五年级奥数完全平方数及应用(二)学生版

合集下载

五年级奥数 完全平方数及答案

五年级奥数 完全平方数及答案

五年级奥数完全平方数及答案1.一个自然数减去45及加上44都仍是完全平方数,求此数。

2.求证:四个连续的整数的积加上1,等于一个奇数的平方3.求证:11,111,1111,这串数中没有完全平方数4.求满足以下条件的所有自然数:(1)它是四位数。

(2)被22除余数为5。

(3)它是完全平方数5.甲、乙两人合养了n头羊,而每头羊的卖价又恰为n元,全部卖完后,两人分钱方法如下:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下缺乏十元,轮到乙拿去。

为了平均分配,甲应该补给乙多少元?完全平方数习题答案:1.解答:设此自然数为x,依题意可得x-45=m^2; (1)x+44=n^2 (2)(m,n为自然数)(2)-(1)可得 :n^2-m^2=89或: (n-m)(n+m)=89因为n+m>n-m又因为89为质数,所以:n+m=89; n-m=1解之,得n=45。

代入(2)得。

故所求的自然数是1981。

2.解答:设四个连续的整数为,其中n为整数。

欲证是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。

证明设这四个整数之积加上1为m,那么m为平方数而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇数,因而n(n+1)+2n+1是奇数。

这就证明了m是一个奇数的平方。

3.解答:形如的数假设是完全平方数,必是末位为1或9的数的平方,即或在两端同时减去1之后即可推出矛盾。

证明假设,那么因为左端为奇数,右端为偶数,所以左右两端不相等。

假设,那么因为左端为奇数,右端为偶数,所以左右两端不相等。

综上所述,不可能是完全平方数。

4.解答:设,其中n,N为自然数,可知N为奇数。

11|N - 4或11|N + 4或k = 1k = 2k = 3k = 4k = 5所以此自然数为1369, 2601, 3481, 5329, 6561, 9025。

5.解答:n头羊的总价为元,由题意知元中含有奇数个10元,即完全平方数的十位数字是奇数。

小学五年级奥数完全平方数

小学五年级奥数完全平方数

第八讲 完全平方数一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。

例如:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,……判断一个数是否为完全平方数,我们可以尝试能否将它分解为两个相同自然数的乘积,这就需要用到分解质因数的知识。

阅读小材料:毕达哥拉斯发现,当小石子的数目是1、4、9、16……等数时,小石子都能摆成正方形,他把这些数叫“正方形数”,如图所示:分别记各图所示的小石子个数为i a (i =1、2、3、……、n)不难发现: 1a =1=212a =1+3=4=223a =1+3+5=9=234a =1+3+5+7=16=24………n a =1+3+5+…+(2n -1)=[]2)1(1n n ⨯-+=2n毕达哥拉斯通过直观图形把奇数和图形结合起来,得到一个定理:从1开始,任何连续个奇数之和都是完全平方数。

(注:这个和其实就是奇数个数的平方)【例一】 求自然数列前n 个奇数的和:1+3+5+7+……+(2n -1)一讲一练:(04浙江五年级夏令营)袋子里共有415只小球,第一次从袋子里取出1只小球,第二次从袋子里取出3只小球,第三次从袋子里取出5只小球……依次地取球,如果剩下的球不够取,则将剩下的球留在袋中。

那么,最后袋中留下多少个球?【例二】 1234567654321×(1+2+……+6+7+6+……+2+1)是多少的平方?练习一:1×2×3×4×5×6×45×121是多少的平方?练习二:2A=1008×B,其中A,B都是自然数,B的最小值是()。

【例三】 36、49、60、64、72的约数各有多少个?约数个数是奇数的数有什么特征?一讲一练: 360、3969、7744各有多少个约数?【例四】(01ABC)少年宫游客厅内悬挂着200个彩色灯泡,这些灯泡或明或暗,十分有趣。

2018最新五年级奥数.数论.完全平方数(C级).学生版

2018最新五年级奥数.数论.完全平方数(C级).学生版

完全平方数知识框架一、完全平方数常用性质1.主要性质1.完全平方数的尾数只能是0,1,4,5,6,9。

不可能是2,3,7,8。

2.在两个连续正整数的平方数之间不存在完全平方数。

3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。

4.若质数p整除完全平方数2a,则p能被a整除。

2.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.性质3:自然数N为完全平方数⇔自然数N约数的个数为奇数.因为完全平方数的质因数分解中每个质-,因数出现的次数都是偶数次,所以,如果p是质数,n是自然数,N是完全平方数,且21|n p N则2|n p N.性质4:完全平方数的个位是6⇔它的十位是奇数.性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.二、一些重要的推论1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。

