平面解析几何中轨迹方程的求法探究

合集下载

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。

从而得到轨迹方程,这种求轨迹方程的方法称作直接法。

例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。

解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0),B (a,0)。

设动点C为(x, y),••• | AC |2 |BC |2 |AB|2,a)2y2]2h(x a)2y2]24a2,即x2由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点,故所求方程为x2y2a2( x a )。

2•代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。

例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。

解:设 A (a,0) , B (0, b), M (x, y),一方面,. 另一方面,36 , M分AB的比为1,2评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。

此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。

3.几何法:求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。

高考总复习一轮数学精品课件 第9章 平面解析几何 素能培优(十六) 求曲线轨迹方程的方法

高考总复习一轮数学精品课件 第9章 平面解析几何 素能培优(十六) 求曲线轨迹方程的方法
(2)若动点P满足 =3 ,求动点P的轨迹方程;
(3)若B(2,0),求△ABC的重心G的轨迹方程.
解 (1)设动点 M 的坐标为(x,y),C(x0,y0),则
由动点 C 在曲线 C0 上可知
y0=302 +1,故
故动点 M 的轨迹方程为 y=6(x+1)
=
=
-2+0
,
2

0
2
∴点P的轨迹是以(0,3)为焦点、直线l:y=-3为准线的抛物线,
1
2
因此,设点P的轨迹方程为x =2py(p>0),可得
∴动点P的轨迹方程为x2=12y.
2
p=3,解得p=6,
三、代入法(相关点法)求轨迹方程
例3已知曲线C0:y=3x2+1和点A(-2,0),动点C在曲线C0上.
(1)若线段AC的中点为M,求动点M的轨迹方程;
(2)定义法:利用曲线的定义,判断曲线类型,再由曲线的定义直接写出曲线
方程;
(3)代入法(相关点法):题中有两个动点,一个为所求,设为(x,y),另一个在已
知曲线上运动,设为(x0,y0),利用已知条件找出两个动点坐标的关系,用所求
0 = (,y),
表示已知,即
将(x0,y0)代入已知曲线即得所求曲线方程.
,
0 = 2 + 2,
0 = 2,
2
2y=3(2x+2) +1,即 y=6(x+1)
1
+2.
1
+ ,
2
2
2
(2)设动点 P 的坐标为(x,y),C(x0,y0),则由=3 ,得(x+2,y)=3(x0-x,y0-y),

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标〔x ,y 〕表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f 〔t 〕, y =g 〔t 〕,进而通过消参化为轨迹的普通方程F 〔x ,y 〕=0。

4. 代入法〔相关点法〕:如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,〔该点坐标满足某已知曲线方程〕,则可以设出P 〔x ,y 〕,用〔x ,y 〕表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用。

一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为〔-4,0〕,〔4,0〕,C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,假设b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。

解新几何中轨迹问题求解的探究

解新几何中轨迹问题求解的探究
l 00

,Y) P( y) 则 ,, 、 x, ,
嚣 一 ,入 f ~ 代 一 一
v:
且~

【 ” 巧

( + ) I 1 0中. I3 2 0 - = 化简 得 x  ̄2 , %)- 5 所 求 P点 的 轨 迹 方 程 为 : +
・ . .
, : 5。 2
3 3 已 知 直 线 Z = x l 曲 线 C: 一 x= ( ∈ 交 于 — : : m + 与 2 22 m R)
A、 曰两 点 , 设 : + . 点 P的 轨迹 方 程 求
转移代人法 : 当所 求 轨 迹 上 的 点 Q( v 随某 个 动 点 P变 ) 化 , 点 P轨 迹 已 知 时 , 且 可用 ( , ) 示 点 P坐 标 , 将 其 代 入 v表 并 点 P轨迹 方 程 。适 用 于 : 求动 点 依 赖 于某 一 已知 曲线 时 。 所 参数 法 : 所 求 轨 迹 上 点 P y 随 某 个 变 量 变 化 而 变 化 当 ( ) 时 , t 为 参数 , 立 , 将 作 建 Y与 t 函数 关 系 再将 t 去 即可 。适 的 消 用 于 : 求 动 点 随题设 中某 一 变量 或 几 个变 量 的 变化 而 变化 时 。 所 二 、 型 透 析 。 会 贯 通 典 融
提示 : - +  ̄得 到点 P坐标 (.) A、 由o F: - o y与 曰坐标之
间 关 系 , 用 m 表 示 出 = 并


