18届九年级上学期期末考试数学试题(附答案)(2)

合集下载

安徽省宿州市萧县2023-2024学年九年级上学期期末数学试题(含解析)

安徽省宿州市萧县2023-2024学年九年级上学期期末数学试题(含解析)

萧县A ....,,AB AOB α∠=BOA .米B .米C 6.如图,线段,点P 在线段上,且长为半径作孤,两弧相交于点C 和点D ,连接离是( )A .B .7.若关于的一元二次方程A .B .8.小明用地理中所学的等高线的知识在某地进行野外考察,A .B .29.如图,抛物线线.若点的坐标为0.4sin α0.4cos α8AB =AB AC 245x 1-122(y ax bx c =++=1x -A (4,0)-A.110.如图①,在正方形14.如图,标号为①ABCD补的四边形,相邻图形之间互不重叠也无缝隙,H (1)若,(2)若,则三、(本大题共2小题,每小题15.计算:3cm EF =AE FC +=54DG GH =tan DAH ∠(111sin 602-⎛⎫--+︒ ⎪⎝⎭((1)将图①中的格点三角形平移,使点(2)在图②中画一个格点三角形,使六、(本题满分12分)ABC PQR(1)求反比例函数和正比例函数的表达式;(2)若y 轴上有一点七、(本题满分12分)22.如图1,在平面直角坐标系,图像的顶点为.矩形(1)求的值及顶点的坐标;()0,,C n △(0,5)M c M(1)求证:;(2)求证:;(3)已知,.求当该菱形CDM CBM ∠=∠2DM MG MH =⋅1MG =2GH =由作图可得垂直平分∴,CD AB 142AE AB ==一共有16种等可能性,其中,甲乙从相邻电梯处的可能性有6故甲、乙在相邻楼层出电梯的概率是.20.(1)见解析(2)见解析【分析】(1)作和,使,61122=''A B ''B C ''1A B AB ==''2B C BC ==(2)当相似比为作,再连结即可.如图②,即为所求.21.(1);(2)或【分析】(1)把22DE =EF =DF DEF 2y x=y =()0,4C (0,4C -(A由(2)知:,,,,2DM MG MH =⋅ 1MG =2GH =∴23DM =【点睛】本题考查了三角形全等、相似的内容,熟练掌握三角形全等及相似的证明方法是解决此题的关键.。