2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。

3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。

5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。

6.完全平方数的个位数字为6时,其十位数字必为奇数。

7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。

三、重点公式回顾:平方差公式:22()()a b a b a b -=+-完全平方数是数论板块中一个比较精华的小分支,从知识特点上讲属于约数倍数和质数合数交叉的知识体系,其题目多为考察上述两块综合性知识,是杯赛和小升初试卷中的一个热点【例1】已知自然数n 满足:12!除以n 得到一个完全平方数,则n 的最小值是。

(小学奥数)完全平方数及应用(二)

(小学奥数)完全平方数及应用(二)

1. 學習完全平方數的性質;2. 整理完全平方數的一些推論及推論過程3. 掌握完全平方數的綜合運用。

一、完全平方數常用性質1.主要性質 1.完全平方數的尾數只能是0,1,4,5,6,9。

不可能是2,3,7,8。

2.在兩個連續正整數的平方數之間不存在完全平方數。

3.完全平方數的約數個數是奇數,約數的個數為奇數的自然數是完全平方數。

4.若質數p 整除完全平方數2a ,則p 能被a 整除。

2.性質性質1:完全平方數的末位數字只可能是0,1,4,5,6,9.性質2:完全平方數被3,4,5,8,16除的餘數一定是完全平方數.性質3:自然數N 為完全平方數⇔自然數N 約數的個數為奇數.因為完全平方數的質因數分解中每個質因數出現的次數都是偶數次,所以,如果p 是質數,n 是自然數,N 是完全平方數,且21|n p N -,則2|n p N .性質4:完全平方數的個位是6⇔它的十位是奇數.性質5:如果一個完全平方數的個位是0,則它後面連續的0的個數一定是偶數.如果一個完全平方數的個位是5,則其十位一定是2,且其百位一定是0,2,6中的一個.性質6:如果一個自然數介於兩個連續的完全平方數之間,則它不是完全平方知識點撥教學目標5-4-5.完全平方數及應用(二)數.3.一些重要的推論1.任何偶數的平方一定能被4整除;任何奇數的平方被4(或8)除餘1.即被4除餘2或3的數一定不是完全平方數。

2.一個完全平方數被3除的餘數是0或1.即被3除餘2的數一定不是完全平方數。

3.自然數的平方末兩位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

4.完全平方數個位數字是奇數(1,5,9)時,其十位上的數字必為偶數。

5.完全平方數個位數字是偶數(0,4)時,其十位上的數字必為偶數。

6.完全平方數的個位數字為6時,其十位數字必為奇數。

7.凡個位數字是5但末兩位數字不是25的自然數不是完全平方數;末尾只有奇數個“0”的自然數不是完全平方數;個位數字為1,4,9而十位數字為奇數的自然數不是完全平方數。

25.五年级奥数第25讲——完全平方数

25.五年级奥数第25讲——完全平方数

学生课程讲义一个自然数自乘所得的积称为完全平方数,100以内的完全平方数(又称平方数)是0、1、2×2=4、3×3=9、4×4=16、5×5=25、6×6=36、7×7=49、8×8=64、9×9=81共10个,平方数有一些特别的性质,可以解决一些有趣的问题:少年宫游戏厅内悬挂着200个彩色灯泡,这些灯泡或明或暗,闪烁不停.这200个灯泡按1~200编号,它们每过1秒变化一下自己的明暗状态.开始时,全部灯泡是暗的第1秒,全部灯泡是亮着的;第2秒,凡编号为2的倍数的灯泡改变自己的明暗状态,即变暗;第3秒,凡编号为3的倍数的灯泡改变自己的明暗状态:明的变暗,暗的变明……依次类推,第n秒钟,凡编号为n的倍数的灯泡改变原来的明暗状态.每200秒钟为一周期.即到201秒时,全部灯泡大放光明,然后继续上述规则改变原来的状态.问:第200秒时,明亮的灯泡有多少事实上,每个灯泡如果明暗改变次数为偶数次时,它还保持原来的明暗状态;如果变化次数为奇数次时,则明暗状态发生改变,原来明亮的灯泡将变暗,原来不亮的灯泡将变明亮.由于平方数的不同约数个数为奇数,从第2秒开始(此时,偶数编号灯泡变暗,奇数编号灯泡是亮的)起到200秒止,中间的平方数有4、9、16、25、36、49、64、81、100、121、144、169、196,在这些秒时,同样编号的灯泡由暗变明,加上1号灯泡始终是亮的,共14个灯泡是亮的.下面举例来讨论平方数的一些问题。

【例1】在1-2016的自然数中,完全平方数共有()个随堂练习1在324、897、211、247、546中,哪些数是完全平方数。

【例6】下式中每个汉字表示1~9中的一个数字,不同的汉字代表不同的数字.已知热2+爱2+小2=学2+奥2+数2那么,请写出符合上述条件的一个等式:随堂练习412345654321是平方数吗?练习题一、填空题1、一个两位数等于它个位数字的平方与十位数字之和,这个两位数是2、把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来数加起来的和恰好是某个自然数的平方,这个和是()3、哥哥对弟弟说:“到21世纪的x2年,我恰好是x岁,”哥哥生于()年。

