矩阵论试卷(2011)
上海交通大学2010-2011学年《矩阵理论》试卷本试卷共四道大题,总分
上海交通大学2010-2011学年《矩阵理论》试卷本试卷共四道大题,总分100分,其中*A 表示矩阵A 的共轭转置.一、 单项选择题(每题3分,共15分)1. 设⎪⎪⎪⎭⎫ ⎝⎛=001001001A ,则=-199200A A ( )(A )E ; (B )0; (C )A ; (D )2A .2. 下列集合对所给运算构成实数域上线性空间的是( )(A ) 次数等于)1(≥m m 的实系数多项式的集合,对于多项式的通常加法和数与多项式的通常乘法;(B ) Hermite 矩阵的集合,对于矩阵的通常加法和实数与矩阵的通常乘法;(C ) 平面上全体向量的集合,对于通常的加法和如下定义的数乘运算0x x k =⋅,k 是实数,0x 是某一取定向量;(D ) 投影矩阵的集合,对于矩阵的通常加法和实数与矩阵的通常乘法.3. 线性变换为正交变换的必要而非充分条件的是( )(A )保持向量的长度不变; (B )将标准正交基变为标准正交基;(C )保持任意两个向量的夹角不变;(D )在任意标准正交基下的矩阵为正交矩阵.4. 设A 是幂等矩阵,则下列命题中不正确的是( )(A )A 与对角矩阵相似; (B )A 的特征值只可能是1或者0;(C )A A )1sin()sin(=; (D )幂级数10)(-∞=-=∑A E A k k .5. 设21,V V 是V 的两个线性子空间,则与命题“21V V +的任意元素的分解式唯一”不等价的命题是( )(A ){}021=⋂V V ; (B )2121dim dim )dim (V V V V +=+;(C )21V V +的零元素的分解式唯一; (D )V V V =⋃][21.二、填空题(每空3分,共15分)设二维线性空间V 的线性变换V V T :1与V V T :2在基21,αα下的矩阵分别为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0201,1201B A . 1、21,T T 的乘积:21T T V V 在基21,αα下的矩阵为 . 2、=)(dim 1T R .3、)()(21T N T R ⋂的一个基为 .4、若常数k 使得)(B A k +为幂收敛矩阵,则k 应该满足的条件是 .5、⎪⎪⎭⎫⎝⎛B B A 0的Jordan 标准型为 .三、计算题(12分)向量空间22⨯R 中的内积通常定义为.))(,)((,),(22222121⨯⨯=====∑∑ij ij i j ij ij b B a A b a B A选取⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=1110,001121A A ,构造子空间],[21A A W =.1、求⊥W 的一组基;2、利用已知的W 和⊥W 求22⨯R 的一个标准正交基.四、计算题(18分)已知⎪⎪⎪⎭⎫⎝⎛-=110130002A .1、求矩阵A 的Jordan 标准型J 和可逆矩阵P 使得A 相似于J ;2、计算矩阵A e ;3、求下列微分方程组的解⎪⎩⎪⎨⎧==,)0(,0x x Ax dt dx ⎪⎪⎪⎭⎫ ⎝⎛=1110x .五、计算题(10分)设n m C A ⨯∈的秩为r ,A 的奇异值分解为*UDV A =,nm O O O D ⨯⎪⎪⎭⎫ ⎝⎛Λ=,),,(21r s s s diag ,=Λ.求矩阵)(A A B =的奇异值分解和它的Moore-Penrose 广义逆.六、计算题(18分) 设多项式空间})({][3322104R a t a t a t a a t f t P i ∈+++==中的线性变换为3032322110)()()()()(t a a t a a t a a a a t Tf -+-+-+-=.1、取定一组基,求该线性变换在该基下的矩阵A ;2、求与A 相关的四个子空间)(),(),(T A R A R A N 和)(T A N ;3、求线性变换T 的值域的基与维数;4、求线性变换T 的核的基与维数.七、证明题(6分)设n n C A ⨯∈. 证明A 是正定矩阵当且仅当存在一个正定矩阵B ,使得2B A =.八、证明题(6分)设A 为n 阶矩阵,证明:A 非奇异的充分必要条件是存在常数项不等于0的多项式)(λg 使得0)(=A g .。
研究生矩阵论试题及答案与复习资料大全
1 4
1 3
0 0
的
Jordan
标准形。
1 0 2
解:求 E A 的初等因子组,由于
1 1 E A 4 3
0 0
1
3
0
1 3 4
0 0
1 0 2
0
1
2
0 0 0
五、(15 分)求矩阵
的满秩分解:
1 0 1 2 A 1 2 1 1
2 2 2 1
解:
A
E
1 1
0 2
1 1
2 1
1 0
0 1
0 0
2 2 2 1 0 0 1
1 0 1 2 1 0 0
0 2
1 0
23
于是有
1 A 1
2
110
1 0
0 2
1 0
23 BC
A C H CC H 1 BH B 1 BH
或
A C H B H AC H 1 B H
六、(10
分)求矩阵
A
行 0
2 0 31
1
0
0 0 0 0 1 1 1
可求得:
1 0 0 P 1 1 0
1 1 1
1 0 0
P 1
1
1
0
2 1 1
1 B 1
2
0 1 1
,
C
1 0
对任意 k F ,有 k V1 ,且 k V2 ,因此知 k V1 V2 ,故知V1,V2 为 V 的子空 间。
2011年重庆大学研究生矩阵理论试题及答案
一、(8分)已知311121210A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭,求11,,,,,()m F m A A A A A A ρ∞∞。
解:1112,96,5m Fm A AA A A ∞∞===== (5分)因为 ()()221--=-λλλA I ,2,1321===λλλ , 故2m ax )(==i iA λρ. (3分)二、(15分)在4R 中有两组基,基(I)1234,,,αααα,基(II)1234,,,ββββ满足:1232341232342222ααβααβββαββα+=⎧⎪+=⎪⎨+=⎪⎪+=⎩ 求 (1)由基(I)到基(II)的过渡矩阵;(2)向量12342αββββ=-++在基1234,,,αααα之下的坐标; (3)判断是否存在非零元素4R α∈在两组基下有相同坐标。
解: (1)由已知关系式求得⎪⎪⎩⎪⎪⎨⎧+=+=+--=-++=3242134212432112242284ααβααβαααβααααβ于是,由基(I )到基(II )的过渡矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=0012200112480124C (5分)(2)α在基(II )下的坐标为(2,-1,1,1)T ,再由坐标变换公式计算α在基(I )下的坐标为C (2,-1,1,1)T=(11,23,4,-5)T. (5分)(3)由()()11221123412343344,,,,,,C ξξξξαααααββββξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,知若存在非零元素4R α∈在两组基下有相同坐标则112213344C ξξξξξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,进而有()12340C E ξξξξ⎛⎫ ⎪ ⎪-= ⎪ ⎪⎝⎭不难计算得det (C-E )=0,方程组有非零解,即存在非零α4R ∈,使得α在基(I )和基(II )下有相同的坐标. (5分)三、(10分)定义在由数域上次数不超过2的多项式构成的线性空间2[]K x ,对任意的[]2(),()f x g x K x ∈,定义()11(),()()()f x g x f x g x dx -=⎰.证明: (1)()(),()f x g x 构成(),()f x g x 的内积,从而2[]K x 对这个内积构成欧氏空间.(2)把基21,,x x 化为标准正交基。
矩阵引论试题及答案
矩阵引论试题及答案一、选择题(每题5分,共20分)1. 矩阵的元素全部为0的矩阵称为:A. 零矩阵B. 单位矩阵C. 对角矩阵D. 标量矩阵答案:A2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行(列)的最大数目D. 矩阵的元素个数答案:C3. 矩阵的转置是指:A. 矩阵的行列互换B. 矩阵的行数变为列数C. 矩阵的列数变为行数D. 矩阵的元素不变答案:A4. 两个矩阵相乘的结果称为:A. 矩阵的和B. 矩阵的差C. 矩阵的积D. 矩阵的逆答案:C二、填空题(每题5分,共20分)1. 如果矩阵A的行列式为0,则称矩阵A为________。
答案:奇异矩阵2. 矩阵A的逆矩阵记作________。
答案:A^(-1)3. 矩阵A与矩阵B相乘,记作________。
答案:AB4. 对于任意矩阵A,矩阵A与单位矩阵相乘的结果仍然是________。
答案:A三、简答题(每题10分,共30分)1. 请简述矩阵的行列式是什么?答案:矩阵的行列式是一个标量值,它提供了关于矩阵的一些重要信息,如矩阵是否可逆(行列式非零则可逆)、线性方程组是否有解等。
2. 矩阵的逆矩阵有什么性质?答案:矩阵的逆矩阵具有以下性质:(A^(-1))^(-1) = A,(AB)^(-1) = B^(-1)A^(-1),以及单位矩阵I的逆矩阵仍然是I。
3. 矩阵的转置矩阵有什么特点?答案:矩阵的转置矩阵具有以下特点:(A^T)^T = A,(AB)^T =B^TA^T,以及矩阵A的转置矩阵的行列式等于矩阵A的行列式。
四、计算题(每题15分,共30分)1. 给定矩阵A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix}\],计算A的行列式。
答案:\[ \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2 \]2. 给定矩阵B = \[\begin{bmatrix} 2 & 3 \\ 4 & 5\end{bmatrix}\],计算B的逆矩阵。
矩阵论考试题
T
任课教师
0 c c 5. 设 A c 0 c ,当 c c c 0
时,A 为收敛矩阵.