2024年北京密云区初三九年级上学期期末数学试题和答案

2024年北京密云区初三九年级上学期期末数学试题和答案

北京市密云区2023-2024学年第一学期期末考试九年级数学试卷2024.1考生须知1.本试卷共7页,共3道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用......2.B .铅笔...4.考试结束,请将本试卷和答题纸一并交回.一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..选项是符合题意的.1.二次函数y =3(x +1)2-4的最小值是()A .1B.-1C .4D .-42.已知⊙O 的半径为6,点P 在⊙O 内,则线段OP 的长度可以是()A .5B .6C .7D .83.中国瓷器,积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化.下面瓷器图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4.下列事件中,为必然事件的是()A .等腰三角形的三条边都相等;B .经过任意三点,可以画一个圆;C .在同圆或等圆中,相等的圆心角所对的弧相等;D .任意画一个三角形,其内角和为360°.5.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是()A .x +2=0B .x 2-x =0C .x 2-4=0D .x 2+4=06.如图,四边形ABCD 内接于⊙O ,若∠A =60°,⊙O 的半径为3,则的长为()A .πB .2πC.3πD .6π7.如图,在正方形网格中,A ,B 两点在格点上,线段AB 绕某一点逆时针旋转一定角度后得到线段A'B',点A'与点A 对应,其旋转中心是()A .点B B .点GC .点ED .点F8.某种幼树在相同条件下进行移植试验,结果如下:移植总数n 400750150035007000900014000成活数m 364651133031746324807312620成活的频率0.9100.8680.8870.9070.9030.8970.901下列说法正确的是()A .由于移植总数最大时成活的频率是0.901,所以这种条件下幼树成活的概率为0.901;B .由于表格中成活的频率的平均数约为0.90,所以这种条件下幼树成活的概率为0.90;C .由于表格中移植总数为1500时成活数为1330,所以移植总数3000时成活数为2660;D .由于随着移植总数的增大,幼树移植成活的频率越来越稳定在0.90左右,所以估计幼树成活的概率为0.90.二、填空题(本题共16分,每小题2分)9.若关于x 的方程(k +3)x 2-6x +9=0是一元二次方程,则k 的取值范围是.10.将抛物线y=x 2向下平移1个单位长度,再向右平移2个单位长度后,得到抛物线的解析式为.11.用配方法解一元二次方程x 2-4x =1时,将原方程配方成(x -2)2=k 的形式,则k 的值为.12.如图,AB 、AC 为⊙O 的切线,B 、C 为切点,连接OC 并延长到D ,使CD =OC ,连接AD .若∠BAD =75°,则∠AOC 的度数为.mnB D13.若点A (-2,y1),B (-1,y 2),C (3,y 3)三点都在二次函数y =-3x 2的图象上,则y 1、y 2、y 3的大小关系是(按从小到大的顺序,用“<”连接).14.请写出一个常数a 的值,使得二次函数y =x 2+4x +a 的图象与x 轴没有交点,则a 的值可以是.15.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则正六边形ABCDEF 的面积为_________.16.在平面直角坐标系xOy 中,点A 、点B 的位置如图所示,抛物线y =ax 2-2ax 经过A 、B 两点,下列四个结论中:①抛物线的开口向上②抛物线的对称轴是x =1③A 、B 两点位于对称轴异侧④抛物线的顶点在第四象限所有不.正确..结论的序号是.三、解答题(本题共68分,其中17-22每题5分,23-26每题6分,27、28题每题7分)17.解方程:x 2+8x -20=0.18.下面是小宁设计的“作平行四边形的高”的尺规作图过程.已知:平行四边形ABCD .求作:AE ⊥BC ,垂足为E .作法:如图所示,①连接AC ,分别以点A 和点C 为圆心,大于的长为半径作弧,两弧相交于P ,Q 两点;②作直线PQ ,交AC 于点O ;③以点O 为圆心,OA 长为半径作圆,交线段BC 于点E (点E 不与点C 重合),连接AE .所以线段AE 就是所求作的高.12AC根据小宁设计的尺规作图过程,解决问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AP=CP,AQ=,∴点P、Q都在线段AC的垂直平分线上,∴直线PQ为线段AC的垂直平分线,∴O为AC中点.∵AC为直径,⊙O与线段BC交于点E,∴∠AEC=°.()(填推理的依据)∴AE⊥BC.19.已知:二次函数y=x2+bx-3的图象经过点A(2,5).(1)求二次函数的解析式;(2)求该函数的顶点坐标.20.二十四节气是中华民族农耕文明的智慧结晶,是专属中国人的独特时间美学,被国际气象界誉为“中国第五大发明”.如图,小文购买了四张形状、大小、质地均相同的“二十四节气”主题邮票,正面分别印有“立春”“立夏”“秋分”“大暑”四种不同的图案,背面完全相同,他将四张邮票洗匀后正面朝下放在桌面上.(1)小文从中随机抽取一张,抽出的邮票恰好是“大暑”的概率是___________;(2)若印有“立春”“立夏”“秋分”“大暑”四种不同图案的邮票分别用A,B,C,D 表示,小文从中随机抽取一张(不放回),再从中随机抽取一张,请用画树状图或列表的方法求小文抽到的两张邮票恰好是“立春”和“立夏”的概率.21.2023年10月,第三届“一带一路”国际合作高峰论坛在北京召开,回顾了十年来共建“一带一路”取得的丰硕成果.为促进经济繁荣,某市大力推动贸易发展,2021年进出口贸易总额为60000亿元,2023年进出口贸易总额为86400亿元.若该市这两年进出口贸易总额的年平均增长率相同,求这两年该市进出口贸易总额的年平均增长率.22.玉环为我国的传统玉器,通常为正中带圆孔的扁圆形器物.据《尔雅·释器》记载:“肉好若一,谓之环”,其中“肉”指玉质部分(边),“好”指中央的孔.结合图1,“肉好若一”的含义可以表示为:中孔直径d=2h.图2是一枚破损的汉代玉环,为修复原貌,需推算出该玉环的孔径尺寸.如图3,文物修复专家将破损玉环的外围边缘表示为弧AB,设弧AB所在圆的圆心为O,测得弧所对的弦长AB为6cm,半径OC⊥AB于点D,测得CD=1cm,连接OB,求该玉环的中孔半径的长.图1图2图323.已知关于x的一元二次方程x2-5x+m=0(m<0).(1)判断方程根的情况,并说明理由;(2)若方程的一个根为6,求m的值和方程的另一个根.24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.25.某景观公园计划修建一个人工喷泉,从垂直于地面的喷水枪喷出的水流路径可以看作是抛物线的一部分.记喷出的水流距喷水枪的水平距离为x m,距地面的竖直高度为y m,获得数据如下:x(米)00.5 2.0 3.55y(米) 1.67 2.25 3.00 2.250小华根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小华的探究过程,请补充完整:(1)在平面直角坐标系xOy中,描出以表中各对对应值为坐标的点,并用平滑的曲线画出该函数的图象;(2)直接写出水流最高点距离地面的高度为米;(3)求该抛物线的表达式,并写出自变量的取值范围;(4)结合函数图象,解决问题:该景观公园准备在距喷水枪水平距离3m处修建一个大理石雕塑,使喷水枪喷出的水流刚好落在雕塑顶端,则大理石雕塑的高度约为m(结果精确到0.1m).26.在平面直角坐标系xOy中,点(2,m)和(5,n)在抛物线y=x2+2bx上,设抛物线的对称轴为x=t.(1)若m=0,求b的值;(2)若mn<0,求该抛物线的对称轴t的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,AC=BC.点D为AB边上的一点,将线段CD绕点C逆时针旋转90°得到线段CE,连接AE、BE.(1)依据题意,补全图形;(2)直接写出∠ACE+∠BCD的度数;(3)若点F为BD中点,连接CF交AE于点P,用等式表示线段AE与CF之间的数量关系,并证明.28.在平面直角坐标系xOy中,已知⊙O的半径为1,点A的坐标为(-1,0).点B是⊙O上的一个动点(点B不与点A重合).若点P在射线AB上,且AP=2AB,则称点P 是点A关于⊙O的2倍关联点.(1)若点P是点A关于⊙O的2倍关联点,且点P在x轴上,则点P的坐标为_______;(2)直线l经过点A,与y轴交于点C,∠CAO=30°.点D在直线l上,且点D是点A关于⊙O的2倍关联点,求D点的坐标;(3)直线y=x+b与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的2倍关联点,直接写出b的取值范围.北京市密云区2023-2024学年第一学期期末考试九年级数学试卷参考答案及评分标准2024.1一、选择题(本题共16分,每小题2分)题号12345678选项D A B C C B C D二、填空题(本题共16分,每小题2分)9.k≠-3;10.y=(x-2)2-1;11.k=5;12.65°;13.y3<y1<y2;14.6;(答案不唯一,大于4均可)15.16.①④.三、解答题(本题共68分.其中17~22题每题5分,23~26题每题6分,27、28题每题7分)说明:与参考答案不同,但解答正确相应给分.17.解:x2+8x-20=0(x+10)(x-2)=0………………………………2分∴x+10=0或x-2=0………………………………3分∴x=-10或x=2………………………………4分∴x1=-10,x2=2………………………………5分18.(1)………………………………2分(2)CQ………………………………3分90°,直径所对的圆周角是直角.………………………………5分19.(1)解:将点A(2,5)代入y=x2+bx-3解析式4+2b-3=5………………………………1分2b=4b=2………………………………2分∴二次函数的解析式为y=x2+2x-3………………………………3分(2)解:y=x2+2x-3=(x+1)2-4………………………………4分∴该函数的顶点坐标是(-1,-4)………………………………5分20.(1)14………………………………1分(2)根据题意,可以画出如下树状图:………………………………3分由树状图可知,所有可能出现的结果共有12种,即AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,DC,并且它们出现的可能性相等.其中,恰好抽到的两张邮票是“立春”和“立夏”(记为事件A)的结果有2种,即AB或BA.………………………………4分∴()21 126P A==.………………………………5分21.解:设这两年该市进出口贸易总额的年平均增长率为x,则:………………………………1分60000(1+x)2=86400………………………………2分(1+x)2=36251+x=65±解得:x1=0.2,x2=-2.2………………………………4分经检验:x=-2.2不符实际意义,舍去∴x=0.2=20%答:这两年该市进出口贸易总额的年平均增长率为20%.………………………………5分22.解:∵OC是⊙O的半径,且OC⊥AB∴AD=BD∵AB=6∴BD=3………………………………1分设⊙O的半径为x,则OC=OB=x∵CD=1∴OD=x-1………………………………2分在Rt△ODB中∵OD2+BD2=OB2∴(x-1)2+32=x2………………………………3分x=5∴OB=5………………………………4分∵玉环的中孔直径d=2h∴玉环的中孔半径为2.5cm.………………………………5分23.(1)该方程有两个不相等的实数根,理由如下:………………………………1分解:△=(-5)2-4m………………………………2分=25-4m∵m<0∴-4m>0∴25-4m>0即△>0………………………………3分∴方程有两个不相等的实数根(2)解:将x=6代入原方程∴36-30+m=0∴m=-6………………………………4分原方程为x2-5x-6=0(x-6)(x+1)=0解得:x1=6,x2=-1………………………………5分∴方程的另一个根为-1.………………………………6分24.(1)证明:连接OA………………………………1分∵⊙O是△ABC的外接圆,且∠ABC=45°∴∠AOC=90°………………………………2分∵OC//AD∴∠AOC+∠OAD=180°∴∠OAD=90°∴AD是⊙O的切线………………………………3分(2)解:过点C作CF⊥AD于点F,∴∠AFC=90°∴∠AOC=∠OAD=∠AFC=90°∴四边形AOCF是矩形∵OC=OA∴矩形AOCF是正方形∵⊙O的半径为4∴AF=CF=OC=4………………………………4分∵AD=6∴FD=AD-AF=2………………………………5分在Rt△CFD中CD==∴线段CD的长为………………………………6分25.(1)………………………………1分(2)3;………………………………2分(3)解:设y=a(x-2)2+3(a<0)………………………………3分∵将(5,0)代入函数表达式,则9a+3=0a=∴………………………………4分自变量的取值范围为:0≤x≤5.………………………………5分(4)2.7m(误差均可)………………………………6分26.(1)解:当m=0时,将(2,0)代入y=x2+2bx∴4+4b=0………………………………1分4b=-4∴b=-1………………………………2分(2)解:由题意,抛物线经过点(2,m)和(5,n)∵a>0∴抛物线开口向上,且经过坐标原点(0,0)如果t≤0,那么当x≥t时,y随x的增大而增大∴m>0,n>0,与mn<0不符,舍去如果t≥5,那么当x≤t时,y随x的增大而减小∴m<0,n<0,与mn<0不符,舍去∴0<t<5∵mn<0∴函数图象示意图为:图1图213-21(2)33y x=--+0.1±由图1,当0<t <2时作(0,0)关于x=t 的对称点(x 0,0)∵抛物线为轴对称图形∴点(x 0,0)在抛物线上∴x 0=2t∵a >0∴x ≥t 时,y 随x 的增大而增大∵m <0<n ∴2<2t <5………………………………3分∴512t <<∴12t <<………………………………4分由图2,当2≤t <5时作(5,n )关于x=t 的对称点(x 1,n )∵抛物线为轴对称图形∴点(x 1,n )在抛物线上∴x 1=2t -5∵a >0∴x ≤t 时,y 随x 的增大而减小∵m <0<n ∴2t -5<0<2………………………………5分其中0<2恒成立,解2t -5<0得t <52∴522t ≤<综上所述,512t <<………………………………6分27.(1)………………………………1分(2)∠ACE+∠BCD=180°………………………………2分(3)AE与CF之间的数量关系为:AE=2CF………………………………3分证明:延长CF至H,使FH=CF∵点F为BD中点∴DF=BF∵∠DFH=∠CFB∴△DFH≅△CFB………………………………4分∴DH=BC,∠H=∠BCF∵AC=BC∴DH=AC∵∠H=∠BCF∴DH//BC∴∠DCB+∠CDH=180°∵∠DCB+∠ACE=180°∴∠CDH=∠ACE………………………………5分∵CD=CE∴△CDH≅△ECA………………………………6分∴CH=AE∵CH=2CF∴AE=2CF………………………………7分28.(1)(3,0)………………………………1分(2)解:当直线l 与y 轴正半轴交于点C 时∵点D 在直线l 上,且点D 是点A 关于⊙O 的2倍关联点,∴直线l 与⊙O 的另一个交点为点B ,点D 在射线AB 上,满足AD =2AB 过点O 作OE ⊥AB ∴AB =2AE………………………………2分在Rt △AOE 中,∠CAO =30°,OA=1∴OE =12∴2AE ==∴AB =2∵AD =2AB∴AD =………………………………3分过点D 作DF ⊥x 轴,交x 轴于点F ∵在Rt △AOE 中,∠CAO =30°∴DF ,3AF ==∴OF =2∴D (2)………………………………4分同理可证,当直线l 与y 轴负半轴交于点C 时,D (2,……………………5分综上所述,D 点坐标为(2,)或(2,)(3)1b -≤≤或11b <≤………………………………7分。

