各种题型。
高中高考数学易错易混易忘题分类汇总及解析(3)
【练30】已知函数()f x =R 试分别确定满足条件的a 的取值范围。
答案:(1)1a ≥或3a ≤-(2)31a -≤≤或1a =-【易错点31】不等式的证明方法。
学生不能据已知条件选择相应的证明方法,达不到对各种证明方法的灵活应用程度。
例31、已知a >0,b >0,且a +b =1.求证:(a +a 1)(b +b 1)≥425.【易错点分析】此题若直接应用重要不等式证明,显然a +a1和 b +b 1不能同时取得等号,本题可有如下证明方法。
证法一:(分析综合法)欲证原式,即证4(ab )2+4(a 2+b 2)-25ab +4≥0,即证4(ab )2-33(ab )+8≥0,即证ab≤41或ab ≥8.∵a >0,b >0,a +b =1,∴ab ≥8不可能成立∵1=a +b ≥2ab ,∴ab ≤41,从而得证. 证法二:(均值代换法)设a =21+t 1,b =21+t 2.∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<21,|t 2|<21.4254116254123162541)45(41)141)(141()21)(21()141)(141(211)21(211)21(11)1)(1(2242222222222222222112122221122212122=≥-++=--+=-++++++=++++++++=+++⨯+++=+⨯+=++∴t t t t t t t t t t t t t t t t t t t t t bb a a b b a a 显然当且仅当t =0,即a =b =21时,等号成立. 证法三:(比较法)∵a +b =1,a >0,b >0,∴a +b ≥2ab ,∴ab ≤41425)1)(1(04)8)(41(4833442511425)1)(1(2222≥++∴≥--=++=-+⋅+=-++b b a a ab ab ab ab ab b a b b a a b b a a 证法四:(综合法)∵a +b =1, a >0,b >0,∴a +b ≥2ab ,∴ab ≤41.4251)1(41 16251)1(169)1(434111222≥+-⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥≥+-⇒≥-⇒=-≥-∴ab ab ab ab ab ab 425)1)(1(≥++b b a a 即 证法五:(三角代换法)∵ a >0,b >0,a +b =1,故令a =sin 2α,b =cos 2α,α∈(0,2π).425)1)(1(4252sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cos sin 1(sin )1)(1(2222222222222442222≥++≥-⇒⎪⎭⎪⎬⎫≥≥+-=-≥-∴≤+-=+-+=++=++b b a a b b a a 即得ααααααααααααααααα【知识点归类点拔】1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证. (2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野.2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等.换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法.证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.【练31】数列{}nx 由下列条件确定:*+∈⎪⎪⎭⎫⎝⎛+=>=N n x a x x a xn n n ,21,011(1) 证明:对于2n≥总有n x a ≥,(2)证明:对于2n ≥,总有1n n x x +≥.【易错点32】函数与方程及不等式的联系与转化。
高考数学易错易误易忘题分类汇总及解析(61页)
高中高考数学易错易混易忘题分类汇总及解析“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。
本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。
【易错点1】忽视空集是任何非空集合的子集导致思维不全面。
例1、 设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集有多少个?【易错点分析】此题由条件A B B =易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a 值产生漏解现象。
解析:集合A 化简得{}3,5A =,由A B B =知B A ⊆故(Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件(Ⅱ)当Bφ≠时,即方程10ax -=的解为3或5,代入得13a =或15。
综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。