上海奥数精讲 第13讲讲义 完全平方数(学生版)

上海奥数精讲 第13讲讲义 完全平方数(学生版)

1、平方数尾数的性质:
性质1:完全平方数的末位数只能是
0,1,4,5,6,9。

性质2:奇数的平方的个位数字为奇数,十位
2.平方数的余数有下面的性质:
⑴偶数的平方被4整除;
⑵奇数的平方被8除时余数为1,因而被4除时余数也为1。

教学目标
1、 掌握平方数的因数与余数的性
质; 2、 初步体会用尾数分析法,因数分
析法,余数分析法解有关整数的问题。

3、 提高分析能力与解题能力。

完全平方数
引入
例1
揿动一次(这时编号为偶数的所有的灯全熄灭
环节二:
环节一: 引入
环节三:例2
环节四:例3
环节五:
平方数尾数的性质:
性质1:完全平方数的末位数只能是
性质2:奇数的平方的个位数字为奇数,十位数字为偶数。

例4
环节五:例5
环节六:
、全课你学到了什么?
【练习1】在100~200之间的整数里,因数个数为奇数的都有哪些?。

五年级奥数专题 约数、倍数、完全平方数(学生版)

五年级奥数专题 约数、倍数、完全平方数(学生版)

学科培优数学“约数、倍数、完全平方数”学生姓名授课日期教师姓名授课时长知识定位本讲中的知识点并不难理解,对于约数、最大公约数;倍数、最小公倍数的定义我们在学校的课本上都已经学习过,所以重点在于一些性质的应用,完全平方数在考试中经常出现,所以对于平方差公式还有一些主要性质一定要记住.知识梳理一、最大公约数与最小公倍数的常用性质(1)两个自然数分别除以它们的最大公约数,所得的商互质。

即若(,),(,),=⨯=⨯那么(,)1a b=A a a bB b a b(2)两个数的最大公约和最小公倍的乘积等于这两个数的乘积。

即(,)[,]⨯=⨯a b a b a b(3)对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍二、约数个数与所有约数的和(1)求任一整数约数的个数:一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。

(2)求任一整数的所有约数的和:一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。

三、完全平方数常用性质1.主要性质●完全平方数的尾数只能是0,1,4,5,6,9。

不可能是2,3,7,8。

●在两个连续正整数的平方数之间不存在完全平方数。

●完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。

●若质数p整除完全平方数2a,则p能被a整除。

2.一些推论●任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。

●一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。

●自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

五年级数学完全平方数的性质和应用

五年级数学完全平方数的性质和应用

完全平方数的性质和应用课前预习数字不重复的平方数观察只含两位数字的完全平方数:16=42 25=52 36=62 49=72 64=82 81=92 其中每个平方数都是两位数字互不相同。

含有三位数字的完全平方数,情况就不一样了。

例如: 100=102 121=112 144=122这些平方数都已包含重复数字。

不过,也有许多三位平方数的各位数字互不相同,例如: 169=132 196=142 256=162 62=5252 含有四位数的完全平方数,包含重复数字的现象更为普遍。

1444=382 不含重复数字的四位平方数也很多,例如1024=322 2401=492 1369=372 1936=442如果一个平方数有九位数字,每位数字各不相同,并且不含数字0,那么在这个数中,从1到9全都出现,全只出现一次。

其中最小的是:139854276=118262,最大的是:923187456=303842知识框架完全平方数常用性质1.性质性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.不可能是2,3,7,8。

性质2:在两个连续正整数的平方数之间不存在完全平方数。

性质3:自然数N 为完全平方数自然数N 约数的个数为奇数.因为完全平方数的质因数分解中每个质因数出现的次数都是偶数次.性质4:若质数p 整除完全平方数,则p 能被整除。

2.一些重要的推论(1)任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。

(2)一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。

(3)自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

⇔⇔2a a(4)完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。

(5)完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。

小学奥数 完全平方数 知识点+例题+练习 (分类全面)

小学奥数 完全平方数 知识点+例题+练习 (分类全面)
巩固、8,88,888,8888…中有完全平方数吗?
二、完全平方数的等价条件:奇数个因数
注:计算一个数的因数先把这个数分解质因数,然后把不同质因数的个数加1以后再相乘所得的乘积就是因数的个数
例如:12=2×2×3
12的质因数2有2个,质因数3有1个因数个数:(2+1)×(1+1)=6个
180=2×2×3×3×5
2.完全平方数的约数一定有奇数个;有奇数个约数的数一定是完全平方数。
3. 奇数的平方是奇数,偶数的平方是偶数
完全平方数除以3的余数只可能为为0或1;
完全平方数除以4的余数只可能为为0或1;
偶数的平方是4的倍数,奇数的平方除以4余1。
(二)一些推论
1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。
巩固、已知m,n都是自然数,且n2 126m,则n的最小值为。
四、“平方族”成员典型特征二:除以3或4只能余0或1
注:奇数的平方是奇数,偶数的平方为偶数,而奇数的平方除以4余1,偶数的平方能被4整除
例1、形如11,111,1111,11111,…的数中有没有完全平方数?
巩固、A是由2018个“4”组成的多位数,即444444……(2018个4),A是不是某个自然数B的平方?如果是,写出B;如果不是,请说明理由.
961、 3364、1111111、1521、 1234321、 1849、 89234
2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。
3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