江苏省苏州市区2018届九年级数学上学期期末考试试题苏科版

江苏省苏州市区2018届九年级数学上学期期末考试试题苏科版

江苏省苏州市区2018届九年级数学上学期期末考试试题本试卷由填空题、选择题和解答题三大题组成.共28小题,满分130分.考试时间120分钟.注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0. 5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0. 5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题 本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置上.1. 数轴上点A 、B 表示的数分别是5、-3,它们之间的距离可以表示为 (▲)A .-3+5 B. -3-5 C. |-3+5| D. |-3-5|2. 下列计算正确的是 (▲)A .330--=B .02339+=C .331÷-=-D .()1331-⨯-=-3.下列运算正确的是 (▲)A .x 4+x 2=x 6B .x 2•x 3=x 6C .(x 2)3=x 6D .x 2﹣y 2=(x ﹣y )24. 我市5月的某一周七天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是 (▲)A .23,24B .24,22C .24,24D .22,245.已知M =a ﹣1,N =a 2﹣a (a 为任意实数),则M 、N 的大小关系为 (▲)A .M <NB .M =NC .M >ND .不能确定6. 在平面直角坐标系中,将二次函数22y x =的图象向上平移2个单位,所得函数图象的解析式为(▲)A .222y x =+B .222y x =-C .22(2)y x =-D .22(2)y x =+ 7. 由二次函数22(3)1y x =-+,可知 (▲)A.其图像的开口向下B.其图像的对称轴为直线3x =-C.其最小值为1D.当3x <时,y 随x 的增大而增大8. 下列命题中,正确的是 (▲)A .平面上三个点确定一个圆B .等弧所对的圆周角相等C .平分弦的直径垂直于这条弦D .与某圆一条半径垂直的直线是该圆的切线9. 如图,过⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别是A 、B ,OP 交⊙O 于点C ,点D 是优弧¼AMB 上不与点A 、点B 重合的一个动点,连接AD 、CD ,若∠APB =80°,则∠ADC 的度数是 (▲)A .15°B .20°C .25°D .30°10. 如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标的最大值为 (▲)A .-3B .1C .5D .8第9题 第10题 第18题二、填空题 本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应位置上.11. 当x ▲ 时,分式无意义. 12.花粉的质量很小,一粒某种植物花粉的质量约为0.000037mg ,已知1g =1000mg ,那么0.000037mg可以用科学记数法表示为 ▲ .13.计算:222a a b b b a⎛⎫-÷= ⎪⎝⎭ ▲ . 14.在一个暗箱中,只装有a 个白色乒乓球和10个黄色乒乓球,每次搅拌均匀后,任意摸出一个球后又放回,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,则a = ▲ .15. 一圆锥的侧面积为15π,底面半径为3,则该圆锥的母线长为 ▲ .16. 已知抛物线234y x x =+-与x 轴的两个交点为()1,0x 、()2,0x 则212315x x -+= ▲ . y x O (第10题)D C B (4,4)A (1,4)O M P D C B A17. 已知抛物线y =x 2-2mx -4 (m >0)的顶点M 关于坐标原点O 的对称点为M '.若点M '在这条抛物线上,则点M 的坐标为 ▲ 。

山西省晋中市榆次区2018-2019学年九年级上学期期末考试数学试题(含解析版)

山西省晋中市榆次区2018-2019学年九年级上学期期末考试数学试题(含解析版)

