《电路分析》一阶动态电路实验
一阶动态电路分析电子教案
一阶动态电路分析电子教案一.教学目标:1.理解一阶动态电路的基本概念和特点;2.掌握一阶动态电路的分析方法;3.能够利用拉普拉斯变换对一阶动态电路进行分析和求解。
二.教学准备:1.教材:电路分析教材;2.工具:计算机、投影仪、演示电路板;3.实验器材:电阻、电容、电压源等。
三.教学过程:1.引入教师通过演示动态电路的实验现象,激发学生对动态电路的兴趣,引入一阶动态电路的教学内容。
2.概念解释教师通过投影仪展示一阶动态电路的基本概念和特点的PPT,解释其中的关键概念,并与学生进行互动讨论。
强调一阶动态电路是由一个电容和一个电阻组成的,具有记忆效应。
3.电压与电流关系讲解教师通过演示实验电路板对电压和电流关系的测量,讲解电流和电压的时间变化规律。
同时,引入拉普拉斯变换的概念,解释在动态电路分析中运用拉普拉斯变换的重要性。
4.一阶电路分析方法详解(1)电流法分析:教师通过投影仪展示电流法分析的步骤和计算公式的PPT,讲解电流法分析的原理和步骤。
引导学生在实际问题中运用电流法进行一阶动态电路的分析。
(2)电压法分析:教师通过投影仪展示电压法分析的步骤和计算公式的PPT,讲解电压法分析的原理和步骤。
通过实例演示,引导学生理解电压法进行一阶动态电路的分析。
5.拉普拉斯变换的应用(1)教师通过投影仪展示拉普拉斯变换的定义和性质的PPT,引导学生理解拉普拉斯变换的基本概念。
(2)教师通过投影仪展示拉普拉斯变换在电路分析中的应用的PPT,讲解如何利用拉普拉斯变换对一阶动态电路进行分析和求解。
6.综合应用实例教师提供综合应用实例,引导学生通过综合运用电流法、电压法和拉普拉斯变换的知识,解决实际问题。
7.实验操作教师指导学生进行一阶动态电路的实验操作。
学生可以通过实验验证理论推导的结论,进一步巩固所学的知识。
四.小结与反思:通过本节课的学习,学生将掌握一阶动态电路的基本概念和特点,掌握一阶动态电路的分析方法,能够利用拉普拉斯变换对一阶动态电路进行分析和求解。
《电路分析》一阶过渡过程实验报告
《电路分析》一阶过渡过程实验报告一、实验目的1.测定RC一阶电路的零输入响应、零状态响应及完全响应。
2.掌握有关微分电路和积分电路的概念。
3.熟悉用示波器观测电压波形以及信号源的使用方法。
二、实验原理1. 动态网络的过渡过程是十分短暂的单次变化过程。
要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。
为此,我们利用方波输出的上升沿作为零状态响应的激励信号;利用方波的下降沿作为零输入响应的激励信号。
只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。
2.图3-0-1(b)所示的RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。
ττ(a) 零输入响应(b) RC一阶电路(c) 零状态响应图3-0-13. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。
一个简单的RCT时串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<<2(T为方波脉冲的重复周期),且由R两端的电压作为响应输出,则该电路就是一个微分电路。
因为此时电路的输出信号电压与输入信号电压的微分成正比。
如图3-0-2(a)所示。
利用微分电路可以将方波转变成尖脉冲。
(a)微分电路(b) 积分电路图3-0-2若将图3-0-2(a)中的R与C位置调换一下,如图3-0-2(b)所示,由C两端的电压作为响应输出,且当电路的参数满足τ=T,则该RC电路称为积分电路。
因为此时电路的输出信号RC>>2电压与输入信号电压的积分成正比。
利用积分电路可以将方波转变成三角波。
从输入输出波形来看,上述两个电路均起着波形变换的作用,请在实验过程仔细观察与记录。
三、实验平台NI Multisim 14.0四、实验步骤与数据记录、处理1、观察一阶电路的充放电过程按图3.1调用元件,建立RC充放电电路。
(电路分析)一阶电路的零输入响应
一阶电路的零输入响应第 3 节一阶电路的零输入响应零输入响应:电路无外加激励,仅由动态元件的初始储能作用所产生的响应,称为零输入响应( zero-input response )。
一、 RC 电路的零输入响应图 5.3-1 ( a )电路, t=0 时开关 S 由位置 1 拨到位置 2 ,讨论换路后时的电容电压、电容电流等响应的变化规律。
电路换路之前开关 S 处于位置 1 ,直流电压源 Us 对电容 C 充电,电路已处于稳定状态,换路前的等效电路如图5.3-1 ( b )所示。
时刻,电容电压等于直流电压源的电压 Us ,即时刻,电容与电压源断开,与电阻 R 形成新的回路,这时的等效电路如图 5.3-1 ( c )所示。