秋季班五年级奥数[20讲]-[第17讲]完全平方数(二)

秋季班五年级奥数[20讲]-[第17讲]完全平方数(二)

秋季班五年级奥数性质5:完全平方数的因数一定有奇数个,反之亦然。

特别地,因数个数为3的自然数是质数的平方。

求一个房间中有100盏灯,用自然数1,2,…,100编号,每盏灯各有一个开关。

开始时,所有的灯都不亮。

有100个人依次进入房间,第1个人进入房间后,将编号为1的倍数的灯的开关按一下,然后离开;第2个人进入房间后,将编号为2的倍数的灯的开关按一下,然后离开;如此下去,直到第100个人进入房间,将编号为100的倍数的灯的开关按一下,然后离开。

问:第100个人离开房间后,房间里哪些灯还亮着?(2009年迎春杯初赛五年级)200名同学编为1至200号面向南站成一排。

第1次全体同学向右转(转后所有的同学面朝西);第2次编号为2的倍数的同学向右转;第3次编号为3的倍数的同学向右转;…;第200次编号为200的倍数的同学向右转;这时,面向东的同学有______名。

性质6:平方差公式:a2-b2=(a+b)(a-b)其中a+b,a-b奇偶性相同。

特殊时期,b=1有不同应用。

一个数减去100是一个完全平方数,减去63也是一个完全平方数,问这个数是多少?一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如16=52-32,16就是一个“智慧数”。

在自然数列中从1开始数起,第2009个“智慧数”是________。

完全平方数(二)草地上趴着3599只面朝前的小甲虫。

他们身上背着从1到3599的号码牌。

第一秒时号码是1的倍数的甲虫向右转90度,第二秒时2的倍数的小甲虫向右转90度,第三秒时3的倍数的小甲虫向右转90度…一个小时后,第3599只小甲虫面朝哪儿?附送。

奥数专题完全平方数

奥数专题完全平方数

学而思奥数网奥数专题 (数论问题完全平方数) 1、五年级数论问题:完全平方数难度:中难度/高难度一个自然数减去45及加上44都仍是完全平方数,求此数。

答:2、五年级数论问题:完全平方数难度:中难度/高难度求证:四个连续的整数的积加上1,等于一个奇数的平方答3、五年级数论问题:完全平方数难度:中难度/高难度求证:11,111,1111,这串数中没有完全平方数答:4、六年级数论问题:完全平方数难度:中难度/高难度求满足下列条件的所有自然数:(1)它是四位数。

(2)被22除余数为5。

(3)它是完全平方数。

答:5、六年级数论问题:完全平方数难度:中难度/高难度甲、乙两人合养了n头羊,而每头羊的卖价又恰为n元,全部卖完后,两人分钱方法如下:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元,轮到乙拿去。

为了平均分配,甲应该补给乙多少元(答:学而思奥数网奥数专题(数论问题完全平方数)1、五年级完全平方数习题答案:解答:设此自然数为x,依题意可得x-45=m^2; (1)x+44=n^2 (2)(m,n为自然数)(2)-(1)可得 :n^2-m^2=89或: (n-m)(n+m)=89因为n+m>n-m又因为89为质数,所以:n+m=89; n-m=1解之,得n=45。

代入(2)得。

故所求的自然数是1981。

2、五年级完全平方数习题答案:解答:设四个连续的整数为,其中n为整数。

欲证是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。

证明设这四个整数之积加上1为m,则m为平方数而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇数,因而n(n+1)+2n+1是奇数。

这就证明了m是一个奇数的平方。

3、五年级完全平方数习题答案:解答:形如的数若是完全平方数,必是末位为1或9的数的平方,即或在两端同时减去1之后即可推出矛盾。

证明若,则因为左端为奇数,右端为偶数,所以左右两端不相等。

完全平方数奥数题目

完全平方数奥数题目

完全平方数奥数题目摘要:一、完全平方数的定义和性质1.完全平方数的定义2.完全平方数的性质二、完全平方数的应用1.求解完全平方数2.完全平方数与勾股定理3.完全平方数与概率论三、完全平方数的奥数题目1.判断一个数是否为完全平方数2.求一个数的平方根3.求两个完全平方数的和正文:完全平方数是一个数学概念,它指的是一个数可以表示为某个整数的平方。