【知识点归类点拔】(1)在应用条件A ∪B =B⇔A ∩B =A⇔AB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。
有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:(){}22,|4A x y x y =+=,()()(){}222,|34B x y x y r =-+-=,其中0r >,若A B φ=求r 的取值范围。
高中数学易误易混知识分类汇总及解析
高中高考数学易错易混易忘题分类汇总及解析“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。
本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。
【易错点1】忽视空集是任何非空集合的子集导致思维不全面。
例1、 设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集有多少个?【易错点分析】此题由条件A B B =易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a 值产生漏解现象。
解析:集合A 化简得{}3,5A =,由A B B =知B A ⊆故(Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件(Ⅱ)当Bφ≠时,即方程10ax -=的解为3或5,代入得13a =或15。
综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。
【知识点归类点拔】(1)在应用条件A ∪B =B⇔A ∩B =A⇔AB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。
有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:(){}22,|4A x y x y =+=,()()(){}222,|34B x y x y r =-+-=,其中0r >,若A B φ=求r 的取值范围。
高考数学易错易混易忘题分类汇总
高考易错易混易忘题分类汇总例1、 设{}2|8150A x x x =-+=,{}|10B xa x =-=,若A B B = ,求实数a 组成的集合的子集个数?例2、已知()22214y x ++=,求22x y +的取值范围。
例3、 ()2112x xa f x ⋅-=+是R 上的奇函数,(1)求a 的值(2)求的反函数()1f x -。
例4、已知函数()121x f x x-=+,函数()y g x =的图像与()11y f x -=-的图象关于直线y x =对称,则()y g x =的解析式为()A 、()32x g x x -=B 、()21x g x x -=+C 、()12xg x x-=+ D 、()32g x x =+例5、 判断函数()2lg 1()22x f x x -=--的奇偶性。
例6、函数()2221211l o g 22x x f x x x -+⎛⎫=<-> ⎪⎝⎭或的反函数为()1f x -,证明()1f x -是奇函数且在定义域上是增函数。
例7、试判断函数()()0,0bf x a x a b x=+>>的单调性并给出证明。
例8、已知函数()3231f x a x x x =+-+上是减函数,求a 的取值范围。
例9、 已知:a>0 , b>0 , a+b=1,求(a+a1)2+(b+b1)2的最小值。
例10、是否存在实数a 使函数()2l o g a x xaf x -=在[]2,4上是增函数?若存在求出a 的值,若不存在,说明理由。
例11、已知1sin sin 3x y +=求2s in c o s y x -的最大值。
例12、数列{}n a 前n 项和s 且1111,3n n a a s +==。
(1)求234,,a a a 的值及数列{}n a 的通项公式。
例13、等差数列{}n a 的首项10a >,前n 项和s,当lm ≠时,m l s s =。
高考数学易错易混易忘题汇总及解析
高考数学易错易混易忘题汇总及解析“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素, 成为学生挥之不去的痛, 如何解决这个问题对决定学生的高考成败起着至关重要 的作用。
本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的 66 个 易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、 怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确 这样的问题在高考中确实存在, 另一方面通过作针对性练习帮你识破命题者精心 设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想 报负。
【易错点 1】忽视空集是任何非空集合的子集导致思维不全面。