由换路定则得换路后电容电压的初始值电容电流的初始值为图 5.3-1 ( c )电路,由 KVL ,可得用积分变量分离法进行求解,得式中,为 RC 电路的时间常数( time constant ),当 R 的单位为Ω, C 的单位为 F 时,τ的单位是秒( s )。
时间常数:时间常数是反映一阶电路过渡过程进展快慢的一个重要的参数,其大小仅取决于电路的结构和参数。
τ越大,响应衰减的速度就越慢;τ越小,响应衰减的速度就越快。
用表示电路换路后的响应,用表示该响应的初始值,则 RC 一阶电路的零输入响应可表示为RC 电路零输入响应的规律RC 电路换路后,各处的零输入响应都是从初始值开始,按指数规律衰减。
衰减得快慢由时间常数τ决定。
二、 RL 电路的零输入响应图 5.3-3 ( a )是 RL 动态电路。
电路换路之前开关 S 处于位置 1 , t=0 时开关 S 由位置 1 拨到位置 2 。
下面讨论换路后时的电感电流、电感电压等响应的变化规律。
时刻,电路换路之前开关 S 处于位置 1 ,直流电流源 Is 对电感 L 充电,电路已处于稳定状态,换路前的等效电路如图 5.3-3 ( b )所示。
t=0 时,开关 S 拨到位置 2 ,时,电感与电流源断开,而与电阻 R 形成新的回路,这时的等效电路如图5.3-3 ( c )所示。
电路分析基础一阶动态电路的时域分析
动态电路 的过渡过程
电路的零输入、 零状态分析法
一阶电路响应 的三要素分析法
6.1
一阶电路的三要素分析法
(t=0)
1.过渡过程的的概念
US (t=t1)
R C
uc
-
+
换路:电路结构或参数发生突然变化。
稳态:在指定条件下电路中的电压、电流已 达到稳定值。 暂态:电路换路后从一种稳态到另一种稳态 的过渡过程。
6
iL
6 1H
1 F -
10 uC ( ) 5 55 5V
6 i L ( ) 6 66 3 mA
(3) 时间常数 的计算
对于一阶RC电路
R0C
L 对于一阶RL电路 R0
注意:
对于较复杂的一阶电路, R0为换路后的电路 除去电源和储能元件后,在储能元件两端所求得的 无源二端网络的等效电阻。
uC ( t 0 ) uC ( t 0 ) i L ( t 0 ) i L ( t 0 ) uC (0 ) uC (0 ) i L (0 ) i L (0 )
换路时刻,iC和uL为有限值,uC和iL在该处连续,不可跃变。
除过uC和iL,电路中其他的u、i可以在换路前后发生跃变。
t=0 S R1
+
R1
R3
C
-
U
R2
R2
R3 R0
R0
+
R0 ( R1 // R2 ) R3 R0C
C R0的计算类似于应用戴维 南定理解题时计算电路等效 电阻的方法。即从储能元件 两端看进去的等效电阻。
ቤተ መጻሕፍቲ ባይዱ
-
U0
电路分析基础-4 一阶动态电路
WC /J 1
0
1
2 t /s
上 页 下 页
若已知电流求电容电压,有
0 1 i(t ) 1 0
t0 0 t 1s 1 t 2s t 2s
i /A 1 1
2 t /s
-1
当0 t 1s
当 1 t 2s
1 0 1 t uC ( t ) 0dξ 1dξ 0 2t 2t C C 0
1 t uC ( t ) u(1) ( 1)d 4 2t 0.5 1
当 2t
1 t uC ( t ) u( 2) 0d 0 0.5 2
上 页 下 页
电容的串联 +
i
C1
1
C2
2
+ u -+u -
+
u
Cn
un
i
C eq
-
+
u
t
-
u u1 u2 un
电容元件与电感元件的比较 电容 C 电感 L 电流 i 磁链
变量
电压 u 电荷 q
关系式
Li q Cu di du u L iC dt dt 1 1 2 1 1 W C Cu 2 q W L Li 2 2 2 2C 2 2L
结论 (1) 元件方程的形式是相似的; (2) 若把 u – i ,q – ,C – L 互换,可由电容元件 的方程得到电感元件的方程; (3) C 和 L称为对偶元件, 、q 等称为对偶元素。
表 明
(1)电容的储能只与当时的电压值有关,电容 电压不能跃变,反映了储能不能跃变;
t
(2)电容储存的能量一定大于或等于零。
上 页 下 页
从 t1 时刻到 t2时刻电容储能的变化量:
动态电路的实验报告
一、实验目的1. 理解动态电路的基本原理和特性。
2. 掌握动态电路的时域分析方法。
3. 学习使用示波器、信号发生器等实验仪器进行动态电路实验。
4. 通过实验验证动态电路理论,加深对电路原理的理解。
二、实验原理动态电路是指电路中含有电容或电感的电路。
动态电路的特点是电路中的电压、电流随时间变化,其响应具有延时特性。
本实验主要研究RC一阶动态电路的响应。
RC一阶动态电路的零输入响应和零状态响应分别由电路的初始状态和外加激励决定。
零输入响应是指在电路没有外加激励的情况下,由电路的初始状态引起的响应。
零状态响应是指在电路初始状态为零的情况下,由外加激励引起的响应。
三、实验仪器与设备1. 示波器:用于观察电压、电流随时间的变化。
2. 信号发生器:用于产生方波、正弦波等信号。
3. 电阻:用于构成RC电路。
4. 电容:用于构成RC电路。
5. 电源:提供实验所需的电压。