例如,4、9、16 等都是完全平方数,因为它们可以表示为2^2、3^2、4^2 的形式。

完全平方数具有一些有趣的性质,例如,如果一个数是完全平方数,那么它的因数一定是成对出现的。

在数学中,完全平方数有着广泛的应用。

例如,在求解完全平方数时,我们可以使用公式:如果一个数的平方根是整数,那么这个数就是完全平方数。

此外,完全平方数还与勾股定理有着密切的关系。

勾股定理指出,在一个直角三角形中,斜边的平方等于两直角边的平方和。

因此,如果一个数是完全平方数,那么它一定可以表示为两个整数的平方和。

在概率论中,完全平方数也有着重要的应用。

例如,假设有一个袋子,里面有若干个红球和白球,我们想要取出一个红球。

如果我们随机地从袋子中取出一个球,那么取出红球的概率就等于红球的个数除以球的总数。

如果我们想要计算这个概率的平方,那么我们就需要计算所有可能的取球方式的概率,这些概率可以表示为完全平方数。

在奥数比赛中,完全平方数也是一个常见的考点。

例如,可能会给出一个数,要求我们判断它是否为完全平方数。

或者,可能会给出两个数,要求我们求它们的平方和。

对于这类题目,我们需要熟悉完全平方数的性质,并且能够灵活运用它们来解决问题。

总的来说,完全平方数是一个有趣的数学概念,它在数学和概率论中都有着广泛的应用。

五年级奥数知识讲义-平方数(二)

五年级奥数知识讲义-平方数(二)

上一讲我们学习了平方数、平方差的基本题型,本讲将深入学习平方差公式,并探讨较大平方数问题。

知识梳理1. 平方数有奇数个约数如16的约数有1、2、4、8、16。

2. 在两个相邻整数的平方之间不可能再有完全平方数如36、49就是相邻平方数,两数之间没有平方数。

3. 质数p 整除某个平方数,那么这个质数的平方也整除这个平方数如不存在某平方数是11的倍数,但不是121的倍数。

4. 两个非零的互质的自然数,乘积是平方数 ,那么这两个数都是平方数 整数a 、 b 、 c 满足,,那么a 、b 都是平方数。

例1 1×2×3、2×3×4、3×4×5…..这个数列当中是否存在完全平方数? 分析与解:数列的每一项都具有的形式,其中n 与n 2-1是互质的。

两个互质整数的乘积如果是平方数,那么这两个互质整数应该都是平方数。

如果是平方数,n =1,而0不在数列中,所以该数列的每一项都不是平方数。

例2 1×2×3×4、2×3×4×5、3×4×5×6…..该数列中有没有平方数? 分析与解:通过观察,1×2×3×4=24=52-12×3×4×5=120=112-13×4×5×6=360=192-1…………由此可见每一项都比平方数小1,根据例1的结论:如果是平方数,需使n =1。

所以该数列中没有平方数。

例3 找出两个四位的平方数,且二者相差3333。

分析与解: 我们需要对平方差公式熟悉到什么程度呢?见到这道题就应该想到要用平方差公式。

22()()333331110110133a b a b a b -=+-==⨯⨯=⨯由此可得,利用和差公式得这两个平方数是,例4 2011盏亮着的灯,依次编号为1、2、3…2011。

五年级奥数完全平方数

五年级奥数完全平方数

五年级奥数完全平方数五年级奥数完全平方数:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,……判断一个数是否为完全平方数,我们可以尝试能否将它分解为两个相同自然数的乘积,这就需要用到分解质因数的知识。

阅读小材料:毕达哥拉斯发现,当小石子的数目是1、4、9、16……等数时,小石子都能摆成正方形,他把这些数叫“正方形数”,如图所示:分别记各图所示的小石子个数为i a (i =1、2、3、……、n)不难发现:1a =1=212a =1+3=4=223a =1+3+5=9=234a =1+3+5+7=16=24………n a =1+3+5+…+(2n -1)=[]2)1(1n n ⨯-+=2n 毕达哥拉斯通过直观图形把奇数和图形结合起来,得到一个定理:从1开始,任何连续个奇数之和都是完全平方数。

(注:这个和其实就是奇数个数的平方)【例一】 求自然数列前n 个奇数的和:1+3+5+7+……+(2n -1)一讲一练:(04浙江五年级夏令营)袋子里共有415只小球,第一次从袋子里取出1只小球,第二次从袋子里取出3只小球,第三次从袋子里取出5只小球……依次地取球,如果剩下的球不够取,则将剩下的球留在袋中。

那么,最后袋中留下多少个球?【例二】 1234567654321×(1+2+……+6+7+6+……+2+1)是多少的平方?练习一:1×2×3×4×5×6×45×121是多少的平方?A=1008×B,其中A,B都是自然数,B的最小值是()。