例1、 设 A x | x 2 8 x 1 5 0 , B x | a x 1 0 ,若 A B B ,求实数 a 组 成的集合的子集有多少个? 【易错点分析】此题由条件 A B B 易知 B A ,由于空集是任何非空集合的 子集, 但在解题中极易忽略这种特殊情况而造成求解满足条件的 a 值产生漏解现 象。
解析:集合 A 化简得 A 3, 5 ,由 A B B 知 B A 故(Ⅰ)当 B 时,即方 程 ax 1 0 无解,此时 a=0 符合已知条件(Ⅱ)当 B 时,即方程 ax 1 0 的 解为 3 或 5,代入得 a 子集共有 2 3 8 个。
【知识点归类点拔】 (1)在应用条件 A∪B=B A∩B=A A B时,要树立 起分类讨论的数学思想,将集合A是空集Φ 的情况优先进行讨论. (2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别 是互异性对集合元素的限制。
有时需要进行检验求解的结果是满足集合中元素的 这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转 化如: A x , y | x 2 y 2 4 , B x , y | x 3 y 4 r 2 ,其中 r 0 ,2 21 3或 。
高中数学易错、易混、易忘题分类汇编(相当齐全)
,故其子集共有
23
8
个。
【知识点归类点拔】(1)在应用条件 A∪B=B A∩B=A A B时,要树立起分类讨论的数学思想,
将集合A是空集Φ的情况优先进行讨论. (2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。 有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语
言)和自然语言之间的转化如: A x, y | x2 y2 4 ,
B x, y | x 32 y 42 r2 ,其中 r 0 ,若 A B 求 r 的取值范围。将集合所表达
的数学语言向自然语言进行转化就是:集合 A 表示以原点为圆心以 2 的半径的圆,集合 B 表示以(3,4) 为圆心,以 r 为半径的圆,当两圆无公共点即两圆相离或内含时,求半径 r 的取值范围。思维马上就可利 用两圆的位置关系来解答。此外如不等式的解集等也要注意集合语言的应用。
4
4
28
+
因此当 x=-1 时 x2+y2 有最小值 1,
当 x=- 8 时,x2+y2 有最大值 28
。故 x2+y2 的取值范围是[1,
28
]
3
3
3
3
【知识点归类点拔】事实上我们可以从解析几何的角度来理解条件 x 2 2 y2 1对 x、y 的限制,
4
显然方程表示以(-2,0)为中心的椭圆,则易知-3≤x≤-1, 2 y 2 。此外本题还可通过三角换元
高中数学易错、易混、易忘题分类汇编
“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何 解决这个问题对决定学生的高考成败起着至关重要的作用。本文结合笔者的多年高三教学经验精心挑选学 生在考试中常见的 66 个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、 难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在, 另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风 破浪,实现自已的理想报负。 【易错点 1】忽视空集是任何非空集合的子集导致思维不全面。
高中高考数学易错易混易忘题分类汇总及解析(1)
高中高考数学易错易混易忘题分类汇总及解析“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。
本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。
【易错点1】忽视空集是任何非空集合的子集导致思维不全面。
例1、 设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集有多少个?【易错点分析】此题由条件A B B =易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a 值产生漏解现象。
解析:集合A 化简得{}3,5A =,由A B B =知B A ⊆故(Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件(Ⅱ)当Bφ≠时,即方程10ax -=的解为3或5,代入得13a =或15。
综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。
【知识点归类点拔】(1)在应用条件A ∪B =B⇔A ∩B =A⇔AB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。
有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:(){}22,|4A x y x y =+=,()()(){}222,|34B x y x y r =-+-=,其中0r >,若A B φ=求r 的取值范围。