山西省晋中市榆次区2019届九年级上学期期末考试数学试题一、选择题(每小题3分,共30分)1.cos30°的值是()A.1B.C.D.2.若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6B.﹣2C.2D.63.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm4.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.抛物线y=(x+2)2﹣1可以由抛物线y=x2平移得到,下列平移方法中正确的是()A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位6.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2C.5D.107.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是()A.B.C.D.8.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为()A.160米B.(60+160)C.160米D.360米9.如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 C.0<x<1B.x<﹣2D.﹣2<x<0或x>110.如图,若二次函数y=ax2+b x+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x 轴交于点A、点B(﹣1,0),则( 【①二次函数的最大值为 a +b +c ;②a ﹣b +c <0;③b 2﹣4ac <0;④当 y >0 时,﹣1<x <3.其中正确的个数是()A .1B .2C .3D .4二、填空题(每小题 3 分,共 15 分)11.抛物线 y =3(x ﹣2)2+5 的顶点坐标是.12.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排 21 场比赛,应邀请多少个球队参赛?设邀请 x 个球队参赛,根据题意,可列方程为.13.如图,某商店营业大厅自动扶梯AB 的倾斜角为 31°,AB 的长为 12 米,则大厅两层之间的高度为米.结果保留一位小数)参考数据:sin31°=0.515,cos31°=0.867,tan31°=0.601】14.如图,在平面直角坐标系中,矩形 OABC 的 两边 OA ,OC 分别在 x 轴和 y 轴上,并且OA =5,OC =3.若把矩形 OABC 绕着点 O 逆时针旋转,使点 A 恰好落在 BC 边上的 A 1处,则点 C 的对应点 C 1 的坐标为.( ,15.如图,A ,B 是反比例函数 y = 在第一象限内的图象上的两点,且 A ,B 两点的横坐标分别是 2 和 △4,则 OAB 的面积是.三、解答题16.(11 分)(1)计算 2tan60°(2)解方程:2x 2+3x ﹣1=017. 8 分)如图,一次函数 y =kx +b 的图象与反比例函数 y = 的图象交于点 A (﹣3,m +8)B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式;(△2)求 AOB 的面积.18.(8 分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选项目人数统计表项目机器人3D打印航模其他男生(人数)7m25女生(人数)942n根据以上信息解决下列问题:(1)m=,n=;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为°;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.19.(7分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.20.(7分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(9分)如图,在矩形AB CD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:(1)当t为何值时,△QAP是等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?22.(11分)如图(1),△Rt ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(△1)中的ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.0 , y23.(14 分)如图,已知抛物线 y =ax 2+ x +c 与 x 轴交于 A ,B 两点,与 y 轴交于点 C ,且A (2, ) C (0,﹣4),直线 l : =﹣ x ﹣4 与 x 轴交于点 D ,点 P 是抛物线 y =ax 2+ x +c 上的一动点,过点 P 作 PE ⊥x 轴,垂足为 E ,交直线 l 于点 F .(1)试求该抛物线表达式;(2)如图(1),当点 P 在第三象限,四边形 PCOF 是平行四边形,求 P 点的坐标;(3)如图(2),过点 P 作 PH ⊥y 轴,垂足为 H ,连接 AC .①求证:△ACD 是直角三角形;②试问当 P 点横坐标为何值时,使得以点 P 、C 、H 为顶 点的三角形与△ACD 相似?参考答案一、选择题1.解:cos30°=.故选:B.2.解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.3.解:∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4cm.在△Rt OCE中,OC=5cm,CE=4cm,∴OE==3cm,∴AE=AO+OE=5+3=8cm.故选:A.4.解:俯视图从左到右分别是2,1,2个正方形,如图所示:.故选:B.5.解:∵函数y=x2的图象沿沿x轴向左平移2个单位长度,得,y=(x+2)2;然后y轴向下平移1个单位长度,得,y=(x+2)2﹣1;故可以得到函数y=(x+2)2﹣1的图象.故选:B.6.解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==∴AO=3,,在△Rt AOB中,由勾股定理得:AB=故选:C.7.解:如图,==5,,共有16种结果,小明和小红分在同一个班的结果有4种,故小明和小红分在同一个班的机会==.故选:A.8.解:过点A作AD⊥BC于点D,则∠BAD=30°,∠CAD=60°,AD=120m,在△Rt ABD中,BD=AD•tan30°=120×在△Rt ACD中,CD=AD•tan60°=120×∴BC=BD+CD=160(m).故选:C.=40=120(m),(m),9.解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.10.解:①∵二次函数y=ax2+b x+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.二、填空题(本大题共5个小题每小题3分,共15分)11.解:∵抛物线y=3(x﹣2)2+5,∴顶点坐标为:(2,5).故答案为:(2,5).12.解:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:x(x﹣1)=21,故答案为:x(x﹣1)=21.13.解:在△Rt ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.14.解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,NO=∠A1MO=90°,由题意可得:∠C1∠1=∠2=∠3,则△A1△OM∽OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x =± (负数舍去),则 NO = ,NC 1=,故点 C 的对应点 C 1 的坐标为:(﹣ ,故答案为:(﹣ ,).).15.解:∵A ,B 是反比例函数 y = 在第一象限内的图象上的两点,且 A ,B 两点的横坐标分别是 2 和 4,∴当 x =2 时,y =2,即 A (2,2),当 x =4 时,y =1,即 B (4,1).如图,过 A ,B 两点分别作 AC ⊥x 轴于 C ,BD ⊥x 轴于 D ,则 S △AOC =S △BOD = ×4=2.∵S 四边形 AODB = △S AOB + △S BOD =S △AOC+S 梯形 ABDC ,∴ △S AOB =S 梯形 ABDC ,∵S 梯形 ABDC = (BD +AC )•CD = (1+2)×2=3, ∴ △S AOB =3.故答案是:3.三、解答题(本大题共 8 个小题,共 75 分,解答应写出文字说明证明过程或演算步骤)16.解:(1)原式=2×﹣2 ﹣1+3=2;(2)∵2x 2+3x ﹣1=0,∴a =2,b =3,c =﹣1,∴△=9+8=17,∴x=17.解:(1)将A(﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣4;(2)设AB与x轴相交于点C,令﹣2x﹣4=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,△S AOB△S AOC+△S BOC,==×2×2+×2×6,=2+6,=8.18.解:(1)由两种统计表可知:总人数=4÷10%=40人,∵3D打印项目占30%,∴3D打印项目人数=40×30%=12人,∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中机器人项目所对应扇形的圆心角度数=故答案为:144;(3)列表得:×360°=144°,男1男2女1女2男1﹣﹣男1男2男1女1男1女2男2男2男1﹣﹣男2女1男2女2女1女1男1女1男2﹣﹣女1女2女2女2男1女2男2女2女1﹣﹣由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“1名男生、1名女生”有8种可能.所以P(1名男生、1名女生)=.19.解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为:180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.20.解:在△Rt ACE中,∵tan∠CAE=∴AE=在△Rt DBF中,∵tan∠DBF=∴BF=,=≈≈21(cm),=≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.21.解:(1)对于任何时刻t,AP=2t,DQ=t,QA=6﹣t.当QA=AP时,△QAP为等腰直角三角形,即:6﹣t=2t,解得:t=2(s),所以,当t=2s时,△QAP为等腰直角三角形.(2)根据题意,可分为两种情况来研究,在矩形ABCD中:①当QA:AB=AP:BC时,△QAP∽△ABC,那么有:(6﹣t):12=2t:6,解得t==1.2(s),即当t=1.2s时,△QAP∽△ABC;②当QA:BC=AP:AB时,△P AQ∽△ABC,那么有:(6﹣t):6=2t:12,解得t=3(s),即当t=3s时,△P AQ∽△ABC;所以,当t=1.2s或3s时,以点Q、A、P为顶点的三角形与△ABC相似.22.(1)证明:∵AF平分∠CAB,∴∠CAF=∠EAD,∵∠ACB=90°,∴∠CAF+∠CF A=90°,∵CD⊥AB于D,∴∠EAD+∠AED=90°,∴∠CF A=∠AED,又∠AED=∠CEF,∴∠CF A=∠CEF,∴CE=CF;(2)猜想:BE′=CF.证明:如图,过点E作EG⊥AC于G,连接EE′,又∵AF平分∠CAB,ED⊥AB,EG⊥AC,∴ED=EG,由平移的性质可知:D′E′=DE,∴D′E′=GE,∵∠ACB=90°,∴∠ACD+∠DCB=90°∵CD⊥AB于D,∴∠B+∠DCB=90°,∴∠ACD=∠B,在△CEG与△BE′D′中,,∴△CEG≌△BE′D′(AAS),∴CE=BE′,由(1)可知CE=CF,∴BE′=CF.23.解:(1)由题意得:,解得:,∴抛物线的表达式为y=x2+x﹣4.(2)设P(m,m2+m﹣4),则F(m,﹣m﹣4).m.∴PF=(﹣m﹣4)﹣(m2+m﹣4)=﹣m2﹣∵PE⊥x轴,∴PF∥OC.∴PF=OC时,四边形PCOF是平行四边形.∴﹣m2﹣m=4,解得:m=﹣或m=﹣8.当m=﹣时,m2+m﹣4=﹣,当m=﹣8时,m2+m﹣4=﹣4.∴点P的坐标为(﹣,﹣)或(﹣8,﹣4).(3)①证明:把y=0代入y=﹣x﹣4得:﹣x﹣4=0,解得:x=﹣8.∴D(﹣8,0).∴OD=8.∵A(2,0),C(0,﹣4),∴AD=2﹣(﹣8)=10.由两点间的距离公式可知:AC2=22+42=20,DC2=82+42=80,AD2=100,∴AC2+CD2=AD2.∴△ACD是直角三角形,且∠ACD=90°.②由①得∠ACD=90°.当△ACD∽△CHP时,=,即=解得:n=0(舍去)或n=﹣5.5或n=﹣10.5.当△ACD∽△PHC时,=,即=,解得:n=0(舍去)或n=2或n=﹣18.综上所述,点P的横坐标为﹣5.5或﹣10.5或2或﹣18时,使得以点P、C、H为顶点的三角形与△ACD相似.。

2018-2019学年重庆市江北区九年级(上)期末数学试卷试题及答案(解析版)

2018-2019学年重庆市江北区九年级(上)期末数学试卷试题及答案(解析版)

