完全平方数及应用(一).教师版
北师大版初中数学七年级下册第1章《完全平方公式(一)》说课稿
《完全平方公式(一)》说课稿一、说教材1、地位和作用“完全平方公式”是七年级《数学》下册第一章第八节内容,它分为两课时,本节是第一课时,它是“整式运算”这一章中重要的内容之一,它起到承上启下的作用,既是整式相乘的应用,又为以后学习配方法打下扎实的基础。
2、课程目标:(1)、知识目标:经历探索推导完全平方公式的过程,形成数形结合思想,进一步发展符号感。
掌握完全平方公式的结构特点,并能利用公式熟练进行运算。
(2)、能力目标:培养学生发散性思维能力和推理能力,培养学生语言表达能力,动手实践能力,以及合作交流能力。
(3)情感目标:让学生在探索的过程中,体会科学发现探索方法,在合作交流中,体会团结合作精神。
能从多角度思考问题,敢于发表自己的观点。
3、教学重点、难点:重点:完全平方公式的结构特点及公式的直接运用。
难点:对公式中a、b含义的理解与正确应用。
4、教材安排:本节课先从通过计算和比较试验田的面积引出完全平方公式。
直接让学生运用多项式乘法法则推导完全平方公式。
并通过数形结合思想,让学生理解完全平方公式及其结构特点。
最后通过变式训练进行练习和巩固。
二、说教学方法及教学手段:本节课引导学生从已有的知识和生活经验出发,提出开放性的问题让学生进行合作探索,让学生经历知识的形成与应用,从而更好地理解数学知识的意义。
本节课教学中,对于不同的内容选择了不同的方法。
对于求实验田的总面积,进行开放性教学,引导学生利用拼图等方法合作探究多种方法求解;运用多项式相乘推导公式,让学生独立探索;对于完全平方公式的运用,采用变式训练,促进学生灵活掌握。
为了提高课堂教学效果,本节课将借助于多媒体课件辅助教学。
三、说学法教给学生良好的学习方法比直接教给学生知识更重要。
数学教学是师生之间、学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在教学中要不断指导学生学会学习,又要给学生自主探索和合作交流时间。
本节课先从实际出发,创设有助于学生发散性思考的问题情境,引导学生自己积极思考探索,让学生经历“观察、类比、发现、归纳”的过程,从而培养学生动手实践的能力,提高口头表达能力及逻辑推理能力,使学生真正成为学习的主体。
完全平方数答案
学而思内部资料
完全平方数 教师版 4. 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个? 【分析】:完全平方数,其质因数必成对出现。
72 23 32 ,所以如果 A 72 为完全平方数,那么 A 必然为 2 B 2 的形式,下面来尝试在1~2008中符合要
求的数就可以了。由于 2 312 2008 2 32 2 ,所以A的取值范围是 2 12 ~ 2 312 ,共31个。 5. 两个完全平方数的差为77,则这两个完全平方数的和最大是多少?最小是多少? 【分析】:设这两个完全平方数为 A 和 B
a a a 2 2a 2 a2 2 an , pn
根据约数计算方法的到 (2a1 1) (2a2 1) (2an 1) 39 , 由于 39 3 13 1 39 ,所以分成两种情况: 其一 2a1 1 3, 2a2 1 13 ,那么 a1 1, a2 6 , 这个数的约数个数有 ( a1 1) ( a2 1) 14 个。 其二 2a1 1 1, 2a2 1 39 ,那么 a1 0, a2 19 这个数的约数个数有 ( a1 1) ( a2 1) 20 个.
2 2
A2 B 2 ( A B ) ( A B ) 100 63 37 37 1
所以 A B 37, A B 1 , 那么 A 19, x 19 63 424 .
2
学而思内部资料
2 2
当 A B 11, A B 7 时, B 2 , 和最小为 77 2 B 77 2 2 85
2 2
6. 有两个两位数,它们的差是14,将它们分别平方,得到的两个平方数的末两位数(个位数和十 位数)相同,那么这两个两位数是_____。(请写出所有可能的答案) 【分析】: 设这两个平方数较小的为 n ,则另一个为 n 14 ,根据题意我们知道
完全平方公式教案精品
完全平方公式教案精品《完全平方公式》教案篇一一、教材分析本节课是继乘法公式的内容的一种升华,起着承上启下的作用。
在内容上是由多项式乘多项式而得到的,同时又为下一节课打下了基础,环环相扣,层层递进。
通过这节课的学习,可以培养学生探索与归纳能力,体会到从简单到复杂,从特殊到一般和转化等重要的思想方法。
二、学情分析多数学生的抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。
所以中应尽可能多地让学生动手操作,突出完全平方公式的探索过程,自主探索出完全平方公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力、合作交流能力和数学化能力。
三、目标知识与技能利用添括号法则灵活应用乘法公式。
过程与方法利用去括号法则得到添括号法则,培养学生的逆向思维能力。
情感态度与价值观鼓励学生算法多样化,培养学生多方位思考问题的习惯,提高学生的合作交流意识和创新精神。
四、教学重点难点教学重点理解添括号法则,进一步熟悉乘法公式的合理利用。
教学难点在多项式与多项式的乘法中适当添括号达到应用公式的目的。
五、教学方法思考分析、归纳总结、练习、应用拓展等环节。
六、教学过程设计师生活动设计意图一.提出问题,创设情境请同学们完成下列运算并回忆去括号法则.(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合.也就是说,遇“加”不变,遇“减”都变.二、探究新知把上述四个等式的左右两边反过来,又会得到什么结果呢?(1) 4+5+2=4+(5+2)(2)4-5-2=4-(5+2)(3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)左边没括号,右边有括号,也就是添了括号,•同学们可不可以总结出添括号法则来呢?(学生分组讨论,最后总结)添括号法则是:添括号时,如果括号前面是正号,括到括号里的。
小学数学《完全平方数的性质及其应用》教案
《完全平方数的性质及其应用》教案教学内容:教学目标:1、认识什么是完全平方数,掌握它的性质及其简单的应用2、培养学生熟练掌握并灵活运用多数学思想方法来思考以及举一反三的运用能力。
教学重点:掌握完全平方数的性质及其应用教学难点:如何把完全平方数的性质付之于应用。
教学方法:自主探究、合作交流。
教学准备:多媒体课件教学过程:一、快速抢答:(课件出示)1、8×8=64 10×10=1002、14×14=196 12×12=1443、20×20=400 25×25=625二、导入新课:1、导入新课,板书课题。
上面复习题中都是关于平方的问题,我们也能很快计算出来它们的值,我们观察一下64,100,196,144,200,625叫什么呢?今天我们来学习一个新的概念!教师板书课题:完全平方数的性质及其应用。
2、什么是完全平方数?一个正整数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。
那么上题中64,100,196,144,200,625都叫做完全平方数解答这类问题时,要认真审题,根据题目的具体特点,仔细分析,深入思考,灵活、辨证地选择解法。
三、自主探究(一):例1`一个自然数减去45及加上44都仍是完全平方数,求此数?2、引导学生读题,分析题意:3、学生自主探究。
4、交流汇报,教师点拨。