高考数学易错易混题分类汇总
高中高考数学易错易、混题分类汇总及解析“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。
本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。
【易错点1】忽视空集是任何非空集合的子集导致思维不全面。
例1、 设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B = ,求实数a 组成的集合的子集有多少个?【易错点分析】此题由条件A B B = 易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a 值产生漏解现象。
解析:集合A 化简得{}3,5A =,由A B B =知B A ⊆故(Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件(Ⅱ)当B φ≠时,即方程10ax -=的解为3或5,代入得13a =或15。
综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。
【知识点归类点拔】(1)在应用条件A ∪B =B⇔A ∩B =A⇔AB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。
有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:(){}22,|4A x y xy =+=,()()(){}222,|34B x y x y r =-+-=,其中0r >,若A B φ= 求r 的取值范围。
高中高考数学易错易混易忘题分类及解析
专题 高中高考数学易错易混易忘题分类及解析第一讲 代数部分“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。
本专题精心挑选学生在考试中常见的易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。
失分点1忽视空集是任何非空集合的子集导致思维不全面。
例1、 设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B = ,求实数a 组成的集合的子集有多少个?补救训练 1 已知集合{}2|40A x x x =+=、(){}22|2110B x x a x a =+++-=,若B A ⊆,则实数a 的取值范围是 。
失分点2求解函数值域或单调区间易忽视定义域优先的原则。
例2、已知()22214y x ++=,求22x y +的取值范围补救训练2 函数y =log (x 2-5x +6)的单调递增区间为__________.失分点3函数值域和范围混淆致误例3、如果函数y =3x 2-2(m +3)x +m +3的值域为[0,+∞),求实数m 的取值集合补救训练3 已知函数y =3x 2-2(m +3)x +m +3,对任意实数x ,都有y>=0, 求实数m 的取值集合失分点4混淆“切点”致误例4 求过曲线y =x 3-2x 上的点(1,-1)的切线方程补救训练4 已知函数y =2x2+3,则它过点P(2,9)的切线方程 为____________________________.失分点5极值点概念不清致误例5 已知f(x)=x 3+ax 2+bx +a 2在x =1处有极值为10,则a +b =________.补救训练5 求函数f(x)=x 4-x 3的极值,并说明是极小值还是极大值.失分点6忽视基本不等式的应用条件致误例6 函数y =x +2x -1的值域是______.补救训练6 函数y =x2+5x2+4的最小值为________.失分点7忽视三角函数值对角的范围的限制致误例7 已知cos α=17,sin(α+β)=5314,0<α<π2,0<β<π2, 求cos β.补救训练7 已知α、β∈(0,π2),cos α=55,且cos β=1010,求α+β.失分点8解三角形时,忽视分类讨论而致误例8 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 且a =1,c = 3.(1)若C =π3,求A ; (2)若A =π6,求b.补救训练8 在△ABC 中,B =30°,AB =23,AC =2,求△ABC 的面积.失分点9忽视向量共线致误例9 已知a =(2,1),b =(λ,1),λ∈R,a 与b 的夹角为θ.若θ为锐角,则λ的取值范围是__________.补救训练9 设两个向量e 1,e 2,满足|e 1|=2,|e 2|=1,e 1与e 2的夹角为π3.若向量2te 1+7e 2与e 1+te 2的夹角为钝角,求实数t 的范围.失分点10数列由Sn 求通项忽略对n=1的检验致误例10 已知数列{an}的前n 项之和为Sn =n2+n +1,则数列{an}的通项公式为__________.补救训练10已知数列{an}的首项为a1=3,通项an 与前n 项和Sn 之间满足2an =Sn·Sn-1(n≥2). (1)求证:{1Sn}是等差数列,并求其公差; (2)求数列{an}的通项公式.