二、试用 Househoulder 变换将向量 x (1 , 2 , 2) 化为与 e1 (1 , 0 , 0) 同方向的 向量。 (8 分)
1 8 0 0
2 1 4 0
1 1 至少有两个实特征值。(10 分) 0 1
0 1 2 3 八、求矩阵 A 0 2 1 1 的满秩分解(10 分) 2 4 2 4
九、求矩阵 A 的 Jordan 标准形及相应的相似变换矩阵。其中 1 1 A 5 21 10、设 A H A , B H B ,证明: (1) e iA 为酉矩阵; (2) e B 为酉矩阵 (10 分) (10 分)
第 1 页 共 2 页
中国民航大学 2010-2011 学年第一学期 研究生《 矩阵论 》期末考试试卷
姓名
线――――――――――――――――――――――――――――――-
专业
学号
考试形式:闭卷
一、填空题(每小题 4 分,共 20 分) 1. det e A 2. 已知 e
At
2 e t e 2 t e 2t e t e 2t e t
姓名:
2 3 0 五、已知 A 1 3 0 ,求 A 的 Doolittle 分解。 1 3 6
(8 分)
1 0 0 六、矩阵 A ,求 A (8 分) 2 0 0
班级:
第 2 页 共 2 页
9 0 七、应用盖尔圆定理证明 1 1
矩阵论试题及答案
一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。
矩阵论往年部分真题讲解题(含解答)
2011年《矩阵论》习题解答一、 掌握线性空间的定义及判断是否为线性空间。
二、 在4R 中有两组基,()()()()12341,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1αααα====()()()()12342,1,1,1,0,3,1,0,5,3,2,1,6,6,1,3ββββ=-=== 求 (1)由基1234,,,αααα到基1234,,,ββββ的过渡矩阵;(2)向量()1234,,,x ξξξξ=在基1234,,,ββββ之下的坐标; (3)在两组基下有相同坐标的非零向量。
解:(1)因为 ()()()12341234123420561336,,,,,,,,,11211013C ββββαααααααα⎛⎫ ⎪⎪== ⎪- ⎪⎝⎭所以由基1234,,,αααα到基1234,,,ββββ的过渡矩阵2056133611211013C ⎛⎫⎪⎪= ⎪- ⎪⎝⎭(2) ()()()112211234123412343344,,,,,,,,,x C ξξξξξξξξααααββββξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以向量()1,0,1,0在基1234,,,ββββ之下的坐标为12134C ξξξξ-⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭ 或解 非齐次线性方程组的解 11223344k k C k k ξξξξ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(3)由 (2)式有112213344C ξξξξξξξξ-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则有()12340C E ξξξξ⎛⎫ ⎪ ⎪-= ⎪ ⎪⎝⎭,该方程组的通解为()1,1,1,1T k -,对两个基有相同坐标的非零向量为()1234k x x x x ++-,k 非零常数。
二、已知线性空间V 是矩阵空间22R ⨯, (1) 证明:123410010000,,00001001E E E E ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦是V 的一组基;(2) 求向量1223A ⎡⎤=⎢⎥⎣⎦在基1234,,,E E E E 下的坐标。
矩阵论试题参考答案(2011年)
cos Atdt
0
1
3t sin t 3t sin t cos t 2sin1 3cos1 3sin1 3cos1 dt . 0 3t sin t 3t sin t cos t 3sin1 3cos1 4sin1 3cos1
A b 0,
故 A 0. 2) C, A C 3) A, B C
n n
n n
,
A
A a A b
2
2
2
Aa
2
2
Ab A .
2
,记 x
A a B a , y A B , 则 A x 2 , b b
k k k
证法 3.由 A A 可得:k 1 有 A A ,故 lim A A 0 ,因而 A 不是收敛矩 阵,从而 A 1, 三、(20 分) 设 A
A a A 1 .