思路点拨:设这个自然数为x,根据题意我们就可以知道x-45=m2(1) x+44=n2(2)(m,n为自然数),(2)-(1)可得n2-m2=89,(m+n)(m-n)=89 但89是质数,它的正因子只能是1和89,于是解得n=45代入(2)中得所求的自然数等于1981【解】设这个自然数为x,根据题意我们就可以知道x-45=m2(1)x+44=n2(2)(m,n为自然数)(2)-(1)可得n2-m2=89(n+m)(n-m)=89但89是质数,它的正因子只能是1和89得出n+m=89,n-m=1,于是解得n=45n=45代入(2)中得所求的自然数等于1981答:这个数为1981四、巩固练习:如果n减去58是完全平方数,n加上31也是完全平方数,求n 是多少?答案:根据题意我们就可以知道n-58=a2(1)n+31=b2(2)(m,n为自然数)(2)-(1)可得b2-a2=89(b+a)(b-a)=89但89是质数,它的正因子只能是1和89得出b+a=89,b-a=1,于是解得b=45b=45代入(2)中得所求的自然数等于1994答:这个数为1994五、自主探究(二):1、出示例2:【例2】从200到1800的自然数中有奇数个约数的数有多少个?2、引导学生读题,分析题意:3、学生自主探究。
《完全平方公式》教案【通用七篇】
《完全平方公式》教案【通用七篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、致辞讲话、短语口号、心得感想、条据书信、合同协议、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as summary reports, speeches, phrases and slogans, thoughts and feelings, evidence letters, contracts and agreements, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《完全平方公式》教案【通用七篇】《完全平方公式》教案篇1一、教学目标:经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2.并初步运用;难点是完全平方公式的运用。
完全平方公式一等奖教学设计
完全平方公式一等奖教学设计完全平方公式一等奖教学设计第 1 篇目标:1、这一章的学习,使学生掌握二元一次方程组的解法。
2、学会解决实际问题,分析问题能力有所提高。
重点:这一章的知识点,数学方法思想。
难点:实际应用问题中的等量关系。
方法讲练结合、探索交流课型新授课教具投影仪全章小结四人一小组,互相交流学习这一章的感觉,主要学习了哪些知识。
还有不懂的方面?感到困难的部分是什么?方案<一> 基本练习题1、下列各组x,y的值是不是二元一次方程组的解?(1)(2)(3)2、根据下表中所给的x值以及x与y的关系式,求出相应的y值,然后填入表内:xy=4xy=10-x根据上表找出二元一次方程组的的解。
3、已知二元一次方程组的解求a,b的值。
4、解二元一次方程(1)(2)方案〈二〉1.根据已知条件,求出y的值,分别填入下列各图中,并找出方程组的解。
2.写出一个二元一次方程,使得都是它的解,并且求出x=3时的方程的解。
3.已知三角形的周长是18cm,其中两边的和等于第三边的2倍,而这两边的差等与第三边的,求这个三角形的各边长。
设三边的长分别是xcm,ycm,zcm那么你会解这个方程组吗?方案〈三〉1、有甲、乙两种铜银合金,甲种含银25%,乙种含银37.5%,现在要熔成含银30%的合金100千克,这两种合金各取多少千克?2、甲、乙两地之间路程为20km,a,b两人同时相对而行,2小时后相遇,相遇后a就返回甲地,b仍向甲地前进,a 回到甲地时,b离甲地还有2km,求a,b两人速度。
3、小亮在匀速行驶的汽车里,注意到公路里程碑上的数是两位数;1h后看到里程碑上的数与第一次看到的两位数恰好颠倒了数字顺序;再过1h后,第三次看到的里程碑上的数字又恰好是第一次见到的数字的两位数的数字之间添加一个0的三位数,这3块里程碑上的数各是多少?教学素材:a组题:1.已知x+y+(x-y+3)2=0,求x,y的值。
2.若3m-2n-7=0,则6n-9m-6是多少?3.解方程组(1)(2)4、用白铁皮做盒子,每张铁皮可生产12个盒身或18个盒盖,现有49张铁皮,怎样安排生产盒身和盒盖的铁皮张数,才使生产的盒身与盒盖配套(一张铁皮只能生产一种产品,一个盒身配两个盒盖)?5、给定两数5与3,编一道通过列出二元一次方程组来求解的应用题,并使得这个方程的解就是这两个数。
五年级数论完全平方数教师版
知识要点完全平方数是数论板块中一个比较精华的小分支,从知识特点上讲属于约数倍数和质数合数交叉的知识体系,其题目多为考察上述两块综合性知识,是杯赛和小升初试卷中的一个热点.一.完全平方数的主要性质1、完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2、在两个连续正整数的平方数之间不存在完全平方数。
3、完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
4、若质数p 整除完全平方数2a ,则p 能被a 整除。
二.一些重要的推论1、任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
2、一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3、自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4、完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
5、完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
6、完全平方数的个位数字为6时,其十位数字必为奇数。
7、凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。
三.重点公式回顾:平方差公式:22()()a b a b a b -=+-平方和公式: 22221+2+3++(1)(21)6n n n n ⋅⋅⋅=++÷完全平方数基本性质和概念【例 1】 (2000年“祖冲之杯”小学数学邀赛) 1234567654321(1234567654321)⨯++++++++++++是 的平方.【解析】 212345676543211111111=,212345676543217++++++++++++=,原式22(11111117)7777777=⨯=.【巩固】 (华杯赛试题)下面是一个算式:112123123412345123456+⨯+⨯⨯+⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯⨯,这个算式的得数能否是某个数的平方?【解析】 判断一个数是否是某个数的平方,首先要观察它的个位数是多少.平方数的个位数只能是0,1,4,5,6,9,而2,3,7,8不可能是平方数的个位数.这个算式的前二项之和为3,中间二项之和的个位数为0,后面二项中每项都有因子2和5,个位数一定是0,因此,这个0算式得数的个位数是3,不可能是某个数的平方.【例 2】 写出从360到630的自然数中有奇数个约数的数.【解析】 一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)如果某个自然数有奇数个约数,那么这个数的所有质因子的个数均为偶数个.这样它们加1后均是奇数,所得的乘积才能是奇数.而所有质因数的个数均是偶数个的数为完全平方数.即完全平方数(除0外)有奇数个约数,反过来,有奇数个约数的数一定是完全平方数.由以上分析知,我们所求的为360~630之间有多少个完全平方数?18×18=324,19×19=361,25×25=625,26×26=676,所以在360~630之间的完全平方数为192,202,212,222,232,242,252.即360到630的自然数中有奇数个约数的数为361,400,441,484,529,576,625.