失分点11忽视对等比数列中公比q=1讨论致误例11 设等比数列{an}的前n 项和为Sn ,若S 3+S 6=S 9,则数列的公比q 是________.补救训练11 已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围_________.失分点12 忽视等比数列中的隐含条件致误例12 各项均为实数的等比数列{an}的前n 项和为Sn ,若S 10=10,S 30=70,则S 40=_____.补救训练12 已知x ,y∈N*,若x,42,y 成等比数列,则x +y 的最小值是________.失分点13对数列的递推关系转化不当致误例13 已知函数f(x)=2x x +1,数列{an}满足a1=23,an +1=f(an), bn =an1-an,n∈N*,求数列{bn}的通项公式.补救训练13 已知函数f(x)满足:对任意的x∈R,x≠0,恒有f(1x )=x 成立,数列{an}、{bn}满足a 1=1,b 1=1,且对任意n∈N*,均有a n +1=anf(an)f(an)+2,b n +1-b n =1an.(1)求函数f(x)的解析式; (2)求数列{a n }、{b n }的通项公式;专题 高中高考数学易错易混易忘题分类及解析第二讲 几何部分失分点14对线面关系定理条件把握不准致误例14已知m、n是不同的直线,α、β、γ是不同的平面.给出下列命题:(1)若α⊥β,α∩β=m,n⊥m,则n⊥α,或n⊥β;(2)若α∥β,α∩γ=m,β∩γ=n,则m∥n;(3)若m不垂直于α,则m不可能垂直于α内的无数条直线;(4)若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α,且n∥β;(5)若m、n为异面直线,则存在平面α过m且使n⊥α.其中正确的命题序号是______ __.补救训练14已知α、β、γ是三个互不重合的平面,l是一条直线,给出下列四个命题:①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;③若l上有两个点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β. 其中正确命题的序号是______ __.(理科)失分点15混淆空间角与向量所成角而致误例15如图所示,四棱锥P-ABCD中,底面四边形ABCD是正方形,侧面PDC是边长为a的正三角形,且平面PDC⊥底面ABCD,E为PC的中点.(1)求异面直线PA与DE所成的角的余弦值;(2)AP与平面ABCD所成角的正弦值.补救训练15已知四棱锥P—ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,其中BC=2AB=2PA=6,M,N为侧棱PC上的两个三等分点,如图所示.(1)求证:AN∥平面MBD;(2)求异面直线AN与PD所成角的余弦值;(3)求二面角M—BD—C的余弦值.失分点16忽视对直线斜率为零或,斜率不存在等特殊情况的讨论致误例16 a 为何值时,(1)直线l1:x +2ay -1=0与直线l2:(3a -1)x -ay -1=0平行?(2)直线l3:2x +ay =2与直线l4:ax +2y =1垂直?补救训练16与抛物线y 2=2x 有且仅有一个交点,并且过点(0,1)的直线方程为___________.失分点17忽视曲线存在的条件致误例17 已知圆C 的方程为x 2+y 2+ax +2y +a 2=0,一定点为A(1,2),且过定点A(1,2)作圆的切线有两条,求a 的取值范围.补救训练17已知方程x25-2m +y2|m|-1=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是__________.失分点18考虑不周全忽视特殊情况致误例18 双曲线x2a2-y2b2=1 (a>0,b>0)的两个焦点为F1、F2,若P 为其上一点,且PF 1=2PF 2,则双曲线离心率的取值范围为________.补救训练18已知双曲线x2a2-y2b2=1 (b>a>0),直线l 过点A(a,0)和B(0,b),且原点到直线l 的距离为34c (c 为半焦距),则双曲线的离心率为______ __.失分点19忽视限制条件致误例19已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为______ __.补救训练19如图所示,过点P(0,-2)的直线l交抛物线y2=4x于A,B两点,求以OA,OB为邻边的平行四边形OAMB的顶点M的轨迹方程.失分点20 答题中的各种不规范导致失分在高考试卷的批阅中,学生因答题不规范而造成的丢分现象是屡见不鲜的.要在高考中不丢分或少丢分,考生们必须从答题规范上下功夫.这里不再一一举例,仅把常见的几种情况罗列出来,希望在解答试题时注意。
高中数学最易失分知识点汇总(高考必备)
高中数学最易失分知识点汇总(高考必备)1、an与Sn关系不清致误在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。
这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
