2015数学中考模拟测试

合集下载

中考数学模拟试卷精选汇编:一元二次方程及其应用附答案

中考数学模拟试卷精选汇编:一元二次方程及其应用附答案

一元二次方程及其应用一.选择题1.(2015·江苏高邮·一模).能说明命题“关于x 的一元二次方程x 2+mx +4=0,当m <-2时必有实数解”是假命题的一个反例为A. m =﹣4B. m =﹣3C. m =﹣2D. m =4 答案:B2.(2015·江苏常州·一模)已知一元二次方程062=−−c x x 有一个根为2,则另一个根为A .2B .3C .4D .-8答案:C3. (2015·吉林长春·二模)答案:A4.(2015·江苏江阴青阳片·期中)设一元二次方程(x ﹣1)(x ﹣2)=m (m >0)的两实根分别为α、β,且α<β,则α,β满足( ▲ )A .1<α<β<2B .1<α<2<βC .α<1<β<2D .α<1且β>2答案:D5.(2015·安庆·一摸)已知βα、是一元二次方程x 2-2x -3=0的两个根,则βα+的值是( ) A.2 B.-2 C.3 D.-3 答案: A ;6. (2015·合肥市蜀山区调研试卷)方程0)3(2=+x x 的根的情况是: A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根答案:A7.(2015·广东高要市·一模)若1x ,2x 是一元二次方程016102=++x x 的两个根,则21x x +的值是( ▲ ) A . ﹣10B . 10C . ﹣16D . 16答案:A8.(2015•山东潍坊•第二学期期中)若关于x 的一元二次方程2(1)5m x x −++23m m −20+= 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .0答案:B ;9.(2015•山东潍坊广文中学、文华国际学校•一模)若关于x 的一元二次方程x 2+(k +3)x +2=0的一个根是2−,则另一个根是( )A .2B .1C .1−D .0答案:C ;10.(2015·网上阅卷适应性测试)已知关于x 的一元二次方程2210mx x +−=有两个不相等的实数根,则m 的取值范围是( ▲ ).A .1m <−B .1m >C .1m <且0m ≠D .1m >−且0m ≠答案:D11.(2015·山东省枣庄市齐村中学二模)已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( ) A .a >2 B .a <2 C .a <2且a ≠1 D .a <-2答案:C12.( 2015·呼和浩特市初三年级质量普查调研)方程2650x x +−=的左边配成完全平方后所得方程为( )A .2(3)14x += B. 2(3)14x −= C. 2(6)41x += D .2(3)4x += .答案:A13.(2015·辽宁盘锦市一模)一款手机连续两次降价,由原来的1299元降到688元,设平均每次降价的百分率为 x,则列方程为A.688(1+x )2=1299B. 1299(1+x )2=688C. 688(1-x )2=1299D. 1299(1-x )2=688答案:D14.(2015·山东省济南市商河县一模)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为A.100)1(1442=−xB.144)1(1002=−xC.100)1(1442=+xD.144)1(1002=+x 答案:D15.(2015.河北博野中考模拟)一元二次方程x 2﹣4x +5=0的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 答案:D16.(2015·广东中山·4月调研)已知关于x 的一元二次方程220x x a +−=有两个相等的实数根,则a 的值是( )A .4B .4−C .1D .1− 答案:D17.(2015·江苏南京溧水区·一模)一元二次方程2x 2-3x -5=0的两个实数根分别为1x 、2x ,则1x +2x 的值为( ▲ ) A .25 B .-25C .-32D .32答案: D18.(2015·江苏扬州宝应县·一模)已知关于x 的一元二次方程22x m x −= 有两个不相等的实数根,则m 的取值范围是A .m >-1B .m <-2C .m ≥0D .m <0 答案: A19.(2015·无锡市宜兴市洑东中学·一模)根据下列表格中的对应值,•判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的根的个数是( )A .0B .1C .2D .1或2 答案:A二.填空题1. (2015·湖南岳阳·调研)如果关于x 的方程23mx =有两个实数根,那么m 的取值范围是 ; 答案:0m >2.(2015·江苏江阴青阳片·期中)已知方程032=+−k x x 有两个相等的实数根,则k =▲ . 答案:k =49 3.(2015·江苏江阴要塞片·一模)若关于x 的一元二次方程kx 2+2(k +1)x +k -1=0有两个实数根,则k 的取值范围是 ▲ . 答案:k ≥﹣且k ≠04. (2015·安徽省蚌埠市经济开发·二摸)已知关天x 的一元二次方程2(1)10m x x −++=有实数根,则m 的取值范围是 . 答案:54m ≤且1m ≠ 5.(2015·广东广州·二模)已知错误!未找到引用源。

中考数学模拟试卷精选汇编:统计附答案

中考数学模拟试卷精选汇编:统计附答案

统计一.选择题1.(2015·无锡市南长区·一模)下列说法中,正确的是 ( ) A .为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B .两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C .抛掷一个正方体骰子,点数为奇数的概率是13D .“打开电视,正在播放广告”是必然事件 答案:A2.(2015·无锡市宜兴市洑东中学·一模)一组数据2,7,6,3,4, 7的众数和中位数分别是 ( )A .7和4.5B .4和6C .7和4D .7和5 答案:D3.(2015·无锡市宜兴市洑东中学·一模)一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误..的是 ( ▲ ) A .极差是20 B .中位数是91 C .众数是98 D .平均数是91答案:D4.(2015·无锡市新区·期中)为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据最值得关注的是( ▲ ) A .中位数 B .平均数 C .众数 D .加权平均数 答案:C5.(2015·锡山区·期中)已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个的2倍,则A ,B 两个样本的方差关系是(▲) A .B 是A 的2倍 B .B 是A 的2倍 C .B 是A 的4倍 D .一样大答案:C6.(2015·锡山区·期中)下列调查方式合适的是(▲)A .为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B .为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C .为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D .为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式答案:D7.(2015·江苏南菁中学·期中)某市某一周的PM 2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM 2.5指数的众数和中位数分别是---------------------------------------( ▲ ) PM2.5指数150 155 160 165天数 3 2 1 1A.150,150 B.150,155 C.155,150 D.150,152.5 答案: B8.(2015·江苏扬州宝应县·一模)五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为A.19和20 B.20和19 C.20和20 D.20和21答案: C9.(2015·江苏无锡北塘区·一模)假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg) 12 10 8 合计/kg小菲购买的数量/kg 2 2 2 6小琳购买的数量/kg 1 2 3 6从平均价格看,谁买得比较划算?( ▲ )A.一样划算B.小菲划算C.小琳划算D.无法比较答案: . C10.(2015•山东东营•一模)为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式和图中的a值分别是( )A.全面调查,26 B.全面调查,24 C.抽样调查,26 D.抽样调查,24答案:D11.(2015•山东济南•模拟) 已知一组数据:15,13,15,16,17,16,14,15则这组数据的众数和中位数分别是A.15,15 B.15,14 C.16,14 D.16,15答案:A12.(2015•山东济南•网评培训)下列说法不正确的是A.选举中,人们通常最关心的数据是众数B.从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C.数据3、5、4、1、-2的中位数是3D.某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖答案:D13.(2015•山东济南•一模)某男子排球队20名队员的身高如下表:身高(cm)180 186 188 192 208人数(个) 4 6 5 3 2 则此男子排球队20名队员的身高的众数和中位数分别是()A.186cm,186cm B.186cm,187cm C.208cm,188cm D.188cm,187cm 答案:B14..(2015•山东青岛•一模)某校学生来自甲、乙、丙三个地区,其人数比为2∶3∶5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是()A.扇形甲的圆心角是72°B.学生的总人数是900人C.丙地区的人数比乙地区的人数多180人;D.甲地区的人数比丙地区的人数少180人答案:D15.(2015•山东青岛•一模)五箱阳信鸭梨的质量分别为(单位:千克):18,20,21,22,19.则这五箱鸭梨质量的平均数和中位数分别为()A.19和20 B.20和19 C.20和20 D.20和21答案:C16.(2015·广东中山·4月调研)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数答案:D17. (2015·广东从化·一模)下列说法错误的是(* ).A.必然事件的概率为1B.数据6、4、2、2、1的平均数是3C.数据5、2、﹣3、0、3的中位数是2D.某种游戏活动的中奖率为20%,那么参加这种活动100次必有20次中奖答案:D18.(2015·山东枣庄·二模)2014年4月13日,某中学初三650名学生参加了中考体育测试,为了了解这些学生的体考成绩,现从中抽取了50名学生的体考成绩进行了分析,以下说法正确的是()A.这50名学生是总体的一个样本B.每位学生的体考成绩是个体C.50名学生是样本容量D.650名学生是总体答案:B19.(2015.河北博野中考模拟)数据9、9、6、3、6、2、6 的众数是【】A.2 B.3 C.6 D.9答案:C20.(2015山东·枣庄一摸)如表是我市11个区县去年5月1日最高气温(℃)的统计结果:市中区峨眉山市沙湾区五通桥区金口河区犍为县井研县夹江县沐川县峨边县马边县26 25 29 26 28 26 26 27 25 28 25 该日最高气温的众数和中位数分别是().A.25℃,26℃B.26℃,26℃C.25℃,25℃D.26℃,27℃21.(2015·辽宁盘锦市一模)某篮球队12名队员的年龄如下表所示:A.18,19 B.19,19 C.18,19.5D.19,19.5答案:A22.(2015·辽宁东港市黑沟学校一模,3分)下列说法中,正确的是()C . 第一枚硬币,正面朝上的概率为D . 若甲组数据的方差=0.1,乙组数据的方差=0.01,则甲组数据比乙组数据稳定答案:C23.(2015·山东省东营区实验学校一模)为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式和图中的a 值分别是( ) A .全面调查,26 B .全面调查,24 C .抽样调查,26 D .抽样调查,24答案:D24.(2015·邗江区·初三适应性训练)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都为8.8环,方差分别为,51.02=乙s ,48.02=丙s ,42.02=丁s ,则四人中成绩最稳定的是( ▲ )A .甲B .乙C .丙D .丁 答案:D25.(2015·网上阅卷适应性测试)为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,,7,14,10,,9,7(单位:个).关于这组数据,下列结论正确的是( ▲ ).A .极差是6B .众数是7C .中位数是D .平均数是10 答案:B26.(2015·重点高中提前招生数学练习)某医院内科病房有护士15人,每2人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次两人再同班,最长需要( B ) A .30天 B .35天 C .56天 D .448天 答案:B【解析】15人每2人一班,轮流值班,有15×142=105种排法.每8小时换班一次,一天须排3班,某两人同值一班后,到下次两人再同班,最长需要105÷3=35(天).27.(2015•山东滕州东沙河中学•二模)为了帮助本市一名患“白血病”的高中生,某班45名同学积极捐款,他们捐款数额如下表:关于这15名学生所捐款的数额,下列说法正确的是A .众数是100B .平均数是30C .极差是20D .中位数是20答案:D28.(2015•山东滕州张汪中学•质量检测二)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:则这10双运动鞋尺码的众数和中位数分别为( ) A .25.5厘米,26厘米B .26厘米,25.5厘米C .25.5厘米,25.5厘米D .26厘米,26厘米答案:D ;29(2015·福建漳州·一模)下列调查中,适合用普查方式的是A . 保证“神舟九号”载人飞船成功发射,对重要零部件的检查B .了解人们对环境保护的意识C .了解一批灯泡的使用寿命D.了解央视2013年“春节联欢晚会”栏目的收视率 答案:A30.(2015·福建漳州·一模)已知数据2,5,7,6,5,下列说法错误..的是 A .平均数是5 B .众数是5 C .极差是5 D .中位数是7 答案:D31(2015·广东广州·二模).肇庆市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM2.5指数的众数和中位数分别是A .150,150B .150,155C . 155,150 D .150,152.5答案:B32.(2015·广东广州·一模)某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示:A.320,210,230 B.320,210,210 C.206,210,210 D.206,210,230 B33.(2015·广东高要市·一模)体育课上,两名同学分别进行了5次立定跳远测试,要判断这5次测试中谁的成绩比较稳定,通常需要比较这两名同学成绩的(▲)A.平均数B.中位数C.众数D.方差答案:D34 .(2015·北京市朝阳区·一模)为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是A.平均数B.中位数C.众数D.方差答案:C35. (2015·安庆·一摸)下列说法错误的是()A. 打开电视机,正在播放广告这一事件是随机事件B. 要了解小红一家三口的身高,适合采用抽样调查C. 方差越大,数据的波动越大D. 样本中个体的数目称为样本容量答案:B;36. (2015·合肥市蜀山区调研试卷)数据3,5,1,7的平均数和方差分别是:A.5,2B. 3,5C.4,20D.4,5答案:D37. (2015·安庆·一摸)李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10B.10和12C.9和10D.10和10答案:C;38.(2015·江苏江阴长泾片·期中)某市70%的家庭年收入不少于3万元,下面一定不少于3万元的是()A.年收入的平均数B.年收入的中位数C.年收入的众数D.年收入的平均数和众数答案:B39.(2015·江苏江阴青阳片·期中)为了解某班学生每天使用零花钱的情况,随机调查了15名同学,结果如下表:下列说法正确的是(▲)A.众数是5元B.平均数是2.5元C.极差是4元D.中位数是3元答案:D40.(2015·江苏江阴要塞片·一模)一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误..的是(▲ )A.极差是20 B.中位数是91 C.众数是98 D.平均数是91答案:D41. (2015·江苏高邮·一模)校篮球队所买10双运动鞋的尺码统计如下表:尺码(cm)25 25.5 26 26.5 27购买量(双) 1 1 2 4 2则这10双运动鞋尺码的众数和中位数分别为A. 4cm,26cmB. 4cm,26.5 cmC. 26.5cm,26.5cmD. 26.5cm,26cm答案:C42.(2015·湖南岳阳·调研)某篮球队12名队员的年龄如下表所示:年龄(岁)18 19 20 21人数 5 4 1 2则这12名队员年龄的众数和中位数分别是()A. 2,19;B. 18,19;C. 2,19.5;D. 18,19.5;答案:B43. (2015·湖南永州·三模)为了解祁阳县居民的用电情况,我们随机对浯溪镇宝塔社区的10户居民进行了调查,下表是这10户居民2015年3月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( )A .中位数是55B .众数是60C .方差是29D .平均数是54答案:C 解析:A .月用电量的中位数是55度,正确;B .用电量的众数是60度,正确;C .用电量的方差是24.9度,错误;D .用电量的平均数是54度,正确.故选C .二.填空题 1. .(2015·江苏常州·一模)已知一组数据为1,2,1,2,4,2,则这组数据的众数是 ▲ ,方差是 ▲ .答案:2,12.(2015·江苏江阴·3月月考)调查市场上某种食品的色素含量是否符合国家标准,这种调查适合用____________________.(填入全国调查或者抽样调查) 答案:抽样调查3.(2015·江苏江阴夏港中学·期中)一组数据3,5,7,8,4,7的中位数是 . 答案:64(2015·福建漳州·一模)机床厂对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:x 甲=20,2S 甲=0.01;机床乙:x 乙=20,2S 乙=0.05 ,由此可知:________(填甲或乙)机床较稳定. 答案:甲5(2015·重点高中提前招生数学练习)一个样本为l ,3,2,2,a ,b ,c .已知这个样本唯一的众数为3,平均数为2,则这个样本的方差为 . 【答案】87【解析】这个样本为l ,3,2,2,3,3,0.∴方差为87.6.( 2015·呼和浩特市初三年级质量普查调研)已知一组数据1,7,10,8,x ,6,0,3,若这组数据的平均数x =5,则x 应等于() A6 B5 C4 D2 答案:B7.(2015·山东枣庄·二模)离中考还有20天,为了响应“还时间给学生”的号召,学校领导在全年级随机的调查了20名学生每天作业完成时间,绘制了如下表格: 则这20个学生每天作业完成的时间的中位数为____________.答案:2.75 8.(2015·江苏南京溧水区·一模)2015年南京3月份某周7天的最低气温分别是 -1℃,2℃, 3℃,2℃ ,0℃, -1℃,2℃.则这7天最低气温的众数是 ▲ ℃,中位数是 ▲ ℃. 答案: 2,2;9.(2015·江苏南菁中学·期中) 有一组数据:3,a , 4,6,7,它们的平均数是5,那么这组数据的方差是_ ▲___. 答案: 210.(2015·无锡市宜兴市洑东中学·一模)某小组8位学生一次数学测试的分数为121,123,123,124,126,127,128,128,那么这个小组测试分数的标准差是 . 答案:611.(2015·锡山区·期中)小军的期末总评成绩由平时、期中、期末成绩按权重比1:1:8 组成,现小军平时考试得90分,期中考试得60分,要使他的总评成绩不低于79分,那么小军的期末考试成绩x 满足的条件是 ▲ . 答案:x ≥80三.解答题1. (2015·江苏高邮·一模)(本题满分8分)学校为统筹安排大课间体育活动,在各班随机选取了一部分学生,分成四类活动:“篮球”、 “羽毛球”、 “乒乓球”、“其他”进行调查,整理收集到的数据,绘 制成如下的两幅统计图.(1)学校采用的调查方式是 ▲ ;学校在各班随机选取了 ▲ 名学生;(2)补全统计图中的数据:羽毛球 ▲ 人、乒乓球 ▲ 人、其他 ▲ 人、其他 ▲ ﹪; (3)该校共有1100名学生,请估计喜欢“篮球”的学生人数.图2.各类活动人数所占百分比统计图图1.各类活动人数统计图解:(1) 抽样调查 ; 100 ; ………………………2分(2)羽毛球 21 人、乒乓球 18 人、其他 25 人、其他 25 ﹪; ………………………4分(3)估计喜欢“篮球”的学生人数为396 . ………………………2分2. (2015·江苏常州·一模)(本题满分7分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.根据以上信息解决下列问题:⑴ 在统计表中,m = ▲ ,n = ▲ ,并补全条形统计图 ⑵ 扇形统计图中“C 组”所对应的圆心角的度数是 ▲ .⑶ 若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.答案:20.⑴ m =30 ----------------------------------------- 1′ n =20 --------------------------------------------------- 2′ ,画图正确 ---------------------------------------------- 3′. ⑵ 扇形统计图中“C 组”所对应的圆心角的度数是 90 . ------------------------------------- 4′⑶ 解:“听写正确的个数少于24个”的人数有:10+15+25=50 人比赛学生总人数有:15÷15%=100人 ------------- 5900×10050= 450 人 --------- 6′ 答:这所学校本次比赛听写不合格的学生人数约为450人. ------------------------ 7′3. (2015·吉林长春·二模).答案:(1)如图所示.(2分)(2)因为13424873125+=+++++=16%<20%,所以张辉能获得奖励. (4分)(3)因为200×873125+++=152,所以该校八年级男同学成绩合格的人数约为152人. (7分)4 .(2015·湖南永州·三模)(8分)为了解2015年祁阳县体育达标情况,县教育局从全县九年级学生中随机抽取了部分学生进行了一次体育测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题: (1)本次抽样测试的学生人数是 ;(2)扇形图中∠α的度数是 ,并把条形统计图补充完整;(3)我县九年级有学生7200名,如果全部参加这次体育测试,请估计不及格的人数为 . (4)测试老师想从4位同学(分别记为E 、F 、G 、H ,其中E 为小明)中随机选择两位同学了解平时训练情况,请用列表或画树状图的方法求出选中小明的概率.答案:解:(1)(1分)本次抽样测试的学生人数是:%3012=40(人),故答案为:40; (2)(3分)根据题意得:360°×406=54°;C 级的人数是:40﹣6﹣12﹣8=14(人),如图(3)(1分)根据题意得:7200×408=1440(人);(4)(3分)根据题意画树形图如下:(1分)共有12种情况,选中小明的有6种,则P (选中小明)=126=21(2分).5.(2015·江苏江阴·3月月考)某中学食堂为学生提供了四种价格的午餐供其选择,这四种价格分别是:A .3元,B .4元,C .5元,D .6元.为了解学社对四种午餐的购买情况,学校随机抽样调查了甲、乙两班学生某天购买四种午餐的情况,依据统计数据制成如下的统计图表:A B C D 甲 6 22 16 6 乙?13253(1(2)求乙班购买午餐费用的中位数;(3)已知甲、乙两班购买午餐费用的平均数均为4.44元,从平均数和众数的角度分析,哪个班购买的 餐价格较高;(4)从这次接受调查的学生中,随机抽查一人,恰好是购买C 种午餐的学生的概率是多少? 答案:解:(1)13÷26%=50(人);(2)乙班购买A 种午餐的人数为50×18%=9(人),中位数是5元(3)甲、乙两班购买午餐费用的平均数相同,甲班购买午餐费用的众数是4元,乙班购买午餐费用的众数是5元,从平均数与众数可以看出乙班购买的午餐的价格较高; (4)16+2550+50=41100. 所以,恰好是购买C 种午餐的学生的概率是41100. 2.(2015·江苏江阴长泾片·期中)小明为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).班别品种人数 乙班购买午餐情况扇形统计图A18% B 26% C 50%D 6%请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.答案:解:(1)32÷64%=50(天);……………………2分(2)如图所示:………………4分表示优的圆心角度数是360°=57.6°,………………6分(3)一年(365天)达到优和良的总天数为:×365=292(天)……………8分6.(2015·江苏江阴青阳片·期中)某校有三个年级,各年级的人数分别为七年级600人,八年级540 人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图.....; (2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例最大,你认为小丽的判断正确吗?说明理由 答案:(1)每图2分,共4分 (2)七年级:300÷600=50%…………5分 八年级:444÷540=82.2%…………6分九年级:456÷565=80.7%…………7分 ∵50%<80.7%<82.2%∴小丽的判断是错误的,八年级最大。