【巩固】 一个数的完全平方有39个约数,求该数的约数个数是多少?【解析】 设该数为1212n a a a n p p p ⨯⨯⨯L ,那么它的平方就是1222212n a a a n p p p ⨯⨯⨯L ,因此()()()1221212139n a a a +⨯+⨯⨯+=L .由于39139313=⨯=⨯,⑴所以,1213a +=,22113a +=,可得11a =,26a =;故该数的约数个数为()()116114+⨯+=个;⑵或者,12139a +=,可得119a =,那么该数的约数个数为19120+=个.所以这个数的约数个数为14个或者20个.【例 3】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【解析】 完全平方数,其所有质因数必定成对出现.而327223266=⨯=⨯⨯,所以满足条件的数必为某个完全平方数的2倍,由于2313119222008232322048⨯⨯=<<⨯⨯=,所以221⨯、222⨯、……、2231⨯都满足题意,即所求的满足条件的数共有31个.【巩固】 1016与正整数a 的乘积是一个完全平方数,则a 的最小值是________.【解析】 先将1016分解质因数:310162127=⨯,由于1016a ⨯是一个完全平方数,所以至少为422127⨯,故a 最小为2127254⨯=.【巩固】 已知3528a 恰是自然数b 的平方数,a 的最小值是 。
《完全平方公式(第一课时)》的教学设计
《完全平方公式(第一课时)》的教学设计一、教材分析本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用,其地位和作用主要体现在以下几个方面:1、整式是初中代数的一块重要内容,整式的运算又是整式中的一大主干。
一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,公式的推导是使用推理方法实行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。
2、乘法公式是后继学习的必备基础,不但能提升学生运算速度、准确率,更是以后学习分解因式、分式运算的重要基础,同时也具有培养学生逐渐严密的逻辑推理水平的功能。
3、公式的发现与验证给学生体验规律发现的基本方法和基本过程提供了很好的模式。
二、教法与学习目标分析针对初一学生的年龄特征,本节课采用自主探索,启发引导,合作交流展开教学,引导学生主动地实行观察、猜测、验证和交流。
教学过程边启发,边探索,边归纳,突出以学生为主体的探索性学习活动。
“完全平方公式”的教学目的应是“熟练掌握”。
一方面要准确理解公式,让学生自己得出公式,是准确理解公式的措施之一;同时还要扫除准确理解的障碍,即消除一些容易混淆之处。
另一方面,通过把公式使用到各种情况中去来达到熟练使用。
对于易混淆之处,应提升新旧知识的可分辨性。
通过变式对一些以前学过的,对现在公式容易产生混淆的内容(如积的乘方公式、平方差公式)实行分辨,从比较中加深对正面法则的理解。
三、教学目标1、识记目标:理解完全平方公式的意义,准确掌握公式的结构特征;2、水平目标:经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新水平,发展逻辑推理水平和有条理的表达水平,培养学生用数形结合的方法解决问题的数学思想;3、情感目标:培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。
渗透数学公式的结构美、和谐美。
四、教学重点、难点本节重点是体会公式的发现和推导过程,掌握公式的结构特征和字母表示的广泛含义,准确使用公式实行计算。
小学奥数专题-完全平方数及应用(一).教师版
1. 学习完全平方数的性质;2. 整理完全平方数的一些推论及推论过程3. 掌握完全平方数的综合运用。
一、完全平方数常用性质 1.主要性质1.完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2.在两个连续正整数的平方数之间不存在完全平方数。
3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
4.若质数p 整除完全平方数2a ,则p 能被a 整除。
2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数. 性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
6.完全平方数的个位数字为6时,其十位数字必为奇数。
7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。
5-4-1完全平方数,题库教师版
完全平方数是数论板块中一个比较精华的小分支,从知识特点上讲属于约数倍数和质数合数交叉的知识体系,其题目多为考察上述两块综合性知识,是杯赛和小升初试卷中的一个热点.一、完全平方数常用性质1.主要性质 1.完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2.在两个连续正整数的平方数之间不存在完全平方数。
3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
4.若质数p 整除完全平方数2a ,则p 能被a 整除。
2.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
知识点拨教学目标5-4完全平方数6.完全平方数的个位数字为6时,其十位数字必为奇数。
7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。
3.重点公式回顾:平方差公式:22()()ab a b a b -=+-模块一、完全平方数基本性质和概念【例 1】 (2000年“祖冲之杯”小学数学邀赛) 1234567654321(1234567654321)⨯++++++++++++是 的平方.【解析】212345676543211111111=,212345676543217++++++++++++=, 原式22(11111117)7777777=⨯=.【巩固】 (华杯赛试题)下面是一个算式:112123123412345123456+⨯+⨯⨯+⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯⨯,这个算式的得数能否是某个数的平方?【解析】 判断一个数是否是某个数的平方,首先要观察它的个位数是多少.平方数的个位数只能是0,1,4,5,6,9,而2,3,7,8不可能是平方数的个位数.这个算式的前二项之和为3,中间二项之和的个位数为0,后面二项中每项都有因子2和5,个位数一定是0,因此,这个0算式得数的个位数是3,不可能是某个数的平方.【例 2】 写出从360到630的自然数中有奇数个约数的数.【解析】 一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)如果某个自然数有奇数个约数,那么这个数的所有质因子的个数均为偶数个.这样它们加1后均是奇数,所得的乘积才能是奇数.而所有质因数的个数均是偶数个的数为完全平方数.即完全平方数(除0外)有奇数个约数,反过来,有奇数个约数的数一定是完全平方数.由以上分析知,我们所求的为360~630之间有多少个完全平方数?18×18=324,19×19=361,25×25=625,26×26=676,所以在360~630之间的完全平方数为192,202,212,222,232,242,252.即360到630的自然数中有奇数个约数的数为361,400,441,484,529,576,625.【巩固】 一个数的完全平方有39个约数,求该数的约数个数是多少?