, — n
丁 , 去 . 即可 。要 注 消 r / Z
一, n一
意 用 参 数 法解 题 时 必 须 考 虑 轨迹 的完 备 ) _ , ) 3 O ,在 AFQ 中 , _ P 2M ZMQ =

解析法求点的轨迹方程的解题策略

解析法求点的轨迹方程的解题策略

解析法求点的轨迹方程的解题策略[摘要]求轨迹方程问题,是解析几何的主要问题之一。

由于动点适合的条件不同,因而求该点运动的轨迹方程所采用的方法往往就有所不同。

本文将着重对“点的轨迹定义和特点”、“探求轨迹方程时应注意的问题”、“求点的轨迹方程的常用方法”等三大问题进行探讨。

[关键词]解析法轨迹方程参数方程满足条件在平面直角坐标系中求点的轨迹方程是平面解析几何的一个基本问题。

所谓轨迹问题,即“由曲线求方程”。

解析法就是通过建立坐标系,把点和坐标、曲线和方程联系起来,用代数方法研究几何问题。

求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;是培养学生数形转化的思想、方法以及技巧的极好教材。

美国著名数学家波利亚在他的世界名著“how to solveit”中归纳了一张“怎样解题”表:第一,必须弄清问题。

第二,找到已知条件与未知条件之间的联系。

如果找不出直接联系,可考虑辅助问题,最终得到一个求解计划。

第三,实行计划。

第四,验算所得到的解。

这张“表”对解析几何的求轨迹方程也是非常合适的,但要实现“表”中的每个步骤,就必须要求切实弄清轨迹问题的有关概念的本质,掌握好解析几何中各个曲线的条件与结论,并能灵活运用。

本文将着重对“点的轨迹定义和特点”、“探求轨迹方程时应注意的问题”、“求点的轨迹方程的常用方法”等三大问题进行探讨。

一、点的轨迹定义和特点轨迹概念是中学教材中一个重要的概念,其有两种定义。

第一种是用运动的观点来定义的,即“一个动点按照某条件移动所经过的路线,叫做满足某条件的点的轨迹”。

第二种是用集合的观点来定义的,即“具有某种性质的点的集合,叫做具有某种性质的点的轨迹”。

从点的轨迹的真正意义来说,点的轨迹又可定义为“如果适合某条件的任意一点都在图形上,且图形上任意一点都适合某条件,那么这个图形叫做适合某条件的点的轨迹”。

从上述点的轨迹的各种定义,我们可以发现其具有如下特点:1、比较集中而又严格地运用集合和变动思想来理解和处理几何图形,特别是把某些图形看作是符合一定条件的点的集合时,要求既考虑纯粹性,又考虑完备性。

求轨迹方程的方法

求轨迹方程的方法

求轨迹方程的方法轨迹方程是描述物体在运动过程中所遵循的路径的数学表达式。

轨迹方程的求解方法因物体的运动方式而异。

下面将介绍几种常见的物体运动方式,并讨论如何求解它们的轨迹方程。

1.直线运动:物体在直线上做匀速或变速直线运动时,其轨迹方程为y = mx + b,其中m为斜率,b为截距。

若已知起始点的坐标和运动速度,则可以通过这些参数来确定轨迹方程。

2.曲线运动:物体在空间中做曲线运动时,其轨迹方程一般无法用简单的直线方程表示。

这时需要通过其他方法来求解轨迹方程。

以下是几种常见的曲线运动例子:-圆周运动:若物体做匀速圆周运动,其轨迹方程可以用参数方程表示:x = r * cos(θ),y = r * sin(θ),其中r为圆的半径,θ为角度。