练习二:2【例三】 36、49、60、64、72的约数各有多少个?约数个数是奇数的数有什么特征?一讲一练: 360、3969、7744各有多少个约数?【例四】(01ABC)少年宫游客厅内悬挂着200个彩色灯泡,这些灯泡或明或暗,十分有趣。

小学五年级奥数完全平方数

小学五年级奥数完全平方数

第八讲 完全平方数一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。

例如:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,……判断一个数是否为完全平方数,我们可以尝试能否将它分解为两个相同自然数的乘积,这就需要用到分解质因数的知识。

阅读小材料:毕达哥拉斯发现,当小石子的数目是1、4、9、16……等数时,小石子都能摆成正方形,他把这些数叫“正方形数”,如图所示:分别记各图所示的小石子个数为i a (i =1、2、3、……、n)不难发现: 1a =1=212a =1+3=4=223a =1+3+5=9=234a =1+3+5+7=16=24………n a =1+3+5+…+(2n -1)=[]2)1(1n n ⨯-+=2n毕达哥拉斯通过直观图形把奇数和图形结合起来,得到一个定理:从1开始,任何连续个奇数之和都是完全平方数。

(注:这个和其实就是奇数个数的平方)【例一】 求自然数列前n 个奇数的和:1+3+5+7+……+(2n -1)一讲一练:(04浙江五年级夏令营)袋子里共有415只小球,第一次从袋子里取出1只小球,第二次从袋子里取出3只小球,第三次从袋子里取出5只小球……依次地取球,如果剩下的球不够取,则将剩下的球留在袋中。

那么,最后袋中留下多少个球?【例二】 1234567654321×(1+2+……+6+7+6+……+2+1)是多少的平方?练习一:1×2×3×4×5×6×45×121是多少的平方?练习二:2A=1008×B,其中A,B都是自然数,B的最小值是()。

【例三】 36、49、60、64、72的约数各有多少个?约数个数是奇数的数有什么特征?一讲一练: 360、3969、7744各有多少个约数?【例四】(01ABC)少年宫游客厅内悬挂着200个彩色灯泡,这些灯泡或明或暗,十分有趣。

五年级数学思维拓展完全平方数第二讲

五年级数学思维拓展完全平方数第二讲

【五年级数学思维拓展】趣味入门—勇闯智慧岛(二)——完全平方数(2)认识完全平方数1.认识完全平方数2.完全平方数的性质3.完全平方数的解题技巧1. 观察这组数1,11,111,1111 …其中1是完全平方数,除1以外,你还能找到其它完全平方数吗?如果能,请给出一个。

如果不能,请说明理由。

2. 判断下面各数是完全平方数吗?⑴ 1366 ⑵ 3486000 ⑶ 625 ⑷ 786333. 两个自然数的和是75,它们的最大公约数是25,试求这两个数。

4.1—100以内的100个自然数中,质因数为奇数个的数有多少个?(即是该课程的课后测试)1. 已知恰是自然数b的平方数,a的最小值是。

2. 已知自然数n满足:12!除以n得到一个完全平方数,则n的最小值是。

3. 考虑下列32个数:1!,2!,3!,……,32!,请你去掉其中的一个数,使得其余各数的乘积为一个完全平方数,划去的那个数是4. A是一个两位数,它的6倍是一个三位数B,如果把B放在A的左边或者右边得到两个不同的五位数,并且这两个五位数的差是一个完全平方数(整数的平方),那么A的所有可能取值之和为。

5. 已知ABCA是一个四位数,若两位数AB是一个质数,BC是一个完全平方数,CA是一个质数与一个不为1的完全平方数之积,则满足条件的所有四位数是________.1. 3223528237=⨯⨯,要使3528a 是某个自然数的平方,必须使3528a 各个不同质因数的个数为偶数,由于其中质因子3和7各有2个,质因子2有3个,所以a 为2可以使3528a 是完全平方数,故a 至少为2.2. 先将12!分解质因数:105212!235711=⨯⨯⨯⨯,由于12!除以n 得到一个完全平方数,那么这个完全平方数是12!的约数,那么最大可以为1042235⨯⨯,所以n 最小为()104212!2353711231÷⨯⨯=⨯⨯=.本题也可以这样想,既然12!除以n 得到一个完全平方数,12!的质因数分解式中3,7,11的幂次是奇数,所以n 的最小值是3711231⨯⨯=.3. 设这32个数的乘积为A .2221!2!3!32!(1!)2(3!)4(31!)32A =⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯L L 2216(1!3!31!)(2432)(1!3!31!)216!=⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯L L L ,所以,只要划去16!这个数,即可使得其余各数的乘积为一个完全平方数.另外,由于16!1615!=⨯,而16也是完全平方数,所以划去15!也满足题意.4. 如果把B 放在A 的左边,得到的五位数为100601B A A +=;如果把B 放在A 的右边,得到的五位数为10001006A B A +=;这两个数的差为1006601405A A A -=,是一个完全平方数,而240595=⨯,所以A 是5与一个完全平方数的乘积.A 又是一个两位数,所以可以为252⨯、253⨯、254⨯,A 的所有可能取值之和为222525354145⨯+⨯+⨯=5. 本题综合利用数论知识,因为AB 是一个质数,所以B 不能为偶数,且同时BC 是一个完全平方数,则符合条件的数仅有16和36,所以可以确定B 为1或3,6C =.由于CA 是一个质数与一个不为1的完全平方数之积,在61~69中只有63和68符合条件,那么A 为3或8.那么AB 可能为31,33,81,83,其中是质数的有31和83,所以满足条件的四位数有3163和8368.。

