江苏省无锡市2022年中考数学真题试题(含解析1)
2023年江苏省无锡市中考数学真题
2023年江苏省无锡市中考数学真题学校:___________姓名:___________班级:___________考号:___________A.80︒8.下列命题:①各边相等的多边形是正多边形;边形的外接圆半径与边长相等;A .132B .29310.如图ABC 中,90,4,ACB AB AC ︒∠==直线BC 下方一点,且BCD △与ABC 相似,则下列结论:A .①④二、填空题三、解答题△≌△;(1)CEF AED(2)四边形DBCF是平行四边形.22.为了深入推动大众旅游,满足人民群众美好生活需要,我市举办中国旅游日惠民周活动,活动主办方在活动现场提供免费门票抽奖箱,里面放有有景区:A.宜兴竹海,(2)请根据“学生参加航天知识竞赛成绩统计表”对本次竞赛中价,并说明理由.24.如图,已知APB ∠,点M 是PB 上的一个定点.(1)尺规作图:请在图1中作O ,使得O 与射线PB 相切于点M ,同时与PA 相切,切点记为N ;(2)在(1)的条件下,若603APB PM ∠=︒=,,则所作的O 的劣弧 MN与PM PN 、所围成图形的面积是_________.25.如图,AB 是O 的直径,CD 与AB 相交于点E .过点D 的圆O 的切线DF AB ∥,交CA 的延长线于点F ,CF CD =.(1)求F ∠的度数;(2)若8DE DC ⋅=,求O 的半径.26.某景区旅游商店以20元/kg 的价格采购一款旅游食品加工后出售,销售价格不低于22元/g ,不高于45元g ,经市场调查发现每天的销售量(kg)y 与销售价格x (元g )之间的函数关系如图所示.(1)求y 关于x 的函数表达式:(2)当销售价格定为多少时,该商店销售这款食品每天获得的销售利润最大?最大销售利润是多少?【销售利润=(销售价格一采购价格)×销售量】27.如图,四边形ABCD 是边长为4的菱形,60A ∠=︒,点Q 为CD 的中点,P 为线段AB 上的动点,现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q ''.参考答案:4.D【分析】根据同底数幂的乘法,同底数幂的除法,积的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A. 235a a a ⨯=,故该选项不正确,不符合题意; B. 2a 与3a 不能合并,故该选项不正确,不符合题意; C. 22(2)4a a -=,故该选项不正确,不符合题意; D. 642a a a ÷=,故该选项正确,符合题意;故选:D .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,积的乘方,合并同类项,熟练掌握同底数幂的乘法,同底数幂的除法,积的乘方,合并同类项的运算法则是解题的关键.5.A【分析】根据题目条件函数21y x =+的图像向下平移2个单位长度,则b 的值减少2,代入方程中即可.【详解】解:∵函数21y x =+的图像向下平移2个单位长度,∴21221y x x =+-=-,故答案为:A .【点睛】本题主要考查函数平移,根据题目信息判断是沿y 轴移动还是沿x 轴移动是解题的关键.6.A【分析】根据2020年的人均可支配收入和2022年的人均可支配收入,列出一元二次方程即可.【详解】解:由题意得:25.76(1) 6.58x +=.故选:A .【点睛】此题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.B【分析】根据旋转可得B ADB ADE ∠=∠=∠,再结合旋转角40α=︒即可求解.【详解】解:由旋转性质可得:55BAC DAE ∠=∠=︒,AB AD =,∵40α=︒,∵60D ∠=︒,2CD =,∴sin 603CE CD =⋅︒=,过点B 作BF AD ⊥,∵AD BC ∥,②当60α=︒,如图4时AD 最大,4AB =,③如图5,若60α=︒,C ABC BD ∽△△,∴60BCD ∠=︒,90CDB ∠=︒,4AB =,2AC =,23BC =,3OE =,1CE =,∴3CD =,32GE DF ==,32CF =,∴52EF DG ==,32OG =,∴723OD =≠,∴③错误;2∴该直三棱柱的表面积为6故答案为:3623+.【点睛】本题考查了三棱柱的侧面展开图的面积,等边三角形的性质,正方形的性质,熟练掌握以上知识是解题的关键.【点睛】本题考查了反比例函数的性质,出辅助线构造相似三角形是解题关键.18.910或225+或212+【分析】先求得()1,0A ,B 解析式为11y x =-,1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必②如图2,直线BM过AC中点,直线BM解析式为1522y x=-+,AC中点坐标为待入直线求得910a=;③如图3,直线CM过AB中点,AB中点坐标为()3,0,∴直线MB与y轴平行,必不成立;5⑤如图5,直线ME ∥AC ,MN CO ∥,则EMN ACO∽∴12BE AB =,又4AB =,∴22BE =,∵53222BN =-=<,∴不成立;∴一共有16种等可能的情况,恰好抽到景区A∴他恰好抽到景区A和景区B门票的概率为2 16【点睛】此题考查的是用树状图法求概率,树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验,用到的知识点为:概率=所求情况数与总情况数之比23.(1)90;10(2)解:∵PM 和PN 为O 的切线,∴OM PB ⊥,ON PN ⊥,MPO ∠=∴90OMP ONP ∠=∠=︒,∴180120MON APB ∠=︒-∠=︒,在Rt POM 中,MPO 30∠=︒,的切线, 为OFD∴90∠=︒.ODFDF AB∥,∴90∠=︒.AOD∵()22322y x x =--,当0x =时,2y =-,∴(0,2)A -,∴22AD =,4BD =,∴2226AB AD BD =+=,在BC 上取点D ,使得AD ∴2ADC ABC ∠=∠,设CD x =,则AD BD =则222(2)(2)x x +=-,又∵tan tan tan MFA CBA ∠∠==。
2023年无锡市中考数学试卷附答案
2023年无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1. 实数9的算术平方根是( ) A. 3 B. 3±C.19D. 9-2. 函数y =12x -中自变量x 的取值范围是( ) A. x >2B. x≥2C. x≠2D. x <23. 下列4组数中,不是二元一次方程24x y +=的解是( )A. 12x y =⎧⎨=⎩ B.20x y =⎧⎨=⎩ C. 0.53x y =⎧⎨=⎩ D. 24x y =-⎧⎨=⎩ 4. 下列运算正确的是( )A. 236a a a ⨯=B. 235a a a +=C. 22(2)4a a -=-D. 642a a a ÷= 5. 将函数21y x =+的图像向下平移2个单位长度,所得图像对应的函数表达式是( ) A. 21y x =- B. 23y x =+ C. 43y x =- D. 45y x =+6. 2020年—2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的平均增长率为x ,下列方程正确的是( ) A. 25.76(1) 6.58x += B. ()25.7616.58x+=C. 5.76(12) 6.58x +=D. 25.76 6.58x =7. 如图,ABC ∆中,55BAC ∠=︒,将ABC ∆逆时针旋转(055),αα︒<<︒得到ADE ∆,DE 交AC 于F .当40α=︒时,点D 恰好落在BC 上,此时AFE ∠等于( )A. 80︒B. 85︒C. 90︒D. 95︒8. 下列命题:①各边相等的多边形是正多边形;②正多边形是中心对称图形;③正六边形的外接圆半径与边长相等;④正n 边形共有n 条对称轴.其中真命题的个数是( ) A. 4B. 3C. 2D. 19. 如图,在四边形ABCD 中,AD BC ∥,30DAB ∠=︒,602ADC BC CD ∠=︒==,,若线段MN 在边AD 上运动,且1MN =,则222BM BN +的最小值是( )A.132B.293C.394D. 1010. 如图ABC ∆中,90,4,,ACB AB AC x BAC α︒∠===∠=,O 为AB 中点,若点D 为直线BC 下方一点,且BCD △与ABC ∆相似,则下列结论:①若45α=︒,BC 与OD 相交于E ,则点E 不一定是ABD △的重心;②若60α=︒,则AD 的最大值为60,ABC CBD α=︒∽,则OD 的长为ABC BCD △∽△,则当2x =时,AC CD +取得最大值.其中正确的为( )A. ①④B. ②③C. ①②④D. ①③④二、填空题(本大题共8小题,每小题3分,共24分.)11. 分解因式:244x x -+=__________.12. 废旧电池含有少量重金属,随意丢弃会污染环境有资料表明,一粒纽扣大的废旧电池,大约会污染水600000L .数据600000用科学记数法可表示__________. 13. 方程3221x x =--的解是:x =__________. 14. 若直三棱柱的上下底面为正三角形,侧面展开图是边长为6的正方形,则该直三棱柱的表面积为__________.15. 请写出一个函数的表达式,使得它的图象经过点(20),:__________.16. 《九章算术》中提出了如下问题:今有户不知高、广,竿不知长短,横之不出四尺,从之不出二尺,邪之适出,问户高、广、邪各几何?这段话的意思是:今有门不知其高宽:有竿,不知其长短,横放,竿比门宽长出4尺:竖放,竿比门高长出2尺:斜放,竿与门对角线恰好相等.问门高、宽和对角线的长各是多少?则该问题中的门高是__________尺. 17. 已知曲线12C C 、分别是函数2(0),(0,0)ky x y k x x x=-<=>>的图像,边长为6的正ABC ∆的顶点A 在y 轴正半轴上,顶点B 、C 在x 轴上(B 在C 的左侧),现将ABC ∆绕原点O 顺时针旋转,当点B 在曲线1C 上时,点A 恰好在曲线2C 上,则k 的值为__________. 18. 二次函数1(1)(5)2y a x x a ⎛⎫=-->⎪⎝⎭的图像与轴交于点A ,B ,与y 轴交于点C ,过点()31M ,的直线将ABC ∆分成两部分,这两部分是三角形或梯形,且面积相等,则a 的值为__________.三、解答题(本大题共10小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19. (1)计算:2(3)|4|--- (2)化简:(2)(2)()x y x y x x y +--- 20. (1)解方程:2220x x +-=(2)解不等式组:32251x xx +>-⎧⎨-<⎩21. 如图,ABC ∆中,点D 、E 分别为AB AC 、的中点,延长DE 到点F ,使得EF DE =,连接CF .求证:(1)CEF AED △≌△;(2)四边形DBCF 是平行四边形.22. 为了深入推动大众旅游,满足人民群众美好生活需要,我市举办中国旅游日惠民周活动,活动主办方在活动现场提供免费门票抽奖箱,里面放有4张相同的卡片,分别写有景区:A.宜兴竹海,B.宜兴善卷洞,C.阖闾城遗址博物馆,D.锡惠公园.抽奖规则如下:搅匀后从抽奖箱中任意抽取一张卡片,记录后放回,根据抽奖的结果获得相应的景区免费门票.(1)小明获得一次抽奖机会,他恰好抽到景区A门票的概率是_________.(2)小亮获得两次抽奖机会,求他恰好抽到景区A和景区B门票的概率.23. 某初中在全校开展知识竞赛活动现采用简单随机抽样的方法从每个年级抽取相同数量的学生答题成绩进行分析,绘制成下列图表,请根据图表提供的信息,解答下列问题:学生参加知识竞赛成绩频数分布表学生参加知识竞赛成绩统计表(1)=(2)请根据“学生参加知识竞赛成绩统计表”对本次竞赛中3个年级的总体情况做出评价,并说明理由.24. 如图,已知APB ∠,点M 是PB 上的一个定点.(1)尺规作图:请在图1中作O ,使得O 与射线PB 相切于点M ,同时与PA 相切,切点记为N ;(2)在(1)的条件下,若603APB PM ∠=︒=,,则所作的O 的劣弧MN 与PM PN、所围成图形的面积是_________. 25. 如图,AB 是O 的直径,CD 与AB 相交于点E .过点D 的线DF AB ∥,交CA 的延长线于点F ,CF CD =.(1)求F ∠的度数; (2)若8DE DC ⋅=,求O 的半径.26. 某景区旅游商店以20元/kg 的价格采购一款旅游食品加工后出售,销售价格不低于22元/g ,不高于45元g ,经市场调查发现每天的销售量(kg)y 与销售价格x (元g )之间的函数关系如图所示.(1)求y 关于x 的函数表达式:(2)当销售价格定为多少时,该商店销售这款食品每天获得的销售利润最大?最大销售利润是多少?【销售利润=(销售价格一采购价格)×销售量】27. 如图,四边形ABCD 是边长为4的菱形,60A ∠=︒,点Q 为CD 的中点,P 为线段AB 上的动点,现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q ''.(1)当45QPB ∠=︒时,求四边形BB C C ''的面积;(2)当点P 在线段AB 上移动时,设BP x =,四边形BB C C ''的面积为S ,求S 关于x 的函数表达式.28. 已知二次函数)2y x bx c =++的图像与y 轴交于点A ,且经过点B 和点(C -.(1)请直接写出b ,c 的值;(2)直线BC 交y 轴于点D ,点E 是二次函数)22y x bx c =++图像上位于直线AB 下方的动点,过点E 作直线AB 的垂线,垂足为F . ①求EF 的最大值;②若AEF △中有一个内角是ABC ∠的两倍,求点E 的横坐标.2023年无锡市中考数学试卷答案一、选择题1. A2. C3. D4. D5. A6. A7. B解:由旋转性质可得:55BAC DAE ∠=∠=︒,AB AD = ∵40α=︒∵15DAF ∠=︒,70B ADB ADE ∠=∠=∠=︒ ∵85AFE DAF ADE ∠=∠+∠=︒, 故选:B . 8. C解:各边相等各角相等的多边形是正多边形,只有各边相等的多边形不一定是正多边形,如菱形,故①是假命题;正三角形和正五边形就不是中心对称图形,故②为假命题;正六边形中由外接圆半径与边长可构成等边三角形,所以外接圆半径与边长相等,故③为真命题;根据轴对称图形的定义和正多边形的特点,可知正n 边形共有n 条对称轴,故④为真命题. 故选:C . 9. B解:过点C 作CE AD ⊥∵60D ∠=︒,2CD =∴sin 60CE CD =⋅︒=过点B 作BF AD ⊥ ∵AD BC ∥∴四边形BCEF 是矩形∴BF CE ==需使222BM BN +最小,显然要使得BM 和BN 越小越好. ∴显然点F 在线段MN 的之间 设MF x =,则1FN x =-∴22222229232(1)334113323BM BN x x x x x ⎛⎫⎡⎤+=++-+=-+=+ ⎪-⎣⎦⎝⎭ ∴当23x =时取得最小值为293.故选:B . 10. A解:①有3种情况,如图1,BC 和OD 都是中线,点E 是重心; 如图2,四边形ABDC 是平行四边形,F 是AD 中点,点E 是重心; 如图3,点F 不是AD 中点,所以点E 不是重心; ①正确②当60α=︒,如图4时AD 最大,4AB =∴2AC BE ==,BC AE ==,6BD ==∴8DE =∴AD =≠∴②错误;③如图5,若60α=︒,C ABC BD ∽△△∴60BCD ∠=︒,90CDB ∠=︒,4AB =,2AC =,BC =OE =1CE =∴CD =2GE DF ==,32CF =∴52EF DG ==,OG =∴OD =≠ ∴③错误;④如图6,ABC BCD ∽△△∴CD BC BC AB=即214CD BC =在Rt ABC △中,2216BC x =-∴()221116444CD x x =-=-+ ∴22114(2)544AC CD x x x +=-+=--+当2x =时,AC CD +最大为5 ∴④正确. 故选:C .二、填空题11. ()22x -12. 5610⨯ 13. -114. 36+解:∵侧面展开图是边长为6的正方形 ∴底面周长为6, ∵底面为正三角形 ∴正三角形的边长为2 作CD AB ⊥ABC 是等边三角形,2AB BC AC ===1AD ∴=∴在直角ADC ∆中CD ==122ABCS∴=⨯=∴该直三棱柱的表面积为6636⨯+=+故答案为:36+ 15. 2y x =-(答案不唯一) 16. 8解:设门高x 尺,依题意,竿长为()2x +尺,门的对角线长为()2x +尺,门宽为24x +-=()2x -尺.∴()()22222x x x +=+-解得:8x =或0x =(舍去)故答案为:8.17. 6解:当点A 在y 轴上,点B 、C 在x 轴上时,连接AOABC ∆为等边三角形且AO BC ⊥,则30BAO ∠=︒∴tan tan30BAO ∠=︒=3OB OA =, 如图所示,过点,A B 分别作x 轴的垂线,交x 轴分别于点,E FAO BO ⊥,90BFO AEO AOB ∠=∠=∠=︒∴90BOF AOE EAO ∠=︒-∠=∠,∴BFO OEA ∽ ∴213BFO AOE S OB SOA ⎛⎫== ⎪⎝⎭ ∴212BFO S -==∴3AOE S =△∴6k=.18. 910或25+或12 解:由(1)(5)y a x x =--,令0x =,解得:5y a =,令0y =,解得:121,5x x ==. ∵1,0A ,()5,0B ,()0,5C a设直线BM解析式为y kx b=+∴50 31 k bk b+=⎧⎨+=⎩解得:1252 kb⎧=-⎪⎪⎨⎪=⎪⎩∴直线BM解析式为1522y x=-+,当0x=时,52y=,则直线BM与y轴交于50,2⎛⎫⎪⎝⎭∵12 a>∴5 52 a>∴点M必在ABC∆内部.1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线.设直线AM的解析式为y mx n=+∴0 31 k bk b+=⎧⎨+=⎩解得:1212 mn⎧=⎪⎪⎨⎪=-⎪⎩则直线AM的解析式为1122 y x=-①如图1,直线AM过BC中点BC中点坐标为55,22a⎛⎫⎪⎝⎭,代入直线求得31102a=<,不成立.②如图2,直线BM过AC中点,直线BM解析式为1522y x=-+,AC中点坐标为15,22a ⎛⎫ ⎪⎝⎭,待入直线求得910a =. ③如图3,直线CM 过AB 中点,AB 中点坐标为()3,0∴直线MB 与y 轴平行,必不成立.2)、当分成三角形和梯形时,过点M 的直线必与ABC 一边平行,所以必有“”A 型相似,因为平分面积,所以相似比为④如图4,直线EM ∥AB∴CEN COA ∽ ∴CE CN CO CA == ∴515a a -=解得25a =.⑤如图5,直线ME ∥AC ,MN CO ∥,则EMN ACO ∽ ∴BE AB =,又4AB =∴BE =∵532BN =-=<∴不成立.⑥如图6,直线ME ∥BC ,同理可得AE AB =∴AE =2NE =,tan tan MEN CBO ∠∠=55a=,解得a=综上所述,910a=或25+或12.三、解答题19.(1)8(2)24y xy-+20. (1)114x-+=,214x-=(2)13x-<<21. 【小问1详解】证明:∵点D、E分别为AB AC、的中点∴AE CE=,DE BC∥∴ADE F∠=∠在CEF△与AED△中,ADE FAED CEFAE CE∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AASCEF AED≌.【小问2详解】证明:由(1)证得CEF AED△≌△∴A FCE∠=∠,∴BD CF∥∵DF BC∥,∴四边形DBCF是平行四边形.22. (1)14(2)18【小问1详解】解:∵共有4张相同的卡片且任意抽取一张卡片,记录后放回.∴每张卡片抽到的概率都是1 4 .设小明恰好抽到景区A门票为事件A,则1 ()4 P A=.故答案为:1 4 .【小问2详解】解:根据题意,画树状图如下:∴一共有16种等可能的情况,恰好抽到景区A和景区B门票的情况有2种.∴他恰好抽到景区A和景区B门票的概率为21 168=.23. (1)90;10(2)七年级的平均分最高;八年级的中位数最大;九年级的众数最大【小问1详解】解:∵抽取的总人数为217%300÷=(人)∴C组的人数为30030%90a=⨯=(人)100%7%32%30%19%2%10%m=-----=故答案为:90,10.【小问2详解】解:七年级的平均分最高;八年级的中位数最大;九年级的众数最大.(答案不唯一).24.(1)见解析(2)π【小问1详解】解:如图,O 为所作.【小问2详解】解:∵PM 和PN 为O 的切线∴OM PB ⊥,ON PN ⊥,1302MPO NPO APB ∠=∠=∠=︒ ∴90OMP ONP ∠=∠=︒∴180120MON APB ∠=︒-∠=︒在Rt POM 中,030=∠MPO∴tan 303OM PM =⋅︒==∴O 的劣弧MN 与PM PN 、所围成图形的面积PMON MON S S =-四边形扇形21201232360π⨯⨯=⨯⨯π=.故答案为:π.25. (1)67.5︒(2)2【小问1详解】如图,连接OD .FD为O的切线∴90ODF∠=︒.DF AB∥∴90AOD∠=︒.AD AD=∴1452ACD AOD∠=∠=︒.CF CD=∴1(180)67.52F ACD∠∠=⨯-=︒.【小问2详解】如图,连接ADAO OD=,90AOD∠=︒∴45EAD∠=︒.45ACD∠=︒∴ACD EAD∠=∠,且ADE CDA∠=∠∴DAE DCA∽∴DE DADA DC=,即28DA DE DC=⋅=∴DA=∴2OA OD AD===,即半径为2.26. (1)()7022302100(3045)x xyx x⎧-+≤≤=⎨-+<≤⎩(2)销售价格为35元/kg时,利润最大为450【小问1详解】当2230x ≤≤时,设y 关于x 的函数表达式为y kx b =+,将点()()22,48,30,40代入得: ∵22483040k b k b +=⎧⎨+=⎩ 解得:170k b =-⎧⎨=⎩∴70y x =-+()2230x ≤≤当3045x <≤时,设y 关于x 的函数表达式为11y k x b =+,将点()()30,40,45,10代入得: 111145103040k b k b +=⎧⎨+=⎩ 解得:112100k b =-⎧⎨=⎩ ∴2100y x =-+()3045x <≤()7022302100(3045)x x y x x ⎧-+≤≤=⎨-+<≤⎩. 【小问2详解】设利润为w当2230x ≤≤时,22(20)(70)901400(45)625w x x x x x =--+=-+-=--+ ∵在2230x ≤≤范围内,w 随着x 的增大而增大∴当30x =时,w 取得最大值为400; 当3045x <≤时,22(20)(2100)214020002(35)450w x x x x x =--+=-+-=--+ ∴当35x =时,w 取得最大值为 450450400>∴当销售价格为35元/kg 时,利润最大为450.27. (1)8(2)S = 【小问1详解】如图,连接BD 、BQ四边形ABCD 为菱形∴4CB CD ==,60A C ∠=∠=︒∴BDC 为等边三角形 Q 为CD 中点∴2CQ =,BQ CD ⊥∴BQ =QB PB ⊥.45QPB ∠=︒∴PBQ 为等腰直角三角形∴PB =PQ =翻折∴90BPB ∠='︒,PB PB '=∴BB '=PE =同理2CQ =∴CC '=QF =∴((2211122228222PBB CQC BB C C PBCQ S S SS ''''=-+=⨯⨯+⨯⨯+⨯=四边形梯形.【小问2详解】如图2,连接BQ、B Q',延长PQ交CC'于点F.PB x=,BQ=90PBQ∠=︒∴PQ=.∵1122PBQS PQ BE PB BQ=⨯=⨯∴BQ PBBEPQ⨯==∴QE=∴21212QEBSx==+.90BEQ BQC QFC∠=∠=∠=︒,则90EQB CQF FCQ∠=︒-∠=∠∴BEQ QFC~∴2213QFCBEQS CQS QB⎛⎫===⎪⎝⎭∴212QFCSx=+.∵122BQCS=⨯⨯=∴()22222121212QEB BQC QFC S S S S x x x ⎛⎫=++=+=+ ⎪ ⎪+++⎝⎭. 28. (1)3b =-,2c =-(2)①3;②2或175 【小问1详解】∵二次函数)22y x bx c =++的图像与y 轴交于点A ,且经过点B和点(C -∴()()244212b c b c =++⎨=-+ 解得:32b c =-⎧⎨=-⎩∴3b =-,2c =-,)232y x x =--. 【小问2详解】①如图1,过点E 作y 轴平行线分别交AB 、BD 于G 、H .∵()2322y x x =-- 当0x =时,y =∴(0,A∴AD =4BD =∴AB =∴cos BD ABD AB ∠== ∵90GFE GHB ∠=∠=︒,FGE HGB ∠=∠ ∴FEG ABD ∠=∠∴cos FEG ∠=∴3EF EG =∴3EF EG =.∵(0,A B设直线AB 的解析式为y kx d =+∴4d k d ⎧=⎪⎨+=⎪⎩解得:2k d ⎧=⎪⎨⎪=⎩∴直线AB解析式为y x =.设2,22E m m m ⎛- ⎝∴,2G m m ⎛- ⎝∴222)22EG m m =-+=--+∴当2m =时,EG取得最大值为EF ∴=②如图2,已知tan 2ABC ∠=令AC =,则2BC =在BC 上取点D ,使得AD BD =∴2ADC ABC ∠=∠设CD x =,则2AD BD x ==-则222(2)x x +=- 解得12x =.∴tan AC ADC CD ∠==,即()tan 2ABC ∠= 如图3构造AMF FNE ∽,且MN x ∥轴,相似比为:AF EF又∵tan tan tan MFA CBA FEN ∠∠∠===设AM =,则2MF a =.分类讨论:ⅰ当2FAE ABC ∠=∠时,则tan EF FAE AF∠==∴AMF 与FNE ∆的相似比为1:∴4FN a ==,NE ==∴()6,E a 代入抛物线求得113a =,20a =(舍). ∴E 点横坐标为62a =.ⅱ当2FEA ABC ∠=∠时,则tan AF FEA EF ∠==∴相似比为∴12FN a ==,2NE a ==∴5,22E a a ⎛⎫ ⎪ ⎪⎝⎭ 代入抛物线求得13425a =,20a =(舍). ∴E 点横坐标为51725a =. 综上所示,点E 的横坐标为2或175.。
2020年江苏省无锡市中考数学试卷(解析版)
2020年无锡市初中毕业升学考试数学试题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣7的倒数是( ) A.17B. 7C. -17D. ﹣7【答案】C 【解析】 【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7). 【详解】解:﹣7的倒数为:1÷(﹣7)=﹣17. 故选C .【点睛】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).2.函数2y =中自变量x 的取值范围是( ) A. 2x ≥ B. 13x ≥C. 13x ≤D. 13≠x 【答案】B 【解析】 【分析】由二次根式的被开方数大于等于0问题可解 【详解】解:由已知,3x ﹣1≥0可知13x ≥,故选B . 【点睛】本题考查了求函数自变量取值范围,解答时注意通过二次根式被开方数要大于等于零求出x 取值范围.3.已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是( ) A. 24,25 B. 24,24C. 25,24D. 25,25【答案】A 【解析】 【分析】根据平均数的计算公式和中位数的定义分别进行解答即可. 【详解】解:这组数据的平均数是:(21+23+25+25+26)÷5=24;把这组数据从小到大排列为:21,23,25,25,26,最中间的数是25,则中位数是25; 故应选:A .【点睛】此题考查了平均数和中位数,掌握平均数的计算公式和中位数的定义是本题的关键. 4.若2x y +=,3z y -=-,则x z +的值等于( ) A. 5 B. 1C. -1D. -5【答案】C 【解析】 【分析】将两整式相加即可得出答案. 【详解】∵2x y +=,3z y -=-, ∴()()1x y z y x z ++-=+=-, ∴x z +的值等于1-, 故选:C .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键. 5.正十边形的每一个外角的度数为( ) A. 36︒ B. 30C. 144︒D. 150︒【答案】A 【解析】 【分析】利用多边形的外角性质计算即可求出值. 【详解】解:360°÷10=36°, 故选:A .【点睛】此题考查了多边形的内角与外角,熟练掌握多边形的外角性质是解本题的关键. 6.下列图形中,是轴对称图形但不是中心对称图形的是( ) A. 圆 B. 等腰三角形C. 平行四边形D. 菱形【答案】B 【解析】 【分析】根据轴对称图形与中心对称图形的概念结合圆、平行四边形、等腰三角形、菱形的性质求解. 【详解】解:A 、圆是轴对称图形,也是中心对称图形,故此选项错误; B 、等腰三角形是轴对称图形,不是中心对称图形,故此选项正确; C 、平行四边形是不轴对称图形,是中心对称图形,故此选项错误; D 、菱形是轴对称图形,也是中心对称图形,故此选项错误. 故选:B【点睛】此题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合. 7.下列选项错误的是( )A. 1cos602︒= B. 235a a a ⋅=C.2= D. 2(2)22x y x y -=-【答案】D 【解析】 【分析】分别根据特殊角的三角函数值,同底数幂的乘法法则,二次根式的除法法则以及去括号法则逐一判断即可. 【详解】解:A .1cos602︒=,本选项不合题意; B .235a a a ⋅=,本选项不合题意;C=1,本选项不合题意; D .2(x−2y )=2x−4y ,故本选项符合题意; 故选:D .【点睛】本题主要考查了特殊角的三角函数值,同底数幂的乘法,二次根式的除法以及去括号与添括号,熟记相关运算法则是解答本题的关键. 8.反比例函数k y x =与一次函数8161515y x =+的图形有一个交点1,2B m ⎛⎫⎪⎝⎭,则k 的值为( ) A. 1 B. 2C.23D.43【答案】C 【解析】 【分析】把点B 坐标代入一次函数解析式,求出m 的值,可得出B 点坐标,把 B 点的坐标代入反比例函数解析式即可求出k 的值.【详解】解:由题意,把B (12,m )代入8161515y x =+,得m=43 ∴B (12,43) ∵点B 为反比例函数k y x=与一次函数8161515y x =+的交点, ∴k=x·y ∴k=12×43=23. 故选:C .【点睛】本题考查了一次函数与反比例函数的交点问题,熟知一次函数反比例函数图像的交点坐标都适合两个函数解析式是解题关键.9.如图,在四边形ABCD 中()AB CD >,90ABC BCD ∠=∠=︒,3AB =,3BC =,把Rt ABC ∆沿着AC 翻折得到Rt AEC ∆,若3tan 2AED ∠=,则线段DE 的长度为( )A.6 B.7 C.3 D.27【答案】B 【解析】 【分析】根据已知,易求得23AC =,延长CD 交AE 于F ,可得2AF CF ==,则=1EF ,再过点D 作DG EF ⊥,设3DG x =,则2GE x =,7ED x =,12FG x =-,在t R FGD 中,根据3FG GD =,代入数值,即可求解. 【详解】解:如图∵ 90B ∠=︒,3BC =3AB =, ∴30BAC ∠=︒, ∴23AC = ∵90DCB ∠=︒, ∴//AB CD ,∴30DCA ∠=︒,延长CD 交AE 于F , ∴ 2AF CF ==,则=1EF ,=60EFD ∠︒ ,过点D 作DG EF ⊥,设3DG x =,则2GE x =,7ED x =,∴12FG x =-,∴在t R FGD 3FG GD =)312=3x x -,解得:1=3x , ∴7ED =. 故选B .【点睛】本题目考查三角形的综合,涉及的知识点有锐角三角函数、折叠等,熟练掌握三角形的有关性质,正确设出未知数是顺利解题的关键.10.如图,等边ABC ∆的边长为3,点D 在边AC 上,12AD =,线段PQ 在边BA 上运动,12PQ =,有下列结论:①CP 与QD 可能相等;②ΔAQD 与BCP ∆可能相似;③四边形PCDQ 313;④四边形PCDQ 周长的最小值为3732+.其中,正确结论的序号为( ) A. ①④ B. ②④C. ①③D. ②③【答案】D 【解析】 【分析】①通过分析图形,由线段PQ 在边BA 上运动,可得出QD P AP C ≤<,即可判断出CP 与QD 不可能相等; ②假设ΔAQD 与BCP ∆相似,设AQ x =,利用相似三角形的性质得出AQ x =的值,再与AQ 的取值范围进行比较,即可判断相似是否成立;③过P 作PE ⊥BC 于E ,过F 作DF ⊥AB 于F ,利用函数求四边形PCDQ 面积的最大值,设AQ x =,可表示出3132P x E --=⎫⎪⎝⎭,1233DF ==PBCS ,DAQ S,再根据ABCPBCDAQ SSS--,依据2.5x ≤≤0,即可得到四边形PCDQ 面积的最大值;④作点D 关于直线AB 的对称点D 1,连接D D 1,与AB 相交于点Q ,再将D 1Q 沿着AB 向B 端平移PQ 个单位长度,即平移12个单位长度,得到D 2P ,与AB 相交于点P ,连接PC ,此时四边形PCDQ 的周长为:2CP DQ CD PQ CD CD PQ +++=++,其值最小,再由D 1Q=DQ=D 2P ,11212AD D D AD ===,且∠AD 1D 2=120°,可得2CD CD PQ ++的最小值,即可得解.【详解】解:①∵线段PQ 在边BA 上运动,12PQ =, ∴QD PAP C ≤<, ∴CP 与QD 不可能相等, 则①错误; ②设AQ x =, ∵12PQ =,3AB =, ∴13-=2.52AQ ≤≤0,即 2.5x ≤≤0, 假设ΔAQD 与BCP ∆相似, ∵∠A=∠B=60°,∴AD AQ BP BC =,即121332x x =--, 从而得到22530x x -+=,解得1x =或 1.5x =(经检验是原方程的根), 又 2.5x ≤≤0,∴解得的1x =或 1.5x =符合题意, 即ΔAQD 与BCP ∆可能相似, 则②正确;③如图,过P 作PE ⊥BC 于E ,过F 作DF ⊥AB 于F ,设AQ x =, 由12PQ =,3AB =,得13-=2.52AQ ≤≤0,即 2.5x ≤≤0, ∴132PB x =--, ∵∠B=60°, ∴31322P x E --=⎫⎪⎝⎭, ∵12AD =,∠A =60°,∴1233DF =⨯=, 则113133533222242PBCSBC PE x x ⎛⎫⎛⎫=⨯=⨯⨯--=- ⎪ ⎪⎝⎭⎝⎭,113322DAQSAQ DF x x =⨯=⨯⨯=, ∴四边形PCDQ 面积为:133335333533+22ABC PBC DAQS SSx x x ⎛⎫--=⨯⨯---= ⎪⎝⎭, 又∵ 2.5x ≤≤0,∴当 2.5x =时,四边形PCDQ 面积最大,最大值为:3353313+ 2.5=8816⨯, 即四边形PCDQ 面积最大值为31316, 则③正确;④如图,作点D 关于直线AB 的对称点D 1,连接D D 1,与AB 相交于点Q ,再将D 1Q 沿着AB 向B 端平移PQ 个单位长度,即平移12个单位长度,得到D 2P ,与AB 相交于点P ,连接PC , ∴D 1Q=DQ=D 2P ,11212AD D D AD ===,且∠AD 1D 2=120°, 此时四边形PCDQ 的周长为:2CP DQ CD PQ CD CD PQ +++=++,其值最小,∴∠D 1AD 2=30°,∠D 2A D=90°,232AD =∴根据股股定理可得,()()2222223393=22CD AC AD ⎛⎫+=+ ⎪ ⎪⎝⎭,∴四边形PCDQ 的周长为:23911393322CP DQ CD PQ CD CD PQ ⎛⎫+++=++=-+= ⎪⎝⎭则④错误, 所以可得②③正确, 故选:D .【点睛】本题综合考查等边三角形的性质、相似三角形的性质与判定、利用函数求最值、动点变化问题等知识.解题关键是熟练掌握数形结合的思想方法,通过用函数求最值、作对称点求最短距离,即可得解.二、填空题(每题2分,满分16分,将答案填在答题纸上)11.因式分解:22ab ab a -+=__________. 【答案】()21a b - 【解析】 【分析】先提取公因式a ,再利用公式法继续分解.【详解】解:()()2222211ab ab a a b b a b -+=-+=-,故答案为:()21a b -.【点睛】本题考查了公式法以及提取公因式法分解因式,正确应用公式是解题的关键.在分解因式时,要注意分解彻底.12.2019年我市地区生产总值逼近12000亿元,用科学记数法表示12000 是__________. 【答案】41.210⨯ 【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数的绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:∵12000=41.210⨯, 故答案为:41.210⨯.【点睛】本题考查用科学记数法表示绝对值较大的数,熟练掌握科学记数法的表示形式是解题的关键.13.已知圆锥的底面半径为1cm ,则它的侧面展开图的面积为=__________. 【答案】22cm π 【解析】 【分析】先利用勾股定理求出圆锥的母线l 的长,再利用圆锥的侧面积公式:S 侧=πrl 计算即可.【详解】解:根据题意可知,圆锥的底面半径r=1cm ,高,∴圆锥的母线2l ==, ∴S 侧=πrl=π×1×2=2π(cm 2). 故答案为:2πcm 2.【点睛】此题考查圆锥的计算,理解圆锥的侧面展开图是个扇形,扇形的半径是圆锥的母线,扇形的弧长是底面圆的周长l .掌握圆锥的侧面积公式:S 侧=12•2πr•l=πrl 是解题的关键.14.如图,在菱形ABCD 中,50B ∠=︒,点E 在CD 上,若AE AC =,则BAE ∠=__________.【答案】115° 【解析】 【分析】先根据菱形性质求出∠BCD ,∠ACE ,再根据AE AC =求出∠AEC ,最后根据两直线平行,同旁内角互补解题即可.【详解】解:四边形ABCD 是菱形,50B ∠=︒, ∴AB ∥CD ,∴∠BCD=180°-∠B=130°,∠ACE=12∠BCD=65°, ∵ AE AC =, ∴∠ACE=∠AEC=65°, ∴∠BAE=180°-∠AEC=115°.【点睛】本题考查了菱形性质,等腰三角形性质,解题方法较多,根据菱形性质求解∠ACE 是解题关键. 15.请写出一个函数表达式,使其图象的对称轴为y 轴:__________. 【答案】2y x (答案不唯一)【解析】 【分析】根据二次函数的图象和性质,对称轴为y 轴,即b=0,写出满足条件的函数解析式即可. 【详解】解:设函数的表达式为y=ax 2+bx+c , ∵图象的对称轴为y 轴, ∴对称轴为x=2ba-=0, ∴b=0,∴满足条件的函数可以是:2yx .(答案不唯一)故答案是:y=x 2(答案不唯一)【点睛】本题考查二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.16.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子最井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是___________尺. 【答案】8 【解析】【分析】先设绳长x 尺,由题意列出方程,然后根据绳长即可求出井深. 【详解】解:设绳长x 尺, 由题意得13x-4=14x-1, 解得x=36, 井深:13×36-4=8(尺), 故答案为:8.【点睛】本题考查了一元一次方程的实际应用,理解题意,找出等量关系是解题关键.17.二次函数233y ax ax =-+的图像过点()6,0A ,且与y 轴交于点B ,点M 在该抛物线的对称轴上,若ABM ∆是以AB 为直角边的直角三角形,则点M 的坐标为__________.【答案】3,92⎛⎫- ⎪⎝⎭或3,62⎛⎫ ⎪⎝⎭【解析】 【分析】先求出点B 的坐标和抛物线的对称轴,然后分两种情况讨论:当∠ABM =90°时,如图1,过点M 作MF ⊥y 轴于点F ,易证△BFM ∽△AOB ,然后根据相似三角形的性质可求得BF 的长,进而可得点M 坐标;当∠BAM =90°时,辅助线的作法如图2,同样根据△BAE ∽△AMH 求出AH 的长,继而可得点M 坐标. 【详解】解:对233y ax ax =-+,当x =0时,y =3,∴点B 坐标为(0,3), 抛物线233y ax ax =-+的对称轴是直线:3322a x a -=-=, 当∠ABM =90°时,如图1,过点M 作MF ⊥y 轴于点F ,则32MF =, ∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3,又∠MFB =∠BOA =90°, ∴△BFM ∽△AOB ,∴MF BFOB OA=,即3236BF =,解得:BF =3,∴OF =6, ∴点M 的坐标是(32,6);当∠BAM =90°时,如图2,过点A 作EH ⊥x 轴,过点M 作MH ⊥EH 于点H ,过点B 作BE ⊥EH 于点E ,则39622MH =-=, 同上面的方法可得△BAE ∽△AMH ,∴AE BE MH AH=,即3692AH =,解得:AH =9, ∴点M 的坐标是(32,﹣9);综上,点M 的坐标是3,92⎛⎫- ⎪⎝⎭或3,62⎛⎫ ⎪⎝⎭. 故答案为:3,92⎛⎫- ⎪⎝⎭或3,62⎛⎫⎪⎝⎭. 【点睛】本题考查了抛物线与y 轴的交点和对称轴、直角三角形的性质以及相似三角形的判定和性质等知识,属于常考题型,正确分类、熟练掌握相似三角形的判定和性质是解题的关键.18.如图,在Rt ABC ∆中,90ACB ∠=︒,4AB =,点D ,E 分别在边AB ,AC 上,且2DB AD =,3AE EC =连接BE ,CD ,相交于点O ,则ABO ∆面积最大值为__________.【答案】83【解析】 【分析】作DG ∥AC ,交BE 于点G ,得到23OD CD =,进而得到23ABO ABC S S =△△,求出ABC 面积最大值142=42⨯⨯,问题得解. 【详解】解:如图1,作DG ∥AC ,交BE 于点G , ∴,BDG BAE ODG OCE △∽△△∽△,2,3DG BD AE AB ==∴∵13CE AE = , ∴221DG CE == ∵ODG OCE △∽△ ∴=2DG ODCE OC= ∴23OD CD =∵AB=4, ∴23ABO ABC S S =△△ ∴若ABO 面积最大,则ABC 面积最大,如图2,当点△ABC 为等腰直角三角形时,ABC 面积最大,为142=42⨯⨯, ∴ABO 面积最大值为284=33⨯+故答案为:83【点睛】本题考查了三角形面积最大问题,相似等知识点,通过OD 与CD 关系将求ABO 面积转化为求ABC 面积是解题关键三、解答题:本大题共10小题,共84分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.19.计算:(1)()22516-+- (2)11a ba b b a-+---. 【答案】(1)5;(2)a ba b+- 【解析】 【分析】(1)利用幂的运算,绝对值的定义,及算术平方根的定义计算即可解出答案; (2)根据同分母分式的加减运算法则计算即可. 【详解】解:(1)原式=4+5-4=5; (2)原式=11+ba ba b a -+-- =1+1+ba ab --=+ba a b-. 【点睛】本题考查了实数的运算以及分式的加减法,熟记相关的定义与运算法则是解题的关键. 20.解方程:(1)210x x +-= (2)20415x x -≤⎧⎨+<⎩【答案】(1)15x -±= ;(2)01x ≤< 【解析】 【分析】(1)根据公式法求解即可;(2)先分别求每一个不等式,然后即可得出不等式组的解集. 【详解】(1)由方程可得a=1,b=1,c=-1,x=24b bc a -±-=21141121-±+⨯⨯⨯=15-±;(2)解不等式-2x≤0,得x≥0, 解不等式4x+1<5,得x<1, ∴不等式的解集为01x ≤<.【点睛】本题考查了解一元二次方程和解不等式组,掌握运算法则是解题关键. 21.如图,已知//AB CD ,AB CD =,BE CF =.求证:(1)ABF DCE ∆≅∆; (2)//AF DE .【答案】(1)证明见详解;(2)证明见解析. 【解析】 【分析】(1)先由平行线的性质得∠B=∠C ,从而利用SAS 判定△ABF ≌△DCE ;(2)根据全等三角形的性质得∠AFB=∠DEC ,由等角的补角相等可得∠AFE=∠DEF ,再由平行线的判定可得结论.【详解】证明:(1)∵AB ∥CD , ∴∠B=∠C , ∵BE=CF , ∴BE-EF=CF-EF , 即BF=CE ,在△ABF 和△DCE 中,==AB CDB C BF CE =⎧⎪∠∠⎨⎪⎩∴△ABF ≌△DCE (SAS ); (2)∵△ABF ≌△DCE , ∴∠AFB=∠DEC , ∴∠AFE=∠DEF , ∴AF ∥DE .【点睛】本题考查了全等三角形的判定与性质,属于全等基础知识的考查,难度不大,注意证明过程的规范性.22.现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀.(1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是________;(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)【答案】(1)14;(2)13【解析】【分析】(1)根据概率公式计算即可;(2)画树状图展示所有12种等可能的结果,可得抽得的2张卡片上的数字之和为3的倍数的结果数,根据概率公式计算即可.【详解】解:(1)从中任意抽取1张,抽的卡片上的数字恰好为3的概率为14;故答案为:1 4(2)画树状图为:共有12种等可能的结果,其中抽得的2张卡片上的数字之和为3的倍数的结果为4种,所以抽得的2张卡片上的数字之和为3的倍数的概率=41 123=【点睛】本题考查了用列表法与树状图法求概率,解答中注意利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.23.小李2014年参加工作,每年年底都把本年度收入减去支出后余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)年份2014年2015年2016年2017年2018年2019年收入 3 8 9 a14 18支出 1 4 5 6 c 6存款余额 2 6 10 15 b34(1)表格中a=________;(2)请把下面的条形统计图补充完整:(画图后标注相应的数据)(3)请问小李在哪一年的支出最多?支出了多少万元?【答案】(1)11;(2)见解析;(3)2018年支出最多,为7万元【解析】【分析】(1)本年度收入减去支出后的余额加上上一年存入银行的余额作为本年的余额,则可建立一元一次方程10+a−6=15,然后解方程即可;(2)根据题意得1514{18634c bb+-+-==,再解方程组得到2018年的存款余额,然后补全条形统计图;(3)利用(2)中c的值进行判断.【详解】解:(1)10+a−6=15,解得a=11,故答案为11;(2)根据题意得1514{18634c b b+-+-==,解得227b c⎧⎨⎩==,即存款余额为22万元,补全条形统计图如下:;(3)由图表可知:小李在2018年的支出最多,支出了为7万元.