【解析】 设该数为1212n a a a n p p p ⨯⨯⨯,那么它的平方就是1222212n a a a n p p p ⨯⨯⨯,因此()()()1221212139n a a a +⨯+⨯⨯+=.由于39139313=⨯=⨯,例题精讲⑴所以,1213a +=,22113a +=,可得11a =,26a =;故该数的约数个数为()()116114+⨯+=个;⑵或者,12139a +=,可得119a =,那么该数的约数个数为19120+=个.所以这个数的约数个数为14个或者20个.【例 3】 从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【解析】 完全平方数,其所有质因数必定成对出现.而327223266=⨯=⨯⨯,所以满足条件的数必为某个完全平方数的2倍,由于2313119222008232322048⨯⨯=<<⨯⨯=,所以221⨯、222⨯、……、2231⨯都满足题意,即所求的满足条件的数共有31个.【巩固】 1016与正整数a 的乘积是一个完全平方数,则a 的最小值是________.【解析】 先将1016分解质因数:310162127=⨯,由于1016a ⨯是一个完全平方数,所以至少为422127⨯,故a 最小为2127254⨯=.【巩固】 已知3528a 恰是自然数b 的平方数,a 的最小值是 。
完全平方公式及各种典型问题ok课件
01
总结:完全平方公式的基本形式 和变形
02
通过简单的例题,让同学们熟悉 完全平方公式的各种形式,包括 基本的、变形的、和其他与完全 平方公式相关的内容。
提高练习题
总结:完全平方公式的应用和扩展
通过一些稍有难度的例题,让同学们 了解完全平方公式的应用和扩展,包 括与其他数学知识的结合、变形后的 应用等。
公式结构
这是一个基本的数学公式,用于计算一个数的平 方。公式中的“$a$”和“$b$”是变量, “$\pm$”表示正负两种情况。
公式的重要性
该公式是代数、几何等领域中广泛应用的工具, 可以帮助我们解决很多数学问题。
完全平方公式的性质
01
02
03
互逆性
$(a \pm b)^2 = a^2 \pm 2ab + b^2$,这个 公式可以正向使用,也可 以逆向使用。
法需要一定的观察和思考能力,但可以简化复杂的计算。
完全平方公式在实际问题中的应用
总结词
广泛应用于实际问题中,如几何、代数等领 域
详细描述
完全平方公式不仅在代数领域有广泛的应用 ,在几何、三角等领域也有广泛的应用。例 如,在解决几何问题时,完全平方公式可以 用于计算面积、周长等;在解决代数问题时 ,完全平方公式可以用于因式分解、化简等 。此外,完全平方公式还可以用于解决一些
因式分解
完全平方公式可以用于因式分解 ,将一个多项式分解为若干个因 式的乘积。
完全平方公式的实际应用案例
物理应用
在物理学中,完全平方公式可以用于 计算各种量,如速度、加速度等。
数学应用
在数学中,完全平方公式可以用于解 决各种问题,如代数方程、不等式等 。
05 完全平方公式的练习与巩固
北师大版七下1.6完全平方公式课件(1)
• 4题答案:
• (1) (y-6)²=y²-2y×6+6²=y²-12y+36 • (2) (-1+½y) ²=(-1) ²+2×(-1)(½y)+ (½y) ²
•
=1-y+¼y ²
• (3) 101 ²=(100+1)²=100²+2×100×1+1²
•
=10000+200+1=10201
• (4) (x+3)(x-3)(x²-9)
间的符号相同。 首平方,尾平方, 积的2倍在中央
4、公式中的字母a,b可以表示数,单项式和 多项式。
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
做一做:用两数和的完全平方公式计算(填空): (1)(a+1)2=( a )2+2( a )( 1 )+( 1 )2
=( a2 2a 1 )
∴a2+b2=(a+b)2-2ab =25-8 =17
做一做
完一块全边长平为a方米的公正方式形实验田因,需
要将其边长增加 b 米。形成四
块实验田,以种植不同的新品
种(如图1—6).
b
用不同的情势表示实验
田的总面积, 并进行比较.
探索: 你发现了什么?a
法一
直 接 求
总面积=(a+b) 2;
间
法二
接 求
=(4a2 20ab 25b2 )
(a+b)2=a2+2ab+b2, (a -b)2 =a2-2ab+b2
例1.运用完全平方公计算⑴(x+2y)2,⑵(x-2y)2
完全平方公式教案优秀8篇
完全平方公式教案优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!完全平方公式教案优秀8篇作为一名专为他人授业解惑的人·民教师,可能需要进行教案编写工作,教案是教学活动的依据,有着重要的地位。
完全平方公式(人教版)(含答案) (1)
完全平方公式(人教版)一、单选题(共15道,每道6分)1.(x+2)²=r²+( )x+4,括号中的数为( )A.2B.-2C.4D.-4答案:C解题思路:试题难度:三颗星知识点:完全平方公式2.计算(3x-y)²的结果为( )A.9x²-37y+y2B.9x²-6y-y²C.9x2-6<y+y²D.9x²+6y-y²答案:C 解题思路:原式=(3x)²-2 ·3x:y+y²-9x²-6xy+y²故选C.试题难度:三颗星知识点:完全平方公式3.计算的结果为().答案:B解题思路:故选B.C试题难度:三颗星知识点:完全平方公式(首项为负)4.计算(-ab-c)²的结果为()A.a²g²-2abc+c²B.a²g²-abc+c²C.a²g²+c²D.a²B²+2xbc+c2答案:D解题思路:试题难度:三颗星知识点:完全平方公式(首项为负)5.计算(-a+2b)²-46²的结果为()A.a²-4abB.d²-2abC.a²-4ab-8b²D.d²+4ab答案:A解题思路:试题难度:三颗星知识点:完全平方公式(首项为负)6.计算199²的结果为( )A.27501B.29501C.39601D.49501答案:C解题思路:试题难度:三颗星知识点:完全平方公式的应用7.计算(a-2b+c)2的结果为()A.a²+4b²+c²-4ab+4ac-2bcB.a²+4B²+c²-4ab+2ac-4bcC.a²-4B²+c²+2acD.a²+2b²+c²-2ab+2ac-4bc答案:B解题思路:试题难度:三颗星知识点:完全平方公式8.若,则k的值为()A.6B.-6C.±6D.36答案:C解题思路:观察式子特征,先把等式左边用完全平方公式展开,然后和等式右边的式子对比确定字母&的值.(所以k²=36,又因为6²=36,(-6)²=36,所以=土6. 故选C . 试题难度:三颗星知识点:完全平方公式9.若(xm+3m)²=m²-6mm+91²,则*的值为()A.1B.- 1C.-2D.±1答案:B解题思路:试题难度:三颗星知识点:完全平方公式10.若(4m-n)²=a²m²-8mn+n2,则a的值为()A.4B.-4C.±4D.16答案:C解题思路:试题难度:三颗星知识点:完全平方公式11.若(2x-5p》-4x¹-m+25p²,则m的值为()A.20B.10C.-20D.±20答案:A解题思路:试题难度:三颗星知识点:完全平方公式12.若(3x-w)-9x²+12y+4p²,则*的值为()A.2B.-2C.-4D.±2答案:B解题思路:试题难度:三颗星知识点:完全平方公式13.若(x-yj²=(x+p)²+1d,则M为( )A.2nB.-2x′C.4yD.-4xy答案:D解题思路:观察式子特征,先把等式左边和等式右边的完全平方式用完全平方公式展开,然后求出M.(x-y)²=x²-2xy+y2,(x+y)²=x²+2xy+y².:x²-2xy+y²=x²+2xy+y²+M-2x³=2xy+M-M=4xyM=-4y故选D . 试题难度:三颗星知识点:完全平方公式14.若4a²+b²=(2a-b)²+M,则M为( )A.2abB.±2abC.4abD.±4ab答案:C解题思路:试题难度:三颗星知识点:完全平方公式15.若x+y=4,xy=-3,则(x-y)' 的值为( )A.28B.22C.16D.4答案:A解题思路:试题难度:三颗星知识点:完全平方公式的应用。