通过改变θ的取值范围,可以得到整个圆周的轨迹方程。

-椭圆运动:椭圆运动可以用参数方程表示:x = a * cos(θ),y = b * sin(θ),其中a和b分别为椭圆长轴和短轴的长度。

同样通过改变θ的取值范围,可以得到整个椭圆的轨迹方程。

-抛物线运动:物体做匀速或变速抛物线运动时,其轨迹方程可以用解析几何中的一般二次方程表示:y = ax^2 + bx + c,其中a、b和c为常数。

通过给定的起始点和速度,可以确定这些常数,从而求解轨迹方程。

-双曲线运动:物体做匀速或变速双曲线运动时,其轨迹方程可以用参数方程表示:x = a * sec(θ),y = b * tan(θ),其中a和b为常数。

同样通过改变θ的取值范围,可以得到整个双曲线的轨迹方程。

除了上述运动方式外,还存在许多其他复杂的运动形式,例如螺线、摆线等。

对于这些运动形式,求解轨迹方程的方法往往需要借助更高级的数学工具,如极坐标、参数方程、微分方程等。

总结起来,轨迹方程的求解方法因物体的运动方式而异。

对于直线运动,可以直接得到轨迹方程;对于曲线运动,常常需要借助参数方程、解析几何等数学工具来求解。

对于更加复杂的运动形式,可能需要借用更高级的数学方法来确定轨迹方程。

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

求轨迹极坐标方程的常用方法

求轨迹极坐标方程的常用方法

MH| = a
又设点 R 的极坐标为 R (ρ, θ) , 则 MR = MQ =ρ,
当 MR 在 MQ 的逆 时 针 方 向 时 ,

∠HMQ =θ -
π 3
,
由直角三角形 MHQ 得ρcos(θ- 在 MQ 的顺时针 方向时 ,
得ρco s (θ+
π 3
)
=
a
这是两条直 线的 方程 , 因此 , 所 求 点 R 的 轨迹 是 两
把 △OP1 P 的 边和 角 用题 中 的量 表 示 出来 .
得:
sin
ρ [π - (α-θ1)
]
= sin
ρ1 (α- θ)
即ρsin(α- θ) =ρ1 sin (α- θ1)
由 正弦 定 理 ,
为所求直线的极坐标方程 .
例 4 已 知定 点 M 与定直线 L , 在直 线 L 上 任取一 点
第 22 卷 第 2 期 2006 年 4 月
赤 峰学 院 学报 Journal of Chifeng College
Vol. 22 No. 2 Apr. 2006
求轨迹极坐标方程的常用方法
乌 仁
(通辽职业学院 数学计算机系 ,内蒙古 通辽 028000)
摘 要 : 通过例题 , 介绍了在平面解析几何中求点的轨迹极坐标方程的三种常用方法 .
Q , 连线 MQ , 以线段 MQ 为一连作正三角形 MQR , 当点 Q
变动时 , △MQR 也随着变动 , 求点 R 的轨迹 .
解 以点 M 为极 点 , 由 M 引 向定 直线 L 的垂 线为 极
轴 , 建立极坐标系 (如图 4)
M 点到 L 的距离为 a , 设定直线 L 交极轴于点 H, 则|