广东省深圳市宝安区中考数学模拟试题(含解析)-人教版初中九年级全册数学试题

广东省深圳市宝安区中考数学模拟试题(含解析)-人教版初中九年级全册数学试题

某某省某某市宝安区2015届中考数学模拟试题一、选择题(本部分共12小题,每小题3分,共36分.)1.4的平方根是()A.2 B.﹣2 C.±2D.162.2011年8月12日,第26届世界大学生夏季运动会将在某某开幕.本届大运会的开幕式举办场地和主要分会场某某湾体育中心总建筑面积达256520m2.数据256520m2用科学记数法(保留三个有效数字)表示为()A.2.565×105m2B.0.257×106m2C.2.57×105m2D.25.7×104m23.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.3ab﹣2ab=1 B.x4•x2=x6C.(x2)3=x5D.3x2÷x=2x5.下列说法正确的是()A.一个游戏的中奖概率是,则做5次这样的游戏一定会中奖B.为了解某某中学生的心理健康情况,应该采用普查的方式C.事件“小明今年中考数学考95分”是可能事件D.若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则乙组数据更稳定6.如图,已知BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,则∠BDC的度数是()A.20° B.25° C.30° D.40°7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元9.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.10.如图,直径为10的⊙A上经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.11.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=4,将△ABC绕点B按顺时针方向转动一个角到△A′BC′的位置,使点A、B、C′在同一条直线上,则图中阴影部分的周长是()A.4π+4B.4πC.2π+4D.2π12.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB 交于点E.若OD=2,则△OCE的面积为()A.2 B.4 C.2D.4二、填空题(本题共4小题,每小题3分,共12分.)13.因式分解:a3﹣4a=.14.如图,在⊙O中,圆心角∠AOB=12O°,弦,则OA= cm.15.在数据1,2,3,1,2,2,4中,众数是.16.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为.三、解答题(满分52分)17.计算:()﹣1﹣|﹣2+tan45°|+(﹣1.41)0.18.先化简,再求值:,其中x=2.19.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.20.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.21.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?22.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.23.如图1,已知抛物线y=ax2﹣2ax+4与x轴交于A、B两点,与y轴交于点C,且OB=OC.(1)求抛物线的函数表达式;(2)若点P是线段AB上的一个动点(不与A、B重合),分别以AP、BP为一边,在直线AB的同侧作等边三角形APM和BPN,求△PMN的最大面积,并写出此时点P的坐标;(3)如图2,若抛物线的对称轴与x轴交于点D,F是抛物线上位于对称轴右侧的一个动点,直线FD与y轴交于点E.是否存在点F,使△DOE与△AOC相似?若存在,请求出点F的坐标;若不存在,请说明理由.2015年某某省某某市宝安区中考数学模拟试卷参考答案与试题解析一、选择题(本部分共12小题,每小题3分,共36分.)1.4的平方根是()A.2 B.﹣2 C.±2D.16【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.2011年8月12日,第26届世界大学生夏季运动会将在某某开幕.本届大运会的开幕式举办场地和主要分会场某某湾体育中心总建筑面积达256520m2.数据256520m2用科学记数法(保留三个有效数字)表示为()A.2.565×105m2B.0.257×106m2C.2.57×105m2D.25.7×104m2【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于256520有6位,所以可以确定n=6﹣1=5.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:256520m2=2.57×105m2,故选:C.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是中心对称图形,是轴对称图形,故本选项错误.故选B.【点评】此题将汽车标志与对称相结合,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.4.下列运算正确的是()A.3ab﹣2ab=1 B.x4•x2=x6C.(x2)3=x5D.3x2÷x=2x【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【解答】解:A、应为3ab﹣2ab=ab,故选项错误;B、x4•x2=x6,正确;C、应为(x2)3=x6,故选项错误;D、应为3x2÷x=3x,故选项错误.故选B.【点评】本题主要考查了同底数幂的乘法、除法运算,幂的乘方的性质,熟练掌握运算性质和法则是解题的关键.5.下列说法正确的是()A.一个游戏的中奖概率是,则做5次这样的游戏一定会中奖B.为了解某某中学生的心理健康情况,应该采用普查的方式C.事件“小明今年中考数学考95分”是可能事件D.若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则乙组数据更稳定【考点】概率的意义;全面调查与抽样调查;方差;随机事件.【分析】分别利用方差以及众数和中位数以及全面调查与抽样调查的概念,判断得出即可.【解答】解:A、一个游戏的中奖概率是,则做5次这样的游戏不一定会中奖,故此选项错误;B、为了解某某中学生的心理健康情况,应该采用抽样调查的方式,故此选项错误;C、事件“小明今年中考数学考95分”是可能事件,此选项正确;D、若甲组数据的方差S=0.01,乙组数据的方差S=0.1,则甲组数据更稳定,故此选项错误;故选:C.【点评】此题主要考查了方差以及众数和中位数以及全面调查与抽样调查等知识,正确区分它们的定义是解题关键.6.如图,已知BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,则∠BDC的度数是()A.20° B.25° C.30° D.40°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】由BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC的度数.【解答】解:∵ =,∠AOB=60°,∴∠BDC=∠AOB=30°.故选C.【点评】此题考查了圆周角定理.此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.7.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】数形结合.【分析】分别解两个不等式,然后求它们的公共部分即可得到原不等式组的解集.【解答】解:解x+1≥﹣1得,x≥﹣2;解x<1得x<2;∴﹣2≤x<2.故选D.【点评】本题考查了利用数轴表示不等式解集得方法.也考查了解不等式组的方法.8.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元【考点】一元一次方程的应用.【专题】销售问题.【分析】根据题意假设出商品的进货价,从而可以表示出提高后的价格为(1+100%)x,再根据以6折优惠售出,即可得出符合题意的方程,求出即可.【解答】解:设进货价为x元,由题意得:(1+100%)x•60%=60,解得:x=50,故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据ab>0及一次函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab>0,∴分两种情况:(1)当a>0,b>0时,一次函数y=ax+b数的图象过第一、二、三象限,反比例函数图象在第一三象限,选项C符合;(2)当a<0,b<0时,一次函数的图象过第二、三、四象限,反比例函数图象在第二、四象限,无符合选项.故选C.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.10.如图,直径为10的⊙A上经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为()A.B.C.D.【考点】圆周角定理;解直角三角形.【分析】首先根据圆周角定理,判断出∠OBC=∠ODC;然后根据CD是⊙A的直径,判断出∠COD=90°,在Rt△COD中,用OD的长度除以CD的长度,求出∠ODC的余弦值为多少,进而判断出∠OBC的余弦值为多少即可.【解答】解:如图,延长CA交⊙A与点D,连接OD,,∵同弧所对的圆周角相等,∴∠OBC=∠ODC,∵CD是⊙A的直径,∴∠COD=90°,∴cos∠ODC===,∴cos∠OBC=,即∠OBC的余弦值为.故选:C.【点评】(1)此题主要考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(2)此题还考查了特殊角的三角函数值的求法,要熟练掌握.11.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=4,将△ABC绕点B按顺时针方向转动一个角到△A′BC′的位置,使点A、B、C′在同一条直线上,则图中阴影部分的周长是()A.4π+4B.4πC.2π+4D.2π【考点】弧长的计算;旋转的性质.【分析】先根据Rt△AB C中,∠C=90°,∠A=30°,AB=4求出BC及AC的长,再根据弧长的计算公式求出、的长,那么阴影部分的周长=AC+的长+A′C′+的长,将数值代入计算即可.【解答】解:∵Rt△ABC中,∠C=90°,∠A=30°,AB=4,∴∠ABC=60°,BC=AB=2,AC=BC=2,∴∠CBC′=∠ABA′=180°﹣60°=120°,∴的长==π,的长==,∴阴影部分的周长=AC+的长+A′C′+的长=2++2+π=4π+4.故选A.【点评】本题考查的是旋转的性质,弧长的计算,含30度角的直角三角形性质的应用,根据题意得出阴影部分的周长=AC+的长+A′C′+的长是解答此题的关键.12.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OCE的面积为()A.2 B.4 C.2D.4【考点】反比例函数综合题.【专题】计算题;压轴题.【分析】连接AC,已知OD=2,CD⊥x轴,根据OD×CD=xy=4求CD,根据勾股定理求OC,根据菱形的性质,S△OCE=S△OAC=OA×CD求解.【解答】解:连接AC,∵OD=2,CD⊥x轴,∴OD×CD=xy=4,解得CD=2,由勾股定理,得OC==2,由菱形的性质,可知OA=OC,∵OC∥AB,∵△OCE与△OAC同底等高,∴S△OCE=S△OAC=×OA×CD=×2×2=2.故选C.【点评】本题考查了反比例函数的综合运用.关键是求菱形的边长,讲所求三角形的面积进行转化.二、填空题(本题共4小题,每小题3分,共12分.)13.因式分解:a3﹣4a= a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.如图,在⊙O中,圆心角∠AOB=12O°,弦,则OA= 2 cm.【考点】垂径定理;解直角三角形.【分析】过点O作OC⊥A B,根据垂径定理,可得出AC的长,再由余弦函数求得OA的长.【解答】解:过点O作OC⊥AB,∴AC=AB,∵AB=2cm,∴AC=cm,∵∠AOB=12O°,OA=OB,∴∠A=30°,在直角三角形OAC中,cos∠A==,∴OA==2cm,故答案为2.【点评】本题考查了垂径定理和解直角三角形,是基础知识要熟练掌握.15.在数据1,2,3,1,2,2,4中,众数是 2 .【考点】众数.【分析】根据众数的定义就可以求解.【解答】解:众数是一组数据中出现次数最多的数据,本组数据中3和4各出现1次,1出现2次,2出现3次.出现次数最多的是2,所以众数是2.故填2.【点评】本题属于基础题,考查了众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.16.在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 2.4 .【考点】勾股定理的逆定理;矩形的性质.【专题】几何综合题;压轴题;动点型.【分析】根据已知得当AP⊥BC时,AP最短,同样AM也最短,从而不难根据相似比求得其值.【解答】解:∵四边形AFPE是矩形∴AM=AP,AP⊥BC时,AP最短,同样AM也最短∴当AP⊥BC时,△ABP∽△CAB∴AP:AC=AB:BC∴AP:8=6:10∴当AM最短时,AM=AP÷2=2.4.【点评】解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.三、解答题(满分52分)17.计算:()﹣1﹣|﹣2+tan45°|+(﹣1.41)0.【考点】特殊角的三角函数值;实数的性质;零指数幂;负整数指数幂.【专题】计算题.【分析】把()﹣1==3,tan45°=1代入计算,任何不等于0的数的0次幂都等于1.【解答】解:原式==3﹣(2﹣)+1=2+.【点评】传统的小杂烩计算题,特殊角的三角函数值也是常考的.涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.18.先化简,再求值:,其中x=2.【考点】分式的化简求值.【专题】计算题.【分析】先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.再把x的值代入求值.【解答】解:原式=,当x=2时,原式=1.【点评】主要考查了分式的化简求值,其关键步骤是分式的化简.要熟悉混合运算的顺序,正确解题.19.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人.【考点】扇形统计图;用样本估计总体;条形统计图.【专题】图表型.【分析】(1)利用A类有10人,占总体的20%,求出总人数,再求出D级的学生人数;(2)利用各部分占总体的百分比之和为1,即可求出D级的学生人数占全班学生人数的百分比;(3)利用A级所占的百分比即可求出A级所在的扇形的圆心角度数;(4)用样本估计总体,利用样本中A、B级所占的百分比及可求出A级和B级的学生人数.【解答】解:(1)读图可得:A类有10人,占总体的20%,所以总人数为10÷20%=50人,则D级的学生人数为50﹣10﹣23﹣12=5人.据此可补全条形图;(2)在扇形统计图中,因为各部分占总体的百分比之和为1,所以D级的学生人数占全班学生人数的百分比是1﹣46%﹣24%﹣20%=10%;(3)读扇形图可得:A级占20%,所在的扇形的圆心角为360°×20%=72°;(4)读扇形图可得:A级和B级的学生占46%+20%=66%;故九年级有500名学生时,体育测试中A级和B级的学生人数约为500×66%=330人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,并且扇形统计图能直接反映部分占总体的百分比大小.20.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OE.根据OB=OE得到∠OBE=∠OEB,然后再根据BE是△ABC的角平分线得到∠OEB=∠EBC,从而判定OE∥BC,最后根据∠C=90°得到∠AEO=∠C=90°证得结论AC是⊙O的切线.(2)连接OF,利用S阴影部分=S梯形OECF﹣S扇形EOF求解即可.【解答】解:(1)连接OE.∵OB=OE∴∠OBE=∠OEB∵BE是∠ABC的角平分线∴∠OBE=∠EBC∴∠OEB=∠EBC∴OE∥BC∵∠C=90°∴∠AEO=∠C=90°∴AC是⊙O的切线;(2)连接OF.∵sinA=,∴∠A=30°∵⊙O的半径为4,∴AO=2OE=8,∴AE=4,∠AOE=60°,∴AB=12,∴BC=AB=6,AC=6,∴CE=AC﹣AE=2.∵OB=OF,∠ABC=60°,∴△OBF是正三角形.∴∠FOB=60°,CF=6﹣4=2,∴∠EOF=60°.∴S梯形OECF=(2+4)×2=6.S扇形EOF==∴S阴影部分=S梯形OECF﹣S扇形EOF=6﹣.【点评】本题考查了切线的判定与性质及扇形面积的计算,解题的关键是连接圆心和切点,利用过切点且垂直于过切点的半径来判定切线.21.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?【考点】一元一次不等式组的应用.【专题】应用题.【分析】(1)这列货车挂A型车厢x节,则挂B型车厢(40﹣x)节,从而可得出y与x的表达式;(2)设A型车厢x节,则挂B型车厢(40﹣x)节,根据所装的甲货物不少于1240吨,乙货物不少于880吨,可得出不等式组,解出即可.【解答】解:(1)y=0.6x+0.8(40﹣x)=﹣0.2x+32;(2)设A型车厢x,节,则挂B型车厢(40﹣x)节,由题意得:,解得:24≤x≤26,故有三种方案:①A、B两种车厢的节数分别为24节、16节;②A型车厢25节,B型车厢15节;③A型车厢26节,B型车厢14节.【点评】本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,根据所装货物的不等关系,列出不等式组,难度一般.22.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.【考点】相似三角形的判定与性质;等腰直角三角形;矩形的性质;正方形的性质.【专题】证明题;动点型.【分析】(1)依题意可知AD=AE,∠DAE=90°,则∠DEA=45°,在△ERG中,RG⊥DE,则∠FRA=45°,可证AF=AR;(2)①当四边形PRBC是矩形时,则有PR∥BC,AF∥PR,可证△EAF∽△ERP,利用相似比求AR,而AR=DP=t,由此求t的值;②当△PRB是等腰三角形时,PC=2BR,列方程求t的值.【解答】(1)证明:如图,在正方形ABCD中,AD=AB=2,∵AE=AB,∴AD=AE,∴∠AED=∠ADE=45°,又∵FG⊥DE,∴在Rt△EGR中,∠GER=∠GRE=45°,∴在Rt△ARF中,∠FRA=∠AFR=45°,∴∠FRA=∠RFA=45°,∴AF=AR;(2)解:①如图,当四边形PRBC是矩形时,则有PR∥BC,∴AF∥PR,∴△EAF∽△ERP,∴,即:由(1)得AF=AR,∴,解得:或(不合题意,舍去),∴,∵点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,∴(秒);②若PR=PB,过点P作PK⊥AB于K,设FA=x,则RK=BR=(2﹣x),∵△EFA∽△EPK,∴,即: =,解得:x=±﹣3(舍去负值);∴t=(秒);若PB=RB,则△EFA∽△EPB,∴=,∴,∴BP=AB=×2=∴CP=BC﹣BP=2﹣=,∴(秒).综上所述,当PR=PB时,t=;当PB=RB时,秒.【点评】本题考查了正方形、矩形、等腰直角三角形的性质,相似三角形的判定与性质.关键是利用相似比列方程求解.23.如图1,已知抛物线y=ax2﹣2ax+4与x轴交于A、B两点,与y轴交于点C,且OB=OC.(1)求抛物线的函数表达式;(2)若点P是线段AB上的一个动点(不与A、B重合),分别以AP、BP为一边,在直线AB的同侧作等边三角形APM和BPN,求△PMN的最大面积,并写出此时点P的坐标;(3)如图2,若抛物线的对称轴与x轴交于点D,F是抛物线上位于对称轴右侧的一个动点,直线FD与y轴交于点E.是否存在点F,使△DOE与△AOC相似?若存在,请求出点F的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)令x=0得,y=4,求出点C(0,4),根据OB=OC=4,得到点B(4,0)代入抛物线表达式求出a的值,即可解答;(2)过点M作MG⊥x轴于G,过点N作NH⊥x轴于H,设P(x,0),△PMN的面积为S,分别表示出PG=,MG=,PH=,NH=,根据S=S梯形MGHN﹣S△PMG﹣S△PNH=,利用二次函数的性质当x=1时,S有最大值是,即可解答;(3)存在点F,使得△DOE与△AOC相似.有两种可能情况:①△DOE∽△AOC;②△DOE∽△COA,先求出点E的坐标,再求出直线DE的解析式,利用方程组求出点F的坐标,即可解答.【解答】解:(1)令x=0得,y=4,∴C(0,4)∴OB=OC=4,∴B(4,0)代入抛物线表达式得:16a﹣8a+4=0,解得a=∴抛物线的函数表达式为(2)如图2,过点M作MG⊥x轴于G,过点N作NH⊥x轴于H,由抛物线得:A(﹣2,0),设P(x,0),△PMN的面积为S,则PG=,MG=,PH=,NH=∴S=S梯形MGHN﹣S△PMG﹣S△PNH===∵,∴当x=1时,S有最大值是∴△PMN的最大面积是,此时点P的坐标是(1,0)(3)存在点F,使得△DOE与△AOC相似.有两种可能情况:①△DOE∽△AOC;②△DOE∽△COA由抛物线得:A(﹣2,0),对称轴为直线x=1,∴OA=2,OC=4,OD=1①若△DOE∽△AOC,则∴,解得OE=2∴点E的坐标是(0,2)或(0,﹣2)若点E的坐标是(0,2),则直线DE为:y=﹣2x+2解方程组得:,(不合题意,舍去)此时满足条件的点F1的坐标为(,)若点E的坐标是(0,﹣2),同理可求得满足条件的点F2的坐标为(,)②若△DOE∽△COA,同理也可求得满足条件的点F3的坐标为(,)满足条件的点F4的坐标为(,)综上所述,存在满足条件的点F,点F的坐标为:。

2015中考模拟 青岛版九年级数学上册第2章解直角三角形中考原题训练

2015中考模拟 青岛版九年级数学上册第2章解直角三角形中考原题训练

2015中考模拟青岛版九年级数学上册第2章解直角三角形中考原题训练(附答案)一.选择题(共20小题).B.C.D.2.(2013•贵阳)如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于().B.C.D.3.(2014•威海)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.4.(2014•湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是().2D.42.D.6.(2014•凉山州)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()7.(2014•泰州)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是().1,1,C.1,1,D.1,2,8.(2014•滨州)在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为()9.(2014•连云港)如图,若△ABC和△DEF的面积分别为S1、S2,则()A.S1=S2B.S1=S2C.S=S D.S1=S210.(2014•丽水)如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是().m D.m11.(2014•德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A.4米B.6米C.12米D.24米12.(2014•百色)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米13.(2014•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()A.20海里B.10海里C.20海里D.30海里14.(2014•绵阳)如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为().40海里B.40海里C.40海里15.(2014•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km16.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()D.50米A.100米B.50米C.米17.(2014•深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250B.600﹣250 C.350+350D.50018.(2014•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,()在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)19.(2014•安顺)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于().B.C.D.20.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.二.填空题(共4小题)21.(2014•铜仁)cos60°=_________.22.(2014•济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为_________.23.(2014•株洲)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为_________米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).24.(2013•泰安)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为_________海里(取,结果精确到0.1海里).三.解答题(共6小题)25.(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.26.(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A 处,另一端在OP上滑动,将窗户OM按图示方向向内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)27.(2014•聊城)如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的滨河大道和风景带成为我市的一道新景观.在数学课外实践活动中,小亮在河西岸滨河大道一段AC上的A,B两点处,利用测角仪分别对东岸的观景台D进行了测量,分别测得∠DAC=60°,∠DBC=75°.又已知AB=100米,求观景台D到徒骇河西岸AC的距离约为多少米(精确到1米).(tan60°≈1.73,tan75°≈3.73)28.(2014•烟台)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.29.(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)30.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)2015中考模拟青岛版九年级数学上册第2章解直角三角形中考原题训练(附答案)参考答案与试题解析一.选择题(共20小题).B.C.D.首先画出图形,进而求出AB的长,再利用锐角三角函数求出即可.解:如图所示:∵∠C=90°,AC=12,BC=5,∴AB===13,则sinA==.故选:D.此题主要考查了锐角三角函数关系以及勾股定理等知识,正确记忆锐角三角函数关系是解题关键.2.(2013•贵阳)如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于().B.C.D.锐角三角函数的定义;坐标与图形性质.过P作PE⊥x轴于E,根据P(12,5)得出PE=5,OE=12,根据锐角三角函数定义得出tanα=,代入求出即可.解:过P作PE⊥x轴于E,∵P(12,5),∴PE=5,OE=12,∴tanα==,故选C.本题考查了锐角三角函数的定义的应用,注意:在Rt△ACB中,∠C=90°,则sinB=,cosB=,tanB=.3.(2014•威海)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是().B.C.D.作AC⊥OB于点C,利用勾股定理求得AC和AO的长,根据正弦的定义即可求解.解:作AC⊥OB于点C.则AC=,AO===2,则sin∠AOB===.故选:D.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,4.(2014•湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是().2D.4计算题.根据锐角三角函数定义得出tanA=,代入求出即可.解:∵tanA==,AC=4,∴BC=2,故选:A.本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.2.D.根据特殊角的三角函数值计算即可.解:原式=()2+×=+=2.故选:A.此题比较简单,解答此题的关键是熟记特殊角的三角函数值.6.(2014•凉山州)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°的度数.解:由题意,得cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.故选:C.此题考查了特殊角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些特殊角的三7.(2014•泰州)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据.1,1,C.1,1,D.1,2,D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”8.(2014•滨州)在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为()解直角三角形.根据三角函数的定义来解决,由sinA==,即可得BC.解:∵∠C=90°,AB=10,∴sinA=,∴BC=AB×=10×=6.故选:A.本题考查了解直角三角形和勾股定理的应用,注意:在Rt△ACB中,∠C=90°,则sinA=,cosA=,tanA=.9.(2014•连云港)如图,若△ABC和△DEF的面积分别为S1、S2,则().S1=S2B.S1=S2C.S1=S2∠DEH=180°﹣140°=40°,在Rt△ABG中,DH=DE•sin40°=8sin40°,S1=8×5sin40°÷2=20sin40°,S2=5×8sin40°÷2=20sin40°.则S1=S2.故选:C.10.(2014•丽水)如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是()A.9m B.6m C.m D.m在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.解:在Rt△ABC中,BC=5米,tanA=1:;∴AC=BC÷tanA=3米,∴AB==6米.故选:B.此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.11.(2014•德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为().4米B.6米C.12米D先根据坡度的定义得出BC的长,进而利用勾股定理得出AB的长.解:在Rt△ABC中,∵i==,AC=12米,∴BC=6米,根据勾股定理得:AB==6米,故选:B.此题考查了解直角三角形的应用﹣坡度坡角问题,勾股定理,难度适中.根据坡度的定义求出BC的长是解12.(2014•百色)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是().(6+6)米B.(6+3)米C.(6+2)米D在Rt△ABC求出CB,在Rt△ABD中求出BD,继而可求出CD.解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AB=6米,∴BC=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6米,∴DC=CB+BD=6+6(米).故选:A.本题考查仰角俯角的定义,要求学生能借助仰角俯角构造直角三角形并解直角三角形,难度一般.13.(2014•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为().10海里C.20海里D∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC===,∴BC=20海里.故选:C.本题考查了解直角三角形的应用﹣方向角问题.解题的难点是推知△ABC是等腰直角三角形.14.(2014•绵阳)如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为().40海里B.40海里C.40海里过点P作垂直于AB的辅助线PC,利三角函数解三角形,即可得出答案.解:过点P作PC⊥AB于点C,由题意可得出:∠A=30°,∠B=45°,AP=80海里,故CP=AP=40(海里),则PB==40(海里).故选:A.此题主要考查了方向角问题以及锐角三角函数关系等知识,得出各角度数是解题关键.15.(2014•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km几何图形问题.过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选:C.本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.16.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A.100米B.50米C.D.50米米计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.解:过B作BM⊥AD,∵∠BAD=30°,∠BCD=60°,∴∠ABC=30°,∴AC=CB=100米,∵BM⊥AD,∴∠BMC=90°,∴∠CBM=30°,∴CM=BC=50米,∴BM=CM=50米,故选:B.此题主要考查了解直角三角形的应用,关键是证明AC=BC,掌握直角三角形的性质:30°角所对直角边等17.(2014•深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高().600﹣250B.600﹣250 C.350+350D.500构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角18.(2014•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,()在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)的长,则BC即可得到.解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k(米),AD=12k(米),则AB=13k(米).∵AB=13(米),∴k=1,∴BD=5(米),AD=12(米).在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8(米),∴BC=10.8﹣5≈5.8(米).故选:D.本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.19.(2014•安顺)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于()A.B.C.D.求解.解:根据题意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴∵AE:EB=4:1,∴=5,∴=,设AB=2x,则BC=x,AC=x.∴在Rt△CFB中有CF=x,BC=x.则tan∠CFB==.故选:C.本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻边比斜边;正切等于对边20.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.计算题.根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tan∠B.解:∵sinA=,∴设BC=5x,AB=13x,则AC==12x,故tan∠B==.故选:D.本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.二.填空题(共4小题)21.(2014•铜仁)cos60°=.根据特殊角的三角函数值计算.解:cos60°=.故答案为:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函22.(2014•济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为3+.理求出AD,相加即可求出答案.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构23.(2014•株洲)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为182米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).作出图形,可得AB=500米,∠A=20°,在Rt△ABC中,利用三角函数即可求得BC的长度.解:在Rt△ABC中,AB=500米,∠BAC=20°,∵=tan20°,∴BC=ABtan20°=500×0.3640=182(米).故答案为:182.24.(2013•泰安)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为67.5海里(取,结果精确到0.1海里).可得出关于x的方程,解出后即可计算AB的长度.解:∵∠DBA=∠DAB=45°,∴△DAB是等腰直角三角形,过点D作DE⊥AB于点E,则DE=AB,设DE=x,则AB=2x,在Rt△CDE中,∠DCE=30°,则CE=DE=x,在Rt△BDE中,∠DAE=45°,则DE=BE=x,由题意得,CB=CE﹣BE=x﹣x=25,解得:x=,故AB=25(+1)=67.5(海里).故答案为:67.5.本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段三.解答题(共6小题)25.(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.计算题.根据tan∠BAD=,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.解:∵在直角△ABD中,tan∠BAD==,∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,∴AC===13,∴sinC==.本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.26.(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A 处,另一端在OP上滑动,将窗户OM按图示方向向内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)(2)在Rt△BDE中,根据三角函数即可得到滑动支架的长.解:(1)在Rt△BOE中,OE=,在Rt△BDE中,DE=,则+=30,解得BE≈11(cm).故B点到OP的距离大约为11cm;(2)在Rt△BDE中,BD=≈26cm.故滑动支架的长约为26cm.此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.27.(2014•聊城)如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的滨河大道和风景带成为我市的一道新景观.在数学课外实践活动中,小亮在河西岸滨河大道一段AC上的A,B两点处,利用测角仪分别对东岸的观景台D进行了测量,分别测得∠DAC=60°,∠DBC=75°.又已知AB=100米,求观景台D到徒骇河西岸AC的距离约为多少米(精确到1米).(tan60°≈1.73,tan75°≈3.73)几何图形问题;数形结合.如图,过点D作DE⊥AC于点E.通过解Rt△EAD和Rt△EBD分别求得AE、BE的长度,然后根据图示知:AB=AE﹣BE=100,把相关线段的长度代入列出关于ED的方程﹣=100.通过解该方程求得ED的长度.解:如图,过点D作DE⊥AC于点E.∵在Rt△EAD中,∠DAE=60°,∴tan60°=,∴AE=同理,在Rt△EBD中,得到EB=.又∵AB=100米,∴AE﹣EB=100米,即﹣=100.则ED=≈≈323(米).答:观景台D到徒骇河西岸AC的距离约为323米.本题考查了解直角三角形的应用.主要是正切概念及运算,关键把实际问题转化为数学问题加以计算.28.(2014•烟台)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.几何图形问题.延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD﹣CD即可求出浮漂B与河堤下端C之间的距离.解:延长OA交BC于点D.∵AO的倾斜角是60°,∴∠ODB=60°.∵∠ACD=30°,∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.在Rt△ACD中,AD=AC•tan∠ACD=•=(米),∴CD=2AD=3米,又∵∠O=60°,∴△BOD是等边三角形,∴BD=OD=OA+AD=3+=4.5(米),∴BC=BD﹣CD=4.5﹣3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.29.(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)DE,再根据DB=DC﹣BE即可求解.解:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DE﹣BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.考查了解直角三角形的应用﹣坡度坡角问题,两个直角三角形有公共的直角边,先求出公共边的解决此类30.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)当∠CED=60°时,AD=3CD=60cm,当∠CED=120°时,过点E作EH⊥CD于H(图2),则∠CEH=60°,CH=HD.在直角△CHE中,sin∠CEH=,∴CH=20•sin60°=20×=10(cm),∴CD=20cm,∴AD=3×20=60≈103.9(cm).∴103.9﹣60=43.9(cm).即点A向左移动了43.9cm;(3)当∠CED=120°时,∠DEG=60°,∵DE=EG,∴△DEG是等边三角形.∴DG=DE=20cm,当∠CED=60°时(图3),则有∠DEG=120°,过点E作EI⊥DG于点I.∵DE=EG,∴∠DEI=∠GEI=60°,DI=IG,在直角△DIE中,sin∠DEI=,∴DI=DE•sin∠DEI=20×sin60°=20×=10cm.∴DG=2DI=20≈34.6cm.则x的范围是:20cm≤x≤34.6cm.本题考查了菱形的性质,当菱形的一个角是120°或60°时,连接菱形的较短的对角线,即可把菱形分成两个。