2018-2019学年重庆市江北区九年级(上)期末数学试卷一、选择题:(木大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请用2B 铅笔将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列四张扑克牌图案,属于中心对称图形的是( )A .B .C .D .2.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球3.二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )A .抛物线开口向下B .抛物线经过点(2,3)C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点4.如果两个相似多边形面积的比为1:5,则它们的相似比为( )A .1:25B .1:5C .1:2.5D .5.如图,A 的半径为3,圆心A 的坐标为(1,0),点(,0)B m 在A 内,则m 的取值范围是( )A .4m <B .2m >-C .24m -<<D .2m <-或4m > 6.若反比例函数(0)k y k x =≠的图象经过(2,3),则k 的值为( ) A .5 B .5- C .6 D .6-7.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是( )A .种植10棵幼树,结果一定是“有9棵幼树成活”B .种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C .种植10n 棵幼树,恰好有“n 棵幼树不成活”D .种植n 棵幼树,当n 越来越大时,种植成活幼树的频率会越来越稳定于0.98.已知:如图,在O 中,OA BC ⊥,70AOB ∠=︒,则ADC ∠的度数为( )A .30︒B .35︒C .45︒D .70︒9.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,旋转角为(090)αα︒<<︒.若1112∠=︒,则α∠的大小是( )A .68︒B .20︒C .28︒D .22︒10.如图,圆O 的弦AB OC ⊥,且将半径OC 分为2:1的两部分(:2:1)OD DC =,AB =则圆O 的半径为( )A .3B .5C .6D .911.如图,一次函数1y x =-的图象与反比例函数2y x=的图象在第一象限相交于点A ,与x 轴相交于点B ,点C 在y 轴上,若AC BC =,则点C 的坐标为( )A .(0,1)B .(0,2)C .5(0,)2D .(0,3)12.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数(1)11y m x m =-++-经过一、二、四象限且关于x 的分式方程8388mx x x x x =+--的解为整数的概率是( ) A .12 B .13 C .14 D .23二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的橫线上.13.已知:如图,ABC ∆的面积为12,点D 、E 分别是边AB 、AC 的中点,则四边形BCED 的面积为 .14.在平面直角坐标系中,将二次函数2(2)2y x =-+的图象向左平移2个单位,所得图象对应的函数解析式为 .15.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数k y x=的图象上,1OA =,6OC =,则正方形ADEF 的边长为 .16.如图,已知C ,D 是以AB 为直径的半圆周上的两点,O 是圆心,半径2OA =,120COD ∠=︒,则图中阴影部分的面积等于 .17.如图,在Rt ABC ∆中,90ACB ∠=︒,5AC cm =,12BC cm =,将ABC ∆绕点B 顺时针旋转60︒,得到BDE ∆,连接DC 交AB 于点F ,则ACF ∆与BDF ∆的周长之和为 cm .18.小明同学为筹备缤纷节财商体验活动,准备在商店购入小商品A 和B .已知A 和B 的单价和为25元,小明计划购入A 的数量比B 的数量多3件,但一共不超过28件.现商店将A 的单价提高20%,B 打8折出售,小明决定将A 、B 的原定数量对调,这样实际花费比原计划少6元.已知调整前后的价格和数量均为整数,求小明原计划购买费用为 元.三、解答题:(本大题共2个小题,每小题8分,共16分)解答应写出文字说明,演算步骤或证明过程.19.如图,在ABC ∆和ADE ∆中,点E 在BC 边上,BAC DAE ∠=∠,B D ∠=∠,AB AD =.求证:AEC C ∠=∠.20.已知二次函数2y x bx c =++的图象与y 轴交于点(0,6)C -,与x 轴的一个交点坐标是(2,0)A -.求二次函数的解析式,并写出顶点D 的坐标;四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.22.如图,在平面直角坐标xOy中,正比例函数y kx=的图象与反比例函数myx=的图象都经过点(2,2)A-.(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及ABC∆的面积.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了%m ,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2%m ,但销售均价比去年减少了%m ,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m 的值.24.如图一所示,ABC ∆是等腰直角三角形,其中90BAC ∠=︒,D 是AB 边上的一点,连接CD ,过A 作AE CD ⊥,E 为垂足,AF AE ⊥,且AF AE =.连接FB(1)求证:CE FB =;(2)如图二,延长FE 交BC 于G 点,如果G 点正好为BC 的中点,EA FB +=.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.材料一:把一个自然数的个位数字截太再用余下的数加上个位数的4倍,如果和是13的倍数,则原数能被13整除.如果和太大不易看出是否13的倍数,可重复上述「截尾、倍大、相加、验和」的过程,直到能清楚判断为止.例如,判断377是否13的倍数的过程如下:377465+⨯=,65135÷=,所以,377是13的倍数;又例如判断8632是否13的倍数的过程如下:86324871+⨯=,871491+⨯=,91137÷=.所以,8632是13的倍数. 材料二:若一个四位自然数n ,满足千位与个位相同,百位与十位相同,我们称这个数为“对称数”.将“对称数” n 的前两位与后两位交换位置得到一个新的n ',记()99n n F n -'=,例如3113n =,1331n '=,31131331(3113)1899F -==. (1)请用材料一的方法判断1326与3366能否被13整除;(2)若m 、p 是“对称数”,其中m abba =,(05p caac b a =<剟,15c a <剟且a ,b ,c 均为整数),若m 能被3l 整除,且()()36F m F p -=,求p .26.如图一,已知抛物线2y ax bx c =++的图象经过点(0,3)A 、(1,0)B ,其对称轴为直线:2l x =,过点A 作//AC x 轴交抛物线于点C ,AOB ∠的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m .(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;在四边形AOPE 面积最大时,在线段OE 上取点M ,在y 轴上取点N ,当PM MN AN ++取最小值时,求出此时N 点的坐标. (3)如图二,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P ,使POF ∆成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.2018-2019学年重庆市江北区九年级(上)期末数学试卷参考答案与试题解析一、选择题:(木大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请用2B 铅笔将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列四张扑克牌图案,属于中心对称图形的是( )A .B .C .D .【解答】解:A 、是中心对称图形,符合题意;B 、不是中心对称图形,不符合题意;C 、不是中心对称图形,不符合题意;D 、不是中心对称图形,不符合题意.故选:A .2.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球【解答】解:A .摸出的是3个白球是不可能事件;B .摸出的是3个黑球是随机事件;C .摸出的是2个白球、1个黑球是随机事件;D .摸出的是2个黑球、1个白球是随机事件,故选:A .3.二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )A .抛物线开口向下B .抛物线经过点(2,3)C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点【解答】解:A 、2a =,则抛物线223y x =-的开口向上,所以A 选项错误; B 、当2x =时,2435y =⨯-=,则抛物线不经过点(2,3),所以B 选项错误;C 、抛物线的对称轴为直线0x =,所以C 选项错误;D 、当0y =时,2230x -=,此方程有两个不相等的实数解,所以D 选项正确. 