五年级秋-第14讲-完全平方数(二)(学生版)

五年级秋-第14讲-完全平方数(二)(学生版)

完全平方数(二)知识纵横例1从360到630的自然数中,有奇数个因数的有多少个?只有3个因数的有多少个?试一试1在1~2000的自然数中,共有多少个平方数?例2一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?试一试2能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?例3有2021盏灯,分别对应编号为1至2021的2021个开关。

现在有编号为1至2021的2021个人来按动这些开关,已知第1个人按的开关的编号是1的倍数(也就是说他把所有开关都按了一遍),第2个人按的开关的编号是2的倍数,第3个人按的开关的编号是3的倍数……依此做下去,第2021个人按的开关的编号是2021的倍数,如果刚开始的时候,灯全是亮着的,那么这2021个人按完后,还有多少盏灯是亮着的?试一试3某校2001年的学生人数是个完全平方数。

该校2002年的学生人数比上一年多101人,这个数也是完全平方数。

该校2002年学生人数是多少?已知__________ABCA 是一个四位数,若两位数_____AB 是一个素数,_____BC 是一个完全平方数,_____CA 是一个不为1的完全平方数之积,求满足条件的所有四位数。

有一些完全平方数的最后三位数码都相同且不为0,请问这些数中最小的是多少?考虑下列32个数:1!,2!,……,32!,请你去掉其中的一个数,使得其余各数的乘积为一个完全平方数,划去的那个数是多少?乘法算式1×2×3×······×15中至少要删除多少个数,才能使剩下的数的乘积为完全平方数?例4试一试4例5试一试5例61²+2²+3²+······+2021²除以4的余数是多少?试一试6求一个四位完全平方数,它的前两位数字相同,后两位数字也相同小练习1、44与非零自然数a的乘积是一个完全平方数,则a的最小值是多少?2、从1~2015这2015个自然数中,最多能找出多少个数,使得这个数乘240所得的乘积是一个完全平方数?3、已知自然数n满足:12!除以n得到一个完全平方数,则n 的最小值是多少?。

五年级下册数学试题奥数——完全平方数全国通用

五年级下册数学试题奥数——完全平方数全国通用

完全平方数一、知识点1. 完全平方数表示两个相同的数相乘的结果.2. 完全平方数分解质因数时,它的每个相同的质因数都有偶数个.3. 完全平方数的个位数字只可能是965410、、、、、这六个数字.4. 两个完全平方数的积还是完全平方数.5. 一个完全平方数如果能被n 整除,则它一定能被2n 整除.二、例题例1 下面是一个算式:9876543214321321211⨯⨯⨯⨯⨯⨯⨯⨯++⨯⨯⨯+⨯⨯+⨯+Λ,问这个算式的得数是否是一个完全平方数?例2 两个不相等的完全平方数相除,结果还是一个完全平方数,并且这个完全平方数与前两个完全平方数不相等,问两个完全平方数的和最小是多少?例3 从1到2000的所有正整数中,有多少个数乘以72后是完全平方数?例4 计算:2222222222221234569596979899100-+-+-++-+-+-Λ.例5 有六张四位数的数字卡片,每张卡片上有一个或两个数字已被弄脏看不清了.它们分别是24□2、58□7、23□4、4□□8、□□45、□□20,其中只有一个是完全平方数,问这个数是多少?例6 50张卡片,写着1-50这50个数字,正反两面写的数字相同,拉片一面是红,一面是蓝.某班有50名学生,老师把50张卡片中蓝色的一面都朝上摆在桌上,对同学说:“请你们按学号顺序逐个到前面来翻卡片,规则是:只要卡片上的数字是自己学号的倍数,就把它翻过来,蓝翻成红,红翻成蓝”,那么到最后每个学生都翻完后红色朝上的卡片还有多少张?例7 求一个四位完全平方数,它的前两位数码相同,后两位数码也相同.三、练习1. 已知a 是一个两位数,且a +92是一个完全平方数,则=a _______________.2. 在300-600之间,有___________个完全平方数.3. 如果x 32(0≠x )是一个完全平方数,那么x 至少是_________.4. 如果3!+n 是一个完全平方数,那么=n ___________.(其中n n ⨯⨯⨯⨯=Λ321!)5. 个位数字与百位数字的和恰好等于十位数字的三位完全平方数是_______________.6. 2002加上一个两位质数后得到一个完全平方数,这个质数是____________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 五年级奥数完全平方数及应用(二)学生版
2. 整理完全平方数的一些推论及推论过程
3. 掌握完全平方数的综合运用。