中考数学仿真模拟试卷(含答案)

中考数学仿真模拟试卷(含答案)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟.一、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)22.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x24.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角8.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>09.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.2110.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是.13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为.三、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?参考答案四、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)2【解答】解:A、原式=﹣6,符合题意;B、原式=1,不符合题意;C、原式=5,不符合题意;D、原式=1,不符合题意.故选:A.2.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.【解答】解:从上面看,底层右边是一个小正方形,上层是两个小正方形.故选:B.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x2【解答】解:A,x3+x2≠x5,故A运算错误;B,(x3)2=x3×2=x6,故B运算错误;C,(x+y)2=x2+2xy+y2,故C运算错误;D,3x2+2x2=5x2,故D运算正确.故选:D.4.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角【解答】解:矩形具有而菱形不一定具有的性质是对角线相等,故选:B.5.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.【解答】解:根据题意画图如下:共有20种等情况数,其中两次摸出的球上的汉字是“不”“停”的有4种,则随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是=;故选:D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°【解答】解:∵A为中点,∴,∵AB=CD,∴,∴,∴∠ADB=∠CBD=∠ABD,∵∠ABC+∠ADC=180°,∴∠ADB+∠CBD+ABD=180°﹣∠BDC=180°﹣54°=126°,∴3∠ADB=126°,∴∠ADB=42°.故选:A.7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人【解答】解:由直方图可知,成绩低于60分的人数是1+2=3,故选:A.8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>0【解答】解:由a,b所表示的数在数轴上的位置可知,a<0且|a|>1,b>0且0<|b|<1,则ab<0,a+b<0则选项C,D不正确;∵b>0,﹣a>0,∴b﹣a=b+(﹣a)>0,则选项A不正确;∵a<0且|a|>1,b>0且0<|b|<1,∴0<|b﹣1|<1,∴|a|>1>|b﹣1,故选项B正确.故选:B.9.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.21【解答】解:连接OC,∵点O是边BC,AC的垂直平分线的交点,∴OB=OC,OA=OC,∴OA=OB,∵OB=5,∴OA=OB=5,∵AB=8,∴△AOB的周长是AB+OA+OB=8+5+5=18,故选:C.10.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3【解答】解:由二次函数y=ax2+bx+1知c=1,即二次函数和y轴交于点(0,1),而二次函数图象与x轴没有交点,故抛物线开口向上,点B、C的纵坐标相同,则二次函数的对称轴为直线x=(﹣3+1)=﹣1,而点离函数对称轴的距离从大到小的顺序是D、B(C)、A,故y3>y2>y1,故选:B.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是(﹣3,﹣1).【解答】解:如图所示:棋子③的坐标是(3,﹣1).故答案为:(3,﹣1).13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.【解答】解:根据题意画图如下:共有42种等情况数,其中摸出两个球为一个黑球和一个白球的有24种,则随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是=;故答案为:.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是16.【解答】解:∵PA、PB、EF分别与⊙O相切于点A、B、C,∴AE=CE,FB=CF,PA=PB=8,∴△PEF的周长=PE+EF+PF=PA+PB=16.故答案为:16.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为12.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵BD为AC边上的中线,∠ABC=90°,∴BD=DF=AC,∴四边形BGFD是菱形,∴BD=DF=GF=BG=10,则AF=AG﹣GF=26﹣10=16,AC=2BD=20,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即162+CF2=202,解得:CF=12.故答案是:12.六、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.【解答】解:(1)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(2)由题意得m﹣6=0,n﹣8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.【解答】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p==;(2)∵当温度大于等于25℃时,需求量为500,Y=450×2=900元;当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元;当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元;∴当温度大于等于20时,Y>0,∵由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P==.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DE,EF分别是△ABC 的中位线,∴DE∥AC,EF∥AB,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形;(2)解:∵D是AB的中点,F是AC的中点,AB=10cm,AB=AC,∴AD=AF=AB=5(cm),∵四边形ADEF是平行四边形,∴四边形ADEF是菱形,∴四边形ADEF的周长为4AD=4×5=20(cm).19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.【解答】解:(1)任选一个景点,选中以人文景观为主的概率为=;(2)把自然风光记为A,人文景观记为B,画树状图如图:共有24个等可能的结果,亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的结果有4个,∴亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率为=.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【解答】解:(1)设计划调配36座新能源客车x辆,该校共有y名走读生.由题意,得,解得,答:计划调配36座新能源客车6辆,该校共有218名走读生.(2)设36座和22座两种车型各需m,n辆.由题意,得36m+22n=218,且m,n均为非负整数,经检验,只有m=3,n=5符合题意.答:需调配36座客车3辆,22座客车5辆.21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【解答】解:(1)由题意可知:∠BAD=18°,在Rt△ABD中,AB=18≈≈5.6(m),答:应在地面上距点B约5.6m远的A处开始斜坡的施工;(2)能,理由如下:如图,过点C作CE⊥AD于点E,则∠ECD=∠BAD=18°,在Rt△CED中,CE=CD•cos18°≈2.8×0.95=2.66(m),∵2.66>2.5,∴能保证货车顺利进入地下停车场.22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.【解答】解:(1)∵点C(1,m)在一次函数y=x+3的图象上,∴m=1+3=4;(2)设一次函数图象l2相应的函数表达式为y=kx+b,把点A(3,0),C(1,4)代入得,解得,∴一次函数图象l2相应的函数表达式y=﹣2x+6;(3)∵一次函数y=x+3的图象l1与x轴交于点B,∴B(﹣3,0),∵A(3,0),C(1,4),∴AB=6,∴S△ABC=×6×4=12.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.【解答】(1)证明:如图1,连接BF,∴∠AFB=∠C,∵∠C=∠E,∴∠AFB=∠E,∴BF∥DE,∵DE为⊙O的切线,AD为⊙O的直径,∴AD⊥DE,∴AD⊥BF,∴AD平分BF,∴AB=AF;(2)解:如图2,连接BD,∴∠C=∠ADB,∵∠C=∠E,∴∠ADB=∠E,∵AD为⊙O的直径,∴∠ABD=90°,∴∠ABD=∠ADE,∴△ABD∽△ADE,∴=,∴AE=,∴DE==.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.【解答】解:(1)y=mx2+(m2﹣m)x﹣2m+1顶点D的横坐标为1,∴=1,解得m=﹣1,∴二次函数的表达式为y=﹣x2+2x+3,令y=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)过B作BH⊥AC于H,过F作FG⊥y轴于G,如图:∵二次函数y=﹣x2+2x+3与y轴交点C(0,3),且A(﹣1,0),B(3,0),∴AB=4,OC=3,AC=,BC=3,∵S△ABC=AB•OC=AC•BH,∴BH=,Rt△BHC中,sin∠HCB===,Rt△EFC中,EF=CF•sin∠HCB=CF,∴FE=•CF=CF,设P(n,﹣n2+2n+3),由B(3,0),C(0,3)得BC解析式为y=﹣x+3,∴△BCO是等腰直角三角形,F(n,﹣n+3),∴△GFC是等腰直角三角形,GF=n,∴CF=GF=n,∴CF=2n,即FE=2n,∴m=PF+FE=PF+2n=(﹣n2+2n+3)﹣(﹣n+3)+2n=﹣n2+5n,∴当n==时,m最大,最大为﹣()2+5×=,此时P(,);(3)直线y=kx+k﹣6总过(﹣1,﹣6),k<0时,它和新图象G不可能有4个公共点,如图:k>0时,若二次函数的表达式为y=﹣x2+2x+3刚好经过B(3,0),由(﹣1,﹣6),B(3,0)可得直线解析式为y=x﹣,此时直线y=x﹣与新图象G有3个交点,∴直线y=kx+k﹣6与新图象G有4个公共点,需满足k<,而抛物线y=﹣x2+2x+3关于x轴对称的抛物线解析式为y=x2﹣2x﹣3,若直线y=kx+k﹣6与抛物线y=x2﹣2x﹣3有两个交点,即是有两组解,∴x2﹣(2+k)x+3﹣k=0有两个不相等的实数根,∴△>0,即[﹣(2+k)]2﹣4(3﹣k)>0,解得k>﹣4+2或k<﹣4﹣2(小于0,舍去),∴k>﹣4+2,因此,直线y=kx+k﹣6与新图象G有4个公共点,﹣4+2<k<.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。

中考模拟检测《数学试卷》含答案解析

中考模拟检测《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列实数中,无理数是( )A. B. 3.333 C. π- D. 42. 下列计算中,结果是6a 的是A. 24a a +B. 23a a ⋅C. 122a a ÷D. 23()a3. 一粒米的质量约是0.000021kg ,这个数据用科学记数法表示为( )A 40.1210-⨯ B. 5 2. 110-⨯ C. 42.110-⨯ D. 62110-⨯ 4. 下列命题是假命题的是( )A 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径5. 在线段、角、平行四边形、矩形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A. 2个B. 3个C. 4个D. 5个6. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A. a >﹣2B. a <﹣3C. a >﹣bD. a <﹣b 7. (2016广西贺州市)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( )A. 17B. 27C. 37D. 478. 已知反比例函数10y x =,当1<x <2时,y 的取值范围是( ) A. 0<y <5 B. 1<y <2 C. 5<y <10 D. y >109. 如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点为圆心,菱形的高DF 为半径画弧,交AD 于点,交CD 于点,则图中阴影部分的面积是( )A. 183π-B. 1839π-C. 9932π-D. 1833π-10. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有 11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 53B. 51C. 45D. 43二、填空题(本大题共8小题,每小题4分,满分32分.)11. 若二次根式x 1-有意义,则x 的取值范围是 ▲ .12. 在一次”爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6, 7,6,15,9,6,9.这组数据的众数和中位数分别是________.13. 钟表在12时15分时刻的时针与分针所成的角是_______°.14. 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为________.15. 如图,将线段AB 绕点O 顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是_________________.16. 如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为_____.17. 某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m 2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m 2.18. 定义:有三个内角相等的四边形叫三等角四边形.三等角四边形ABCD 中,∠A =∠B=∠C ,则∠A 的取值范围________.三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算步骤) 19. 计算:|1﹣3|﹣3tan30°﹣(35-)°. 20. 先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中313x -= 21. 如图,某学校在”国学经典”中新建了一座吴玉章雕塑,小林站在距离雕塑3米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参考数据:3 1.732≈)22. 今年我县中考的体育测试成绩改为等级制,即把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格.我县5月份举行了全县九年级学生体育测试.现从中随机抽取了部分学生的体育成绩,并将其绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生9000名,如果全部参加这次中考体育科目测试,请估算不及格的人数是多少?23. 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元. 则有哪几种购车方案?24. 如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=22,求圆O的半径.25. 已知正方形ABCD,P为射线AB上一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.26. 将抛物线C1:y=﹣2x2+3沿x轴翻折,得到抛物线C2,如图所示(1)请直接写出抛物线C2解析式(2)现将抛物线C1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由答案与解析一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列实数中,无理数是( )A.B. 3.333C. π-D. 【答案】C【解析】A. 是有理数;B. 3.333 是有理数;C. π- 是无理数;D. 2=是有理数;故选C.2. 下列计算中,结果是6a 的是A. 24a a +B. 23a a ⋅C. 122a a ÷D. 23()a【答案】D【解析】【分析】根据幂的乘方、同底数幂的乘法的运算法则计算后利用排除法求解.【详解】解:A 、a 2+a 4≠a 6,不符合;B 、a 2•a 3=a 5,不符合;C 、a 12÷a 2=a 10,不符合;D 、(a 2)3=a 6,符合.故选D.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方.需熟练掌握且区分清楚,才不容易出错. 3. 一粒米质量约是0.000021kg ,这个数据用科学记数法表示为( )A. 40.1210-⨯B. 5 2. 110-⨯C. 42.110-⨯D. 62110-⨯ 【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000021=2.1×10−5;故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4. 下列命题是假命题的是( )A. 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径【答案】C【解析】【分析】【详解】选项A,经过两点有且只有一条直线,正确;选项B,三角形的中位线平行且等于第三边的一半,正确;选项C,平行四边形的对角线相等,错误.矩形的对角线相等,平行四边形的对角线不一定相等.选项D,圆的切线垂直于经过切点的半径,正确.故答案选C.5. 在线段、角、平行四边形、矩形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】角只是轴对称图形;平行四边形只是中心对称图形;线段、矩形、圆既是轴对称图形又是中心对称图形,故选B.6. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A. a >﹣2B. a <﹣3C. a >﹣bD. a <﹣b【答案】D【解析】 试题分析:A .如图所示:﹣3<a <﹣2,故此选项错误;B .如图所示:﹣3<a <﹣2,故此选项错误;C .如图所示:1<b <2,则﹣2<﹣b <﹣1,又﹣3<a <﹣2,故a <﹣b ,故此选项错误;D .由选项C 可得,此选项正确.故选D .考点:实数与数轴7. (2016广西贺州市)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( ) A. 17 B. 27 C. 37 D. 47【答案】D【解析】试题分析:∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:47.故选D . 考点:1.概率公式;2.绝对值.8. 已知反比例函数10y x =,当1<x <2时,y 的取值范围是( ) A. 0<y <5B. 1<y <2C. 5<y <10D. y >10 【答案】C【解析】∵反比例函数y=10x中当x=1时y=10,当x=2时,y=5, ∴当1<x<2时,y 的取值范围是5<y<10,故选C.9. 如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点为圆心,菱形的高DF 为半径画弧,交AD 于点,交CD 于点,则图中阴影部分的面积是( )A. 183π-B. 1839π-C. 9932π-D. 1833π-【答案】B【解析】【分析】 由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD•sin60°=6×3? 2=33, ∴阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积=6×32120(33)3? 360π⨯-=183-9π. 故选B .【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.10. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有 11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 53B. 51C. 45D. 43【答案】B【解析】【分析】根据给出的图示可得:我们可以将这些星星分成两部分,找出其规律即可得出解. 【详解】根据给出的图示可得:我们可以将这些星星分成两部分,最下面的一横作为一部分,规律为(2n-1),上面的就是等差数列求和,规律为:(1)2n n+,则所有的五角星的数量的和的规律为:(1)2n n++(2n-1),则图形8中的星星的个数=89(281)2⨯+⨯-=36+15=51.故选:B考点:规律题.二、填空题(本大题共8小题,每小题4分,满分32分.)11. 有意义,则x的取值范围是▲ .【答案】x1≥.【解析】【分析】根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.【详解】根据二次根式被开方数必须是非负数的条件,得x10x1-≥⇒≥.【点睛】本题考查二次根式有意义条件,牢记被开方数必须是非负数.12. 在一次”爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6, 7,6,15,9,6,9.这组数据的众数和中位数分别是________.【答案】6,7【解析】∵6出现了3次,出现的次数最多,∴众数是6;∵从小到大排列后7排在中间位置,∴中位数是7;13. 钟表在12时15分时刻的时针与分针所成的角是_______°.【答案】82.5【解析】90°-30°÷4=82.5°.14. 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为________.【答案】3【解析】试题分析:设这个圆锥的底面半径为r,根据题意得2πr=,解得r=3.故答案为3.考点:圆锥的计算.15. 如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是_________________.【答案】(5,2)【解析】【详解】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,∵∠ACO=∠A′C′O,∠AOC=∠A′OC′,AO=A′O,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故答案为(5,2).考点:坐标与图形变化-旋转.16. 如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为_____.【答案】2【解析】分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC 即可解决问题.【详解】如图所示,以为直径作圆,圆心为,解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,在中,2222=+=+=,OC OB BC345∴PC=OC-OP=5-3=2.∴PC最小值为2.故答案为2.【点睛】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.17. 某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m2.【答案】150【解析】设绿化面积与工作时间的函数解析式为,因为函数图象经过,两点,将两点坐标代入函数解析式得得,将其代入得,解得,∴一次函数解析式为,将代入得,故提高工作效率前每小时完成的绿化面积为.18. 定义:有三个内角相等的四边形叫三等角四边形.三等角四边形ABCD中,∠A =∠B=∠C,则∠A的取值范围________.【答案】60°<∠A<120°【解析】由”四边形内角和为“得,,即.因为,所以,即,即.三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算步骤)19. 计算:|13﹣3tan30°﹣35)°.【答案】-2【解析】解:|1﹣3|﹣3tan30°﹣(35-)° =﹣=﹣2. 20. 先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中313x -= 【答案】3x+1;3. 【解析】 【分析】首先将括号里面的分式进行通分,然后根据分式的乘法法则进行计算. 【详解】原式=[2(1)1(1)(1)(1)(1)x x x x x x +-++-+-] (x+1)(x -1)=221(1)(1)x x x x ++-+- (x+1)(x -1)=3x+1当x=313-时,原式=3x+1=3×313-+1=3-1+1=3. 考点:分式的化简求值.21. 如图,某学校在”国学经典”中新建了一座吴玉章雕塑,小林站在距离雕塑3米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参考数据:3 1.732≈)【答案】1.2米 【解析】试题分析:根据锐角三角函数,在Rt △DEB 中,求得DE 的长,在Rt △CEB 中,求得CE 的长,再根据CD=DE-CE 即可求出塑像CD 的高度.试题解析:解:在Rt△DEB中,DE=BE•tan45°=2.7米,在Rt△CEB中,CE=BE•tan30°=0.93米,则CD=DE-CE=2.7-0.93≈1.2米.故塑像CD的高度大约为1.2米.考点:解直角三角形的应用.22. 今年我县中考的体育测试成绩改为等级制,即把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格.我县5月份举行了全县九年级学生体育测试.现从中随机抽取了部分学生的体育成绩,并将其绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生9000名,如果全部参加这次中考体育科目测试,请估算不及格的人数是多少?【答案】(1)40;(2)54°,补全条形图见解析;(3)这次不及格的人数约是1800人.【解析】解:(1)本次抽样测试的学生人数是:12÷30%=40(人).(2)54°(3)89000180040⨯=,∴这次不及格的人数约是1800人.23. 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元. 则有哪几种购车方案?【答案】(1)18,26;(2)两种方案:方案1:购买A型车2辆,购买B型车4辆;方案2:购买A型车3辆,购买B型车3辆.【解析】【分析】(1)方程组的应用解题关键是设出未知数,找出等量关系,列出方程组求解.本题设每辆A型车的售价为x 万元,每辆B型车的售价为y万元,等量关系为:售1辆A型车和3辆B型车,销售额为96万元;售2辆A型车和1辆B型车,销售额为62万元.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解.本题不等量关系为:购车费不少于130万元,且不超过140万元.【详解】(1)设每辆A型车的售价为x万元,每辆B型车的售价为y万元,根据题意,得396{262x yx y+=+=,解得18{26xy==.答;每辆A型车的售价为18万元,每辆B型车的售价为26万元.(2)设购买A型车a辆,则购买B型车(6-a)辆,根据题意,得1826(6)130{1826(6)140a aa a+-≥+-≤,解得1234a≤≤.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案1:购买A型车2辆,购买B型车4辆;方案2:购买A型车3辆,购买B型车3辆考点:二元一次方程组的应用;一元一次不等式的应用.24. 如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=22,求圆O的半径.【答案】(1)证明见解析;(2)⊙O的半径为4.【解析】试题分析:(1)、根据题意得出△CAD和△CDE相似,从而得出∠CAD=∠CDE,结合∠CAD=∠CBD得出∠CDB=∠CBD,从而得出答案;(2)、连接OC,根据OC∥AD得出PC=2CD,根据题意得出△PCB和△PAD相似,即PC PBPA PD,从而得出r的值.试题解析:(1)、∵DC2=CE•CA,∴=,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CB D,∴BC=DC;(2)、连结OC,如图,设⊙O的半径为r,∵CD=CB,∴=,∴∠BOC=∠BAD,∴OC∥AD,∴===2,∴PC=2CD=4,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴=,即=,∴r=4,即⊙O的半径为4.25. 已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.【答案】(1)详见解析;(2)△ACE为直角三角形,理由见解析;(3)∠AEC=45°.【解析】试题分析:(1)根据正方形的性质和全等三角形的判定定理易证△APE≌△CFE,由全等三角形的性质即可得结论;(2)①根据正方形的性质、等腰直角三角形的性质即可判定△ACE为直角三角形;②根据PE∥CF,得到,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.试题解析:(1)证明:∵四边形ABCD为正方形∴AB=AC∵四边形BPEF为正方形∴∠P=∠F=90°,PE=EF=FB=BP∵AP=AB+BP,CF=BC+BF∴CF=AP在△APE和△CFE中:EP="EF," ∠P="∠F=90°," AP= CF∴△APE≌△CFE∴EA=EC(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴,即,解得,a=b;作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.考点:四边形综合题.26. 将抛物线C1:y=2x23x轴翻折,得到抛物线C2,如图所示(1)请直接写出抛物线C2的解析式(2)现将抛物线C1向左平移m个单位长度,平移后得到新抛物线顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由【答案】(1)233y x =-(2)①2,1/2,②是矩形,m =1 【解析】试题分析:因为二次函数的图像关于x 轴对称时,函数中的a,c,互为相反数,b 值不变,函数向左平移时,纵坐标不变,横坐标均减少平移个单位,可假定成立,由直角三角形性质得到验证.解:(1)抛物线c 2的表达式是; 2分;(2)①点A 的坐标是(1m --,0), 3分; 点E 的坐标是(1m +,0). 4分;②假设在平移过程中,存在以点A ,M ,E 为顶点的三角形是直角三角形. 由题意得只能是90AME ∠=. 过点M 作MG ⊥x 轴于点G . 由平移得:点M 的坐标是(m -3, 5分; ∴点G 的坐标是(m -,0), ∴1GA =,3MG =,21EG m =+,在Rt △AGM 中, ∵ tan 3MG MAG AG ∠==,∴60MAG ∠=, 6分;∵ 90AME ∠=,∴30MEA ∠=,∴tan MG MEG EG ∠==,=, 7分; ∴1m =. 8分.所以在平移过程中,当1m =时,存在以点A ,M ,E 为顶点的三角形是直角三角形.考点:二次函数的图像与性质,直角三角形的性质.函数图像翻折时,解析式的系数的变换.点评:要熟练掌握以上各种性质,在解题时要掌握正确的方法,本题由一定的难度有三问需认真的思考一一作答,属于中档题.。