2、对数列的定义、性质理解错误等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。
3、数列中的最值错误数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。
数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。
在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。
4、错位相减求和项处理不当致误错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。
基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。
5、遗忘空集致误由于空集是任何非空集合的真子集,因此B=∅时也满足B⊆A。
解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
6、忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
高中高考数学易错易混易忘题分类汇总及解析(1)
“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何 解决这个问题对决定学生的高考成败起着至关重要的作用。本文结合笔者的多年高三教学经验精心挑选学 生在考试中常见的 66 个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、 难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在, 另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的。 【易错点 1】忽视空集是任何非空集合的子集导致思维不全面。
函数定义域的子集,要树立定义域优先的意识。
解析:由于 f x f x 即函数 f x 为奇函数,因此只需判断函数 f x 在 0, 上的单调性
即 可 。 设 x1 x2 0
,
f
x1
f
x2
x1
x2
ax1x2 b x1x2
由 于 x1 x2 0
故当
x1, x2
b a
解析:集合 A 化简得 A 3,5 ,由 A B B 知 B A 故(Ⅰ)当 B 时,即方程 ax 1 0 无
解,此时 a=0 符合已知条件(Ⅱ)当 B 时,即方程 ax 1 0 的解为 3 或 5,代入得 a 1 或 1 。 35
综上满足条件的
a
组成的集合为
0,
1 3
,
1 5
y
f
1
x
1
1
2
x 1 1
2x 1 x
再求
y f 1 x 1 的反函数得 g x 2 x 。正确答案:B
1 x
【知识点分类点拔】函数 y f 1 x 1 与函数 y f x 1 并不互为反函数,他只是表示 f 1 x
高中高考数学易错易混易忘题分类汇总及解析(5)
【练习58如图,在三棱锥P —ABC 中,,AB BC AB BC kPA ⊥==,点O ,D 分别为AC ,PC 的中点,OP ⊥平面ABC 求证:OD//平面PAB证明:,O D 分别为AC 、PC 的中点//,OD PA ∴又PA ⊂平面,PAB,//PA PAB OD PAB OD PAB ⊂⊂∴平面平面平面【易错点59】对于两个平面平行的判定定理易把条件误记为“一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”,容易导致证明过程跨步太大。
例59、如图,在正方体1111ABCD A BC D -中,M 、N 、P 分别是11111,,C C B C C D 的中点, 求证:平面MNP//平面1A BD【易错点分析】本题容易证得MN//1A D ,MP//BD ,而直接由此得出面1//MNP A BD 面解析:连结111,,,B D B C P N 分别是1111,D C B C 的中点,11//,PN B D ∴11//,/B D BD PN BD ∴又11,//PN A BD PN A BD ⊄∴面平面同理:1//,MN A BD PNMN N =平面又1//DMN A BD ∴平面平面。
【知识点归类点拨】个平面平行问题的判定或证明是将其转化为一个平面内的直线与另一个平面平行的问题,即“线面平行则面面平行”,必须注意这里的“线面”是指一个平面内的两条相交直线和另一个平面,定理中的条件缺一不可。
【练59】正方体1111ABCD A BC D -中,(1)M ,N 分别是棱1111,A B A D 的中点,E 、F 分别是棱1111,B C C D 的中点,求证:①E 、F 、B 、D 共面; ②平面AMN//平面EFDB ③平面11AB D //平面1C BD 证明:(1)①1111//,////,EF B D B D BD EF BD ∴则E 、F 、B 、D 共面。