完全平方公式教案
完全平方公式教案完全平方公式教案「篇一」教学目标:1.经历探索完全平方公式的过程,进一步发展学生的符号感和推理能力;2.会推导完全平方公式,并能运用公式进行简单的`计算;3.了解完全平方公式的几何背景. 教学重点:1.弄清完全平方公式的来源及其结构特点,能用自己的语言说明公式及其特点;2.会用完全平方公式进行运算. 教学难点:会用完全平方公式进行运算教学过程:一、探索练习:一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(图略)用不同的形式表示实验田的总面积,并进行比较你发现了什么?观察得到的式子,想一想:(1)(a+b)2等于什么?你能不能用多项式乘法法则说明理由呢?(2)(a-b)2等于什么?小颖写出了如下的算式:(a-b)2=[a+(b)]2。
她是怎么想的?你能继续做下去吗?由此归纳出完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a22ab+b2教师在此时应该引导观察完全平方公式的特点,并用自己的言语表达出来。
例:(利用完全平方公式计算)(1)(2x-3)2解:(2x-3)2=(2x)2-2(2x)3+32=4x12x+9二、巩固练习:1.下列各式中哪些可以运用完全平方公式计算_______________(1) ;(2) ;(3) ;(4) 。
2.计算下列各式:(1) ;(2) ;(3) ;(4) ;(5) ;(6) 。
4.填空:(1) _____________;(2) ;(3) ; 三、提高练习:1.求的值,其中2.若小结:熟记完全平方公式,会用完全平方公式进行运算. 作业:课本P36习题1.13:1、2. 教学后记:学生基本上能套用平方差公式进行运算,但是也有出现以下错误: (1)(a+b)2=a2+b2 (2)(+a)(2-a)=6-a2对公式的真正理解有待加强。
完全平方公式教案「篇二」教学过程一、议一议探索单项式除以单项式法则(出示投影1)计算下列各题,并说说你的理由 1. x yx , (8m n )(2m n) , (a b c)(3a b).师生共同分析:此题是做除法运算,可以从两方面思考:根据除法是乘法的逆运算,将除法问题转化为乘法问题去解决,即x = x y,由单项式乘以单项式法则可得(x y)x = x y,因此,x yx =x y . 另外,根据同底数幂的除法法则,由约分也可得 =x y.学生动笔:写出(2)(3)题的结果. 教师板书: x yx =x y, (8m n )(2m n)=4n , (a b c)(3a b)= a bc师:以上运算是单项式除以单项式的运算,你能说说如何进行单项式除以单项式的运算?学生活动:小组讨论,教师引导学生从系数、同底数幂、只在被除式含有的字母三方面思考,讨论充分后,由一名同学叙述,其余同学补充纠正.出示单项式除法法则(投影显示)单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
北师大版数学七年级下册1.6.2完全平方公式的应用教案
课时课题:第一章第六节完全平方公式(第1课时)课型:新授课授课时间:教学目标:知识与技能:理解完全平方公式的本质,并会运用公式进行简单的计算;了解完全平方公式的几何背景.过程与方法:经历探索完全平方公式的过程,并从推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,培养学生的数形结合意识.情感与态度:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习的自信心.教学重点:完全平方公式及其应用.教学难点:完全平方公式的应用.教法及学法指导:本节课采用自主探索、启发引导、合作交流的模式展开教学,引导学生主动地进行观察、归纳、猜测和验证.考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展.边启发、边探索、边归纳,突出以学生为主体的探索性学习活动. 遵循知识的产生过程,从特殊→一般→特殊,将所学的知识用于实践中.课前准备:教师:多媒体课件.学生:课前进行预习工作.教学过程:一前置诊断,开辟道路师:上一节课,我们学习了平方差公式,知道了应用平方差公式可以进行某些多项式乘法的简便运算.那位同学能说一下平方差公式是什么?它的结构特征是什么?生:(积极踊跃,争先恐后)生:平方差公式:(a+b)(a-b)=a2-b2;公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积.右边是两数的平方差.师:应用平方差公式要注意什么问题?生1:弄清在什么情况下才能使用平方差公式.生2:(补充)把两个因式中相同的部分看作a,互为相反的部分看作b.师:很好.还记得我们是怎样用图形解释平方差公式的吗?生:利用图形变化前后的面积相等来解释的.从一个边长为a大正方形中割掉一个边长为b的小正方形,剩下图形的面积可以用a2-b2表示,也可以用(a+b)(a-b)表示,就可以得到:(a+b)(a-b)=a2-b2.师:(出示多媒体课件,使学生数形结合起来,帮助其理解.)师:平方差公式实质上是特殊的多项式乘法的一种简便运算,是我们由一些特殊的多项式乘法的计算中分析得到的数学规律,应用它可以进行一些数或式乘法的简便计算.数学中,还有很多规律等待我们去探索、去发现.设计意图:本堂课的学习方向仍是引导鼓励学生通过已学习的知识经过个人思考、小组合作等方式推导出本课新知,进一步发展学生的符号感和推理能力.而这个过程离不开旧知识的铺垫,平方差公式的学习有很多教学环节和形式与本节的学习是类似的,其中包含的基本知识与基本能力也仍是本节的精神主旨,因而复习很有必要.二设问质疑,探究尝试师:(出示多媒体课件)1.观察下列算式及其运算结果,你有什么发现?(m+3)2 (2+3x)2= (m+3)(m+3) =(2+3x)(2+3x)=m2+3m+3m+9 =4+2×3x+2×3x+9x2请同学们观察屏幕上两个算式及其运算结果,你有什么发现?生:(观察、思考、交流、讨论、争相举手发表自己的发现).生1:我发现两个算式都是两个数和的平方,结果是三项,都有这两个数的平方. 师:很好.生:我发现算式都是两个数和的平方,结果是这两个数的平方和,再加上这两个数的乘积的2倍.师:太好了.同学们看一下是这么回事吗?生:(齐声)是.师:你能再举两例验证你的发现吗?生:(积极动手、动脑,验证结论,派代表发言.)师:同学们是否都验证了这个发现?生:是.师:你能用式子表示这个规律吗?生:能.(举手)生1:(a+b)2=a2+2ab+b2 .师:(板书,进而问)你能验证这个规律吗?生:(用多项式乘法验证了正确性)师:用语言怎样叙述?生:两数和的平方,等于它们的平方和加上它们的积的2倍.师:(板书)(出示课件)你能用图1-7解释这一公式吗?生:(思考、讨论后,积极举手)生1:和验证平方差公式一样,用两种方法表示图中大正方形的面积为:(a+b)2和a 2+2ab+b 2,这两个算式相等,就得到(a+b)2=a 2+2ab+b 2.师:太棒了!刚才,我们从数和形两个方面验证了这个规律的正确性,今后遇见形如(a+b)2的式子,就可以用这个公式来计算.如:(m +3)2=m 2+2×3•m +9=m 2+6m +9.比较一下两种做法,哪一种较简单?生:用公式简单.师:试着用公式计算:(2+3x )2 .生:(动手计算,体会公式可以使运算简便.)设计意图:通过特例的探索,引入完全平方公式,再让学生自己举例加深对公式的体会.而在计算图形的面积时,通过对比这些表示方式可以使学生对于公式有一个直观的认识.