【点睛】本题考查了图像统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.24.如图,已知ABC ∆是锐角三角形()AC AB <.(1)请在图1中用无刻度的直尺和圆规作图;作直线l ,使l 上的各点到B 、C 两点的距离相等;设直线l 与AB 、BC 分别交于点M 、N ,作一个圆,使得圆心O 在线段MN 上,且与边AB 、BC 相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若53BM =,2BC =,则O 的半径为________. 【答案】(1)见解析;(2)12r = 【解析】 【分析】(1)由题意知直线l 为线段BC 的垂直平分线,若圆心O 在线段MN 上,且与边AB 、BC 相切,则再作出ABC ∠的角平分线,与MN 的交点即为圆心O ;(2)过点O 作OE AB ⊥,垂足为E ,根据BMN BNO BMO S S S =+△△△即可求解. 【详解】解:(1)①先作BC 的垂直平分线:分别以B ,C 为圆心,大于12BC 的长为半径画弧,连接两个交点即为直线l ,分别交AB 、BC 于M 、N ;②再作ABC ∠的角平分线:以点B 为圆心,任意长为半径作圆弧,与ABC ∠的两条边分别有一个交点,再以这两个交点为圆心,相同长度为半径作弧,连接这两条弧的交点与点B ,即为ABC ∠的角平分线,这条角平分线与线段MN 的交点即为O ;③以O 为圆心,ON 为半径画圆,圆O 即为所求; (2)过点O 作OE AB ⊥,垂足为E ,设ON OE r == ∵53BM =,2BC =,∴1BN =,∴43MN = 根据面积法,∴BMN BNO BMO S S S =+△△△ ∴141151123223r r ⨯⨯=⨯⋅+⨯⋅,解得12r =, 故答案为:12r =.【点睛】本题考查了尺规作图,切线的性质等内容,解题的关键是掌握线段垂直平分线、角平分线的尺规作图. 25.如图,DB 过O 的圆心,交O 于点A 、B ,DC 是O 的切线,点C 是切点,已知30D ∠=︒,3DC =.(1)求证:ΔΔBOC BCD ;(2)求BCD ∆的周长.【答案】(1)见解析;(2)BCD 的周长为323+【解析】 【分析】(1)由切线的性质可得90OCD ∠=︒,由外角的性质可得120BOC ∠=︒,由等腰三角形的性质30B OCB ∠=∠=︒,可得30B D ∠=∠=︒,可得结论;(2)由直角三角形的性质可得1OC OB ==,2DO =,即可求解. 【详解】证明:(1)DC 是O 的切线,90OCD ∴∠=︒, 30D ∠=︒,3090120BOC D OCD ∴∠=∠+∠=︒+︒=︒,OB OC =,30B OCB ∴∠=∠=︒, D OCB ∴∠=∠,BOC BCD ∴△∽△;(2)30D ∠=︒,3DC =,90OCD ∠=︒,33DC OC ∴=2DO OC =,1OC OB ∴==,2DO =,30B D ∠=∠=︒,3DC BC ∴==,BCD ∴△的周长3321323CD BC DB =++=+++=+.【点睛】本题考查了相似三角形的判定和性质,切线的性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.26.有一块矩形地块ABCD ,20AB =米,30BC =米,为美观,拟种植不同的花卉,如图所示,将矩形ABCD 分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x 米.现决定在等腰梯形AEHD 和BCGF 中种植甲种花卉;在等腰梯形ABFE 和CDHG 中种植乙种花卉;在矩形EFGH 中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60 元/米2、40元/米2,设三种花卉的种植总成本为y 元.(1)当5x =时,求种植总成本y ;(2)求种植总成本y 与x 的函数表达式,并写出自变量x 的取值范围;(3)若甲、乙两种花卉的种植面积之差不超过120米2,求三种花卉的最低种植总成本.【答案】(1)当5x =时,22000y =;(2)40024000(010)=-+<<y x x ;(3)当6x =时,y 最小为21600. 【解析】 【分析】(1)根据112()202()604022y EH AD x GH CD x EF EH =⨯+⨯+⨯+⨯⨯+⨯,即可求解;(2)参考(1),由题意得:(30302)20(20202)60(302)(202)40(010)y x x x x x x x =⨯-++-+--<<; (3)()()212302302602S EH AD x x x x x =⨯+⨯=-+=-+甲,2240x x S =-+乙,则22260(240)120x x x x -+--+,即可求解.【详解】解:(1)当5x =时,20210EF x =-=,30220EH x =-=, 故112()202()604022y EH AD x GH CD x EF EH =⨯+⨯+⨯+⨯⨯+⨯(2030)520(1020)56020104022000=+⨯⨯++⨯⨯+⨯⨯=;(2)202EF x =-,302EH x =-,参考(1),由题意得:(30302)20(20202)60(302)(202)4040024000(010)y x x x x x x x x =⨯-++-+--=-+<<;(3)()()212302302602S EH AD x x x x x =⨯+⨯=-+=-+甲, 同理2240x x S =-+乙,甲、乙两种花卉的种植面积之差不超过120米2,22260(240)120x x x x ∴-+--+, 解得:6x , 故06x <,而40024000y x =-+随x 的增大而减小,故当6x =时,y 的最小值为21600, 即三种花卉的最低种植总成本为21600元.【点睛】本题考查了一次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.27.如图,在矩形ABCD 中,2AB =,1AD =,点E 为边CD 上的一点(与C 、D 不重合)四边形ABCE 关于直线AE 的对称图形为四边形ANME ,延长ME 交AB 与点P ,记四边形PADE 的面积为S .(1)若3DE =,求S 的值; (2)设DE x =,求S 关于x 的函数表达式.【答案】(1)32S =;(2)21124+=+x S x x 【解析】 【分析】(1)解Rt △ADE 可得60AED ∠=︒和AE 的长,然后根据平行线的性质、对称的性质可得60BAE AEP =∠=︒∠,进而可判断APE 为等边三角形,再根据S =S △APE +S △ADE 解答即可;(2)过点E 作EF AB ⊥于点F ,如图,则四边形ADEF 是矩形,由(1)得AEP AED PAE ∠=∠=∠,从而可得AP PE =,设AP PE a ==,则PF a x =-,然后在Rt PEF 中根据勾股定理即可利用x 表示a ,然后根据S =S △APE +S △ADE 即可求出结果. 【详解】解:(1)在Rt △ADE 中,∵33DE =,1AD =, ∴tan 3AED ∠=,∴60AED ∠=︒, ∴232AE DE ==∵//AB CD ,∴60=︒∠BAE ,∵四边形ABCE 关于直线AE 的对称图形为四边形ANME , ∴AEC AEM ∠=∠,∵PEC DEM ∠=∠,∴60AEP AED ∠=∠=︒,∴APE 为等边三角形,∴S =S △APE +S △ADE=2323133143232⎛⎫⨯+⨯⨯= ⎪ ⎪⎝⎭;(2)过点E 作EF AB ⊥于点F ,如图,则四边形ADEF 是矩形,∴AF ED x ==,1EF AD ==,由(1)可知,AEP AED PAE ∠=∠=∠,∴AP PE =,设AP PE a ==,则PF a x =-,在Rt PEF 中,由勾股定理,得:()221a x a -+=,解得:212x a x+=, ∴S =S △APE +S △ADE =22111111122224x x x x x x++⋅⋅+⋅⋅=+.【点睛】本题考查了矩形的判定和性质、轴对称的性质、等边三角形的判定和性质、勾股定理以及解直角三角形等知识,考查的知识点多、综合性强,熟练掌握上述知识是解题的关键.28.在平面直角坐标系中,O 为坐标原点,直线OA 交二次函数214y x =的图像于点A ,90AOB ∠=︒,点B 在该二次函数的图像上,设过点()0,m (其中0m >)且平行于x 轴的直线交直线OA 于点M ,交直线OB 于点N ,以线段OM 、ON 为邻边作矩形OMPN .(1)若点A 的横坐标为8.①用含m 的代数式表示M 的坐标;②点P 能否落在该二次函数的图像上?若能,求出m 的值;若不能,请说明理由;(2)当2m =时,若点P 恰好落在该二次函数的图像上,请直接写出此时满足条件的所有直线OA 的函数表达式.【答案】(1)①1,2M m m ⎛⎫⎪⎝⎭;②能,329m =;(2)(21)y x =±或(21)y x =-. 【解析】【分析】(1)①求出点A 的坐标,直线直线OA 的解析式即可解决问题.②求出直线OB 的解析式,求出点N 的坐标,利用矩形的性质求出点P 的坐标,再利用待定系数法求出m 的值即可.(2)分两种情形:①当点A 在y 轴的右侧时,设21(,)4A a a ,求出点P 的坐标利用待定系数法构建方程求出a 即可.②当点A 在y 轴的左侧时,即为①中点B 的位置,利用①中结论即可解决问题.【详解】解:(1)①点A 在214y x =的图象上,横坐标为8, (8,16)A ∴, ∴直线OA 的解析式为2y x =,点M 的纵坐标为m ,1(2M m ∴,)m ; ②假设能在抛物线上,90AOB ∠=︒,∴直线OB 的解析式为12y x =-, 点N 在直线OB 上,纵坐标为m ,(2,)N m m ∴-,MN ∴的中点的坐标为3(4m -,)m ,3(2P m ∴-,2)m ,把点P 坐标代入抛物线的解析式得到329m =. (2)①当点A 在y 轴右侧时,设21,4A a a ⎛⎫ ⎪⎝⎭,所以直线OA 解析式为14y ax =, ∴8,2M a ⎛⎫ ⎪⎝⎭, OB OA ⊥,∴直线OB 的解析式为4y x a=-,可得(2a N -,2), 8(2a P a ∴-,4),代入抛物线的解析式得到,842a a -=, 解得424a =±,∴直线OA 的解析式为(21)y x =±.②当点A 在y 轴左侧时,即为①中点B 位置,∴直线OA 的解析式为()421y x x a =-=-±; 综上所述,直线OA 的解析式为(21)y x =±或(21)y x =-±.【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,矩形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。
中考数学真题试题含解析试题1
2021年中考数学真题试题第一卷一、选择题:此题一共10小题,每一小题4分,一共40分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1.3的相反数是〔 〕A .-3B .13-C .13D .3 【答案】A【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;应选A.2.如图,由四个正方体组成的几何体的左视图是〔 〕A .B .C .D .【答案】B 【解析】从左边看可以看到两个小正方形摞在一起,应选B.3.用科学计数法表示136 000,其结果是〔 〕A .60.13610⨯B .51.3610⨯C .313610⨯D .613610⨯【答案】B×105,应选B.4.化简2(2)x 的结果是〔 〕A .4xB .22xC . 24xD .4x【答案】C【解析】〔2x 〕2=4x 2;应选C.5.以下关于图形对称性的命题,正确的选项是〔 〕A .圆既是轴对称性图形,又是中心对称图形B .正三角形既是轴对称图形,又是中心对称图形C .线段是轴对称图形,但不是中心对称图形D .菱形是中心对称图形,但不是轴对称图形【答案】A 点睛:此题主要考察中心对称图形与轴对称图形的知识,能正确地区分是解题的关键.6. 不等式组:⎩⎨⎧>+≤-0302x x 的解集是〔 〕A .32x -<≤B .32x -≤<C . 2x ≥D .3x <-【答案】A【解析】由①得x ≤2,由②得x>-3,所以解集为:-3<x ≤2,应选A.7.某校举行“汉字听写比赛〞,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是〔 〕A .10,15B .13,15C .13,20D .15,15【答案】D【解析】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,应选D.8.如图,AB 是O 的直径,,C D 是O 上位于AB 异侧的两点.以下四个角中,一定与ACD ∠互余的角是〔 〕A .ADC ∠B .ABD ∠C . BAC ∠D .BAD ∠【答案】D【解析】∵AB 是直径,∴∠ADB=90°,∴∠BAD+∠B=90°,∵∠ACD=∠B ,∴∠BAD+∠ACD=90°,应选D.9.假设直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,那么n 的值可以是〔 〕A .3B .4C .5D .6【答案】C10.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做一样的旋转,分别得到线段A B ''和点P ',那么点P '所在的单位正方形区域是〔 〕A .1区B .2区C .3区D .4区【答案】D【解析】如图,根据题意可得旋转中心O ,旋转角是90°,旋转方向为逆时针,因此可知点P 的对应点落在了4区,应选D. O点睛:此题主要考察图形的旋转,能根据题意正确地确定旋转中心、旋转方向、旋转角是解题的关键.第二卷〔一共90分〕二、填空题:此题一共6小题,每一小题4分,一共24分.11.计算023--= .【答案】1【解析】原式=2-1=1.12. 如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,假设3DE =,那么线段BC 的长等于 .【答案】6【解析】∵E 、F 分别是AB 、AC 的中点,∴BC=2EF=6.13.一个箱子装有除颜色外都一样的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 .【答案】红球〔或者红色的〕 14.,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如下图.假设2BC AB =,那么点C 表示的数是 .【答案】7【解析】∵AB=2,BC=2AB ,∴BC=4,3+4=7,故点C 表示的数是7.15.两个完全一样的正五边形都有一边在直线l 上,且有一个公一共顶点O ,其摆放方式如下图,那么AOB ∠等于 度.DC1的图象上,且点x的面积为.三、解答题 :此题一共9小题,一共86分.解容许写出文字说明、证明过程或者演算步骤.17. 先化简,再求值:1)11(2-⋅-a a a ,其中12-=a . 【答案】1a+1 ,22. 【解析】试题分析:先通分计算括号内的,然后再利用分式的乘除法进展计算,最后代入求值即可. 试题解析:原式=()()11111a a a a a a -=+-+ , 当a=2 -1时,原式=1211-+ =22. 18. 如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CF ===.求证: A D ∠=∠.【答案】证明见解析.【解析】19.如图,ABC ∆中,90,BAC AD BC ∠=⊥,垂足为D .求作ABC ∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保存作图痕迹,不写作法)【答案】作图见解析;证明见解析.【解析】试题分析:按作图方法作出角平分线BQ ,然后通过利用互为余角以及等角的余角相等得到∠APQ=∠ AQP,从而证得AP=AQ.试题解析:作图如下,BQ 就是所求作的∠ABC 的平分线,P 、Q 就是所求作的点.证明如下:∵AD ⊥BC ,∴∠ADB=90°,∴∠BPD+∠PBD=90°,∵∠BAC=90°,∴∠AQP+∠ABQ=90°,∵∠ABQ=∠PBD ,∴∠BPD=∠AQP ,∵∠BPD=∠APQ ,∴∠APQ=∠ AQP,∴AP=AQ.20.我国古代数学著作?孙子算经?中有“鸡兔同笼〞问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.〞其大意是:“有假设干只鸡和兔关在同一笼子里,它们一一共有35个头,94条腿.问笼中的鸡和兔各有多少只?〞试用列方程〔组〕解应用题的方法求出问题的解.【答案】鸡有23只,兔有12只.【解析】21.如图,四边形ABCD内接于O,AB是O的直径,点P在CA的延长线上,∠=.CAD45AB=,求弧CD的长;〔Ⅰ〕假设4=,求证:PD是O的切线.〔Ⅱ〕假设弧BC=弧AD,AD AP【答案】〔Ⅰ〕CD的长=π;〔Ⅱ〕证明见解析.【解析】试题分析:〔Ⅰ〕连接OC,OD,由圆周角定理可得∠COD=90°,然后利用弧长公式即可得;〔Ⅱ〕由BC=AD,可得∠BOC=∠AOD,从而可得∠AOD=45°,再由三角形内角和从而可得∠ODA=°,由AD=AP可得∠ADP=∠APD,由∠CAD=∠ADP+∠APD,∠CAD=45°可得∠°,继而可得∠ODP=90°,从而得 PD是⊙O的切线.试题解析:〔Ⅰ〕连接OC ,OD ,∵∠COD=2∠CAD ,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=12 AB=2,∴CD 的长=902180π⨯⨯ =π;22.小明在某次作业中得到如下结果:2222sin 7sin 830.120.990.9945+≈+=,2222sin 22sin 680.370.93 1.0018+≈+=,2222sin 29sin 610.480.870.9873+≈+=,2222sin 37sin 530.600.80 1.0000+≈+=,222222sin 45sin 45()122+≈+=. 据此,小明猜测:对于任意锐角α,均有22sin sin (90)1αα+-=.〔Ⅰ〕当30α=时,验证22sin sin (90)1αα+-=是否成立;〔Ⅱ〕小明的猜测是否成立?假设成立,假设成立,请给予证明;假设不成立,请举出一个反例.【答案】〔Ⅰ〕成立,证明见解析;〔Ⅱ〕成立,证明见解析.【解析】试题分析:〔Ⅰ〕成立,当30α=时,将30°与60°的正弦值代入计算即可得证; 〔Ⅱ〕成立,如图,△ABC 中,∠C=90°,设∠A=α,那么∠B=90°-α,正确地表示这两个角的正弦并利用勾股定理即可得证.试题解析:〔Ⅰ〕当30α=时, 22sin sin (90)αα+-=sin 230°+sin 260°=221322⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭=1344+ =1,所以22sin sin (90)1αα+-=成立; 〔Ⅱ〕小明的猜测成立.证明如下:如图,△ABC 中,∠C=90°,设∠A=α,那么∠B=90°-α,sin 2α+sin 2〔90°-α〕=2222222BC AC BC AC AB AB AB AB AB +⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭=123.自2021年国庆后,许多高校均投放了使用手机就可随用的一共享单车.某运营商为进步其经营的A 品牌一共享单车的场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开场,当次用车免费.详细收费HY 如下: 使用次数 012345(含5次以上)累计车费ab同时,就此收费方案随机调查了某高校100名师生在一天中使用A 品牌一共享单车的意愿,得到如下数据:使用次数 0 1 2 3 4 5 人数51510302515〔Ⅰ〕写出,a b 的值;〔Ⅱ〕该校有5000名师生,且A 品牌一共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A 品牌一共享单车能否获利? 说明理由. 【答案】〔Ⅰ〕a=1.2,b=1.4;〔Ⅱ〕不能获利,理由见解析; 【解析】试题分析:〔Ⅰ〕根据调整后的收费歀:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开场,当次用车免费通过计算即可得a=1.2,b=1.4;〔Ⅱ〕根据用车意愿调查结果,抽取的100名师生每人每天使用A 品牌一共享单车的平均车费 为:1100×〔0××××××15〕=1.1〔元〕, 所以估计该校5000名师生一天使用A 品牌一共享单车的总车费为:5000×1.1=5500〔元〕, 因为5500<5800,故收费调整后,此运营商在该校投放A 品牌一共享单车不能获利. 24.如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.〔Ⅰ〕假设PCD ∆是等腰三角形时,求AP 的长; 〔Ⅱ〕假设2AP =,求CF 的长.【答案】〔Ⅰ〕AP 的长为4或者5或者145;〔Ⅱ〕CF=324【解析】试题分析:〔Ⅰ〕分情况CP=CD 、PD=PC 、DP=DC 讨论即可得;〔Ⅱ〕连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP=2 ,从而可得CF=324. 试题解析:〔Ⅰ〕在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6, AC=22AD DC +=10;要使△PCD 是等腰三角形,有如下三种情况: 〔1〕当CP=CD 时,CP=6,∴AP=AC-CP=4 ;〔2〕当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC,即AP=5;〔3〕当DP=DC 时,过D 作DQ ⊥AC 于Q ,那么PQ=CQ ,∵S △ADC =12 AD ·DC=12AC ·DQ ,∴DQ=245AD DC AC =,∴CQ=22185DC DQ -= ,∴PC=2CQ =365 ,∴AP=AC-PC=145. 综上所述,假设△PCD 是等腰三角形,AP 的长为4或者5或者145;〔Ⅱ〕连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,点睛:此题主要考察矩形的性质、等腰三角形的断定与性质,相似三角形的断定与性质等,能正确地分情况进展讨论是断定△PCD 要等腰三角形的关键.25.直线m x y +=2与抛物线2y ax ax b =++有一个公一共点(1,0)M ,且a b <. 〔Ⅰ〕求抛物线顶点Q 的坐标〔用含a 的代数式表示〕; 〔Ⅱ〕说明直线与抛物线有两个交点; 〔Ⅲ〕直线与抛物线的另一个交点记为N .〔ⅰ〕假设211-≤≤-a ,求线段MN 长度的取值范围; 〔ⅱ〕求QMN ∆面积的最小值. 【答案】〔Ⅰ〕抛物线顶点Q 的坐标为〔-12,-94a 〕;〔Ⅱ〕理由见解析;〔Ⅲ〕〔i 〕55≤MN ≤75.〔ii 〕△QMN 面积的最小值为279242+. 【解析】试题分析:〔Ⅰ〕由抛物线过点M 〔1,0〕,可得b=-2a ,将解析式y=ax 2+ax+b=ax 2+ax-2a 配方得y=a(x+12)2- 94a ,从而可得抛物线顶点Q 的坐标为〔- 12,- 94a〕. 〔Ⅱ〕由直线y=2x+m 经过点M 〔1,0〕,可得m=-2.由y=2x-2、y=ax 2+ax-2a ,可得ax 2+〔a-2〕x-2a+2=0,〔*〕,由根的判别式可得方程(*)有两个不相等的实数根,从而可得直线与抛物线有两个交点.〔ii 〕作直线x=-12 交直线y=2x-2于点E ,得 E 〔-12,-3〕, 从而可得△QMN 的面积S=S △QEN +S △QEM =2732748a a --,即27a 2+(8S-54)a+24=0,〔*〕 因为关于a 的方程〔*〕有实数根, 从而可和S ≥279242+,继而得到面积的最小值. 试题解析:〔Ⅰ〕因为抛物线过点M 〔1,0〕,所以a+a+b=0,即b=-2a ,所以y=ax 2+ax+b=ax 2+ax-2a=a(x+12)2-94a ,所以抛物线顶点Q 的坐标为〔-12,-94a〕.〔Ⅱ〕因为直线y=2x+m 经过点M 〔1,0〕,所以0=2×1+m ,解得m=-2. 把y=2x-2代入y=ax 2+ax-2a ,得ax 2+〔a-2〕x-2a+2=0,〔*〕,所以△=(a-2)2-4a(-2a+2)=9a 2-12a+4由〔Ⅰ〕知b=-2a ,又a<b ,所以a<0,b>0,所以△>0,所以方程(*)有两个不相等的实数根,故直线与抛物线有两个交点.〔ii 〕作直线x=-12 交直线y=2x-2于点E ,把x=-12代入y=2x-2得,y=-3,即E 〔-12,-3〕,又因为M 〔1,0〕,N 〔2a -2,4a-6〕,且由〔Ⅱ〕知a<0, 所以△QMN 的面积S=S △QEN +S △QEM =()12921324a a ⎛⎫----- ⎪⎝⎭=2732748a a -- , 即27a 2+(8S-54)a+24=0,〔*〕因为关于a 的方程〔*〕有实数根,所以△=〔8S-54〕2-4×27×24≥0,即〔8S-54〕2≥〔2 〕2,又因为a<0,所以S=2732748a a -->274,所以8S-54>0,所以8S-54>0, 所以8S-54≥2,即S ≥279242, 当S=279242+*〕可得223满足题意. 故当223,423时,△QMN 面积的最小值为279242.点睛:此题考察的二次函数的综合问题,能正确地应用待定系数法、一元二次方程根的判别式、二次函数的性质等是解决此题的关键.励志赠言经典语录精选句;挥动**,放飞梦想。
2024年江苏省无锡市中考数学试卷及答案解析
2024年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的。
)1.(3分)4的倒数是()A.B.﹣4C.2D.±22.(3分)在函数中,自变量x的取值范围是()A.x≠3B.x>3C.x<3D.x≥33.(3分)分式方程的解是()A.x=1B.x=﹣2C.D.x=24.(3分)一组数据:31,32,35,37,35,这组数据的平均数和中位数分别是()A.34,34B.35,35C.34,35D.35,345.(3分)下列图形是中心对称图形的是()A.等边三角形B.直角三角形C.平行四边形D.正五边形6.(3分)已知圆锥的底面圆半径为3,母线长为4,则圆锥的侧面积为()A.6πB.12πC.15πD.24π7.(3分)《九章算术》中有一道“凫雁相逢”问题(凫:野鸭),大意如下:野鸭从南海飞到北海需要7天,大雁从北海飞到南海需要9天.如果野鸭、大雁分别从南海、北海同时起飞,经过多少天相遇?设经过x天相遇,则下列方程正确的是()A.B.C.9x+7x=1D.9x﹣7x=18.(3分)如图,在△ABC中,∠B=80°,∠C=65°,将△ABC绕点A逆时针旋转得到△AB′C′.当AB′落在AC上时,∠BAC′的度数为()A.65°B.70°C.80°D.85°9.(3分)如图,在菱形ABCD中,∠ABC=60°,E是CD的中点,则sin∠EBC的值为()A.B.C.D.10.(3分)已知y是x的函数,若存在实数m,n(m<n),当m≤x≤n时,y的取值范围是tm≤y≤tn(t >0).我们将m≤x≤n称为这个函数的“t级关联范围”.例如:函数y=2x,存在m=1,n=2,当1≤x≤2时,2≤y≤4,即t=2,所以1≤x≤2是函数y=2x的“2级关联范围”.下列结论:①1≤x≤3是函数y=﹣x+4的“1级关联范围”;②0≤x≤2不是函数y=x2的“2级关联范围”;③函数总存在“3级关联范围”;④函数y=﹣x2+2x+1不存在“4级关联范围”.其中正确的为()A.①③B.①④C.②③D.②④二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)分解因式:x2﹣9=.12.(3分)在科技创新的强力驱动下,中国高铁事业飞速发展,高铁技术已经领跑世界.截至2023年底,我国高铁营业里程达到45000km.数据45000用科学记数法表示为.13.(3分)正十二边形的内角和等于度.14.(3分)命题“若a>b,则a﹣3<b﹣3”是命题.(填“真”或“假”)15.(3分)某个函数的图象关于原点对称,且当x>0时,y随x的增大而增大.请写出一个符合上述条件的函数表达式:.16.(3分)在△ABC中,AB=4,BC=6,AC=8,D,E,F分别是AB,BC,AC的中点,则△DEF的周长为.17.(3分)在探究“反比例函数的图象与性质”时,小明先将直角边长为5个单位长度的等腰直角三角板ABC摆放在平面直角坐标系中,使其两条直角边AC,BC分别落在x轴负半轴、y轴正半轴上(如图所示),然后将三角板向右平移a个单位长度,再向下平移a个单位长度后,小明发现A,B两点恰好都落在函数的图象上,则a的值为.18.(3分)如图,在△ABC中,AC=2,AB=3,直线CM∥AB,E是BC上的动点(端点除外),射线AE 交CM于点D.在射线AE上取一点P,使得AP=2ED,作PQ∥AB,交射线AC于点Q.设AQ=x,PQ=y.当x=y时,CD=;在点E运动的过程中,y关于x的函数表达式为.三、解答题(本大题共10小题,共96分。
2022年中考数学真题分类汇编:二次函数解答题(含答案)
2022中考数学真题汇编——二次函数解答题1.(2022·浙江省绍兴市)已知函数y=-x2+bx+c(b,c为常数)的图象经过点(0,-3),(-6,-3).2.(1)求b,c的值.3.(2)当-4≤x≤0时,求y的最大值.4.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.5.(2022·浙江省舟山市)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).6.(1)求抛物线L1的函数表达式.7.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.8.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3.已知点P(8-t,s),Q(t-4,r)都在抛物线L3上,若当t>6时,都有s>r,求n的取值范围.9.(2022·四川省凉山彝族自治州)在平面直角坐标系xOy中,已知抛物线y=-x2+bx+c经过点A(-1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C 下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.10.(1)求抛物线的解析式;11.(2)求点P的坐标;12.(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.13.(2022·浙江省丽水市)如图,已知点M(x1,y1),N(x2,y2)在二次函数y=a(x-2)2-1(a>0)的图象上,且x2-x1=3.14.(1)若二次函数的图象经过点(3,1).15.①求这个二次函数的表达式;16.②若y1=y2,求顶点到MN的距离;17.(2)当x1≤x≤x2时,二次函数的最大值与最小值的差为1,点M,N在对称轴的异侧,求a的取值范围.18.19.(2022·山东省滨州市)如图,在平面直角坐标系中,抛物线y=x2-2x-3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.20.(1)求线段AC的长;21.(2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;22.(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.23.(2022·四川省南充市)抛物线y=1x2+bx+c与x轴分别交于点A,B(4,0),与y轴3交于点C(0,-4).24.(1)求抛物线的解析式.25.(2)如图1,▱BCPQ顶点P在抛物线上,如果▱BCPQ面积为某值时,符合条件的点P有且只有三个,求点P的坐标.26.(3)如图2,点M在第二象限的抛物线上,点N在MO延长线上,OM=2ON,连接BN并延长到点D,使ND=NB.MD交x轴于点E,∠DEB与∠DBE均为锐角,tan∠DEB=2tan∠DBE,求点M的坐标.27.(2022·四川省德阳市)抛物线的解析式是y=-x2+4x+a.直线y=-x+2与x轴交于点M,与y轴交于点E,点F与直线上的点G(5,-3)关于x轴对称.28.(1)如图①,求射线MF的解析式;29.(2)在(1)的条件下,当抛物线与折线EMF有两个交点时,设两个交点的横坐标是x1,x2(x1<x2),求x1+x2的值;30.(3)如图②,当抛物线经过点C(0,5)时,分别与x轴交于A,B两点,且点A在点B的左侧.在x轴上方的抛物线上有一动点P,设射线AP与直线y=-x+2交于的最大值.点N.求PNAN31.(2022·重庆市B卷)如图,在平面直角坐标系中,抛物线y=-3x2+bx+c与x轴交于点A4(4,0),与y轴交于点B(0,3).32.(1)求抛物线的函数表达式;33.(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+6AM的最大值及此时点P的坐标;534.(3)在(2)的条件下,点P′与点P关于抛物线y=-3x2+bx+c的对称轴对称.将4x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线抛物线y=-34上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.35.(2022·重庆市A卷)如图,在平面直角坐标系中,抛物线y=1x2+bx+c与直线AB交于2点A(0,-4),B(4,0).36.(1)求该抛物线的函数表达式;37.(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD的最大值及此时点P的坐标;38.(3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N 的坐标的其中一种情况的过程.39.(2022·四川省遂宁市)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(-1,0),点C的坐标为(0,-3).40.(1)求抛物线的解析式;41.(2)如图1,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,-2),求△DEF周长的最小值;42.(3)如图2,N为射线CB上的一点,M是抛物线上的一点,M、N均在第一象限内,B、N位于直线AM的同侧,若M到x轴的距离为d,△AMN面积为2d,当△AMN 为等腰三角形时,求点N的坐标.43.(2022·四川省成都市)如图,在平面直角坐标系xOy中,直线y=kx-3(k≠0)与抛物线y=-x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.44.(1)当k=2时,求A,B两点的坐标;45.(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;46.(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.47.(2022·四川省达州市)如图1,在平面直角坐标系中,已知二次函数y=ax2+bx+2的图象经过点A(-1,0),B(3,0),与y轴交于点C.48.(1)求该二次函数的表达式;49.(2)连接BC,在该二次函数图象上是否存在点P,使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;50.(3)如图2,直线l为该二次函数图象的对称轴,交x轴于点E.若点Q为x轴上方二次函数图象上一动点,过点Q作直线AQ,BQ分别交直线l于点M,N,在点Q的运动过程中,EM+EN的值是否为定值?若是,请求出该定值;若不是,请说明理由.51.(2022·四川省泸州市)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(-2,0),B(0,4)两点,直线x=3与x轴交于点C.52.(1)求a,c的值;53.(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;54.(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.55.(2022·江苏省连云港市)已知二次函数y=x2+(m-2)x+m-4,其中m>2.56.(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;57.(2)求证:二次函数y=x2+(m-2)x+m-4的顶点在第三象限;58.(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=-x-2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.59.(2022·山东省)如图,抛物线y=ax2+3x+c与x轴交于点A,B,与y轴交于点C,已2知A,C两点坐标分别是A(1,0),C(0,-2),连接AC,BC.60.(1)求抛物线的表达式和AC所在直线的表达式;61.(2)将△ABC沿BC所在直线折叠,得到△DBC,点A的对应点D是否落在抛物线的对称轴上,若点D在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;62.(3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,△BPQ的面积记为S1,△ABQ的面积记为S2,求S1的值最大时点P的坐标.S263.(2022·四川省)如图,已知抛物线C1:y=ax2+4ax+4a-5的顶点为P,与x轴相交于A,B两点(点A在点B的左边),点B的横坐标是1.64.(1)求a的值及P的坐标;65.(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;66.(3)如图(2),点Q是x正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.67.(2022·安徽省)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.68.(1)求此抛物线对应的函数表达式;69.(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:70.(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;71.(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).72. (2022·浙江省金华市)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:73. ①统计售价与需求量的数据,通过描点(图1),发现该蔬莱需求量y 需求(吨)关于售价x (元/千克)的函数图象可以看成抛物线,其表达式为y 需求=ax 2+c ,部分对应值如下表:②该蔬莱供给量y 供给(吨)关于售价x (元/千克)的函数表达式为y 供给=x -1,函数图象见图1.③1~7月份该蔬莱售价x 售价(元/千克)、成本x 成本(元/千克)关于月份t 的函教表达式分别为x 售价=12t +2,x 成本=14t 2-32t +3,函数图象见图2.请解答下列问题:(1)求a ,c 的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.参考答案1.解:(1)把(0,-3),(-6,-3)代入y=-x2+bx+c,得b=-6,c=-3.(2)∵y=-x2-6x-3=-(x+3)2+6,又∵-4≤x≤0,∴当x=-3时,y有最大值为6.(3)①当-3<m≤0时,当x=0时,y有最小值为-3,当x=m时,y有最大值为-m2-6m-3,∴-m2-6m-3+(-3)=2,∴m=-2或m=-4(舍去).②当m≤-3时,当x=-3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为-4,∴-(m+3)2+6=-4,∴m=−3−√10或m=−3+√10(舍去).综上所述,m=-2或−3−√10.2.解:(1)把A(1,0)代入y=a(x+1)2-4得:a(1+1)2-4=0,解得a=1,∴y=(x+1)2-4=x2+2x-3;答:抛物线L1的函数表达式为y=x2+2x-3;(2)抛物线L1:y=(x+1)2-4的顶点为(-1,-4),将抛物线L1向上平移m(m>0)个单位得到抛物线L2,则抛物线L2的顶点为(-1,-4+m),而(-1,-4+m)关于原点的对称点为(1,4-m),把(1,4-m)代入y=x2+2x-3得:12+2×1-3=4-m,解得m=4,答:m的值为4;(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,抛物线L3解析式为y=(x-n+1)2-4,∵点P (8-t ,s ),Q (t -4,r )都在抛物线L 3上,∴s =(8-t -n +1)2-4=(9-t -n )2-4,r =(t -4-n +1)2-4=(t -n -3)2-4,∵当t >6时,s >r ,∴s -r >0,∴[(9-t -n )2-4]-[(t -n -3)2-4]>0,整理变形得:(9-t -n )2-(t -n -3)2>0,(9-t -n +t -n -3)(9-t -n -t +n +3)>0,(6-2n )(12-2t )>0,∵t >6,∴12-2t <0,∴6-2n <0,解得n >3,∴n 的取值范围是n >3.3.解:(1)把A (-1,0)和点B (0,3)代入y =-x 2+bx +c ,得{−1−b +c =0c =3, 解得:{b =2c =3, ∴抛物线解析式为y =-x 2+2x +3;(2)∵y =-(x -1)2+4,∴C (1,4),抛物线的对称轴为直线x =1,如图,设CD =t ,则D (1,4-t ),∵线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处,∴∠PDC =90°,DP =DC =t ,∴P (1+t ,4-t ),把P (1+t ,4-t )代入y =-x 2+2x +4得:-(1+t )2+2(1+t )+3=4-t ,整理得t 2-t =0,解得:t 1=0(舍去),t 2=1,∴P (2,3);(3)∵P 点坐标为(2,3),顶点C 坐标为(1,4),将抛物线平移,使其顶点落在原点O ,这时点P 落在点E 的位置,∴E 点坐标为(1,-1),∴点E 关于y 轴的对称点F (-1,-1),连接PF 交y 轴于M ,则MP +ME =MP +MF =PF 的值最小,设直线PF 的解析式为y =kx +n ,∴{2k +n =3−k +n =−1, 解得:{k =43n =13, ∴直线PF 的解析式为y =43x +13,∴点M 的坐标为(0,13). 4.解:(1)①∵二次函数y =a (x -2)2-1(a >0)经过(3,1),∴1=a -1,∴a =2,∴二次函数的解析式为y =2(x -2)2-1;②∵y 1=y 2,∴M ,N 关于抛物线的对称轴对称,∵对称轴是直线x =2,且x 2-x 1=3,∴x 1=12,x 2=72,当x =12时,y 1=2(12-2)2-1=72,∴当y 1=y 2时,顶点到MN 的距离=72+1=92;(2)设抛物线与X 轴的交点为A (m ,0),B (n ,0)(m >n ). ∵x 1≤x ≤x 2时,二次函数的最大值与最小值的差为1,点M ,N 在对称轴的异侧, 又∵二次函数y 的最小值为-1,∴x =x 1或x 2时,y 的值为0,点M ,点N 在x 轴上或在x 轴的下方, ∴AB ≥3,∴m -n ≥3,令y =0,可得a (x -2)2-1=0,∴m =2+√a ,n =2-√a ,∴(2+√a )-(2-√a )≥3, ∴√a ≥3,又∵a >0,∴0<a ≤49. 5.解:(1)针对于抛物线y =x 2-2x -3,令x =0,则y =-3,∴C (0,-3);令y =0,则x 2-2x -3=0,∴x =3或x =-1,∵点A 在点B 的左侧,∴A (-1,0),B (3,0),∴AC =√(−1−0)2+(0+3)2=√10;(2)∵抛物线y =x 2-2x -3的对称轴为直线x =-−22=1,∵点P 为该抛物线对称轴上,∴设P (1,p ),∴PA =√(1+1)2+p 2=√p 2+4,PC =√12+(p +3)2=√p 2+6p +10,∵PA=PC,∴√p2+4=√p2+6p+10,∴p=-1,∴P(1,-1);(3)由(1)知,B(3,0),C(0,-3),∴OB=OC=3,设M(m,m2-2m-3),∵△BCM为直角三角形,∴①当∠BCM=90°时,如图1,过点M作MH⊥y轴于H,则HM=m,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠HCM=90°-∠OCB=45°,∴∠HMC=45°=∠HCM,∴CH=MH,∵CH=-3-(m2-2m-3)=-m2+2m,∴-m2+2m=m,∴m=0(不符合题意,舍去)或m=1,∴M(1,-4);②当∠CBM=90°时,过点M作M'H'⊥x轴,同①的方法得,M'(-2,3);③当∠BMC=90°时,如图2,过点M作MD⊥y轴于D,过点B作BE⊥DM,交DM的延长线于E,∴∠CDM=∠E=90°,∴∠DCM+∠DMC=90°,∵∠DMC +∠EMB =90°,∴∠DCM =∠EMB ,∴△CDM ∽△MEB ,∴CD ME =MD BE ,∵M (m ,m 2-2m -3),B (3,0),C (0,-3),∴DM =m ,CD =m 2-2m -3+3=m 2-2m ,ME =3-m ,BE =-(m 2-2m -3)=-m 2+2m +3, ∴m 2−2m 3−m =m−m 2+2m+3,∴m =0(舍去)或m =3(点B 的横坐标,不符合题意,舍去)或m =1−√102(不符合题意,舍去)或m =1+√102,∴M (1+√102,-5+2√104), 即满足条件的M 的坐标为(1,-4)或(-2,3)或(1+√102,-5+2√104). 6.解:(1)由题意得,{13×42+4b +c =0c =−4, ∴{b =−13c =−4, ∴y =13x 2-13x −4;(2)如图1,作直线l ∥BC 且与抛物线相切于点P 1,直线l 交y 轴于E ,作直线m ∥BC 且直线m 到BC 的距离等于直线l 到BC 的距离,∵BC 的解析式为y =x -4,∴设直线l 的解析式为:y =x +b ,由13x 2−13x −4=x +b 得,x 2-4x -3(b +4)=0,∵Δ=0,∴-3(b +4)=4,∴b =-163,∴x 2-4x +4=0,y =x -163,∴x =2,y =-103,∴P 1(2,-103),∵E (0,-163),C (0,-4),∴F (0,-4×2-(-163)), 即(0,-83),∴直线m 的解析式为:y =x -83,∴{y =13x 2−13x −4y =x −83, ∴{x 1=2+2√2y 1=2√2−23,{x 2=2−2√2y 2=−2√2−23, ∴P 2(2-2√2,-2√2-23),P 3(2+2√2,2√2-23),综上所述:点P (2,-103)或(2-2√2,-2√2-23)或(2+2√2,2√2-23); (3)如图2,作MG ⊥x 轴于G ,作NH ⊥x 轴于H ,作MK ⊥DF ,交DF 的延长线于K , 设D 点的横坐标为a ,∵BN =DN ,∴BD =2BN ,N 点的横坐标为:a+42,∴OH=a+42,∵MH∥DF,∴△BHN∽△BFD,∴NH DF =BNBD=12,∴DF=2NH,同理可得:△OMG∽△ONH,∴MG NH =OGOH=OMON=2,∴MG=2NH,OG=2OH=a+4,∴KF=MG=DF,∵tan∠DEB=2tan∠DBE∴DF EF =2•DFBF,∴EF=12BF,∵BF=4-a,∴EF=12(4−a),∵EF∥MK,∴△DEF∽△DMK,∴EF MK =DF DK,∴12(4−a) 2a+4=12,∴a=0,∴OG=a+4=4,∴G(-4,0),当x=-4时,y=13×(−4)2-13×(−4)-4=83,∴M(-4,83).7.