4 3 . 3 2
1.(6 分) 求
dF x x1 T ,其中 x , F x x A ; T dx x2
的实轴上, G1 , G2 , G3 的半径依次为
'
'
'
2 3 17 1 3 11 1 2 17 ' ' . , R2 2 , R3 2 2 3 4 12 2 4 16 2 3 36 综合前面的结论可知 A 的 3 个特征值所在的 3 个实数区间分别为
从而 A 只有实特征值, 它们分别位于 A 的 3 个 1 知 A 的每个盖尔圆中只有 A 的一个特征值, 盖尔圆的实轴上,由此得到 A 的 3 个特征值所在的 3 个实数区间分别为
11级-矩阵论试题与答案
参考答案一(20分) V 表示实数域上次数不超过2的多项式构成的线性空间。
对2()f x ax bx c V ∀=++∈,在V 上定义变换:2[()]3(223)(4)T f x ax a b c x a b c =++++++(1)验证T 是V 上的线性变换;(2)求V 的基2,,1x x 到基2(1),1,1x x --的过渡矩阵P ; (3)求T 在基2,,1x x 下的表示矩阵A ; (4)在V 中定义内积1(,)()()f g f t g t dt =⎰,求基2,,1x x 的度量矩阵G 。
解:(1)设22111222(),()f x a x b x c g x a x b x c =++=++2121212()()()f g a a x b b x c c +=+++++[]212121212()3()2()2()3()T f g a a x a a b b c c x +=+++++++[]121212()()4()a a b b c c ++++++()()2111111132234a x a b c x a b c =++++++()()2222222232234a x a b c x a b c +++++++()()T f T g =+类似可验证: ()()T kf kT f =或把T 写成:2300[()][,,1]223114a T f x x x b c ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)再来验证就更方便了。
(2)由22100(1),1,1,,1210111x x x x ⎡⎤⎢⎥⎡⎤⎡⎤--=-⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦得基2,,1x x 到基2(1),1,1x x --的过渡矩阵为100210111P ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦(3) 由22()321T x x x =++,()21T x x =+,(1)34T x =+得T 在基1,,2x x 下的表示矩阵为:300223114A ⎛⎫ ⎪= ⎪ ⎪⎝⎭(4) 11431112210011,54g x dx g g x dx =====⎰⎰ 11221331220011,33g x dx g g x dx =====⎰⎰11233233001,12g g xdx g dx =====⎰⎰ 故度量矩阵11154311143211132G ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭二(20分) 设311121210A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭(1)求A 的行列式因子、不变因子、初等因子; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使1P AP J -=;(4)计算Ate 并求解微分方程组。
矩阵论试题
《矩阵论》 试题11姓名: 班级: 学号: 一、 单项选择题(每题3分,共15分)1. 设1()kk A f A k ∞==∑收敛,则A 可以取为A. 0091⎡⎤⎢⎥--⎣⎦ B. 0091⎡⎤⎢⎥-⎣⎦ C. 1011⎡⎤⎢⎥-⎣⎦ D. 100.11⎡⎤⎢⎥⎣⎦2. 设M 是n 阶实数矩阵,若M 的n 个盖尔圆彼此分离,则M A. 可以对角化 B. 不能对角化 C. 幂收敛 D. 幂发散3. 设211112121M --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦的,则M 不存在 A. QR 分解 B. 满秩分解 C. 奇异值分解 D. 谱分解 4. 设,则A = A.214020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭B.114010061-⎛⎫ ⎪ ⎪ ⎪⎝⎭C.224020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭D.204020061-⎛⎫⎪ ⎪ ⎪⎝⎭5. 设3阶矩阵A 满足多项式222(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件(1)(3)1m m ==,则A 可以相似于A. 200130002M ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B. 20002002M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦C. 20012002M ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦ D. 200030013M -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦二、填空题(每题3分,共15分)1. 设220A A -=,则cos 2A = [ ]。