中考数学模拟试卷精选汇编:整式与因式分解附答案

中考数学模拟试卷精选汇编:整式与因式分解附答案

整式与因式分解一.选择题1. (2015·湖南永州·三模)下列运算正确的是( )A .a 3+a 3=a 6B .2(a +1)=2a +1C .(-ab )2=a 2b 2D .a 6÷a 3=a 2答案: C 解析:A .a 3+a 3=2a 3,故选项错误;B .2(a +1)=2a +2≠2a +1,故选项错误;C .(-ab )2=a 2b 2,故选项正确;D .a 6÷a 3=a 3≠a 2,故选项错误.故选:C .2.(2015·江苏江阴长泾片·期中)分解因式269ab ab a −+的最终结果是 ( )A .a(b -3)B .a(b 2-6b+9)C .a(b -3)2D .(ab -3)2 答案:C3.(2015·江苏江阴青阳片·期中)下列等式正确的是( ▲ )A .(-a 2)3=-a 5B .a 8÷a 2=a 4C .a 3+a 3=2a 3D .(ab )4=a 4b 答案:C4.(2015·江苏江阴夏港中学·期中)下列计算正确的是( ) A .x +x =x 2 B .x·x =2x C .(x 2)3=x 5 D .x 3÷x =x 2答案:D5.(2015·江苏江阴要塞片·一模)下列运算正确的是( ▲ )A .743)(x x =B .532)(x x x −=⋅−−C .23x x x +=D .222=x y x y ++() 答案:B6.(2015·江苏江阴要塞片·一模)分解因式29a a −的结果是( ▲ )A .a (a − 9)B .(a − 3)(a +3)C .(a − 3a )(a +3a )D .2)3(−a 答案:A7. (2015·北京市朝阳区·一模)下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 7答案:C8. (2015·安徽省蚌埠市经济开发·二摸)计算 (m 3)2÷m 3的结果等于【 】 A .2m B .3m C .4m D .6m 答案:B9. (2015·安徽省蚌埠市经济开发·二摸)下列整式中能直接运用完全平方公式分解因式的为【 】A .21x −B .221x x ++C .232x x ++D .22x y +10. (2015·安庆·一摸)下面是某次数学测验同学们的计算摘录,其中正确的是( ) A.2a +3b =5ab B.(-2a 2)3=-6a 6 C.a 3·a 2=a 6 D.-a 5÷(-a )=a 4 答案: D ;11. (2015·合肥市蜀山区调研试卷)下列计算中,正确的是: A.224235a a a += B.222()a b a b −=− C.336()a a =D.23(2)a −=68a −答案:D12.(2015·福建漳州·一模)下列运算正确的是A.623a a a =•B.()532a a = C.39= D.5252=+答案:C13.(2015·福建漳州·二模)若3−=b a ,则a b −的值是A .3−B .3C .0D .6 答案:B14.(2015·广东广州·一模)下列计算正确的是( )A .3x +3y =6xyB .a 2·a 3=a 6C .b 6÷b 3=b 2D .(m 2)3=m 6 答案:D15.(2015·广东广州·一模)已知a +b =4,a -b =3,则a 2-b 2=( )A .4B .3C .12D .1答案:C16.(2015·广东广州·一模)按如图M1-3所示的程序计算,若开始输入n 的值为1,则最后输出的结果是( )A .3B .15C .42D .63答案:C17.(2015·广东高要市·一模)下列运算正确的是( ▲ )A .3232+=+ B .32)(a =5a C . 2)3(=3D .33=−a a答案:C18.(2015•山东滕州东沙河中学•二模)下列计算正确的是A .6428)2(a a = B .43a a a =+ C .a a a =÷2 D .222)(b a b a −=−19.(2015•山东滕州东沙河中学•二模)下列命题是真命题的是A .-32πx 2y 3z 的系数为-32 B .若分式方程12−x a=3的解为正数,则a 的取值范围是a >-23C .两组对角分别相等的四边形是平行四边形D .同位角相等答案:C20.(2015•山东滕州羊庄中学•4月模拟)下列运算正确的是 A .(3xy 2)2=6xy 4B .2x -2=241xC .(-x )7÷(-x )2=-x 5D .(6xy 2)2÷3xy =2y答案:C ;21.(2015•山东滕州张汪中学•质量检测二)下列运算正确的是( )A .a 2•a 3=a 6B .(﹣a )4=a 4C .a 2+a 3=a 5D .(a 2)3=a 5答案:B ;22.(2015•山东潍坊•第二学期期中)下列各式计算正确的是( )A .3x -2x=1B .a 2+a 2=a 4C .a 5÷a 5=aD . a 3•a 2=a 5 答案:D ;23.(2015•山东潍坊广文中学、文华国际学校•一模)下列运算正确的是 ( ) A .3a 2-a 2=3 B .(a 2)3=a 5 C .a 3·a 6=a 9 D .(2a 2)2=4a 2答案:C ;24.(2015·邗江区·初三适应性训练)下列运算中,结果正确的是( ▲ )A .844a a a =+B .523a a a =⋅C .xy y x 532=+D .6326)2(a a −=− 答案:B25.(2015·网上阅卷适应性测试)下列运算正确的是( ▲ )A .532a a a =⋅B .22()ab ab = C .329()a a =D .632a a a ÷=答案:A26.(2015·江西省·中等学校招生考试数学模拟)下列运算正确的是( ) A .222()a b a b −=− B .2(1)(1)1a a a −+−−=− C .21()12−−= D .2224(2)4ab a b −−=答案:选B .27.(2015·山东省枣庄市齐村中学二模) 下列运算正确的是( ) A .a 2+a 3=a 5B .(-2a 2) 3=-6a 6C .(2a +1)(2a -1)=2a 2-1D .(2a 3-a 2)÷a 2=2a -1答案:D28.(2015·辽宁东港市黑沟学校一模) 下列运算正确的是( ) A . a 3•a 2=a 6B . 2a (3a ﹣1)=6a 3﹣1C .(3a 2)2=6a 4D .2a +3a =5a答案:D29. ( 2015·呼和浩特市初三年级质量普查调研)下列运算正确的是( )A.22122a a −= B.936()a a a −÷= 5a = D.2111()(21)424a a a a −+÷−=−答案:.D30.(2015·山东省济南市商河县一模)下列各式计算正确的是 A .53232a a a =+ B .532)(a a =C .326a a a =÷D .43a a a =⋅答案:B31.(2015·山东省东营区实验学校一模) 下列计算正确的是( )A .a ·a =a 2B .(-a )3=a 3C .(a 2)3=a 5D .a 0=1答案:A32.(2015.河北博野中考模拟).分解因式:2a 2-8b 2 =______________________.答案:2(a +2b ) (a -2b );33.(2015·广东中山·4月调研)计算23(2)a 的结果是( )A .2a 5B .6a 6C .8a 6D .8a 5 答案:C34.(2015·山东枣庄·二模)已知x y −=7,xy =2,则22x y +的值为( )A .53B .45C .47D .51答案:A35.(2015·山东枣庄·二模)如图,某同学在沙滩上用石子摆小房子,观察图形的变化规律,写出第⑨个小房子用的石子总数为( )① ② ③ ④A .155B .147C .145D .146答案:C36.(2015•山东东营•一模)下列计算正确的是( )A .a ·a =a 2B .(-a )3=a 3C .(a 2)3=a 5D .a 0=1 答案:A37.(2015•山东济南•模拟)计算23)(a 的结果是( )38.(2015•山东济南•网评培训)下列计算正确的是A .325a a a +=B .32a a a −=C .326a a a ⋅=D .32a a a ÷= 答案:D39.(2015•山东济南•一模)下列计算正确的是( )A. 633a a a ÷=B. 238()a a = C. 222()a b a b −=− D. 224a a a += 答案:A40.(2015•山东济南•一模)把代数式ax 2﹣4ax +4a 分解因式,下列结果中正确的是( ) A . a (x ﹣2)2 B . a (x +2)2 C . a (x ﹣4)2 D . a (x +2)(x ﹣2)答案:A41.(2015•山东青岛•一模)下列四个式子中,字母a 的取值可以是一切实数的是 A .1aB .a 0C .a 2D . a答案:C42.(2015·江苏无锡北塘区·一模)下列计算正确的是( ▲ )A .(2a 2)3=8a 5B .(3)2=9C .32-2=3D .-a 8÷a 4=-a 4 答案: D43.(2015·江苏南菁中学·期中)下列计算正确的是----------------( ▲ )A.222)2(a a =− B.632a a a ÷= C.a a 22)1(2−=−− D.22a a a ⋅=答案: C44.(2015·江苏南京溧水区·一模)计算231⎪⎭⎫⎝⎛−•a a 的结果是( ▲ )A .aB .5aC .6aD .4a答案: A45.(2015·江苏无锡崇安区·一模)下列四个多项式,能因式分解的是…………………………………………………( ▲ )A .a -1B .a 2+1C .x 2-4yD .x 2-6x +9 答案: D46.(2015·江苏扬州宝应县·一模)下列计算中,正确的是 A.257x y xy += B.22(3)9x x −=− C.22)(xy xy = D.632)(x x = 答案: D47.(2015·无锡市南长区·一模)下列计算正确的是 ( ) A .2a -a =1 B .a 2+a 2=2a 4 C .a 2· a 3=a 5 D .(a -b )2=a 2-b 2答案:C48.(2015·无锡市宜兴市洑东中学·一模)下列运算正确的是( )A 、22x x x =⋅B 、22)(xy xy =C 、632)(x x = D 、422x x x =+ 答案:C49.(2015·无锡市宜兴市洑东中学·一模)下列运算正确的是( ▲ )A .743)(x x =B .532)(x x x −=⋅−−C .23x x x +=D .222=x y x y ++() 答案:B50.(2015·无锡市宜兴市洑东中学·一模)分解因式29a a −的结果是( ▲ )A .a (a − 9)B .(a − 3)(a +3)C .(a − 3a )(a +3a )D .2)3(−a 答案:A51.(2015·锡山区·期中)下列运算正确的是(▲) A .632x x x =+ B .()623x x = C .xy y x 532=+ D .236x x x =÷答案:B 二.填空题1. (2015·湖南岳阳·调研)分解因式:24xy x −= ; 答案:(2)(2)x y y +−2. (2015·江苏常州·一模)分解因式:=+−22344xy y x x ▲ . 答案:2)2(y x x −3. (2015·吉林长春·二模)答案:8a 3b 64.(2015·湖南永州·三模)因式分解:x 3-x = .答案:x (x +1)(x -1)5.(2015·江苏江阴·3月月考)分解因式x 3-9x = . 答案:x (x +3)( x -3)6.(2015·江苏江阴青阳片·期中)因式分解:12−a = ▲ . 答案:(a +1)(a -1)7.(2015·江苏江阴夏港中学·期中)因式分解:82−x = . 答案:()()2222−+x x8. (2015·北京市朝阳区·一模)分解因式:2236+3m mn n −= . 答案:2)(3n m −9. (2015·安庆·一摸)因式分解:-2x 3+8x = 答案:-2x (x +2)(x -2);10.(2015·福建漳州·一模)分解因式: 2244y xy x +−= .答案:2(2)x y −11.(2015·广东广州·一模)把多项式3m 2-6mn +3n 2分解因式的结果是________. 答案:3(m -n)212.(2015·广东潮州·期中) 化简代数式2(1)2x x +−所得的结果是 . 答案:21x +13.(2015·广东潮州·期中)如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需 根火柴棒,……,则第n 个图形需 根火柴棒。

中考数学模拟试卷精选汇编:二元一次方程(组)及其应用附答案

中考数学模拟试卷精选汇编:二元一次方程(组)及其应用附答案

二元一次方程(组)及其应用一、选择题1.(2015•山东东营•一模)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( ) A.⎩⎪⎨⎪⎧x +y =523x +2y =20 B.⎩⎪⎨⎪⎧x +y =522x +3y =20 C.⎩⎪⎨⎪⎧x +y =202x +3y =52 D.⎩⎪⎨⎪⎧x +y =203x +2y =52 答案:D2.(2015·广东中山·4月调研)小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支中性笔和2盒笔芯,用了56元;小丽买了2支中性笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意所列方程组正确的是( )A .22056,2328x y x y +=⎧⎨+=⎩B .20256,2328x y x y +=⎧⎨+=⎩C .20228,2356x y x y +=⎧⎨+=⎩D .2228,20356x y x y +=⎧⎨+=⎩3.(2015·山东枣庄·二模)二元一次方程组233x y x y ⎧⎨⎩+=−=的解为( ) A .21x y ⎧⎨⎩== B .21x y ⎧⎨⎩==− C .21x y ⎧⎨⎩=−=− D .21x y ⎧⎨⎩=−=答案:B4.(2015·山东省东营区实验学校一模)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A.⎩⎪⎨⎪⎧x +y =523x +2y =20B.⎩⎪⎨⎪⎧x +y =522x +3y =20C.⎩⎪⎨⎪⎧x +y =202x +3y =52D.⎩⎪⎨⎪⎧x +y =203x +2y =52 答案:D5.(2015·江西省·中等学校招生考试数学模拟)已知⎩⎨⎧==b y a x 是方程组⎩⎨⎧=+=+−.54,23y x y x 的解,则b a 2+的值为( )A . 4B . 5C . 6D . 7答案:选D .命题思路:考查二元一次方程组的解法与消元、整体思想的运用.6.(2015·重点高中提前招生数学练习)在△ABC 中,点D ,E 分别在AB ,AC 上,CD 与BE 相交于点F ,已知△BDF 的面积为10,△BCF 的面积为20,△CEF 的面积为16,则四边形ADFE 的面积等于( D )图1A .22B .24C .36D .44答案:D7.(2015•山东潍坊广文中学、文华国际学校•一模)已知一个等腰三角形的两边长a 、b 满足方程组2a b 3a b 3−=⎧⎨+=⎩则此等腰三角形的周长为 ( )A .5B .4C .3D .5或4答案:A ;8.(2015·广东广州·一模)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,下列方程组正确的是( )A.⎩⎪⎨⎪⎧ x =y -18,y -x =18-yB.⎩⎪⎨⎪⎧ y -x =18,x -y =y +18C. ⎩⎪⎨⎪⎧ x +y =18,y -x =18+yD.⎩⎪⎨⎪⎧y =18-x ,18-y =y -x 答案:D9.(2015·江苏江阴长泾片·期中)已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=−=+17by ax by ax 的解,则a b −的值为( )A .-1B .1C .2D .3答案:A二、填空题1.(2015•山东济南•网评培训)方程组257x y x y +=⎧⎨−=⎩,的解是 . 答案:43y x =⎧⎨=−⎩, 2.(2015•山东潍坊广文中学、文华国际学校•一模)如图1,点A 的坐标为(-1,0),点B 在直线y =2x -4上运动,当线段AB 最短时,点B 的坐标是_______.答案:(56,57−); 3. (2015·江苏高邮·一模)若a +3b -2=0, 则3a ×27b 的值为 ▲ .答案:9;三、解答题 1.(2015·锡山区·期中)(本题满分10分)无锡某校准备组织学生及学生家长到上海进行社会实践,为了便于管理,所有人员必须乘坐在同一列高铁上;根据报名人数,若都买一等座单程火车票需6175元,若都买二等座单程火车票且花钱最少,则需3150元;已知学生家长与教师的人数之比为2:1,无锡到上海的火车票价格(高铁学生票只有二等座.....可以打7.5折)如下表所示:运行区间票价上车站下车站一等座二等座无锡上海95(元)60(元)(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买一个单程火车票至少要花多少钱?最多要花多少钱?答案:解:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,依题意得:,(2分)解得:答:参加社会实践的老师、家长与学生分别有5人、10人、50人.(4分)(2)由(1)知所有参与人员总共有65人,其中学生有50人,①当50≤x<65时,最经济的购票方案为:学生都买学生票共50张,(x-50)名成年人买二等座火车票,(65-x)名成年人买一等座火车票.∴火车票的总费用(单程)y与x之间的函数关系式为:y=60×0.75×50+60(x-50)+95(65-x),即y=-35x+5425(50≤x<65),(5分)②当0<x<50时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(65-x)张,∴火车票的总费用(单程)y 与x 之间的函数关系式为:y =60×0.75x +95(65-x ),即y =-50x +6175(0<x <50), (6分) 答:购买火车票的总费用(单程)y 与x 之间的函数关系式是y =-35x +5420(50≤x <65)或y = -50x +6175(0<x <50). (7分)(3)由(2)小题知,当50≤x <65时,y = -35x +5425,∵-35<0,y 随x 的增大而减小, ∴当x =64时,y 的值最小,最小值为3185元,当x =50时,y 的值最大,最大值为3675元. (8分) 当0<x <50时,y = -50x +6175,∵-50<0,y 随x 的增大而减小,∴当x =49时,y 的值最小,最小值为3725元,当x =1时,y 的值最大,最大值为6125元. (9分) 所以可以判断按(2)小题中的购票方案,购买一个单程火车票至少要花3185元,最多要花6125元,答:按(2)小题中的购票方案,购买一个单程火车票至少要花3185元,最多要花6125元. (10分)2.(2015·江苏无锡崇安区·一模)解方程组:⎩⎪⎨⎪⎧3x -y =7,x +3y =-1.答案:由①得y =3x -7代入②,x +3(3x -7)=-1,得x =2……………………………(2分)于是y =-1……………… (3分) 故原方程组的解是⎩⎪⎨⎪⎧x =2,y =-1…………………(4分) 3. (2015•山东东营•一模) 某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元, 依题意得:, 解得:, 答:A 、B 两种型号电风扇的销售单价分别为250元、210元;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台.依题意得:200a +170(30﹣a )≤5400,解得:a ≤10.答:超市最多采购A 种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a +(210﹣170)(30﹣a )=1400,解得:a =20,∵a >10,∴在(2)的条件下超市不能实现利润1400元的目标.1.(2015·广东从化·一模)(本小题满分9分解方程组:533x y x y +=⎧⎨−=⎩答案:解: 533x y x y +=⎧⎨−=⎩ (2)(1) (1)+(2)得:48x = ……………………………………………2分 解得:2=x (3) ……………………………………………4分 把(3)代入(1)得: 52=+y ………………………………………6分 解得:3=y ………………………………………8分所以原方程组的解为:⎩⎨⎧==32y x …………………………………9分 4.( 2015·呼和浩特市初三年级质量普查调研)(5分)解方程组:211342x y y x −=⎧⎪⎨+−=⎪⎩答案:解原方程可化为:21618x y x y −=⎧⎨−−=⎩,48,2x x ==两式相减得:,2213x x y y =−==把代入得;23x y =⎧⎨=⎩所以方程组得解为; 5. (2015·山东省济南市商河县一模) (本小题满分4分)解方程组:⎩⎨⎧=−=+②①72552y x y x解:⎩⎨⎧=−=+②①72552y x y x ①+② 得: ···································································· 1分 6x =12,x =2, ···································································································· 2分 把x =2代入①得:y =23, ················································································ 3分 ∴方程组的解为:⎪⎩⎪⎨⎧==232y x ··············································································· 4分6. (2015·辽宁盘锦市一模)20.某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿泉水各多少件?解:设该企业捐给甲学校的矿泉水x 件,乙学校的矿泉水y 件,由题意得:20002400x y y x +=⎧⎨−=⎩ 解得1200800x y =⎧⎨=⎩答:该企业捐给甲学校的矿泉水1200件,乙学校的矿泉水800件7.(2015·网上阅卷适应性测试)(1)计算:()21342|8|−−−⨯+−⎩⎨⎧=+=+1137y x y x (2)⎩⎪⎨⎪⎧3x +y =3,①x +y =1.② 答案:(1)()21342|8|−−−⨯+−=9―2+8=15(2)解:由①—②,得2x =2,x =1. ③将③代入②中,得 y =0.所以,方程组的解为:⎩⎪⎨⎪⎧x =1,y =0.8. (2015·福建漳州·一模)请从以下三个二元一次方程: x +y =7, 173+−=x y , x +3y =11中,任选两个方程构成一个方程组,并解该方程组.(1)所选方程组是: .(2)解方程组:答案:(1) ①② …………………………………………………………2分(2)解:②-①得:42=y …………………………………………………………4分 ∴2=y …………………………………………………………………5分把2=y 代入①得 :5x = ………………………………………………7分∴⎩⎨⎧==25y x …………………………………………………………………8分 9.(2015·广东广州·二模)某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿泉水各多少件? 解:设该企业捐给甲学校的矿泉水x 件,乙学校的矿泉水y 件,由题意得:---------1分 20002400x y y x +=⎧⎨−=⎩ -----------------------------------------------------------------------------5分 解得1200800x y =⎧⎨=⎩答:该企业捐给甲学校的矿泉水1200件,乙学校的矿泉水800件 --------- ---------7分10. (2015·安庆·一摸)某加工厂投资兴建2条全自动生产线和1条半自动生产线共需资金26万元,而投资兴建1条全自动生产线和3条半自动生产线共需资金28万元(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2015年每条全自动生产线的毛利润为26万元,每条半自动生产线的毛利润为16万元.这-年,该加工厂共投资兴建10条生产线,若想获得不少于120万元的纯利润...,则2015年该加工厂至少需投资兴建多少条全自动生产线?(纯利润=毛利润-成本答案:解:(1)设每条全自动生产线的成本为x 万元,每条半自动生产线的成本为y 万元,根据题意,得⎩⎨⎧=+=+283262y x y x ,解得⎩⎨⎧==610y x . 答:每条全自动生产线的成本为10万元,每条半自动生产线的成本为6万元.…………5分(2)设2015年该加工厂需兴建全自动生产线a 条,根据题意,得(26-10)a +(16-6)(10-a )≥120,解得a ≥331,由于a 是正整数,所以a 至少取4.即2015年该加工厂至少需投资兴建4条全自动生产线.…………10分。