解:(1)∵点F与直线上的点G(5,-3)关于x轴对称,∴F(5,3),∵直线y=-x+2与x轴交于点M,∴M(2,0),设直线MF的解析式为y=kx+b,则有{2k +b =05k +b =3, 解得{k =1b =−2, ∴射线MF 的解析式为y =x -2(x ≥2);(2)如图①中,设折线EMF 与抛物线的交点为P ,Q .∵抛物线的对称轴x =-4−2=2,点M (2,0),∴点M 值抛物线的对称轴上,∵直线EM 的解析式为y =-x +2,直线MF 的解析式为y =x -2, ∴直线EM ,直线MF 关于直线x =2对称,∴P ,Q 关于直线x =2对称,∴2=x 1+x 22,∴x 1+x 2=4;(3)如图②中,过点P 作PT ∥AB 交直线ME 于点T .∵C(0,5),∴抛物线的解析式为y=-x2+4x+5,∴A(-1,0),B(5,0),设P(t,-t2+4t+5),则T(t2-4t-3,-t2+4t+5),∵PT∥AM,∴PN AN =PTAM=13(t-(t2-4t-3)=-13(t-52)2+3712,∵-13<0,∴PN AN 有最大值,最大值为3712.8.解:(1)∵抛物线y=-34x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).∴{−12+4b+c=0c=3,∴{b=9 4c=3.∴抛物线的函数表达式为y=-34x2+94x+3;(2)∵A(4,0),B(0,3),∴OA=4,OB=3,由勾股定理得,AB=5,∵PQ⊥OA,∴PQ∥OB,∴△AQM∽△AOB,∴MQ:AQ:AM=3:4:5,∴AM=53MQ,65AM=2MQ,∴PM+65AM=PM+2MQ,∵B(0,3),A(4,0),∴l AB:y=-34x+3,∴设P(m,-34m2+94m+3),M(m,-34m+3),Q(m,0),∴PM+2MQ=-34m2+32m+6=-34(m−1)2+274,∵-34<0,∴开口向下,0<m<4,∴当m=1时,PM+65AM的最大值为274,此时P(1,92);(3)由y=-34x2+94x+3知,对称轴x=32,∴P'(2,92),∵直线l:x=4,∴抛物线向右平移52个单位,∴平移后抛物线解析式为y'=-34x2+6x−11716,设D(4,t),C(c,-34c2+6c−11716),①AP'与DC为对角线时,{4+2=4+c0+92=t+(−34c2+6c−11716),∴{c=2t=4516,∴D(4,4516),②P'D与AC为对角线时,{2+4=4+c92+t=0+(−34c2+6c−11716),∴{c=2t=−4516,∴D(4,-4516),③AD与P'C为对角线时,{4+4=2+c0+t=92+(−34c2+16c−11716),∴{c=6t=9916,∴D(4,9916),综上:D (4,4516)或(4,-4516)或(4,9916).9.解:(1)把A (0,-4),B (4,0)代入y =12x 2+bx +c 得:{c =−48+4b +c =0, 解得{b =−1c =−4,∴抛物线的函数表达式为y =12x 2-x -4;(2)设直线AB 解析式为y =kx +t ,把A (0,-4),B (4,0)代入得: {t =−44k +t =0, 解得{k =1t =−4,∴直线AB 解析式为y =x -4,设P (m ,12m 2-m -4),则PD =-12m 2+m +4, 在y =x -4中,令y =12m 2-m -4得x =12m 2-m , ∴C (12m 2-m ,12m 2-m -4), ∴PC =m -(12m 2-m )=-12m 2+2m ,∴PC +PD =-12m 2+2m -12m 2+m +4=-m 2+3m -4=-(m -32)2+254, ∵-1<0,∴当m =32时,PC +PD 取最大值254, 此时12m 2-m -4=12×(32)2-32-4=-358, ∴P (32,-358);答:PC +PD 的最大值为254,此时点P 的坐标是(32,-358);(3)∵将抛物线y =12x 2-x -4向左平移5个单位得抛物线y =12(x +5)2-(x +5)-4=12x 2+4x +72, ∴新抛物线对称轴是直线x =-42×12=-4,在y =12x 2+4x +72中,令x =0得y =72, ∴F (0,72),将P (32,-358)向左平移5个单位得E (-72,-358), 设M (-4,n ),N (r ,12r 2+4r +72),①当EF 、MN 为对角线时,EF 、MN 的中点重合, ∴{0−72=−4+r72−358=n +12r 2+4r +72,解得r =12,∴12r 2+4r +72=12×(12)2+4×12+72=458, ∴N (12,458);②当FM 、EN 为对角线时,FM 、EN 的中点重合, ∴{0−4=−72+r72+n =−358+12r 2+4r +72,解得r =-12,∴12r 2+4r +72=12×(-12)2+4×(-12)+72=138, ∴N (-12,138);③当FN 、EM 为对角线时,FN 、EM 的中点重合, ∴{0+r =−72−472+12r 2+4r +72=−358+n , 解得r =-152,∴12r 2+4r +72=12×(-152)2+4×(-152)+72=138, ∴N (-152,138);综上所述,N 的坐标为:(12,458)或(-12,138)或(-152,138).10.解:(1)∵抛物线y =x 2+bx +c 经过点A (-1,0),点C (0,-3).∴{1−b +c =0c =−3, ∴{b =−2c =−3, ∴抛物线的解析式为y =x 2-2x -3;(2)如图,设D 1为D 关于直线AB 的对称点,D 2为D 关于ZX 直线BC 的对称点,连接D 1E ,D 2F ,D 1D 2.由对称性可知DE =D 1E ,DF =D 2F ,△DEF 的周长=D 1E +EF +D 2F , ∴当D 1,E .F .D 2共线时,△DEF 的周长最小,最小值为D 1D 2的长, 令y =0,则x 2-2x -3=0, 解得x =-1或3, ∴B (3,0), ∴OB =OC =3,∴△BOC 是等腰直角三角形, ∵BC 垂直平分DD 2,且D (-2,0), ∴D 2(1,-3), ∵D ,D 1关于x 轴的长, ∴D 1(0,2),∴D 1D 2=√D 2C 2+D 1C 2=√52+12=√26, ∴△DEF 的周长的最小值为√26.(3)∵M 到x 轴距离为d ,AB =4,连接BM . ∴S △ABM =2d , 又∵S △AMN =2d , ∴S △ABM =S △AMN ,∴B ,N 到AM 的距离相等, ∵B ,N 在AM 的同侧, ∴AM ∥BN ,设直线BN 的解析式为y =kx +m , 则有{m =−33k +m =0,∴{k =1m =−3, ∴直线BC 的解析式为y =x -3, ∴设直线AM 的解析式为y =x +n , ∵A (-1,0),∴直线AM 的解析式为y =x +1,由{y =x +1y =x 2−2x −3,解得{x =1y =0或{x =4y =5, ∴M (4,5), ∵点N 在射线BC 上, ∴设N (t ,t -3),过点M 作x 轴的平行线l ,过点N 作y 轴的平行线交x 轴于点P ,交直线l 于点Q .∵A (-1,0),M (4,5),N (t ,t -3),∴AM =5√2,AN =√(t +1)2+(t −3)2,MN =√(t −4)2+(t −8)2, ∵△AMN 是等腰三角形,当AM =AN 时,5√2=√(t +1)2+(t −3)2, 解得t =1±√21,当AM =MN 时,5√2=√(t −4)2+(t −8)2, 解得t =6±√21,当AN =MN 时,√(t +1)2+(t −3)2=√(t −4)2+(t −8)2, 解得t =72, ∵N 在第一象限, ∴t >3,∴t 的值为72,1+√21,6+√21,∴点N 的坐标为(72,12)或(1+√21,-2+√21)或(6+√21,3+√21).11.解:(1)当k =2时,直线为y =2x -3,由{y =2x −3y =−x 2得:{x =−3y =−9或{x =1y =−1, ∴A (-3,-9),B (1,-1); (2)当k >0时,如图:∵△B 'AB 的面积与△OAB 的面积相等, ∴OB '∥AB , ∴∠OB 'B =∠B 'BC , ∵B 、B '关于y 轴对称,∴OB =OB ',∠ODB =∠ODB '=90°, ∴∠OB 'B =∠OBB ', ∴∠OBB '=∠B 'BC ,∵∠ODB =90°=∠CDB ,BD =BD , ∴△BOD ≌△BCD (ASA ), ∴OD =CD ,在y =kx -3中,令x =0得y =-3, ∴C (0,-3),OC =3, ∴OD =12OC =32,D (0,-32), 在y =-x 2中,令y =-32得-32=-x 2, 解得x =√62或x =-√62,把B (2,-2)代入y =kx -3得:-32=√62k -3,解得k =√62;当k <0时,过B '作B 'F ∥AB 交y 轴于F ,如图:在y =kx -3中,令x =0得y =-3, ∴E (0,-3),OE =3,∵△B 'AB 的面积与△OAB 的面积相等, ∴OE =EF =3,∵B 、B '关于y 轴对称, ∴FB =FB ',∠FGB =∠FGB '=90°, ∴∠FB 'B =∠FBB ', ∵B 'F ∥AB , ∴∠EBB '=∠FB 'B , ∴∠EBB '=∠FBB ',∵∠BGE =90°=∠BGF ,BG =BG , ∴△BGF ≌△BGE (ASA ), ∴GE =GF =12EF =32,∴OG =OE +GE =92,G (0,-92), 在y =-x 2中,令y =-92得-92=-x 2, 解得x =3√22或x =-3√22,把B (2,-2)代入y =kx -3得:-92=3√22k -3,解得k =-√22,综上所述,k 的值为√62或-√22;(3)直线AB '经过定点(0,3),理由如下: 由{y =−x 2y =kx −3得: {x =−k−√k 2+122y =−k 2−k√k 2+12−62或{x =−k+√k 2+122y =−k 2+k√k 2+12−62, ∴A (−k−√k2+122,−k2−k√k 2+12−62),B (−k+√k2+122,−k2+k√k 2+12−62),∵B 、B '关于y 轴对称, ∴B '(k−√k2+122,−k2+k√k 2+12−62),设直线AB '解析式为y =mx +n ,将A (−k−√k2+122,−k2−k√k 2+12−62),B '(k−√k 2+122,−k2+k√k 2+12−62)代入得:{−k 2−k√k 2+12−62=−k−√k 2+122m +n−k 2+k√k 2+12−62=k−√k 2+122m +n,解得{m =√k 2+12n =3,∴直线AB '解析式为y =√k 2+12•x +3, 令x =0得y =3,∴直线AB '经过定点(0,3).12.解:(1)∵抛物线y =ax 2+bx +2经过点A (-1,0),B (3,0),∴{a −b +2=09a +3b +2=0, 解得:{a =−23b =43,∴该二次函数的表达式为y =−23x 2+43x +2; (2)存在,理由如下: 如图1,当点P 在BC 上方时, ∵∠PCB =∠ABC ,∴CP ∥AB ,即CP ∥x 轴,∴点P 与点C 关于抛物线对称轴对称, ∵y =−23x 2+43x +2, ∴抛物线对称轴为直线x =-432×(−23)=1,∵C (0,2), ∴P (2,2);当点P 在BC 下方时,设CP 交x 轴于点D (m ,0), 则OD =m ,DB =3-m , ∵∠PCB =∠ABC , ∴CD =BD =3-m ,在Rt △COD 中,OC 2+OD 2=CD 2, ∴22+m 2=(3-m )2, 解得:m =56, ∴D (56,0),设直线CD 的解析式为y =kx +d ,则{56k +d =0d =2,解得:{k =−125d =2,∴直线CD 的解析式为y =−125x +2, 联立,得{y =−125x +2y =−23x 2+43x +2, 解得:{x 1=0y 1=2(舍去),{x 2=225y 2=−21425, ∴P (225,-21425),综上所述,点P 的坐标为(2,2)或(225,-21425);(3)由(2)知:抛物线y =−23x 2+43x +2的对称轴为直线x =1, ∴E (1,0),设Q (t ,−23t 2+43t +2),且-1<t <3, 设直线AQ 的解析式为y =ex +f ,则{−e +f =0te +f =−23t 2+43t +2,解得:{e =−23t +2f =−23t +2, ∴直线AQ 的解析式为y =(−23t +2)x -23t +2, 当x =1时,y =-43t +4, ∴M (1,-43t +4),同理可得直线BQ 的解析式为y =(-23t -23)x +2t +2, 当x =1时,y =43t +43, ∴N (1,43t +43), ∴EM =-43t +4,EN =43t +43, ∴EM +EN =-43t +4+43t +43=163, 故EM +EN 的值为定值163.13.解:(1)把A (-2,0),B (0,4)两点代入抛物线y =ax 2+x +c 中得:{4a −2+c =0c =4解得:{a =−12c =4;(2)由(2)知:抛物线解析式为:y =-12x 2+x +4, 设直线AB 的解析式为:y =kx +b , 则{−2k +b =0b =4,解得:{k =2b =4, ∴AB 的解析式为:y =2x +4, 设直线DE 的解析式为:y =mx , ∴2x +4=mx , ∴x =4m−2, 当x =3时,y =3m , ∴E (3,3m ),∵△BDO 与△OCE 的面积相等,CE ⊥OC , ∴12•3•(-3m )=12•4•42−m , ∴9m 2-18m -16=0, ∴(3m +2)(3m -8)=0, ∴m 1=-23,m 2=83(舍),∴直线DE的解析式为:y=-23x;(3)存在,B,F,G,P为顶点的四边形是以BF为一边的矩形有两种情况:设P(t,-12t2+t+4),①如图1,过点P作PH⊥y轴于H,∵四边形BPGF是矩形,∴BP=FG,∠PBF=∠BFG=90°,∴∠CFG+∠BFO=∠BFO+∠OBF=∠CFG+∠CGF=∠OBF+∠PBH=90°,∴∠PBH=∠OFB=∠CGF,∵∠PHB=∠FCG=90°,∴△PHB≌△FCG(AAS),∴PH=CF,∴CF=PH=t,OF=3-t,∵∠PBH=∠OFB,∴PH BH =OBOF,即t−12t2+t+4−4=43−t,解得:t1=0(舍),t2=1,∴F(2,0);②如图2,过点G作GN⊥y轴于N,过点P作PM⊥x轴于M,同①可得:NG =FM =3,OF =t -3, ∵∠OFB =∠FPM , ∴tan ∠OFB =tan ∠FPM , ∴OB OF =FM PM ,即4t−3=3−12t 2+t+4,解得:t 1=1+√2014,t 2=1−√2014(舍),∴F (√201−114,0);综上,点F 的坐标为(2,0)或(√201−114,0).14.(1)解:把O (0,0)代入y =x 2+(m -2)x +m -4得:m -4=0, 解得m =4,∴y =x 2+2x =(x +1)2-1,∴函数图象的顶点A 的坐标为(-1,-1);(2)证明:由抛物线顶点坐标公式得y =x 2+(m -2)x +m -4的顶点为(2−m 2,−m 2+8m−204),∵m >2, ∴2-m <0, ∴2−m 2<0,∵−m 2+8m−204=-14(m -4)2-1≤-1<0,∴二次函数y =x 2+(m -2)x +m -4的顶点在第三象限;(3)解:设平移后图象对应的二次函数表达式为y =x 2+bx +c ,其顶点为(-b2,4c−b 24),当x =0时,B (0,c ),将(-b 2,4c−b 24)代入y =-x -2得:4c−b 24=b2-2, ∴c =b 2+2b−84,∵B (0,c )在y 轴的负半轴, ∴c <0, ∴OB =-c =-b 2+2b−84,过点A 作AH ⊥OB 于H ,如图:∵A (-1,-1), ∴AH =1, 在△AOB 中, S △AOB =12OB •AH =12×(-b 2+2b−84)×1=-18b 2-14b +1=-18(b +1)2+98, ∵-18<0,∴当b =-1时,此时c <0,S △AOB 取最大值,最大值为98, 答:△AOB 面积的最大值是98.15.解:(1)∵抛物线y =ax 2+32x +c 过点A (1,0),C (0,-2),∴{0=a +32+c −2=c ,解得:{a =12c =−2. ∴抛物线的表达式为y =12x 2+32x −2. 设直线AC 的表达式为y =kx +b ,则 {k +b =0b =−2,解得:{k =2b =−2. ∴直线AC 的表达式为y =2x -2.(2)点D 不在抛物线的对称轴上,理由是:∵抛物线的表达式为y=12x2+32x−2,∴点B坐标为(-4,0).∵OA=1,OC=2,∴OA OC =OCOB.又∵∠AOC=∠BOC=90°,∴△AOC~△COB.∴∠ACO=∠CBO.∴∠ACO+∠BCO=∠COB+∠BCO=90°,∴AC⊥BC.∴将△ABC沿BC所在直线折叠,点D一定落在直线AC上,延长AC至D,使DC=AC,过点D作DE⊥y轴交y轴于点E,如图1.又∵∠ACO=∠DCE,∴△ACO≌△DCE(AAS).∴DE=AO=1,则点D横坐标为-1,∵抛物线的对称轴为直线x=-32.故点D不在抛物线的对称轴上.(3)设过点B、C的直线表达式为y=mx+n,∵C(0,-2),B(-4,0),∴{−2=n0=−4m+n,解得:{m=−12n=−2.∴过点B、C的直线解析式为y=−12x−2.过点A作x轴的垂线交BC的延长线于点M,点M坐标为(1,-52),过点P作x轴的垂线交BC于点N,垂足为H,如图2.设点P坐标为(m,12m2+32m−2),则点N坐标为(m,−12m−2),∴PN=−12m−2-(12m2+32m−2)=−12m2−2m,∵PN∥AM,∴△AQM~△PQN.∴PQ AQ =PNAM.若分别以PQ 、AQ 为底计算△BPQ 和△BAQ 的面积(同高不等底),则△BPQ 与△BAQ 的面积比为PQ AQ ,即S 1S 2=PQAQ .∴S 1S 2=PNAM =−12m 2−2m 52=−m 25−4m 5=−15(m +2)2+45. ∵-15<0,∴当m =-2时,S 1S 2的最大值为45,此时点P 坐标为(-2,-3).16.解:(1)由抛物线C 1:y =a (x +2)2-5得,顶点P 的坐标为(-2,-5), ∵点B (1,0)在抛物线C 1上, ∴0=a (1+2)2-5, 解得a =59;(2)连接PM ,作PH ⊥x 轴于H ,作MG ⊥x 轴于G ,∴∠PHB =∠MGB =90°,∵点P 、M 关于点B 成中心对称, ∴PM 过点B ,且PB =MB ,PH =MG ∴Rt △PBH ≌Rt △MBG (HL ), ∴MG =PH =5,BG =BH =3, ∴顶点M 的坐标为(4,5),抛物线C 2由C 1关于x 轴对称得到,抛物线C 3由C 2平移得到, ∴抛物线C 3的表达式为y =-59(x -4)2+5;(3)∵抛物线C 4由C 1绕点x 轴上的点Q 旋转180°得到, ∴顶点N 、P 关于点Q 成中心对称, 由(2)得点N 的纵坐标为5, 设点N 坐标为(m ,5),作PH ⊥x 轴于H ,作NG ⊥x 轴于G , 作PK ⊥NG 于K ,∵旋转中心Q 在x 轴上,∴点B 与点E 是对应点,点A 与点F 是对应点, ∴EF =AB .∵点P 是抛物线的顶点, ∴AH =BH , ∴BH =3 ∴AB =2BH =6∵点N 是抛物线的顶点, ∴FG =EG =12EF =12AB =3 ∴点F 坐标为(m +3,0).H 坐标为(-2,0),K 坐标为(m ,-5), ∵顶点P 的坐标为(-2,-5), 根据勾股定理得:PN 2=NK 2+PK 2=m 2+4m +104, PF 2=PH 2+HF 2=m 2+10m +50, NF 2=52+32=34,①当∠PNF =90°时,PN 2+NF 2=PF 2,解得m =443, ∴Q 点坐标为(193,0).②当∠PFN =90°时,PF 2+NF 2=PN 2,解得m =103, ∴Q 点坐标为(23,0). ③∵PN >NK =10>NF , ∴∠NPF ≠90°综上所得,当Q 点坐标为(193,0)或(23,0)时,以点P 、N 、F 为顶点的三角形是直角三角形.17.解:(1)由题意可得:A (-6,2),D (6,2),又∵E (0,8)是抛物线的顶点,设抛物线对应的函数表达式为y =ax 2+8,将A (-6,2)代入, (-6)2a +8=2, 解得:a =-16,∴抛物线对应的函数表达式为y =-16x 2+8;(2)(ⅰ)∵点P 1的横坐标为m (0<m ≤6),且四边形P 1P 2P 3P 4为矩形,点P 2,P 3在抛物线AED 上,∴P 2的坐标为(m ,-16m 2+8), ∴P 1P 2=P 3P 4=MN =-16m 2+8,P 2P 3=2m ,∴l =3(-16m 2+8)+2m =-12m 2+2m +24=-12(m -2)2+26, ∵-12<0,∴当m =2时,l 有最大值为26,即栅栏总长l 与m 之间的函数表达式为l =-12m 2+2m +24,l 的最大值为26; (ⅱ)方案一:设P 2P 1=n ,则P 2P 3=18-3n ,∴矩形P 1P 2P 3P 4面积为(18-3n )n =-3n 2+18n =-3(n -3)2+27, ∵-3<0,∴当n =3时,矩形面积有最大值为27, 此时P 2P 1=3,P 2P 3=9, 令-16x 2+8=3, 解得:x =±√30,∴此时P 1的横坐标的取值范围为-√30+9≤P 1横坐标≤√30, 方案二:设P 2P 1=n ,则P 2P 3=18−2n 2=9-n ,∴矩形P 1P 2P 3P 4面积为(9-n )n =-n 2+n =-(n -92)2+814, ∵-1<0,∴当n =92时,矩形面积有最大值为814,此时P 2P 1=92,P 2P 3=92, 令-16x 2+8=92, 解得:x =±√21,∴此时P 1的横坐标的取值范围为-√21+92≤P 1横坐标≤√21.18.解:(1)把(3,7.2),(4,5.8)代入y 需求=ax 2+c ,{9a +c =7.2①16a +c =5.8②,②-①,得7a =-1.4, 解得:a =-15,把a =-15代入①,得c =9, ∴a 的值为-15,c 的值为9;(2)设这种蔬菜每千克获利w 元,根据题意, w =x 售价-x 成本=12t +2-(14t 2-32t +3)=-14(t -4)2+3, ∵-14<0,且1≤t ≤7, ∴当t =4时,w 有最大值,答:在4月份出售这种蔬菜每千克获利最大; (3)当y 供给=y 需求时,x -1=-15x 2+9, 解得:x 1=5,x 2=-10(舍去), ∴此时售价为5元/千克,则y 供给=x -1=5-1=4(吨)=4000(千克), 令12t +2=5,解得t =6,∴w =-14(t -4)2+3=-14(6-4)2+3=2, ∴总利润为w •y =2×4000=8000(元), 答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.。
2022年全国中考数学真题分项汇编专题1:实数(含解析)
专题01 实数一.选择题1.(2022·湖南长沙)-6的相反数是()A. B. -6 C. D. 62.(2022·四川成都)的相反数是()A.B.C.D.3.(2022·安徽)下列为负数的是()A.B.C.0D.4.(2022·江西)实数a,b在数轴上的对应点的位置如图所示,则下列结论中,正确的是()A.B.C.D.5.(2022·江苏苏州)下列实数中,比3大的数是()A.5B.1C.0D.-26.(2022·山东泰安)计算的结果是()A.-3B.3C.-12D.127.(2022·湖南娄底)截至2022年6月2日,世界第四大水电站——云南昭通溪洛渡水电站累计生产清洁电能突破5000亿千瓦时,相当于替代标准煤约1.52亿吨,减排二氧化碳约4.16亿.5000亿用科学计数法表示为()A.B.C.D.8.(2022·湖南娄底)在古代,人们通过在绳子上打结来计数.即“结绳计数”.当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了()A.1335天B.516天C.435天D.54天9.(2022·湖南湘潭)如图,点、表示的实数互为相反数,则点表示的实数是()A.2B.-2C.D.10.(2022·云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10 ℃D.-20℃11.(2022·四川南充)下列计算结果为5的是()A.B.C.D.12.(2022·江苏宿迁)-2的绝对值是()A.2B.C.D.13.(2022·山东泰安)的倒数是()A.B.C.5D.14.(2022·天津)计算的结果等于()A.B.C.5D.115.(2022·湖南邵阳)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为,则的值是()A.0.11B.1.1C.11D.1100016.(2022·浙江杭州)圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为-6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.-8℃B.-4℃C.4℃D.8℃17.(2022·浙江杭州)国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为()A.B.C.D.18.(2022·江苏连云港)-3的倒数是()A.3B.-3C.D.19.(2022·四川自贡)下列运算正确的是()A. B. C. D.20.(2022·浙江宁波)的相反数是()A.2022B.C.D.21.(2022·四川达州)下列四个数中,最小的数是()A.0B.-2C.1D.22.(2022·浙江舟山)估计的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间23.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.24.(2022·四川泸州)()A.B.C.D.225.(2022·四川凉山)化简:=()A.±2B.-2C.4D.226.(2022·浙江金华)在中,是无理数的是()A.B.C.D.227.(2022·湖南株洲)在0、、-1、这四个数中,最小的数是()A.0B.C.-1D.28.(2022·四川眉山)截至2021年12月31日,全国共有共青团组织约367.7万个.将367.7万用科学记数法表示为()A.B.C.D.29.(2022·四川泸州)与最接近的整数是()A.4B.5C.6D.7二.填空题30.(2022·江苏宿迁)2022年5月,国家林业和草原局湿地管理司在第二季度侧行发布会上表示,到“十四五”末,我国力争将湿地保护率提高到55%,其中修复红树林146200亩,请将146200用科学记数法表示是____.31.(2022·浙江杭州)计算:_________;_________.32.(2022·湖南株洲)计算:3+(﹣2)=_____.33.(2022·江苏扬州)扬州市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是__.34.(2022·江苏宿迁)满足的最大整数是_______.35.(2022·陕西)实数a,b在数轴上对应点的位置如图所示,则a______.(填“>”“=”或“<”)36.(2022·陕西)计算:______.37.(2022·江苏连云港)写出一个在1到3之间的无理数:_________.38.(2022·浙江宁波)写出一个大于2的无理数_____.39.(2022·重庆)计算:_________.40.(2022·四川南充)比较大小:_______________.(选填>,=,<)41.(2022·四川泸州)若,则________.42.(2022·湖南湘潭)四个数-1,0,,中,为无理数的是_________.三.解答题43.(2022·新疆)计算:44.(2022·四川泸州)计算:.45.(2022·浙江丽水)计算:.46.(2022·湖南邵阳)计算:.47.(2022·陕西)计算:.48.(2022·江苏宿迁)计算:4°.49.(2022·湖南株洲)计算:.50.(2022·四川眉山)计算:.51.(2022·江苏连云港)计算:.52.(2022·浙江金华)计算:.53.(2022·四川德阳)计算:.54.(2022·浙江杭州)计算:.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算.(2)如果计算结果等于6,求被污染的数字.专题01 实数一.选择题1.(2022·湖南长沙)-6的相反数是()A. B. -6 C. D. 6【答案】D【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:相反数是6.故选D.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.(2022·四川成都)的相反数是()A.B.C.D.【答案】A【分析】直接根据相反数的求法求解即可.【详解】解:任意一个实数a的相反数为-a由 −的相反数是;故选A.【点睛】本题主要考查相反数,熟练掌握求一个数的相反数是解题的关键.3.(2022·安徽)下列为负数的是()A.B.C.0D.【答案】D【分析】根据正负数的意义分析即可;【详解】解:A、=2是正数,故该选项不符合题意;B、是正数,故该选项不符合题意;C、0不是负数,故该选项不符合题意;D、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.4.(2022·江西)实数a,b在数轴上的对应点的位置如图所示,则下列结论中,正确的是()A.B.C.D.【答案】C【分析】根据数轴上点的特点,进行判断即可.【详解】ABC.根据数轴上点a、b的位置可知,,,∴,故AB错误,C正确;根据数轴上点a、b的位置可知,,故D错误.故选:C.【点睛】本题主要考查了数轴上点的特点,熟练掌握数轴上点表示的数,越向右越大,是解题的关键.5.(2022·江苏苏州)下列实数中,比3大的数是()A.5B.1C.0D.-2【答案】A【分析】根据有理数的大小比较法则比较即可.【详解】解:因为-2<0<1<3<5,所以比3大的数是5,故选:A.【点睛】本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键.6.(2022·山东泰安)计算的结果是()A.-3B.3C.-12D.12【答案】B【分析】直接计算即可得到答案.【详解】==3故选:B.【点睛】本题考查有理数的乘法,解题的关键是熟练掌握有理数乘法的知识.7.(2022·湖南娄底)截至2022年6月2日,世界第四大水电站——云南昭通溪洛渡水电站累计生产清洁电能突破5000亿千瓦时,相当于替代标准煤约1.52亿吨,减排二氧化碳约4.16亿.5000亿用科学计数法表示为()A.B.C.D.【答案】B【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数,先将5000亿转化成数字,然后按要求表示即可.【详解】解:5000亿,根据科学记数法要求500000000000的5后面有11个0,从而用科学记数法表示为,故选:B.【点睛】本题考查科学记数法,按照定义,确定与的值是解决问题的关键.8.(2022·湖南娄底)在古代,人们通过在绳子上打结来计数.即“结绳计数”.当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了()A.1335天B.516天C.435天D.54天【答案】B【分析】根据题意以及图形分析,根据满七进一,即可求解.【详解】解:绳结表示的数为故选B 【点睛】本题考查了有理数的混合运算,理解“满七进一”是解题的关键.9.(2022·湖南湘潭)如图,点、表示的实数互为相反数,则点表示的实数是()A.2B.-2C.D.【答案】A【分析】根据互为相反数的两个数的和为0即可求解.【详解】解:因为数轴上两点A,B表示的数互为相反数,点A表示的数是-2,所以点B表示的数是2,故选:A.【点睛】此题考查了相反数的性质,数轴上两点间的距离,解题的关键是利用数形结合思想解答.10.(2022·云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10 ℃D.-20℃【答案】C【分析】零上温度记为正,则零下温度就记为负,则可得出结论.【详解】解:若零上记作,则零下可记作:.故选:C.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.11.(2022·四川南充)下列计算结果为5的是()A.B.C.D.【答案】C【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、,不符合题意;故选:C.【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.12.(2022·江苏宿迁)-2的绝对值是()A.2B.C.D.【答案】A【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.【详解】在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,故选:A.13.(2022·山东泰安)的倒数是()A.B.C.5D.【答案】A【详解】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以结合绝对值的意义,得的倒数为.故选A.14.(2022·天津)计算的结果等于()A.B.C.5D.1【答案】A【分析】直接计算得到答案.【详解】==故选:A.【点睛】本题考查有理数的运算,解题的关键是熟练掌握有理数的运算知识.15.(2022·湖南邵阳)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为,则的值是()A.0.11B.1.1C.11D.11000【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:因为1亿=108,所以11000亿用科学记数法表示为1.1×104×108=1.1×1012.故选:B.【点睛】此题考查了科学记数法表示绝对值大于1的数.解题的关键是关键知道1亿=108,要正确确定a的值以及n的值.16.(2022·浙江杭州)圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为-6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.-8℃B.-4℃C.4℃D.8℃【答案】D【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【详解】解:这天最高温度与最低温度的温差为2-(-6)=8.故选:D.【点睛】本题主要考查有理数的减法法则,关键是根据减去一个数等于加上这个数的相反数解答.17.(2022·浙江杭州)国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为()A.B.C.D.【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【详解】解:1412600000=.故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(2022·江苏连云港)-3的倒数是()A.3B.-3C.D.【答案】D【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.19.(2022·四川自贡)下列运算正确的是()A. B. C. D.【答案】B【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.,故A错误;B.,故B正确;C.,故C错误;D.,故D错误.故选:B.【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.20.(2022·浙江宁波)的相反数是()A.2022B.C.D.【答案】A【分析】根据相反数的意义即只有符号不同的两个数互为相反数,即可解答.【详解】解:﹣2022的相反数是2022,故选:A.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.21.(2022·四川达州)下列四个数中,最小的数是()A.0B.-2C.1D.【答案】B【分析】根据实数的大小比较即可求解.【详解】解:∵,∴最小的数是,故选B.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.22.(2022·浙江舟山)估计的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间【答案】C【分析】根据无理数的估算方法估算即可.【详解】∵∴故选:C.【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.23.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.【答案】C【分析】据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、,该选项错误;B、,该选项错误;C、,该选项正确;D、,该选项错误;故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.24.(2022·四川泸州)()A.B.C.D.2【答案】A【分析】根据算术平方根的定义可求.【详解】解:-2,故选A.【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.25.(2022·四川凉山)化简:=()A.±2B.-2C.4D.2【答案】D【分析】先计算(-2)2=4,再求算术平方根即可.【详解】解:,故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.26.(2022·浙江金华)在中,是无理数的是()A.B.C.D.2【答案】C【分析】根据无理数的定义判断即可;【详解】解:∵-2,,2是有理数,是无理数,故选: C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.27.(2022·湖南株洲)在0、、-1、这四个数中,最小的数是()A.0B.C.-1D.【答案】C【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数比较大小的方法,可得:,∴在0、、-1、这四个数中,最小的数是-1.故选C.【点睛】此题主要考查了实数大小比较的方法.解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.28.(2022·四川眉山)截至2021年12月31日,全国共有共青团组织约367.7万个.将367.7万用科学记数法表示为()A.B.C.D.【答案】C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:367.7万=3677000=;选:C【点睛】此题考查了科学记数法.解题的关键是掌握科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.29.(2022·四川泸州)与最接近的整数是()A.4B.5C.6D.7【答案】C【分析】估算无理数的大小即可得出答案.【详解】解:∵12.25<15<16,∴3.5<<4,∴5.5<2+<6,∴最接近的整数是6,故选:C.【点睛】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.二.填空题30.(2022·江苏宿迁)2022年5月,国家林业和草原局湿地管理司在第二季度侧行发布会上表示,到“十四五”末,我国力争将湿地保护率提高到55%,其中修复红树林146200亩,请将146200用科学记数法表示是____.【答案】【分析】科学记数法就是把绝对值大于1的数表示成的形式,其中n就等于原数的位数减1.【详解】解:.故答案为:.【点睛】本题主要考查了科学记数法,牢记科学记数法的定义并准确求出中的n是做出本题的关键.31.(2022·浙江杭州)计算:_________;_________.【答案】 2 4【分析】根据算术平方根的性质,乘方的运算法则,即可求解.【详解】解:;.故答案为:2,4【点睛】本题主要考查了求一个数的算术平方根,乘方运算,熟练掌握算术平方根的性质,乘方的运算法则是解题的关键.32.(2022·湖南株洲)计算:3+(﹣2)=_____.【答案】1【分析】根据有理数的加法法则计算即可.【详解】3+(﹣2)=+(3﹣2)=1,故答案为1【点睛】本题主要考查了有理数的加法,熟练掌握法则是解答本题的关键.33.(2022·江苏扬州)扬州市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是__.【答案】8℃.【详解】用最高温度减去最低温度即可得当天的日温差:6-(-2)=6+2=8℃.34.(2022·江苏宿迁)满足的最大整数是_______.【答案】3【分析】先判断从而可得答案.【详解】解:满足的最大整数是3.故答案为:3.【点睛】本题考查的是无理数的估算,掌握“无理数的估算方法”是解本题的关键.35.(2022·陕西)实数a,b在数轴上对应点的位置如图所示,则a______.(填“>”“=”或“<”)【答案】<【分析】根据在数轴上右边的数据大于左边的数据即可得出答案.【详解】解:如图所示:-4<b<-3,1<a<2,∴,∴.故答案为:<.【点睛】此题主要考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键.36.(2022·陕西)计算:______.【答案】【分析】先计算,再计算3-5即可得到答案.【详解】解:.故答案为:-2.【点睛】本题主要考查了实数的运算,化简是解答本题的关键.37.(2022·江苏连云港)写出一个在1到3之间的无理数:_________.【答案】(答案不唯一)【分析】由于12=1,32=9,所以只需写出被开方数在1和9之间的,且不是完全平方数的数即可求解.【详解】解:1和3之间的无理数如.故答案为:(答案不唯一).【点睛】本题主要考查常见无理数的定义和性质,解题关键是估算无理数的整数部分和小数部分.38.(2022·浙江宁波)写出一个大于2的无理数_____.【答案】如(答案不唯一)【分析】首先2可以写成,由于开方开不尽的数是无理数,由此即可求解.【详解】解:∵2=,∴大于2的无理数须使被开方数大于4即可,如(答案不唯一).【点睛】本题考查无理数定义及比较大小.熟练掌握无理数的定义是解题的关键.39.(2022·重庆)计算:_________.【答案】5【分析】根据绝对值和零指数幂进行计算即可.【详解】解:,故答案为:5.【点睛】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键.40.(2022·四川南充)比较大小:_______________.(选填>,=,<)【答案】<【分析】先计算,,然后比较大小即可.【详解】解:,,∵,∴,故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.41.(2022·四川泸州)若,则________.【答案】【分析】由可得,,进而可求出和的值.【详解】∵,∴,,∴=2,,∴.故答案为-6.【点睛】本题考查了非负数的性质,①非负数有最小值是零;②有限个非负数之和仍然是非负数;③有限个非负数的和为零,那么每一个加数也必为零.,初中范围内的非负数有:绝对值,算术平方根和偶次方.42.(2022·湖南湘潭)四个数-1,0,,中,为无理数的是_________.【答案】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:-1,0,是有理数;是无理数;故答案为:.【点睛】此题考查了无理数的识别,无限不循环小数叫无理数,解题的关键是知道初中范围内常见的无理数有三类:①π类,如2π,π3等;②开方开不尽的数,如等;③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.三.解答题43.(2022·新疆)计算:【答案】【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式.【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1,.44.(2022·四川泸州)计算:.【答案】2【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式==2.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.45.(2022·浙江丽水)计算:.【答案】【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.【详解】解:.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.46.(2022·湖南邵阳)计算:.【答案】5-【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法.【详解】解:=1+4-2×=5-.【点睛】此题考查了零指数幂、负指数幂、锐角三角函数值,解题的关键是熟练掌握零指数幂、负指数幂、锐角三角函数值的计算法则.47.(2022·陕西)计算:.【答案】【分析】先算绝对值、算术平方根,零指数幂,再算乘法和加减法,即可求解.【详解】解:【点睛】本题主要考查实数的混合运算,掌握零指数幂和运算法则是解题的关键.48.(2022·江苏宿迁)计算:4°.【答案】2【分析】先计算负整数指数幂,二次根式的化简,特殊角的三角函数值,再计算乘法,再合并即可.【详解】解:【点睛】本题考查的是特殊角的三角函数值的运算,负整数指数幂的含义,二次根式的化简,掌握“运算基础运算”是解本题的关键.49.(2022·湖南株洲)计算:.【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:.【点睛】本题考查负数的偶次幂、二次根式化简以及特殊角的三角函数值,属于基础题,正确计算是解题的关键.50.(2022·四川眉山)计算:.【答案】7【分析】利用零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则计算即可.【详解】解:原式【点睛】本题考查零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则,熟练掌握实数的运算法则是解答此类问题的关键.51.(2022·江苏连云港)计算:.【答案】2【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.52.(2022·浙江金华)计算:.【答案】4【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.53.(2022·四川德阳)计算:.【答案】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.54.(2022·浙江杭州)计算:.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算.(2)如果计算结果等于6,求被污染的数字.【答案】(1)-9(2)3【分析】(1)根据有理数混合运算法则计算即可;(2)设被污染的数字为x,由题意,得,解方程即可;(1)解:;(2)设被污染的数字为x,由题意,得,解得,所以被污染的数字是3.【点睛】本题主要考查有理数的混合运算、一元一次方程的应用,掌握相关运算法则和步骤是接替的关键.。