2.已知n n A C ⨯∈,并且()1A ρ<,则矩阵幂级数0kk kA ∞=∑=[ ]。
3.设矩阵1111A ⎡=⎥⎦,则A 的谱半径()A ρ=[ ]。
4. 设(,)m nHom R R σ∈,则dim(Im )dim(ker )σσ⊥⊥+= 。
5. 设5阶复数矩阵A 的特征多项式为22()(1)(2)f λλλλ=-+,则2|A +E |= [ ].三、(8分)利用初等变换求1BA -,其中450231271A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 4 5 0 2 3 1 2 7 92 3 7B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦。
矩阵试题及答案
矩阵试题及答案一、选择题(每题4分,共20分)1. 矩阵的秩是指:A. 矩阵中非零元素的个数B. 矩阵中最大的线性无关行(列)向量组的个数C. 矩阵的行数D. 矩阵的列数答案:B2. 若矩阵A与矩阵B相等,则下列说法正确的是:A. A和B的行列式相等B. A和B的迹相等C. A和B的行列式和迹都相等D. A和B的行列式和迹都不相等答案:C3. 矩阵的转置是指:A. 将矩阵的行变成列B. 将矩阵的列变成行C. 将矩阵的行和列互换D. 将矩阵的元素取相反数答案:C4. 对于任意矩阵A,下列说法正确的是:A. A的行列式等于A的转置的行列式B. A的行列式等于A的逆矩阵的行列式C. A的行列式等于A的逆矩阵的转置的行列式D. 以上说法都不正确答案:A5. 若矩阵A是可逆矩阵,则下列说法正确的是:A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式可以是任意非零值答案:A二、填空题(每题5分,共20分)1. 若矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为____。
答案:1/22. 设矩阵A为2x2矩阵,且A的行列式为3,则矩阵A的转置的行列式为____。
答案:33. 若矩阵A的秩为2,则矩阵A的行向量组的____。
答案:线性无关4. 设矩阵A为3x3矩阵,且A的行列式为0,则矩阵A是____。
答案:奇异矩阵三、解答题(每题10分,共30分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],求矩阵A的行列式。
答案:\(\begin{vmatrix}1 & 2\\3 & 4\end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2\)2. 设矩阵B=\[\begin{bmatrix}2 & 0\\0 & 2\end{bmatrix}\],求矩阵B的逆矩阵。
2011年矩阵论A试卷、成绩分析表
章
节
第一章
线性空间
第二章
内积空间
第三章
若当标准型
第四章
矩阵分解
第五章
范数
第六章
函数矩阵
第七章
广义逆
综合题
分数
分布
11分
12分
15分
10分
10分
15分
10分
17分
3.试题难易程度分析
本次考试难度适中,试题覆盖面较广,既有一定的深度又有一定的广度。对学生的学习效果是很好的检验。
在三种题型中,填空题重点考察定理、性质、公式的简单运用;计算题重点考察学生的综合解题能力,证明题主要是考察学生对所学知识的拓展和数学思维。
6、及格率_95%_;平均分__75__; 最高分__99__; 最低分__34_。
试卷、成绩分析(包括覆盖面情况分析、难易程度分析、成绩分析、学生对知识点掌握情况分析和工作中存在的不足和今后努力方向):
一、本门《矩阵论A》课程讲授的学时数为48学时,各章课程讲授时间分配:
章节
第1章
第2章
第3章
第4章
3.多增加一些为学生答疑的时间
4.在教学中根据大纲要求及所选教材,适当地补充讲解一些与学生以后所学专业相关的例子,使学生对所学知识能够提高兴趣、活学活用,进一步为其专业课的学习奠定良好的基础。
分析人签名:
2011年12月16日
备注:本表由开课教研室或课程负责人填写,分析、总结每门课程的整体考核情况。
各类试题在试卷中所占百分比如下:
三、考试的成绩分布直方图及出现的问题
1.学生成绩分布如下:
从本次考试成绩看,大部分学生对知识的掌握较好,达到了预期的教学目的。从本次期末考试试题情况看,命题属于正常范围。从考试成绩曲线图上看,学生成绩分布基本呈正态学生成绩表现与平时考察有异常外,大部分学生的考试成绩与平时、作业及课堂表现的情况基本吻合。
2011华科期末考试矩阵论答案解析
2
它们相应的标准正交的特征向量为v1
1 0, v2
10
A的奇异值为1 5, 2 2
1
0
(2)u1
Av1 1
1 5
0 2 0
,
u2
Av2 2
1 2
101.
1 0 0 0
T 1 2 n 1 2 n A T , ,T , HT (T )H
1 H 1 1 H 1
2
n
An2
1 1 1 1 1 0 3 2 A 0 2 4 2 0 1 2 1
1 1 5 3 0 0 0 0
由此可知rank ( A) 2.
取B
1 0
-1
12 ,C 1
1 0
0 1
3 2
故A C H CC H 1(BHB)1 BH
二,(15
分)设
A
2
0
2
1 1 3
(1)求矩阵 eAt.
(2)求 d (eAt ) . dt
解(1) | A | 0, 1 2 3 2 A的最小多项式m() ( 2)2 令g() c0 c1, f (z) etz f (2) e2t c0 2c1 f ' (2) te2t c1 c0 (1 2t)e2t , c1 te2t .