如何求轨迹方程

如何求轨迹方程

一、引言轨迹方程是描述物体运动轨迹的数学公式,是物理学和数学学科的重要内容之一。

在物理学中,轨迹方程可以帮助我们研究物体的运动规律,预测物体的运动状态;在数学学科中,轨迹方程是解析几何的基础,可以帮助我们求解各种几何问题。

本文将介绍如何求轨迹方程,希望对读者有所帮助。

二、基本概念在学习轨迹方程之前,我们需要了解一些基本概念。

首先,我们需要知道什么是轨迹。

轨迹是指物体在运动过程中所经过的路径。

其次,我们需要知道什么是参数方程。

参数方程是指用一个或多个参数表示自变量和因变量之间的关系的方程。

最后,我们需要知道什么是向量。

向量是指既有大小又有方向的量,可以表示物体的运动状态。

三、求解方法1. 根据物体的运动规律求解在物理学中,物体的运动规律可以用牛顿运动定律、运动方程等公式来描述。

如果我们已知物体的运动规律,就可以根据公式求解轨迹方程。

例如,当物体做匀速直线运动时,可以根据公式s=vt求解轨迹方程,其中s表示物体的位移,v表示物体的速度,t表示时间。

2. 根据向量求解在物理学中,向量是描述物体运动状态的重要工具。

如果我们已知物体的运动状态向量,就可以根据向量的运算求解轨迹方程。

例如,当物体做匀加速直线运动时,可以根据向量的加减法求解轨迹方程。

假设物体的初速度为v0,加速度为a,时间为t,那么物体的运动状态向量可以表示为v=v0+at,物体的位移向量可以表示为s=v0t+1/2at^2,根据向量的运算可以得到轨迹方程s=1/2at^2+v0t。

3. 根据参数方程求解在解析几何中,参数方程是求解轨迹方程的常用方法。

如果我们已知物体在不同时刻的位置向量,就可以根据向量的坐标表示求解轨迹方程。

假设物体在时刻t1的位置向量为r1=(x 1,y1),在时刻t2的位置向量为r2=(x2,y2),那么物体的轨迹可以表示为x=f(t),y=g(t),其中t 表示时间,f(t)和g(t)分别表示x和y坐标与时间的关系。

根据向量的坐标表示可以得到参数方程x=x1+(x2-x1)(t-t1)/(t2-t1),y=y1+(y2-y1)(t-t1)/(t2-t1),进而求解轨迹方程。

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法

4 1


E

i

求 与 定圆 (

,
) 2

+

,

4
外切

解 ①
戈 2 +



③ 便 可 求得 刀
:

,
且 经效点 A (
2
,
) 的 动 圆圆 心 的 轨 迹方 程 0
,
从 而 求 得 圆的方 程是
夕2

解 如 图 设 动 圆圆 心 为 M ( “ 的 : 设条 件
10
由题
4
x 一
10 夕 + 1 6

0
x
2
例 丫4
3
一 双 曲线 和 椭 圆 2 5
,
+
9梦

l
声卜
l母 T I + I T 对 i = 2 + I M 通 l
;
有 为 公共 的焦 点
F 士 10x
=
且 双 曲线 的 渐 近 线 方 程 为
即 召 行二玄江 不 万` 二
2
+
百 万 不叮 牙不百 了七 仍
o
,
求 此 双 曲线 的方程

已 知 曲线 上 运 动 的 动 点 尸 (
x
,

,
,
的 随 另一 在

2
=
(专)


(去 )
2

设 抛 物线 为

\
,
’ .
对 于 双 曲线 应 有

ZP

常见轨迹方程的求法

常见轨迹方程的求法

动点轨迹方程的常见求法一、待定系数法;它常常适用于动点轨迹的曲线类型已知或利用已知条件可直接推断出其轨迹的曲线方程。

其解题步骤为:先设出对应类型的轨迹方程;再求出所设方程中的待定系数。

例1、已知椭圆中心在原点,焦点在坐标轴上,焦距为213,另一双曲线和椭圆有公共焦点,且椭圆的半长轴比双曲线的半实轴大4,椭圆的离心率和双曲线的离心率之比为3 / 7。

求椭圆和双曲线的方程。

解:如果双曲线和椭圆的焦点在x 轴上,即椭圆的长轴、双曲线的实轴在x 轴上,那么可设椭圆方程为22a x +22by = 1,双曲线的方程为22mx -22n y = 1。

Θ2c = 213 , ∴c = 13 .Θa – m = 4 , m c : n c = 73 , ∴a = 7 , m = 3 . Θ b 2 = a 2-c 2 = 36 , n 2 = c 2- m 2 =4 .∴椭圆方程为492x +362y = 1,双曲线的方程为92x -42y = 1 ; 如果双曲线和椭圆的焦点在y 轴上,同理可得:∴椭圆方程为492y +362x = 1,双曲线的方程为92y -42x = 1 。