2022年中考数学真题分类汇编:三角形-自定义类型 (1)(含答案)
2022年数学中考试题汇编三角形一、选择题(本大题共30小题,共90.0分)1.(2022·广西壮族自治区玉林市·历年真题)请你量一量如图△ABC中BC边上的高的长度,下列最接近的是( )A. 0.5cmB. 0.7cmC. 1.5cmD. 2cm2.(2022·浙江省杭州市·历年真题)如图,CD⊥AB于点D,已知∠ABC是钝角,则( )A. 线段CD是△ABC的AC边上的高线B. 线段CD是△ABC的AB边上的高线C. 线段AD是△ABC的BC边上的高线D. 线段AD是△ABC的AC边上的高线3.(2022·湖南省张家界市·历年真题)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=√3,则△AOB与△BOC的面积之和为( )A. √34B. √32C. 3√34D. √34.(2022·广西壮族自治区桂林市·历年真题)如图,在△ABC中,∠B=22.5°,∠C=45°,若AC=2,则△ABC的面积是( )A. 3+√2B. 1+√2C. 2√2D. 2+√225.(2022·浙江省湖州市·历年真题)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是( )A. 12B. 9C. 6D. 3√26.(2022·湖南省永州市·历年真题)下列多边形具有稳定性的是( )A. B.C. D.7.(2022·江苏省·历年真题)已知三角形的两边长分别为4cm和10cm,则该三角形的第三边的长度可能是( )A. 5cmB. 6cmC. 8cmD. 15cm8.(2022·河北省·历年真题)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=√2,则正确的是( )A. 只有甲答的对B. 甲、丙答案合在一起才完整C. 甲、乙答案合在一起才完整D. 三人答案合在一起才完整9.(2022·河北省·历年真题)平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是( )A. 1B. 2C. 7D. 810.(2022·江苏省宿迁市·历年真题)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是( )A. 8cmB. 13cmC. 8cm或13cmD. 11cm或13cm11.(2022·江苏省·历年真题)如图,将直尺与30°角的三角尺叠放在一起,若∠2=70°,则∠1的大小是( )A. 45°B. 50°C. 55°D. 40°12.(2022·浙江省金华市·历年真题)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是( )A. SSSB. SASC. AASD. HL13.(2022·四川省成都市·历年真题)如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC//DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是( )A. BC=DEB. AE=DBC. ∠A=∠DEFD. ∠ABC=∠D14.(2022·北京市·历年真题)如图,点E,点F在直线AC上,AF=CE,AD=CB,下列条件中不能推断△ADF≌△CBE的是( )A. ∠D=∠BB. ∠A=∠CC. BE=DFD. AD//BC15.(2022·广西壮族自治区梧州市·历年真题)如图,在△ABC中,AB=AC,AD是△ABC的角平分线,过点D分别作DE⊥AB,DF⊥AC,垂足分别是点E,F,则下列结论错误的是( )A. ∠ADC=90°B. DE=DFC. AD=BCD. BD=CD16.(2022·江苏省扬州市·历年真题)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A. AB,BC,CAB. AB,BC,∠BC. AB,AC,∠BD. ∠A,∠B,BC17.(2022·湖北省恩施土家族苗族自治州·历年真题)如图,在矩形ABCD中,连接BD,分别以B、D为圆心,大于1BD的长为半径画弧,两弧交于P、Q两点,作直线PQ,2分别与AD、BC交于点M、N,连接BM、DN.若AD=4,AB=2.则四边形MBND的周长为( )B. 5C. 10D. 20A. 5218.(2022·湖南省长沙市·历年真题)如图,在△ABC中,按以下步骤作图:AB的长为半径画弧,19.①分别过点A、B为圆心,大于12两弧交于P、Q两点;20.②作直线PQ交AB于点D;21.③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.22.若AB=2√2,则AM的长为( )A. 4B. 2C. √3D. √223.(2022·湖北省荆州市·历年真题)如图,直线l1//l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是( )A. 60°B. 70°C. 80°D. 90°24.(2022·黑龙江省鹤岗市·历年真题)如图,△ABC中,AB=AC,AD平分∠BAC与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若△ABC的面积是24,PD=1.5,则PE的长是( )A. 2.5B. 2C. 3.5D. 325.(2022·安徽省·历年真题)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是( )A. 3√32B. 5√32C. 3√3D. 7√3226.(2022·海南省·历年真题)如图,直线m//n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是( )A. 80°B. 100°C. 120°D. 140°27.(2022·广西壮族自治区贺州市·历年真题)如图,在Rt△ABC中,∠C=90°,∠B=56°,则∠A的度数为( )A. 34°B. 44°C. 124°D. 134°28.(2022·广西壮族自治区百色市·历年真题)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC中,∠A=30°,AC=3,∠A所对的边为√3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为( )A. 2√3B. 2√3−3C. 2√3或√3D. 2√3或2√3−329.(2022·浙江省宁波市·历年真题)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为( )A. 2√2B. 3C. 2√3D. 430.(2022·广西壮族自治区贵港市·历年真题)如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则cos∠BAC的值是( )A. √55B. √105C. 2√55D. 4531.(2022·贵州省贵阳市·历年真题)如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形.若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是( )A. 4B. 8C. 12D. 1632.(2022·湖北省·历年真题)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A. √3,2,√5B. 1,√2,√3C. 13,14,15D. 4,,5,633.(2022·湖北省鄂州市·历年真题)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC= BD=4cm,则这种铁球的直径为( )A. 10cmB. 15cmC. 20cmD. 24cm34.(2022·浙江省金华市·历年真题)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是( )A. B.C. D.二、填空题(本大题共10小题,共30.0分)35.(2022·江苏省常州市·历年真题)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD的面积是______.36.(2022·江苏省·历年真题)已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为__________.37.(2022·黑龙江省哈尔滨市·历年真题)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是______度.38.(2022·湖北省咸宁市·历年真题)如图,已知AB//DE,AB=DE,请你添加一个条件______,使△ABC≌△DEF.39.(2022·湖南省株洲市·历年真题)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,则∠ABO=______度.40.(2022·北京市·历年真题)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD=______.41.(2022·浙江省绍兴市·历年真题)如图,在△ABC中,∠ABC=40°,∠BAC=80°,以点A为圆心,AC长为半径作弧,交射线BA于点D,连结CD,则∠BCD的度数是______.42.(2022·北京市·历年真题)如图,△ABC是等边三角形,AE=BD,AD与CE交于点F,则∠CFD的度数是______ .43.(2022·广西壮族自治区梧州市·历年真题)如图,在△ABC中,∠ACB=90°,点D,E分别是AB,AC边上的中点,连接CD,DE.如果AB=5m,BC=3m,那么CD+DE的长是______m.44.(2022·贵州省贵阳市·历年真题)如图,在四边形ABCD中,对角线AC,BD相交于点E,AC=BC=6cm,∠ACB=∠ADB=90°.若BE=2AD,则△ABE的面积是______cm2,∠AEB=______度.三、解答题(本大题共6小题,共48.0分)45.(2022·江苏省南通市·历年真题)如图,AC和BD相交于点O,OA=OC,OB=OD.46.(1)求证:∠A=∠C;47.(2)求证:AB//CD.48.(2022·内蒙古自治区赤峰市·历年真题)如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.49.(1)作BC的垂直平分线,分别交AB、BC于点D、H;50.(要求:尺规作图,不写作法,保留作图痕迹)51.(2)在(1)的条件下,连接CD,求△BCD的周长.52.(2022·山西省·历年真题)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E 处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,√3≈1.73).53.54.(2022·黑龙江省鹤岗市·历年真题)△ABC和△ADE都是等边三角形.55.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA+PB=PC(或PA+PC=PB)成立(不需证明);56.(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;57.(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.58.59.(2022·浙江省杭州市·历年真题)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.60.(1)求证:CE=CM.61.(2)若AB=4,求线段FC的长.62.(2022·北京市·历年真题)在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.63.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;64.(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.65.1.【答案】D【解析】解:过点A作AD⊥BC于D,用刻度尺测量AD的长度,更接近2cm,故选:D.过点A作AD⊥BC于D,用刻度尺测量AD即可.本题考查的是三角形的高的概念,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.2.【答案】B【解析】解:A、线段CD是△ABC的AB边上的高线,故本选项说法错误,不符合题意;B、线段CD是△ABC的AB边上的高线,本选项说法正确,符合题意;C、线段AD不是△ABC的边上高线,故本选项说法错误,不符合题意;D、线段AD不是△ABC的边上高线,故本选项说法错误,不符合题意;故选:B.根据三角形的高的概念判断即可.本题考查的是三角形的高的概念,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.3.【答案】C【解析】解:将△AOB绕点B顺时针旋转60°得△BCD,连接OD,∴OB=OD,∠BOD=60°,CD=OA=2,∴△BOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+(√3)2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,∴△AOB与△BOC的面积之和为S△BOC+S△BCD=S△BOD+S△COD=√34×12+12×1×√3=3√34,故选:C.将△AOB绕点B顺时针旋转60°得△BCD,连接OD,可得△BOD是等边三角形,再利用勾股定理的逆定理可得∠COD=90°,从而解决问题.本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将△AOB与△BOC的面积之和转化为S△BOC+S△BCD,是解题的关键.4.【答案】D【解析】解:如图,过点A作AD⊥AC于A,交BC于D,过点A作AE⊥BC于E,∵∠C=45°,∴△ADC是等腰直角三角形,∴AD=AC=2,∠ADC=45°,CD=√2AC=2√2,∵∠ADC=∠B+∠BAD,∠B=22.5°,∴∠DAB=22.5°,∴∠B=∠DAB,∴AD=BD=2,∵AD=AC,AE⊥CD,∴DE=CE,∴AE=12CD=√2,∴△ABC的面积=12⋅BC⋅AE=12×√2×(2+2√2)=2+√2.故选:D.如图,过点A作AD⊥AC于A,交BC于D,过点A作AE⊥BC于E,先证明△ADC是等腰直角三角形,得AD=AC=2,∠ADC=45°,CD=√2AC=2√2,再证明AD=BD,计算AE和BC的长,根据三角形的面积公式可解答.本题考查的是勾股定理,等腰直角三角形的性质,三角形的面积,熟知掌握等腰三角形的性质是解本题的关键.5.【答案】B【解析】解:∵AB=AC,AD是△ABC的角平分线,∴BD=CD=12BC=3,AD⊥BC,在Rt△EBD中,∠EBC=45°,∴ED=BD=3,∴S△EBC=12BC⋅ED=12×6×3=9,故选:B.根据等腰三角形的性质得到BD=CD=3,AD⊥BC,根据等腰直角三角形的性质求出ED,根据三角形的面积公式计算,得到答案.本题考查的是等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.6.【答案】D【解析】解:三角形具有稳定性,其它多边形不具有稳定性,故选:D.根据三角形具有稳定性即可得出答案.本题考查了三角形的稳定性,掌握三角形具有稳定性是解题的关键.7.【答案】C【解析】【分析】本题考查了三角形三边关系,已知三角形的两边长分别为4cm和10cm,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围即可解答.【解答】解:设第三边长为xcm,则由三角形三边关系定理得10−4<x<10+4,即6<x<14.因此,本题的第三边应满足6<x<14,只有C符合题意,故选C.8.【答案】B【解析】解:由题意知,当CA⊥BA或CA>BC时,能作出唯一一个△ABC,①当CA⊥BA时,∵∠B=45°,BC=2,=√2,∴AC=BC⋅sin45°=2×√22即此时d=√2,②当CA=BC时,∵∠B=45°,BC=2,∴此时AC=2,即d>2,综上,当d=√2或d>2时能作出唯一一个△ABC,故选:B.由题意知,当CA⊥BA或CA>BC时,能作出唯一一个△ABC,分这两种情况求解即可.本题主要考查三角形的三边关系及等腰直角三角形的知识,熟练掌握等腰直角三角形的性质及三角形的三边关系是解题的关键.9.【答案】C【解析】解:∵平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形,∴1+d+1+1>5且1+5+1+1>d,∴d的取值范围为:2<d<8,∴则d可能是7.故选:C.利用凸五边形的特征,根据两点之间线段最短求得d的取值范围,利用此范围即可得出结论.本题主要考查了组成凸五边形的条件,利用两点之间线段最短得到d的取值范围是解题的关键.10.【答案】D【解析】解:当3cm是腰长时,3,3,5能组成三角形,当5cm是腰长时,5,5,3能够组成三角形.则三角形的周长为11cm或13cm.故选:D.题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.11.【答案】B【解析】【分析】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.根据平角的定义和平行线的性质即可得到结论.【解答】解:如图:由题意得:∠4=180°−90°−30°=60°,∵AB//CD,∴∠3=∠2=70°,∴∠1=180°−∠3−∠4=180°−70°−60°=50°.故选:B.12.【答案】B【解析】解:在△AOB和△DOC中,{OA=OD∠ADB=∠DOC OB=OC,∴△AOB≌△DOC(SAS),故选:B.根据题目中的条件和全等三角形的判定方法,可以得到判定△ABO≌△DCO的依据.本题考查全等三角形的判定,解答本题的关键是明确题意,写出△AOB和△DOC全等的证明过程.13.【答案】B【解析】解:∵AC//DF,∴∠A=∠D,∵AC=DF,∴当添加∠C=∠F时,可根据“ASA”判定△ABC≌△DEF;当添加∠ABC=∠DEF时,可根据“AAS”判定△ABC≌△DEF;当添加AB=DE时,即AE=BD,可根据“SAS”判定△ABC≌△DEF.故选:B.先根据平行线的性质得到∠A=∠D,加上AC=DF,则可根据全等三角形的判定方法对各选项进行判断.本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的根据,选用哪一种方法,取决于题目中的已知条件.14.【答案】A【解析】解:A、SSA不能判定三角形全等,本选项符合题意.B、根据SAS,可以推出△ADF≌△CBE,本选项不符合题意.C、根据SSS,可以推出△ADF≌△CBE,本选项不符合题意.D、根据SAS,可以推出△ADF≌△CBE,本选项不符合题意.故选:A.根据全等三角形的判定方法,一一判断即可.本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.15.【答案】C【解析】解:∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,BD=CD,∠B=∠C,∴∠ADC=90°,在△BDE和△CDF中,{∠B=∠C∠BED=∠CFD BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF,故选:C.由等腰三角形的性质可得AD⊥BC,BD=CD,∠B=∠C,由“AAS”可证△BDE≌△CDF,可得DE=DF.本题考查了全等三角形的判定和性质,等腰三角形的性质,掌握等腰三角形的性质是解题的关键.16.【答案】C【解析】解:A.利用三角形三边对应相等,两三角形全等,三角形形状确定,故此选项不合题意;B.利用三角形两边、且夹角对应相等,两三角形全等,三角形形状确定,故此选项不合题意;C.AB,AC,∠B,无法确定三角形的形状,故此选项符合题意;D.根据∠A,∠B,BC,三角形形状确定,故此选项不合题意;故选:C.直接利用全等三角形的判定方法分析得出答案.此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.17.【答案】C【解析】解:由作图过程可得:PQ为BD的垂直平分线,∴BM=MD,BN=ND.设PQ与BD交于点O,如图,则BO=DO.∵四边形ABCD是矩形,∴AD//BC,∴∠MDO=∠NBO,∠DMO=∠BNO,在△MDO和△NBO中,{∠MDO=∠NBO ∠DMO=∠BNO OD=OB,∴△MDO≌△NBO(AAS),∴DM=BN,∴四边形BNDM为平行四边形,∵BM=MD,∴四边形MBND为菱形,∴四边形MBND的周长=4BM.设MB=x,则MD=BM=x,∴AM=AD−DM=4−x,在Rt△ABM中,∵AB2+AM2=BM2,∴22+(4−x)2=x2,解得:x=52,∴四边形MBND的周长=4BM=10.故选:C.利用作图过程可得PQ为BD的垂直平分线,利用垂直平分线的性质和全等三角形的判定与性质证明四边形MBND为菱形,利用勾股定理求得BM,则结论可得.本题主要考查了基本作图,作线段的垂直平分线,矩形的性质,线段垂直平分线的性质,菱形的判定与性质,勾股定理,全等三角形的判定与性质,判定四边形MBND为菱形是解题的关键.18.【答案】B【解析】解:由作图可知,PQ是AB的垂直平分线,∴AM=BM,∵以点D为圆心,AD长为半径画弧交PQ于点M,∴DA=DM=DB,∴∠DAM=∠DMA,∠DBM=∠DMB,∵∠DAM+∠DMA+∠DBM+∠DMB=180°,∴2∠DMA+2∠DMB=180°,∴∠DMA+∠DMB=90°,即∠AMB=90°,∴△AMB是等腰直角三角形,∴AM=√22AB=√22×2√2=2,故选:B.证明△AMB是等腰直角三角形,即可得到答案.本题考查尺规作图中的相关计算问题,解题的关键是根据作图证明△AMB是等腰直角三角形.19.【答案】B【解析】解:过点C作CD//l1,如图,∵l1//l2,∴l1//l2//CD,∴∠1=∠BCD,∠2=∠ACD,∴∠1+∠2=∠BCD+∠ACD=∠ACB,∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=40°,∴∠ACB=12(180°−∠BAC)=70°,∴∠1+∠2=70°.故选:B.过点C作CD//l1,利用平行线的性质可得∠1+∠2=∠ACB,再由等腰三角形的性质可得∠ACB=∠ABC,从而可求解.本题主要考查等腰三角形的性质,平行线的性质,解答的关键是由平行线的性质得∠1+∠2=∠ACB.20.【答案】A【解析】解:如图,过点E作EG⊥AD于G,∵AB=AC,AD平分∠BA C,∴AD⊥BC,BD=CD,∴∠PDF=∠EGP=90°,EG//BC,∵点E是AB的中点,∴G是AD的中点,BD,∴EG=12∵F是CD的中点,CD,∴DF=12∴EG=DF,∵∠EPG=∠DPF,∴△EGP≌△FDP(AAS),∴PG=PD=1.5,∴AD=2DG=6,∵△ABC的面积是24,⋅BC⋅AD=24,∴12∴BC=48÷6=8,BC=2,∴DF=14∴EG=DF=2,由勾股定理得:PE=√22+1.52=2.5.故选:A.如图,过点E作EG⊥AD于G,证明△EGP≌△FDP,得PG=PD=1.5,由三角形中位线定理可得AD的长,由三角形ABC的面积是24,得BC的长,最后由勾股定理可得结论.本题考查了等腰三角形的性质,三角形的中位线定理,全等三角形的性质和判定,三角形的面积等知识,作辅助线构建全等三角形是解本题的关键.21.【答案】B【解析】解:如图,不妨假设点P在AB的左侧,∵S△PAB+S△ABC=S△PBC+S△PAC,∴S1+S0=S2+S3,∵S1+S2+S3=2S0,∴S1+S1+S0=2S,∴S1=12S0,∵△ABC是等边三角形,边长为6,∴S0=√34×62=9√3,∴S1=9√32,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.∵△PAB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴12⋅AB⋅RT=9√32,CR=3√3,OR=√3,∴RT=3√32,∴OT=OR+TR=5√32,∵OP≥OT,∴OP的最小值为5√32,故选:B.如图,不妨假设点P在AB的左侧,证明△PAB的面积是定值,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.因为△PAB的面积是定值,推出点P的运动轨迹是直线PM,求出OT的值,可得结论.本题考查等边三角形的性质,解直角三角形,三角形的面积等知识,解题的关键是证明△PAB的面积是定值.22.【答案】B【解析】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.在△ADE中,∵∠1=∠A+∠AEF=140°,∴∠AEF=140°−60°=80°,∴∠DEB=∠AEF=80°,∵m//n,∴∠2+∠DEB=180°,∴∠2=180°−80°=100°,故选:B.先根据等边三角形的性质可得∠A=∠B=∠C=60°,由三角形外角的性质可得∠AEF的度数,由平行线的性质可得同旁内角互补,可得结论.本题主要考查了等边三角形的性质,平行线的性质,三角形外角的性质,题目比较基础,熟练掌握性质是解题的关键.23.【答案】A【解析】解:在Rt△ABC中,∠C=90°,则∠B+∠A=90°,∵∠B=56°,∴∠A=90°−56°=34°,故选:A.根据直角三角形的两锐角互余计算即可.本题考查的是直角三角形的性质,掌握直角三角形的两锐角互余是解题的关键.24.【答案】C【解析】解:如图,CD=CB,作CH⊥AB于H,∴DH=BH,∵∠A=30°,∴CH=12AC=32,AH=√3CH=32√3,在Rt△CBH中,由勾股定理得BH=√BC2−CH2=√3−94=√32,∴AB=AH+BH=3√32+√32=2√3,AD=AH−DH=3√32−√32=√3,故选:C.根据题意知,CD=CB,作CH⊥AB于H,再利用含30°角的直角三角形的性质可得CH,AH的长,再利用勾股定理求出BH,从而得出答案.本题主要考查了勾股定理,含30°角的直角三角形的性质等知识,理解题意,求出BH的长是解题的关键.25.【答案】D【解析】解:∵D为斜边AC的中点,F为CE中点,DF=2,∴AE=2DF=4,∵AE=AD,∴AD=4,在Rt△ABC中,D为斜边AC的中点,∴BD=12AC=AD=4,故选:D.根据三角形中位线可以求得AE的长,再根据AE=AD,可以得到AD的长,然后根据直角三角形斜边上的中线和斜边的关系,可以求得BD的长.本题考查直角三角线斜边上的中线和斜边的关系、三角形的中位线,解答本题的关键是求出AD的长.26.【答案】C【解析】解:延长AC到D,连接BD,如图:∵AD2=20,BD2=5,AB2=25,∴AD2+BD2=AB2,∴∠ADB=90°,∴cos∠BAC =AD AB =√20√25=2√55, 故选:C . 延长AC 到D ,连接BD ,由网格可得AD 2+BD 2=AB 2,即得∠ADB =90°,可求出答案. 本题考查网格中的锐角三角函数,解题的关键是作辅助线,构造直角三角形.27.【答案】B【解析】解:由题意可得, 大正方形的边长为:√12+32=√10,则小正方形的面积为:(√10)2−12×1×3×4=10−6=4,∴小正方形的边长为√4=2,∴小正方形的周长为:2×4=8,故选:B .根据题意和题目中的数据,可以计算出大正方形的边长,然后即可计算出小正方形的面积,从而可以求得小正方形的边长,然后即可得到小正方形的周长.本题考查勾股定理的证明,解答本题的关键是明确题意,利用数形结合的思想解答. 28.【答案】B【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则就不是.【解答】 解:A 、(√3)2+22≠(√5)2,不能构成直角三角形,故错误;B 、12+(√2)2=(√3)2,能构成直角三角形,故正确;C 、(14)2+(15)2≠(13)2,不能构成直角三角形,故错误; D 、42+52≠62,不能构成直角三角形,故错误.故选B . 29.【答案】C【解析】解:如图,连接OE,交AB于点F,连接OA,∵AC⊥CD、BD⊥CD,∴AC//BD,∵AC=BD=4cm,∴四边形ACDB是平行四边形,∴四边形ACDB是矩形,∴AB//CD,AB=CD=16cm,∵CD切⊙O于点E,∴OE⊥CD,∴OE⊥AB,∴四边形EFBD是矩形,AF=12AB=12×16=8(cm),∴EF=BD=4cm,设⊙O的半径为r cm,则OA=r cm,OF=OE−EF=(r−4)cm,在Rt△AOF中,OA2=AF2+OF2,∴r2=82+(r−4)2,解得:r=10,∴这种铁球的直径为20cm,故选:C.连接OE,交AB于点F,连接OA,∵AC⊥CD、BD⊥CD,由矩形的判断方法得出四边形ACDB是矩形,得出AB//CD,AB=CD=16cm,由切线的性质得出OE⊥CD,得出OE⊥AB,得出四边形EFBD是矩形,AF=12AB=12×16=8(cm),进而得出EF=BD=4cm,设⊙O的半径为r cm,则OA=rcm,OF=OE−EF=(r−4)cm,由勾股定理得出方程r2=82+(r−4)2,解方程即可求出半径,继而求出这种铁球的直径.本题考查了垂径定理的应用,勾股定理的应用,掌握矩形的判定与性质,平行四边形的判定与性质,切线的性质,垂径定理,勾股定理是解决问题的关键.30.【答案】C【解析】解:将圆柱侧面沿AC“剪开”,侧面展开图为矩形,∵圆柱的底面直径为AB,∴点B是展开图的一边的中点,∵蚂蚁爬行的最近路线为线段,∵C选项符合题意,故选:C.利用圆柱的侧面展开图是矩形,而点B是展开图的一边的中点,再利用蚂蚁爬行的最近路线为线段可以得出结论.本题主要考查了圆柱的侧面展开图,最短路径问题,掌握两点之间线段最短是解题的关键.31.【答案】2【解析】解:∵E是AD的中点,∴CE是△ACD的中线,∴S△ACD=2S△AEC,∵△AEC的面积是1,∴S△ACD=2S△AEC=2,∵AD是△ABC的中线,∴S△ABD=S△ACD=2.故答案为:2.由题意可得CE是△ACD的中线,则有S△ACD=2S△AEC=2,再由AD是△ABC的中线,则有S△ABD=S△ACD,即得解.本题主要考查三角形的面积,解答的关键是明确三角形的中线把原三角形分成面积相等的两部分.32.【答案】5【解析】【分析】本题考查的知识点是三角形的三边关系,首先利用两边之和大于第三边,两边之差小于第三边,得到第三边的范围,再在范围内取整数即可得到答案.【解答】解:设第三边为c,根据三角形的三边关系得:5−1<c<5+1,即4<c<6.又∵第三边长为整数,∵第三边的长是5.故答案为5.33.【答案】80或40【解析】解:当△ABC为锐角三角形时,如图,∠BAD=180°−∠B−∠ADB=180°−30°−90°=60°,∠BAC=∠BAD+∠CAD=60°+20°=80°;当△ABC为钝角三角形时,如图,∠BAD=180°−∠B−∠ADB=180°−30°−90°=60°,∠BAC=∠BAD−∠CAD=60°−20°=40°.综上所述,∠BAC=80°或40°.故答案为:80或40.分两种情况:△ABC为锐角三角形或钝角三角形,然后利用三角形内角和定理即可作答.本题主要考查三角形内角和定理,注意到分类讨论是解题关键.34.【答案】∠A=∠D【解析】解:添加条件:∠A=∠D.∵AB//DE,∴∠B=∠DEC,在△ABC和△DEF中,{∠A=∠DAB=DE∠B=∠DEC,∴△ABC≌△DEF(ASA),故答案为:∠A=∠D.(答案不唯一)添加条件:∠A=∠D,根据ASA即可证明△ABC≌△DEF.本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.35.【答案】15【解析】【分析】本题考查了全等三角形的判定和性质,熟练掌握判定直角三角形全等特有的方法(HL)是解题的关键.根据OM⊥AB,ON⊥BC,可知∠OMB=∠ONB=90°,从而可证Rt△OMB ≌Rt△ONB(HL),根据全等三角形的性质可得∠OBM=∠OBN,即可求出∠ABO的度数.【解答】解:∵OM⊥AB,ON⊥BC,∴∠OMB=∠ONB=90°,在Rt△OMB和Rt△ONB中,{OM=ONOB=OB,∴Rt△OMB≌Rt△ONB(HL),∴∠OBM=∠OBN,∵∠ABC=30°,∴∠ABO=15°.36.【答案】1【解析】解:过D点作DH⊥AC于H,如图,∵AD平分∠BAC,DE⊥AB,DH⊥AC,∴DE=DH=1,×2×1=1.∴S△ACD=12故答案为:1.过D点作DH⊥AC于H,如图,根据角平分线的性质得到DE=DH=1,然后根据三角形面积公式计算.本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.37.【答案】10°或100°【解析】解:如图,点D即为所求;在△ABC中,∠ABC=40°,∠BAC=80°,∴∠ACB=180°−40°−80°=60°,由作图可知:AC=AD,∴∠ACD=∠AD C=12(180°−80°)=50°,∴∠BCD=∠ACB−∠ACD=60°−50°=10°;由作图可知:AC=AD′,∴∠ACD′=∠AD′C,∵∠ACD′+∠AD′C=∠BAC=80°,∴∠AD′C=40°,∴∠BCD′=180°−∠ABC−∠AD′C=180°−40°−40°=100°.综上所述:∠BCD的度数是10°或100°.故答案为:10°或100°.分两种情况画图,由作图可知得AC=AD,根据等腰三角形的性质和三角形内角和定理解答即可.本题考查了作图−复杂作图,三角形内角和定理,等腰三角形的判定与性质,解决本题的关键是掌握基本作图方法.38.【答案】60°【解析】解:∵△ABC为等边三角形,∴∠CAE=∠ABD=60°,AC=BA.在△ACE和△BAD中,{AC=BA∠CAE=∠ABD AE=BD,∴△ACE≌△BAD(SAS),∴∠ACE=∠BAD.∵∠CFD=∠C AF+ACF,∠BAD+∠CAF=∠ACF+∠CAF=60°,。
2022年全国中考数学试题真题汇编 相交线与平行线(一)
2022年全国中考数学试题真题汇编相交线与平行线(一)一、单选题1.将一副三角板按如图所示的位置摆放在直尺上,则1∠的度数为()A.70°B.75°C.80°D.85°【来源】贵州省毕节市2022年中考数学真题【答案】B【解析】【分析】利用三角形外角性质或者三角形内角和以及平行线的性质解题即可.【详解】解:如图,,∠=︒∠=︒360445∴∠=︒-︒-︒=︒,2180604575直尺上下两边互相平行,1=2=75∴∠∠︒,故选:B.【点睛】本题主要考查一副三角板多对应的角度以及平行线的性质,本题难度小,解法比较灵活.2.如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与出射光线的夹角为60°,则平面镜的垂线与水平地面的夹角α的度数是()A.15°B.30°C.45°D.60°【来源】山东省潍坊市2022年中考数学真题【答案】B【解析】【分析】作CD⊥平面镜,垂足为G,根据EF⊥平面镜,可得CD//EF,根据水平线与底面所在直线平行,进而可得夹角α的度数.【详解】解:如图,作CD⊥平面镜,垂足为G,⊥EF⊥平面镜,⊥CD//EF,⊥⊥CDH=⊥EFH=α,根据题意可知:AG⊥DF,⊥⊥AGC=⊥CDH=α,⊥⊥AGC=α,⊥⊥AGC12=∠AGB12=⨯60°=30°,⊥α=30°.故选:B.【点睛】本题考查了入射角等于反射角问题,解决本题的关键是法线CG 平分⊥AGB . 3.如图,直线//,1130a b ∠=︒,则2∠等于( )A .70︒B .60︒C .50︒D .40︒【来源】山东省淄博市2022年中考数学试题【答案】C【解析】【分析】如图,由题意易得⊥2+⊥3=180°,⊥1=⊥3,然后问题可求解.【详解】解:如图所示:⊥//a b ,⊥⊥2+⊥3=180°,⊥31130∠=∠=︒,⊥250∠=︒;故选C .【点睛】本题主要考查平行线的性质及对顶角的定义,熟练掌握平行线的性质及对顶角的定义是解题的关键.4.如图,//m n ,其中140∠=︒,则2∠的度数为( )A .130︒B .140︒C .150︒D .160︒【来源】重庆市数学试题【答案】B【解析】【分析】根据两直线平行同旁内角互补,可求出2∠的对顶角即可.【详解】解:如图://m n ,13180∠+∠=︒,3140∴∠=︒,2,3∠∠互为对顶角;23140∴∠=∠=︒,故选:B .【点睛】本题考查了平行线的性质,对顶角、解题的关键是:利用平行线的性质得出同旁内角互补,再利用对顶角相等即可求解.5.如图,直线12l l //,直线3l 交1l 于点A ,交2l 于点B ,过点B 的直线4l 交1l 于点C .若350∠=︒,123240∠+∠+∠=︒,则4∠等于( )A .80︒B .70︒C .60︒D .50︒【来源】内蒙古包头市、巴彦淖尔市2022年中考数学真题【答案】B【解析】根据平行线性质计算角度即可.【详解】解:⊥12l l //,350∠=︒,⊥1=18050130∠︒-︒=︒,⊥123240∠+∠+∠=︒,⊥2=240-180=60∠︒︒,⊥4=1802180605070BAC ACB ∠∠=︒-∠-∠=︒-︒-︒=︒,故选:B .【点睛】本题主要考查平行线性质,熟练识别同位角、内错角,同旁内角是解决本题的关键. 6.如图,在ABC 中,50B ∠=︒,70C ∠=︒,直线DE 经过点A ,50DAB ∠=︒,则EAC ∠的度数是( )A .40°B .50°C .60°D .70°【来源】内蒙古呼和浩特市2022年中考数学真题【答案】D【解析】【分析】根据B DAB ∠=∠可判断//DE BC ,再利用两直线平行内错角相等即可得出结论.【详解】50,50B DAB ∠=︒∠=︒,直线DE 经过点A ,//DE BC ∴70C ∠=︒70C EAC ∴∠=∠=︒故选:D .本题考查了平行线的判定和性质,熟练掌握平行线的判定定理和性质定理是解题关键.7.如图,下列两个角是同旁内角的是( )A .1∠与2∠B .1∠与3∠C .1∠与4∠D .2∠与4∠【来源】广西贺州市2022年中考数学真题【答案】B【解析】【分析】根据同旁内角的概念求解即可.【详解】解:由图可知,⊥1与⊥3是同旁内角,⊥1与⊥2是内错角,⊥4与⊥2是同位角,故选:B .【点睛】本题考查了同旁内角的概念,属于基础题,熟练掌握同位角,同旁内角,内错角的概念是解决本题的关键.8.如图,//AB CD ,EF CD ⊥于点F ,若150BEF ∠=︒,则ABE ∠=( )A .30B .40︒C .50︒D .60︒【来源】山东省东营市2022年中考数学真题【解析】【分析】过点E 作EH ⊥CD ,由此求出90HEF ∠=︒,得到60BEH ∠=︒,根据平行线的推论得到AB ⊥EH ,利用平行线的性质求出答案.【详解】解:过点E 作EH ⊥CD ,如图,⊥180DFE HEF ∠+∠=︒,⊥EF CD ⊥,⊥90DFE ∠=︒,⊥90HEF ∠=︒,⊥150BEF ∠=︒,⊥60BEH ∠=︒,⊥EH ⊥CD ,//AB CD ,⊥AB ⊥EH ,⊥ABE ∠=60BEH ∠=︒,故选:D .【点睛】此题考查平行线的推论,平行线的性质,正确引出辅助线、熟记定理是解题的关键. 9.如图,//a b ,M ,N 分别在a ,b 上,P 为两平行线间一点,那么123∠+∠+∠= ( )A .180︒B .270︒C .360︒D .540︒【来源】初中数学【答案】C【解析】【分析】 首先过点P 作P A ⊥a ,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.【详解】解:过点P 作P A ⊥a ,则a ⊥b ⊥P A ,⊥⊥1+⊥MP A =180°,⊥3+⊥NP A =180°,⊥⊥1+⊥MPN +⊥3=360°.故选:C .【点睛】本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.10.如图,//a b ,160∠=︒,则2∠的度数为( )A .90︒B .100︒C .110︒D .120︒【来源】河南省2022年中考数学真题【答案】D【解析】【分析】先利用“两直线平行,同位角相等”求出⊥3,再利用邻补角互补求出⊥2.【详解】解:如图,⊥a ⊥b ,⊥⊥1=⊥3=60°,⊥⊥2=180°-⊥3=120°,【点睛】本题考查了平行线的性质和邻补角互补的性质,解决本题的关键是牢记相关概念,本题较基础,考查了学生的基本功.11.一把直尺与一块直角三角板按如图方式摆放,若⊥1=47°,则⊥2=()A.40°B.43°C.45°D.47°【来源】浙江省台州市2022年中考数学真题【答案】B【解析】【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,⊥直尺的两边互相平行,∠=∠=︒,⊥3147∠=︒-∠=︒,⊥490343∠=∠=︒,⊥2443【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.12.如图,将一块含有60︒角的直角三角板放置在两条平行线上,若145∠=︒,则2∠为( )A .15︒B .25︒C .35︒D .45︒【来源】湖北省随州市2022年中考数学真题【答案】A【解析】【分析】过60°角顶点作直线平行于已知直线,然后根据平行线的性质推出⊥1+⊥2=60°,从而求出⊥2即可.【详解】如图,已知//a b ,作直线//c a ,则//c b ,则⊥1=⊥3,⊥2=⊥4,⊥⊥3+⊥4=60°,⊥⊥1+⊥2=60°,⊥⊥2=60°-⊥1=15°,故选:A .【点睛】本题考查平行线的基本性质,理解平行线的性质定理是解题关键.13.一副三角板按如图方式放置,含45︒角的三角板的斜边与含30°角的三角板的长直∠的度数是()角边平行,则αA.10︒B.15︒C.20︒D.25︒【来源】山东省菏泽市2022年中考数学真题【答案】B【解析】【分析】利用两直线平行,内错角相等传递等角后计算即可【详解】如图,⊥AB∥DE,⊥⊥BAE=⊥E=30°,∠=⊥CAB-⊥BAE= 45°-30°=15°,⊥α故选B【点睛】本题考查了平行线的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.14.如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠的度数为()∠=︒时,DCN40ABMA .40︒B .50︒C .60︒D .80︒【来源】四川省达州市2022年中考数学真题【答案】B【解析】【分析】过点B 作BE OM ⊥,过点C 作CE ON ⊥,BE 与CE 相交于点E ;根据余角性质计算得CBE ∠;根据平行线性质,得BCD ∠,结合角平分线性质,计算得DCE ∠;再根据余角性质计算,即可得到答案.【详解】如下图,过点B 作BE OM ⊥,过点C 作CE ON ⊥,BE 与CE 相交于点E⊥40ABM ∠=︒,CBE ABE ∠=∠⊥9050CBE ABE ABM ∠=∠=︒-∠=︒⊥100ABC ABE CBE ∠=∠+∠=︒⊥CD 与AB 平行⊥18080BCD ABC ∠=︒-∠=︒⊥BCE DCE ∠=∠,BCE DCE BCD ∠+∠=∠ ⊥1402BCE DCE BCD ∠=∠=∠=︒ ⊥9050DCN DCE ∠=︒-∠=︒故选:B .【点睛】本题考查了平行线、角平分线、垂线、余角的知识;解题的关键是熟练掌握平行线的性质,从而完成求解.15.将一副直角三角板按如图方式摆放,若直线//a b ,则1∠的大小为( )A .45︒B .60︒C .75︒D .105︒【来源】湖南省岳阳市2022年中考数学真题【答案】C【解析】【分析】根据平行线的性质解题.【详解】⊥a ⊥b⊥()1+45+60=180∠︒︒︒(两直线平行,同旁内角互补)⊥1=75︒∠.故选:C .【点睛】本题考查平行线的性质.两直线平行,同旁内角互补.16.如图,设点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,点T 是直线l 上的一个动点,连接PT ,则( )A .PT PQ ≥2B .PT PQ ≤2C .PT PQ ≥D .PT PQ ≤【来源】浙江省杭州市2022年中考数学真题【答案】C【解析】【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,PQ ∴是垂线段,即连接直线外的点P 与直线上各点的所有线段中距离最短, 当点T 与点Q 重合时有PQ PT =,综上所述:PT PQ ≥,故选:C .【点睛】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.17.如图,直线DE 过点A ,且//DE BC .若60B ∠=︒,150∠=︒,则2∠的度数为()A .50︒B .60︒C .70︒D .80︒【来源】新疆维吾尔自治区、生产建设兵团2022年中考数学试题【答案】C【解析】【分析】根据两直线平行同旁内角互补求出⊥BAE ,即可求出⊥2.【详解】⊥//DE BC ,⊥180B BAE ∠+∠=︒,⊥180120BAE B ∠=︒-∠=︒,即:12120∠+∠=︒,⊥2120170∠=︒-∠=︒,故选:C .【点睛】本题考查平行线的性质,熟记平行线的基本性质是解题关键.18.如图,//AB CD ,//BC DE ,若7228B '∠=︒,那么D ∠的度数是( )A .7228'︒B .10128'︒C .10732'︒D .12732'︒【来源】山东省济宁市2022年中考数学真题【答案】C【解析】【分析】先根据//AB CD 求出C ∠的度数,再由//BC DE 即可求出D ∠的度数.【详解】解:⊥//AB CD ,7228B '∠=︒,⊥7228C B '∠=∠=︒,⊥//BC DE ,⊥180D C ∠+∠=︒,⊥18010732D C '∠=︒-∠=︒,故选:C .【点睛】本题主要考查平行线的性质以及角度的计算,熟记平行线的性质定理是解题的关键. 19.如图,直线c 与直线a 、b 都相交.若//a b ,155∠=︒,则2∠=( )A .60︒B .55︒C .50︒D .45︒【来源】云南省2022年中考数学真题【答案】B【解析】【分析】直接利用平行线的性质:两直线平行,同位角相等,即可得出答案.【详解】解:如图,1=55∠︒,3=55,∴∠︒⊥a ⊥b ,⊥3=55°,⊥⊥2=⊥3=55°.故选B .【点睛】此题主要考查了平行线的性质,正确掌握平行线的基本性质是解题关键.20.