(3t 3)e2t
te2t te2t
(t
矩阵论期末试题及答案
矩阵论期末试题及答案1. 选择题题目1:矩阵的秩是指矩阵中非零行(列)线性无关的最大个数,下面关于矩阵秩的说法中,错误的是:A. 若矩阵A的秩为r,则只能确定 A 中有r个行(列)线性无关。
B. 若矩阵A的秩为r,则只能确定 A 中有r个坐标线性无关。
C. 设A,B为n×m矩阵,若A的秩为r,B的秩为s,则AB的秩至少为max{r,s}。
D. 同一矩阵的行秩与列秩相等。
题目2:对于阶梯形矩阵,以下说法正确的是:A. 阶梯形矩阵的行秩与列秩相等。
B. 阶梯形矩阵的行秩等于主元的个数。
C. 阶梯形矩阵的列秩等于主元的个数。
D. 阶梯形矩阵的行秩与列秩之和等于矩阵的阶数。
题目3:设A为n阶矩阵,下列说法正确的是:A. 若A为可逆矩阵,则A的行秩和列秩都为n。
B. 若A的行秩和列秩都为n,则A为可逆矩阵。
C. 若对于非零向量 x,都有Ax=0,则称矩阵A为零矩阵。
D. 若A为可逆矩阵,则方程Ax=b存在唯一解。
题目4:对于实对称矩阵A,以下说法正确的是:A. A一定有n个线性无关的特征向量。
B. A的所有特征值都是实数。
C. 若A的特征向量构成的特征子空间的维数为n,则称A为满秩矩阵。
D. A一定可以对角化。
2. 计算题题目1:已知矩阵A = [1, 2; 3, 4],求矩阵A的转置矩阵。
解答:转置矩阵的行与列互换,故矩阵A的转置矩阵为:A^T = [1, 3; 2, 4]题目2:已知矩阵B = [2, 1; -1, 3],求矩阵B的逆矩阵。
解答:逆矩阵满足BB^(-1) = I,其中I为单位矩阵。
对于矩阵B,可以使用伴随矩阵法求解:B^(-1) = (1/(ad-bc)) * [d, -b; -c, a]其中a、b、c、d分别为矩阵B的元素:B^(-1) = (1/(2*3-(-1)*1)) * [3, -1; 1, 2] = [3/7, -1/7; 1/7, 2/7]题目3:已知矩阵C = [1, 2, 3; 4, 5, 6],求矩阵C的行列式的值。
矩阵论试题(2011)
矩阵论试题(2011)一.(18分)填空:设.1111,0910⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=B A 1. A -B 的Jordan 标准形为J =2. 是否可将A 看作线性空间V 2中某两个基之间的过渡矩阵( )。
3. 是否可将B 看作欧式空间V 2中某个基的度量矩阵。
( )4. ()p vec B =( ),其中+∞<≤p 1。
5 .若常数k 使得kA 为收敛矩阵,则k 应满足的条件是( )。
6. A ⊗B 的全体特征值是( )。
7. =⊗2BA ( )。
8. B 的两个不同秩的{1}-逆为⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=)1()1(,B B 。
二.(10分)设n m C A ⨯∈,对于矩阵的2-范数2A 和F -范数F A ,定义实数222F A A A +=,(任意n m C A ⨯∈) 验证A 是n m C ⨯中的矩阵范数,且与向量的2-范数相容。
三.(15分)已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--=011)0(,0)(,11120211133x e e t b A t t 。
1. 求At e ;2. 用矩阵函数方法求微分方程)()()(t b t Ax t x dtd+=满足初始条件x (0) 的解。
四.(10分)用Householder 变换求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4021030143010021A 的QR 分解。
五.(10分)用Gerschgorin 定理隔离矩阵⎪⎪⎪⎭⎫⎝⎛=i A 116864120的特征值。
(要求画图表示)六. (15分)已知⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3131,1212010121211010b A 。
1. 求A 的满秩分解; 2. 求A +;3. 用广义逆矩阵方法判断线性方程组 Ax =b 是否有解;4. 求线性方程组Ax =b 的极小范数解,或者极小范数最小二乘解x 0。
(要求指出所求的是哪种解)七.(15分)已知欧式空间R 2⨯2 的子空间,0032414321⎭⎬⎫⎩⎨⎧=-=-⎪⎪⎭⎫ ⎝⎛==x x x x x xx x X V R 2⨯2中的内积为,,),(222112112121⎪⎪⎭⎫ ⎝⎛==∑∑==a a a a A b a B A ij i j ij ,22211211⎪⎪⎭⎫ ⎝⎛=b b b b B V 中的线性变换为T (X )=XP +XT , 任意X ∈V ,.0110⎪⎭⎫⎝⎛=P 1. 给出子空间V 的一个标准正交基; 2. 验证T 是V 中的对称变换;3. 求V 的一个标准正交基,使T 在该基下的矩阵为对角矩阵.八. (7分) 设线性空间V n 的线性变换T 在基n x x x ,,,21 下的矩阵为A ,T e 表示V n 的单位变换,证明:存在x 0≠0,使得T (x 0)=(T e -T )(x 0)的充要条件是21=λ为A 的特征值.矩阵论试题(07,12)一.(18分)填空:1. 矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=2101120100102201A 的Jordan 标准形为J = 2. 设,4321,1001021001201001⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛--=x A 则⎪⎩⎪⎨⎧===∞Ax A A F 2 3. 若A 是正交矩阵,则cos(πA )=4. 设n m C A ⨯∈,A +是A 的Moore -Penrose 逆,则(-2A , A )+=5. 设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛--=300220111,4221B A ,则A ⊗B +I 2⊗I 3的全体特征值是( )。