通过自主探究和交流学到了新的知识,学生的学习积极性和主动性得到大大的激发.三 探究规律、形成结论1.初识完全平方公式.师:(出示课件)你能计算:(a -b)2 吗?生:(思考、积极动脑,在练习本上试着计算.)a师:(巡视,发现两种不同解法,让这两名学生板演.)生1:(a-b)2= (a-b) (a-b)=a2-2ab+b2.生2:(a-b)2=[a+(-b)]2=a2-2a(-b)+b2=a2-2ab+b2.师:看这两个同学的做法是否正确?他们是怎样做的?生:一个是利用多项式的乘法,一个是利用公式,把差的形式化成了和的形式,都正确.师:很好!你能用语言描述一下这个结果吗?生:两数差的平方,等于它们的平方和减去它们的积的2倍.师:我们把这个规律也当成公式,和前面的公式合起来称为完全平方公式.请你体会一下“完全”的含义.生:(七嘴八舌,最后形成统一意见)“全部”的意思.师:我们把(a+b)2=a2+2ab+b2称为和的完全平方公式,(a-b)2=a2-2ab+b2称为差的完全平方公式.2. 再识完全平方公式.师:你能分析一下完全平方公式的结构特点,并用语言进行完整地描述吗?生:(讨论,争相回答)生1:结构特点:左边是二项式(两数和或差))的平方;右边是两数的平方和加上(或减去)这两数乘积的2倍.生2:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的2倍.师:很好.学的东西多了,有的同学可能会记混,教你一个口诀便于记忆:首平方,尾平方,积的2倍放中央,是加是减看前方.生:理解口诀,记忆公式.设计意图:让学生从代数运算的角度,推导出两数差的完全平方公式,并在此基础上加以总结,从而完善了完全平方公式,同时培养学生有条理的思考和语言表达能力.最后以口诀的形式,加深学生对公式的理解.四学以致用、巩固新知师:完全平方公式和平方差公式一样,也是整式乘法中的重要公式,应用它们可以使运算简便.(出示多媒体课件)例1 用完全平方公式计算:(1) (2x −3)2 ; (2) (4x +5y )2 ; (3) (mn −a )2生:分析算式的特点,找准谁相当于公式中的a ,谁相当于公式中的b ,试着用公式解题.师:派两名同学板演,师生共同评价.巩固练习.1.计算:(1)2)221(y x − ; (2) 2)512(x xy +; (3)(2x 2-3y 2)2 ; (4)(n +1)2-n 2 .生:板演,师生共同评价.师:发现学生有新解法,指名板演.生:(n +1)2-n 2=(n +1+ n )( n +1− n ) =(2n +1)师:给出肯定,建议学生试着用这种解法做一做.2.纠错练习:指出下列各式中的错误,并加以改正:(1) (2a −1)2=2a 2−2a +1;(2) (2a +1)2=4a 2 +1;(3)(−a −1)2=−a 2−2a −1.生:分析错误原因,并改正.设计意图:对照公式,进行独立的简单计算,体会公式在解题中的应用,进一步熟悉公式.并通过小组交流,自我检验,巩固反馈.考察个人的实际运用能力,并及时查漏补缺.例2 利用完全平方公式计算:(1) (-2x +1)2 ; (2) (-1-2x )2师:指导学生分析算式特点.生:找出相当于公式中a 与b 的数或式,试着解答.设计意图:例2是对课本内容的补充,使学生从更深的一个角度来认识完全平方公式,防止解题时中间项的符号出现问题,并能在解题中通过灵活的变形来运用公式,解决问题.教学时,首先放手让学生独立来解决第一个题目,学生可能出错较多,且都集中在中间项的符号上,由此引出有进一步认识公式的必要,从而教师引导学生再次观察题目,仔细分析题目当中谁相当于公式当中的a与b,从而运用不同的方法和思路,解决问题.在解题过程中学生认识到了解决问题之前恰当选择公式和正确分析题目的必要性,学习的积极性再次被激发.五知识迁移、变式训练、师:我们把形如a2±2ab+b2的式子称为完全平方式,请思考:1.若(x -1)2=2,则代数式x2−2x+5的值为.2. (1)已知9x2-12x+m是一个完全平方式,则m的值是(2)已知x2+mx+25是一个完全平方式,则m的值是.生:组内交流,探究尝试.师:巡视,发现有程度较好的同学已解出答案,指名,让其说出自己的解法.设计意图:这两题都是常考题型,其中第一题是整体代入法求代数式的值,第二题是考查学生对完全平方式概念的理解,学生解决起来可能会有困难,教师可以给予适当的指导使其掌握这种题型的解法.课上如果时间不允许,可以放到课下进行探索.六总结串联,纳入系统师:引导学生从完全平方公式和平方差公式不同和解题过程中要注意的事项两方面总结本节课所学内容.生:分析.1.完全平方公式和平方差公式不同:(1)形式不同.(2)结果不同:完全平方公式的结果是三项,即(a ±b)2=a2±2ab+b2;平方差公式的结果是两项,即(a+b)(a−b)=a2−b2.2. 解题过程中要准确确定a和b,对照公式原形的两边, 做到不丢项、不弄错符号、2ab时不少乘2.设计意图:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的.七达标检测,评价矫正★1.用完全平方公式计算:(1) (mn-a)2(2) (-3x﹢b)2(3) (-m-4n)2★★2.已知2x -1=3,求代数式(x -3)2+2 x(3﹢x)-7的值.设计意图:设计两个题目,由简单到复杂,对不同程度的学生分层要求.程度稍好的学生都完成,一般的学生只要完成第一题即可.学生限定时间独立完成,师生纠错.使学生了解自己学习的掌握情况,也便于教师的学情分析.八课后作业、巩固提高1. 基础训练:课本习题1.11 .2. 拓展练习:(1)试着用图形解释(a-b)2=a2-2ab+b2.(2)(a﹢b)2与(a-b)2有怎样的联系?能否用一个等式来表示两者之间的关系,并尝试用图形来验证你的结论?设计意图:设计两组题目,第一组为基础题,巩固本节所学;第二组题目为下一节课的学习做准备.九板书设计教学反思有前面平方差公式的学习做基础,绝大多数学生能够很顺利地进行自主探究和用图形验证和的完全平方公式,并从中建立了数形结合的意识.关于差的完全平方公式的几何解释,本节课没有让学生给出验证方法,放到课下进行探索,是为了降低难度.这节课的探究活动较多,学生的自主性得到了充分的体现,课堂气氛平等融洽,激情高涨,更可喜的是在完全平方公式的探求和应用过程中,特别是在解决例2的问题时,有些学生观察入微,又统揽全局,表现出了较强的观察力和分析问题、解决问题的能力,此时,作为教师,我们要善于抓住这个契机,及时地对学生提出表扬和鼓励,进一步激发他们的学习兴趣.而对于表现较差的学生,绝不可轻言放弃,则要适时地进行学法指导,使其领会数学的化归思想,学会用一般方法解决问题,培养他们“既见树木,又见森林”的优良观察品质.本节课的不足之处在于,处理达标检测题目的时间有些紧,原因是学生对完全平方式的理解不是很好,变式训练题用的时间稍多一些,建议把变式训练放到课下探究,本节课练好完全平方公式的有关计算即可.。
完全平方公式/平方差公式的认识及应用讲义
完全平方公式/平方差公式的认识及应用一:学生情况及其分析:上海初一的学生,学校已经讲完整式乘法了,但是由于学生基础比较差,另外学生反映学校进度太快,所以完全没跟上,测试一百分能拿到三十分左右;分析了一下主要原因是学生对于新知识都只是知道个大概,但完全不会应用,比如本节内容学校已经讲过了,但学生只能大概说出完全平方式/平方差公式是什么,做题却毫无思路,就学生这个情况本节课将本专题按题型由简到难划分,主要培养学生的解题能力,同时课程前部分带学生回顾一下基础知识及推论(2-3h课程)。
二:教学目的:1、经历乘法公式的探求过程,理解乘法公式的意义,知道乘法公式与多项式乘法法则的关系;2、熟悉乘法公式的特征,掌握乘法公式及其简单运用(重难点).三:教学设计:1,引入:复习乘法公式的基础形式并总结相关重点推论(将学生掌握不准确的知识点或易错点给予补充)。