如图,AB ⊥CD ⊥EF ,若⊥ABC =130°,⊥BCE =55°,则⊥CEF 的度数为()A .95°B .105°C .110°D .115°【来源】2022年山东省聊城市中考数学真题试卷【答案】B【解析】【分析】由//AB CD 平行的性质可知ABC DCB ∠=∠,再结合//EF CD 即可求解.【详解】解://AB CD130ABC DCB ∴∠=∠=︒1305575ECD DCB BCE ∴∠=∠-∠=︒-︒=︒//EF CD180ECD CEF ∴∠+∠=︒18075105CEF ∴∠=︒-︒=︒故答案是:B .【点睛】本题考查平行线的性质和角度求解,难度不大,属于基础题.解题的关键是掌握平行线的性质.21.如图,点O 在直线AB 上,OC OD ⊥.若120AOC ∠=︒,则BOD ∠的大小为( )A .30B .40︒C .50︒D .60︒【来源】北京市2022年中考数学真题试题【答案】A【解析】【分析】由题意易得60COB ∠=︒,90COD ∠=︒,进而问题可求解.【详解】解:⊥点O 在直线AB 上,OC OD ⊥,⊥180AOC COB ∠+∠=︒,90COD ∠=︒,⊥120AOC ∠=︒,⊥60COB ∠=︒,⊥9030BOD COB ∠=︒-∠=︒;故选A .【点睛】本题主要考查垂直的定义及邻补角的定义,熟练掌握垂直的定义及邻补角的定义是解题的关键.22.如图,在⊥ABC 中,⊥A =70°,⊥C =30°,BD 平分⊥ABC 交AC 于点D ,DE ⊥AB ,交BC 于点E ,则⊥BDE 的度数是( )A .30°B .40°C .50°D .60°【来源】江苏省宿迁市2022年中考数学真题【答案】B【解析】【分析】由三角形的内角和可求⊥ABC ,根据角平分线可以求得⊥ABD ,由DE //AB ,可得⊥BDE =⊥ABD 即可.【详解】解:⊥⊥A +⊥C =100°⊥⊥ABC =80°,⊥BD 平分⊥BAC ,⊥⊥ABD =40°,⊥DE ⊥AB ,⊥⊥BDE =⊥ABD =40°,故答案为B .【点睛】本题考查三角形的内角和定理、角平分线的意义、平行线的性质,灵活应用所学知识是解答本题的关键.23.阅读下列材料,其⊥~⊥步中数学依据错误的是( ) 如图:已知直线//b c ,a b ⊥,求证:a c ⊥.A .⊥B .⊥C .⊥D .⊥【来源】湖北省荆州市2022年中考数学真题【答案】C【解析】【分析】根据垂直的定义和平行线的性质进行判断即可【详解】解:证明:⊥⊥a b ⊥(已知)⊥190∠=︒(垂直的定义)⊥又⊥//b c (已知)⊥⊥12∠=∠(两直线平行,同位角相等)⊥2190∠=∠=︒(等量代换)⊥⊥a c ⊥(垂直的定义).所以错在⊥故选:C【点睛】本题考查了垂直的定义和平行线的性质,熟练掌握平行线的性质是解题的关键. 24.如图,将直角三角板放置在矩形纸片上,若148∠=︒,则2∠的度数为()A .42°B .48°C .52°D .60°【来源】四川省眉山市2022年中考数学真题【答案】A【解析】【分析】先通过作辅助线,将⊥1转化到⊥BAC ,再利用直角三角形两锐角互余即可求出⊥2.【详解】解:如图,延长该直角三角形一边,与该矩形纸片一边的交点记为点A ,由矩形对边平行,可得⊥1=⊥BAC ,因为BC ⊥AB ,⊥⊥BAC +⊥2=90°,⊥⊥1+⊥2=90°,因为⊥1=48°,⊥⊥2=42°;故选:A .【点睛】本题考查了矩形的性质、平行线的性质、直角三角形的性质等内容,要求学生能根据题意理解其中的隐含关系,解决本题的关键是对角进行的转化,因此需要牢记并能灵活应用相关性质等.25.如图,//AB CD ,EF 分别与AB ,CD 交于点G ,H ,100AGE ∠=°,则DHF ∠的度数为( )A .100︒B .80︒C .50︒D .40︒【来源】湖南省长沙市2022年中考试数学真题【答案】A【解析】【分析】先根据平行线的性质可得100CHE AGE ∠=∠=︒,再根据对顶角相等即可得.【详解】解://,100AB CD AGE ∠=︒,100CHE AGE ∴∠=∠=︒,100CHE DHF ∴∠=∠=︒(对顶角相等),故选:A .【点睛】本题考查了平行线的性质、对顶角相等,熟练掌握平行线的性质是解题关键. 26.如图,直线//,DE BF Rt ABC 的顶点B 在BF 上,若20CBF ∠=︒,则ADE ∠=()A .70︒B .60︒C .75︒D .80︒【来源】甘肃省武威市2022年中考数学试卷【答案】A【解析】【分析】先求出CBF ∠的余角⊥ABF ,利用平行线性质可求⊥ADE .【详解】解:⊥Rt ABC ,20CBF ∠=︒⊥⊥ABC =90°,⊥ABF =90°-⊥CBF =90°-20°=70°,⊥//DE BF ,⊥⊥ADE =⊥ABF =70°.故选择A .本题考查余角性质,平行线性质,掌握余角性质,平行线性质是解题关键. 27.某同学的作业如下框,其中⊥处填的依据是( )A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .两直线平行,同旁内角互补 【来源】浙江省金华市2022年中考数学真题【答案】C【解析】【分析】首先准确分析题目,已知12//l l ,结论是34∠=∠,所以应用的是平行线的性质定理,从图中得知⊥3和⊥4是同位角关系,即可选出答案.【详解】解:⊥12//l l ,⊥34∠=∠(两直线平行,同位角相等).故选C .【点睛】本题主要考查了平行线的性质的应用,解题的关键是理解平行线之间内错角的位置,从而准确地选择出平行线的性质定理.28.设a ,b ,c 为互不相等的实数,且4155b a c =+,则下列结论正确的是( ) A .a b c >> B .c b a >> C .4()a b b c -=- D .5()a c a b -=-【来源】安徽省2022年中考数学真题【答案】D【解析】举反例可判断A 和B ,将式子整理可判断C 和D .【详解】解:A .当5a =,10c =,41655b ac =+=时,c b a >>,故A 错误; B .当10a =,5c =,41955b ac =+=时,a b c >>,故B 错误; C .4()a b b c -=-整理可得1455b a c =-,故C 错误;D .5()a c a b -=-整理可得4155b ac =+,故D 正确; 故选:D .【点睛】本题考查等式的性质,掌握等式的性质是解题的关键.29.如图,直线a //b ,148∠︒=,则2∠等于( )A .24°B .42°C .48°D .132°【来源】2022年广西贺州市中考数学试卷【答案】C【解析】【分析】根据两直线平行,内错角相等求解即可.【详解】解:⊥直线a ⊥b ,⊥2148∠=∠=︒.故选:C .【点睛】本题考查了平行线的性质,用到的知识点为:两直线平行,内错角相等,解题关键是熟记平行线的性质,准确识图.二、填空题30.如图,直线l 1,l 2相交于点O ,⊥1=70°,则⊥2=_____°.【来源】2022年广西桂林市中考数学真题【答案】70【解析】【分析】根据对顶角的性质解答即可.【详解】解:⊥⊥1和⊥2是一对顶角,⊥⊥2=⊥1=70°,故答案为:70.【点睛】本题主要考查了对顶角,熟练掌握对顶角相等是解答本题的关键.31.如图,直线a⊥b,直线c与直线a,b相交,若⊥1=54°,则⊥3=________度.【来源】2022年湖北省孝感市中考数学试卷【答案】54【解析】【分析】根据对顶角相等和平行线的性质“两直线平行同位角相等”,通过等量代换求解.【详解】因为a⊥b,∠=∠,所以23所以31∠=∠,因为154∠=︒,所以354∠=︒,故答案为:54.【点睛】本题考查了平行线的性质和对顶角的性质,熟练掌握对顶角相等,两直线平行同位角相等、内错角相等,加以灵活运用求解相关角的度数是解题关键.32.请写出命题“如果a b >,那么0b a -<”的逆命题:________.【来源】2022年江苏省无锡市中考数学真题【答案】如果0b a -<,那么a b >【解析】【分析】根据逆命题的概念解答即可.【详解】解:命题“如果a b >,那么0b a -<”的逆命题是“如果0b a -<,那么a b >”, 故答案为:如果0b a -<,那么a b >.【点睛】此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.33.如图,C 岛在A 岛的北偏东50︒方向,C 岛在B 岛的北偏西35︒方向,则ACB ∠的大小是_____.【来源】2022年湖北省宜昌市中考数学真题【答案】85︒##85度【分析】∥交AB于F,根据方位角的定义,结合平行线性质即可求解.过C作CF DA【详解】解:C岛在A岛的北偏东50︒方向,DAC∴∠=︒,50C岛在B岛的北偏西35︒方向,∴∠=︒,35CBE∥交AB于F,如图所示:过C作CF DADA CF EB∴∥∥,∴∠=∠=︒∠=∠=︒,50,35FCA DAC FCB CBEACB FCA FCB∴∠=∠+∠=︒,85故答案为:85︒.【点睛】本题考查方位角的概念与平行线的性质求角度,理解方位角的定义,并熟练掌握平行线的性质是解决问题的关键.34.如图6,已知直线a⊥b,⊥BAC=90°,⊥1=50°,则⊥2=______.【来源】2022年四川省乐山市中考数学真题【答案】40°##40度根据平行线的性质可以得到⊥3的度数,进一步计算即可求得⊥2的度数.【详解】解:⊥a ⊥b ,⊥⊥1=⊥3=50°,⊥⊥BAC =90°,⊥⊥2+⊥3=90°,⊥⊥2=90°-⊥3=40°,故答案为:40°.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答. 35.如图,已知a b ∥,1110∠=︒,则2∠的度数为________.【来源】2022年四川省眉山市中考数学真题【答案】110︒##110度【解析】【分析】根据题意,由平行线的性质“两直线平行,同位角相等”可知3=1∠∠,再借助3∠与2∠为对顶角即可确定2∠的度数.【详解】解:如下图,⊥a b ∥,1110∠=︒,⊥3=1110∠∠=︒,⊥3∠与2∠为对顶角,⊥2=3110∠∠=︒.故答案为:110︒.【点睛】此题考查了对顶角的性质和平行线的性质,熟记“两直线平行,同位角相等”是解题的关键.36.将一副三角板如图摆放,则______⊥______,理由是______.【来源】2022年甘肃省兰州市中考数学试卷(A 卷)【答案】 BC DE 内错角相等,两直线平行【解析】【分析】根据三角板的角度可知90BCA DEF ∠=∠=︒,根据内错角相等,两直线平行判断即可.【详解】解:一副三角板如图摆放,⊥90BCA DEF ∠=∠=︒,⊥//BC DE (内错角相等,两直线平行),故答案为:BC ;DE ;内错角相等,两直线平行.本题考查了平行线的判定,熟知平行线的判定定理是解本题的关键.37.如图,直线//a b ,若128∠=︒,则2∠=____.【来源】2022年四川省绵阳市中考真题数学试卷【答案】152︒【解析】【分析】利用平行线的性质可得3128∠=∠=︒,再利用邻补角即可求2∠的度数.【详解】解:如图,//a b ,128∠=︒,3128∴∠=∠=︒,21803152∴∠=︒-∠=︒.故答案为:152︒.【点睛】本题主要考查平行线的性质,解答的关键是结合图形分析清楚角与角之间的关系. 38.“如果a b =,那么a b =”的逆命题是___________.【来源】江苏省苏州市数学考试【答案】如果a b =,那么a b =【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,从而得出答案.【详解】解:“如果a b =,那么a b =”的逆命题是:“如果a b =,那么a b =”,故答案为:如果a b =,那么a b =.【点睛】本题考查命题与定理,解题的关键是理解题意,掌握逆命题的定义.39.如图,⊥ABC 沿BC 所在直线向右平移得到⊥DEF ,若EC =2,BF =8,则BE =___.【来源】辽宁省大连市数学试题【答案】3【解析】【分析】利用平移的性质解决问题即可.【详解】解:由平移的性质可知,BE =CF ,⊥BF =8,EC =2,⊥BE +CF =8﹣2=6,⊥BE =CF =3,⊥平移的距离为3,故答案为:3.【点睛】本题考查平移的性质,解题的关键是熟练掌握平移变换的性质,属于中考常考题型. 40.如图,直线a ,b 被直线c 所截,已知//a b ,1130∠=︒,则2∠为______度.【来源】湖南省湘潭市2022年中考数学真题【答案】50【解析】【详解】解:如图,⊥//a b ,1130∠=︒,⊥⊥3=130°,又⊥⊥2+⊥3=180°,⊥⊥2=180°-⊥3=180°-130°=50°.故答案为:50.【点睛】此题主要考查了平行线的性质以及邻补角,熟练掌握它们的性质是解答此题的关键. 41.如图,直线//AB CD ,一块含有30°角的直角三角尺顶点E 位于直线CD 上,EG 平分CEF ∠,则1∠的度数为_________°.【来源】辽宁省阜新市2022年中考数学试题【答案】60【解析】【分析】根据角平分线的定义可求出CEG ∠的度数,即可得到CEF ∠的度数,再利用平行线的性质即可解决问题.【详解】一块含有30°角的直角三角尺顶点E 位于直线CD 上,30FEG ∴∠=︒, EG 平分CEF ∠,30CEG FEG ∴∠=∠=︒,60∴∠=∠+∠=︒,CEF CEG FEGAB CD,//∴∠=∠=︒.CEF160故答案为:60.【点睛】本题考查了角平分线定义和平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.42.如图,直线a,b被直线c所截,当⊥1 ___⊥2时,a//b.(用“>”,“<”或“=”填空)【来源】2022年广西桂林市中考数学真题【答案】=.【解析】【分析】由图形可知⊥1 与⊥2是同位角,利用直线平行判定定理可以确定⊥1 =⊥2,可判断a//b.【详解】解:⊥直线a,b被直线c所截,⊥1与⊥2是同位角,⊥当⊥1 =⊥2,a//b.故答案为=.【点睛】本题考查平行线判定,掌握平行线判定判定定理是解题关键.43.如图,AB⊥CD,CB平分⊥ECD,若⊥B=26°,则⊥1的度数是________.【来源】广西贵港市2022年中考数学真题【答案】52︒【分析】根据平行线的性质得出26B BCD ∠=∠=︒,根据角平分线定义求出252ECD BCD ∠=∠=︒,再根据平行线的性质即可得解.【详解】解://AB CD ,26B ∠=︒,26BCD B ∴∠=∠=︒, CB 平分ECD ∠,252ECD BCD ∴∠=∠=︒,//AB CD ,152ECD ∴∠=∠=︒,故答案为:52︒.【点睛】本题考查了平行线的性质和角平分线定义的应用,能根据平行线的性质求出B BCD ∠=∠是解此题的关键.44.如图,直线//,160a b ∠=︒,则2∠的度数是______︒.【来源】广西柳州市2022年中考数学真题试卷【答案】60【解析】【分析】根据平行线的性质可得⊥1=⊥3,根据对顶角相等即可求得⊥2的度数.【详解】⊥a ⊥b ,如图⊥⊥3=⊥1=60゜⊥⊥2=⊥3故答案为:60【点睛】本题考查了平行线的性质、对顶角的性质,掌握这两个性质并熟练运用是关键. 45.如图,已知//AB CD ,BC 是ABD ∠的平分线,若264∠=︒,则3∠=________.【来源】湖南省张家界市2022年中考数学真题试题【答案】58°【解析】【分析】先根据对顶角的性质可得⊥BDC =264∠=︒,然后根据平行线的性质求得⊥ABC ,最后根据角平分线的定义求解即可.【详解】解:⊥⊥BDC 和⊥2是对顶角⊥⊥BDC =264∠=︒⊥//AB CD⊥⊥BDC +⊥ABD =180°,即⊥ABD =116°⊥BC 是ABD ∠的平分线 ⊥⊥3=⊥1=12⊥ABD =58°.故填:58°.本题主要考查了平行线的性质、对顶角相等以及角平分线的相关知识,掌握平行线的性质成为解答本题的关键.46.如图,AB 与CD 相交于点O ,OE 是AOC ∠的平分线,且OC 恰好平分EOB ∠,则AOD ∠=_______度.【来源】湖南省益阳市2022年中考数学真题【答案】60【解析】【分析】先根据角平分线的定义、平角的定义可得60COB ∠=︒,再根据对顶角相等即可得.【详解】解:设2AOC x ∠=, OE 是AOC ∠的平分线,12AOE EOC AOC x ∴∠=∠=∠=, OC 平分EOB ∠,COB EOC x ∴∠=∠=,又180AOE EOC COB ∠+∠+∠=︒,180x x x ∴++=︒,解得60x =︒,即60COB ∠=︒,由对顶角相等得:60AOD COB ∠=∠=︒,故答案为:60.【点睛】本题考查了角平分线的定义、平角的定义、对顶角相等,熟练掌握角平分线的定义是解题关键.47.如图,点O ,C 在直线n 上,OB 平分AOC ∠,若//m n ,156∠=︒,则2∠=_______________.【来源】广西贵港市2022年中考数学真题【答案】62°【解析】【分析】根据//m n 和OB 平分AOC ∠,计算出BOC ∠的度数,便可求解.【详解】解:如图:∵//m n∴156AON ∠=∠=, 2BOC ∠=∠180124AOC AON ∴∠=-∠=∵OB 平分AOC ∠1622BOC AOC ∴∠=∠= 62BOC ∴∠=故答案为62°【点睛】本题考查平行线性质,以及角平分线性质,属于基础题.三、解答题48.如图,在平行四边形ABCD 中,点E ,F 分别在AD ,BC 上,且ED BF =,连接AF ,CE ,AC ,EF ,且AC 与EF 相交于点O .(1)求证:四边形AFCE 是平行四边形;(2)若AC 平分8FAE AC ∠=,,3tan 4DAC ∠=,求四边形AFCE 的面积. 【来源】2022年广西贺州市中考数学真题【答案】(1)详见解析;(2)24.【解析】【分析】(1)根据一组对边平行且相等的四边形是平行四边形解答;(2)由平行线的性质可得EAC ACF ∠=∠,再根据角平分线的性质解得EAC FAC ∠=∠,继而证明AF FC =,由此证明平行四边形AFCE 是菱形,根据菱形的性质得到14,2AO AC AC EF ==⊥,结合正切函数的定义解得3EO =,最后根据三角形面积公式解答.(1) 证明:四边形ABCD 是平行四边形AD BC AE FC ∴=,∥ED BF =AD ED BC BF -=-,即AE FC =.∴四边形AFCE 是平行四边形.(2)解:AE FC ∥,EAC ACF ∴∠=∠. AC 平分FAE ∠,EAC FAC ∠=∠∴.ACF FAC ∴∠=∠.AF FC ∴=,由(1)知四边形AFCE 是平行四边形,∴平行四边形AFCE 是菱形.14,2AO AC AC EF ∴==⊥,在 Rt AOE △中,34,tan 4AO DAC =∠=, 3EO ∴=. 11S 43622AOE AO EO ∴=⋅=⨯⨯=△ 424AOE AFCE S S ==菱形.【点睛】本题考查平行四边形的判定、菱形的判定与性质、平行线的性质、角平分线的性质、正切函数的定义等知识,是重要考点,难度一般,掌握相关知识是解题关键. 49.如图,在四边形ABCD 中,AD BC ∥,80B ∠=︒.(1)求BAD ∠的度数;(2)AE 平分BAD ∠交BC 于点E ,50BCD ∠=︒.求证:AE DC ∥.【来源】2022年湖北省武汉市中考数学真题【答案】(1)100BAD ∠=︒(2)详见解析【解析】【分析】(1)根据两直线平行,同旁内角互补,即可求解;(2)根据AE 平分BAD ∠,可得50DAE ∠=︒.再由AD BC ∥,可得50AEB DAE ∠=∠=︒.即可求证.(1)解:⊥AD BC ∥,⊥180B BAD ∠+∠=°,⊥80B ∠=︒,⊥100BAD ∠=︒.(2)证明:⊥AE 平分BAD ∠,⊥50DAE ∠=︒.⊥AD BC ∥,⊥50AEB DAE ∠=∠=︒.⊥50BCD ∠=︒,⊥BCD AEB ∠=∠.⊥AE DC ∥.【点睛】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键 50.如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F .求证:DEF F ∠=∠.【来源】湖北省武汉市2022年中考数学真题【答案】见解析【解析】【分析】根据已知条件//AB CD ,B D ∠=∠,得到DCF D ∠=∠,从而得到//AD BC ,即可证明DEF F ∠=∠.【详解】证明:⊥//AB CD ,⊥DCF B ∠=∠.⊥B D ∠=∠,⊥DCF D ∠=∠.⊥//AD BC .⊥DEF F ∠=∠.【点睛】本题考查平行线的性质和判定.平行线的性质:两直线平行,内错角相等.平行线的判定:同位角相等,两直线平行.。
2023年江苏省无锡市中考数学联赛试题附解析
2023年江苏省无锡市中考数学联赛试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.某电视台综艺节日从接到的 5000 个热线电话中,抽取 10 名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是()A.1500B.15000C.1200D.120002.有左、中、右三个抽屉,左边的抽屉里放有 2个白球,中间和右边的抽屉里各放一个红球和一个白球,从三个抽屉里任选一个球是红球的概率是()A.14B.13C.16D.253.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量两组对角线是否垂直D.测量其中三个角是否都为直角4.点P(5,-8)关于x轴的对称点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.41xx>⎧⎨-⎩,≤B.41xx<⎧⎨-⎩,≥C.41xx>⎧⎨>-⎩,D.41xx⎧⎨>-⎩≤,6.下列语句错误的是()A.连结两点的线段长度叫做两点间的距离B.两点之间,直线最短C.两条平行线中,-条直线上的点到另一条直线的距离叫两条平行线间的距离D.平移变换中,各组对应点连成两线段平行且相等7.如图所示,直线AB、CD被EF所截,那么图中共有对顶角()A.5对B.4对C.3对D.2对二、填空题8.如图,地面A 处有一支燃烧的蜡烛(长度不计),一个人在A 与墙BC 之间运动,则他在墙上投影长度随着他离墙的距离变小而 (填“变大”、“变小”或“不变”). 9.求下列三角函数的值(精确到 0. 0001). (1)sin36°= ;sin53°16′= ;cos25°18′= .(2) cos36°= ;tan54°24′= ;sin26°18′24"= .(3)tan54°= ;cos48°6′36"= ;tan60°= .10.抛物线23y x bx =++经过点(30),,则b 的值为 .11.平行四边形的周长为30,两邻边的差为5,则其较长边是________.12.已知一个样本中,50个数据分别落在5个组内,第一,二,三,五的数据个数分别为2,8,15,5,则第四组的频数为 ,频率为 .13.已知三角形的两边分别是1和2,第三边的数值是方程2x 2-5x+3=0的根,则这个三角形的周长为_______.14.方程213504x x --=,其中a = ,b = ,c . 15.仓库里现有粮食l200 t ,每天运出60 t ,x 天后仓库里剩余粮食y(t),则y 与x 之间的函数解析式为 ,自变量x 的取值范围是 .16.有6个数.它们的平均数是l2,若再添一个数5,则这7个数的平均数是 .17.如图,请写出能判定 CE ∥AB 的一个条件: .18.如图,已知直线a ∥b. 若∠1 = 40°,则∠2 = .19.观察卞列算式:22318-=,225316-=,229732-=,…,请将你发现的规律用式子表示出来 . 20.如图,在线段AB 上任取C 、D 两点,若M 、P 分别是线段AC 、DB 上的点,且AM=MC ,PB=12BD ,CD=3 cm ,AB=9 cm ,则MP= cm .21.某班50名学生在课外活动中参加作文、美术、文娱、体育兴趣小组的分别有8人、l2人、20人、l0人,那么参加体育兴趣小组的人数所占的百分比为 .22.如图,OB 是∠AOC 的平分线,0D 是∠COE 的平分线.(1)如果∠AOC=80°,那么∠BOC= ;(2)如果∠AOC=80°,∠COE=50°,那么∠BOD= .三、解答题23.如图所示,在灯光照射下,高为2.5米的小树影长为3米,已知小树距离灯杆2米,王强距离灯杆3.5米,其影长为1.5米,求王强的身高.(结果精确到0.1米)24.用两种不同的瓷砖密铺地面,请你设计三种不同的铺设方案.画出示意图.25.如图,△ABC 中,∠C =90°,∠B =60°,AO =x ,⊙O 的半径为1.灯杆树人高问:当x 在什么范围内取值时,直线AC 与⊙O 相离、相切、相交?26.已知:如图,□ABCD 各角的平分线分别相交于点E ,F ,G ,H ,求证:四边形EFGH 是矩形.27. 如图,△ABC 中,AB=AC ,D 、E 、F 分别在 AB 、BC,AC 上,且BD=CE,∠DEF=∠B ,图中是否存在和△BDE 全等的三角形?说明理由.28.化简: (1)1112+-+a a a (2)442222---⋅+x x x x29.如图,以直线l 为对称轴,画出图形的另一半.30.2-+++=,求2a b ca b c2|1|(3)0+-的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.D4.A5.B6.C7.B二、填空题8.变小9.(3)1. 3764 , 0. 6677,1. 7320(1)0. 5878,0.8014, 0. 9041(2)0. 8090,1. 3968,0. 443210.4- 11.1012.20,0.413. 41214.3,5-,14- 15.y=1200-60x ,0≤x ≤2016.1117.答案不唯一.如∠A=∠DCE18.40°19.22(21)(21)8n n n +--=(n 为正整数)20.621.20%22.(1)40°(2)65°三、解答题23.设灯杆高x 米,则x 325.23+=,解得x=625(米);又设王强身高为y 米,则5.15.15.3+=y x ,解得y=1.25≈1.3米. 24.画图略,铺设方案例举如下:①采用2块正方形瓷砖,3块三角形瓷砖;②采用2块正八边形瓷砖与l 块正方形瓷砖;③采用l 块正六边形瓷砖与4块正三角形瓷砖25.解:作OD ⊥AC 于D ,在Rt △ABC ,∠C =90°∠B =60°,∴∠A =30°∴OD =12AO =12x (1)当12x >1,即x >2时,AC 与⊙O 相离; (2)当12x =1,即x =2时,AC 与⊙O 相切; (3)0≤12x <1,即0≤x <2时,AC 与⊙O 相交. 26. 略27.△BDE ≌△CEF(ASA)28.(1)1-a ,(2)22+x . 29.略30.6。
2022年中考数学试题汇编:二次函数(解答题)(含解析)
2022年中考数学试题汇编:二次函数(解答题)1.(2022•青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?2.(2022•盘锦)精准扶贫工作已经进入攻坚阶段,贫苦户李大叔在政府的帮助下,建起塑料大棚,种植优质草莓,今年二月份正式上市销售.在30天的试销中,每天的销售量与销售天数x满足一次函数关系,部分数据如下表:x(天)123 (x)每天的销售量(千克)101214…设第x天的售价为y元/千克,y关于x的函数关系满足如上图像:已知种植销售草莓的成本为5元/千克,每天的利润是w元.(利润=销售收入﹣成本)(1)将表格中的最后一列补充完整;(2)求y关于x的函数关系式;(3)求销售草莓的第几天时,当天的利润最大?最大利润是多少元?3.(2022•营口)某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:售价(元/本)……22232425……每天销售量(本)……80787674……(1)求A,B两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;①直接写出B款纪念册每天的销售量(用含m的代数式表示);②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?4.(2022•贵阳)已知二次函数y=ax2+4ax+b.(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(﹣1,e),(﹣3,f)四点,判断c,d,e,f的大小,并说明理由;(3)点M(m,n)是二次函数图象上的一个动点,当﹣2≤m≤1时,n的取值范围是﹣1≤n≤1,求二次函数的表达式.5.(2022•营口)在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(,)和点B(4,0),与y轴交于点C,点P为为物线上一动点.(1)求抛物线和直线AB的解析式;(2)如图,点P为第一象限内抛物线上的点,过点P作PD⊥AB,垂足为D,作PE⊥x 轴,垂足为E,交AB于点F,设△PDF的面积为S1,△BEF的面积为S2,当=时,求点P坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N坐标,若不存在,请说明理由.6.(2022•聊城)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B 两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.(1)求二次函数的表达式;(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D 沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.7.(2022•盘锦)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B两点(A在B的左侧),与y轴交于点C(0,9),点D在y轴正半轴上,OD=4,点P是线段OB上的一点,过点B作BE⊥DP,BE交DP的延长线于点E.(1)求抛物线解析式;(2)若=,求点P的坐标;(3)点F为第一象限抛物线上一点,在(2)的条件下,当∠FPD=∠DPO时,求点F 的坐标.8.(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.9.(2022•张家界)如图,已知抛物线y=ax2+bx+3(a≠0)的图象与x轴交于A(1,0),B (4,0)两点,与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的函数表达式及点D的坐标;(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位的速度从点C沿CE向点E 运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线图象上的动点.若过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.10.(2022•铜仁市)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于 5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?11.(2022•辽宁)某蔬菜批发商以每千克18元的价格购进一批山野菜,市场监督部门规定其售价每千克不高于28元.经市场调查发现,山野菜的日销售量y(千克)与每千克售价x(元)之间满足一次函数关系,部分数据如表:……202224……每千克售价x(元)日销售量y(千……666054……克)(1)求y与x之间的函数关系式;(2)当每千克山野菜的售价定为多少元时,批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?12.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M ,使△MDF 为等腰三角形?若不存在,请说明理由;若存在,求ME 的长.13.(2022•北京)在平面直角坐标系xOy 中,点(1,m ),(3,n )在抛物线y =ax 2+bx +c (a >0)上,设抛物线的对称轴为x =t .(1)当c =2,m =n 时,求抛物线与y 轴交点的坐标及t 的值;(2)点(x 0,m )(x 0≠1)在抛物线上.若m <n <c ,求t 的取值范围及x 0的取值范围.14.(2022•北京)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系y =a (x ﹣h )2+k (a <0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下:水平距离x /m0 2 5 8 11 14竖直高度y /m20.00 21.40 22.75 23.20 22.75 21.40 根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y =a (x﹣h)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=﹣0.04(x﹣9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1d2(填“>”“=”或“<”).15.(2022•呼和浩特)如图,抛物线y=﹣x2+bx+c经过点B(4,0)和点C(0,2),与x轴的另一个交点为A,连接AC、BC.(1)求抛物线的解析式及点A的坐标;(2)如图1,若点D是线段AC的中点,连接BD,在y轴上是否存在点E,使得△BDE 是以BD为斜边的直角三角形?若存在,请求出点E的坐标;若不存在,请说明理由.(3)如图2,点P是第一象限内抛物线上的动点,过点P作PQ∥y轴,分别交BC、x 轴于点M、N,当△PMC中有某个角的度数等于∠OBC度数的2倍时,请求出满足条件的点P的横坐标.16.(2022•辽宁)抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b 经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC 于点F.(1)求抛物线的解析式;(2)如图①,点P为直线AC下方抛物线上的点,连接P A,PC,△BAF的面积记为S1,△P AC的面积记为S2,当S2=S1时.求点P的横坐标;(3)如图②,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF相似时(AE与CD不是对应边),请直接写出符合条件的点Q的坐标.17.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P的坐标.18.(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:x…﹣10123…y…430﹣5﹣12…(1)求二次函数y=ax2+bx+3的表达式;(2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y=,实数k的取值范围是;(3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.19.(2022•辽宁)某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x (元)之间满足如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?20.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.21.(2022•临沂)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,运动员首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止.本项目主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:如图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x 轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,OA=65m,某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,AB=100m.在空中飞行过程中,运动员到x轴的距离y(m)与水平方向移动的距离x(m)具备二次函数关系,其解析式为y=﹣x2+bx+c.(1)求b,c的值;(2)进一步研究发现,运动员在飞行过程中,其水平方向移动的距离x(m)与飞行时间t(s)具备一次函数关系,当运动员在起跳点腾空时,t=0,x=0;空中飞行5s后着陆.①求x关于t的函数解析式;②当t为何值时,运动员离着陆坡的竖直距离h最大,最大值是多少?22.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x 轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.23.(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为1:5两部分,求点P的坐标.24.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c 称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.25.(2022•海南)如图1,抛物线y=ax2+2x+c经过点A(﹣1,0)、C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D.(1)求该抛物线的函数表达式;(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;(3)点Q在抛物线上,当的值最大且△APQ是直角三角形时,求点Q的横坐标;(4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI∥y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y轴上时,请直接写出点G的坐标.26.(2022•包头)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x 取整数)时,日销售量y(单位:千克)与x之间的函数关系式为y=,草莓价格m(单位:元/千克)与x之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x≤12时,草莓价格m与x之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?27.(2022•大庆)某果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg.在确保每棵果树平均产量不低于40kg的前提下,设增种果树x(x>0且x为整数)棵,该果园每棵果树平均产量为ykg,它们之间的函数关系满足如图所示的图象.(1)图中点P所表示的实际意义是,每增种1棵果树时,每棵果树平均产量减少kg;(2)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(3)当增种果树多少棵时,果园的总产量w(kg)最大?最大产量是多少?28.(2022•梧州)如图,在平面直角坐标系中,直线y=﹣x﹣4分别与x,y轴交于点A,B,抛物线y=x2+bx+c恰好经过这两点.(1)求此抛物线的解析式;(2)若点C的坐标是(0,6),将△ACO绕着点C逆时针旋转90°得到△ECF,点A 的对应点是点E.①写出点E的坐标,并判断点E是否在此抛物线上;②若点P是y轴上的任一点,求BP+EP取最小值时,点P的坐标.29.(2022•吉林)如图,在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A (1,0),点B(0,3).点P在此抛物线上,其横坐标为m.(1)求此抛物线的解析式.(2)当点P在x轴上方时,结合图象,直接写出m的取值范围.(3)若此抛物线在点P左侧部分(包括点P)的最低点的纵坐标为2﹣m.①求m的值.②以P A为边作等腰直角三角形P AQ,当点Q在此抛物线的对称轴上时,直接写出点Q的坐标.30.(2022•包头)如图,在平面直角坐标系中,抛物线y=ax2+c(a≠0)与x轴交于A,B 两点,点B的坐标是(2,0),顶点C的坐标是(0,4),M是抛物线上一动点,且位于第一象限,直线AM与y轴交于点G.(1)求该抛物线的解析式;(2)如图1,N是抛物线上一点,且位于第二象限,连接OM,记△AOG,△MOG的面积分别为S1,S2.当S1=2S2,且直线CN∥AM时,求证:点N与点M关于y轴对称;(3)如图2,直线BM与y轴交于点H,是否存在点M,使得2OH﹣OG=7.若存在,求出点M的坐标;若不存在,请说明理由.31.(2022•绥化)如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.(1)求抛物线的解析式;(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.32.(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y=x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.(1)求b的值;(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.33.(2022•长沙)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;(2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.34.(2022•贺州)2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?35.(2022•威海)某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.36.(2022•湖北)某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y(千克)与销售单价x(元/千克)有如下表所示的关系:销售单价x(元/千克)…2022.52537.540…销售量y(千克)…3027.52512.510…(1)根据表中的数据在如图中描点(x,y),并用平滑曲线连接这些点,请用所学知识求出y关于x的函数关系式;(2)设该超市每天销售这种商品的利润为w(元)(不计其它成本).①求出w关于x的函数关系式,并求出获得最大利润时,销售单价为多少;②超市本着“尽量让顾客享受实惠”的销售原则,求w=240(元)时的销售单价.37.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y 轴交于点C,线段CB∥x轴,交该抛物线于另一点B.(1)求点B的坐标及直线AC的解析式;(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.38.(2022•无锡)某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为36m2,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?39.(2022•广西)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.40.(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B 的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D为线段OC的中点,则△POD能否是等边三角形?请说明理由;(3)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.41.(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B 两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.42.(2022•荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x (元/件)之间满足函数关系式y=24﹣x,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?43.(2022•河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.44.(2022•湘潭)为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度AE=1m的水池,且需保证总种植面积为32m2,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?45.(2022•随州)2022年的冬奥会在北京举行,其中冬奥会吉祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面.某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空,该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m个(m为正整数).经过连续15天的销售统计,得到第x天(1≤x≤15,且x为正整数)的供应量y1(单位:个)和需求量y2(单位:个)的部分数据如下表,其中需求量y2与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)第x天12...6...11 (15)150150+m…150+5m…150+10m…150+14m 供应量y1(个)220229...245...220 (164)需求量y2(个)(1)直接写出y1与x和y2与x的函数关系式;(不要求写出x的取值范围)(2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)(3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.46.(2022•湖北)为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.参考答案与试题解析1.(2022•青岛)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?。
2022江苏省无锡市中考数学真题试卷和答案