②易证:MN//EF ,设1111,,AC MN P AC EF Q ACBD O ===//,//PQ AO PQ AO PA OQ =∴//AMN EFDB ∴平面平面③连结AC ,1111ABCD A BC D -为正方体,AC DB∴⊥11,AA ABCD AC BD ⊥∴⊥平面,同理可证11AC BC ⊥于是得111!1,AC C BD AC ABD ⊥⊥平面同理可证平面111//AB D C BD∴面面 【易错点60】求异面直线所成的角,若所成角为090,容易忽视用证明垂直的方法来求夹角大小这一重要CBAPDO方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中高考数学易错易混易忘题分类汇总及解析“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。
本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。
【易错点1】忽视空集是任何非空集合的子集导致思维不全面。
例1、 设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B = ,求实数a 组成的集合的子集有多少个?【易错点分析】此题由条件A B B = 易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a 值产生漏解现象。
解析:集合A 化简得{}3,5A =,由A B B = 知B A ⊆故(Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件(Ⅱ)当B φ≠时,即方程10ax -=的解为3或5,代入得13a=或15。
综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。
【知识点归类点拔】(1)在应用条件A ∪B =B⇔A ∩B =A⇔AB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。
有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:(){}22,|4A x y x y =+=,()()(){}222,|34B x y x y r =-+-=,其中0r >,若A B φ= 求r 的取值范围。
将集合所表达的数学语言向自然语言进行转化就是:集合A 表示以原点为圆心以2的半径的圆,集合B 表示以(3,4)为圆心,以r 为半径的圆,当两圆无公共点即两圆相离或内含时,求半径r 的取值范围。
思维马上就可利用两圆的位置关系来解答。
此外如不等式的解集等也要注意集合语言的应用。
【练1】已知集合{}2|40A x x x =+=、(){}22|2110B x x a x a =+++-=,若B A ⊆,则实数a 的取值范围是 。
答案:1a=或1a ≤-。
【易错点2】求解函数值域或单调区间易忽视定义域优先的原则。
例2、已知()22214y x ++=,求22x y +的取值范围 【易错点分析】此题学生很容易只是利用消元的思路将问题转化为关于x 的函数最值求解,但极易忽略x 、y 满足()22214y x ++=这个条件中的两个变量的约束关系而造成定义域范围的扩大。
解析:由于()22214y x ++=得(x+2)2=1-42y ≤1,∴-3≤x ≤-1从而x 2+y 2=-3x 2-16x-12=+328因此当x=-1时x 2+y 2有最小值1, 当x=-38时,x 2+y 2有最大值328。
故x 2+y 2的取值范围是[1,328]【知识点归类点拔】事实上我们可以从解析几何的角度来理解条件()22214y x ++=对x 、y 的限制,显然方程表示以(-2,0)为中心的椭圆,则易知-3≤x ≤-1,22y -≤≤。
此外本题还可通过三角换元转化为三角最值求解。
【练2】(05高考重庆卷)若动点(x,y )在曲线22214x y b+=()0b >上变化,则22x y +的最大值为()(A )()()2404424b b b b ⎧+<<⎪⎨⎪≥⎩(B )()()2402422b b b b ⎧+<<⎪⎨⎪≥⎩(C )244b +(D )2b 答案:A【易错点3】求解函数的反函数易漏掉确定原函数的值域即反函数的定义域。
例3、()2112x xa f x ⋅-=+是R 上的奇函数,(1)求a 的值(2)求的反函数()1f x - 【易错点分析】求解已知函数的反函数时,易忽略求解反函数的定义域即原函数的值域而出错。
解析:(1)利用()()0f x f x +-=(或()00f =)求得a=1.(2)由1a =即()2121x x f x -=+,设()y f x =,则()211xy y -=+由于1y ≠故121x y y+=-,112log yyx +-=,而()2121x xf x -=+()211,121x =-∈-+所以()()1112log 11xx f x x +--=-<< 【知识点归类点拔】(1)在求解函数的反函数时,一定要通过确定原函数的值域即反函数的定义域在反函数的解析式后表明(若反函数的定义域为R 可省略)。
(2)应用1()()f b a f a b -=⇔=可省略求反函数的步骤,直接利用原函数求解但应注意其自变量和函数值要互换。