一、完全平方数常用性质
1.主要性质 1.完全平方数的尾数只能是0,1,4,5,6,9。

不可能是2,3,7,8。

2.在两个连续正整数的平方数之间不存在完全平方数。

3.完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。

4.若质数p 整除完全平方数2a ,则p 能被a 整除。

2.性质
性质1:完全平方数的末位数字只可能是0,1,4,5,6,9.
性质2:完全平方数被3,4,5,8,16除的余数一定是完全平方数.
性质3:自然数N 为完全平方数⇔自然数N 约数的个数为奇数.因为完全平方数的质因
数分解中每个质因数出现的次数都是偶数次,所以,如果p 是质数,n 是自然数,N 是
完全平方数,且21|n p N -,则2|n p N .
性质4:完全平方数的个位是6⇔它的十位是奇数.
性质5:如果一个完全平方数的个位是0,则它后面连续的0的个数一定是偶数.如果一个
完全平方数的个位是5,则其十位一定是2,且其百位一定是0,2,6中的一个.
性质6:如果一个自然数介于两个连续的完全平方数之间,则它不是完全平方数.
3.一些重要的推论
1.任何偶数的平方一定能被4整除;任何奇数的平方被4(或8)除余1.即被4除余2或3的数一定不是完全平方数。

2.一个完全平方数被3除的余数是0或1.即被3除余2的数一定不是完全平方数。

3.自然数的平方末两位只有:00,01,21,41,61,81,04,24,44,64,84,25,09,29,49,69,89,16,36,56,76,96。

4.完全平方数个位数字是奇数(1,5,9)时,其十位上的数字必为偶数。

5.完全平方数个位数字是偶数(0,4)时,其十位上的数字必为偶数。

6.完全平方数的个位数字为6时,其十位数字必为奇数。

7.凡个位数字是5但末两位数字不是25的自然数不是完全平方数;末尾只有奇数个“0”的自然数不是完全平方数;个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。

知识点拨
教学目标
5-4-5.完全平方数及应用(二)
3.重点公式回顾:平方差公式:22()()
-=+-
a b a b a b
例题精讲
模块一、平方差公式运用
【例 1】将两个自然数的差乘上它们的积,能否得到数45045?
【例 2】一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?
【巩固】能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?
【巩固】能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数?
【巩固】一个正整数加上132和231后都等于完全平方数,求这个正整数是多少?
【例 3】两个完全平方数的差为77,则这两个完全平方数的和最大是多少?最小是多少?
【例 4】三个自然数,它们都是完全平方数,最大的数减去第二大的数的差为80,第二大的数减去最小的数的差为60,求这三个数.
【例 5】有两个两位数,它们的差是14,将它们分别平方,得到的两个平方数的末两位数(个位数和十位数)相同,那么这两个两位数是.(请写出所有可能的答案)
【例 6】A是一个两位数,它的6倍是一个三位数B,如果把B放在A的左边或者右边得到两个不同的五位数,并且这两个五位数的差是一个完全平方数(整数的平方),那么
A的所有可能取值之和为.
【例 7】一个自然数与自身相乘的结果称为完全平方数.已知一个完全平方数是四位数,且各位数字均小于7.如果把组成它的数字都加上3,便得到另外一个完全平方数,
求原来的四位数.
模块二、完全平方数与其他知识点的综合运用
【例 8】如果△+△=a,△-△=b,△×△=c,△÷△=d,a+b+c+d=100,那么,△=___________.
【例 9】已知ABCA是一个四位数,若两位数AB是一个质数,BC是一个完全平方数,CA是一个质数与一个不为1的完全平方数之积,则满足条件的所有四位数是________.
【例 10】称能表示成123k
++++的形式的自然数为三角数.有一个四位数N,它既是三角数,又是完全平方数.则N=.
【例 11】自然数的平方按大小排成1,4,9,16,25,36,49,…,问:第612个位置的数字是几?
【巩固】不是零的自然数的平方按照从小到大的顺序接连排列,是:149162536……,则从左向右的第l6个数字是_________
【例 12】由22222
2615134
=+=++,可以断定26最多能表示为3个互不相等的非零自然数的平方和,请你判定200最多能表示为__________个互不相等的非零自然数的平
方之和.
【例 13】有4个不同的数字共可组成18个不同的4位数.将这18个不同的4位数由小到大排成一排,其中第一个是一个完全平方数,倒数第二个也是完全平方数.那么这
18个数的平均数是:.。

相关文档
最新文档