2022年无锡市初中学业水平考试数学试题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上,考试时间为120分钟,试卷满分为150分.注意事项:1. 答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2. 答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须用0.5毫米黑色墨水签字笔作答,请把答案填写在答题卡指定区域内相应的位置,在其他区域答题一律无效.3. 作图必须用2B 铅笔作答,并请加黑加粗、描写清楚.4. 卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑.)1. -15的倒数是( )A. -15B. -5C.15D. 52. 函数yx 的取值范围是( )A. x >4B. x <4C. x≥4D. x≤43. 已知一组数据:111,113,115,115,116,这组数据的平均数和众数分别是( )A. 114,115 B. 114,114C. 115,114D. 115,1154. 方程213x x=-的解是( ).A 3x =- B. 1x =- C. 3x = D. 1x =5. 在Rt △ABC 中,∠C =90°,AC =3,BC =4,以AC 所在直线为轴,把△ABC 旋转1周,得到圆锥,则该圆锥的侧面积为( )A. 12πB. 15πC. 20πD. 24π6. 雪花、风车….展示着中心对称的美,利用中心对称,可以探索并证明图形的性质,请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为( )A. 扇形B. 平行四边形C. 等边三角形D. 矩形.7. 如图,AB 是圆O 的直径,弦AD 平分∠BAC ,过点D 的切线交AC 于点E ,∠EAD =25°,则下列结论错误的是( )A. AE ⊥DEB. AE //ODC. DE =ODD. ∠BOD =50°8. 下列命题中,是真命题有( )①对角线相等且互相平分的四边形是矩形 ②对角线互相垂直的四边形是菱形③四边相等的四边形是正方形 ④四边相等的四边形是菱形A. ①②B. ①④C. ②③D. ③④9. 一次函数y =mx +n 的图像与反比例函数y =m x 的图像交于点A 、B ,其中点A 、B 的坐标为A (-1m,-2m )、B (m ,1),则△OAB 的面积( )A. 3B.134C.72D.15410. 如图,在 ABCD 中,AD BD =,105ADC ∠=o ,点E 在AD 上,60EBA ∠= ,则EDCD的值是( )A.23B.12C.D.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应的位置上.)11. 分解因式:22a 4a 2-+=_____.12.高速公路便捷了物流和出行,构建了我们更好的生活,交通运输部的数据显示,截止去年底,我国高的速公路通车里程161000公里,稳居世界第一.161000这个数据用科学记数法可表示为________.13. 二元一次方程组321221x y x y +=⎧⎨-=⎩解为________.14. 请写出一个函数的表达式,使其图像分别与x 轴的负半轴、y 轴的正半轴相交:________.15. 请写出命题“如果a b >,那么0b a -<”逆命题:________.16. 如图,正方形ABCD 边长为8,点E 是CD 的中点,HG 垂直平分AE 且分别交AE 、BC 于点H 、G ,则BG =________.17. 把二次函数y =x 2+4x +m 的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m 应满足条件:________.18. △ABC 是边长为5的等边三角形,△DCE 是边长为3的等边三角形,直线BD 与直线AE 交于点F .如图,若点D 在△ABC 内,∠DBC =20°,则∠BAF =________°;现将△DCE 绕点C 旋转1周,在这个旋转过程中,线段AF 长度的最小值是________.三、解答题(本大题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤等.)19. 计算:(1)(21cos 602-⨯- ;(2)()()()()23a a a b a b b b +-+---.的的的20. (1)解方程2250x x --=; (2)解不等式组:()21435x x x ⎧+>⎨≤+⎩.21. 如图,在▱ABCD 中,点O 为对角线BD 的中点,EF 过点O 且分别交AB 、DC 于点E 、F ,连接DE 、BF .求证:(1)△DOF ≌△BOE ;(2)DE =BF .22. 建国中学有7位学生的生日是10月1日,其中男生分别记为1A ,2A ,3A ,4A ,女生分别记为1B ,2B ,3B .学校准备召开国庆联欢会,计划从这7位学生中抽取学生参与联欢会的访谈活动.(1)若任意抽取1位学生,且抽取的学生为女生的概率是;(2)若先从男生中任意抽取1位,再从女生中任意抽取1位,求抽得的2位学生中至少有1位是1A 或1B 的概率.(请用“画树状图”或“列表”等方法写出分析过程)23. 育人中学初二年级共有200名学生,2021年秋学期学校组织初二年级学生参加30秒跳绳训练,开学初和学期末分别对初二年级全体学生进行了摸底测试和最终测试,两次测试数据如下:育人中学初二学生30秒跳绳测试成绩的频数分布表跳绳个数(x )x ≤5050<x ≤6060<x ≤7070<x ≤80x >80频数(摸底测试)192772a 17频数(最终测试)3659bc育人中学初二学生30秒跳绳最终测试成绩的扇形统计图(1)表格中a = ;(2)请把下面的扇形统计图补充完整;(只需标注相应的数据)(3)请问经过一个学期的训练,该校初二年级学生最终测试30秒跳绳超过80个的人数有多少?24. 如图,△ABC 为锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图:在AC 右上方确定点D ,使∠DAC =∠ACB ,且CD AD ⊥;(不写作法,保留作图痕迹)(2)在(1)的条件下,若60B ∠= ,2AB =,3BC =,则四边形ABCD 的面积为 .(如需画草图,请使用试卷中的图2)25. 如图,边长为6的等边三角形ABC 内接于⊙O ,点D 为AC 上的动点(点A 、C 除外),BD 的延长线交⊙O 于点E ,连接CE .(1)求证CED BAD △∽△;(2)当2DC AD =时,求CE 的长.26. 某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m ),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m ,设较小矩形的宽为xm (如图).(1)若矩形养殖场的总面积为362m ,求此时x 的值;(2)当x 为多少时,矩形养殖场的总面积最大?最大值为多少?27. 如图,已知四边形ABCD 为矩形AB =,4BC =,点E 在BC 上,CE AE =,将△ABC 沿AC 翻折到△AFC ,连接EF .(1)求EF 的长;(2)求sin ∠CEF 的值.28. 已知二次函数214y x bx c =-++图像的对称轴与x 轴交于点A (1,0),图像与y 轴交于点B (0,3),C 、D 为该二次函数图像上的两个动点(点C 在点D 的左侧),且90CAD ∠= .(1)求该二次函数的表达式;(2)若点C与点B重合,求tan∠CDA的值;(3)点C是否存在其他的位置,使得tan∠CDA的值与(2)中所求的值相等?若存在,请求出点C的坐标;若不存在,请说明理由.2022年无锡市初中学业水平考试数学试题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上,考试时间为120分钟,试卷满分为150分.注意事项:1. 答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2. 答选择题必须用2B铅笔将答题卡上对应题目中的选项标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须用0.5毫米黑色墨水签字笔作答,请把答案填写在答题卡指定区域内相应的位置,在其他区域答题一律无效.3. 作图必须用2B铅笔作答,并请加黑加粗、描写清楚.4. 卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑.)1. -15的倒数是()A. -15B. -5C.15D. 5【答案】B【解析】【分析】倒数:乘积是1的两数互为倒数.据此可得答案.【详解】解:-15的倒数是-5.故选:B.【点睛】本题考查了倒数,掌握倒数定义是解答本题的关键.2. 函数yx的取值范围是( )A. x>4B. x<4C. x≥4D. x≤4的【答案】D 【解析】【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以4-x≥0,可求x 的范围.【详解】解:4-x≥0,解得x≤4,故选:D .【点睛】此题考查函数自变量的取值,解题关键在于掌握当函数表达式是二次根式时,被开方数为非负数.3. 已知一组数据:111,113,115,115,116,这组数据的平均数和众数分别是( )A. 114,115 B. 114,114C. 115,114D. 115,115【答案】A 【解析】【分析】根据众数、平均数的概念求解.【详解】解:这组数据的平均数为:(1+3+5+5+6)÷5+110=114,115出现了2次,出现次数最多,则众数为:115,故选:A .【点睛】本题考查了平均数和众数.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据中出现次数最多的数据叫做众数.4. 方程213x x=-的解是( ).A. 3x =- B. 1x =- C. 3x = D. 1x =【答案】A 【解析】【分析】根据解分式方程的基本步骤进行求解即可.先两边同时乘最简公分母(3)x x -,化为一元一次方程;然后按常规方法,解一元一次方程;最后检验所得一元一次方程的解是否为分式方程的解.【详解】解:方程两边都乘(3)x x -,得23x x =-解这个方程,得3x =-检验:将3x =-代入原方程,得左边13=-,右边13=-,左边=右边.所以,3x=-是原方程的根.故选:A.【点睛】本题考查解分式方程,熟练掌握解分式方程的基本步骤和验根是解题的关键.5. 在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为()A. 12πB. 15πC. 20πD. 24π【答案】C【解析】【分析】先利用勾股定理计算出AB,再利用扇形的面积公式即可计算出圆锥的侧面积.【详解】解:∵∠C=90°,AC=3,BC=4,∴AB=5,以直线AC为轴,把△ABC旋转一周得到的圆锥的侧面积=12×2π×4×5=20π.故选:C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6. 雪花、风车….展示着中心对称的美,利用中心对称,可以探索并证明图形的性质,请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为()A. 扇形B. 平行四边形C. 等边三角形D. 矩形【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、扇形是轴对称图形,不是中心对称图形,故此选项不合题意;B、平行四边形不一定是轴对称图形,是中心对称图形,故此选项符合题意;C、等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;D、矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;故选:B.【点睛】此题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心是解题关键.7. 如图,AB 是圆O 的直径,弦AD 平分∠BAC ,过点D 的切线交AC 于点E ,∠EAD =25°,则下列结论错误的是( )A. AE ⊥DEB. AE //ODC. DE =ODD.∠BOD =50°【答案】C【解析】【分析】过点D 作DF ⊥AB 于点F ,根据切线性质得到OD ⊥DE ,证明OD ∥AE ,根据平行线的性质以及角平分线的性质逐一判断即可.【详解】解:∵DE 是⊙O 的切线,∴OD ⊥DE ,∵OA =OD ,∴∠OAD =∠ODA ,∵AD 平分∠BAC ,∴∠OAD =∠EAD ,∴∠EAD =∠ODA ,∴OD ∥AE ,∴AE ⊥DE .故选项A 、B 都正确;∵∠OAD =∠EAD =∠ODA =25°,∠EAD =25°,∴∠BOD =∠OAD +∠ODA =50°,故选项D 正确;∵AD 平分∠BAC ,AE ⊥DE ,DF ⊥AB ,∴DE =DF <OD ,故选项C 不正确;故选:C.的【点睛】本题考查的是切线的性质,角平分线的性质定理,平行线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.8. 下列命题中,是真命题的有()①对角线相等且互相平分的四边形是矩形②对角线互相垂直的四边形是菱形③四边相等的四边形是正方形④四边相等的四边形是菱形A. ①②B. ①④C. ②③D. ③④【答案】B【解析】【分析】直接利用平行四边形以及矩形、菱形、正方形的判定方法分别分析进而得出答案.【详解】解:①对角线相等且互相平分的四边形是矩形,正确;②对角线互相平分且垂直的四边形是菱形,故原命题错误;③四边相等的四边形是菱形,故原命题错误;④四边相等的四边形是菱形,正确.故选:B.【点睛】此题主要考查了命题与定理,正确把握特殊四边形的判定方法是解题关键.9. 一次函数y=mx+n的图像与反比例函数y=mx的图像交于点A、B,其中点A、B的坐标为A(-1m,-2m)、B(m,1),则△OAB的面积()A. 3B. 134C.72D.154【答案】D【解析】【分析】将点A的坐标代入可确定反比例函数关系式,进而确定点B的坐标,再利用待定系数法求出一次函数关系式;求出直线AB与y轴交点D的坐标,确定OD的长,再根据三角形的面积公式进行计算即可.【详解】解:∵A (-1m ,-2m )在反比例函数y =m x的图像上,∴m =(-1m) • ( -2m )=2,∴反比例函数的解析式为y =2x ,∴B (2,1),A (-12,-4),把B (2,1)代入y =2x +n 得1=2×2+n ,∴n =-3,∴直线AB 的解析式为y =2x -3,直线AB 与y 轴的交点D (0,-3),∴OD =3,∴S △AOB =S △BOD +S △AOD =12×3×2+12×3×12=154.故选:D ..【点睛】本题考查一次函数与反比例函数的交点,把点的坐标代入函数关系式是解决问题常用的方法.10. 如图,在 ABCD 中,AD BD =,105ADC ∠=o ,点E 在AD 上,60EBA ∠= ,则ED CD的值是( )A. 23 B. 12【答案】D【解析】【分析】过点B 作BF ⊥AD 于F ,由平行四边形性质求得∠A =75°,从而求得∠AEB =180°-∠A -∠ABE =45°,则△BEF 是等腰直角三角形,即BF =EF ,设BF =EF =x ,则BD =2x ,DF =,DE =DF -EF =)x ,AF =AD -DF =BD -DF =(x ,继而求得AB 2=AF 2+BF 2=(2x 2+X 2=(x 2,从而求得DE AB =,再由AB =CD ,即可求得答案.【详解】解:如图,过点B 作BF ⊥AD 于F ,∵ ABCD ,∴CD =AB ,CD ∥AB ,∴∠ADC +∠BAD =180°,∵105ADC ∠=o∴∠A =75°,∵∠ABE =60°,∴∠AEB =180°-∠A -∠ABE =45°,∵BF ⊥AD ,∴∠BFD =90°,∴∠EBF =∠AEB =45°,∴BF =FE ,∵AD =BD ,∴∠ABD =∠A =75°,∴∠ADB =30°,设BF =EF =x ,则BD =2x ,由勾股定理,得DF,∴DE =DF -EF =)x ,AF =AD -DF =BD -DF =(x ,由勾股定理,得AB 2=AF 2+BF 2=(2x 2+x 2=(x 2,∴2222112x DE AB -==∴DE AB =∵AB=CD ,∴DE CD =故选:D .【点睛】本题考查平行四边形的性质,等腰三角形的性质,勾股定理,直角三角形的性质,过点B 作BF ⊥AD 于F ,构建直角三角形与等腰直角三角形是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应的位置上.)11. 分解因式:22a 4a 2-+=_____.【答案】()22a 1-【解析】【详解】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:()()2222a 4a 22a 2a 12a 1-+=-+=-.12. 高速公路便捷了物流和出行,构建了我们更好的生活,交通运输部的数据显示,截止去年底,我国高速公路通车里程161000公里,稳居世界第一.161000这个数据用科学记数法可表示为________.【答案】51.6110⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数,当原数绝对值1<时,n 是负整数.【详解】解:5161000 1.6110=⨯.故答案为: 51.6110⨯.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.13. 二元一次方程组321221x y x y +=⎧⎨-=⎩的解为________.【答案】23x y =⎧⎨=⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:321221x y x y +=⎧⎨-=⎩①②.①+②×2得:7x =14,解得:x =2,把x =2代入②得:2×2-y =1解得:y =3,所以,方程组的解为23x y =⎧⎨=⎩,故答案为:23x y =⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14. 请写出一个函数的表达式,使其图像分别与x 轴的负半轴、y 轴的正半轴相交:________.【答案】5y x =+【解析】【分析】结合题意,根据一次函数图像的性质分析,即可得到答案.【详解】函数5y x =+的图像如下,函数分别于x 轴相交于点B 、和y 轴相交于点A ,当0x =时,5y =,即()0,5A当0y =时,5x =-,即()5,0B -∴函数图像分别与x 轴的负半轴、y 轴的正半轴相交故答案为:5y x =+.【点睛】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.15. 请写出命题“如果a b >,那么0b a -<”的逆命题:________.【答案】如果0b a -<,那么a b>【解析】【分析】根据逆命题的概念解答即可.【详解】解:命题“如果a b >,那么0b a -<”的逆命题是“如果0b a -<,那么a b >”,故答案为:如果0b a -<,那么a b >.【点睛】此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.16. 如图,正方形ABCD 的边长为8,点E 是CD 的中点,HG 垂直平分AE 且分别交AE 、BC 于点H 、G ,则BG =________.【答案】1【解析】【分析】连接AG,EG,根据线段垂直平分线性质可得AG=EG,由点E是CD的中点,得CE=4,设BG=x,则CG=8-x,由勾股定理,可得出(8-x)2+42=82+x2,求解即可.【详解】解:连接AG,EG,如图,∵HG垂直平分AE,∴AG=EG,∵正方形ABCD的边长为8,∴∠B=∠C=90°,AB=BC=CD=8,∵点E是CD的中点,∴CE=4,设BG=x,则CG=8-x,由勾股定理,得EG2=CG2+CE2=(8-x)2+42,AG2=AB2+BG2=82+x2,∴(8-x)2+42=82+x2,解得:x=1,故答案为:1.【点睛】本题考查正方形的性质,线段垂直平分线的性质,勾股定理,熟练掌握正方形的性质、线段垂直平分线的性质、勾股定理及其运用是解题的关键.17. 把二次函数y=x2+4x+m的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m应满足条件:________.【答案】m>3【解析】【分析】先求得原抛物线的顶点坐标为(-2,m-4),再求得平移后的顶点坐标为(1,m-3),根据题意得到不等式m-3>0,据此即可求解.【详解】解:∵y=x2+4x+m=(x+2)2+m-4,此时抛物线的顶点坐标为(-2,m-4),函数的图象向上平移1个单位长度,再向右平移3个单位长度后的顶点坐标为(-2+3,m-4+1),即(1,m-3),∵平移后所得抛物线与坐标轴有且只有一个公共点,∴m -3>0,解得:m >3,故答案为:m >3.【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,属于基础题,解决本题的关键是得到新抛物线的顶点坐标.18. △ABC 是边长为5的等边三角形,△DCE 是边长为3的等边三角形,直线BD 与直线AE 交于点F .如图,若点D 在△ABC 内,∠DBC =20°,则∠BAF =________°;现将△DCE 绕点C 旋转1周,在这个旋转过程中,线段AF 长度的最小值是________.【答案】①. 80 ②. 4-##4+【解析】【分析】利用SAS 证明△BDC ≌△AEC ,得到∠DBC =∠EAC =20°,据此可求得∠BAF 的度数;利用全等三角形的性质可求得∠AFB =60°,推出A 、B 、C 、F 四个点在同一个圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,此时线段AF 长度有最小值,据此求解即可.【详解】解:∵△ABC 和△DCE 都是等边三角形,∴AC =BC ,DC =EC ,∠BAC =∠ACB =∠DCE =60°,∴∠DCB +∠ACD =∠ECA +∠ACD =60°,即∠DCB =∠ECA ,在△BCD 和△ACE 中,CD CE BCD ACE BC AC =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ( SAS ),∴∠EAC =∠DBC ,∵∠DBC =20°,∴∠EAC =20°,∴∠BAF =∠BAC +∠EAC =80°;设BF 与AC 相交于点H ,如图:∵△ACE ≌△BCD∴AE =BD ,∠EAC =∠DBC ,且∠AHF =∠BHC ,∴∠AFB =∠ACB =60°,∴A 、B 、C 、F 四个点在同一个圆上,∵点D 在以C 为圆心,3为半径的圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,∴此时线段AF 长度有最小值,在Rt △BCD 中,BC =5,CD =3,∴BD =4,即AE =4,∴∠FDE =180°-90°-60°=30°,∵∠AFB =60°,∴∠FDE =∠FED =30°,∴FD =FE ,过点F 作FG ⊥DE 于点G ,∴DG =GE =32,∴FE =DF =cos30DG ︒,∴AF =AE -FE故答案为:80;.【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤等.)19. 计算:(1)(21cos 602-⨯- ;(2)()()()()23a a a b a b b b +-+---.【答案】(1)1 (2)2a +3b【解析】【分析】(1)先化简绝对值和计算乘方,并把特殊角的三角函数值代入,再计算乘法,最后算加减即可求解;(2)先运用单项式乘以多项式法则和平方差公式计算,再合并同类项即可.【小问1详解】解:原式=11322⨯-=3122-=1;【小问2详解】解:原式=a 2+2a -a 2+b 2-b 2+3b =2a +3b .【点睛】本题考查实数混合运算,整式混合运算,熟练掌握实数运算法则和单项式乘以多项式法则,熟记特殊角的三角函数值、平方差公式是解题的关键.20. (1)解方程2250x x --=;(2)解不等式组:()21435x x x ⎧+>⎨≤+⎩.【答案】(1)x 1,x 2;(2)不等式组的解集为1<x ≤52.【解析】【分析】(1)方程利用配方法求出解即可;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:(1)方程移项得:x 2-2x =5,配方得:x 2-2x +1=6,即(x -1)2=6,开方得:x ,解得:x 1,x 2;(2)()21435x x x ⎧+>⎨≤+⎩①②.由①得:x >1,由②得:x ≤52,则不等式组的解集为1<x ≤52.【点睛】此题考查了解一元二次方程-配方法,以及解一元一次不等式组,熟练掌握方程及不等式组的解法是解本题的关键.21. 如图,在▱ABCD 中,点O 为对角线BD 的中点,EF 过点O 且分别交AB 、DC 于点E 、F ,连接DE 、BF .求证:(1)△DOF ≌△BOE ;(2)DE =BF .【答案】(1)见解析 (2)见解析【解析】【分析】(1)根据平行四边形ABCD 的性质,利用ASA 即可证明△DOF ≌△BOE ;(2)证明四边形BEDF 的对角线互相平分,进而得出结论.【小问1详解】证明:∵四边形ABCD 是平行四边形,O 是BD 的中点,∴AB ∥DC ,OB =OD ,∴∠OBE =∠ODF .在△BOE 和△DOF 中,OBE ODFOB OD BOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOE ≌△DOF (ASA );【小问2详解】证明:∵△BOE ≌△DOF,∴EO =FO ,∵OB =OD ,∴四边形BEDF 是平行四边形.∴DE =BF .【点睛】本题主要考查了平行四边形的判定和性质,全等三角形的判定与性质,熟练掌握平行四边形的判定和性质,证明三角形全等是解决问的关键.22. 建国中学有7位学生的生日是10月1日,其中男生分别记为1A ,2A ,3A ,4A ,女生分别记为1B ,2B ,3B .学校准备召开国庆联欢会,计划从这7位学生中抽取学生参与联欢会的访谈活动.(1)若任意抽取1位学生,且抽取的学生为女生的概率是;(2)若先从男生中任意抽取1位,再从女生中任意抽取1位,求抽得的2位学生中至少有1位是1A 或1B 的概率.(请用“画树状图”或“列表”等方法写出分析过程)【答案】(1)37(2)12【解析】【分析】(1)根据概率计算公式计算即可;(2)格局题意,列出表格,再根据概率计算公式计算即可.【小问1详解】解:任意抽取1位学生,且抽取的学生为女生的概率是37,故答案为:37.【小问2详解】解:列出表格如下:1A 2A 3A 4A 1B 1A 1B 2A 1B 3A 1B 4A 1B 2B 1A 2B 2A 2B 3A 2B 4A 2B 3B 1A 3B 2A 3B 3A 3B 4A 3B 一共有12种情况,其中至少有1位是1A 或1B 的有6种,∴抽得2位学生中至少有1位是1A或1B的概率为61 122.【点睛】本题考查概率计算公式,画树状图或列表得出所有的情况,找出符合条件的情况数是解答本题的关键.23. 育人中学初二年级共有200名学生,2021年秋学期学校组织初二年级学生参加30秒跳绳训练,开学初和学期末分别对初二年级全体学生进行了摸底测试和最终测试,两次测试数据如下:育人中学初二学生30秒跳绳测试成绩的频数分布表跳绳个数(x)x≤5050<x≤6060<x≤7070<x≤80x>80频数(摸底测试)192772a17频数(最终测试)3659b c育人中学初二学生30秒跳绳最终测试成绩的扇形统计图(1)表格中a=;(2)请把下面的扇形统计图补充完整;(只需标注相应的数据)(3)请问经过一个学期的训练,该校初二年级学生最终测试30秒跳绳超过80个的人数有多少?【答案】(1)65 (2)见解析(3)50名【解析】【分析】(1)用全校初二年级总人数200名减去非70<x≤80的总人数即可求得a;(2)用户减去小于等于80个点的百分比,即可求出大于80个占的百分比,据此可补全扇形统计图;(3)用总人数200名乘以大于80个占的百分比,即可求解.【小问1详解】解:a=200-19-27-72-17=65,的故答案为:65;小问2详解】解:x >80的人数占的百分比为:1-1.5%-3%-29.5%-41%=25%,补充扇形统计图为:【小问3详解】解:最终测试30秒跳绳超过80个的人数有:200×25%=50(名),答:最终测试30秒跳绳超过80个的人数有50名.【点睛】本题考查频数分布表与扇形统计图,频数与频率,能从统计表与统计图中获取有用的信息是解题的关键.24. 如图,△ABC 为锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图:在AC 右上方确定点D ,使∠DAC =∠ACB ,且CD AD ⊥;(不写作法,保留作图痕迹)(2)在(1)的条件下,若60B ∠= ,2AB =,3BC =,则四边形ABCD 的面积为.(如需画草图,请使用试卷中的图2)【答案】(1)见解析 (2【解析】【分析】(1)先作∠DAC =∠ACB ,再利用垂直平分线的性质作CD AD ⊥,即可找出点D ;【(2)由题意可知四边形ABCD 是梯形,利用直角三角形的性质求出AE 、BE 、CE 、AD 的长,求出梯形的面积即可.【小问1详解】解:如图,∴点D 为所求点.【小问2详解】解:过点A 作AE 垂直于BC ,垂足为E ,∵60B ∠=︒,90AEB =︒∠,∴906030BAE ∠=︒-︒=︒,∵2AB =,∴112BE AB ==,2CE BC BE =-=,∴AE ===,∵∠DAC =∠ACB ,∴AD BC ∥,四边形ABCD 是梯形,∴90D ECD ∠=∠=︒,∴四边形AECD 是矩形,∴2CE AD ==,∴四边形ABCD 的面积为()()112322AD BC AE +⋅=⨯+=,故答案.【点睛】本题考查作图,作相等的角,根据垂直平分线的性质做垂线,根据直角三角形的性质及勾股定理求线段的长,正确作出图形是解答本题的关键.25. 如图,边长为6的等边三角形ABC 内接于⊙O ,点D 为AC 上的动点(点A 、C 除外),BD 的延长线交⊙O 于点E ,连接CE .(1)求证CED BAD △∽△;(2)当2DC AD =时,求CE 的长.【答案】(1)见解析 (2)CE =【解析】【分析】(1)根据同弧所对圆周角相等可得A E ∠=∠,再由对顶角相等得BDA CDE ∠=∠,故可证明绪论;(2)根据2DC AD =可得2,4AD CD ==,由CED BAD △∽△可得出8,BD DE =g连接AE ,可证明ABD EBA △∽△,得出22,AB BD BE BD BD BE ==+g g 代入相关数据可求出BD =,从而可求出绪论.【小问1详解】∵ BC所对的圆周角是,A E ∠∠,∴A E ∠=∠,又BDA CDE ∠=∠,∴CED BAD △∽△;【小问2详解】∵△ABC 是等边三角形,∴6AC AB BC ===为∵2DC AD =,∴3,AC AD =∴2,4,AD DC ==∵~,CED BAD ∆∆∴AD BD ABDE CD CE==,∴2,4BD DE =∴8;BD DE ⋅=连接,AE 如图,∵,AB BC =∴ AB BC= ∴∠,BAC BEA =∠又∠ABD EBA =∠,∴△~,ABD EBA ∆∴AB PDBE AB=,∴2()AB BD BF BD BD DE =⋅=⋅+2,BD BD DE =+⋅∴2268BD =+,∴BD =(负值舍去)∴6CF =解得,CE =【点睛】本题主要考查了圆周角定理,相似三角形和判定与性质,正确作出辅助线是解答本题的关键.26. 某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m ),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已。
2022年中考数学真题分类汇编:分式方程(含答案)
2022年年年年年年年年年年年年年一、选择题1.(2022·江苏省无锡市)分式方程2x−3=1x的解是( )A. x=1B. x=−1C. x=3D. x=−32.(2022·海南省)分式方程2x−1−1=0的解是( )A. x=1B. x=−2C. x=3D. x=−33.(2022·黑龙江省哈尔滨市)方程2x−3=3x的解为( )A. x=3B. x=−9C. x=9D. x=−34.(2022·贵州省毕节市)小明解分式方程1x+1=2x3x+3−1的过程如下.5.解:去分母,得3=2x−(3x+3).①6.去括号,得3=2x−3x+3.②7.移项、合并同类项,得−x=6.③8.化系数为1,得x=−6.④9.以上步骤中,开始出错的一步是( )A. ①B. ②C. ③D. ④10.(2022·四川省德阳市)如果关于x的方程2x+mx−1=1的解是正数,那么m的取值范围是( )A. m>−1B. m>−1且m≠0C. m<−1D. m<−1且m≠−211.(2022·重庆市)关于x的分式方程3x−ax−3+x+13−x=1的解为正数,且关于y的不等式组{y+9≤2(y+2)2y−a3>1的解集为y≥5,则所有满足条件的整数a的值之和是( )A. 13B. 15C. 18D. 2012.(2022·黑龙江省鹤岗市)已知关于x的分式方程2x−mx−1−31−x=1的解是正数,则m的取值范围是( )A. m>4B. m<4C. m>4且m≠5D. m<4且m≠113.(2022·浙江省丽水市)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50002x =4000x−30,则方程中x表示( )A. 足球的单价B. 篮球的单价C. 足球的数量D. 篮球的数量14.(2022·重庆市)若关于x的一元一次不等式组{x−1≥4x−1 3,5x−1<a的解集为x≤−2,且关于y的分式方程y−1y+1=ay+1−2的解是负整数,则所有满足条件的整数a的值之和是( )A. −26B. −24C. −15D. −1315.(2022·辽宁省铁岭市)小明和小强两人在公路上匀速骑行,小强骑行28km所用时间与小明骑行24km所用时间相等,已知小强每小时比小明多骑行2km,小强每小时骑行多少千米?设小强每小时骑行xkm,所列方程正确的是( )A. 28x =24x+2B. 28x+2=24xC. 28x−2=24xD. 28x=24x−216.(2022·云南省)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木.该活动开始后,实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵,则下列方程正确的是( )A. 400x−50=300xB. 300x−50=400xC. 400x+50=300xD. 300x+50=400x17.(2022·湖北省恩施土家族苗族自治州)一艘轮船在静水中的速度为30km/ℎ,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为v km/ℎ,则符合题意的方程是( )A. 14430+v =9630−vB. 14430−v=96vC. 14430−v =9630+vD. 144v=9630+v18.(2022·四川省宜宾市)某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x套桌凳,则所列方程正确的是( )A.540x−2−540x=3 B. 540x+2−540x=3B.C. 540x −540x+2=3 D. 540x−540x−2=319.(2022·四川省广元市)某药店在今年3月份购进了一批口罩,这批口罩包括一次性医用外科口罩和N95口罩,且两种口罩的只数相同,其中一次性医用外科口罩花费1600元,N95口罩花费9600元.已知一次性医用外科口罩的单价比N95口罩的单价少10元,那么一次性医用外科口罩的单价为多少元?设一次性医用外科口罩单价为x元,则列方程正确的是( )A. 9600x−10=1600xB. 9600x+10=1600xC. 9600x =1600x−10D. 9600x=1600x+1020.(2022·黑龙江省绥化市)有一个容积为24m3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm3,由题意列方程,正确的是( )A. 12x +124x=30 B. 15x+154x=24 C. 30x+302x=24 D. 12x+122x=30二、填空题21.(2022·湖南省永州市)解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是______.22.(2022·湖南省常德市)方程2x +1x(x−2)=52x的解为______.23.(2022·湖南省岳阳市)分式方程3xx+1=2的解为x=______.24.(2022·浙江省宁波市)定义一种新运算:对于任意的非零实数a,b,a⊗b=1a +1b.若(x+1)⊗x=2x+1x,则x的值为______.25.(2022·四川省内江市)对于非零实数a,b,规定a⊕b=1a −1b.若(2x−1)⊕2=1,则x的值为______.26.(2022·浙江省金华市)若分式2x−3的值为2,则x的值是______.27.(2022·四川省成都市)分式方程3−xx−4+14−x=1的解为______.28.(2022·江西省)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为______.三、解答题29.(2022·湖北省随州市)解分式方程:1x =4x+3.30.(2022·江苏省苏州市)解方程:xx+1+3x=1.31.(2022·广西壮族自治区梧州市)解方程:1−23−x =4x−3.32.(2022·广西壮族自治区柳州市)习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.33.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?34.(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?35.(2022·吉林省长春市)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?36.(2022·山东省烟台市)扫地机器人具备敏捷的转弯、制动能力和强大的自主感知、规划能力,深受人们喜爱.某商场根据市场需求,采购了A,B两种型号扫地机器人.已知B型每个进价比A型的2倍少400元.采购相同数量的A,B两种型号扫地机器人,分别用了96000元和168000元.请问A,B两种型号扫地机器人每个进价分别为多少元?37.(2022·山东省聊城市)为了解决雨季时城市内涝的难题,我市决定对部分老街道的地下管网进行改造.在改造一段长3600米的街道地下管网时,每天的施工效率比原计划提高了20%,按这样的进度可以比原计划提前10天完成任务.38.(1)求实际施工时,每天改造管网的长度;39.(2)施工进行20天后,为了减少对交通的影响,施工单位决定再次加快施工进度,以确保总工期不超过40天,那么以后每天改造管网至少还要增加多少米?40.(2022·贵州省贵阳市)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?41.(2022·贵州省铜仁市)科学规范戴口罩是阻断遵守病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?42.(2022·吉林省)刘芳和李婷进行跳绳比赛.已知刘芳每分钟比李婷多跳20个,刘芳跳135个所用的时间与李婷跳120个所用的时间相等.求李婷每分钟跳绳的个数.43.(2022·黑龙江省大庆市)某工厂生产某种零件,由于技术上的改进,现在平均每天比原计划多生产20个零件,现在生产800个零件所需时间与原计划生产600个零件所需时间相同.求现在平均每天生产多少个零件?44.(2022·内蒙古自治区呼和浩特市)今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.45.(1)问去年每吨土豆的平均价格是多少元?46.(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元,由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的2,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?3参考答案1.D2.C3.C4.B5.D6.D7.C8.D9.D10.D11.B12.A13.C14.B15.A16.x(x+1)17.x=418.219.−1220.5621.422.x=323.160x =140x−1024.解:1x =4x+3左右两边同时乘以(x+3)x得x+3=4x,3=3x,x=1.检验:把x=1代入原方程得11=41+3,等式成立,所以x=1是原方程的解.故答案为:x=1.25.解:方程两边同乘以x(x+1)得:x2+3(x+1)=x(x+1),解整式方程得:x=−32,经检验,x=−32是原方程的解,∴原方程的解为x=−32.26.解:去分母得:x−3+2=4,解得:x=5,当x=5时,x−3≠0,∴x=5是分式方程的根.27.解:(1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,依题意得:15x+1=10x,解得:x=2,经检验,x=2是原方程的解,且符合题意,∴x+1=2+1=3.答:购买1件甲种农机具需要3万元,1件乙种农机具需要2万元.(2)设购买m件甲种农机具,则购买(20−m)件乙种农机具,依题意得:3m+2(20−m)≤46,解得:m≤6.答:甲种农机具最多能购买6件.28.解:设乙班平均每小时挖x千克土豆,根据题意,得1500x+100=1200x,解得x=400,经检验,x=400是原方程的根,且符合题意;答:乙班平均每小时挖400千克土豆.29.解:设每个A型扫地机器人的进价为x元,则每个B型扫地机器人的进价为(2x−400)元,依题意得:96000x =1680002x−400,解得:x=1600,经检验,x=1600是原方程的解,且符合题意,∴2x −400=2×1600−400=2800.答:每个A 型扫地机器人的进价为1600元,每个B 型扫地机器人的进价为2800元.30.解:(1)设原计划每天改造管网x 米,则实际施工时每天改造管网(1+20%)x 米,由题意得:3600x−3600(1+20%)x =10,解得:x =60,经检验,x =60是原方程的解,且符合题意. 此时,60×(1+20%)=72(米).答:实际施工时,每天改造管网的长度是72米;(2)设以后每天改造管网还要增加m 米,由题意得:(40−20)(72+m)≥3600−72×20, 解得:m ≥36.答:以后每天改造管网至少还要增加36米.31.解:设每辆小货车的货运量是x 吨,则每辆大货车的货运量是(x +4)吨,依题意得:80x+4=60x,解得:x =12,经检验,x =12是原方程的解,且符合题意, ∴x +4=12+4=16.答:每辆大货车的货运量是16吨,每辆小货车的货运量是12吨.32.解:设该厂家更换设备前每天生产口罩x 万个,则该厂家更换设备后每天生产口罩(1+40%)x 万个, 依题意得:280x−280(1+40%)x =2,解得:x =40,经检验,x =40是原方程的解,且符合题意, ∴(1+40%)x =(1+40%)×40=56.答:该厂家更换设备前每天生产口罩40万个,更换设备后每天生产口罩56万个.33.解:设李婷每分钟跳绳x 个,则刘芳每分钟跳绳x +20个,根据题意列方程,得135x+20=120x,即135x =120(x +20), 解得x =160,经检验x =160是原方程的解,答:李婷每分钟跳绳160个.34.解:设现在平均每天生产x 个零件,根据题意得:800x=600x−20,解得x =80,经检验,x =80是原方程的解,且符合题意, ∴x =80,答:现在平均每天生产80个零件.35.解:(1)设去年每吨土豆的平均价格是x 元,则今年第一次采购每吨土豆的平均价格为(x +200)元,第二次采购每吨土豆的平均价格为(x −200)元, 由题意得:300000x+200×2=500000x−200,解得:x =2200,经检验,x =2200是原分式方程的解,且符合题意, 答:去年每吨土豆的平均价格是2200元;(2)由(1)得:今年采购的土豆数为:3000002200+200×3=375(吨), 设应将m 吨土豆加工成薯片,则应将(375−m)吨加工成淀粉, 由题意得:{m ≥23(375−m)m 5+375−m 8≤60,解得:150≤m ≤175, 设总利润为y 元,则y =700m +400(375−m)=300m +150000, ∵300>0,∴y 随m 的增大而增大,∴当m =175时,y 的值最大=300×175+150000=202500,答:为获得最大利润,应将175吨土豆加工成薯片,最大利润是202500元.。
2022年江苏省无锡市中考数学测试试卷附解析
2022年江苏省无锡市中考数学测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.将一个圆盘,一个皮球和一个长方体模型按如图所示的方:式摆放在一起,其左视图是( )A .B .C .D .2.张华的哥哥在西宁工作,今年“五.一”期间,她想让哥哥买几本科技书带回家,于是发短信给哥哥,可一时记不清哥哥手机号码后三位数的顺序,只记得是0,2,8三个数字,则张华一次发短信成功的概率是( )A .16B .13C .19D .123.如图所示,如果∠1=∠2,那么( )A .AB ∥CD (内错角相等,两直线平行)B .AD ∥BC (内错角相等,两直线平行)C .AB ∥CD (两直线平行,内错角相等)D .AD ∥BC (两直线平行,内错角相等)4.已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A .10B .11C .10或11D .3或115.52+ 3(52)5252(52)(52)-==++-(52)(52)5252(52)+-==++对于他们的解法,正确的判断是( )A . 甲、乙的解法都正确B . 甲的解法正确,乙的解法不正确C . 乙的解法正确,甲的解法不正确D . 甲、乙的解法都不正确6.已知坐标平面内三点A (5,4),B (2,4),C (4,2),那么△ABC 的面积为( )A .3B .5C .6D .7 7.若直角三角形的一条直角边长为 5,斜边上的中线长为 6.5,则另一条直角边长等于( ) A . 3B .12C . 7D . 4 8.关于200920091()22⨯计算正确的是( )A . 0B .1C .-1D .2 9.当n 为整数时,212(1)(1)n n --+-的值为( )A .-2B .0C .1D . 2 10. 下列各式中,运算结果为负数的是( )A .(-2)×(-3)÷(+4)B .(+1)÷(-1)×(-1)÷(+1)C .1111()()()24816-⨯-÷-⨯D .(-3)×(-5)×(-7)÷(-9)11.现有两个有理数 a 、b ,它们的绝对值相等,则这两个有理数( )A .相等B .相等或互为相反数C .都是零D .互为相反数二、填空题12.如图,P 是α 的边上一点,且 P 点坐标为(3,4),则tan α = .13.在边长为 3 cm 、4cm 、5 cm 的三角形白铁皮上剪下一个最大 的圆,此圆的半径为 cm .14.小王去参军,需要一张身份证复印件,则身份证复印件和原身份证 相似形 ( 填“是”或“不是”).15.在Rt △ABC 中,∠C=90°,∠A=41°,则∠B= .16.如果一个角的两边分别与另一个角的两边平行,并且这两个角相差 90°,那么这两个角的度数分别是 .17.在243y x =-中,如果6x =,那么x = . 18.四条长度分别是2,3,4,5的线段,任选3条可以组成 个三角形.19.若代数式23x y +的值是4,则369x y --的值是 .20.如图,∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN .其中正确的结论是_______________(将你认为正确的结论序号填上).三、解答题B CA E D 21.已知△ABC 的三边比为a :b :c=5:4:6,三边上的高为 h a 、h b 、hc ,求:ha :hb :hc .22.已知: 如图, 在梯形ABCD 中, AD ∥BC, AB=CD, E 是底边BC 的中点, 连接AE 、DE. 求证: △ADE 是等腰三角形.23.如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹).24.如图,已知在△ABC 中,D 是边BC 上一点,且CD=AC ,∠ACB 的平分线交AD 于点E ,点F 是AB 边的中点.求证:EF ∥BC .25.在某城市中,体育场在火车站以西4000 m 再往北2000 m 处,华侨宾馆在火车站以西3000 m 再往南2000 m 处,汇源超市在火车站以南3000 m 再往东2000 m 处,请建立适当的平面直角坐标系,分别写出各地的坐标.26.如图①,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连结AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图②,将图①中点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?并证明你的猜想.27.如图,请用三种方法,在已知图案上再添上一个小正方形后,使其成为轴对称图形,并画出对称轴.28.如图,AD,CE分别是△ABC的两条高,问∠BAD与∠BCE相等吗?请说明理由.AEB CD29.如下图在10×10的正方形网格中,每个小正方形的边长均为1个单位,将△ABC作相似变换得到△A1B1C1,使得边长扩大2倍,再将△A1B1C1绕点C1顺时针旋转900,得到△A2B2C1请你画出△A1B1C1和△A2B2C1 (不要求写出画法),并写出△A2B2C1的面积.30.说说你从下图中获得了哪些信息.各电视节目最爱看的人数统计表电视节目名称新闻文艺体育少儿军事爱看人数男生(人)5010200535女生(人)3518045155从中你可以得到哪些信息?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.B5.A6.A7.B8.B9.B10.C11.B二、填空题12.4313. 答案114.是15.49°16.135°、45°17.5x γ+=0;318.319.1520.①②③三、解答题21.设a= 5x ,则 b= 4x ,c=6x ,∵111222ABC a h C s ah bh ch ∆===,∴a b c ah bh ch ==, 546a b c xh xh xh ==,即546a b C h h h ==,∴::12:15:10a b c h h h = 22.证: ∵ABCD 是等腰梯形 ,∴∠B=∠C, AB=CD∵E 是BC 中点 ,∴BE=CE ,∴△ABE ≌△DCE,∴AE=DE ∴△AED 是等腰三角形23.连结AB ,EF 相交于点O ,OC 就是∠AOB 的平分线,图略. 24.证EF 是△ABD 的中位线即可25.26.略27.略28.相等,理由略29.略.30.例:男生爱看体育节目,不爱看少儿节目;女生爱看文艺节目,不爱看军事节目。