故选:D .4.如果两个相似多边形面积的比为1:5,则它们的相似比为( )A .1:25B .1:5C .1:2.5D .【解答】解:两个相似多边形面积的比为1:5,∴它们的相似比为.故选:D .5.如图,A 的半径为3,圆心A 的坐标为(1,0),点(,0)B m 在A 内,则m 的取值范围是( )A .4m <B .2m >-C .24m -<<D .2m <-或4m >【解答】解:以(1,0)A 为圆心,以3为半径的圆交x 轴两点的坐标为(2,0)-,(4,0), 点(,0)B m 在以(1,0)A 为圆心,以3为半径的圆内,24m ∴-<<.故选:C .6.若反比例函数(0)k y k x =≠的图象经过(2,3),则k 的值为( ) A .5 B .5- C .6 D .6-【解答】解:反比例函数(0)k y k x=≠的图象经过(2,3), 236k ∴=⨯=, 故选:C .7.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是( )A .种植10棵幼树,结果一定是“有9棵幼树成活”B .种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C .种植10n 棵幼树,恰好有“n 棵幼树不成活”D .种植n 棵幼树,当n 越来越大时,种植成活幼树的频率会越来越稳定于0.9【解答】解:用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,是在大量重复实验中得到的概率的近似值,故A 、B 、C 错误,D 正确,故选:D .8.已知:如图,在O 中,OA BC ⊥,70AOB ∠=︒,则ADC ∠的度数为( )A .30︒B .35︒C .45︒D .70︒【解答】解:OA BC ⊥,70AOB ∠=︒,∴AB AC =,1352ADC AOB ∴∠=∠=︒. 故选:B .9.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,旋转角为(090)αα︒<<︒.若1112∠=︒,则α∠的大小是( )A .68︒B .20︒C .28︒D .22︒【解答】解:四边形ABCD 为矩形,90BAD ABC ADC ∴∠=∠=∠=︒,矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,旋转角为α,BAB α∴∠'=,90B AD BAD ∠''=∠=︒,90AD C ADC ∠''=∠=︒,21112∠=∠=︒,而90ABC D ∠=∠'=︒,3180268∴∠=︒-∠=︒,906822BAB ∴∠'=︒-︒=︒,即22α∠=︒.故选:D .10.如图,圆O 的弦AB OC ⊥,且将半径OC 分为2:1的两部分(:2:1)OD DC =,AB =则圆O 的半径为( )A .3B .5C .6D .9【解答】解:设2OD a =,则CD a =,2OA a =,AB OC ⊥,OC 为半径,1122AD BD AB ∴===⨯=在Rt ODA ∆中,由勾股定理得:222(3)(2)a a =+,2a =(负数舍去), 326OA =⨯=,故选:C .11.如图,一次函数1y x =-的图象与反比例函数2y x=的图象在第一象限相交于点A ,与x 轴相交于点B ,点C 在y 轴上,若AC BC =,则点C 的坐标为( )A.(0,1)B.(0,2)C.5(0,)2D.(0,3)【解答】解:由12y xyx=-⎧⎪⎨=⎪⎩,解得21xy=⎧⎨=⎩或12xy=-⎧⎨=-⎩,(2,1)A∴,(1,0)B,设(0,)C m,CA CB=,222212(1)m m∴+=+-,2m∴=,(0,2)C∴,故选:B.12.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m,则使得一次函数(1)11y m x m=-++-经过一、二、四象限且关于x的分式方程8388mx xxx x=+--的解为整数的概率是()A.12B.13C.14D.23【解答】解:一次函数(1)11y m x m=-++-经过一、二、四象限,10m-+<,110m->,111m∴<<,∴符合条件的有:2,5,7,8,把分式方程8388mx xxx x=+--去分母,整理得:23160x x mx--=,解得:0x=,或163mx+ =,8x ≠,∴1683m+≠,8m ∴≠, 分式方程8388mx x x x x =+--的解为整数, 2m ∴=,5,∴使得一次函数(1)11y m x m =-++-经过一、二、四象限且关于x 的分式方程8388mx x x x x =+--的解为整数的整数有2,5, ∴使得一次函数(1)11y m x m =-++-经过一、二、四象限且关于x 的分式方程8388mx x x x x =+--的解为整数的概率为2163=; 故选:B .二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的橫线上.13.已知:如图,ABC ∆的面积为12,点D 、E 分别是边AB 、AC 的中点,则四边形BCED 的面积为 9 .【解答】解:设四边形BCED 的面积为x ,则12ADE S x ∆=-,点D 、E 分别是边AB 、AC 的中点,DE ∴是ABC ∆的中位线,//DE BC ∴,且12DE BC =, ADE ABC ∴∆∆∽, 则2()ADE ABC S DE S BC∆∆=,即121124x -=, 解得:9x =,即四边形BCED 的面积为9,故答案为:9.14.在平面直角坐标系中,将二次函数2(2)2y x =-+的图象向左平移2个单位,所得图象对应的函数解析式为 22y x =+ .【解答】解:二次函数2(2)2y x =-+的图象向左平移2个单位,得:22(22)22y x x =-++=+.15.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数k y x=的图象上,1OA =,6OC =,则正方形ADEF 的边长为 2 .【解答】解:1OA =,6OC =,B ∴点坐标为(1,6),166k ∴=⨯=,∴反比例函数解析式为6y x =,设AD t =,则1OD t =+,E ∴点坐标为(1,)t t +,(1)6t t ∴+=,整理为260t t +-=,解得13t =-(舍去),22t =,∴正方形ADEF 的边长为2.故答案为:2.16.如图,已知C ,D 是以AB 为直径的半圆周上的两点,O 是圆心,半径2OA =,120COD ∠=︒,则图中阴影部分的面积等于 3 .【解答】解:图中阴影部分的面积221120222360ππ⨯⨯=⨯-423ππ=- 23π=. 答:图中阴影部分的面积等于23π. 故答案为:23π. 17.如图,在Rt ABC ∆中,90ACB ∠=︒,5AC cm =,12BC cm =,将ABC ∆绕点B 顺时针旋转60︒,得到BDE ∆,连接DC 交AB 于点F ,则ACF ∆与BDF ∆的周长之和为 42 cm .【解答】解:将ABC ∆绕点B 顺时针旋转60︒,得到BDE ∆,ABC BDE ∴∆≅∆,60CBD ∠=︒,12BD BC cm ∴==,BCD ∴∆为等边三角形,12CD BC CD cm ∴===,在Rt ACB ∆中,13AB ===,ACF ∆与BDF ∆的周长之和513121242()AC AF CF BF DF BD AC AB CD BD cm =+++++=+++=+++=, 故答案为:42.18.小明同学为筹备缤纷节财商体验活动,准备在商店购入小商品A 和B .已知A 和B 的单价和为25元,小明计划购入A 的数量比B 的数量多3件,但一共不超过28件.现商店将A 的单价提高20%,B 打8折出售,小明决定将A 、B 的原定数量对调,这样实际花费比原计划少6元.已知调整前后的价格和数量均为整数,求小明原计划购买费用为 311 元.【解答】解:设小商品A 的单价为x 元/件,则B 商品的单价为(25)x -元/件,计划购买小商品Aa 件,则B 商品为(3)a -件,(120%)(3)0.8(25)6(25)(3)x a a x xa x a +-+-+=+--,解得77.4 3.830.8a x a-=+, 由题意得:328a a +-…16.5a …, x 和a 都是整数,∴当14a =时,12x =,小明原计划购买费用为:(25)(3)14121311311xa x a +--=⨯+⨯=.故答案为:311三、解答题:(本大题共2个小题,每小题8分,共16分)解答应写出文字说明,演算步骤或证明过程.19.如图,在ABC ∆和ADE ∆中,点E 在BC 边上,BAC DAE ∠=∠,B D ∠=∠,AB AD =.求证:AEC C ∠=∠.【解答】证明:在ABC ∆和ADE ∆中BAC DAE AB ADB D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABC ADE ASA ∴∆≅∆,AED C ∴∠=∠20.已知二次函数2y x bx c =++的图象与y 轴交于点(0,6)C -,与x 轴的一个交点坐标是(2,0)A -.求二次函数的解析式,并写出顶点D 的坐标;【解答】解:二次函数2y x bx c =++的图象与y 轴交于点(0,6)C -,与x 轴的一个交点坐标是(2,0)A -,∴26(2)20c b c =-⎧⎨--+=⎩, 解得,16b c =-⎧⎨=-⎩, ∴该函数的解析式为26y x x =--,221256()24y x x x =--=--, ∴顶点D 的坐标为1(2,25)4-. 