6. 导线:用于连接电路元件。
四、实验步骤1. 构建RC一阶动态电路,连接好实验仪器。
2. 设置信号发生器,输出方波信号,频率为1kHz,幅度为5V。
3. 使用示波器分别观察电容电压uc和电阻电压ur的波形。
4. 改变电路中的电阻R和电容C的值,观察电路响应的变化。
5. 记录实验数据,分析实验结果。
五、实验结果与分析1. 当电阻R和电容C的值确定后,电路的零输入响应和零状态响应分别如图1和图2所示。
图1 零输入响应图2 零状态响应从图中可以看出,零输入响应和零状态响应均呈指数规律变化。
在t=0时刻,电容电压uc和电阻电压ur均为0。
随着时间的推移,电容电压uc逐渐上升,电阻电压ur逐渐下降,最终趋于稳定。
2. 当改变电阻R和电容C的值时,电路的响应特性发生变化。
当电阻R增大或电容C减小时,电路的响应时间延长,即电路的过渡过程变慢;当电阻R减小或电容C增大时,电路的响应时间缩短,即电路的过渡过程变快。
3. 通过实验验证了动态电路理论,加深了对电路原理的理解。
电工技术之一阶动态电路分析
在开关S闭合后瞬间,根据换路定理有: uC (0 ) uC (0 ) 10V 由此可画出开关S闭合后瞬间即时的等 效电路,如图所示。由图得:
i1 (0 ) U S uC (0 ) 10 10 0A R1 10
+
US -
R1
+
uC -
iC t=0 C R2
i2
i1 (0+)
Us
4Ω R1 + 12V R
2
L + + u uL
iL - R3 6Ω i1 C iC + uC
-
2Ω
-
-
跳转到第一页
由此可画出开关S闭合后瞬间即时的等效电路,如图所示。 由图得:
uC (0 ) 7.2 i1 (0 ) 1.2A R3 6 iC (0 ) iL (0 ) i1 (0 ) 1.2 1.2 0A
f (t ) f () [ f (0 ) f ()]e
t
式中,f(0+)为待求电流或电压的初始值,f(∞)为待求电流 或电压的稳态值,τ为电路的时间常数。 对于RC电路,时间常数为:
RC
对于RL电路,时间常数为:
L R
跳转到第一页
例:图示电路,IS=10mA,R1=20kΩ,R2=5kΩ,C=100μF。 开关S闭合之前电路已处于稳态,在t=0时开关S闭合。试用 三要素法求开关闭合后的uC。 解:(1)求初始值。因为开关S闭合之前电路已处于稳态, 故在瞬间电容C可看作开路,因此:
跳转到第一页
例:图示电路原处于稳态,t=0时开关S闭合,US=10V, R1=10Ω, R2=5Ω,求初始值uC(0+) 、i1(0+) 、i2(0+)、iC(0+)。 解:由于在直流稳态电路中,电容C相当于开路,因此t=0-时 i1 电容两端电压分别为: S
一阶动态电路分析例题分析
一阶动态电路分析例题分析任务一 动态电路的基本概念[例3-1] 如图所示,V U S 10=,Ω=k R 2,开关K 闭合前,电容不带电,求开关K 闭合后,电容上的电压和电流的初始值。
解:(1)由换路前的稳态电路求得电容两端电压)0(-C u 。
由于换路前电路中电容不带电,所以电容两端的电压为零,即0)0(=-C u(2) 根据换路定律求出)0(+C u 。
0)0()0(==-+C C u u(3)根据换路后的电路列电路方程,求出其它物理量的初态。
V U U u U u S S C S R 100)0()0(==-=-=++得 mA kR u i R C 5210)0()0(===++ [例3-2] 如图所示,已知V U S 12=,Ω=K R 21,Ω=K R 42,mF C 1=,开关动作前电路已处于稳态,0=t 时开关闭合。
求:(1)开关闭合后,各元件电压和电流的初始值,(2)电路重新达到稳态后,电容上电压和电流的稳态值。
解:(1)+=0t 时的初始值○1由换路前的稳态电路求得电容电压的)0(-C u 。
由于换路前开关断开,若电容两端存在电压,电容与电阻2R 形成放电回路,使电容电压下降,所以电路稳态时,电容两端电压为零,即0)0(=-C u○2根据换路定律求出)0(+C u 。
0)0()0(==-+C C u u○3根据换路后电路图,求出其它物理量的初态。
+-S USRCCu 0=t R u C i例 3-1图++ ++-S UC Cu 1R u 2RCi 1R+-+ -2R u+ -1i2i 例3-2换路后电路图+-S UKC Cu 0=t 1R u 2RCi 1R例3-2图+-+ -V u u C R 0)0()0(2==++V U U u U u S S C S R 120)0()0(1==-=-=++mA k R u i R 6212)0()0(111===++ mA kR u i R 040)0()0(222===++mA i i i C 606)0()0()0(21=-=-=+++(2)换路后,∞=t 时的稳态值直流电路中,电路稳态时,电容相当于开路,电路如图所示,所以0)(=∞C i A 。
实验八 RC一阶动态电路的仿真
实验八 RC一阶动态电路的仿真一、实验目的通过仿真RC一阶动态电路,掌握其工作原理和特性,了解RC电路在信号处理中的应用。