2023年江苏省无锡市中考数学真题 (解析版)
2023年无锡市初中毕业升学考试数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1.【答案】A3=,故选:A .2.【答案】C【解析】由题意得x-2≠0,∴x≠2.故选C .3.【答案】D【解析】解:A 选项,当12x y =⎧⎨=⎩时,24x y +=,则12x y =⎧⎨=⎩是二元一次方程24x y +=的解,不合题意;B 选项,当20x y =⎧⎨=⎩时,24x y +=,则20x y =⎧⎨=⎩是二元一次方程24x y +=的解,不合题意;C 选项,当0.53x y =⎧⎨=⎩时,24x y +=,则0.53x y =⎧⎨=⎩是二元一次方程24x y +=的解,不合题意;D 选项,当24x y =-⎧⎨=⎩时,20x y +=,则24x y =-⎧⎨=⎩不是二元一次方程24x y +=的解,符合题意;故选:D .4.【答案】D【解析】解:A 选项,235a a a ⨯=,故该选项不正确,不符合题意;B 选项,2a 与3a 不能合并,故该选项不正确,不符合题意;C 选项,22(2)4a a -=,故该选项不正确,不符合题意;D 选项,642a a a ÷=,故该选项正确,符合题意;故选:D .5.【答案】A【解析】解:∵函数21y x =+的图像向下平移2个单位长度,∴21221y x x =+-=-,故答案为:A .6.【答案】A【解析】解:由题意得:25.76(1) 6.58x +=.故选:A .7.【答案】B【解析】解:由旋转性质可得:55BAC DAE ∠=∠=︒,AB AD =,∵40α=︒,∴15DAF ∠=︒,70B ADB ADE ∠=∠=∠=︒,∴85AFE DAF ADE ∠=∠+∠=︒,故选:B .8.【答案】C【解析】解:各边相等各角相等的多边形是正多边形,只有各边相等的多边形不一定是正多边形,如菱形,故①是假命题;正三角形和正五边形就不是中心对称图形,故②为假命题;正六边形中由外接圆半径与边长可构成等边三角形,所以外接圆半径与边长相等,故③为真命题;根据轴对称图形的定义和正多边形的特点,可知正n 边形共有n 条对称轴,故④为真命题.故选:C .9.【答案】B【解析】解:过点C 作CE AD ⊥,∵60D ∠=︒,2CD =,∴sin 60CE CD =⋅︒=过点B 作BF AD ⊥,∵AD BC ∥,∴四边形BCEF 是矩形,∴BF CE ==,需使222BM BN +最小,显然要使得BM 和BN 越小越好,∴显然点F 在线段MN 的之间,设MF x =,则1FN x =-,∴22222229232(1)334113323BM BN x x x x x ⎛⎫⎡⎤+=++-+=-+=+ ⎪-⎣⎦⎝⎭,∴当23x =时取得最小值为293.故选:B .10.【答案】A【解析】①有3种情况,如图1,BC 和OD 都是中线,点E 是重心;如图2,四边形ABDC 是平行四边形,F 是AD 中点,点E 是重心;如图3,点F 不是AD 中点,所以点E 不是重心;①正确②当60α=︒,如图4时AD 最大,4AB =,∴2AC BE ==,BC AE ==6BD ==,∴8DE =,∴AD =≠∴②错误;③如图5,若60α=︒,C ABC BD ∽△△,∴60BCD ∠=︒,90CDB ∠=︒,4AB =,2AC =,23BC =,3OE =1CE =,∴3CD =32GE DF ==,32CF =,∴52EF DG ==,32OG =,∴723OD =≠,∴③错误;④如图6,ABC BCD ∽△△,∴CD BC BC AB =,即214CD BC =,在Rt ABC △中,2216BC x =-,∴()221116444CD x x =-=-+,∴22114(2)544AC CD x x x +=-+=--+,当2x =时,AC CD +最大为5,∴④正确.故选:C .二、填空题(本大题共8小题,每小题3分,共24分.)11.【答案】()22x -##()22x -【解析】解:244x x -+=()22x -;故答案为:()22x -.12.【答案】5610⨯【解析】解:56000006100000610=⨯=⨯.故答案为:5610⨯.13.【答案】1-【解析】解:去分母得:3(1)2(2)x x -=-,去括号得:3324x x -=-,移项得:3243x x -=-+,合并同类项得:=1x -,检验:把=1x -代入最简公分母中:20,10x x -≠-≠,∴原分式方程的解为:=1x -,故答案为:1-14.【答案】36+##36+【解析】解:∵侧面展开图是边长为6的正方形,∴底面周长为6,∵底面为正三角形,∴正三角形的边长为2作CD AB ⊥,ABC 是等边三角形,2AB BC AC ===,1AD ∴=,∴在直角ADC ∆中,CD ==,122ABC S ∴=⨯=∴该直三棱柱的表面积为6636⨯+=+,故答案为:36+.15.【答案】2y x =-(答案不唯一)【解析】解:设1k =,则y x b =+,∵它的图象经过点(20),,∴代入得:20b +=,解得:2b =-,∴一次函数解析式为2y x =-,故答案为:2y x =-(答案不唯一).16.【答案】8【解析】解:设门高x 尺,依题意,竿长为()2x +尺,门的对角线长为()2x +尺,门宽为24x +-=()2x -尺,∴()()22222x x x +=+-,解得:8x =或0x =(舍去),故答案为:8.17.【答案】6【解析】当点A 在y 轴上,点B 、C 在x 轴上时,连接AO ,ABC 为等边三角形且AO BC ⊥,则30BAO ∠=︒,∴tan tan 30BAO ∠=︒=33OB OA =,如图所示,过点,A B 分别作x 轴的垂线,交x 轴分别于点,E F ,AO BO ⊥,90BFO AEO AOB ∠=∠=∠=︒,∴90BOF AOE EAO ∠=︒-∠=∠,∴BFO OEA ∽ ,∴213BFO AOE S OB S OA ⎛⎫== ⎪⎝⎭ ,∴212BFO S -== ,∴3AOE S =△,∴6k =.18.【答案】910或25或212【解析】解:由(1)(5)y a x x =--,令0x =,解得:5y a =,令0y =,解得:121,5x x ==,∴()1,0A ,()5,0B ,()0,5C a ,设直线BM 解析式为y kx b =+,∴5031k b k b +=⎧⎨+=⎩解得:1252k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线BM 解析式为1522y x =-+,当0x =时,52y =,则直线BM 与y 轴交于50,2⎛⎫ ⎪⎝⎭,∵12a >,∴552a >,∴点M 必在ABC 内部.1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线设直线AM 的解析式为y mx n=+∴031k b k b +=⎧⎨+=⎩解得:1212m n ⎧=⎪⎪⎨⎪=-⎪⎩则直线AM 的解析式为1122y x =-①如图1,直线AM 过BC 中点,,BC 中点坐标为55,22a ⎛⎫ ⎪⎝⎭,代入直线求得31102a =<,不成立;②如图2,直线BM 过AC 中点,直线BM 解析式为1522y x =-+,AC 中点坐标为15,22a ⎛⎫ ⎪⎝⎭,待入直线求得910a =;③如图3,直线CM 过AB 中点,AB 中点坐标为()3,0,∴直线MB 与y 轴平行,必不成立;2)、当分成三角形和梯形时,过点M 的直线必与ABC 一边平行,所以必有“”A 型相似,因为平分面积,所以相似比为④如图4,直线EM ∥AB ,∴CEN COA∽∴CE CN CO CA ==,∴515a a -=解得25a =;⑤如图5,直线ME ∥AC ,MN CO ∥,则EMN ACO∽∴12BE AB =,又4AB =,∴2BE =,∵53222BN =-=<,∴不成立;⑥如图6,直线ME ∥BC ,同理可得2AE AB =∴22AE =222NE =-,tan tan MEN CBO ∠∠=,55222a =-,解得212a =;综上所述,910a =或225+或212+.三、解答题(本大题共10小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19.【答案】(1)8;(2)24y xy-+【解析】解:(1)2(3)25|4|--954=-+8=;(2)(2)(2)()x y x y x x y +---2224x y x xy=--+24y xy =-+.20.【答案】(1)11174x -+=,21174x --=;(2)13x -<<【解析】(1)2220x x +-=解:∵2,1,2a b c ===-,∴24142217b ac ∆=-=+⨯⨯=0>,∴411724b x a -±-±==解得:11174x -+=,21174x -=;(2)32251x x x +>-⎧⎨-<⎩①②解不等式①得:1x >-解不等式②得:3x <∴不等式组的解集为:13x -<<21.【答案】(1)见解析(2)见解析【解析】(1)证明:∵点D 、E 分别为AB AC 、的中点,∴AE CE =,DE BC ∥,∴ADE F ∠=∠,在CEF △与AED △中,ADE F AED CEF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS CEF AED ≌;(2)证明:由(1)证得CEF AED △≌△,∴A FCE ∠=∠,∴BD CF ∥,∵DF BC ∥,∴四边形DBCF 是平行四边形.22.【答案】(1)14(2)18【解析】(1)解:∵共有4张相同的卡片且任意抽取一张卡片,记录后放回,∴每张卡片抽到的概率都是14,设小明恰好抽到景区A 门票为事件A ,则1()4P A =,故答案为:14;(2)解:根据题意,画树状图如下:∴一共有16种等可能的情况,恰好抽到景区A 和景区B 门票的情况有2种,∴他恰好抽到景区A 和景区B 门票的概率为21168=;23.【答案】(1)90;10(2)七年级的平均分最高;八年级的中位数最大;九年级的众数最大【解析】(1)解:∵抽取的总人数为217%300÷=(人),∴C 组的人数为30030%90a =⨯=(人),100%7%32%30%19%2%10%m =-----=;故答案为:90,10;(2)解:七年级的平均分最高;八年级的中位数最大;九年级的众数最大.(答案不唯一).24.【答案】(1)见解析(2)π【解析】(1)解:如图,O 为所作;;(2)解:∵PM 和PN 为O 的切线,∴OM PB ⊥,ON PN ⊥,1302MPO NPO APB ∠=∠=∠=︒,∴90OMP ONP ∠=∠=︒,∴180120MON APB ∠=︒-∠=︒,在Rt POM 中,MPO 30∠=︒,∴3tan 3033OM PM =⋅︒=⨯=,∴O 的劣弧 MN与PM PN 、所围成图形的面积PMON MONS S =-四边形扇形21201232360π⨯⨯=⨯⨯-π=.故答案为:π-.25.【答案】(1)67.5︒(2)2【解析】(1)如图,连接OD .FD 为O 的切线,∴90ODF ∠=︒.DF AB ∥,∴90AOD ∠=︒.AD AD =,∴1452ACD AOD ∠=∠=︒. CF CD =,∴1(180)67.52F ACD ∠∠=⨯-=︒.(2)如图,连接AD ,AO OD =,90AOD ∠=︒,∴45EAD ∠=︒.45ACD ∠=︒,∴A C D E A D ∠=∠,且ADE CDA ∠=∠,∴DAE DCA ∽ ,∴DE DA DA DC=,即28DA DE DC =⋅=,∴2DA =,∴222OA OD AD ===,即半径为2.26.【答案】(1)()7022302100(3045)x x y x x ⎧-+≤≤=⎨-+<≤⎩(2)销售价格为35元/kg 时,利润最大为450【解析】(1)当2230x ≤≤时,设y 关于x 的函数表达式为y kx b =+,将点()()22,48,30,40代入得,∴22483040k b k b +=⎧⎨+=⎩解得:170k b =-⎧⎨=⎩∴70y x =-+()2230x ≤≤,当3045x <≤时,设y 关于x 的函数表达式为11y k x b =+,将点()()30,40,45,10代入得,111145103040k b k b +=⎧⎨+=⎩解得:112100k b =-⎧⎨=⎩∴2100y x =-+()3045x <≤,()7022302100(3045)x x y x x ⎧-+≤≤=⎨-+<≤⎩(2)设利润为w当2230x ≤≤时,22(20)(70)901400(45)625w x x x x x =--+=-+-=--+∵在2230x ≤≤范围内,w 随着x 的增大而增大,∴当30x =时,w 取得最大值为400;当3045x <≤时,22(20)(2100)214020002(35)450w x x x x x =--+=-+-=--+∴当35x =时,w 取得最大值为450450400>,∴当销售价格为35元/kg 时,利润最大为450.27.【答案】(1)8+(2)212S x =++【解析】(1)如图,连接BD 、BQ ,四边形ABCD 为菱形,∴4CB CD ==,60A C ∠=∠=︒,∴BDC 为等边三角形.Q 为CD 中点,∴2CQ =,BQ CD ⊥,∴23BQ =,QB PB ⊥.45QPB ∠=︒,∴PBQ 为等腰直角三角形,∴3PB =,62PQ = 翻折,∴90BPB ∠='︒,PB PB '=,∴26BB '=,6PE =;.同理2CQ =,∴22CC '=2QF =∴((221112222323232438222PBB CQC BB C C PBCQ S S S S ''''=-+=⨯⨯+⨯-⨯+⨯=+ 四边形梯形;(2)如图2,连接BQ 、B Q ',延长PQ 交CC '于点F .PB x =,23BQ =,90PBQ ∠=︒,∴212PQ x =+∵1122PBQ S PQ BE PB BQ =⨯=⨯ ∴22312BQ PB BE PQ x ⨯==+,∴212QE x =+,∴222123121232121212QEB S x x x ==+++ . 90BEQ BQC QFC ∠=∠=∠=︒,则90EQB CQF FCQ ∠=︒-∠=∠,∴BEQ QFC ~ ,∴2221323QFCBEQS CQ S QB ⎛⎫=== ⎪⎝⎭ ,∴24312QFC S x =+ .∵122332BQC S =⨯⨯= ∴()222123433232233121212QEB BQC QFC x x S S S S x x x ⎛⎫=++=++=+ ⎪⎪+++⎝⎭ .28.【答案】(1)3b =-,2c =-(2)①3;②2或175【解析】(1)∵二次函数()222y x bx c =++的图像与y 轴交于点A,且经过点B和点(C -∴()()244212b c b c =++⎨=-+解得:32b c =-⎧⎨=-⎩∴3b =-,2c =-,()2322y x x =--;(2)①如图1,过点E 作y 轴平行线分别交AB 、BD 于G 、H.∵()2322y x x =--,当0x =时,y =,∴(0,A ,∴AD =4BD =,∴AB ==,∴6cos 3BD ABD AB ∠==.∵90GFE GHB ∠=∠=︒,FGE HGB ∠=∠,∴FEG ABD ∠=∠,∴cos 3FEG ∠=,∴3EF EG =,∴3EF EG =.∵(0,A B 设直线AB 的解析式为y kx d=+∴4d k d ⎧=⎪⎨+=⎪⎩解得:2k d ⎧=⎪⎨⎪=⎩∴直线AB解析式为22y x =-.设2232,22E m m m ⎛-- ⎝,∴2,2G m m ⎛⎝,∴22(2)22EG m m =-+=--+∴当2m =时,EG取得最大值为,EF ∴的最大值为33⨯=.②如图2,已知tan 2ABC ∠=,令AC =,则2BC =,在BC 上取点D ,使得AD BD =,∴2ADC ABC ∠=∠,设CD x =,则2AD BD x ==-,则222(2)(2)x x +=-,解得12x =,∴tan 2AC ADC CD∠==,即()tan 22ABC ∠=.如图3构造AMF FNE ∽ ,且MN x ∥轴,相似比为:AF EF ,又∵2tan tan tan 2MFA CBA FEN ∠∠∠===,设2AM a =,则2MF a =.分类讨论:ⅰ当2FAE ABC ∠=∠时,则tan 2EF FAE AF ∠==∴AMF 与FNE V 的相似比为1:22,∴224FN a ==,2242NE MF a ==,∴()6,232E a a -,代入抛物线求得113a =,20a =(舍).∴E 点横坐标为62a =.ⅱ当2FEA ABC ∠=∠时,则tan AF FEA EF ∠==,∴相似比为,∴12FN a ==,22NE a ==,∴5,22E a a ⎛⎫+ ⎪ ⎪⎝⎭,代入抛物线求得13425a =,20a =(舍).∴E 点横坐标为51725a =.综上所示,点E 的横坐标为2或175.。
2020年江苏省无锡市中考数学试卷(含解析版)
2020年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.)1.(3分)﹣7的倒数是()A.7B.C.﹣D.﹣72.(3分)函数y=2+中自变量x的取值范围是()A.x≥2B.x≥C.x≤D.x≠3.(3分)已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是()A.24,25B.24,24C.25,24D.25,254.(3分)若x+y=2,z﹣y=﹣3,则x+z的值等于()A.5B.1C.﹣1D.﹣55.(3分)正十边形的每一个外角的度数为()A.36°B.30°C.144°D.150°6.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.圆B.等腰三角形C.平行四边形D.菱形7.(3分)下列选项错误的是()A.cos60°=B.a2•a3=a5C.D.2(x﹣2y)=2x﹣2y8.(3分)反比例函数y=与一次函数y=的图形有一个交点B(,m),则k 的值为()A.1B.2C.D.9.(3分)如图,在四边形ABCD中(AB>CD),∠ABC=∠BCD=90°,AB=3,BC=,把Rt△ABC沿着AC翻折得到Rt△AEC,若tan∠AED=,则线段DE的长度()A.B.C.D.10.(3分)如图,等边△ABC的边长为3,点D在边AC上,AD=,线段PQ在边BA上运动,PQ=,有下列结论:①CP与QD可能相等;②△AQD与△BCP可能相似;③四边形PCDQ面积的最大值为;④四边形PCDQ周长的最小值为3+.其中,正确结论的序号为()A.①④B.②④C.①③D.②③二、填空题(本大题共8小题,每小题2分,共计16分.不需要写出解答过程,只需把答案直接填写在答题卷相应的位置)11.(2分)因式分解:ab2﹣2ab+a=.12.(2分)2019年我市地区生产总值逼近12000亿元,用科学记数法表示12000是.13.(2分)已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为=cm2.14.(2分)如图,在菱形ABCD中,∠B=50°,点E在CD上,若AE=AC,则∠BAE=°.15.(2分)请写出一个函数表达式,使其图象的对称轴为y轴:.16.(2分)我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是尺.17.(2分)二次函数y=ax2﹣3ax+3的图象过点A(6,0),且与y轴交于点B,点M在该抛物线的对称轴上,若△ABM是以AB为直角边的直角三角形,则点M的坐标为.18.(2分)如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)(﹣2)2+|﹣5|﹣;(2).20.(8分)解方程:(1)x2+x﹣1=0;(2).21.(8分)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.22.(8分)现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀.(1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是;(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.(6分)小李2014年参加工作,每年年底都把本年度收入减去支出后的余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)年份2014年2015年2016年2017年2018年2019年收入389a1418支出1456c6存款余额261015b34(1)表格中a=;(2)请把下面的条形统计图补充完整;(画图后标注相应的数据)(3)请问小李在哪一年的支出最多?支出了多少万元?24.(8分)如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B、C两点的距离相等;设直线l与AB、BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边AB、BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=,BC=2,则⊙O的半径为.25.(8分)如图,DB过⊙O的圆心,交⊙O于点A、B,DC是⊙O的切线,点C是切点,已知∠D=30°,DC=.(1)求证:△BOC∽△BCD;(2)求△BCD的周长.26.(10分)有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x 米.现决定在等腰梯形AEHD和BCGF中种植甲种花卉;在等腰梯形ABFE和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.(1)当x=5时,求种植总成本y;(2)求种植总成本y与x的函数表达式,并写出自变量x的取值范围;(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.27.(10分)如图,在矩形ABCD中,AB=2,AD=1,点E为边CD上的一点(与C、D 不重合),四边形ABCE关于直线AE的对称图形为四边形ANME,延长ME交AB于点P,记四边形P ADE的面积为S.(1)若DE=,求S的值;(2)设DE=x,求S关于x的函数表达式.28.(10分)在平面直角坐标系中,O为坐标原点,直线OA交二次函数y=x2的图象于点A,∠AOB=90°,点B在该二次函数的图象上,设过点(0,m)(其中m>0)且平行于x轴的直线交直线OA于点M,交直线OB于点N,以线段OM、ON为邻边作矩形OMPN.(1)若点A的横坐标为8.①用含m的代数式表示M的坐标;②点P能否落在该二次函数的图象上?若能,求出m的值;若不能,请说明理由.(2)当m=2时,若点P恰好落在该二次函数的图象上,请直接写出此时满足条件的所有直线OA的函数表达式.2020年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.)1.(3分)﹣7的倒数是()A.7B.C.﹣D.﹣7【分析】根据倒数的定义解答即可.【解答】解:﹣7的倒数是﹣.故选:C.【点评】本题考查了倒数的定义,要求熟练掌握.需要注意的是,倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)函数y=2+中自变量x的取值范围是()A.x≥2B.x≥C.x≤D.x≠【分析】根据二次根式的被开方数大于等于0列不等式求解即可.【解答】解:由题意得,3x﹣1≥0,解得x≥.故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是()A.24,25B.24,24C.25,24D.25,25【分析】根据平均数的计算公式和中位数的定义分别进行解答即可.【解答】解:这组数据的平均数是:(21+23+25+25+26)÷5=24;把这组数据从小到大排列为:21,23,25,25,26,最中间的数是25,则中位数是25;故选:A.【点评】此题考查了平均数和中位数,掌握平均数的计算公式和中位数的定义是本题的关键;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.4.(3分)若x+y=2,z﹣y=﹣3,则x+z的值等于()A.5B.1C.﹣1D.﹣5【分析】已知两等式左右两边相加即可求出所求.【解答】解:∵x+y=2,z﹣y=﹣3,∴(x+y)+(z﹣y)=2+(﹣3),整理得:x+y+z﹣y=2﹣3,即x+z=﹣1,则x+z的值为﹣1.故选:C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.5.(3分)正十边形的每一个外角的度数为()A.36°B.30°C.144°D.150°【分析】根据多边形的外角和为360°,再由正十边形的每一个外角都相等,进而求出每一个外角的度数.【解答】解:正十边形的每一个外角都相等,因此每一个外角为:360°÷10=36°,故选:A.【点评】本题考查多边形的外角和的性质,理解正多边形的每一个外角都相等是正确计算的前提.6.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.圆B.等腰三角形C.平行四边形D.菱形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、圆既是中心对称图形,也是轴对称图形,故此选项不合题意;B、等腰三角形是轴对称图形但不是中心对称图形,故本选项符合题意;C、平行四边形是中心对称图形但不是轴对称图形,故此选项不合题意;D、菱形是中心对称图形但不是轴对称图形,故此选项不合题意.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后重合.7.(3分)下列选项错误的是()A.cos60°=B.a2•a3=a5C.D.2(x﹣2y)=2x﹣2y【分析】分别根据特殊角的三角函数值,同底数幂的乘法法则,二次根式的除法法则以及去括号法则逐一判断即可.【解答】解:A.cos60°=,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.,故本选项不合题意;D.2(x﹣2y)=2x﹣4y,故本选项符合题意.故选:D.【点评】本题主要考查了特殊角的三角函数值,同底数幂的乘法,二次根式的除法以及去括号与添括号,熟记相关运算法则是解答本题的关键.8.(3分)反比例函数y=与一次函数y=的图形有一个交点B(,m),则k 的值为()A.1B.2C.D.【分析】将点B坐标代入一次函数解析式可求点B坐标,再代入反比例函数解析式,可求解.【解答】解:∵一次函数y=的图象过点B(,m),∴m=×+=,∴点B(,),∵反比例函数y=过点B,∴k=×=,故选:C.【点评】本题考查了反比例函数与一次函数的交点问题,掌握图象上点的坐标满足图象解析式是本题的关键.9.(3分)如图,在四边形ABCD中(AB>CD),∠ABC=∠BCD=90°,AB=3,BC=,把Rt△ABC沿着AC翻折得到Rt△AEC,若tan∠AED=,则线段DE的长度()A.B.C.D.【分析】方法一,延长ED交AC于点M,过点M作MN⊥AE于点N,设MN=m,根据已知条件和翻折的性质可求m的值,再证明CD是∠ECM的角平分线,可得==,进而可得ED的长.方法二,过点D作DM⊥CE,首先得到∠ACB=60度,∠ECD=30度,再根据折叠可得到∠AED=∠EDM,设EM=m,由折叠性质可知,EC=CB,在直角三角形EDM中,根据勾股定理即可得DE的长.【解答】解:方法一:如图,延长ED交AC于点M,过点M作MN⊥AE于点N,设MN=m,∵tan∠AED=,∴=,∴NE=2m,∵∠ABC=90°,AB=3,BC=,∴∠CAB=30°,由翻折可知:∠EAC=30°,∴AM=2MN=2m,∴AN=MN=3m,∵AE=AB=3,∴5m=3,∴m=,∴AN=,MN=,AM=,∵AC=2,∴CM=AC﹣AM=,∵MN=,NE=2m=,∴EM==,∵∠ABC=∠BCD=90°,∴CD∥AB,∴∠DCA=30°,由翻折可知:∠ECA=∠BCA=60°,∴∠ECD=30°,∴CD是∠ECM的角平分线,∴==,∴=,解得ED=.方法二:如图,过点D作DM⊥CE,由折叠可知:∠AEC=∠B=90°,∴AE∥DM,∵∠ACB=60°,∠ECD=30°,∴∠AED=∠EDM,设EM=m,由折叠性质可知,EC=CB=,∴CM=3﹣m,∴tan∠MCD===,解得m=,∴DM=,EM=,在直角三角形EDM中,DE2=DM2+EM2,解得DE=.故选:B.【点评】本题考查了翻折变换、勾股定理、解直角三角形,解决本题的关键是综合运用以上知识.10.(3分)如图,等边△ABC的边长为3,点D在边AC上,AD=,线段PQ在边BA上运动,PQ=,有下列结论:①CP与QD可能相等;②△AQD与△BCP可能相似;③四边形PCDQ面积的最大值为;④四边形PCDQ周长的最小值为3+.其中,正确结论的序号为()A.①④B.②④C.①③D.②③【分析】①利用图象法判断或求出DQ的最大值,PC的最小值判定即可.②设AQ=x,则BP=AB﹣AQ﹣PQ=3﹣x﹣=﹣x,因为∠A=∠B=60°,当=时,△ADQ与△BPC相似,即,解得x=1或,推出当AQ=1或时,两三角形相似.③设AQ=x,则四边形PCDQ的面积=×32﹣×x××﹣×3×(3﹣x﹣)×=+x,当x取最大值时,可得结论.④如图,作点D关于AB的对称点D′,作D′F∥PQ,使得D′F=PQ,连接CF交AB于点P′,在射线P′A上取P′Q′=PQ,此时四边形P′CD′Q′的周长最小.求出CF的长即可判断.【解答】解:①利用图象法可知PC>DQ,或通过计算可知DQ的最大值为,PC 的最小值为,所以PC>DQ,故①错误.②设AQ=x,则BP=AB﹣AQ﹣PQ=3﹣x﹣=﹣x,∵∠A=∠B=60°,∴当=时,△ADQ与△BPC相似,即,解得x=1或,∴当AQ=1或时,两三角形相似,故②正确③设AQ=x,则四边形PCDQ的面积=×32﹣×x××﹣×3×(3﹣x﹣)×=+x,∵x的最大值为3﹣=,∴x=时,四边形PCDQ的面积最大,最大值=,故③正确,如图,作点D关于AB的对称点D′,作D′F∥PQ,使得D′F=PQ,连接CF交AB 于点P′,在射线P′A上取P′Q′=PQ,此时四边形P′CD′Q′的周长最小.过点C作CH⊥D′F交D′F的延长线于H,交AB于J.由题意,DD′=2AD•sin60°=,HJ=DD′=,CJ=,FH=﹣﹣=,∴CH=CJ+HJ=,∴CF===,∴四边形P′CDQ′的周长的最小值=3+,故④错误,故选:D.【点评】本题考查相似三角形的判定和性质,一次函数的性质,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共8小题,每小题2分,共计16分.不需要写出解答过程,只需把答案直接填写在答题卷相应的位置)11.(2分)因式分解:ab2﹣2ab+a=a(b﹣1)2.【分析】原式提取a,再运用完全平方公式分解即可.【解答】解:原式=a(b2﹣2b+1)=a(b﹣1)2;故答案为:a(b﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(2分)2019年我市地区生产总值逼近12000亿元,用科学记数法表示12000是 1.2×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:12000=1.2×104.故答案为:1.2×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2分)已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为=2πcm2.【分析】先利用勾股定理求出圆锥的母线l的长,再利用圆锥的侧面积公式:S侧=πrl 计算即可.【解答】解:根据题意可知,圆锥的底面半径r=1cm,高h=cm,∴圆锥的母线l==2,∴S侧=πrl=π×1×2=2π(cm2).故答案为:2π.【点评】此题考查圆锥的计算,理解圆锥的侧面展开图是个扇形,扇形的半径是圆锥的母线,扇形的弧长是底面圆的周长l.掌握圆锥的侧面积公式:S侧=•2πr•l=πrl是解题的关键.14.(2分)如图,在菱形ABCD中,∠B=50°,点E在CD上,若AE=AC,则∠BAE=115°.【分析】由菱形的性质得出AC平分∠BCD,AB∥CD,由平行线的性质得出∠BAE+∠AEC=180°,∠B+∠BCD=180°,求出∠BCD=130°,则∠ACE=∠BCD=65°,由等腰三角形的性质得出∠AEC=∠ACE=65°,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AC平分∠BCD,AB∥CD,∴∠BAE+∠AEC=180°,∠B+∠BCD=180°,∴∠BCD=180°﹣∠B=180°﹣50°=130°,∴∠ACE=∠BCD=65°,∵AE=AC,∴∠AEC=∠ACE=65°,∴∠BAE=180°﹣∠AEC=115°;故答案为:115.【点评】本题考查了菱形的性质、等腰三角形的性质以及平行线的性质等知识;熟练掌握菱形的性质和等腰三角形的性质是解题的关键.15.(2分)请写出一个函数表达式,使其图象的对称轴为y轴:y=x2.【分析】根据形如y=ax2的二次函数的性质直接写出即可.【解答】解:∵图象的对称轴是y轴,∴函数表达式y=x2(答案不唯一),故答案为:y=x2(答案不唯一).【点评】本题考查了二次函数的性质,牢记形如y=ax2的二次函数的性质是解答本题的关键.16.(2分)我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是8尺.【分析】可设绳长为x尺,井深为y尺,根据等量关系:①绳长的﹣井深=4尺;②绳长的﹣井深=1尺;列出方程组求解即可.【解答】解:设绳长是x尺,井深是y尺,依题意有,解得.故井深是8尺.故答案为:8.【点评】本题考查了二元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程(组),再求解.17.(2分)二次函数y=ax2﹣3ax+3的图象过点A(6,0),且与y轴交于点B,点M在该抛物线的对称轴上,若△ABM是以AB为直角边的直角三角形,则点M的坐标为(,﹣9)或(,6).【分析】把点A(6,0)代入y=ax2﹣3ax+3得,0=36a﹣18a+3,得到y=﹣x2+x+3,求得B(0,3),抛物线的对称轴为x=﹣=,设点M的坐标为:(,m),当∠ABM=90°,过B作BD⊥对称轴MM'于D,当∠M′AB=90°,根据三角函数的定义即可得到结论.【解答】解:把点A(6,0)代入y=ax2﹣3ax+3得,0=36a﹣18a+3,解得:a=﹣,∴y=﹣x2+x+3,∴B(0,3),抛物线的对称轴为x=﹣=,设点M的坐标为:(,m),当∠ABM=90°,过B作BD⊥对称轴于D,则∠1=∠2=∠3,∴tan∠2=tan∠1==2,∴=2,∴DM=3,∴M(,6),当∠M′AB=90°,∴tan∠3==tan∠1==2,∴M′N=9,∴M′(,﹣9),综上所述,点M的坐标为(,﹣9)或(,6).【点评】本题考查的是二次函数的性质和函数图象上点的坐标特征,涉及到解直角三角形,有一定的综合性,难度适中.18.(2分)如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为.【分析】过点D作DF∥AE,根据平行线分线段成比例定理可得则==,根据已知=,可得DO=2OC,C在以AB为直径的圆上,设圆心为G,当CG⊥AB时,△ABC的面积最大为:4×2=8,即可求出此时△ABO的最大面积.【解答】解:如图,过点D作DF∥AE,则==,∵=,∴DF=2EC,∴DO=2OC,∴DO=DC,∴S△ADO=S△ADC,S△BDO=S△BDC,∴S△ABO=S△ABC,∵∠ACB=90°,∴C在以AB为直径的圆上,设圆心为G,当CG⊥AB时,△ABC的面积最大为:4×2=4,此时△ABO的面积最大为:×4=.故答案为:.【点评】本题考查了平行线分线段成比例定理,解决本题的关键是掌握平行线分线段成比例定理.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)(﹣2)2+|﹣5|﹣;(2).【分析】(1)根据乘方的定义,绝对值的定义以及算术平方根的定义计算即可;(2)根据同分母分式的加减法法则计算即可.【解答】解:(1)原式=4+5﹣4=5;(2)原式===.【点评】本题主要考查了实数的运算以及分式的加减法,熟记相关定义与运算法则是解答本题的关键.20.(8分)解方程:(1)x2+x﹣1=0;(2).【分析】(1)先计算判别式的值,然后利用求根公式求方程的解;(2)分别解两个不等式得到x≥0和x<1,然后根据大小小大中间找确定不等式组的解集.【解答】解:(1)∵a=1,b=1,c=﹣1,∴△=12﹣4×1×(﹣1)=5,x=,∴x1=,x2=;(2),解①得x≥0,解②得x<1,所以不等式组的解集为0≤x<1.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.也考查了解一元一次不等式组.21.(8分)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.【分析】(1)先由平行线的性质得∠B=∠C,从而利用SAS判定△ABF≌△DCE;(2)根据全等三角形的性质得∠AFB=∠DEC,由等角的补角相等可得∠AFE=∠DEF,再由平行线的判定可得结论.【解答】证明:(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,∵,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴∠AFE=∠DEF,∴AF∥DE.【点评】本题考查了全等三角形的判定与性质,这属于几何基础知识的考查,难度不大.22.(8分)现有4张正面分别写有数字1、2、3、4的卡片,将4张卡片的背面朝上,洗匀.(1)若从中任意抽取1张,抽的卡片上的数字恰好为3的概率是;(2)若先从中任意抽取1张(不放回),再从余下的3张中任意抽取1张,求抽得的2张卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)【分析】(1)根据概率公式计算;(2)画树状图展示所有12种等可能的结果数,找出抽得的2张卡片上的数字之和为3的倍数的结果数,然后根据概率公式计算.【解答】解:(1)从中任意抽取1张,抽的卡片上的数字恰好为3的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中抽得的2张卡片上的数字之和为3的倍数的结果数为4,所以抽得的2张卡片上的数字之和为3的倍数的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.23.(6分)小李2014年参加工作,每年年底都把本年度收入减去支出后的余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)年份2014年2015年2016年2017年2018年2019年收入389a1418支出1456c6存款余额261015b34(1)表格中a=11;(2)请把下面的条形统计图补充完整;(画图后标注相应的数据)(3)请问小李在哪一年的支出最多?支出了多少万元?【分析】(1)本年度收入减去支出后的余额加上上一年存入银行的余额作为本年的余额,则可建立一元一次方程10+a﹣6=15,然后解方程即可;(2)根据题意得,再解方程组得到2018年的存款余额,然后补全条形统计图;(3)利用(2)中c的值进行判断.【解答】解:(1)10+a﹣6=15,解得a=11,故答案为11;(2)根据题意得,解得,即存款余额为22万元,条形统计图补充为:(3)小李在2018年的支出最多,支出了为7万元.【点评】本题考查了图象统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.24.(8分)如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B、C两点的距离相等;设直线l与AB、BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边AB、BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM=,BC=2,则⊙O的半径为.【分析】(1)作线段BC的垂直平分线交AB于M,交BC于N,作∠ABC的角平分线交MN于点O,以O为圆心,ON为半径作⊙O即可.(2)过点O作OE⊥AB于E.设OE=ON=r,利用面积法构建方程求解即可.【解答】解:(1)如图直线l,⊙O即为所求.(2)过点O作OE⊥AB于E.设OE=ON=r,∵BM=,BC=2,MN垂直平分线段BC,∴BN=CN=1,∴MN===,∵s△BNM=S△BNO+S△BOM,∴×1×=×1×r+××r,解得r=.故答案为.【点评】本题考查作图﹣复杂作图,角平分线的性质,线段的垂直平分线的性质,切线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.25.(8分)如图,DB过⊙O的圆心,交⊙O于点A、B,DC是⊙O的切线,点C是切点,已知∠D=30°,DC=.(1)求证:△BOC∽△BCD;(2)求△BCD的周长.【分析】(1)由切线的性质可得∠OCD=90°,由外角的性质可得∠BOC=120°,由等腰三角形的性质∠B=∠OCB=30°,可得∠B=∠D=30°,∠DCB=120°=∠BOC,可得结论;(2)由直角三角形的性质可得OC=1=OB,DO=2,即可求解.【解答】证明:(1)∵DC是⊙O的切线,∴∠OCD=90°,∵∠D=30°,∴∠BOC=∠D+∠OCD=30°+90°=120°,∵OB=OC,∴∠B=∠OCB=30°,∴∠DCB=120°=∠BOC,又∵∠B=∠D=30°,∴△BOC∽△BCD;(2)∵∠D=30°,DC=,∠OCD=90°,∴DC=OC=,DO=2OC,∴OC=1=OB,DO=2,∵∠B=∠D=30°,∴DC=BC=,∴△BCD的周长=CD+BC+DB=++2+1=3+2.【点评】本题考查了相似三角形的判定和性质,切线的性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.26.(10分)有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x 米.现决定在等腰梯形AEHD和BCGF中种植甲种花卉;在等腰梯形ABFE和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.(1)当x=5时,求种植总成本y;(2)求种植总成本y与x的函数表达式,并写出自变量x的取值范围;(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.【分析】(1)当x=5时,EF=20﹣2x=10,EH=30﹣2x=20,y=2×(EH+AD)×20x+2×(GH+CD)×x×60+EF•EH×40,即可求解;(2)参考(1),由题意得:y=(30+30﹣2x)•x•20+(20+20﹣2x)•x•60+(30﹣2x)(20﹣2x)•40(0<x<10);(3)S甲=2×(EH+AD)×2x=(30﹣2x+30)x=﹣2x2+60x,S乙=﹣2x2+40x,则﹣2x2+60x﹣(﹣2x2+40x)≤120,即可求解.【解答】解:(1)当x=5时,EF=20﹣2x=10,EH=30﹣2x=20,y=2×(EH+AD)×20x+2×(GH+CD)×x×60+EF•EH×40=(20+30)×5×20+(10+20)×5×60+20×10×40=22000;(2)EF=(20﹣2x)米,EH=(30﹣2x)米,参考(1),由题意得:y=(30+30﹣2x)•x•20+(20+20﹣2x)•x•60+(30﹣2x)(20﹣2x)•40=﹣400x+24000(0<x<10);(3)S甲=2×(EH+AD)×2x=(30﹣2x+30)x=﹣2x2+60x,同理S乙=﹣2x2+40x,∵甲、乙两种花卉的种植面积之差不超过120米2,∴﹣2x2+60x﹣(﹣2x2+40x)≤120,解得:x≤6,故0<x≤6,而y=﹣400x+24000随x的增大而减小,故当x=6时,y的最小值为21600,即三种花卉的最低种植总成本为21600元.【点评】本题考查了二次函数和一次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.27.(10分)如图,在矩形ABCD中,AB=2,AD=1,点E为边CD上的一点(与C、D 不重合),四边形ABCE关于直线AE的对称图形为四边形ANME,延长ME交AB于点P,记四边形P ADE的面积为S.(1)若DE=,求S的值;(2)设DE=x,求S关于x的函数表达式.【分析】(1)根据三角函数的定义得到∠AED=60°,根据平行线的性质得到∠BAE=60°,根据折叠的性质得到∠AEC=∠AEM,推出△APE为等边三角形,于是得到结论;(2)过E作EF⊥AB于F,由(1)可知,∠AEP=∠AED=∠P AE,求得AP=PE,设AP=PE=a,AF=ED=x,则PF=a﹣x,EF=AD=1,根据勾股定理列方程得到a=,于是得到结论.【解答】解:(1)当DE=,∵AD=1,∴tan∠AED=,AE=,∴∠AED=60°,∵AB∥CD,∴∠BAE=60°,∵四边形ABCE关于直线AE的对称图形为四边形ANME,∴∠AEC=∠AEM,∵∠PEC=∠DEM,∴∠AEP=∠AED=60°,∴△APE为等边三角形,∴S=×()2+×1=;(2)过E作EF⊥AB于F,由(1)可知,∠AEP=∠AED=∠P AE,∴AP=PE,设AP=PE=a,AF=ED=x,则PF=a﹣x,EF=AD=1,在Rt△PEF中,(a﹣x)2+1=a2,解得:a=,∴S=.【点评】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,三角形的面积的计算,正确的识别图形是解题的关键.28.(10分)在平面直角坐标系中,O为坐标原点,直线OA交二次函数y=x2的图象于点A,∠AOB=90°,点B在该二次函数的图象上,设过点(0,m)(其中m>0)且平行于x轴的直线交直线OA于点M,交直线OB于点N,以线段OM、ON为邻边作矩形OMPN.(1)若点A的横坐标为8.①用含m的代数式表示M的坐标;②点P能否落在该二次函数的图象上?若能,求出m的值;若不能,请说明理由.(2)当m=2时,若点P恰好落在该二次函数的图象上,请直接写出此时满足条件的所有直线OA的函数表达式.【分析】(1)①求出点A的坐标,直线直线OA的解析式即可解决问题.②求出直线OB的解析式,求出点N的坐标,利用矩形的性质求出点P的坐标,再利用待定系数法求出m的值即可.(2)分两种情形:①当点A在y轴的右侧时,设A(a,a2),求出点P的坐标利用待定系数法构建方程求出a即可.②当点A在y轴的左侧时,即为①中点B的位置,利用①中结论即可解决问题.【解答】解:(1)①∵点A在y=x2的图象上,横坐标为8,∴A(8,16),∴直线OA的解析式为y=2x,∵点M的纵坐标为m,∴M(m,m).②假设能在抛物线上,∵∠AOB=90°,∴直线OB的解析式为y=﹣x,∵点N在直线OB上,纵坐标为m,∴N(﹣2m,m),∴MN的中点的坐标为(﹣m,m),∴P(﹣m,2m),把点P坐标代入抛物线的解析式得到m=.。