2015中考模拟数学评分标准(定稿)

2015中考模拟数学评分标准(定稿)

2015年杭州市初中毕业升学文化模拟考试数学参考解答和评分标准一.选择题(每题3分,共30分)题号12345678910答案DBCCDDCAAA二.填空题(每题4分,共24分)11.52;12.x ≥3或x<2;13.23;14.①③④15.32;16.87或,9876或或或;三.解答题(共66分)17.(本题6分)解:由二元一次方程组解得54,32==y x …………2分原式221111xy x y x y x y xy x y x y+-+=∙+=+=---,………2分代入得原式=213-.………2分18.(本题8分)解:连接CA 、DA ,………2分AB=AE ,∠B=∠E ,BC=ED ∴△CBA≌△DEA………2分∴CA=DA………2分又 AF ⊥CD ∴CF=DF ………2分19.(本题8分)解:过B 作BM ⊥AC 于M ,……1分设MC=x,222)2()5(1x x -=--………2分解得553=x ,…………1分则BM=55,………2分sin ∠ACB=1010255=………2分20.(本题10分)(1)041216>=-=∆,有两个不相等的实数根…………2分(2)①配方法:1,3,01)2(212===--x x x ;…………2分2因式分解法:3,1,0)3)(1(21===--x x x x …………1分(3)一个一元二次方程,两个一元一次方程…………2分(4)1,1,0,0)1)(1(321-====+-x x x x x x …………3分21.(本题10分)(1)∵()0,3B ∴3OB =…………1分又∵ ∠AOB =90︒,cos ∠BAO =45∴5,4AB n OA n==可设∴222OA OB AB +=,即1,2591622=∴=+n n n ………1分)0,4(,4A OA =∴………1分把 A 4,0()和 B 0,3()代入,得 4k +b =0b =3⎧⎨⎩解得 k =-34b =3⎧⎨⎪⎩⎪………1分∴一次函数的解析式为y =-34x +3………………………………1分(2)过点 C 作 CD ⊥OA ,设 OD =a ∵ OC 是 ∠AOB 的平分线, ∠AOB =90︒∴∠COD =12∠AOB =45︒又∵ CD ⊥OA ∴△ CDO 是等腰直角三角形∴ CD =OD =a∴Ca ,a ()…………………1分又∵点 C 在直线 AB 上∴ -34a +3=a ∴a =127…………1分∴1212,77C ⎛⎫⎪⎝⎭………………………………1分把1212,77C ⎛⎫⎪⎝⎭代入 y =m x ,得m =14449…………2分22.(本题12分)(1)当m=2,n≠-1时,是二次函数;…………1分当m=1,n≠-2时或者当m=2,n=-1时,是一次函数;…………2分当m=1,n=1时,是正比例函数;…………1分不可能是反比例函数。

数学中考仿真模拟试题(word版含答案)

数学中考仿真模拟试题(word版含答案)
A. B. C. D.
3.下列计算正确的是( )
A.2A3+3A3=5A6B.(x5)3=x8
C.﹣2m(m﹣3)=﹣2m2﹣6mD.(﹣3A﹣2)(﹣3A+2)=9A2﹣4
4.下列调查中,适宜采用全面调查方式的是()
A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状
C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件
【答案】
【分析】
用科学记数法表示较大的数时,一般形式为A×10n,其中1≤|A|<10,n为整数,据此判断即可.
【详解】
580亿=58000000000=5.8×1010.
故答案为:5.8×1010.
【点睛】
此题主要考查了用科学记数法表示较大的数,一般形式为A×10n,其中1≤|A|<10,确定A与n的值是解题的关键.
5.如图,在⊙O中,若∠C D B=60°,⊙O的直径A B等于4,则B C的长为()
A. B.2C.2 D.4
6.我国古代数学名著《算法统宗》中,有一道“群羊逐草”的问题,大意是:牧童甲在草原上放羊,乙牵着一只羊来,并问甲:“你的羊群有100只吗?”甲答:“如果在这群羊里加上同样的一群,再加上半群,四分之一群,再加上你的一只,就是100只.”问牧童甲赶着多少只羊?若设这群羊有x只,则下列方程中,正确的是( )
11.如图:A B∥C D,直线MN分别交A B、C D于点E、F,EG平分∠AEF,EG⊥FG于点G,若∠BEM=50°,则∠CFG= __________.
故选B.
【点睛】
本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是找到等量关系.
7.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长为()

重庆市数学中考23题-应用题(1)

重庆市数学中考23题-应用题(1)

2015年数学中考预测-23题 应用题一、工程问题: 1.(13A 23.)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站从去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元。

在保证工程质量的前提下,为了缩短工期,拟安排甲乙两队分工合作完成这项工程。

在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲乙两队的施工时间按月取整数).2.(13B 23、)4.20雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小车运送,计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运m 200顶,每辆小货车每次比原计划少运300顶.为了尽快将帐篷运送到灾区,大货车每天比原计划多跑m 21次,小货车每天比原计划多跑m 次,一天刚好运送了帐篷14400顶,求m 的值. 3.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?4.“端午节”是我国的传统佳节,历来有吃“粽子”的习俗。

中考模拟测试《数学试题》含答案解析

中考模拟测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -172.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A 主视图不变B. 俯视图不变C 左视图不变D. 三种视图都不变3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B. 59C. 62D. 644.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 235.下列运算正确是() A. 428a a a ⋅= B. 221a a -= C. 2222a a a -+= D. ()325x x =6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 23C. 33D.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C. 60D. 709.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A. B. C. D. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11.5_.12.如图,在正六边形ABCDEF 中,CAD ∠的度数为____.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC 交于,E F 两点,且,A C 两点在轴上,点的坐标为()2,4,则点的坐标为_____.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()1082 3.146012cos π-⎛⎫+⎭- ⎪⎝︒. 16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.20.如图1所示的是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.2 1.414,31(.732≈≈,最后结果取整数)21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -17【答案】A【解析】【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】|﹣7|=7.故选A.【点睛】本题考查了绝对值的性质①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A. 主视图不变B. 俯视图不变C. 左视图不变D. 三种视图都不变【答案】C【解析】【分析】分别得到将正方体A移动前后的三视图,依次即可作出判断.【详解】将正方体放到正方体的上面后,主视图改变,左视图不变,俯视图改变.故选:C .【点睛】此题主要考查立体组合体的三视图,熟练画立体图形的三视图是解题关键.3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B 59C. 62D. 64【答案】B【解析】【分析】先根据平行线的性质求出62,BOE ∠=︒再根据邻补角求得118,COE ∠=︒然后根据角平分线即可求解.【详解】解:∵DE AB∴62,BOE B ∠=∠=︒∴118,COE ∠=︒∵OF 是COE ∠的角平分线∴1∠=59︒故选:B【点睛】此题主要考查平行线的性质、邻补角的性质和角平分线的定义,熟练掌握性质定理是解题关键. 4.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 23【答案】C直接把()2,3-代入(0)y kx k =≠即可求解.【详解】解:把()2,3-代入(0)y kx k =≠ 解得:3k 2=-故选:C【点睛】此题主要考查待定系数法求正比例函数解析式中的参数k ,正确理解函数的图象和性质是解题关键. 5.下列运算正确的是()A. 428a a a ⋅=B. 221a a -=C. 2222a a a -+=D. ()325x x =【答案】C【解析】【分析】直接根据同底数幂的乘法法则、合并同类项法则和幂的乘方法则即可求解.【详解】解:A. 426a a a ⋅=,此选项错误B. 22a a -=-,此选项错误C. 2222a a a -+=,此选项正确D. ()326x x =,此选项错误 故选:C【点睛】此题主要考查同底数幂的乘法法则、合并同类项法则和幂的乘方法则,熟练掌握法则是解题关键. 6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 3C. 33D.【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键. 8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C 60D. 70【答案】C【解析】【分析】根据同弧所对的圆心角等于圆周角的2倍,可得出∠B=25︒,然后根据三角形的内角和为180︒即可求解.【详解】解:∵50AOC ∠=︒,∴∠B=25︒,∵35C ∠=︒,∠ADB=∠CDO ,∴A ∠+∠B=∠C+∠AOC ,即∠A=355025︒+︒-︒=60︒,故选:C .【点睛】此题主要考查同弧所对的圆心角与圆周角之间的关系及三角形的内角和,熟练掌握性质是解题关键.9.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.【答案】B【解析】【分析】设AEF S x =△,根据相似三角形的面积比等于相似比的平方,得出4BCF Sx =,求出x 即可解答. 【详解】解:∵AD ∥BC ,是矩形ABCD 中AD 边的中点,∴AEF ~CBF ,设AEF S x =△,那么4BCF Sx =, ∵2ABF S =, ∴()1x 2422x +=+, 解得:x 1=,∴325CDEF S x =+=四边形,故选:B.【点睛】此题主要考查相似三角形的相似比与面积比之间的关系,灵活运用关系是解题关键. 10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A.B. C. D. 【答案】B【解析】【分析】由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =,根据当3x ≥时,随的增大而增大,得到0,a >且1x ≤时,随的增大而减小,再根据当20x -≤≤时,的最大值为,得到当2x =-时,28110a a ++=,求出1a =,那么2(1)1y x =-+关于轴对称的抛物线为()211y x =++,即可求解. 【详解】解:由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =.当3x ≥时,随的增大而增大,0,a ∴>且1x ≤时,随的增大而减小.当20x -≤≤时,的最大值为10,当2x =-时,28110,a a ++= 1a 或9a =-(舍去),2222()11y x x x ∴=-+=-+关于轴对称的抛物线为()211,y x =++函数()211y x =++在23x -≤≤内的最大值在3x =处取得,最大值为17,y =故选.【点睛】此题主要考查二次函数的性质,熟练掌握二次函数的图象和性质是解题关键. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11._.【答案】2【解析】【分析】估算得出所求即可.【详解】解:∵459,∴23<<,2,故答案为:2.【点睛】此题主要考查无理数的估算,熟练掌握估算方法是解题关键.12.如图,在正六边形ABCDEF中,CAD∠的度数为____.【答案】30【解析】【分析】根据正六边形得到∠ABC=∠BCD=∠CDE=120︒,AB=BC=CD,进而得到∠ACB=30,∠ACD=90︒,∠ADC=60︒,即可求解.【详解】解:在正六边形ABCDEF中,∠ABC=∠BCD=∠CDE=120︒,AB=BC,∴∠ACB=30,∠ACD=90︒,∠ADC=60︒,∴∠CAD=30,故答案为:30.【点睛】此题主要考查正六边形的性质,灵活运用性质是解题关键.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC交于,E F两点,且,A C两点在轴上,点的坐标为()2,4,则点的坐标为_____.【答案】4 6,3⎛⎫ ⎪⎝⎭【解析】【分析】先根据待定系数法求得8y x =,再根据OA=6即可求解. 【详解】解:令y k x =,E (2,4), ∴k=8,即8y x=, ∵OA =OC+AC =2+4=6,∴F(6,43), 故答案为:46,3⎛⎫ ⎪⎝⎭.【点睛】此题主要考查待定系数法求反比例函数解析式,然后根据函数解析式确定点的坐标,熟练掌握待定系数法是解题关键.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.【答案】2212+【解析】【分析】BFA'的周长=FA'+BF+BA'=AF+BF+BA'=AB+BA'=10+BA',推出当BA'最小时,BFA'的周长最小,由此即可求解.【详解】解:如图,作BH AD ⊥于点,连接BP ,∵10,16,60AB AD A ==∠=︒,8,5PA AH ==,853PH ∴=-=, 5BH =PB ∴===由翻折可知'8,'PA PA FA FA ===,'BFA ∴的周长''''10'FA BF BA AF BF BA AB BA BA =++=++=+=+, 当'BA 的长度最小时,'BFA 的周长最小,''BA PB PA ∴≥-,'8BA ∴≥,'BA ∴的最小值为8,'BFA ∴的周长的最小值为1082+=.故答案为:2.【点睛】此题主要考查平行四边形的性质,翻折不变性,勾股定理,含30度直角三角形的性质等,灵活运用性质是解题关键.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()103.146012cos π-⎛⎫+⎭- ⎪⎝︒. 【答案】12-【解析】【分析】 根据负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值即可求解.【详解】解:原式12412=-++ 12=- 【点睛】此题主要考查负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值,熟练掌握法则是解题关键.16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 【答案】a【解析】【分析】 根据分式的加减乘除混合运算法则即可求解.【详解】解:原式()()()()()22211122111111a a a a a a a a a a a a a -+--+-÷=⋅=-++--. 【点睛】此题主要考查分式的加减乘除运算,熟练掌握运算法则是解题关键.17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)【答案】见解析【解析】【分析】作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【详解】解:如图,作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【点睛】此题主要考查旋转的性质,尺规作图,正确理解作图依据是解题关键.18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .【答案】见解析【解析】【分析】根据//FD AC ,得到ACB DFE ∠=∠,再根据BF CE =,得到BC EF =,加上AC FD =,得到ACB DFE △≌△,进而得到B E ∠=∠,即可证明.【详解】证明://FD AC ,ACB DFE ∴∠=∠,BF CE =,BF FC CE FC ∴+=+BC EF ∴=.,AC FD =,ACB DFE ∴≌,B E ∴∠=∠//∴.AB DE【点睛】此题主要考查全等三角形的判定和性质、平行线的性质和判定,灵活运用判定定理和性质定理是解题关键.19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.【答案】(1)见解析;(2)5天,6天;(3)600人【解析】【分析】(1)根据9天和9天以上的3人,占5,可求得总人数为60人,求出8天的人数即可补全条形统计图;(2)根据众数和中位数的概念即可求解.(3)先求出7天、8天、9天和9天以上的人数的比例,再用样本估计总体即可求解.÷=(人),【详解】解:()135%60----=(人),6024121536补全统计图如图所示:()2参加”网络自习室”自主学习天的人数最多,所以众数是天;60人中,按照参加”网络自习室”自主学习的天数从少到多排列,第人和人都是天,所以中位数是天; ()15633150060060++⨯=(人) 答:估计全校初三可能有600名学生参加”网络的自习室”自主学习的天数不少于天.【点睛】此题主要考查条形统计图与扇形统计图的综合应用,众数、中位数和用样本估计总体,正确理解概念是解题关键.20.如图1所示是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.231.732≈≈,最后结果取整数)【答案】37米【解析】【分析】根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米,在'Rt PO B 中,'90,'60PO B PBO ∠=︒∠=︒,得到3''3O B P =,在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,得到''O D O P =,进而得到3''1'15BD O D O B O P ⎛=-== ⎝⎭米,'35.4931O P =≈-米,最后根据''OP OO O P =+即可求解.【详解】解:根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米.在'Rt PO B 中,'90,'60,PO B PBO ∠=︒∠=︒3''3O B P ∴= 在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,''O D O P ∴=, 3''1'153BD O D O B O P ⎛∴=-=-= ⎝⎭米,'35.49O P ∴=≈米,''37.09OP OO O P ∴=+=米37≈米,答:”天下第一灯”的高度约为37米.【点睛】此题主要考查解直角三角形的应用,正确地构造直角三角形和解直角三角形是解题关键. 21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.【答案】(1) 4.65137.7y x =-;(2)3300m【解析】【分析】(1)根据实际问题列出函数表达式即可.(2)先判断用水量在哪一阶梯,再计算.详解】解:()()1 3.80162 4.65162y x =⨯+-,即 4.65137.7y x =-.()2由()1知,当162275x <≤时, 4.65137.7,y x =-当275x =时,1141.05y =.1141.051320.55y =<,该户居民2019年的年用水量在3275m 以上,终端水价为7.18元/3m .当275x >时,()1141.057.18275,y x =+-即7.18 833.45,y x =-7.18 833.451320.55,x∴-=解得300x=.答:该户居民2019年的年用水量为3300m.【点睛】此题主要考查根据实际问题列函数解析式,找出实际问题中的等量关系是解题关键.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.【答案】(1)图表见解析,14;(2)不公平,理由见解析【解析】【分析】(1)先用列表法列出所有可能的结果,再求概率.(2)比较两种结果的概率即可求解.【详解】解:()1列表如下从表格可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有种,所以两人抽取相同数字的概率为1 4()2不公平.从()1中表格可以看出,两人抽取数字和为的倍数的结果有种,两人抽取数字和为的倍数的结果有种, 所以甲获胜的概率为38,乙获胜的概率为31633816> 甲获胜的概率大,游戏不公平.【点睛】此题主要考查列表法或画树状图法求概率,正确理解概率的概念是解题关键.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 【答案】(1)相切,理由见解析;(2)35【解析】【分析】(1)连接BD ,根据90BAD ∠=︒,得出点在BD 上,即BD 是直径,进而得到90BCD ∠=︒,90DEC CDE ∠+∠=︒,再根据DEC BAC ∠=∠,得出90BAC CDE ∠+∠=︒,由同弧所对的圆周角相等,得到90BDC CDE ∠+∠=︒,即可求证.(2)根据90BAF BDE ∠=∠=︒,得到90F ABC FDE ADB ∠+∠=∠+∠=,由AB AC =,得到A ABC CB =∠∠,再根据ADB ACB ∠=∠,得到,ABC ADB F EDF ∠=∠∠=∠,进而得到6DE EF ==,再根据4,90CE BCD =∠=︒,得到2290,25DCE CD DE CE ∠=︒=-=90,BDE CD BE ∠=︒⊥,得到CDECBD ,最后根据对应边成比例即可求解. 【详解】解:()1DE 与O 相切.理由:如图,连接BD .90,BAD ∠=︒点在BD 上,即BD 是直径,90BCD ∴∠=︒,90DEC CDE ∴∠+∠=︒.,DEC BAC ∠=∠90BAC CDE ∴∠+∠=︒.,BAC BDC ∠=∠90,BDC CDE ∴∠+∠=︒90,BDE ∴∠=︒即BD DE ⊥.点在O 上,DE ∴是O 的切线.()290BAF BDE ∠=∠=︒.90F ABC FDE ADB ∴∠+∠=∠+∠=.,AB AC =ABC ACB ∴∠=∠.,ADB ACB ∠=∠,,ABC ADB F EDF ∴∠=∠∠=∠6.DE EF ∴==4,90CE BCD =∠=︒,2290,2 5.DCE CD DE CE ∴∠=︒=-=90,BDE CD BE ∠=︒⊥,,CDE CBD ∴ CD BD CE DE ∴= O ∴的直径256354BD ⨯== 【点睛】此题主要考查圆周角定理,勾股定理,切线的判定和相似三角形的判定及性质,熟练掌握判定定理和性质定理是解题关键.24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.【答案】(1)2y x 2x 3=-++;(2)点M 的坐标为17,24⎛⎫-⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭【解析】【分析】(1)利用待定系数法即可解决问题; (2)根据223tan 3m m MG MBA BG m-++∠==-,1tan 2BE BDE DE ∠==,由∠MBA=∠BDE ,构建方程即可解决问题.【详解】解:()1把点()()3,0,0,3B C 代入2,y x bx c =-++ 得到930,3,b c c -++=⎧⎨=⎩解得2,3,b c =⎧⎨=⎩抛物线的解析式为2y x 2x 3=-++.()2如图,作MG x ⊥轴于点,G 连接,BM 则90MGB ∠=︒.()2,23,M m m m -++223,3,MG m m BG m ∴=-++=-2233m m MG tan MBA BG m-++∴∠==- ()222314y x x x =-++=--+,顶点的坐标为()1,4 DE x ⊥∵轴,90,4,1DEB DE OE ∴∠=︒==()3,0B ,2BE ∴=12BE tan BDE DE ∴∠== ,MBA BDE ∠=∠223132m m m -++∴=-当点M 在轴上方时223132m m m -++=- 解得112m =-,23m =(舍弃), 17,24M ⎛⎫∴- ⎪⎝⎭当点M 在轴下方时,223132m m m -++=-- 解得123,32m m ==-(舍弃),点39,24M ⎛⎫-- ⎪⎝⎭综上所述,满足条件的点M 的坐标为17,24⎛⎫- ⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭ 【点睛】此题主要考查待定系数法求二次函数解析式和利用三角函数解直角三角形,熟练掌握二次函数的性质是解题关键.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.【答案】[问题发现]25;[问题解决]①出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②总造价的最小值为160010元,出口距直线OB 的距离为36665-米 【解析】【分析】 [问题发现]PAB 的底边一定,面积最大也就是P 点到AB 的距离最大,故当OP AB ⊥时底边AB 上的高最大,再计算此时PAB 面积即可.[问题解决]①根据四边形CODE 面积=CDO CDE S S +,求出CDE S △最大时即可,然后作'E H OB ⊥,证明COD OHE ',利用相似三角形的性质求出E H '即可;②先利用相似三角形将费用问题转化为CE+2DE=CE+QE ,求CE+QE 的最小值问题,然后利用相似三角形性质和勾股定理求解即可.【详解】解:[问题发现]:如图1,点运动至半圆中点时,底边AB 上的高最大,即' 5.P O r ==此时PAB △的面积最大,最大值为1105252⨯⨯=; [问题解决]①如图2,连接,CD 作OG CD ⊥,垂足为,G 延长OG 交AB 于点,则此时CDE △的面积最大.12,4,OA OB AC D ===为OB 的中点,8,6OC OD ∴==,在Rt COD 中,10, 4.8CD OG ==,'12 4.87.2GE ∴=-=,四边形CODE 面积的最大值为1168107.26022CDO CDE SS '+=⨯⨯+⨯⨯=, 作',E H OB ⊥垂足为, ''90,'90,E OH OE H E OH ODC ∠+∠=︒∠+∠='OE H ODC ∴∠=∠.又'90COD E HO ∠=∠=︒,CODOHE '∴, ''OD E H CD OE ∴= 6'1012E H ∴= '7.2E H ∴=,出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②铺设小路CE 和DE 的总造价为()2004002002.CE DE CE DE +=+如图3,连接,OE 延长OB 到点,Q 使12BQ OB ==,连接EQ在EOD △与QOE 中,EOD QOE =∠,且12OD OE OE OQ ==, ,EOD QOE ∴故2,QE DE =2CE DE CE QE ∴+=+,问题转化为求CE QE +的最小值,连接,CQ 交AB 于点,此时CE QE +取得最小值为CQ .在Rt COQ 中,8,24CO OQ ==,810CQ ∴= 故总造价的最小值为10作',E H OB ⊥垂足为,连接'OE .设',E H x =则3QH x =.在'Rt E OH 中,222'OH HE OE '+=,()22224312,x x ∴-+= 解得13666x -=,23666x +=舍去), 总造价的最小值为10OB 的距离为36665-米. 【点睛】此题考查圆的综合问题,涉及圆的基本性质,相似三角形的判定和性质,勾股定理等知识,综合程度较高,需要灵活运用知识,解题关键是:利用对称或相似灵活地将折线和转化为线段长,从而求折线段的最值.。