2,教学过程:【知识梳理】(红色标注为重难点易错点内容)(一)平方差公式1.平方差公式:()()22-+=-a b a b a b2.平方差公式的特点:(1)左边是两个项式相乘,两项中有一项完全相同,另一项互为相反数(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方)(3)公式中的,a b可以是具体的数,也可是单项式或多项式(二)完全平方公式1.完全平方公式:()222+=++2a b a ab b()222-=-+2a b a ab b2.完全平方公式的特点:在公式()2222±=±+中,左边是一个二项式的完全平方,右边是a b a ab b一个二次三项式.其中有两项是左边括号内而像是种每一项的平方,中间一项为左边二项式中两项乘积的2倍,其符号由左边括号内的符号决定.本公式可由语言表述为:首平方,尾平方,两项乘积在中央.3.公式的恒等变形及推广: (1)()()()222a b b a a b -+=-=- (2)()()22a b a b --=+4.完全平方公式的几种常见变形: (1)()()222222a b a b ab a b ab +=+-=-+ (2)()()()()22222222a b a b a b a b ab +-+--+==-(3)()()224a b a b ab -=+- (4)()()224a b a b ab +=-+(5)()2222222a b c a b c ab ac bc ++=+++++ 5.其他:(拓展内容)()()333333,,,a b a b a b a b +-+-6.⎧⎪⎪⎨⎪⎪⎩完全平方公式的表示完全平方公式的结构特征完全平方公式完全平方公式的应用完全平方公式的变形【典型例题讲解】(一)平方差公式 题型一:【例1】请根据下图图形的面积关系来说明平方差公式【例2】判断下列各式能否用平方差公式计算,如果不能,应怎样改变才能使平方差公式适用?(1)⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-b a b a 231312 (2)()()a b b a 3232++- (3)()()2323-+-m m【借题发挥】1.在边长为a 的正方形中挖去一个边长为b 的正方形()a b >,(如图甲),把余下的部分拼成一个矩形(如图乙)根据两个图形中阴影部分的面积相等,可以证( ) A. ()2222a b a ab b +=++; B. ()2222a b a ab b -=-+;C. ()()22a b a b a b -+=-;D.()()2222a b a b a ab b +-=+-.2.下列计算中可以用平方差公式的是 ( )(A )()()22--+a a (B )⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+a b b a 2121(C )()()y x y x -+- (D )()()22y x y x +-题型二:平方差公式的计算及简单应用 【例3】类型1:()()22b a b a b a -=-+ (1)()()a a 2121+-(2)⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+3121312122x x【例4】类型2:()()22a b a b b a -=-+(1)(2xy+1)(1-2xy ) (2)(3x-4a )(4a+3x )【例5】类型3:()()22a b b a b a -=---(1)(-5xy+4z )(-5xy-4z )(2)()()z y x z y x 323222+---【例6】类型4:()()()22b a m b a mb ma -=-+ (xy+xz )(y-z )【例7】类型5:计算:()()102102++-+-+z y x z y x【例8】运用平方差公式化简:(1)()()()2111x x x ++- (2)()a a a -⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+2121412【例9】 计算:168422)12)(12)(12)(12(-++++。
完全平方1--北师大版(201908)
(2) (a-b)2
解: (1) (a+b)2 = (a+b) (a+b)
= a2 +ab+ab+b2 = a2 +2ab +b2
(2) (a-b)2 =(a-b) (a-b) =a2-ab-ab+b2 =a2-2ab+b2
你能用面积的方法得出上式吗?
;pokerstars pokerstars ;
气发渐渐如云 丁卯 逆冬令 会数 在王略之内也 玄菟 退分也 恭帝分南海立新会郡 官于京师 虽律吕清浊之体粗正 张昌尤盛 有荡阴之役 将帅怒之象也 客星见危 不尽为日馀 使其数可传于后 武帝置国 成帝咸和九年七月 一曰 九真 三夫人 又昼见于舆鬼 阳翟荥阳郡〔泰始二年置 犹 为四室而已 翼 则为秦地 南安阳 大人凶 则有此变 心为天王位 统县九 老子星色淳白 是时羊祜表求伐吴 宣帝以神武创业 《命历序》曰 《书》所谓 郑冲裁成国典 不尽为度馀 星孛于紫宫 冀 九年三月 于是移洛州居丰阳 二百五十十日十二度 〕 贯参 各加大馀六 以所入纪下迟疾差 率之数加之 盈不足 其南丈夫 天伐 故废宗庙之祭 燕国 避文帝讳改也 帝崩 上郡 三百 求后合月 岁星以德 未之详 统县五 凡五星所聚 《乾象》月加申 谓之河西五郡 是时 事泄 四年十二月癸丑 兵大起 〕 《司马法》广陈三代 五百八十四日三十八万九千九百八十分 赤帻朱衣 未上 生之律 以减损益率为昏 敦既陵上 十月 戈 户二千七百 朔大馀 律吕之大经也 以堂邑置堂邑郡 戌 应钟之笛 一名觉星 九曰隮 太康八年三月 抱者 又分西平界置晋兴郡 缩积分四十一万零三百一十一 户六千五百 日有蚀之 为变谋而更事 假使日在东井而蚀 天子幽劫于石头城 五百三 十六万三千九百九十五 日北至 统县十一 其年十一月 广昌 江夏 太白犯填星 则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 学习完全平方数的性质;2. 整理完全平方数的一些推论及推论过程3. 掌握完全平方数的综合运用。
一、完全平方数常用性质 1.主要性质1.完全平方数的尾数只能是0,1,4,5,6,9。
不可能是2,3,7,8。
2.在两个连续正整数的平方数之间不存在完全平方数。
3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。
4.若质数p 整除完全平方数2a ,则p 能被a 整除。
2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是完全平方数,且21|n p N -,则2|n p N .性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.3.一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。
4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。
5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。
6.完全平方数的个位数字为6时,其十位数字必为奇数。
7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。