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A (骑自行车)、B (乘公交车)、C (步行)、D (乘私家车)、E (其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是 300 人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是 ,“其他方式”所在扇形的圆心角度数是 ;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.【解答】解:(1)接受调查的总人数是:5430018%=(人), 则步行上学的人数为:30054126122088----=(人).故答案是:300;(2)在扇形统计图中,“步行”的人数所占的百分比是:88100%29.3% 300⨯≈;“其他方式”所在扇形的圆心角度数是:20360100%24300︒⨯⨯=︒.故答案是:29.3%;24︒;(3)画树状图:由图可知,共有20种等可能的结果,其中一男一女有12种结果;则()123 205P==一男一女.22.如图,在平面直角坐标xOy中,正比例函数y kx=的图象与反比例函数myx=的图象都经过点(2,2)A-.(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及ABC∆的面积.【解答】解:(1)根据题意,将点(2,2)A -代入y kx =,得:22k -=,解得:1k =-,∴正比例函数的解析式为:y x =-,将点(2,2)A -代入m y x =,得:22m -=, 解得:4m =-; ∴反比例函数的解析式为:4y x=-;(2)直线:OA y x =-向上平移3个单位后解析式为:3y x =-+,则点B 的坐标为(0,3), 联立两函数解析式34y x y x =-+⎧⎪⎨=-⎪⎩,解得:14x y =-⎧⎨=⎩或41x y =⎧⎨=-⎩, ∴第四象限内的交点C 的坐标为(4,1)-,//OA BC ,1134622ABC OBC C S S BO x ∆∆∴==⨯⨯=⨯⨯=. 23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了%m ,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2%m ,但销售均价比去年减少了%m ,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m 的值.【解答】解:(1)设该果农今年收获樱桃x 千克,根据题意得:4007x x -…,解得:50x …, 答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1%)30200(12%)20(1%)1003020020m m m -⨯+⨯+⨯-=⨯+⨯, 令%m y =,原方程可化为:3000(1)4000(12)(1)7000y y y -++-=, 整理可得:280y y -=解得:10y =,20.125y =10m ∴=(舍去),212.5m = 212.5m ∴=,答:m 的值为12.5.24.如图一所示,ABC ∆是等腰直角三角形,其中90BAC ∠=︒,D 是AB 边上的一点,连接CD ,过A 作AE CD ⊥,E 为垂足,AF AE ⊥,且AF AE =.连接FB(1)求证:CE FB =;(2)如图二,延长FE 交BC 于G 点,如果G 点正好为BC 的中点,EA FB +=.【解答】证明:(1)AE CD ⊥,AF AE ⊥,90AFB AEC ∴∠=∠=︒,AF AE =,AB AC =,Rt AEC Rt AFB(HL)∴∆≅∆CE FB ∴=;(2)如图(二),过点G作GH EG⊥,交CD于H,连接AG,Rt AEC Rt AFB∆≅∆,∴=,BAF CAEAF AE∠=∠,∠+∠=︒,CAE DAE90BAF DAE∴∠+∠=︒,90=,∴∠=︒,且AF AEFAE90AFE AEF∴∠=∠=︒,45⊥∴∠=︒,且GH EGGEH45∴∠=∠=︒,45GEH GHE∴=,EG GH∴=,EHBAC∠=︒,点G是BC中点,=,90AB AC∴=,AG GC⊥,AG GC∴∠=∠=︒,AGC EGH90=,AG GC=,∴∠=∠,EG GHAGE CGH∴∆≅∆AEG CHG SAS()∴=,AE CHBF CE EH HC AE∴==+=+.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.材料一:把一个自然数的个位数字截太再用余下的数加上个位数的4倍,如果和是13的倍数,则原数能被13整除.如果和太大不易看出是否13的倍数,可重复上述「截尾、倍大、相加、验和」的过程,直到能清楚判断为止.例如,判断377是否13的倍数的过程如下:377465+⨯=,65135÷=,所以,377是13的倍数;又例如判断8632是否13的倍数的过程如下:86324871+⨯=,871491+⨯=,91137÷=.所以,8632是13的倍数. 材料二:若一个四位自然数n ,满足千位与个位相同,百位与十位相同,我们称这个数为“对称数”.将“对称数” n 的前两位与后两位交换位置得到一个新的n ',记()99n n F n -'=,例如3113n =,1331n '=,31131331(3113)1899F -==. (1)请用材料一的方法判断1326与3366能否被13整除;(2)若m 、p 是“对称数”,其中m abba =,(05p caac b a =<剟,15c a <剟且a ,b ,c 均为整数),若m 能被3l 整除,且()()36F m F p -=,求p .【解答】解:(1)13264156+⨯=,156439+⨯=,1326∴能被13整除,33664360+⨯=,360436+⨯=,3366∴不能被13整除;(2)m 能被13整除10010410411a b b a a b ∴+++=+能被13整除0b ∴=,05b a <剟,15c a <剟,2a ∴=或3或4或5,100010010100010010()9()99a b b a b a a b F m a b +++----∴==-, 100010010100010010()9()99c a a c a c c a F p c a +++----==-, 9()9()36a b c a ∴---=,24a c ∴-=当2a =时,0c =(舍去);当3a =时,2c =,23<;2332p ∴=;当4a =时,4c =(舍去);当5a =时,6c =(舍去).综上所述,2332p =.26.如图一,已知抛物线2y ax bx c =++的图象经过点(0,3)A 、(1,0)B ,其对称轴为直线:2l x =,过点A 作//AC x 轴交抛物线于点C ,AOB ∠的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m .(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;在四边形AOPE 面积最大时,在线段OE 上取点M ,在y 轴上取点N ,当PM MN AN ++取最小值时,求出此时N 点的坐标. (3)如图二,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P ,使POF ∆成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线与x 轴的另一个交点为D ,由对称性得:(3,0)D ,设抛物线的解析式为:(1)(3)y a x x =--,把(0,3)A 代入得:33a =,1a =,∴抛物线的解析式;243y x x =-+;(2)如图1,AOE ∆的面积是定值,所以当OEP ∆面积最大时,四边形AOPE 面积最大,设2(,43)P m m m -+, OE 平分AOB ∠,90AOB ∠=︒,45AOE ∴∠=︒,AOE ∴∆是等腰直角三角形,3AE OA ∴==,(3,3)E ∴,则OE 的解析式为:y x =, 过P 作//PG y 轴,交OE 于点G ,(,)G m m ∴,22(43)53PG m m m m m ∴=--+=-+-,()22119131533353222222AOE POE AOPE m S S S PG AE m m m ∆∆∴=+=⨯⨯+⋅=+⨯⨯-+-=-+四边形, 302-<, ∴当52m =时,S 有最大值,此时点5(2P ,3)4-;过点A 作倾斜角为45︒的直线AH ,过点P 作PH AH ⊥于点H ,交OE 于点M 、交y 轴于点N ,则点N 为所求,则NH =,此时PM MN PM MN HN PH +=++=为最小值, 设直线PH 的表达式为:y x b =-+,将点P 的坐标代入上式并解得: 直线PH 的表达式为:74y x =-+, 故点7(0,)4N ; (3)存在,理由:①当P在对称轴的左边,且在x轴下方时,如图2,过P作MN y⊥轴,交y轴于M,交l于N,=,OPF∆是等腰直角三角形,且OP PF∴∆≅∆,()OMP PNF AAS∴=,OM PN2-+,则2432(,43)P m m m-+-=-,m m m解得:m=∴的坐标为,;P②当P在对称轴的左边,且在x轴上方时,如图3,同理得:2-=-+,解得:m=(舍去),243m m m故点P;③当P在对称轴的右边,且在x轴下方时,如图3,过P作MN x⊥于M,⊥轴于N,过F作FM MN同理得ONP PMF∆≅∆,∴=,PN FM则2432m m m-+-=-,解得:m=(舍去),P的坐标为;④当P在对称轴的右边,且在x轴上方时,同理得2432-+=-,m m m解得:m=(舍去),点P的坐标为:;综上,点P的坐标为:或或或,.。