二、实验器材计算机、Multisim仿真软件三、实验原理RC一阶动态电路是由一个电容器和一个电阻器组成的,它可以将输入信号按比例缩小并延时输出。
当在RC电路的输入端加上一低频信号时,电容器将会充电,而当输入信号频率变高时,电容器就无法跟上信号快速的变化,从而形成了一个低通滤波电路。
具体来说,当RC电路接受一个输入信号时,电容器会以指数衰减的方式对其欣响应,输出信号的幅度呈现出阻尼振荡的形态,最后逐渐趋近于输入信号的平稳状态。
四、实验步骤Step 1将相应的元器件从元件库拖曳至电路图画面中,并将它们连接起来。
图中所示的电路为RC一阶滤波器,由一个0.1uF的电容器和一个10kΩ的电阻器组成,电容器与电阻器并联,接到信号发生器的输出端,而电阻器的另一端则接到示波器的输入端。
对Multisim仿真软件中的信号发生器进行设置,设置的信号为10V的方波,频率为1kHz。
对Multisim仿真软件中的示波器进行设置,设置输出信号波形的时间范围为0~10ms,分辨率为10μs,垂直方向的灵敏度为1V/格子,水平方向的灵敏度为1ms/格子。
点击Multisim仿真软件中的“运行”按钮,开始电路的仿真。
观察示波器上的输出信号波形,记录并分析其数值和特点,并与理论计算值进行比较。
五、实验结果根据仿真结果,当输入信号波形为方波时,输出信号波形为阻尼振荡波形,即快速上升并逐渐缓慢下降的波形,最终稳定在一个平稳状态。
六、实验分析RC一阶动态电路可用于信号滤波和时序纠正,具有较好的实际应用价值。
通过本次实验的仿真,我们深入了解了RC电路的工作原理与特性,为今后实际应用提供了宝贵的参考。
一阶动态电路分析
一阶动态电路分析
实验电路如图4- 3所示。
R1
1 t= 02
+
U0 -
S +
uC -
20μ F - 10 0k Ω C uR R
+
图4-3 RC放电电路
一阶动态电路分析
实验按如下步骤进行。
(1) 将电路连接好。示波器的输入探头接在电容器两端。 打开稳压电源,调节输出电压至1V。t=0 时将开关S由位置1打 到位置2,仔细观测电容器两端电压的变化情况。(如果没有 慢扫描示波器,可以用机械万用表代替示波器观测电容两端的 电压, 以下同)。在这一过程中,我们可以从示波器中看到 如图4 - 4(a)的波形。一般将之称为电容器的放电曲线。其 形状与实训4中我们看到的在t1~t2时间电容器两端的波形类似。
一阶动态电路分析
2. 实训设备、
(1) 实训设备与器件:直流稳压电源一台,双通道示 波器一台,万能板一块,8Ω扬声器一个,按键一个,电 阻、电容、 导线若干。
(2) 实训电路与说明: 实训电路如图4 - 1所示。 图 中555为集成定时器电路。555定时器具有如下特点: 当 它按图4 - 1的方式将2、6脚连到一起时,如果连接点的电 位高于电源电压的2/3,则3脚的输出电压等于0V,7脚对 地短路,如果连接点的电位低于电源电压的1/3时, 则3脚 的输出电压等于电源电压,7脚对地开路。
在荧光屏上比较通道1与通道2的波形我们可以发现, 锯齿波的最小值与输出波形从低电平向高电平过渡对应, 锯齿波的最大值与输出波形从高电平向低电平过渡对应。
一阶动态电路分析
T
uo
T1
E
t (a)
uC1 2E /3
E /3
t
0
t1 t2
《电路分析》一阶电路分析
uR uC 0
由KCL和电阻、电容的VCR方程得到
uR
RiR
RiC
RC
duC dt
代入上式得到以下方程
RC
duC dt
uC
0
(t 0) (8 1)
这是一个常系数线性一阶齐次微分方程。其通解为
uC (t) Kest
代入式(8-1)中,得到特征方程
RCs 1 0 (8 2)
其解为
s - 1 RC
例如在电容电压初始值U0不变的条件下,增加电容C, 就增加电容的初始储能,使放电过程的时间加长;若增加 电阻R,电阻电流减小,电阻消耗能量减少,使放电过程 的时间加长。
这就可以解释当时间常数=RC变大,电容放电过程会
加长的原因。
例8-1 电路如图8-5(a)所示,已知电容电压uC(0-)=6V。 t=0闭合开关,求t > 0的电容电压和电容电流。
3
6
iC
(t)
1 3
0.6e 20t
mA
0.2e 20t
mA
二、RL电路的零输入响应
我们以图8-6(a)电路为例来说明RL电路零输入响应的 计算过程。
图8-6
电感电流原来等于电流I0,电感中储存一定的磁场能 量,在t=0时开关由1端倒向2端,换路后的电路如图(b)所 示。
在开关转换瞬间,由于电感电流不能跃变,即iL(0+)= iL(0-)= I0 ,这个电感电流通过电阻R时引起能量的消耗, 这就造成电感电流的不断减少,直到电流变为零为止。
§8-1 零输入响应
一、RC电路的零输入响应
图8-3(a)所示电路中的开关原来连接在1端,电压源U0 通过电阻Ro对电容充电,假设在开关转换以前,电容电压 已经达到U0。在t=0时开关迅速由1端转换到2端。已经充电 的电容脱离电压源而与电阻R并联,如图(b)所示。
电路分析基础 课题四 一阶动态电路的分析
输入响应。
2.