3.重点公式回顾:平方差公式:22()()a b a b a b -=+-模块一、完全平方数计算及判断例题精讲知识点拨教学目标5-4-4.完全平方数及应用(一)【例 1】 已知:1234567654321×49是一个完全平方数,求它是谁的平方? 【考点】完全平方数计算及判断 【难度】2星 【题型】解答 【解析】 我们不易直接求解,但是其数字有明显的规律,于是我们采用递推(找规律)的方法来求解:121=211;12321=2111;1234321=21111……,于是,我们归纳为1234…n …4321=2(1111)n 个1,所以,1234567654321:11111112;则,1234567654321×49=11111112×72=77777772.所以,题中原式乘积为7777777的平方.【答案】7777777【例 2】 1234567654321(1234567654321)⨯++++++++++++是 的平方. 【考点】完全平方数计算及判断 【难度】2星 【题型】填空 【关键词】祖冲之杯 【解析】 212345676543211111111=,212345676543217++++++++++++=,原式22(11111117)7777777=⨯=.【答案】7777777【例 3】 已知自然数n 满足:12!除以n 得到一个完全平方数,则n 的最小值是 。
【考点】完全平方数计算及判断 【难度】3星 【题型】填空 【关键词】学而思杯,6年级,第9题【解析】 (法1)先将12!分解质因数:105212!235711=⨯⨯⨯⨯,由于12!除以n 得到一个完全平方数,那么这个完全平方数是12!的约数,那么最大可以为1042235⨯⨯,所以n 最小为104212!2353711÷⨯⨯=⨯⨯231=。
(法2)12!除以n 得到一个完全平方数,12!的质因数分解式中3、7、11的幂次是奇数,所以n 的最小值是3711231⨯⨯=。
【答案】231【例 4】 有一个正整数的平方,它的最后三位数字相同但不为0,试求满足上述条件的最小的正整数. 【考点】完全平方数计算及判断 【难度】3星 【题型】解答 【解析】 平方数的末尾只能是0,1,4,5,6,9,因为111,444,555,666,999都不是完全平方数,所以所求的数最小是4位数.考察1111,1444……可以知道14443838=⨯,所以满足条件的最小正整数是1444.【答案】1444【例 5】 A 是由2002个“4”组成的多位数,即200244444个,A 是不是某个自然数B 的平方?如果是,写出B ;如果不是,请说明理由.【考点】完全平方数计算及判断 【难度】3星 【题型】解答 【解析】 略【答案】2200242002444421111A ==⨯个个1.如果A 是某个自然数的平方,则20021111个1也应是某个自然数的平方,并且是某个奇数的平方.由奇数的平方除以4的余数是1知,奇数的平方减1应是4的倍数, 而200220011111111110-=个1个1不是4的倍数,矛盾,所以A 不是某个自然数的平方.【巩固】 A 是由2008个“4”组成的多位数,即4442008个4,A 是不是某个自然数B 的平方?如果是,写出B ;如果不是,请说明理由.【考点】完全平方数计算及判断 【难度】3星 【题型】解答 【解析】 略【答案】不是.24442111A ==⨯2008个12008个4假设A 是某个自然数的平方,则1112008个1也应是某个自然数的平方,并且是某个奇数的平方.由奇数的平方除以4的余数是1知,奇数的平方减1应是4的倍数,而11111110-=2008个12007个1不是4的倍数,与假设矛盾.所以A 不是某个自然数的平方.【例 6】 计算11112004个1-22221002个2=A ×A ,求A . 【考点】完全平方数计算及判断 【难度】4星 【题型】解答【解析】 此题的显著特征是式子都含有1111n 个1,从而找出突破口.11112004个1-22221002个2=11111002个100001002个0-11111002个1=11111002个1×(100001002个0-1) =11111002个1×(99991002个9)=11111002个1×(11111002个1×3×3)=2A所以,A =33331002个3.【答案】33331002个3【例 7】 ①22004420038444488889A =个个,求A 为多少?②求是否存在一个完全平方数,它的数字和为2005? 【考点】完全平方数计算及判断 【难度】4星 【题型】解答 【解析】 ① 本题直接求解有点难度,但是其数字有明显的规律,于是我们采用递推(找规律)的方法来求解:注意到有2004420038444488889个个可以看成48444488889n 个n-1个,其中n =2004;寻找规律:当n =1时,有2497=;当n =2时,有2448967=;当n =3时,有2444889667= ……于是,类推有2004420038444488889个个=22003666667个方法二:下面给出严格计算:2004420038444488889个个=4444400002004个2004个0+20048888个8+1;则4444400002004个2004个0+20048888个8+1=11112004个1×(4×0100002004个+8)+1=11112004个1×[4×(999992004个+1)+8]+1 =11112004个1×[4×(999992004个)+12]+1=2(1111)2004个1×36+12×11112004个1+1=2(1111)2004个1×36+2×(6×11112004个1)+1=22(666661)(66667)+=2004个62003个6② 由①知4444488889 n 个n-1个8=266667n-1个6,于是数字和为(4n +8n -8+9)=12n +1;令12n +1=2005解得n =167,所以4444488889 167个166个8=266667166个6。
所以存在这样的数,是4444488889 167个166个8【答案】(1)22003666667个,(2)4444488889 167个166个8=266667166个6模块二、平方数特征 (1) 平方数的尾数特征【例 8】 下面是一个算式:112123123412345123456+⨯+⨯⨯+⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯⨯,这个算式的得数能否是某个数的平方?【考点】平方数特征之平方数的尾数特征 【难度】3星 【题型】解答 【关键词】华杯赛 【解析】 判断一个数是否是某个数的平方,首先要观察它的个位数是多少.平方数的个位数只能是0,1,4,5,6,9,而2,3,7,8不可能是平方数的个位数. 这个算式的前二项之和为3,中间二项之和的个位数为0,后面二项中每项都有因子2和5,个位数一定是0,因此,这个0算式得数的个位数是3,不可能是某个数的平方.【答案】不是【例 9】 一个数与它自身的乘积称为这个数的平方.各位数字互不相同且各位数字的平方和等于49的四位数共有________个.【考点】平方数特征之平方数的尾数特征 【难度】4星 【题型】填空 【关键词】学而思杯,5年级,第10题 【解析】 4914925=+++,1,2,3,5全排列共有24个。
【答案】24【例 10】 用1~9这9个数字各一次,组成一个两位完全平方数,一个三位完全平方数,一个四位完全平方数.那么,其中的四位完全平方数最小是 .【考点】平方数特征之平方数的尾数特征 【难度】5星 【题型】填空 【关键词】迎春杯,高年级,复试,11题 【解析】 四位完全平方数≥1234>352=1225,所以至少是362=1296.当四位完全平方数是1296时,另两个平方数的个位只能分别为4,5,个位为5的平方数的十位只能是2,但数字2在1296中已经使用.当四位完全平方数是372=1369时,另两个平方数的个位只能分别为4,5,个位为5的平方数的十位一样只能是2,还剩下7,8,而784恰好为282.所以,其中的四位完全平方数最小是1369.【答案】1369【例 11】 称能表示成1+2+3+…+K 的形式的自然数为三角数,有一个四位数N ,它既是三角数,又是完全平方数,N= 。