中考数学模拟试卷精选汇编:弧长与扇形面积附答案

中考数学模拟试卷精选汇编:弧长与扇形面积附答案

弧长与扇形面积一.选择题1.(2015·江苏江阴长泾片·期中)已知圆锥的底面半径为4cm ,高为3cm ,则圆锥的侧面积是 ( )A .20 cm 2B .20兀cm 2C .12兀cm 2D .10兀cm 2 答案:B2.(2015·江苏江阴青阳片·期中)圆锥的底面半径为2,母线长为4,则它的侧面积为 ( ▲ ) A .8π B .π12C .43πD .4π答案:A3.(2015·江苏江阴夏港中学·期中)一个圆锥底面直径为2,母线为4,则它的侧面积为( ) A .2π B .12πC . 4πD .8π答案:C4.(2015·江苏江阴要塞片·一模)圆锥的底面半径为2,母线长为4,则它的侧面积为 ( ▲ )A .4πB .8πC .16πD .43π答案:B5. (2015·湖南永州·三模)如图,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B 、E 是半圆弧的三等分点,弧BE 的长为32π,则图中阴影部分的面积为( )A .9π B .93πC .2323π−D .32233π−答案:D 解析:连接OB .OE 、BE ,,因为B .E 是半圆弧的三等分点,所以∠BOE =60°,根据同底等高的三角形面积相等可知△OBE 和△ABE 的面积相等,所以阴影部分的面积等于△ABC 减去扇形OBE 的面积.因为弧BE的长为32π,设半圆的半径为r ,根据弧长公式1806032r ⨯⨯=ππ,解得r =2,323221OBE 2ππ=⨯⨯=扇形S .根据圆周角的性质可知,∠DAB =∠EAB =30°,连接BD ,则△ABD 是直角三角形,AD =2r =4,cos ∠DAB =ADAB ,AB 在Rt △ABC 中,得BC 由正切计算得AC =3,所以S △ABC所以阴影面积32π.6. (2015•山东滕州张汪中学•质量检测二)用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图1所示),则这个纸帽的高是( )A .2cmB .32cmC .42cmD . 4cm答案:C ;7. (2015·江西省·中等学校招生考试数学模拟)如图所示,正三角形ABC 中,边AC 渐变成»AC ,其它两边长度不变,则ABC Ð的度数的大小由60 变为( ) A . 180p B . 120p C . 90p D . 60p答案:选A .命题思路:考查弧长的计算公式的运用8. (2015·山东省枣庄市齐村中学二模)已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( ) A .2.5B .5C .10D .15答案:C9. (2015•山东济南•模拟)扇形的半径为30cm ,圆心角为120°,此扇形的弧长是A .20πcmB .10πcmC .10 cmD .20 cm 答案:A10. (2015·江苏无锡北塘区·一模)已知圆柱的底面半径为2cm ,高为4cm ,则圆柱的侧面积是( ▲ )A .16 cm 2B .16π cm 2C .8π cm 2D .4π cm 2 答案: B11. (2015·无锡市宜兴市洑东中学·一模)圆锥的底面半径为2,母线长为4,则它的侧面积为 ( ▲ )A .4πB .8πC .16πD .43π答案:B12.(2015·锡山区·期中)一个圆锥形的圣诞帽底面半径为12cm ,母线长为13cm ,则圣诞帽的表面积为(▲)A .312π2cm B .156π2cm C .78π2cm D .60π2cm 答案:B二.填空题1. (2015·江苏高邮·一模)半径为6 cm ,圆心角为120°的扇形的面积为 ▲ . 答案:12π2. (2015·江苏高邮·一模)如图,已知正方形ABCD 的顶点A 、B 在⊙O 上,顶点C 、D 在⊙O 内,将正方形ABCD 绕点逆时针旋转,使点D 落在⊙O 上.若正方形ABCD 的边长和⊙O 的半径均为6 cm ,则点D 运动的路径长为 ▲ cm .答案:π;3. (2015·江苏常州·一模)若扇形的半径为3cm ,扇形的面积为2π2cm ,则该扇形的圆心角为 ▲ °,弧长为 ▲ cm . 答案:80,34π 4. (2015·吉林长春·二模)答案:π5.(2015·江苏江阴·3月月考)如图,AB 、CD 是⊙O 的两条互相垂直的直径,点O 1、O 2、O 3、O 4分别OA 、OB 、OC 、OD 的中点,若⊙O 的半径是2,则阴影部分的面积为____________________.A BCD答案:86.(2015·江苏江阴要塞片·一模)如图,正△ABC 的边长为9cm ,边长为3cm 的正△RPQ 的顶点R 与点A 重合,点P ,Q 分别在AC ,AB 上,将△RPQ 沿着边AB ,BC ,CA 连续翻转(如图所示),直至点P 第一次回到原来的位置,则点P 运动路径的长为____▲____cm .(结果保留π)答案:6π7.( 2015·广东广州·二模)如图5,菱形ABCD 的边长为2,∠ADC =120°,弧CD 是以 点B 为圆心BC 长为半径的弧.则图中阴影部分的面积为 ▲ (结 果保留π). 答案:23π8.(2015•山东滕州东沙河中学•二模)若一个圆锥的轴截面是一个腰长为6 cm ,底边长为2 cm 的等腰三角形,则这个圆锥的表面积为____cm 2. 答案:7π;9.(2015•山东滕州羊庄中学•4月模拟)已知扇形的弧长为3πcm ,面积为3πcm 2,扇形的半径是 cm .答案:2;10. (2015·网上阅卷适应性测试)将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ cm .答案:42第1题图(图5)11. ( 2015·呼和浩特市初三年级质量普查调研)已知圆锥的母线长度为8,其侧面展开图的半圆,则这个圆锥的高为_____________. 答案:4312. (2015·辽宁盘锦市一模)在半径为2的圆中,弦AB 的长为2, 则弧的长等于答案:32π 13.(2015·辽宁东港市黑沟学校一模,3分)已知圆锥底面圆的半径为6cm ,它的侧面积为60πcm 2,则这个圆锥的高是____________cm . 答案: 814.(2015·山东省东营区实验学校一模)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将 Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ︵,则图中阴影部分的面积是____.答案:π615.(2015·广东中山·4月调研)如图,在△ABC中,CA=CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为 _________ .答案:214−π16.(2015·山东枣庄·二模)如图,△ABC 是边长为2的等边三角形,D 为AB 边的中点,以CD 为直径画圆,则图中影阴部分的面积为____________(结果保留π).答案:5384π− 17. (2015•山东青岛•模拟)如图,在等腰直角三角形ABC 中,AB =BC =2 cm ,以直角顶点B 为圆心,AB 长为半径画弧,再以AC 为直径画弧,两弧之间形成阴影部分.阴影部分面积为 cm 2. 答案:218. (2015•山东济南•一模)图①所示的正方体木块棱长为6cm ,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A 爬行到顶点B 的最短距离为____________cm . 答案:(3+3)19.(2015·江苏扬州宝应县·一模)如图,小正方形的边长均为1,扇形OAB 是某圆锥的侧面展开图,则这个圆锥的底面周长为 ▲ .(结果保留π)答案:2π20.(2015·江苏南京溧水区·一模)圆锥的底面直径是6,母线长为5,则圆锥侧面展开图的圆心角是 ▲ 度. 答案: 216;21.(2015·江苏无锡崇安区·一模)已知扇形的圆心角为120º,半径为6cm ,则扇形的弧长为 ▲ cm.(第16题)AOB答案: 4π22.(2015·无锡市南长区·一模)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积...是 . 答案:3π23.(2015·无锡市宜兴市洑东中学·一模)若一个圆锥底面圆的半径为3,高为4,则这个圆锥的侧面积为 . 答案:15π24.(2015·无锡市新区·期中)已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是 ▲ . 答案:10πcm 225.(2015·无锡市新区·期中)如图,扇形OMN 与正三角形ABC ,半径OM 与AB 重合,扇形弧MN 的长为AB 的长,已知AB =10,扇形沿着正三角形翻滚到首次与起始位置相同,则点O 经过的路径长 ▲ .答案:37010π+三.解答题 1.(2015·江苏江阴·3月月考)如图四边形ABCD 中,已知∠A =∠C =30°,∠D =60°,AD =8,CD =10.(1)求AB 、BC 的长(2)已知,半径为1的⊙P 在四边形ABCD 的外面沿各边滚动(无滑动)一周,求⊙P 在整个滚动过程中所覆盖部分图形的面积.答案:解:(1)AB =23BC =43ABCABCP(2)在⊙P 的整个滚动过程中,圆心P 的运动路径长为18+167333π+; 所以⊙P 在整个滚动过程中,所覆盖部分图形的面积为36+3214333π+;2.(2015·江苏江阴长泾片·期中)如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.等边△ABC 的边长为1,它的一边AC 在MN 上,且顶点A 与M 重合.现将等边△ABC 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动.(1)请在所给的图中,画出顶点A 在等边△ABC 整个翻滚过程中所经过的路线图; (2)求等边△ABC 在整个翻滚过程中顶点A 所经过的路径长; 答案: 解:(1)如右图所示:……………………………3分 (2)点A 所经过的路线长π311……………………………6分3.(2015·邗江区·初三适应性训练)如图,⊙O 是△ABC 的外接圆,AB 是直径,作OD ∥BC 与过点A 的切线交于点D ,连接DC 并延长交AB 的延长线于点E . (1)求证:DE 是⊙O 的切线;(2)若AE =6,CE =32,求线段CE 、BE 与劣弧BC 所围成的图形面积.(结果保留根号和π)答案:解:(1)连结OC ,证得∠AOD =∠COD ;证得△AOD ≌△COD (SAS ); 第3题证得∠OCD =∠OAD =90°; 则DE 是⊙O 的切线.(2)设半径为r ,在Rt △OCE 中,OC 2+CE 2=OE 2()()22236r r ∴+=−2,解得2r =.︒=∠∴=∠60,3tan COE COE π32=∴COB S 扇形∴所求图形面积为π3232−=−∆COB COE S S 扇形4. (2015·辽宁东港市黑沟学校一模,12分)如图,⊙O 是△ACD 的外接圆,AB 是直径,过点D 作直线DE ∥AB ,过点B 作直线BE ∥AD ,两直线交于点E ,如果∠ACD =45°,⊙O 的半径是4cm(1)请判断DE 与⊙O 的位置关系,并说明理由; (2)求图中阴影部分的面积(结果用π表示).解:(1)DE 与⊙O 相切.理由如下: 连结OD ,则∠ABD =∠ACD =45°, ∵AB 是直径, ∴∠ADB =90°,∴△ADB 为等腰直角三角形, 而点O 为AB 的中点, ∴OD ⊥AB , ∵DE ∥AB , ∴OD ⊥DE , ∴DE 为⊙O 的切线; (2)∵BE ∥AD ,DE ∥AB , ∴四边形ABED 为平行四边形,∴DE=AB=8cm,∴S阴影部分=S梯形BODE﹣S扇形OBD=(4+8)×4﹣=(24﹣4π)cm2.5.(2015·山东省济南市商河县一模)(本小题满分4分)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA.求:劣弧BC的长.(结果保留π)解:连接OC,OB,∵AB为圆O的切线,∴∠ABO=90°,------------------------------------1分在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,----------------------------2分∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°------------------------------------------------3分∴劣弧长为=π.----------------------------------------4分6. (2015·广东从化·一模)(本小题满分12分某公园管理人员在巡视公园时,发现有一条圆柱形的输水管道破裂,通知维修人员到场检测,维修员画出水平放置的破裂管道有水部分的截面图(如图9).(1)请你帮忙补全这个输水管道的圆形截面(不写作法,但应保留作图痕迹);12cm,水面最深地方的高度为(2)维修员量得这个输水管道有水部分的水面宽AB=36cm,请你求出这个圆形截面的半径r及破裂管道有水部分的截面图的面积S。

中考数学模拟试卷精选汇编:不等式(组)答案

中考数学模拟试卷精选汇编:不等式(组)答案

不等式(组)一.选择题1.(2015·吉林长春·二模)答案:D2..(2015·湖南永州·三模)已知点P (3﹣m ,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是()A .B.C.D .答案:A 解析:已知点P (3﹣m ,m ﹣1)在第二象限,3﹣m <0且m ﹣1>0,解得m >3,m >1,故选:A .3.(2015·江苏江阴青阳片·期中)不等式组21318x x --⎧⎨->⎩≥的解集在数轴上可表示为(▲)A .B.C. D.[w^*#w~*************]答案:D4.(2015·安徽省蚌埠市经济开发·二摸)不等式组215,3112x x x -<⎧⎪⎨-+≥⎪⎩的解集在数轴上表示正确的是【】答案:A5.(2015·广东广州·一模)若x >y ,则下列式子中错误的是()A .x -3>y -3 B.x 3>y3C .x +3>y +3D .-3x >-3y答案:A6.(2015·广东高要市·一模)不等式组⎩⎨⎧<≥593x x 的整数解共有(▲)A .1个B .2个C .3个D .4个答案:B7.(2015•山东潍坊•第二学期期中)不等式的解集在数轴上表示为A. B. C. D.答案:D ;8.+2>5,-2x≥1的解在数轴上表示为答案:C9.(2015•山东青岛•一模)从下列不等式中选择一个与x +1≥2组成不等式组,若要使该不等式组的解集为x ≥1,则可以选择的不等式是A .x >0B .x >2C .x <0D .x <2答案:A二.填空题1.(2015·湖南岳阳·调研)不等式5x x -<的解集是;答案:52x >2.(2015·江西赣三中·2014—2015学年第二学期中考模拟)不等式组的解集是.答案:x>3.(2015·江西省·中等学校招生考试数学模拟)不等式组⎪⎩⎪⎨⎧≥+<--x xx 1222的解集是.答案:1 2.x -<≤4.(2015·网上阅卷适应性测试)如图,函数2y x =-和y kx b =+的图像相交于点(,3)A m ,则关于x 的不等式02x b kx >++的解集为____▲_______.答案:23->x 5.(2015·江苏无锡北塘区·一模)已知关于x 的方程2x +4=m -x 的解为负数,则m 的取值范围是▲.答案:m <46.(2015·无锡市南长区·一模)已知0≤x ≤1,若x -2y =6,则y 的最小值是____________.答案:-3三.解答题1.(2015·江苏高邮·一模)(本题满分8分)解:(1)解不等式①得:x ≥-1解不等式②得:x <3………………………2分∴不等式组的解集为:-1≤x<3………………………2分(2)原式=11a -………………………2分当x =-3时,原式=14-………………………2分第3题2.(2015·江苏常州·一模)解不等式组:⎩⎨⎧+-≤+<-)173252x x x (答案:解不等式组:252371)x x x -<⎧⎨+≤-+⎩(①②解:解不等式①得:25->x ------------------------------------------------------------2′解不等式②得:910-≤x -----------------------------------------------------------4′∴原不等式组的解集是91025-≤<-x .53.(2015·江苏江阴·3月月考)解不等式组212(3)33x x x +≥⎧⎨+->⎩,,答案:(1)解:由x +2≥1得x ≥-1,由2x +6-3x 得x <3,∴不等式组的解集为-1≤x <3.4.(2015·江苏江阴·3月月考)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?答案:解:(1)设今年甲型号手机每台售价为x 元,由题意得,80000x +500=60000x ,解得x =1500.经检验x =1500是方程的解.故今年甲型号手机每台售价为1500元.(2)设购进甲型号手机m 台,由题意得,17600≤1000m +800(20﹣m )≤18400,8≤m ≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案.(3)方法一设总获利W 元,则W =(1500﹣1000)m +(1400﹣800﹣a )(20﹣m ),W =(a ﹣100)m +12000﹣20a .所以当a =100时,(2)中所有的方案获利相同.5.(2015·江苏江阴长泾片·期中)解不等式组211432x x x+>-⎧⎨-≤-⎩答案:解不等式①,得x >-1.解不等式②,得1x ≤.所以,不等式组的解集是-1<x 1≤.6.(2015·江苏江阴夏港中学·期中)解不等式组:()⎪⎩⎪⎨⎧<-+≤+321234xx x x 答案:解:由(1)得,1-≥x ………………….1分由(2)得,x <3……………………2分不等式组的解集是31<≤-x ……………4分7.(2015·江苏江阴要塞片·一模)解不等式组:()②①⎪⎩⎪⎨⎧≤-+≤+321234xx x x 答案::由①得:x ≥-1…1分由②得:x ≤3……2分∴-1≤x ≤3……4分8.(2015·北京市朝阳区·一模)解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,答案:解:解不等式①,得2->x (2)分解不等式②,得x <1.………………………………………………………………4分∴不等式组的解集是x <-2<1.…………………………………………………5分9.(2015·合肥市蜀山区调研试卷)解不等式3(1)64x x +-≤,并把解集在数轴上表示出来.第15题图答案:解:3364x x +-≤……………………………………2分3x -≤……………………………………………4分3x ≥-……………………………………………6分不等式解集在数轴上表示为:……………………………8分10.(2015·安庆·一摸)某加工厂投资兴建2条全自动生产线和1条半自动生产线共需资金26万元,而投资兴建1条全自动生产线和3条半自动生产线共需资金28万元(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2015年每条全自动生产线的毛利润为26万元,每条半自动生产线的毛利润为16万元.这-年,该加工厂共投资兴建10条生产线,若想获得不少于120万元的纯利润...,则2015年该加工厂至少需投资兴建多少条全自动生产线?(纯利润=毛利润-成本)答案:解:(1)设每条全自动生产线的成本为x 万元,每条半自动生产线的成本为y 万元,根据题意,得⎩⎨⎧=+=+283262y x y x ,解得⎩⎨⎧==610y x .答:每条全自动生产线的成本为10万元,每条半自动生产线的成本为6万元.…………5分(2)设2015年该加工厂需兴建全自动生产线a 条,根据题意,得(26-10)a +(16-6)(10-a )≥120,解得a ≥331,由于a 是正整数,所以a 至少取4.即2015年该加工厂至少需投资兴建4条全自动生产线.…………10分11.“(2015·合肥市蜀山区调研试卷)大湖名城·创新高地·中国合肥”,为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?答案:解:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.………1分设九(1)班共有x 人去旅游,则人均费用为[100﹣2(x ﹣30)]元,由题意得:x [100﹣2(x ﹣30)]=3150……………………4分整理得x 2﹣80x +1575=0,解得x 1=35,x 2=45……………………6分当x =35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x =45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.…7分答:该班共有35名同学参加了研学旅游活动.…………8分12.(2015·福建漳州·一模)(满分9分)福建省第15届省运会将于2014年10月在漳州市举行,体训基地欲购买单价为100元的排球和单价为300元的篮球共100个.(1)如果购买两种球的总费用不超过...24000元,并且篮球数不少于...排球数的2倍,那么有哪几种购买方案?(2)从节约开支的角度来看,你认为采用哪种方案最合算?解:(1)设购买排球x 个,则购买篮球的个数是(100-x )个根据题意:⎩⎨⎧≤-+≥-24000)100(3001002100x x xx …………………2分解得:30≤x ≤3133…………………3分∵x 为整数,∴x 取30,31,32,33…………………4分∴有4种购买方案:方案①:排球30个,篮球70个;方案②:排球31个,篮球69个;方案③:排球32个,篮球68个;方案④:排球33个,篮球67个.……………5分(2)设购买篮球和排球的总费用为y 元则:)100(300100x x y -+=…………………7分即:30000200+-=x y 0200<-=k ∴增大而减小随x y …………………8分最小时,当y 33=∴x ∴方案④最合算…………………9分13.(2015·广东广州·二模)解不等式组:231821x x x +>⎧⎨-≤-⎩,并把解集在数轴上表示出来.解:231821x x x +>⎧⎨-≤-⎩解不等式①,得1x >---------------------------------------------------------1分解不等式②,得3x ≥.-------------------------------------------------------2分所以此不等式组的解集为:3x ≥.----------------------------------------------4分不等式①②的解集在数轴上表示为:(图略)--------------------------------------------6分14.(2015·广东广州·一模)x +1,,并在数轴上表示出其解集.解:3x -1>2x +1,①x -32≤1,②由①,得x >3.由②,得x ≤5.∴不等式组的解集为3<x ≤5.解集在数轴上表示如图.15.(2015·广东潮州·期中)解不等式组:202113x x -<⎧⎪+⎨≥⎪⎩,并把它的解集在数轴上表示出来.解不等式①,得:2x <,………2分解不等式②,得:1x ≥,………4分∴不等式组的解集为:12x ≤<,…………………5分在数轴表示为:…………………6分16.(2015•山东滕州张汪中学•质量检测二)(9分)解不等式组⎪⎩⎪⎨⎧<-+≥+,22),12(232x x x x 并写出不等式组的整数解.答案:解:由不等式(1)得:12x ≤………………………………2分由(2)得x >-2………………………………2分∴此不等式组的解集是:-2<12x ≤………………………………8分∴此不等式组的整数解是:-1,0.………………………………9分17.(2015•山东潍坊广文中学、文华国际学校•一模)商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案.答案:解:(1)设该商场能购进甲种商品x 件,根据题意,得1535(100)2700x x +-= ----------------------------3分解得,40x =,乙种商品:1004060-=(件)答:该商品能购进甲种商品40件,乙种商品60件.----------4分(2)设该商场购进甲种商品a 件,则购进乙种商品(100)a -件.根据题意,得(2015)(4535)(100)750(2015)(4535)(100)760a a a a -+--⎧⎨-+--⎩≥≤----------------------6分因此,不等式组的解集为4850a ≤≤根据题意,a 的值应是整数,48a ∴=或49=a 或50a =---------8分∴该商场共有三种进货方案:方案一:购进甲种商品48件,乙种商品52件,方案二:购进甲种商品49件,乙种商品51件,方案三:购进甲种商品50件,乙种商品50件.--------------10分18.(2015·呼和浩特市初三年级质量普查调研)(5分)已知不等式组523(1)1222x x x a x ->+⎧⎪⎨--⎪⎩≤①②的解包含两个正整数,求a 的取值范围.答案:512x >解:解不等式()得:,2x a ≤解不等式()得:,45a ≤<由数轴可以看出当时不等式组的解集包含两个正整数19.(2015·山东省济南市商河县一模)(本小题满分3分)解不等式:236+>-x x 答案:(1)x-6>3x+2解:x-3x>2+6,-2x>8解得:x<-420.(2015·山东省东营区实验学校一模)解不等式组,并写出不等式组的整数解.解:解3x+2≤2(x+3)得出:x≤4,解2132x x->得出:x>2,因此不等式的解集是2<x ≤4所以整数解有两个,即是3与4.21.(2015·辽宁盘锦市一模)24.(12分)草梅是我地区的特色时令水果,草梅一上市,水果店的老板用1200元购进一批草梅,很快售完;老板又用2500元购进第二批草梅,所购箱数是第一批的2倍,但进价比第一批每箱多了5元.(1)第一批草梅每箱进价多少元?(2)老板以每箱150元的价格销售第二批草梅,售出80%后,为了尽快售完,决定打折促销,要使第二批草梅的销售利润不少于320元,剩余的草梅每箱售价至少打几折?(利润=售价﹣进价)解:(1)设第一批草梅每件进价x元,则×2=,解得x=120.经检验,x=120是原方程的根.答:第一批草梅每箱进价为120元;(2)设剩余的草梅每箱售价打y折.则:×150×80%+×150×(1﹣80%)×0.1y﹣2500≥320,解得y≥7.答:剩余的草梅每箱售价至少打7折.22.(2015·辽宁东港市黑沟学校一模,12分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过600元,求这所中学最多可以购买多少个篮球?解:(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100﹣m)≤600,解得:m≤33,∵m是整数,∴m 最大可取33.答:这所中学最多可以购买篮球33个23.(2015山东·枣庄一模)解不等式组:⎪⎩⎪⎨⎧≥+<-②①131202x x ,并把它的解集在数轴上表示出来.答案:解:解不等式①,得:2x <,解不等式②,得:1x ≥,∴不等式组的解集为:12x ≤<,在数轴表示为:24.(2015·山东枣庄·二模)先化简,再求值:22151()939x x x x x x --÷----,其中x 是不等式组35157332x x x x -≤+⎧⎪⎨+≤+⎪⎩的整数解.答案:解:原式1(3)(51)=3)(3)(3)(3)x x x x x x x x -+--÷+-+-(2121=3)(3)(3)(3)x x x x x x x --+÷+-+-(213)(3)=3)(3)(1)x x x x x x -+-⋅+--((11x =-6分解得不等式组35157332x x x x -≤+⎧⎪⎨+≤+⎪⎩的解集为13x ≤≤123x x =∴ 又为整数,,,13x x ≠≠ 又且2x =∴8分12121x ===-当时,原式10分25.(2015•山东东营•一模)解不等式组,并写出不等式组的整数解.答案:2<x ≤4;3和426.(2015•山东济南•网评培训)解不等式1233x x +-<,并把解集在数轴上表示出来.解:3(23)1x x -<+.691x x -<+.510x <.2x <.∴原不等式的解集是2x <.它在数轴上的表示如图:-143210-2-3-427.(2015•山东济南•一模)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.解:设车间每天安排x 名工人生产甲种产品,其余工人生产乙种产品.根据题意可得,12x ×100+10(10﹣x )×180≥15600,解得;x ≤4,∴10﹣x ≥6,∴至少要派6名工人去生产乙种产品才合适.28.(2015•山东东营•一模)某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:,解得:,答:A 、B 两种型号电风扇的销售单价分别为250元、210元;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台.依题意得:200a +170(30﹣a )≤5400,解得:a ≤10.答:超市最多采购A 种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a +(210﹣170)(30﹣a )=1400,解得:a =20,∵a >10,∴在(2)的条件下超市不能实现利润1400元的目标.29.(2015-2)≤4,x -1..答案:解:解不等式1,得x ≥1,……1分解不等式2,得x <4……2分∴不等式组的解集是1≤x <4……4分30.(2015·江苏南京溧水区·一模)3x >18,-x -22.并写出不等式组的整数解.答案:解:解不等式①,得x >133;…………………………2分解不等式②,得x ≤6.…………………………4分所以原不等式组的解集为133<x ≤6.…………………5分它的整数解为5,6.…………………………………6分31.(2015·江苏无锡北塘区·一模)-2)≤4,x -1..答案:解:解不等式1,得x ≥1,……1分解不等式2,得x <4……2分∴不等式组的解集是1≤x <4……4分32.(2015·江苏扬州宝应县·一模)解不等式组54312125x x x x +>⎧⎪--⎨⎪⎩,≤.答案:解:由(1)得:2x >-;…………………………………3分由(2)得:3x ≤-;…………………………………6分所以:原不等式组的解集是:23x -<≤.…………………………………8分33.(2015·江苏南菁中学·期中)化简:31922+--a a a 答案:(2)原式=)3)(3(3)3)(3(2-+---+a a a a a a …………1分=)3)(3()3(2-+--a a a a …………2分=)3)(3(3-++a a a …………3分=31-a …………4分34.(2015·无锡市南长区·一模)解不等式组:+3≥x ,x -1)<8-x .答案:+3≥x ,x -1)<8-x .解:解不等式①得:x ≤3解不等式②得:x >-2∴此不等式组的解集为-2<x ≤335.(2015·无锡市宜兴市洑东中学·一模)解不等式组:⎪⎩⎪⎨⎧-≤-〉-121312x x x x .答案:解:由⎪⎩⎪⎨⎧-≤-〉-121312x x xx ⇒211132x x >x x --≤-+⇒14x >x ≤14<x ⇒≤36.(2015·无锡市宜兴市洑东中学·一模)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?答案:解:(1)设y与x之间的函数关系式为y=kx+b,由函数图象,得,……(1分)解得:,∴y与x之间的函数关系式为y=﹣x+300;……(2分)(2)∵y=﹣x+300;∴当x=120时,y=180.……(3分)设甲品牌进货单价是a元,则乙品牌的进货单价是2a元,由题意,得120a+180×2a=7200,解得:a=15,……(4分)∴乙品牌的进货单价是30元.……(5分)答:甲、乙两种品牌的文具盒进货单价分别为15元,30元;(3)设甲品牌进货m个,则乙品牌的进货(﹣m+300)个,由题意,得,解得:180≤m≤181,……(6分)∵m为整数∴m=180,181.……(7分)∴共有两种进货方案:方案1:甲品牌进货180个,则乙品牌的进货120个;方案2:甲品牌进货181个,则乙品牌的进货119个;……(8分)设两种品牌的文具盒全部售出后获得的利润为W 元,由题意,得W =4m +9(﹣m +300)=﹣5m +2700.……(9分)∵k =﹣5<0,∴W 随m 的增大而减小,∴m =180时,W 最大=1800元.……(10分)37.(2015,…………①<3x .…②,…………①<3x .…②解:由①得2≤x 由②得2->x 故原不等式组的解集为22≤<-x 38.(2015·无锡市新区·期中)为了迎接无锡市排球运动会,市排协准备新购一批排球.(1)张会长问小李:“我们现在还有多少个排球?”,小李说:“两年前我们购进100个新排球,由于训练损坏,现在还有81个球.”,假设这两年平均每年的损坏率相同,求损坏率.(2)张会长说:“我们协会现有训练队是奇数个,如果新购进的排球,每队分8个球,新球正好都分完;如果每队分9个球,那么有一个队分得的新球就不足6个,但超过2个.”请问市排协准备新购排球多少个?该协会有多少个训练队?(3)张会长要求小李去买这批新排球,小李看到某体育用品商店提供如下信息:信息一:可供选择的排球有A 、B 、C 三种型号,但要求购买A 、B 型号数量相等.信息二:如表:设购买A 、C 型号排球分别为a个、b 个,请你能帮助小李制定一个购买方案.要求购买总费用w (元)最少,而且要使这批排球两年后没有损坏的个数不少于27个.型号每个型号批发单价(元)每年每个型号排球的损坏率A 300.2B 200.3C500.1答案:解:(1)由题意可设损坏率为x ,∴()8111002=-x .(1分)解得:1.01=x ,9.12=x (不合题意,舍去)(2分)答:损坏率为10%(3分)(2)设有x 个训练队,则有8x 个排球(4分).∴()61982<--<x x (5分)解之3<x <7∵有奇数个训练队∴x 取5答:有5个训练队,40个排球。