−
一阶动态电路的零输入响应的一般表达式为:() = (0+) ,其中,为时间常数(单位:s),
(0+)为初始值。
3.
“零输出响应”特点:
➢ 换路后电源信号为0(零输入/激励)
➢ 储能元件的初始值≠0
➢ 储能元件的稳态值=0
问题四:
闪光灯在实际使用中,会频繁充电;同时实
iL I 0 e
R
t
L
I0e
t
稳态值= iL (∞) = 0
1
最大储能:wL = 2 LI02
(5)其它响应:
(c)响应曲线
uL uR RI 0 e
t
t
L
...RL电路时间常数
R
知识链接3.一阶零输入响应的表达式
1.
定义:在没有输入激励的情况下,仅由电路的初始状态(初始时刻的储能)所引起的响应,称为零
闪光灯的功能就是通过瞬间放电补光的过程。
知识链接 1.RC零输入响应电路分析
(a)换路前
(b)换路后
(1)换路前(0-时刻如图a)
(5)其它响应
Uc(0-)=U0≠0
uR uC U 0 e
(2)换路瞬间(0+时刻)
由换路定理:初始值Uc(0+)=Uc(0-)=U0≠0
1
最大储能:(0+) = 2 02
3.初始值的计算
【初始值求解步骤】
① 换路前的电路(t =0-)直流稳态下,电容相当于开路、电感相当于短路。
② 换路前的电路(t =0-)只求电感中电流iL(0-)或者电容中电压uC(0-)。
一阶二阶动态电路实验报告
一阶二阶动态电路实验报告前言本文介绍了一阶二阶动态电路实验的相关内容,包括实验准备、步骤、实验结果的分析以及结论。
动态电路是一种重要的电路技术,在很多方面都起着重要的作用。
它可以应用于多种电子设备中,如电脑、摄像机和收录机等。
本实验介绍的是测试一阶二阶动态电路的实例,并解释了其中的一些概念和特性,使我们更加理解动态电路技术。
实验准备在本实验中,我们需要准备以下几种实验用品:一阶(二极管,电容,电阻)和二阶(二极管,电容,电阻,特定电路板)的模块,以及一台电脑。
实验步骤1)确定模块原理图:首先,我们需要确定对应的模块原理图,确定每个模块的输入和输出端口。
2)连接电路:然后,组装模块,连接电路,将各个模块连接起来,确保模块与电路之间的联系。
3)测试电路:接着,使用数据采集仪来测量每个模块的输入信号和输出信号,对电路进行测试。
4)对电路进行分析:最后,根据测量的结果,对电路进行分析,分析电路中每个元件的功能,并确定电路的特性。
实验结果在本实验中,我们所做的实验采用的是一阶和二阶的动态电路,我们测量了各个模块的输入和输出信号,最终得出以下结论:(1)一阶动态电路的升降沿响应时间可以在设定范围内调节;(2)二阶动态电路的输入与输出之间存在一定的延迟时间;(3)随着负载变化,动态电路的性能会受到影响;(4)一阶和二阶动态电路的性能是不同的。
结论通过本次实验,我们学会了如何测试一阶和二阶动态电路,以及他们在当今电子产品中的应用。
在模拟信号控制领域,一阶和二阶动态电路都得到了广泛的应用。
使用一阶动态电路可以满足一般要求,而使用二阶动态电路可以满足高精度的要求。
一阶二阶动态电路实验报告
一阶二阶动态电路实验报告实验目的:1、学习串联与并联一阶电路的响应特性;2、掌握求解一阶电路的重要参数;3、学会利用示波器分析电路响应,并用频域图分析电路特性;4、学习二阶电路的响应特性及其电路稳定条件;5、练习利用示波器分析二阶电路响应,体验相位响应和幅频响应的相互作用。
实验原理:一阶电路有两种基本形式,串联和并联,它们的特点均在于对信号时间常数t=rC的响应。
其中r为电路中电阻器的电阻,C为电容器的电容。
在外加电压U0下电路的响应可以由基尔霍夫定律表达出来。
串联电路的电压状态方程为:Uc + UR = U0C dUc/dt + Uc/R = U0/RdUc/dt + Uc/(RC) = U0/(RC)t=R*C 表示电路响应的时间常数。
并联电路的电压状态方程为:Uc = I * RC dI/dt + I/R = 0dI/dt + I/(RC) = 0同样t=R*C为响应时间常数。
二阶电路由一个电容和两个电感组成,电等效可以看作一个阻尼振荡器。
为了保证电路的稳定性,我们定义电路的品质因数Q:Q = 2pi * f0 * R * C_L其中f0为振荡器的谐振频率,C_L为负载电容器的电容量。