二、直译解析法;该方法的主要思路就是将题目中的几何条件直接翻译为代数条件。

它主要通过建系、设点、列式、化简、讨论等步骤得到所求的曲线轨迹方程。

例2、已知两定点A 、B ,AB = 3,求使∠PBA = 2∠PAB 成立的动点P 的轨迹方程。

解: 以点A 为坐标原点,射线AB 为x 轴的正半轴,建立直角坐标系如右图: 则B 点坐标为(3, 0),设P 点坐标为(x, y),∠PAB = α , 则∠PBA =2αΘ3-x y = K PB = tg(π-2α) = - tg2α =αα212tg tg -- = 2)(1)(2xy x y -- = 222y x xy -- ∴y = 0 (0<x<3) 或31-x = 222y x x --, 即y = 0 (0<x<3) 或(x -1)2-32y = 1 (x ≥2)。

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1.直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。

从而得到轨迹方程,这种求轨迹方程的方法称作直接法。

例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。

解:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则有A (,0)a -,B (,0)a 。

设动点C 为(,)x y ,∵222||||||AC BC AB +=,∴2224a +=,即222x y a +=.由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点,故所求方程为222x y a +=(x a ≠±)。

2.代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。

例2:已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且:1:2AM MB =,求动点M 的轨迹方程。

解:设A (,0)a ,B (0,)b ,M (,)x y ,一方面,∵||6AB =,∴2236a b +=, ①另一方面,M 分AB 的比为12,∴1022133122130121312a x a a xb y b y b ⎧+⨯⎪==⎪⎪+⎧=⎪⎪⇒⎨⎨⎪⎪=+⎩⎪==⎪+⎪⎩ ② ②代入①得:223()(3)362x y +=,即221164x y +=。

评注:本例中,由于M 点的坐标随着A 、B 的变化而变化,因而动点M 的坐标(,)x y 可以用A 、B 点的坐标来表示,而点M 又满足已知条件,从而得到M 的轨迹方程。

轨迹方程的求法(一)教案

轨迹方程的求法(一)教案

轨迹方程的求法(一)[教学目标]1、复习轨迹问题的常用方法,掌握对求轨迹方程的主要方法的识别、选择能力,以及操作步骤。

2、从具体到抽象,再由抽象到具体的循环往复,使学生的认识逐步提高和深化。

(抽象与具体相结合的教学原则)3、再次对学生进行数形结合的思想和方法的教育,培养学生的兴趣、想象力和创新精神。

[教学重点]交轨法;各方法的识别和选择。

解题中充分利用图形,寻求简捷的解法。

[教学难点]如何培养学生数形结合的思想 [授课类型]复习课[教学方法]计算机辅助教学,引导发现法,研讨式教学法 [教学过程] 一、 引入:我们知道,求轨迹方程是平面解析几何的主要问题之一。

有的问题是求轨迹。

这类问题,有时是直接判断,但很多情况下是先求轨迹方程,再由方程得出轨迹。

可见求轨迹方程是平面解析几何中的重要内容。

通常,我们求轨迹方程时常使用以下方法(回忆):直接法、定义法、代入法、交轨法、待定系数法、参数法等。

这部分内容我们打算作一个专题来复习,分两节课来完成。

今天这是第一节,主要复习前四种方法。

下面,先做几道题。

二、测试:1:点M 到边长为6的等边△ABC 的三个顶点的距离的平方和等于90,求点M 的轨迹方程。

(直接法)解:如图建立坐标系,依题有B(-3,0),C(3,0),A(0,33)。

设点M(x,y),则点M 属于集合{M| |MA|2+|MB|2+|MC|2=90} 代入坐标:(x+3)2+y 2+(x-3)2+y 2+x 2+(y-33)2=90 化简得:x 2+y 2-23y-15=0就是所求的轨迹方程。