数学中考综合模拟试卷(带答案)

数学中考综合模拟试卷(带答案)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________时间90分钟满分100分一.选择题(共10小题,满分30分,每小题3分)1.﹣的相反数是()A.﹣B.C.﹣D.2.下列选项中的图标,属于轴对称图形的是()A.B.C.D.3.某班学习小组的6名同学在一次数学测试中的成绩分别是:95,97,90,95,85,74,则这组数据的众数是() A.90B.95C.97D.854.下列计算正确的是()A.b3•b3=2b3B.(x+2)(x﹣2)=x2﹣2C.(a+b)2=a2+b2D.(﹣2a)2=4a25.如图,在△ABC中,∠BAC=45°,∠C=15°,将△ABC绕点A逆时针旋转α角度(0°<α<180°)得到△ADE,若DE∥AB,则α的值为()A.50°B.55°C.60°D.65°6.尺规作图作角的平分线,作法步骤如下:①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.则上述作法的依据是()A.SSS B.SAS C.AAS D.ASA7.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后.得到的直线的函数关系式为()A.y=﹣2x+5B.y=﹣2x﹣5C.y=﹣2x+1D.y=﹣2x+78.如图,将一块三角板叠放在直尺上,若∠1=21°,则∠2=()A.69°B.70°C.71°D.72°9.为响应“科教兴国”的战略号召,某学校计划成立创客实验室,现需购买航拍无人机和编程机器人.已知购买2架航拍无人机和3个编程机器人所需费用相同,购买4个航拍无人机和7个编程机器人共需3480元.设购买1架航拍无人机需x元,购买1个编程机器人需y元,则可列方程组为()A.B.C.D.10.如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D 从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.分解因式:2a2﹣18=.12.一个正多边形的每一个内角都是140°,则这个正多边形的边数是.13.如图,圆锥的母线长SA=3,底面圆的周长是2π,则圆锥的侧面积是.14.已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+3x1x2+x22的值是.15.如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD 的中点,连接GH,则GH的长度为.三.解答题(共7小题,满分55分)16.(5分)计算:2﹣1+sin30°+﹣(﹣tan60°)0.17.(6分)解不等式组:.18.(8分)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了名学生,扇形统计图中C选项对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?19.(8分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.17,≈1.41,结果精确到0.1)20.(8分)如图,在Rt△ABC中,∠B=90°.以AB为直径作⊙O,交AC于点D,连接BD.作∠ACB平分线,交BD于点F,交AB于点E.(1)求证:BE=BF.(2)若AB=6,∠A=30°,求DF的长.21.(10分)已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kx+b≤的解集.22.(10分)如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点(﹣1,0)与y轴交于点B(0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB于点N,交抛物线于点P.(1)分别求出抛物线和直线AB的函数表达式;(2)连接P A、PB,求△P AB面积的最大值,并求出此时点P的坐标.(3)如图2,点E(2,0),将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+E'B的最小值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.﹣的相反数是()A.﹣B.C.﹣D.【解答】解:﹣的相反数是:.故选:D.2.下列选项中的图标,属于轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意.故选:A.3.某班学习小组的6名同学在一次数学测试中的成绩分别是:95,97,90,95,85,74,则这组数据的众数是() A.90B.95C.97D.85【解答】解:这组数据中出现次数最多的是95,出现2次,所以这组数据的众数为95,故选:B.4.下列计算正确的是()A.b3•b3=2b3B.(x+2)(x﹣2)=x2﹣2C.(a+b)2=a2+b2D.(﹣2a)2=4a2【解答】解:A、b3•b3=b6,此选项错误;B、(x+2)(x﹣2)=x2﹣4,此选项错误;C、(a+b)2=a2+2ab+b2,此选项错误;D、(﹣2a)2=4a2,此选项正确;故选:D.5.如图,在△ABC中,∠BAC=45°,∠C=15°,将△ABC绕点A逆时针旋转α角度(0°<α<180°)得到△ADE,若DE∥AB,则α的值为()A.50°B.55°C.60°D.65°【解答】解:∵在△ABC中,∠BAC=45°,∠C=15°,∴∠ABC=180°﹣∠BAC﹣∠C═180°﹣45°﹣15°=120°,∵将△ABC绕点A逆时针旋转α角度(0<α<180°)得到△ADE,∴∠ADE=∠ABC=120°,∵DE∥AB,∴∠ADE+∠DAB=180°,∴∠DAB=180°﹣∠ADE=60°∴旋转角α的度数是60°,故选:C.6.尺规作图作角的平分线,作法步骤如下:①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.则上述作法的依据是()A.SSS B.SAS C.AAS D.ASA【解答】解:连接PC,PD..由作图可知,OC=OD,PC=PD,在△OPC和△OPD中,,∴△OPC≌△OPD(SSS),∴∠POC=∠POD,故选:A.7.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后.得到的直线的函数关系式为()A.y=﹣2x+5B.y=﹣2x﹣5C.y=﹣2x+1D.y=﹣2x+7【解答】解:直线y=﹣2x+3沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣2x+3+2=﹣2x+5,故选:A.8.如图,将一块三角板叠放在直尺上,若∠1=21°,则∠2=()A.69°B.70°C.71°D.72°【解答】解:如图,∵∠1=∠ABC=21°,∴∠ACB=90°﹣∠ABC=69°,∴∠WCE=∠ACB=69°,∵BC∥EF,∴∠2=∠WCE=69°.故选:A.9.为响应“科教兴国”的战略号召,某学校计划成立创客实验室,现需购买航拍无人机和编程机器人.已知购买2架航拍无人机和3个编程机器人所需费用相同,购买4个航拍无人机和7个编程机器人共需3480元.设购买1架航拍无人机需x元,购买1个编程机器人需y元,则可列方程组为()A.B.C.D.【解答】解:依题意得:.故选:A.10.如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D 从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A.B.C.D.【解答】解:①当点P在AB上运动时,y=AH×PH=×AP sin A×AP cos A=×x2×=x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=AB sin A=4×=2,同理AH′=2,则y=×AH×PH=(2+x﹣4)×2=2﹣4+x,为一次函数;③当点P在CD上运动时,同理可得:y=×(2+6)×(4+6+2﹣x)=(3)(12﹣x),为一次函数;故选:D.二.填空题(共5小题,满分15分,每小题3分)11.分解因式:2a2﹣18=2(a+3)(a﹣3).【解答】解:2a2﹣18=2(a2﹣9)=2(a+3)(a﹣3).故答案为:2(a+3)(a﹣3).12.一个正多边形的每一个内角都是140°,则这个正多边形的边数是九.【解答】解:180°﹣140°=40°,360°÷40°=9.故答案为:九.13.如图,圆锥的母线长SA=3,底面圆的周长是2π,则圆锥的侧面积是3π.【解答】解:根据题意得该圆锥的侧面积=×2π×3=3π.故答案为:3π.14.已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+3x1x2+x22的值是9.【解答】解:根据题意得x1+x2=4,x1x2=﹣7,所以x12+3x1x2+x22=(x1+x2)2+x1x2=16﹣7=9.故答案为:9.15.如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD 的中点,连接GH,则GH的长度为1.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),∴PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,CP的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,PC的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DCF,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.三.解答题(共7小题,满分55分)16.(5分)计算:2﹣1+sin30°+﹣(﹣tan60°)0.【解答】解:原式==.17.(6分)解不等式组:.【解答】解:解不等式①得:x≤3,解不等式②得:x<﹣6,∴不等式组的解集是x<﹣6.18.(8分)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了60名学生,扇形统计图中C选项对应的圆心角为108度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?【解答】解:(1)24÷40%=60(名),360°×=108°,故答案为:60,108;(2)60×25%=15(人),补全条形统计图如图所示:(3)1200×=60(人),答:该校1200名学生中选择“不了解”的有60人.19.(8分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.17,≈1.41,结果精确到0.1)【解答】解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100•sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66•cos45°=33≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66•sin45°≈46.53,∴PH≈46.53,∵GN=100•cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前约9.5cm.20.(8分)如图,在Rt△ABC中,∠B=90°.以AB为直径作⊙O,交AC于点D,连接BD.作∠ACB平分线,交BD于点F,交AB于点E.(1)求证:BE=BF.(2)若AB=6,∠A=30°,求DF的长.【解答】(1)证明:∵AB为⊙O直径,∴∠ADB=90°,∴∠1+∠3=90°,∵∠ABC=90°∴∠2+∠5=90°,∵CE为∠ACB的角平分线,∴∠1=∠2,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴BE=BF.(2)解:在Rt△ABD中,∵∠A=300,AB=6,∴DB=3,在Rt△ACB中,∠A=300,AB=6∴BC=,在Rt△BCE中,∠2=30°,BC=,∴BE=2,∴BF=2,∴DF=BD﹣BF=3﹣2=1.21.(10分)已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式:kx+b≤的解集.【解答】解:(1)∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∵CD⊥OA,∴DC∥OB,∴=,∴=,∴CD=10,∴点C坐标(﹣2,10),B(0,6),A(3,0),∴解得,∴一次函数为y=﹣2x+6.∵反比例函数y=经过点C(﹣2,10),∴n=﹣20,∴反比例函数解析式为y=﹣.(2)由解得或,故另一个交点坐标为(5,﹣4).(3)由图象可知kx+b≤的解集:﹣2≤x<0或x≥5.22.(10分)如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点(﹣1,0)与y轴交于点B(0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB于点N,交抛物线于点P.(1)分别求出抛物线和直线AB的函数表达式;(2)连接P A、PB,求△P AB面积的最大值,并求出此时点P的坐标.(3)如图2,点E(2,0),将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+E'B的最小值.【解答】解:(1)∵抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B(0,3),则有,解得,∴抛物线y=﹣x2+x+3,令y=0,得到﹣x2+x+3=0,解得:x=4或﹣1,∴A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3;(2)如图1中,设P(x,﹣x2+x+3),则点N(x,﹣x+3),则设△P AB面积为S,则S=S△PNA+S△PNB=×PN×OA=×4×(﹣x2+x+3+x﹣3)=﹣x2+6x,∵<0,故S有最大值,当x=2时,S的最大值为6,此时P(2,4.5);(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.。

2015中考数学模拟试题含答案

2015中考数学模拟试题含答案

2015年中考数学模拟试卷一、选择题(本大题满分36分,每小题3分.) 1. 2 sin 60°的值等于 A. 1B. 23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2 B. 1∶4 C. 1∶3 D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2) D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°,则图中阴影部分的面积之和为A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第12题图)(第17题图)(第18题图)(第7题图)° (第11题图)22-1n m mn m n -÷+)(20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)(第26题图)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分。

中考数学模拟试卷精选汇编:规律探索附答案

中考数学模拟试卷精选汇编:规律探索附答案

规律探索一.选择题1.(2015·邗江区·初三适应性训练)记n n a a a s +++= 21,令ns s s T nn +++=21,则称n T 为1a ,2a ,……,n a 这列数的“凯森和”.已知1a ,2a ,……,500a 的“凯森和”为2004,那么13,1a ,2a ,……,500a 的“凯森和”为( ▲ )A .2013B .2015C .2017D .2019 答案:A2.(2015·网上阅卷适应性测试)如图,在平面直角坐标系xOy 中,点(1,0)A ,(2,0)B ,正六边形ABCDEF 沿x 轴正方向无滑动滚动,保持上述运动过程,经过(2014,3)的正六边形的顶点是( ▲ ).A .C 或EB .B 或DC .A 或ED . B 或F 答案:D3.(2015·江苏江阴要塞片·一模)如图,在平面直角坐标中,直线l 经过原点,且与y 轴正半轴所夹的锐角为60°,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1,以A 1B 、BA 为邻边作□ABA 1C 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2,以A 2B 1、B 1A 1为邻边作□A 1B 1A 2C 2;…;按此作法继续下去,则C n 的坐标是(▲ )第2题A BCD EFGH I KJ PQ 13题图A .(﹣×4n ,4n ) B .(﹣×4n -1,4n -1)C .(﹣×4n ﹣1,4n ) D .(﹣×4n ,4n -1)答案:C4.(2015·山东省济南市商河县一模)如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P , 连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ; 再取线段KJ 的中点Q ,在△QHI 内作第三个内接正 方形……依次进行下去,则第n 个内接正方形的边长为 A . 121()32n −⋅ B . 1221()32n −⋅C .21()32n ⋅ D . 221()32n ⋅答案:B5. (2015·河北博野·中考模拟)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是 【 】A .31B .41C .51D .66 答案:B6.(2015·无锡市宜兴市洑东中学·一模)如图,在平面直角坐标中,直线l 经过原点,且与y 轴正半轴所夹的锐角为60°,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1,以A 1B 、BA 为邻边作□ABA 1C 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2,以A 2B 1、B 1A 1为邻边作□A 1B 1A 2C 2;…;按此作法继续下去,则C n 的坐标是(▲ ) A .(﹣×4n ,4n ) B .(﹣×4n -1,4n -1) C .(﹣×4n ﹣1,4n ) D .(﹣×4n ,4n -1)答案:C7.(2015·无锡市新区·期中)已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2014个图形中直角三角形的个数有( ▲ )A .2014个B .2015个C .4028个D .6042个答案:C .二.填空题1.(2015·江苏江阴夏港中学·期中)观察下面一列数:−1,2,−3,4,−5,6,−7…,将这列数排成下列形式:记ij a 为第i 行第j 列的数,如23a =4,那么87a 是 .…………16-1514-1312-1110-98-76-54-32-1第1题图答案:562. (2015·北京市朝阳区·一模)一组按规律排列的式子:a 2,25a −,310a,417a −,526a ,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).答案:750a,nn a n 1)1-(21+⋅+(第一个空1分,第二个空2分) 3.(2015·福建漳州·一模)观察下列各式:514513,413412,312311=+=+=+,…… , 请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是:______________. 答案:21)1(21++=++n n n n4(2015·广东广州·一模)王宇用火柴棒摆成如图M1-5所示的三个“中”字形图案,依次规律,第n 个“中”字形图案需要________根火柴棒. 答案:6n +35.(2015·广东潮州·期中)如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需 根火柴棒,……,则第n 个图形需 根火柴棒。