Q越大表示电路谐振的削减效果越弱,电路的稳态响应时间也越长。
另一个表征电路稳定的量是阻尼系数a=R/(2L)*sqrt(C/L)。
实验中我们会接触两种阻尼振荡器的形式:无阻尼振荡器和过阻尼振荡器。
无阻尼振荡器表示an=0, 此时电路振荡渐进不会消失,一阶上升较快,二阶下降趋势相对平坦,折返特点也非常明显。
过阻尼振荡器an<1,振荡不会消失,响应时间也较长,调节电路特性时需注意an<1而不是an=1。
实验装置:1. 1个函数信号发生器2. 2个示波器3. 1个二阶低通电路电路板4. 1个一阶低通电路电路板5. 量表,接线,信号装置实验内容、步骤及数据记录:1. 测量并记录一阶电路的时间常数。
电路基本参数:R=10K, C=0.1uFa. 连接串联电路,使输出信号为阶跃状,并使用示波器监控输出电压;b. 调节信号发生器使输入信号幅值约为1V;c. 测量信号的主要电压,记录t0,t1,t2,t3等关键时间,建立电路时间响应曲线,并测量电路时间响应曲线的渐近斜率;d. 完成数据拟合,计算电路的时间常数并确定其可靠误差范围。
一阶动态电路响应实验报告 -回复
一阶动态电路响应实验报告-回复本个实验通过测试电路中的电压变化来研究一阶动态电路响应的特性。
在试验中,我们使用了一个RC 电路作为模型来研究电路中的电压变化,通过测量过渡过程中的电压变化和时间,进一步确定电路的时间常数和响应特性。
通过实验数据的分析,我们得出了电路的时间常数和阶跃响应曲线。
【关键词】一阶动态电路、响应特性、时间常数、阶跃响应曲线【实验目的】1. 了解一阶动态电路的基本原理和特性。
2. 掌握一阶动态电路的测试方法。
3. 通过实验验证一阶动态电路的时间常数和响应特性。
【实验原理】1. 一阶动态电路的基本原理一阶动态电路是一种简单的电路,它包含一个电阻和一个电容器。
电容器可以存储电能,电阻可让电容器内的电压平稳地释放。
该电路的特性是,当电路上有电压变化时,电容器内储存的电能会在一段时间内逐渐释放,直到电容器内的电荷完全消耗。
2. 一阶动态电路的响应特性一阶动态电路的响应特性可以通过两个参数来描述:时间常数和阶跃响应曲线。
时间常数是指电路中电容器放电至原电压的63.2% 所需的时间。
阶跃响应曲线则是电路输入突变信号时输出电压随时间的变化曲线。
【实验器材】示波器1 台、函数信号发生器1 台、电源1 台、电阻箱1 台、电容器1 台、万用表1 台【实验步骤】1. 按图1 连接RC 电路。
2. 将示波器和函数信号发生器分别接入电路。
3. 在函数信号发生器上设置一个方波信号,其幅度为5V,频率为1kHz。
4. 打开电源并调整函数信号发生器的幅度和频率,使得输入信号的幅度和频率符合实验要求。
5. 用示波器观察电路的输入和输出波形,并记录数据。
6. 分析数据,并绘制阶跃响应曲线。
7. 根据数据计算电路的时间常数,并与实验值进行比较。
【实验数据】时间(ms) 电压(V)0 0.000.2 0.400.4 1.000.6 2.800.8 3.801.0 4.00【数据分析】通过实验测量结果,我们可以得到该电路的阶跃响应曲线(如图2 所示)。
一阶动态电路分析
在低通滤波器中,随着频率的增加,输出信号的 幅度逐渐减小;而在高通滤波器中,随着频率的 增加,输出信号的幅度逐渐增加。
在一阶电路中,由于存在电容或电感元件,输出 信号与输入信号之间会存在一定的相位差。这种 相位差随着频率的变化而变化,形成了一阶电路 的相频特性。
一阶低通滤波器的截止频率决 定了信号通过的频率范围。
一阶高通滤波器
一阶高通滤波器允许高频信号通过, 而阻止低频信号。
一阶高通滤波器的截止频率同样决定 了信号通过的频率范围,但与低通滤 波器相反。
其电路结构也由一个电阻和一个电容 组成,但连接方式与低通滤波器相反。
幅频特性和相频特性
幅频特性描述了一阶动态电路对不同频率信号的 幅度响应。
电阻的作用
电阻在电路中起到分压、 分流、限流等作用,是电 路中的重要元件。
电阻的种类
电阻按照材料、结构、功 率等可分为多种类型,如 碳膜电阻、金属膜电阻、 线绕电阻等。
电容
电容的定义
电容是电路中存储电荷的 元件,用符号"C"表示,单 位为法拉(F)。
电容的作用
电容在电路中起到滤波、 隔直、耦合等作用,常用 于电源电路、信号电路等。