2:已知△ABC 的周长为10,且B (-2,0)C (2,0),求A 点的轨迹方程。

(定义法)15922=+y x (x ≠±3)3:已知A(2,0),P(x 1,y 1)为椭圆14922=+y x 上一动点,求PA 中点M 的轨迹方程。

(代入法) 结果:19)1(422=+-y x三、 反馈,讲解,并引出常用方法 1、 直接法(五步法)步骤:①建系设点,②写出集合,③代入坐标,④化简方程,⑤给出证明(以方程的解为坐标的点都是曲线上的点)。

高考数学难点:轨迹方程的求法

高考数学难点:轨迹方程的求法

高考数学难点:轨迹方程的求法求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.●难点磁场(★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.●案例探究[例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目.知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程.错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题.技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.[例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招)命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系.错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系.解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x y x y px y px y ①-②得(y 1-y 2)(y 1+y 2)=4p (x 1-x 2) 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥①×②,得y 12·y 22=16p 2x 1x 2③代入上式有y 1y 2=-16p 2 ⑦ ⑥代入④,得yxy y p -=+214⑧⑥代入⑤,得pyx y y x x y y y y p442111121--=--=+ 所以211214)(44y px y y p y y p --=+ 即4px -y 12=y (y 1+y 2)-y 12-y 1y 2⑦、⑧代入上式,得x 2+y 2-4px =0(x ≠0)当x 1=x 2时,AB ⊥x 轴,易得M (4p ,0)仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0(x ≠0)它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设M (x ,y ),直线AB 的方程为y =kx +b由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+(2kb -4p )x +b 2=0所以x 1x 2=22kb ,消x ,得ky 2-4py +4pb =0① ② ③ ④ ⑤所以y 1y 2=kpb4,由OA ⊥OB ,得y 1y 2=-x 1x 2 所以k pk4=-22kb ,b =-4kp故y =kx +b =k (x -4p ),用k =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.[例3]某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图:本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力,属★★★★★级题目.知识依托:圆锥曲线的定义,求两曲线的交点.错解分析:正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键.技巧与方法:研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程.解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ●锦囊妙计求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法.(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程.(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.●歼灭难点训练 一、选择题1.(★★★★)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2.(★★★★)设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y二、填空题3.(★★★★)△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________. 4.(★★★★)高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.(★★★★)已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.(★★★★)双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7.(★★★★★)已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.(★★★★★)已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案难点磁场解:建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0). 设M (x ,y )是轨迹上任意一点.则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴).(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0.点M 的轨迹是以 (-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆. 歼灭难点训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆. 答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0) ∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-.答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC | =|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ). ∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2. 即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0), 则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =mn m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =nm n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。

高考数学解析几何中求轨迹方程的常见方法(含答案)

高考数学解析几何中求轨迹方程的常见方法(含答案)

解析几何中求轨迹方程的常见方法一、直接法 当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线.二、定义法定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.例2 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.三、点差法将直线与圆锥曲线的交点代入圆锥曲线的方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法"。

例3 抛物线24y x =焦点弦的中点轨迹方程是 。

四、几何法122=+y x MQ ()0>λλ几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.例4 已知点)2,3(-A 、)4,1(-B ,过A 、B 作两条互相垂直的直线1l 和2l ,求1l 和2l 的交点M 的轨迹方程.五、参数法参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标y x ,间建立起联系,然后再从所求式子中消去参数,得到y x ,间的直接关系式,即得到所求轨迹方程.例5 过抛物线px y 22=(0>p )的顶点O 作两条互相垂直的弦OA 、OB ,求弦AB 的中点M 的轨迹方程.例6 设椭圆中心为原点O ,一个焦点为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q ,点P 在该直线上,且,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形.六、交轨法12-=t t OQ OP求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.例7 如右图,垂直于x 轴的直线交双曲线12222=-by a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.例8 已知两点以及一条直线:y =x ,设长为的线段AB 在直线上移动,求直线P A 和QB 交点M 的轨迹方程.七、代入法当题目中有多个动点时,将其他动点的坐标用所求动点P 的坐标y x ,来表示,再代入到其他动点要满)2,0(),2,2(Q P -ι2λ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档