中考第一次模拟测试《数学试卷》含答案解析

中考第一次模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过”存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×1092. 下列运算正确的是( )A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=13. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )A. 15mB. 17mC. 20mD. 28m5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°6. 估计7+1的值( )A. 在1和2之间B. 在2和3之间C. 3和4之间D. 在4和5之间7. 在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 计算8-2的结果是( )A. 6B. 6C. 2D. 210. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A415B.13C.25D.3511. 如图,1l∥2l∥3l,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知32ABBC,则DEDF的值为( )A. 32B.23C.25D.3512. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是( )A. 60 m 2B. 63 m 2C. 64 m 2D. 66 m 2二 、填空题:13. 分解因式:x 3y ﹣2x 2y+xy=______.14. 函数y=12-x x 的自变量x 的取值范围是_____. 15. 化简221(1)11x x -÷+-的结果是 . 16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .17. 如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .18. 已知⊙O 的半径为5,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 是⊙O 的切线,C 是切点,连接AC ,若∠CAB =30°,则BD 的长为____.三 、计算题:19. 解方程组: 3(1)4(4)05(1)3(5)x y y x ---=⎧⎨-=+⎩20. 解不等式组2102323x x x +>⎧⎪-+⎨≥⎪⎩. 四 、解答题:21. 如图,四边形ABCD 中,90,1,3A ABC AD BC ︒∠=∠===,E 是边CD 中点,连接BE 并延长与AD 的延长线相较于点F .(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月) 240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.24. 对于某一函数给出如下定义:若存在实数p,当其自变量值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .答案与解析一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过”存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×109【答案】C【解析】试题解析:将812000000用科学记数法表示为:8.12×108.故选C.考点:科学记数法—表示较大的数.2. 下列运算正确的是( )A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=1【答案】D【解析】试题分析:A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断.解:A、原式=8a2,故A选项错误;B、原式=a8,故B选项错误;C、原式=a2+b2+2ab,故C选项错误;D、原式=1,故D选项正确.故选D.点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键.3. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【详解】试题分析:四个标志中是轴对称图形的有:,所以共有3个.故应选C.考点:轴对称图形4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )A. 15mB. 17mC. 20mD. 28m【答案】D【解析】试题分析:根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得16﹣12<AB<16+12,再解即可.解:根据三角形的三边关系可得:16﹣12<AB<16+12,即4<AB<28,故选D.考点:三角形三边关系.5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°【答案】B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.6. 7+1的值( )A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】∵7,∴7,7在在3和4之间.故选C.7. 在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点(-1,2)的横坐标为负数,纵坐标为正数,∴点(-1,2)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8. 已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵一次函数y=kx﹣k的图象y随x的增大而减小,∴k<0.即该函数图象经过第二、四象限,∵k<0,∴﹣k>0,即该函数图象与y轴交于正半轴.综上所述:该函数图象经过第一、二、四象限,不经过第三象限.故选C.点睛:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9. 的结果是( )A. 6 C. 2【答案】D【解析】-==D.考点:二次根式的加减法.10. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A.415B.13C.25D.35【答案】D【解析】1231305-=,故选D.11. 如图,1l∥2l∥3l,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知32ABBC=,则DEDF的值为( )A. 32B.23C.25D.35【答案】D 【解析】试题分析:∵1l∥2l∥3l,32ABBC=,∴DEDF=ABAC=332+=35,故选D.考点:平行线分线段成比例.12. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是( )A. 60 m2B. 63 m2C. 64 m2D. 66 m2【答案】C【解析】试题分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式为y=(16﹣x)x=﹣x2+16x=﹣(x ﹣8)2+64,,利用二次函数性质即可求出求当x=8m时,y max=64m2,即所围成矩形ABCD的最大面积是64m2.故答案选C.考点:二次函数的应用.二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.【答案】xy(x﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 14. 函数y=12-x x 的自变量x 的取值范围是_____. 【答案】x≤12且x≠0 【解析】【详解】根据题意得x≠0且1﹣2x≥0,所以12x ≤且0x ≠. 故答案为12x ≤且0x ≠. 15. 化简221(1)11x x -÷+-的结果是 . 【答案】(x-1)2.【解析】试题解析:原式=11x x -+•(x+1)(x-1) =(x-1)2.考点:分式的混合运算.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .【答案】10.【解析】解:∵一个直角三角形的三边长的平方和为200,∴斜边长的平方为100,则斜边长为:10.故答案为10. 17. 如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .【答案】14.【解析】试题解析:∵AB=AC ,AD 平分∠BAC ,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE周长=CD+DE+CE=4+5+5=14.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.【答案】5.【解析】解:连接OC,BC.∵AB是圆O的直径,DC是圆O的切线,C是切点,∴∠ACB=∠OCD=90°.∵∠CAB=30°,∴∠COD=2∠A=60°,∴OD=2OC=10,∴BD=OD-OB=10-5=5.故答案为5.三、计算题:19. 解方程组:3(1)4(4)0 5(1)3(5)x yy x---=⎧⎨-=+⎩【答案】x=5,y=7.【解析】试题分析:先把组中的方程化简后,再求方程组的解.试题解析:解:原方程化简得:3413 5320x yy x-=-⎧⎨-=⎩①②①+②,得:y=7,把y=7代入①,得:x=5,所以原方程组的解为:57 xy=⎧⎨=⎩.20. 解不等式组2102323x x x +>⎧⎪-+⎨≥⎪⎩. 【答案】﹣0.5<x≤0.【解析】【分析】先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:2102323x x x +>⎧⎪⎨-+≥⎪⎩①②由①得:x >﹣0.5,由②得:x ≤0,则不等式组的解集是﹣0.5<x ≤0.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四 、解答题:21. 如图,四边形ABCD 中,90,1,3A ABC AD BC ︒∠=∠===,E 是边CD 的中点,连接BE 并延长与AD 的延长线相较于点F .(1)求证:四边形BDFC 平行四边形;(2)若△BCD 是等腰三角形,求四边形BDFC 的面积.【答案】(1)见解析;(2)2或35【解析】【分析】(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.【详解】解:(1)证明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是边CD的中点∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四边形BDFC是平行四边形(2)若△BCD等腰三角形①若BD=BC=3在Rt△ABD中,AB=229122BD AD-=-=∴四边形BDFC的面积为S=22×3=62;②若BC=DC=3过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG-AD=3-1=2,在Rt△CDG中,由勾股定理得,2222=-=-=CG CD DG325∴四边形BDFC的面积为S=35③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是2或35【点睛】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3)6 5 .【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴CG FCOE FO=,即2323CG=+,解得:CG=65.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月) 240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【答案】(1)1210ab==⎧⎨⎩;(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)为了节约资金,应选购A型设备1台,B型设备9台.【解析】【分析】(1)根据”购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.【详解】(1)根据题意得:2326a bb a-=-=⎧⎨⎩,∴1210ab==⎧⎨⎩;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,则:12x+10(10−x)⩽105,∴x⩽2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程.24. 对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b值;②若1≤b≤3,求其不变长度q取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .【答案】详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(2)①首先由函数y=2x2﹣bx=x,求得x(2x﹣b﹣1)=0,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1 =1x,令y=x,则1xx=,解得:x=±1,∴函数1yx=的不变值为±1,q=1﹣(﹣1)=2.∵函数y=x2,令y=x,则x=x2,解得:x1=0,x2=1,∴函数y=x2的不变值为:0或1,q=1﹣0=1;(2)①函数y=2x2﹣bx,令y=x,则x=2x2﹣bx,整理得:x(2x﹣b﹣1)=0.∵q=0,∴x=0且2x﹣b﹣1=0,解得:b=﹣1;②由①知:x(2x﹣b﹣1)=0,∴x=0或2x﹣b﹣1=0,解得:x 1=0,x 2=12b +.∵1≤b ≤3,∴1≤x 2≤2,∴1﹣0≤q ≤2﹣0,∴1≤q ≤2; (3)∵记函数y =x 2﹣2x (x ≥m )的图象为G 1,将G 1沿x =m 翻折后得到的函数图象记为G 2,∴函数G 的图象关于x =m 对称,∴G :y =22)22()(2(2)()m x x x x m m x x m -⎧-≥⎨--<⎩ .∵当x 2﹣2x =x 时,x 3=0,x 4=3; 当(2m ﹣x )2﹣2(2m ﹣x )=x 时,△=1+8m ,当△<0,即m <﹣18时,q =x 4﹣x 3=3;当△≥0,即m ≥﹣18时,x 5x 6 ①当﹣18≤m ≤0时,x 3=0,x 4=3,∴x 6<0,∴x 4﹣x 6>3(不符合题意,舍去); ②∵当x 5=x 4时,m =1,当x 6=x 3时,m =3;当0<m <1时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6<0,q =x 4﹣x 6>3(舍去);当1≤m ≤3时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6>0,q =x 4﹣x 6<3;当m >3时,x 3=0(舍去),x 4=3(舍去),此时x 5>3,x 6<0,q =x 5﹣x 6>3(舍去);综上所述:m 的取值范围为1≤m ≤3或m <﹣18. 点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.。

中考各地数学模拟试卷精选汇编:反比例函数答案

中考各地数学模拟试卷精选汇编:反比例函数答案

中考各地数学模拟试卷精选汇编----反比例函数一.选择题1.(2015·江苏高邮·一模)若反比例函数的图象经过点(-2,3),则该反比例函数图象一定经过点A.(2,-3) B.(-2,-3)C.(2,3)D.(-1,-6)答案:A2.(2015·吉林长春·二模)答案:A3.(2015·湖南岳阳·调研)在同一直角坐标系中,若正比例函数1y k x =的图像与反比例函数2k y x=的图像没有公共点,则()A.120k k <;B.120k k >;C.120k k +<;D.120k k +>;答案:A4.(2015·江苏江阴·3月月考)如图,平面直角坐标系中,直线1-=kx y 与反比例函数xy 6-=相交于点A ,AB ⊥x 轴,S △ABC =1,则k 的值为()A .81-B .31C .31-D .21-第1题图A B CO Dxy答案:A5.(2015·江苏江阴夏港中学·期中)如图,已知:如图,在直角坐标系中,有菱形OABC ,A 点的坐标为(10,0),对角线OB 、AC 相交于D 点,双曲线y =kx (x >0)经过D 点,交BC 的延长线于E 点,且OB •AC =160,有下列四个结论:①双曲线的解析式为y =40x (x >0);②E 点的坐标是(5,8);③sin ∠COA =45;④AC +OB =125.其中正确的结论有()第2题图A .1个B .2个C .3个D .4个答案:B6.(2015·屯溪五中·3月月考)某反比例函数图象经过点(-1,6),则下列各点中此函数图象也经过的点是【】A .(-3,2)B .(3,2)C .(2,3)D .(6,1)答案:A7(2015·屯溪五中·3月月考)如图所示,等腰直角三角形ABC 位于第一象限,AB =AC =2,直角顶点A 在直线y =x 上,其中A 点的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴,y 轴,若双曲线y =kx(k ≠0)与△ABC 有交点,则k 的取值范围是【】A .1<k <2B .1≤k ≤3C .1≤k ≤4D .1≤k <4答案:C8(2015·屯溪五中·3月月考)如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。

中考数学模拟试卷精选汇编:解直角三角形附答案

中考数学模拟试卷精选汇编:解直角三角形附答案

解直角三角形一.选择题1. (2015·北京市朝阳区·一模)如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60 m,ST=120 m,QR=80 m,则河的宽度PQ为A.40 m B.60 m C.120 m D.180 m答案:C二.填空题1.(2015·江苏江阴青阳片·期中)如图,小红站在水平面上的点A处,测得旗杆BC顶点C的仰角为60°,点A到旗杆的水平距离为a米.若小红的水平视线与地面的距离为b米,则旗杆BC的长为____▲____米。

(用含有a、b的式子表示)第1题答案:b+3a2. (2015·屯溪五中·3月月考)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为__________答案:2倍根号23.(2015•山东潍坊广文中学、文华国际学校•一模)如图2,菱形ABCD 的周长为20cm ,且tan ∠ABD =34,则菱形ABCD 的面积为 cm 2. 答案:24;4.(2015·邗江区·初三适应性训练)如图,△ABC 的顶点都在正方形网格的格点上,则cosC 的值为 ▲ .答案:552 第2题 5.(2015·重点高中提前招生数学练习)在某海防观测站的正东方向12海里处有A ,B 两艘船相遇,然后A 船以每小时12海里的速度往南航行,B 船以每小时3海里的速度向北漂移.则经过 小时后,观测站及A ,B 两 船恰成一个直角三角形. 【答案】26.(2015·重点高中提前招生数学练习)已知∠A 为锐角,且4sin 2A -4sinAcosA +cos 2A =0,则tanA = . 【答案】12【解析】由题意得(2sinA -cosA )2=0,∴2sinA -cosA =0,∴sinA cosA =12. ∴tanA =sinA cosA =12.7(2015·网上阅卷适应性测试)小聪有一块含有30°角的直角三角板,他想只利用量角器来测量较短直角边的长度,于是他采用如图的方法,小聪发现点A 处的三角板读数为12cm ,点B 处的量角器的读数为74°,由此可知三角板的较短直角边的长度约为 ▲ cm .(参考数据:sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75).答案:98.(2015·山东省东营区实验学校一模)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出___个这样的停车位.(2≈1.4)答案:17三.解答题1.(2015·江苏江阴长泾片·期中)2015年4月18日潍坊国际风筝节拉开了帷幕,这天小敏同学正在公园广场上放风筝,如图风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小亮同学,发现自己的位置与风筝和广场边旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B之间的距离;(2)在(1)的条件下,若在A处背向旗杆又测得风筝的仰角为75°,绳子在空中视为一条线段,求绳子AC为多少米?(结果保留根号)答案:解:(1)在Rt△BPQ中,PQ=10米,∠B=30°,则BQ= tan60°×PQ=103, ……………2分又在Rt△APQ中,∠PAB=45°,则AQ=tan45°×PQ=10,即:AB=(103+10)(米)……………4分(2)过A作AE⊥BC于E,在Rt△ABE中,∠B=30°,AB=103+10,∴AE=sin30°×AB=12(103+10)=53+5,……………6分∵∠CAD=75°,∠B=30°∴∠C=45°,……………7分在Rt△CAE中,sin45°=AEAC,图8∴AC =2(53+5)=(56+52)(米) ……………9分2.(2015·江苏江阴青阳片·期中)如图,某广场一灯柱AB 被一钢缆CD 固定,CD 与地面成40°夹角,且CB =5米.(1)求钢缆CD 的长度;(精确到0.1米)(2)若AD =2米,灯的顶端E 距离A 处1.6米,且∠EAB =120°,则灯的顶端E 距离地面多少米?(参考数据:tan 400=0.84, sin 400=0.64, cos 400=34)答案:(1)在Rt ⊿BCD 中∵cos 40°=CDBC…………1分 ∴CD =40cos BC =5÷43=320…………3分 (2)∵∠EAF =180°-120°=60° 在Rt ⊿AEF 中 cos 60°=AEAF ∴AF =AE ·cos 60°=1.6·21=0.8…………5分 在Rt ⊿BCD 中 tan 40°=BCBDBD =BC ·tan 40°=5·0.84=4.2…………7分 BF =4.2+2+0.8=7…………8分3.(2015·江苏江阴夏港中学·期中)如图,轮船从点A 处出发,先航行至位于点A 的南偏西15°且点A 相距100km 的点B 处,再航行至位于点B 的北偏东75°且与点B 相距200km 的点C 处.(1)求点C 与点A 的距离(精确到1km ) (2)确定点C 相对于点A 的方向 (参考数据:2≈1.414,3≈1.732)答案:解法1:(1)如答图2,过点A 作AD ⊥BC ,垂足为D .············1分由图得,∠ABC =︒=︒−︒601575.·······························2分在Rt △ABD 中,∵∠ABC =60°,AB =100,∴BD =50,AD =350····················3分 ∵BC =200,∴CD=BC -BD =150.·································4分 ∴在Rt △ABD 中,AC =22CD AD +=3100≈173(km ). 答:点C 与点A 的距离约为173km .························5分(2)在△ABC 中,∵2222)3100(100+=+AC AB =40 000,22200=BC =40 000. ∴222BC AC AB =+,∴︒=∠90BAC .···················7分 ∴︒=︒−︒=∠−∠=∠751590BAF BAC CAF 答:点C 位于点A 的南偏东75°方向.················8分 解法2:(1)如答图3,取BC 的中点D ,连接AD.············ 1分由图得,∠ABC =︒=︒−︒601575···················2分 ∵D 为BC 的中点,BC =200,∴CD=BD =100. 在△ABD 中,∵BD =100,AB =100,∠ABC =60°, ∴△ADB 为等边三角形,··························3分 ∴AD=BD=CD ,∠ADB =60°,∴∠DAC =∠DCA =30°. ∴∠BAC =∠BAD +∠DAC =90°,···················4分 ∴AC =)(km 173310022≈=−AB BC 答:点C 与点A 的距离约为173km .·······················5分 (2)由图得,︒=︒−︒=∠−∠=∠751590BAF BAC CAF答:点C 位于点A 的南偏东75°方向.······························8分4.(2015·江苏江阴要塞片·一模)如图是某地下商业街的入口,数学课外兴趣小组的同学打算运用所学的知识测量侧面支架的最高点E 到地面的距离EF .经测量,支架的立柱BC 与地面垂直,即∠BCA =90°,且BC =1.5m ,点F 、A 、C 在同一条水平线上,斜杆AB 与水平线AC 的夹角∠BAC =30°,支撑杆DE ⊥AB 于点D ,该支架的边BE 与AB 的夹角∠EBD =60°,又测得AD =1m .请你求出该支架的边BE 及顶端E 到地面的距离EF 的长度.答案:解:在Rt △ABC 中,∵∠BAC =30°,BC =1.5m ,∴AB=3m,∵AD=1m,∴BD=2m,·········1分在Rt△EDB中,∵∠EBD=60°,∴∠BED=90°﹣60°=30°,∴EB=2BD=2×2=4m,·········3分过B作BH⊥EF于点H,∴四边形BCFH为矩形,HF=BC= 1.5m,∠HBA=∠BAC=30°,········4分又∵∠HBA=∠BAC=30°,∴∠EBH=∠EBD﹣∠HBD=30°,∴EH=EB=2m,∴EF=EH+HF=2+1.5=3.5(m).········7分答:该支架的边BE为4m,顶端E到地面的距离EF的长度为3.5m.5. (2015·屯溪五中·3月月考)如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(结果都保留根号)(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到达点C处.此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.答案:解:(1)如图,过点P 作PD ⊥AB 于点D .设PD =xkm . 在Rt △PBD 中,∠BDP =90°,∠PBD =90°﹣45°=45°, ∴BD =PD =xkm .在Rt △P AD 中,∠ADP =90°,∠P AD =90°﹣60°=30°, ∴AD =PD =xkm .∵BD +AD =AB , ∴x +x =2, x =﹣1,∴点P 到海岸线l 的距离为(﹣1)km ;(2)如图,过点B 作BF ⊥AC 于点F . 在Rt △ABF 中,∠AFB =90°,∠BAF =30°, ∴BF =AB =1km .在△ABC 中,∠C =180°﹣∠BAC ﹣∠ABC =45°. 在Rt △BCF 中,∠BFC =90°,∠C =45°, ∴BC =BF =km ,∴点C 与点B 之间的距离为km .6. (2015·安徽省蚌埠市经济开发·二摸)合肥新桥国际机场出港大厅有一幅“黄山胜景”的壁画.聪聪站在距壁画水平距离15米的地面,自A 点看壁画上部D 的仰角为045,看壁画下部C的仰角为030,求壁画CD 的高度.3 1.7≈2 1.4≈,精确到十分位)答案:过A 点作AB ⊥DC 于点B ,则AB =15,在Rt ABD ∆中,045DAB ∠=,∴BD =AB =15 ……… 3分 在Rt ABC ∆中,030BAC ∠=, ∴03tan 3015533BC AB ==⨯= ………… 6分 ∴CD =BD -BC =15-53155 1.7 6.5≈−⨯=答:壁画CD 的高度为6.5米 …………… 8分7. (2015·安庆·一摸)为维护南海主权,我海军舰艇加强对南海海域的巡航.2015年4月10日上午9时,我海巡001号舰艇在观察点A 处观测到其正东方向802海里处有一灯塔S ,该舰艇沿南偏东450的方向航行,11时到达观察点B ,测得灯塔S 位于其北偏西150方向,求该舰艇的巡航速度?(结果保留整数)(参考数据:73.13,41.12≈≈)答案:解:过点S 作SC ⊥AB ,C 为垂足.在Rt △ACS 中,∠CAS =450,AS =802,∴SC =AC =80;………3分在Rt △BCS 中,∠CBC =450-150=300,∴BC =803,AB =AC +BC =80+803;………6分∴该舰艇的巡航速度是(80+803)÷(11-9)=40+403≈109(海里/时)…………8分8. (2015·屯溪五中·3月月考)如图,在△ABC 中,AB =AC =5,BC =8.若∠BPC =∠BAC ,求tan ∠BPC 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B C D 2015年深圳市中考数学模拟试题
第一部分 选择题
一、选择题:
1.计算(﹣3)2等于( )
A .﹣9
B . ﹣6
C . 6
D . 9
2.下列运算正确的是( )。

A .2a 2×3a 2=6a 2 B .2a 2+3a 2=5a 4 C .2a 3+3a 3=5a 3 D .a 6÷a 3=a 2
3.深圳市2008年参加中考的初三毕业生大约有59800人,这个数据用科学记数法(保留两位有
效数字)表示为( )。

A .5.9×104 人
B .6.0×104人
C .5.98×104人
D .0.6×105人
4
. .
6.如图,∠BDC =98°,∠C =38°,∠B =23°,则∠A =( )
A .61°
B .60°
C .37°
D .39°
7.如图是由四个全等的直角三角形围成的,若两条直角边分别为3和4,则向图中随机抛掷一
枚飞镖,飞镖落在阴影区域的概率(不考虑落在线上的情形)是( )
A . 3 5
B . 4 5
C . 16 25
D . 25 49
8.如图,直线a ∥b ,射线DC 与直线a 相交于点C ,过点D 作
DE ⊥b 于点E ,已知∠1=25°,则∠2的度数为( )
D .
165° C 第4题图
11. 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 12--=的图像上. 下列结论中
正确的是
A .321
y y y >> B .231y y y >> C .213y y y >> D . 132y
y y >> 12、如图,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△
AB ′C ′的位置,连接C ′B ,则C ′B 的长为( )
﹣ . ﹣1 第二部分(非选择题,共52分)
二、填空题(本题共有4小题,每小题3分,共12分)
13.分解因式:分解因式:8(a 2
+1)﹣16a= ____________;
14.若不等式组⎩⎨⎧<->+2532b x a x 的解集为-1<x <1,那么a •b 的值等于 .
15.若分式4242--x x 的值为零,则x=___________。

16.如图,正方形ABCD 的边长为1,分别以A 、C 两点为圆心、边长为半径在正方形内作扇形,
则图中两扇形重叠部分(阴影部分)的面积是 ______。

(用含π的式子表示)
三、解答题(52分)
17.(7分)计算:
()()1
02008260cos 200812--+︒-+--
18.(7分)先化简,再求值:4168212122-+-÷⎪⎭
⎫ ⎝⎛--+-a a a a a a ,其中a =-3.
A B C
D
19.(8分)为了了解学生参加阳光体育活动的情况,学校对学生进行随机抽样调查,其中一个
问题是“你平均每天参加阳光体育活动的时间是多少?”,共有4个选项:
A .1.5小时以上
B .1-1.5小时
C .0.5-1小时
D .0.5小时以下
图18-1、图18-2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:
(1)本次一共调查了多少名学生?
(2)在图18-1中将选项B 的部分补充完整;
(3)若该校有2400名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.
图18-1 选择各项人数统计图 图18-2 选择各项人数比例统计图
20.(10分)某校校园超市老板到批发中心选购甲、乙两种品牌的书包,若购进甲品牌的书包9
个,乙品牌的书包10个,需要905元;若购进甲品牌的书包12个,乙品牌的书包8个,需要940元.
(1)求甲、乙两种品牌的书包每个多少元?
(2)若销售1个甲品牌的书包可以获利3元,销售1个乙品牌的书包可以获利10元。

根据学生需求,超市老板决定,购进甲种品牌书包的数量要比购进乙品牌的书包的数量的4倍还多8个,且甲种品牌书包最多可以购进56个,这样书包全部出售后,可以使总的获利不少于233元.问有几种进货方案?如何进货?
B 30% A 15% D 5% C
50% A B C D 选项
D A 21.(10分)把一张矩形ABCD 纸片按如图方式折叠,使点A 与点
E 重合,点C 与点
F 重合(E 、
F 两点均在BD 上),折痕分别为BH 、D
G .
(1)求证:△BHE≌△DGF;
(2)若AB=6cm ,BC=8cm ,求线段FG 的长.
22.(10分)如图,在R t △ABC 中,∠C=90°,BC=3,CA=4,点O 为AB 上的一个动点(与A 、B 不重合),
以O 为圆心,OB 长为半径作圆,当⊙O 与AC 相切时,(1)求证:△EBD ∽△DBC ;
(2)求tan ∠ADE 的值.。

相关文档
最新文档