复数域分析法
将电路中的元件参数和变量表示为复数形式,通过复数运算来分 析电路稳定性。
06 一阶动态电路的应用举例
RC电路的应用
延时电路
利用RC电路的充放电特性,可以实现延时功能, 如电子门铃、延时开关等。
滤波电路
RC电路可以构成低通、高通或带通滤波器,用于 滤除信号中的特定频率成分。
振荡电路
在某些条件下,RC电路可以产生振荡,用于产生 特定频率的信号。
一阶动态响应(电路分析)
姓名:王硕一、实验目的1、研究一阶动态电路的零输入响应、零状态响应及完全响应的特点和规律。
掌握测量一阶电路时间常数的方法。
2、理解积分和微分电路的概念,掌握积分、微分电路的设计和条件。
3、用multisim 仿真软件设计电路参数,并观察输入输出波形。
二、实验原理1、零输入响应和零状态响应波形的观察及时间常数τ的测量。
当电路无外加激励,仅有动态元件初始储能释放所引起的响应——零输入响应;当电路中动态元件的初始储能为零,仅有外加激励作用所产生的响应——零状态响应;在外加激励和动态元件的初始储能共同作用下,电路产生的响应——完全响应。
以一阶RC 动态电路为例,观察电路的零输入和零状态响应波形,其仿真电路如图1(a )所示。
(a ) (b )图1 一阶RC 动态电路方波信号作为电路的激励加在输入端,只要方波信号的周期足够长,在方波作用期间或方波间隙期间,电路的暂态响应过程基本结束(τ52/≥T )。
故方波的正脉宽引起零状态响应,方波的负脉宽引起零输入响应,方波激励下的)(t u i 和)(t u o 的波形如图1(b )所示。
在)2/0(T t ,∈的零状态响应过程中,由于T <<τ,故在2/T t =时,电路已经达到稳定状态,即电容电压S o U t u =)(。
由零状态响应方程可知,当2/)(S o U t u =时,计算可得τ69.01=t 。
如能读出1t 的值,则能测出该电路的时间常数τ。
2、RC 积分电路由RC 组成的积分电路如图2(a )所示,激励)(t u i 为方波信号如图2(b )所示,输出电压)(t u o 取自电容两端。
该电路的时间常数2T RC >>=τ(工程上称10倍以上关系为远远大于或远远小于关系。
),故电容的充放电速度缓慢,在方波的下一个下降沿(或上升沿)到来时,充放电均未达到稳态,输出波形如图2(c )所示,为近似三角波,三角波的峰值E <<'E 。
一阶动态电路暂态过程的研究
实验四 一阶动态电路暂态过程的研究一. 实验目的1.研究一阶RC 电路的零输入响应、零状态响应和全响应的变化规律和特点。
2、研究一阶电路在阶跃激励和方波激励情况下, 响应的基本规律和特点。
测定一阶电路的时间常数 ,了解电路参数对时间常数的影响。
3.掌握积分电路和微分电路的基本概念。
4.研究一阶动态电路阶跃响应和冲激响应的关系。
5.学习用示波器观察和分析电路的响应。
二. 实验原理1.含有动态元件的电路, 其电路方程为微分方程。
用一阶微分方程描述的电路, 为一阶电路。
图6-1所示为一阶RC 电路。
首先将开关S 置于1使电路处于稳定状态。
在t=0时刻由1扳向2, 电路对激励Us 的响应为零状态响应, 有RCt S S C eU U t u --=)(这一暂态过程为电容充电的过程, 充电曲线如图6-2a 所示。
电路的零状态响应与激励成正比。
U U u c (t) 图6-1 图6-2(a )充电曲线 图6-2(b )放电曲线若开关S 首先置于2使电路处于稳定状态, 在t=0时刻由2扳向1, 电路为零输入响应, 有RCt S C eU t u -=)(这一暂态过程为电容放电过程, 放电曲线如图6-2b 所示。
电路的零输入响应与初始状态成正比。
动态电路的零状态响应与零输入响应之和称之为全响应,全响应与激励不存在简单的线性关系。
2.一阶RC 动态电路在一定的条件下, 可以近似构成微分电路或积分电路。
当时间常数 (=RC)远远小于方波周期T 时, 图6-3(a)所示为微分电路。
输出电压u0(t)与方波激励uS(t)的微分近似成比例, 输入输出波形如6-3(b)所示。
从中可见, 利用微分电路可以实现从方波到尖脉冲波形的转变。
+ u O_uC图6-3(a ) 图6-3(b )当时间常数 (=RC)远远大于方波周期T 时, 图6-4(a)所示为积分电路, 输出电压uO(t)与方波激励uS 的积分近似成比例。