研究生矩阵论试题及答案与复习资料大全
矩阵论试题(2011级硕士试题)一、(10分)设函数矩阵 ()⎪⎪⎭⎫⎝⎛-=t t t t t A sin cos cos sin 求:()⎰tdt t A 0和(()⎰20t dt t A )'。
解:()⎰t dt t A 0=()⎪⎪⎪⎭⎫ ⎝⎛-⎰⎰⎰⎰tttt tdt tdt dt t dtt 00sin cos cos sin =⎪⎪⎭⎫⎝⎛---t t t t cos 1sin sin cos 1 (()⎰2t dt t A )'=()⎪⎪⎭⎫⎝⎛-=⋅22222sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基⎪⎪⎪⎭⎫ ⎝⎛-=1111α,⎪⎪⎪⎭⎫ ⎝⎛-=1202α,⎪⎪⎪⎭⎫⎝⎛-=1013α变为基 ⎪⎪⎪⎭⎫⎝⎛-=0111β,⎪⎪⎪⎭⎫ ⎝⎛-=1102β,⎪⎪⎪⎭⎫ ⎝⎛-=2303β(1)求σ在基321,,ααα下的矩阵表示A ;(2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。
解:(1)不难求得:()2111ααβασ-==()32122αααβασ++-== ()321332αααβασ++-== 因此σ在321,,ααα下矩阵表示为⎪⎪⎪⎭⎫ ⎝⎛---=110211111A(2)设()⎪⎪⎪⎭⎫ ⎝⎛=321321,,k k k αααξ,即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321111021101321k k k解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。
()ξσ在321,,ααα下坐标可得⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛133223*********1111321y y y (3)ξ在基321,,βββ下坐标为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---6151941001111110194101A()ξσ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---94101332230111111011332231A三、(20分)设⎪⎪⎪⎭⎫ ⎝⎛-=301010200A ,求At e 。
矩阵论试卷(2012A)答案(1[1].5)
2
17 分
⇒ 由(1)的证明知,“=”成立时,有 A 酉相似于一对角阵,根据定理 4.5.2,A 为
正规阵 20 分
2× 2
三.(1) 对任意 X1 , X 2 ∈ W , k ∈ R, 都有 X1 + X 2 ∈ W , kX1 ∈ W , 所以, W 是 R ⎛ x11 线 性 子 空 间 , 设 X =⎜ ⎜x ⎝ 21 ⎛ x11 X =⎜ ⎜x ⎝ 21 0 ⎞ ⎟, x11 + x21 ⎟ ⎠
的
x12 ⎞ ⎟ ∈ W , 因 为 AX = XA, 所 以 , x22 ⎟ ⎠
⎛1 0⎞ ⎛0 0⎞ 5分 W 的一组基为 X1 = ⎜ ⎟ , X = ⎜ 2 ⎜0 1⎟ ⎜1 1 ⎟ ⎟, 维数是 2. ⎝ ⎠ ⎝ ⎠ ( 2 ) 对 任 意 X1 , X 2 ∈ W , k ∈ R, 都 有 T ( X 1 + X 2 ) = T ( X1 ) + T ( X 2 ) , 9分 T ( kX1 ) = kT ( X1 ) ,所以, T 为线性变换 ⎛1 0⎞ ⎛0 0⎞ (3)对于 W 的一组基为 X1 = ⎜ ⎜0 1⎟ ⎟, X 2 = ⎜ ⎜1 1 ⎟ ⎟, 有: ⎝ ⎠ ⎝ ⎠ ⎛ 0 0⎞ ⎛ − 1 0⎞ T ( X 1) = ⎜ ⎜ 0 0⎟ ⎟ = 0X1 + 0 X2 , T ( X 2 ) = ⎜ ⎜ 2 1⎟ ⎟ = −1 X1 + 2 X 2 , ⎝ ⎠ ⎝ ⎠ ⎛ 0 − 1⎞ ⎛ 0 −1⎞ T ( X 1 , X 2 ) = ( X 1 , X 2 )⎜ ⎜0 2 ⎟ ⎟ , T 在(1)中所取基下的矩阵是 A = ⎜ ⎜0 2 ⎟ ⎟ 14 分 ⎝ ⎠ ⎝ ⎠ ⎛1 0⎞ ⎛0 0⎞ (4)对于 W 的一组基为 X1 = ⎜ ⎜0 1⎟ ⎟, X 2 = ⎜ ⎜1 1 ⎟ ⎟, ⎝ ⎠ ⎝ ⎠ ⎛ − b 0⎞ ⎛ 0 0⎞ 若 T ( aX 1 + bX 2 ) = ⎜ ⎟ ⎜ 2b b ⎟ ⎟=⎜ ⎜ ⎟ ,则有: b = 0 , ⎝ ⎠ ⎝ 0 0⎠ 所以, Ker (T ) = {kI2 : k ∈ R )} ,维数为 1, 17 分 ⎛ −1 0⎞ R (T ) = {T ( X ) : X ∈ W } = span{T ( X 1 ), T ( X 2 )} = {k ⎜ ⎜ 2 1⎟ ⎟ : k ∈ R} , ⎝ ⎠
2011矩阵论B研究生试卷答案