2022年无锡市中考数学试卷
一、单项选择(5分)1. 下列函数中,不是偶函数的是()A. y=x2-2xB. y=2x2+4xC. y=x2+x+1D. y=x22. 将函数f ( x )=x2-sin x 在[-π,2π]上单调递增,则实数a 的取值范围是()A. (1, +∞)B. (1,2)C. (2,+∞)D. (0,1)3. 若集合 A = { x | x2 = x} ,则集合A 的元素是()A. 0B. 1C. 0和1D. -14. 若函数f ( x )满足 f (1)=-2,f (2)=2, f (3)=-2,则 f (4)的值是()A. 0B. 4C. 2D. -25. 已知 f ( x )=2x2+3x+1,若f ( a )+f ( b )=64,则 ab 的值是()A. 22B. 12C. -2D. -12二、填空题(5分)1. 已知直线ax+by+c=0,此直线与直线x-3y-9=0垂直,则b =____________.2. 若函数 f ( x )是定义在[-1,1] 上的可导函数,且 f ′(0)=2,则函数f ( x )在 x=-1 处的切线斜率为 ____________.3. 已知: | x | - x < 0 ,则实数x 的取值范围是 ____________.4. 已知集合 A = {x | x < 4},B = {x | x > -4 },则A∩B =____________.5. 若函数f ( x )的定义域为x≥2,当x≥4 时,f ( x )有最小值,若 f (4) = 4,则f ′(4)=_______________.三、解答题(60分)1.(10分)(1)已知f ( x )=x3-6x2+9,求f ( x )在[1,6]上的最大值(2)若函数f ( x )=x2-2x+1在 R 上单调递减,求实数 a 的取值范围(1)解:x3-6x2+9=f ( x ),f ′( x )=3x2-12x,设 f ′( x )=0,得x1=0, x2=4;给出f (x )的单调性及极。
2021年江苏省无锡市中考数学试卷-解析版
2021年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. −13的相反数是( )A. −13B. 13C. 0D. 32. 函数y =1√x−2中自变量x 的取值范围是( )A. x >2B. x ≥2C. x <2D. x ≠23. 已知一组数据:58,53,55,52,54,51,55,这组数据的中位数和众数分别是( )A. 54,55B. 54,54C. 55,54D. 52,554. 方程组{x +y =5x −y =3的解是( )A. {x =2y =3B. {x =3y =2C. {x =4y =1D. {x =1y =45. 下列运算正确的是( )A. a 2+a =a 3B. (a 2)3=a 5C. a 8÷a 2=a 4D. a 2⋅a 3=a 56. 下列图形中,既是中心对称图形又是轴对称图形的是( )A.B.C.D.7. 如图,D 、E 、F 分别是△ABC 各边中点,则以下说法错误的是( )A. △BDE 和△DCF 的面积相等B. 四边形AEDF 是平行四边形C. 若AB =BC ,则四边形AEDF 是菱形D. 若∠A =90°,则四边形AEDF 是矩形8. 一次函数y =x +n 的图象与x 轴交于点B ,与反比例函数y =m x(m >0)的图象交A. 1B. 2C. 3D. 49.在Rt△ABC中,∠A=90°,AB=6,AC=8,点P是△ABC所在平面内一点,则PA2+PB2+PC2取得最小值时,下列结论正确的是()A. 点P是△ABC三边垂直平分线的交点B. 点P是△ABC三条内角平分线的交点C. 点P是△ABC三条高的交点D. 点P是△ABC三条中线的交点10.设P(x,y1),Q(x,y2)分别是函数C1,C2图象上的点,当a≤x≤b时,总有−1≤y1−y2≤1恒成立,则称函数C1,C2在a≤x≤b上是“逼近函数”,a≤x≤b为“逼近区间”.则下列结论:①函数y=x−5,y=3x+2在1≤x≤2上是“逼近函数”;②函数y=x−5,y=x2−4x在3≤x≤4上是“逼近函数”;③0≤x≤1是函数y=x2−1,y=2x2−x的“逼近区间”;④2≤x≤3是函数y=x−5,y=x2−4x的“逼近区间”.其中,正确的有()A. ②③B. ①④C. ①③D. ②④二、填空题(本大题共8小题,共16.0分)11.分解因式:2x3−8x=______.12.2021年5月15日我国天问一号探测器在火星预选着陆区着陆,在火星上首次留下中国印迹,迈出我国星际探测征程的重要一步.目前探测器距离地球约320000000千米,320000000这个数据用科学记数法可表示为______ .13.用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为______ .14.请写出一个函数表达式,使其图象在第二、四象限且关于原点对称:______ .15.一条上山直道的坡度为1:7,沿这条直道上山,每前进100米所上升的高度为______米.16.下列命题中,正确命题的个数为______ .①所有的正方形都相似②所有的菱形都相似③边长相等的两个菱形都相似④对角线相等的两个矩形都相似17.如图,在Rt△ABC中,∠BAC=90°,AB=2√2,AC=6,点E在线段AC上,且AE=1,D是线段BC上的一点,连接DE,将四边形ABDE沿直线DE翻折,得到四边形FGDE,当点G恰好落在线段AC上时,AF=______ .18.如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为:______ .三、解答题(本大题共10小题,共84.0分)19.计算:(1)|−12|−(−2)3+sin30°;(2)4a −a+82a.20.(1)解方程:(x+1)2−4=0;(2)解不等式组:{−2x+3≤1x−1<x3+1.21.已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.求证:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.22.将4张分别写有数字1、2、3、4的卡片(卡片的形状、大小、质地都相同)放在盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片.求下列事件发生的概率.(请用“画树状图”或“列表”等方法写出分析过程)(1)取出的2张卡片数字相同;(2)取出的2张卡片中,至少有1张卡片的数字为“3”.23.某企业为推进全民健身活动,提升员工身体素质,号召员工开展健身锻炼活动,经过两个月的宣传发动,员工健身锻炼的意识有了显著提高.为了调查本企业员工上月参加健身锻炼的情况,现从1500名员工中随机抽取200人调查每人上月健身锻炼的次数,并将调查所得的数据整理如下:某企业员工参加健身锻炼次数的频数分布表锻炼次数x(代号)0<x≤5(A)5<x≤10(B)10<x≤15(C)15<x≤20(D)20<x≤25(E)25<x≤30(F)频数10a68c246频率0.05b0.34d0.120.03(1)表格中a=______ ;(2)请把扇形统计图补充完整;(只需标注相应的数据)(3)请估计该企业上月参加健身锻炼超过10次的员工有多少人?24.如图,已知锐角△ABC中,AC=BC.(1)请在图1中用无刻度的直尺和圆规作图:作∠ACB的平分线CD;作△ABC的外接圆⊙O;(不写作法,保留作图痕迹)(2)在(1)的条件下,若AB=48,⊙O的半径为5,则sinB=______ .(如需画草图,5请使用图2)25.如图,四边形ABCD内接于⊙O,AC是⊙O的直径,AC与BD交于点E,PB切⊙O于点B.(1)求证:∠PBA=∠OBC;(2)若∠PBA=20°,∠ACD=40°,求证:△OAB∽△CDE.26.为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4:3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?27.在平面直角坐标系中,O为坐标原点,直线y=−x+3与x轴交于点B,与y轴交于点C,二次函数y=ax2+2x+c的图象过B、C两点,且与x轴交于另一点A,点M为线段OB上的一个动点,过点M作直线l平行于y轴交BC于点F,交二次函数y=ax2+2x+c的图象于点E.(1)求二次函数的表达式;(2)当以C、E、F为顶点的三角形与△ABC相似时,求线段EF的长度;(3)已知点N是y轴上的点,若点N、F关于直线EC对称,求点N的坐标.28.已知四边形ABCD是边长为1的正方形,点E是射线BC上的动点,以AE为直角边在直线BC的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图,若点E在线段BC上运动,EF交CD于点P,AF交CD于点Q,连结CF,①当m=1时,求线段CF的长;3②在△PQE中,设边QE上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过BC的中点且垂直于BC的直线被等腰直角三角形AEF截得的线段长为y,请直接写出y与m的关系式.答案和解析1.【答案】B【解析】解:−13的相反数是13. 故选:B .求一个数的相反数就是在这个数前面添上“−”号.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.【答案】A【解析】解:由题意得:x −2>0, 解得:x >2, 故选:A .根据二次根式的被开方数是非负数、分式的分母不为0列出不等式,解不等式得到答案. 本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分式的分母不为0是解题的关键.3.【答案】C【解析】解:∵55出现的次数最多, ∴众数为55,将这组数据按照从小到大的顺序排列:51、52、53、54、55、55、58, 中位数为54, 故选:C .根据众数和中位数的定义求解即可.本题主要考查的是众数和中位数的定义,掌握相关定义是解题的关键.4.【答案】C【解析】解:{x +y =5①x −y =3②,①+②得:2x =8, ∴x =4,把x =4代入①得:4+y =5, ∴y =1,∴方程组的解为{x =4y =1.故选:C .将两个方程相加,可消去y ,得到x 的一元一次方程,从而解得x =4,再将x =4代入①解出y 的值,即得答案.本题考查解二元一次方程组,解题的关键是消元,常用消元的方法有代入消元法和加减消元法.5.【答案】D【解析】解:A.a 2+a ,不是同类项,无法合并,故此选项不合题意; B .(a 2)3=a 6,故此选项不合题意; C .a 8÷a 2=a 6,故此选项不合题意; D .a 2⋅a 3=a 5,故此选项符合题意. 故选:D .直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法、除法运算法则计算得出答案.此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘法、除法运算法则等知识,正确掌握相关运算法则是解题关键.6.【答案】A【解析】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意; B .是轴对称图形,不是中心对称图形,故本选项不合题意; C .不是轴对称图形,是中心对称图形,故本选项不合题意; D .是轴对称图形,不是中心对称图形,故本选项不合题意.根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.【答案】C【解析】解:A.连接EF,∵D、E、F分别是△ABC各边中点,∴EF//BC,BD=CD,设EF和BC间的距离为h,∴S△BDE=12BD⋅ℎ,S△DCE=12CD⋅ℎ,∴S△BDE=S△DCE,故本选项不符合题意;B.∵D、E、F分别是△ABC各边中点,∴DE//AC,DF//AB,∴DE//AF,DF//AE,∴四边形AEDF是平行四边形,故本选项不符合题意;C.∵D、E、F分别是△ABC各边中点,∴DE=12AC,DF=12AB,若AB=BC,则DE=DF,∵四边形AEDF是平行四边形,∴四边形AEDF是菱形,故本选项符合题意;D.∵四边形AEDF是平行四边形,∴若∠A=90°,则四边形AEDF是矩形,故本选项不符合题意;故选:C.根据矩形的判定定理,菱形的判定定理,三角形中位线定理判断即可.本题考查了矩形的判定,菱形的判定,平行四边形的判定,三角形的中位线定理,熟练掌握矩形的判定定理是解题的关键.8.【答案】B【解析】解:在y=x+n中,令y=0,得x=−n,∴B(−n,0),∵A(1,m)在一次函数y=x+n的图象上,∴m=1+n,即n=m−1,∴B(1−m,0),∵△AOB的面积为1,m>0,∴12OB⋅|y A|=1,即12|1−m|⋅m=1,解得m=2或m=−1(舍去),∴m=2,故选:B.由已知得B(−n,0),而A(1,m)在一次函数y=x+n的图象上,可得n=m−1,即B(1−m,0),根据△AOB的面积为1,可列方程12|1−m|⋅m=1,即可解得m=2.本题考查反比例函数与一次函数的应用,解题的关键是根据△AOB的面积为1列方程.9.【答案】D【解析】解:过P作PD⊥AC于D,过P作PE⊥AB于E,延长CP交AB于M,延长BP交AC于N,如图:∵∠A=90°,PD⊥AC,PE⊥AB,∴四边形AEPD是矩形,设AD=PE=x,AE=DP=y,Rt△AEP中,AP2=x2+y2,Rt △CDP 中,CP 2=(6−x)2+y 2, Rt △BEP 中,BP 2=x 2+(8−y)2,∴AP 2+CP 2+BP 2=x 2+y 2+(6−x)2+y 2+x 2+(8−y)2 =3x 2−12x +3y 2−16y +100=3(x −2)2+3(y −83)2+2003,∴x =2,y =83时,AP 2+CP 2+BP 2的值最大, 此时AD =PE =2,AE =PD =83, ∵∠A =90°,PD ⊥AC , ∴PD//AB , ∴AM PD=ACCD,即AM83=64,∴AM =4,∴AM =12AB ,即M 是AB 的中点, 同理可得AN =12AC ,N 为AC 中点, ∴P 是△ABC 三条中线的交点, 故选:D .过P 作PD ⊥AC 于D ,过P 作PE ⊥AB 于E ,延长CP 交AB 于M ,延长BP 交AC 于N ,设AD =PE =x ,AE =DP =y ,则AP 2+CP 2+BP 2=3(x −2)2+3(y −83)2+2003,当x =2,y =83时,AP 2+CP 2+BP 2的值最大,此时AD =PE =2,AE =PD =83,由AM PD=AC CD ,得AM =4,M 是AB 的中点,同理可得AN =12AC ,N 为AC 中点,即P 是△ABC三条中线的交点.本题考查直角三角形中的最小值,涉及勾股定理、二次函数的最大值、相似三角形的判定与性质等知识,解题的关键是求出AD =PE =2,AE =PD =83.10.【答案】A【解析】解:①y 1−y 2=−2x −7,在1≤x ≤2上,当x =1时,y 1−y 2最大值为−9,当x =2时,y 1−y 2最小值为−11,即−11≤y 1−y 2≤−9,故函数y =x −5,y =3x +2在1≤x ≤2上是“逼近函数”不正确;②y 1−y 2=−x 2+5x −5,在3≤x ≤4上,当x =3时,y 1−y 2最大值为1,当x =4时,y 1−y 2最小值为−1,即−1≤y 1−y 2≤1,故函数y =x −5,y =x 2−4x 在3≤x ≤4上是“逼近函数”正确;③y 1−y 2=−x 2+x −1,在0≤x ≤1上,当x =12时,y 1−y 2最大值为−34,当x =0或x =1时,y 1−y 2最小值为−1,即−1≤y 1−y 2≤−34,当然−1≤y 1−y 2≤1也成立,故0≤x ≤1是函数y =x 2−1,y =2x 2−x 的“逼近区间”正确;④y 1−y 2=−x 2+5x −5,在2≤x ≤3上,当x =52时,y 1−y 2最大值为54,当x =2或x =3时,y 1−y 2最小值为1,即1≤y 1−y 2≤54,故2≤x ≤3是函数y =x −5,y =x 2−4x 的“逼近区间”不正确; ∴正确的有②③, 故选:A .根据当a ≤x ≤b 时,总有−1≤y 1−y 2≤1恒成立,则称函数C 1,C 2在a ≤x ≤b 上是“逼近函数”,a ≤x ≤b 为“逼近区间”,逐项进行判断即可.本题考查一次函数、二次函数的综合应用,解题的关键是读懂“逼近函数”和“逼近区间”的含义,会求函数在某个范围内的最大、最小值.11.【答案】2x(x −2)(x +2)【解析】 【分析】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.运用平方差公式进行因式分解的多项式的特征:(1)二项式;(2)两项的符号相反;(3)每项都能化成平方的形式.先提取公因式2x ,再对余下的项利用平方差公式分解因式. 【解答】 解:2x 3−8x , =2x(x 2−4), =2x(x +2)(x −2). 故答案为2x(x +2)(x −2).12.【答案】3.2×108【解析】解:320000000=3.2×108,故选:3.2×108.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,关键是确定a的值以及n的值.13.【答案】503【解析】解:设圆锥的底面圆半径为r,依题意,得2πr=120π×50,180解得r=50.3.故答案为:503圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.14.【答案】y=−1答案不唯一x(k是常数,且k≠0)的图象在第二、四象限,则k<0,【解析】解:若反比例函数y=kx故k可取−1,此时反比例函数解析式为y=−1.x答案不唯一.故答案为:y=−1x根据反比例函数的性质得到k<0,然后取k=−1即可得到满足条件的函数解析式.(k≠0)的图象是双曲线;当k>0,本题考查了反比例函数的性质:反比例函数y=kx双曲线的两支分别位于第一、第三象限;当k<0,双曲线的两支分别位于第二、第四象限.15.【答案】10√2【解析】解:设上升的高度为x米,∵上山直道的坡度为1:7,∴水平距离为7x米,由勾股定理得:x2+(7x)2=1002,解得:x1=10√2,x2=−10√2(舍去),故答案为:10√2.设上升的高度为x米,根据坡度的概念得到水平距离为7x米,根据勾股定理列出方程,解方程得到答案.本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键.16.【答案】1【解析】解:①所有的正方形都相似,正确,符合题意;②所有的菱形都相似,错误,不符合题意;③边长相等的两个菱形都相似,错误,不符合题意;④对角线相等的两个矩形都相似,错误,不符合题意,正确的有1个,故答案为:1.利用相似形的定义分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解相似图形的定义,难度不大.17.【答案】2√63【解析】解:如图,过点F作FH⊥AC于H,∵将四边形ABDE沿直线DE翻折,得到四边形FGDE,∴AB=FG=2√2,AE=EF=1,∠BAC=∠EFG=90°,∴EG=√EF2+FG2=√1+8=3,∵sin∠FEG=HFEF =FGEG,∴HF1=2√23,∴HF=2√23,∵cos∠FEG=EHEF =EFEG,∴EH1=13,∴EH=13,∴AH=AE+EH=43,∴AF=√AH2+HF2=√169+89=2√63,故答案为:2√63.由折叠的性质可得AB=FG=2√2,AE=EF=1,∠BAC=∠EFG=90°,在Rt△EFG 中,由勾股定理可求EG=3,由锐角三角函数可求EH,HF的长,在Rt△AHF中,由勾股定理可求AF.本题考查了翻折变换,考查了折叠的性质,勾股定理,锐角三角函数,构造直角三角形是解题的关键.18.【答案】y=83x2【解析】解:过A作AD⊥y轴于D,过B作BE⊥y轴于E,如图:∵AD⊥y轴,BE⊥y轴,∴AD//BE,∴ACBC =CDCE=ADBE,∵CB=3AC,∴CE=3CD,BE=3AD,设AD=m,则BE=3m,∵A、B两点在二次函数y=x2的图象上,∴A(−m,m2),B(3m,9m2),∴OD=m2,OE=9m2,∴ED=8m2,而CE=3CD,∴CD=2m2,OC=3m2,∴C(0,3m2),∵P为CB的中点,∴P(32m,6m2),又已知P(x,y),∴{x=32my=6m2,∴y=83x2;故答案为:y=83x2.过A作AD⊥y轴于D,过B作BE⊥y轴于E,又CB=3AC,得CE=3CD,BE=3AD,设AD=m,则BE=3m,A(−m,m2),B(3m,9m2),可得C(0,3m2),而P为CB的中点,故P(32m,6m2),即可得y=83x2.本题考查二次函数图象上点坐标的特征,涉及相似三角形的判定与性质等知识,解题的关键是用含字母的代数式表示C的坐标.19.【答案】解:(1)原式=12+8+12=1+8=9.(2)原式=82a −a+82a=−a2a=−12.【解析】(1)根据绝对值的意义,乘方的意义以及特殊角的锐角三角函数的值即可求出答案.(2)根据分式的加减运算法则即可求出答案.本题考查分式的运算以及实数的运算,解题的关键是熟练运用分式的加减运算以及绝对值的意义,乘方的意义和特殊角的锐角三角函数的值,本题属于基础题型.20.【答案】解:(1)∵(x +1)2−4=0,∴(x +1)2=4, ∴x +1=±2,解得:x 1=1,x 2=−3. (2){−2x +3≤1①x −1<x3+1②, 由①得,x ≥1, 由②得,x <3,故不等式组的解集为:1≤x <3.【解析】(1)利用直接开平方求解即可.(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元二次方程以及一元一次不等式组,熟练掌握平方根的定义以及求不等式解集的原则是解答此题的关键.21.【答案】证明:(1)∵∠AOB =∠COD ,∠ABO =∠DCO , AB =DC ,在△ABO 和△DCO 中, {∠AOB =∠COD ∠ABO =∠DCO AB =DC, ∴△ABO≌△DCO(AAS); (2)由(1)知,△ABO≌△DCO ,∴OB =OC∴∠OBC=∠OCB.【解析】(1)由已知条件,结合对顶角相的可以利用AAS判定△ABO≌△DCO;(2)由等边对等角得结论.此题考查了全等三角形的判定,在做题时要牢固掌握并灵活运用.证明三角形全等是解答本题的关键.22.【答案】解:(1)画树状图如图:共有16种等可能的结果,取出的2张卡片数字相同的结果有4种,∴取出的2张卡片数字相同的概率为416=14;(2)由(1)可知,共有16种等可能的结果,取出的2张卡片中,至少有1张卡片的数字为“3”的结果有7种,∴取出的2张卡片中,至少有1张卡片的数字为“3”的概率为716.【解析】(1)画树状图,共有16种等可能的结果,取出的2张卡片数字相同的结果有4种,再由概率公式求解即可;(2)由(1)可知,共有16种等可能的结果,取出的2张卡片中,至少有1张卡片的数字为“3”的结果有7种,再由概率公式求解即可.此题考查的是列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.23.【答案】42【解析】解:(1)a=200×21%=42(人),故答案为:42;(2)b=21%=0.21,C组所占的百分比c=0.34=34%,D组所占的百分比是:d=1−0.05−0.21−0.34−0.12−0.03=0.25=25%,扇形统计图补充完整如图:;(3)估计该企业上月参加健身锻炼超过10次的员工有1500×(0.34+0.25+0.12+0.03)=1110(人).答:估计该企业上月参加健身锻炼超过10次的员工有1110人.(1)根据B 组所占的百分比是21%,即可求得a 的值;(2)根据其他各组的频率求出D 组的频率得出C 组、D 组所占的百分比,补全扇形统计图即可.(3)利用总人数1500乘以对应的频率即可求得.本题考查的是频数分布表和扇形统计图的综合运用,读懂统计图表,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.24.【答案】45【解析】解:(1)如图,射线CD ,⊙O 即为所求.(2)连接OA ,设射线CD 交AB 于E .∵CA =CB ,CD 平分∠ACB ,∴CD ⊥AB ,AE =EB =245, ∴OE =√OA 2−AE 2=√52−(245)2=75,∴CE =OC +OE =5+75=325, ∴AC =BC =√AE 2+EC 2=√(245)2+(325)2=8,∴sinB =EC BC =3258=45. 故答案为:45.(1)利用尺规作出∠ACB 的角平分线CD ,作线段AC 的垂直平分线交CD 于点O ,以O 为圆心,OC 为半径作⊙O 即可.(2)连接OA ,设射线CD 交AB 于E.利用勾股定理求出OE ,EC ,再利用勾股定理求出BC ,可得结论.本题考查作图−复杂作图,解直角三角形,三角形的外接圆等知识,解题的关键是正确作出图形,利用勾股定理解决问题.25.【答案】证明:(1)∵AC 是⊙O 的直径,∴∠ABC =90°,∴∠ACB +∠BAC =90°,∵PB 切⊙O 于点B ,∴∠PBA +∠ABO =90°,∵OA =OB =OC ,∴∠BAO =∠ABO ,∠OBC =∠ACB ,∴∠OBC +∠ABO =∠PBC +∠ABO =90°,∴∠PBA =∠OBC ;(2)由(1)知,∠PBA =∠OBC =∠ACB ,∵∠PBA =20°,∴∠OBC =∠ACB =20°,∴∠AOB =∠ACB +∠OBC =20°+20°=40°,∵∠ACD =40°,∴∠AOB =∠ACD ,∵BC⏜=BC ⏜, ∴∠CDE =∠CDB =∠BAC =∠BAO ,∴△OAB∽△CDE .【解析】(1)根据圆周角定理和切线的性质证得∠ACB +∠BAC =∠PBC +∠ABO =90°,结合等腰三角形的性质即可证得结论;(2)由三角形外角的性质求出∠AOB =∠ACB +∠OBC =40°,得到AOB =∠ACD ,由圆周角的性质得到∠CDE =∠BAO ,根据相似三角形的判定即可证得△OAB∽△CDE . 本题主要考查了相似三角形的判定,圆周角定理,切线的性质,根据根据圆周角定理和切线的性质证得∠ACB +∠BAC =∠PBC +∠ABO =90°是解决问题的关键.26.【答案】解:(1)设一等奖奖品单价为4x 元,则二等奖奖品单价为3x 元, 依题意得:6004x +1275−6003x =25,解得:x =15,经检验,x =15是原方程的解,且符合题意,∴4x =60,3x =45.答:一等奖奖品单价为60元,二等奖奖品单价为45元.(2)设购买一等奖奖品m 件,二等奖奖品n 件,依题意得:60m +45n =1275,∴n =85−4m 3.∵m ,n 均为正整数,且4≤m ≤10,∴{m =4n =23或{m =7n =19或{m =10n =15, ∴共有3种购买方案,方案1:购买4件一等奖奖品,23件二等奖奖品;方案2:购买7件一等奖奖品,19件二等奖奖品;方案3:购买10件一等奖奖品,15件二等奖奖品.【解析】(1)设一等奖奖品单价为4x 元,则二等奖奖品单价为3x 元,根据数量=总价÷单价,即可得出关于x 的分式方程,解之经检验后即可得出x 的值,再将其代入4x ,3x 中即可求出结论;(2)设购买一等奖奖品m 件,二等奖奖品n 件,利用总价=单价×数量,即可得出关于m ,n 的二元一次方程,结合m ,n 均为正整数且4≤m ≤10,即可得出各购买方案.本题考查分式方程的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出二元一次方程.27.【答案】解:(1)在y =−x +3中,令x =0得y =3,令y =0得x =3,∴B(3,0),C(0,3),把B(3,0),C(0,3)代入y =ax 2+2x +c 得:{0=9a +6+c 3=c ,解得{a =−1c =3, ∴二次函数的表达式为y =−x 2+2x +3;(2)如图:在y =−x 2+2x +3中,令y =0得x =3或x =−1,∴A(−1,0),∵B(3,0),C(0,3),∴OB =OC ,AB =4,BC =3√2,∴∠ABC =∠MFB =∠CFE =45°,∴以C 、E 、F 为顶点的三角形与△ABC 相似,B 和F 为对应点,设E(m,−m 2+2m +3),则F(m,−m +3),∴EF =(−m 2+2m +3)−(−m +3)=−m 2+3m ,CF =√m 2+m 2=√2m , ①△ABC ∽△CFE 时,AB CF =BC EF ,∴√2m =3√2−m 2+3m , 解得m =32或m =0(舍去),∴EF =94,②△ABC ∽△EFC 时,AB EF =BC CF ,∴4−m 2+3m =√2√2m, 解得m =0(舍去)或m =53,∴EF =209,综上所述,EF =94或209.(3)连接NE,如图:∵点N、F关于直线EC对称,∴∠NCE=∠FCE,CF=CN,∵EF//y轴,∴∠NCE=∠CEF,∴∠FCE=∠CEF,∴CF=EF=CN,由(2)知:设E(m,−m2+2m+3),则F(m,−m+3),EF=(−m2+2m+3)−(−m+3)=−m2+3m,CF=√m2+m2=√2m,∴−m2+3m=√2m,解得m=0(舍去)或m=3−√2,∴CN=CF=√2m=3√2−2,∴N(0,3√2+1).【解析】(1)由y=−x+3得B(3,0),C(0,3),代入y=ax2+2x+c即得二次函数的表达式为y=−x2+2x+3;(2)由y=−x2+2x+3得A(−1,0),OB=OC,AB=4,BC=3√2,故∠ABC=∠MFB=∠CFE=45°,以C、E、F为顶点的三角形与△ABC相似,B和F为对应点,设E(m,−m2+2m+3),则F(m,−m+3),EF=−m2+3m,CF=√2m,①△ABC∽△CFE时,ABCF =BCEF,可得EF=94,②△ABC∽△EFC时,ABEF=BCCF,可得EF=209;(3)连接NE,由点N、F关于直线EC对称,可得CF=EF=CN,故−m2+3m=√2m,解得m=0(舍去)或m=3−√2,即得CN=CF=√2m=3√2−2,N(0,3√2+1).本题考查二次函数的综合应用,涉及解析式、三角形相似的判定与性质、对称变换等知识,解题的关键是用含字母的代数式表示相关的线段长度,根据已知列方程求解.28.【答案】解:(1)①过F作FG⊥BC于G,连接CF,如图:∵四边形ABCD是正方形,∠AEF=90°,∴∠BAE=90°−∠AEB=∠EFG,∠B=∠G=90°,∵等腰直角三角形AEF,∴AE=EF,在△ABE和△EGF中,{∠B=∠G∠AEB=∠EFG AE=EF,∴△ABE≌△EGF(AAS),∴FG=BE=13,EG=AB=BC,∴EG−EC=BC−EC,即CG=BE=13,在Rt△CGF中,CF=√CG2+FG2=√23;②△ABE绕A逆时针旋转90°,得△ADE′,过P作PH⊥EQ于H,如图:∵△ABE绕A逆时针旋转90°,得△ADE′,∴△ABE≌△ADE′,∠B=∠ADE′=90°,∠BAE=∠DAE′,∠AEB=∠E′,AE=AE′,BE= DE′,∴∠ADC+∠ADE′=180°,∴C、D、E′共线,∵∠BAE+∠EAD=90°,∴∠DAE′+∠EAD=90°,∵∠EAF =45°,∴∠EAF =∠E′AF =45,在△EAQ 和△E′AQ 中,{AE =AE′∠EAQ =∠E′AQ AQ =AQ,∴△EAQ≌△E′AQ(SAS),∴∠E′=∠AEQ ,EQ =E′Q ,∴∠AEB =∠AEQ ,EQ =DQ +DE′=DQ +BE ,∴∠QEP =90°−∠AEQ =90°−∠AEB =∠CEP ,即EF 是∠QEC 的平分线, 又∠C =90°,PH ⊥EQ ,∴PH =PC ,∵∠BAE =∠CEP ,∠B =∠C =90°,∴△ABE∽△ECP , ∴CP BE =CE AB ,即CP m =1−m1,∴CP =m(1−m),∴PH =ℎ=−m 2+m =−(m −12)2+14,∴m =12时,h 最大值是14; (2)①当m <12时,如图:∵∠BAE =90°−∠AEB =∠HEG ,∠B =∠HGE =90°,∴△ABE∽△ECP ,∴HGBE =EG AB ,即HGm=12−m 1, ∴HG =−m 2+12m ,∵MG//CD ,G 为BC 中点,∴MN 为△ADQ 的中位线,∴MN=12DQ,由(1)知:EQ=DQ+BE,设DQ=x,则EQ=x+m,CQ=1−x,Rt△EQC中,EC2+CQ2=EQ2,∴(1−m)2+(1−x)2=(x+m)2,解得x=1−m1+m,∴MN=1−m2(1+m),∴y=NH=MG−HG−MN=1−(−m2+12m)−1−m2(1+m)=1−12m−1−m2(1+m)+m2,②当m>12时,如图:∵MG//AB,∴HGAB =GEBE,即HG1=m−12m,∴HG=2m−12m,同①可得MN=12DQ=1−m2(1+m),∴HN=MG−HG−MN=1−2m−12m−1−m2(1+m)=1+m22m2+2m,∴y=1+m22m2+2m,综上所述,y=1−12m−1−m2(1+m)+m2或y=1+m22m2+2m.【解析】(1)①过F 作FG ⊥BC 于G ,连接CF ,先证明△ABE≌△EGF ,可得FG =BE =13,EG =AB =BC ,则EG −EC =BC −EC ,即CG =BE =13,再在Rt △CGF 中,即可求CF =√23; ②△ABE 绕A 逆时针旋转90°,得△ADE′,过P 作PH ⊥EQ 于H ,由△ABE≌△ADE′,∠B =∠ADE′=90°,∠BAE =∠DAE′,∠AEB =∠E′,AE =AE′,BE =DE′,可得C 、D 、E′共线,由△EAQ≌△E′AQ ,可得∠E′=∠AEQ ,故∠AEB =∠AEQ ,从而∠QEP =90°−∠AEQ =90°−∠AEB =∠CEP ,即EF 是∠QEC 的平分线,有PH =PC ,用△ABE∽△ECP ,可求CP =m(1−m),即可得ℎ=−m 2+m ;(2)分两种情况:①当m <12时,由△ABE∽△ECP ,可求HG =−m 2+12m ,根据MG//CD ,G 为BC 中点,可得MN =12DQ ,设DQ =x ,则EQ =x +m ,CQ =1−x ,Rt △EQC 中,EC 2+CQ 2=EQ 2,可得MN =1−m 2(1+m),故y =NH =MG −HG −MN =1−12m −1−m 2(1+m)+m 2,②当m >12时,由MG//AB ,可得HG =2m−12m ,同①可得MN =12DQ =1−m 2(1+m),即可得y =1+m 22m 2+2m ,本题考查正方形性质及应用,涉及全等三角形的判定与性质、相似三角形的判定与性质、勾股定理的应用等知识,解题的关键构造辅助线及分类讨论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省无锡市2022年中考数学真题试题(含解析1)2022年江苏省无锡市中考数学试卷一、选择题〔本大题共10小题,每题3分,共30分〕1.倒数是数的倒数,即其乘积为1.因此,-5的倒数为-1/5,选项B。
2.函数y=的定义域为x≠2,即x的取值范围为x2,选项D。
3.指数运算法则中,(a^m)^n = a^(mn),因此(a^2)^3=a^6,选项A。
乘方运算法则中,(ab)^n=a^n*b^n,因此(ab)^2=a^2*b^2,选项B。
除法运算法则中,a^m/a^n=a^(m-n),因此a^6/a^3=a^3,选项C。
乘法运算法则中,a^m*a^n=a^(m+n),因此a^2*a^3=a^5,选项D。
4.中心对称图形是以某点为中心,对称的图形。
根据图形可知,只有选项C是中心对称图形。
5.根据题意,a-b=2,b-c=-3,将两式相加得到a-c=-1,选项B。
6.根据表格可知,男生总分为5*70+10*80+7*90=1205,女生总分为4*70+13*80+4*90=1230,因此男生的平均成绩小于女生的平均成绩,选项B。
男生的中位数为80分,女生的中位数为80分,因此男生成绩的中位数等于女生成绩的中位数,选项D。
7.平均增长率的计算公式为[(终值/初值)^(1/月数)-1]*100%。
从1月份到3月份,共增长了4.5-2=2.5万元。
平均每月增长率为[(4.5/2)^(1/2)-1]*100%≈25%,选项B。
8.根据命题“a^2>b^2,则a>b”,当a=3,b=2时,a^2>b^2,且a>b,因此选项A是正确的。
当a=-3,b=2时,a^2>b^2,但ab^2,且a>b,因此选项A是正确的。
当a=-1,b=3时,a^2b,因此选项D是错误的。
因此,选项B是错误的。
9.根据图形可知,菱形的对角线长度为√(2*320)=32,因此圆的直径长度为32,半径长度为16,选项无法确定。
10.根据勾股定理可知,BC=5,因此BD=2.5,AD=√(3^2-2.5^2)=√(25/4)=5/2.因此,AE=ED=3/2,CE=√(4+(3/2)^2)=√(25/4)=5/2,选项B。
二、填空题〔本大题共8小题,每题2分,共16分〕11.根据等式两边的对应项可知,x=5/4.12.3a2-6a+3=3(a^2-2a+1)=3(a-1)^2.13.科学记数法中,将一个数表示为a×10^n的形式,其中1≤a<10,n为整数。
=2.5×10^5.14.最大的日温差为最高气温与最低气温的差值,根据图中信息可知,最大的日温差为30℃。
15.反比例函数y=k/x的图象经过点(-1,-2),代入可得-2=k/(-1),因此k=2.16.圆锥的母线长为5cm,底面半径为3cm,根据勾股定理可得,圆锥的高为4cm。
侧面展开图为一个扇形,其弧长为圆锥母线长5cm,半径为√(4^2+3^2)=5.因此,扇形的面积为(5/360)π(5)^2=25π/72cm^2.217.在矩形ABCD中,AB=3,AD=2.以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2.一条平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧)。
那么由EF,AB所围成的图形(图中阴影局部)的面积等于18.正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O。
那么XXX∠BOD的值等于?19.计算:1)| -6| + |-2|3 + |0|;2)(a+b)(a-b)-a(a-b)。
20.1)解不等式组:x + 2y ≤ 4。
x - y。
1;2)解方程:x+1)/(x-1)=(x-1)/(x+1)。
21.如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF。
22.甲、乙、丙、XXX四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后反面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏伙伴,现甲、乙两人各抽取了一张,求两人恰好成为游戏伙伴的概率。
23.某数学研究网站为吸引更多人注册参加,举行了一个为期5天的推广活动,在活动期间,参加该网站的人数变化情况如下表所示:时间新参加人数〔人〕累计总人数〔人〕第1天 153 153第2天 335 488第3天 550 1038第4天 390 1428第5天 653 a1)表格中a=5881,b=1428;2)请把下面的条形统计图补充完整;3)在活动期间,该网站新参加的总人数为2528人。
24.如图,等边△ABC,请用直尺和圆规,按以下要求作图(不要求写作法,但要保存作图痕迹):1)作△ABC的外心O;2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上。
425.操作:如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q。
我们将此由点P得到点Q的操作称为点的T变换。
1.点P[a,b]经过T变换后得到的点Q的坐标为Q[a+2b。
2a-b];假设点M经过T变换后得到点N[6,-4],那么点M的坐标为M[2,3]。
2.设点A为(0,1),则点B为(2,-1)。
①直线AB的斜率为-1/2,过点O的直线斜率为-1/2,所以直线AB的函数表达式为y=-x/2+1;②△OAB的面积为1/2,△OAD的面积为1/2,所以它们的比值为1:1.26.设A型污水处理器的价格为x万元,B型污水处理器的价格为y万元,则可列出如下方程组:2x+3y=44x+4y=42解得x=10,y=8,所以A型污水处理器的价格为10万元,B型污水处理器的价格为8万元。
该企业需要购置4台A型污水处理器和10台B型污水处理器,总共需要支付52万元。
27.①点P的坐标为(3/2.-√7/2);②过点A和点E,且顶点在直线CD上的抛物线的标准式为y=-1/20x^2+5/4.28.①当m=6时,点P、E、B三点共线的时间为2秒;②当P从D到A的过程中,直线PC的距离先增后减,且只有一次等于3的时刻,即P到达A的时刻,此时PC的距离为3,所以m的取值范围为3<m<5.3.以下运算正确的选项是D:a·a=a。
其中,自变量x的取值范围是x≠2.根据幂的运算性质,可以直接计算得出正确选项。
4.在给出的四个图形中,只有C是中心对称图形。
根据中心对称图形的定义,可以逐个判断得出答案。
5.假设a-b=2,b-c=-3,则a-c=-1.根据题中的等式,可以确定所求的答案。
6.“表1”给出了初三1班43名同学某次数学测验成绩的统计结果。
根据平均数和中位数的定义,分别求出男生和女生的平均成绩和成绩的中位数,可以得出正确选项为A:男生的平均成绩大于女生的平均成绩。
其中,男生平均成绩为80分,女生平均成绩为80分,男女生成绩的中位数都是80分。
即20•DH=320,得DH=16;又因为AO=10,∠BAD<90°。
AH=√(AO^2-DH^2)=√(100-256/4)=√36=6。
又因为菱形ABCD的对角线互相垂直且相等。
BD=2AH=12。
由勾股定理得OD=√(OA^2-AD^2)=√(10^2-12^2/4)=√4=2。
由△AOF∽△DBH可得=,即OF=BD/2=6。
又因为OF=OD+DF,∴DF=OF-OD=6-2=4。
由勾股定理得DO=√(OD^2-DF^2)=√(2^2-4^2)=√(-12)。
因为半径长度为正数,故该题无解,应选D.科学记数法的表示形式为a×10^n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将用科学记数法表示为2.5×10^5.根据图中信息可知,这7天中最大的日温差是11℃。
求出每天的最高气温与最低气温的差,再比较大小即可。
由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃-5℃=8℃;周六的日温差=15℃-7℃=8℃;周日的日温差=16℃-5℃=11℃,因此这7天中最大的日温差是11℃。
假设反比例函数y=k/x的图象经过点(-1,-2),那么k的值为2.由一个点来求反比例函数解析式,只要把点的坐标代入解析式就可求出比例系数。
把点(-1,-2)代入解析式可得k=2.圆锥的侧面积=底面周长×母线长÷2.假设圆锥的底面半径为3cm,母线长是5cm,那么它的侧面展开图的面积为15πcm^2.在矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧)。
由矩形的性质可得到四边形EGHF是矩形,连接O1O2,O1E,O2F,过E作EG⊥O1O2,过F⊥O1O2,得到GH=EF=2,求得O1G=√5/2,得到∠O1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论。
因此,EF,GH,AB所围成图形的面积等于(2π/3-√3+2)cm^2.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,点A、B、C、D都在格点处,AB与CD相交于点O,那么XXX∠BOD的值等于3.考点】解直角三角形。
分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得XXX∠BOD的值。
解答】将CD平移至C′D′交AB于点O′,如右图所示。
那么∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′。
设每个小正方形的边长为a,则O′B=a,O′D′=2a,BD′=3a。
作BE⊥O′D′于点E,则BE=2a,O′E=a,DE=3a。
根据勾股定理,BE²=BO′²+O′E²,代入数值得5a²=10a²,即a=√2.因此,O′B=√2,O′D′=2√2,BD′=3√2.由勾股定理可得,BO′=√6,O′E=√2,DE=3√2.故tanBO′E=√2/√6=1/√3,tan∠BOD=tan∠BO′D′=√3,即tan∠BOD的值等于3.因此,答案为3.21.在平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,证明AB=BF。
首先根据线段中点的定义可得CE=BE,根据平行四边形的性质可得AB∥CD且AB=CD。