输入、输出波形如图6-4(b)所示。
一阶动态电路课程设计
一阶动态电路课程设计一、课程目标知识目标:1. 让学生掌握一阶动态电路的基本概念,如时间常数、稳态响应和暂态响应;2. 使学生了解一阶动态电路的数学模型及其应用,如RC电路和RL电路;3. 帮助学生理解一阶动态电路的阶跃响应、冲击响应和频率响应特性。
技能目标:1. 培养学生运用欧姆定律、基尔霍夫定律分析一阶动态电路的能力;2. 培养学生根据电路特点选择合适的方法求解一阶动态电路响应的能力;3. 提高学生通过实验和仿真软件观察、分析一阶动态电路现象的能力。
情感态度价值观目标:1. 培养学生对电路学科的热爱,激发学习兴趣和探究欲望;2. 培养学生具备团队协作精神,学会与他人共同分析、解决问题;3. 增强学生的实际操作能力,使其体会理论联系实际的重要性。
课程性质分析:本课程为电子技术基础课程,侧重于让学生掌握一阶动态电路的基本原理和分析方法,为后续相关课程打下基础。
学生特点分析:学生为高中年级学生,具备一定的物理和数学基础,但对电路分析尚处于初级阶段,需要通过具体实例和实际操作来加深理解。
教学要求:结合学生特点,采用理论教学与实验相结合的方式,注重培养学生的动手能力和实际问题解决能力。
通过本课程的学习,使学生能够达到上述课程目标,为后续学习打下坚实基础。
二、教学内容1. 一阶动态电路基本概念:时间常数、稳态响应、暂态响应;2. 一阶动态电路数学模型:RC电路、RL电路的电压和电流关系;3. 一阶动态电路分析方法:欧姆定律、基尔霍夫定律的应用;4. 一阶动态电路响应特性:阶跃响应、冲击响应、频率响应;5. 实验与仿真:观察和分析一阶动态电路的响应过程。
教学大纲安排:第一周:介绍一阶动态电路基本概念,分析RC电路和RL电路的数学模型;第二周:讲解一阶动态电路分析方法,举例说明欧姆定律和基尔霍夫定律的应用;第三周:探讨一阶动态电路的阶跃响应和冲击响应特性,引导学生通过实验观察现象;第四周:研究一阶动态电路的频率响应特性,结合仿真软件进行分析;第五周:总结本章节内容,进行复习和巩固。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电路分析》一阶动态电路实验
一、实验目的
1.加深对RC 微分电路和积分电路过渡过程的理解; 2.学习信号发生器和示波器的使用方法。
3.熟练使用万用表测量交流电信号。
二、实验原理
1.积分电路
积分电路是使输出信号与输入信号的时间积分值成比例的电路。
最简单的积分电路由一个电阻R 和一个电容C 构成,如图7-1所示。
电路中,输出电压u sc 与电阻电压u R 对时间的积分成正比,即:
(1)
即输出电压u sc 与电阻电压u R 对时间的积分成正比。
当电路的时间常数τ=RC 很大、u R >>u sc 时,输入电压u sr 与电阻电压u R 近似相等,
(2)
将(2)式代入(1)式中,可得:
即:当τ很大时,输出电压u sc 近似与输入电压u sr 对时间的积分成正比,所以称图7-1电路为“积分电路”。
2.微分电路
R
C + -
U sr
U sc
i 图7-1
微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。
最简单的积分电路由一个电容C 和一个电阻R 构成,如图7-2所示。
在电路中,输入电压u sc 与电容u c 对时间的导数成正比。
(3)
当电路的时间常数τ=RC 很小,u c >>u sc 时,输入电压u sr 与电容电压u c 近似相等
(4)
将(4)式代入(3)式中,可得:
(3)
即:当τ很小时,输出电压u sc 近似与输入电压u sr 对时间得导数成正比,所以称图7-2电路为“微分电路”。
三、实验内容
1.按图7-3接线,用示波器观察作为电源的矩形脉冲电压。
周期T=1ms 。
图7-3
2.按图7-1接线。
使R 为10K,分别观察和记录C=0.01μF 、0.1μF 、1μF
两种
R
+
- U sr
U sc
i 图7-2
情况下屏幕上显示的波形。
3.按图7-2接线,使R为10K,分别观察和记录C=0.01μF、0.1μF、1μF屏幕上显示的波形。