线性变换T 满足2212321(()),(()),(())T f t t T f t t T f t t t =+==++. (1) 求T 在基123(),(),()f t f t f t 下的矩阵A ; (2) 求T 在基123(),(),()g t g t g t 下的矩阵B ; (3) 设2123()f t t t =++,求(())T f t . 【解答】[][][]123123123110101012()()()()()()()()()f t f t f t g t g t g t g t g t g t C ⎡⎤⎢⎥=-=⎢⎥⎢⎥⎣⎦(1)[][][][]2212312312312321 =201 011101 ()()()()()()()()()()()()T f t f t f t t t t t f t f t f t Ag t g t g t CA g t g t g t ⎡⎤=+++=⎣⎦⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦[]1231()()()g t g t g t C =则1CA C =,11A C C -=,1121221111C ---⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,则122323111A ---⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦;………………(5分)(2)123(),(),()g t g t g t 到123(),(),()f t f t f t 的过度阵为C ,T 在基123(),(),()f t f t f t 下的矩阵A ,则T 在基123(),(),()g t g t g t 下的矩阵1353110232B CAC ---⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦;………………(5分)(3)[]123123()()()()f t g t g t g t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,设[]112323(())()()()a T f t g t g t g t a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则123135314211023323232a a B a ---⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,则2432(())T f t t t =-+-.……………(5分)3. (15分)设矩阵200131111A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,求:1) 可逆阵P 和A 的Jordan 标准形J ,使1A PJP -=;2)求矩阵函数sin()4A π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京工业大学 矩阵论 试卷
2010--2011 学年第 2 学期 使用班级 研10
班级 学号 姓名
一填空(03').
1. 设V 是实数域上全体22⨯阶对称矩阵组成的线性空间,则它是 维的,一组基是 ,任一实对称矩阵a c A c b ⎛⎫= ⎪⎝⎭
在此组基下的坐标是 。
2. 在欧氏空间4R 中,内积按通常定义,则向量)0,4,1,1(-=α与)2,2,1,3(-=β之间的夹角
>=<βα, ;向量α的长度为 。
3. 设1324A -⎛⎫= ⎪⎝⎭
,则 1A = ,∞A = 。
4. 设⎪⎪⎪⎭
⎫ ⎝⎛---=553311A ,则A 的满秩分解为A = 。
5. 设111100A ⎛⎫ ⎪= ⎪ ⎪⎝⎭
,则A 的二个奇异值为1λ= ,2λ= 。
二(14).设22⨯R 中向量组
⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1111,0111,0011,00014321αααα 1 (1)证明4321,,,αααα是22⨯R 的一个基;(2)求从基22211211,,,E E E E 到基4321,,,αααα的过渡矩阵;
(3)求矩阵⎪⎪⎭
⎫ ⎝⎛-=2011P 在基4321,,,αααα下的坐标。
三)01('.在3R 中,对任意 3321),,(R a a a ∈=α, 定义:A 13213()(,2,)a a a a a α=+-,
(1)证明:A 是3R 上的线性变换;
(2)求A 在基)1,0,0(),0,1,0(),
0,0,1(321===εεε下的矩阵。
四)01('.在},,{][2102
2123R a a a x a x a a x R ∈++=中定义内积 ⎰-=1
1)()(),(dx x g x f g f , 证明:21(),()(31)2f x x g x x ==
-是正交的,并求它们的长度。
五)01('.设V 为3维的线性空间,321,,ααα为V 的一组基,A 是V 上的线性变换,且A 11αα=,A 2122ααα+=,A 3233ααα+=,求:
(1)A 在基321,,ααα下的矩阵; (2)A 的特征值和特征向量;
(3)在V 中能否选择适当的一组基,使得A 在这组基下的矩阵是对角阵?如果能,写出这组基及对角阵。
六)01('.设⎪⎪⎪⎭
⎫ ⎝⎛=9/49/109/19/40
003/1A , (1)问矩阵序列 ,,,2k A A
A 的极限是否存在?为什么?如存在,求之; (2)问矩阵幂级数
0k k A ∞=∑是否收敛?如收敛,求出收敛的和。
七)01('已知112244A -⎛
⎫
⎪=- ⎪ ⎪-⎝⎭
;求A 的加号逆矩阵+A 。
八)6(' 设1σ和n σ是矩阵A 的最大奇异值和最小奇异值,证明:(1)21A =σ; (2)当A 是非奇异矩阵时,n
A σ121
=-。