【练3】(全国理)函数()()111f x x x =-≥的反函数是()A 、()2221y x x x =-+<B 、()2221y x x x =-+≥C 、()221y x x x =-< D 、()221y x x x =-≥答案:B【易错点4】求反函数与反函数值错位 例4、已知函数()121x f x x-=+,函数()y g x =的图像与()11y f x -=-的图象关于直线y x =对称,则()y g x =的解析式为()A 、()32x gx x -=B 、()21x g x x -=+C 、()12x g x x -=+D 、()32g x x=+ 【易错点分析】解答本题时易由()y g x =与()11y f x -=-互为反函数,而认为()11y f x -=-的反函数是()1y f x =-则()y g x ==()1f x -=()()1213211x xx x---==+-而错选A 。
解析:由()121x f x x -=+得()112x f x x --=+从而()()()11121211x x y f x x----=-==+-+再求()11y f x -=-的反函数得()21xg x x-=+。
正确答案:B 【知识点分类点拔】函数()11y f x -=-与函数()1y f x =-并不互为反函数,他只是表示()1f x -中x 用x-1替代后的反函数值。
这是因为由求反函数的过程来看:设()1y f x =-则()11f y x -=-,()11x f y -=+再将x 、y 互换即得()1y f x =-的反函数为()11y f x -=+,故()1y f x =-的反函数不是()11y f x -=-,因此在今后求解此题问题时一定要谨慎。
【练4】(高考福建卷)已知函数y=log 2x 的反函数是y=f -1(x),则函数y= f -1(1-x)的图象是()答案:B【易错点5】判断函数的奇偶性忽视函数具有奇偶性的必要条件:定义域关于原点对称。
例5、 判断函数()2lg 1()22x f x x -=--的奇偶性。
【易错点分析】此题常犯的错误是不考虑定义域,而按如下步骤求解:()()2lg 1()22x f x f x x --=≠+-从而得出函数()f x 为非奇非偶函数的错误结论。
解析:由函数的解析式知x 满足21022x x ⎧->⎪⎨-≠±⎪⎩即函数的定义域为()()1,00,1- 定义域关于原点对称,在定义域下()()2lg 1x f x x-=-易证()()f x f x -=-即函数为奇函数。
【知识点归类点拔】(1)函数的定义域关于原点对称是函数具有奇偶性的必要但不充分条件,因此在判断函数的奇偶性时一定要先研究函数的定义域。
(2)函数()f x 具有奇偶性,则()()f x f x =-或()()f x f x =--是对定义域内x 的恒等式。
常常利用这一点求解函数中字母参数的值。
【练5】判断下列函数的奇偶性:①()2244f x x x =-+-②()()111xf x x x+=--③()1sin cos 1sin cos x x f x x x++=+-答案:①既是奇函数又是偶函数②非奇非偶函数③非奇非偶函数【易错点6】易忘原函数和反函数的单调性和奇偶性的关系。
从而导致解题过程繁锁。
例6、 函数()2221211log 22x x f x x x -+⎛⎫=<-> ⎪⎝⎭或的反函数为()1f x -,证明()1f x -是奇函数且在其定义域上是增函数。
【思维分析】可求()1f x -的表达式,再证明。
若注意到()1f x -与()f x 具有相同的单调性和奇偶性,只需研究原函数()f x 的单调性和奇偶性即可。
解析:()212121212121222log log log x x x x x x f x --+--+-+-===-()f x =-,故()f x 为奇函数从而()1f x -为奇函数。
又令21212121x tx x -==-++在1,2⎛⎫-∞- ⎪⎝⎭和1,2⎛⎫+∞ ⎪⎝⎭上均为增函数且2log ty =为增函数,故()f x 在1,2⎛⎫-∞- ⎪⎝⎭和1,2⎛⎫+∞ ⎪⎝⎭上分别为增函数。
故()1f x -分别在()0,+∞和(),0-∞上分别为增函数。
【知识点归类点拔】对于反函数知识有如下重要结论:(1)定义域上的单调函数必有反函数。
(2)奇函数的反函数也是奇函数且原函数和反函数具有相同的单调性。
(3)定义域为非单元素的偶函数不存在反函数。
(4)周期函数不存在反函数(5)原函数的定义域和值域和反函数的定义域和值域到换。
即1()()f b a f a b -=⇔=。
【练6】(1)(全国高考题)已知()2x xe ef x --=,则如下结论正确的是()A 、 ()f x 是奇函数且为增函数B 、()f x 是奇函数且为减函数C 、()f x 是偶函数且为增函数 D 、 ()f x 是偶函数且为减函数答案:A(2)(天津卷)设()1f x -是函数()()()112x x f x a a a -=->的反函数,则使()11f x ->成立的x 的取值范围为()A 、21(,)2a a -+∞ B 、21(,)2a a --∞ C 、21(,)2a a a- D 、(,)a +∞ 答案:A (1a >时,()f x 单调增函数,所以()()()()()21111112a f x f f x f x f a--->⇔>⇔>=.)【易错点7】证明或判断函数的单调性要从定义出发,注意步骤的规范性及树立定义域优先的原则。