湘教版九年级上册数学期末考试试题有答案

湘教版九年级上册数学期末考试试题有答案

湘教版九年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.如果∠A 是锐角,且sin A =12,那么∠A 的度数是( )A .90°B .60°C .45°D .30°2.若(2)10m m x mx ++-=是关于x 的一元二次方程,则 A .m =±2B .m =2C .m =-2D .m ≠ ±23.若ABC DEF ∽,且AB :DE 1:3=,则ABC DEF S :S (? = )A .1:3B .1:9C .D .1:1.54.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A .甲B .乙C .丙D .丁5.关于反比例函数y=2x,下列说法中错误的是( ) A .它的图象是双曲线 B .它的图象在第一、三象限 C .y 的值随x 的值增大而减小D .若点(a ,b )在它的图象上,则点(b ,a )也在它的图象上 6.对于二次函数22(1)2y x =-+的图象,下列说法正确的是 A .开口向下;B .对称轴是直线x =-1;C .顶点坐标是(-1,2);D .与x 轴没有交点.7.如图,在▱ABCD 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是( )A .1:2B .1:3C .2:1D .3:18.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A 、D 在x 轴的负半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数ky x=(k 为常数,k ≠0)的图象上,正方形ADEF的面积为16,且BF=2AF,则k值为A.-8 B.-12 C.-24 D.-369.若二次函数22y x x m=-+的图像与x轴有两个交点,则实数m的取值范围是()A.m1≥B.1m C.1m D.1m<二、填空题10.方程2x x=的根是____________.11.已知反比例函数y=2mx-,当x>0时,y随x增大而减小,则m的取值范围是_____.12.若3m=2n,那么m:n=_____.13.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是_____(填一个即可)14.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y钱,根据题意可列出方程组____.15.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m =0的解为_____.三、解答题16.计算:201921(1)()022sin6---︒+17.如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,连接DE ,且∠ADE =∠ACB . (1)求证:△ADE ∽△ACB ;(2)如果E 是AC 的中点,AD =8,AB =10,求AE 的长.18.某校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表,根据表中信息,回答下列问题: (1)本次共调查了______名学生;(2)若将各类电视节目喜爱的人数所占比例绘制成扇形统计图,则“喜爱体育”对应扇形的圆心角度数是_________度;(3)该校共有1500名学生,根据调查结果估计该校“喜爱体育”节目的学生人数.19.已知关于x 的方程2610x x k -++=有两个实数根x 1,x 2. (1)求实数k 的取值范围; (2)若方程的两个实数根x 1,x 2满足121112x x +=-,求k 的值.20.如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A 到达点B时,它经过了200m ,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B 到达点D 时,它又走过了200m ,缆车由点B 到点D 的行驶路线与水平面夹角∠β=42°,求缆车从点A 到点D 垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)21.如图,在足够大的空地上有一段长为20米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD ≤MN ,已知矩形菜园的一边靠墙,另三边一共用了80米木栏.若所围成的矩形菜园的面积为350平方米,求所利用旧墙AD 的长.22.在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)ky k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).(1)求该反比例函数和一次函数的解析式; (2)求△AHO 的周长.23.已知二次函数y =﹣x 2+bx +c 的图象经过点A (﹣1,0),C (0,3).(1)求二次函数的解析式; (2)在图中,画出二次函数的图象;(3)根据图象,直接写出当y ≤0时,x 的取值范围.24.在平面直角坐标系中,抛物线22y mx x n =-+与x 轴的两个交点分别是(3,0)A -、(1,0)B ,C 为顶点.(1)求m 、n 的值和顶点C 的坐标;(2)在y 轴上是否存在点D ,使得ACD ∆是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,请说明理由.25.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为FH的长.参考答案1.D【分析】利用特殊角的三角函数值解答即可.【详解】A∠是锐角,且1 sin2A=,∴A∠的度数是30.故选D.【点睛】此题考查特殊角的三角函数值,关键是利用特殊角的三角函数值解答.【分析】根据一元二次方程的定义,令系数不为0,指数为2即可解答. 【详解】∵方程(2)10m m x mx ++-=是关于x 的一元二次方程, ∴|m|=2,m +2≠0, 解得m =2. 故选:B . 【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点. 3.B 【解析】∵△ABC ∽△DEF ,且AB :DE=1:3, ∴S △ABC :S △DEF =1:9. 故选B . 4.A 【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵x 甲=x 丙>x 乙=x 丁,∴从甲和丙中选择一人参加比赛,∵2S 甲=2S 乙<2S 丙<2S 丁,∴选择甲参赛, 故选A . 【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.5.C 【分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.6.D【分析】由抛物线解析式可直接得出抛物线的开口方向、对称轴、顶点坐标,可判断A、B、C,令y =0利用判别式可判断D,则可求得答案.【详解】∵y=2(x−1)2+2,∴抛物线开口向上,对称轴为x=1,顶点坐标为(1,2),故A、B、C均不正确,令y=0可得2(x−1)2+2=0,可知该方程无实数根,故抛物线与x轴没有交点,故D正确;故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).7.A【分析】根据平行四边形的性质可以证明△BEF∽△DCF,然后利用相似三角形的性质即可求出答案.【详解】解:由平行四边形的性质可知:AB∥CD,∴△BEF∽△DCF,∵点E是AB的中点,∴12 BE BEAB CD==∴12 EF BECF CD==,故选A.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.8.C【分析】先由正方形ADEF的面积为16,得出边长为4,BF=2AF=8,AB=AF+BF=4+8=12.再设B点坐标为(t,12),则E点坐标(t−4,4),根据点B、E在反比例函数kyx=的图象上,利用根据反比例函数图象上点的坐标特征得k=12t=4(t−4),即可求出k=−24.【详解】∵正方形ADEF的面积为16,∴正方形ADEF的边长为4,∴BF=2AF=8,AB=AF+BF=4+8=12.设B点坐标为(t,12),则E点坐标(t−4,4),∵点B、E在反比例函数kyx=的图象上,∴k=12t=4(t−4),解得t=-2,k=−24.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数kyx=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.D【解析】【分析】由抛物线与x 轴有两个交点可得出△=b 2-4ac >0,进而可得出关于m 的一元一次不等式,解之即可得出m 的取值范围. 【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点, ∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0, 解得:m <1. 故选D . 【点睛】本题考查了抛物线与x 轴的交点,牢记“当△=b 2-4ac >0时,抛物线与x 轴有2个交点”是解题的关键. 10.0和1 【分析】观察本题形式,用因式分解法比较简单,在移项提取x 后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x . 【详解】移项得:20x x -=, 即()10x x -=, 解得:1201x x ==,. 故答案为:0和1 . 【点睛】本题考查了因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简便方法,要会灵活运用.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法. 11.m >2. 【解析】分析:根据反比例函数y =2m x-,当x >0时,y 随x 增大而减小,可得出m ﹣2>0,解之即可得出m 的取值范围. 详解:∵反比例函数y =2m x-,当x >0时,y 随x 增大而减小,∴m ﹣2>0,解得:m >2.故答案为m>2.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.12.2:3【分析】根据比例的定义即可求解.【详解】∵3m=2n∴23 mn=即m:n=2:3故填:2:3.【点睛】此题主要考查比例的性质,解题的关键是熟知比例的定义. 13.∠C=∠BAD(答案不唯一)【详解】试题分析:∵∠B=∠B(公共角),∴可添加:∠C=∠BAD.此时可利用两角法证明△ABC与△DBA相似.故答案可为:∠C=∠BAD.考点:相似三角形的判定.14.83 74 x yx y-=⎧⎨-=-⎩.【分析】设合伙人数为x人,物价为y钱,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【详解】设合伙人数为x人,物价为y钱,依题意,得:8374x yx y-=⎧⎨-=-⎩.故答案为8374x yx y-=⎧⎨-=-⎩.【点睛】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.15.x 1=﹣1或x 2=3.【分析】由二次函数y =﹣x 2+2x +m 的部分图象可以得到抛物线的对称轴和抛物线与x 轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x 轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x 的一元二次方程﹣x 2+2x +m =0的解.【详解】解:依题意得二次函数y =﹣x 2+2x +m 的对称轴为x =1,与x 轴的一个交点为(3,0), ∴抛物线与x 轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x =﹣1或x =3时,函数值y =0,即﹣x 2+2x +m =0,∴关于x 的一元二次方程﹣x 2+2x +m =0的解为x 1=﹣1或x 2=3.故答案为x 1=﹣1或x 2=3.【点睛】本题考查了关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.16.1-【分析】根据实数的性质即可化简求解.【详解】201921(1)()022sin6---︒+=1-【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.17.(1)证明见解析;(2)【解析】【分析】(1)根据相似三角形的判定即可求出证.(2)由于点E是AC的中点,设AE=x,根据相似三角形的性质可知AD AEAC AB=,从而列出方程解出x的值.【详解】解:(1)∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB;(2)由(1)可知::△ADE∽△ACB,∴AD AEAC AB=,∵点E是AC的中点,设AE=x,∴AC=2AE=2x,∵AD=8,AB=10,∴8210xx=,解得:x=,∴AE=.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.18.(1)50;(2)72°;(3)300【分析】(1)利用喜欢新闻类节目的人数除以其频率即可得到调查的总人数;(2)求出喜欢看体育的人数,再求出其频率即可得到对应扇形的圆心角度数(3)利用1500乘以喜欢看体育的的频率即可求解.【详解】解:(1)本次共调查数为4÷0.08=50(人)故填:50;(2)喜欢看戏曲的人数为50×0.06=3人, ∴喜欢看体育的人数为50-4-15-18-3=10人,∴“喜爱体育”对应扇形的圆心角度数是10÷50×360°=72°故填:72°(3)该校共有1500名学生,根据调查结果估计该校“喜爱体育”节目的学生人数为 1500×10÷50=300人【点睛】此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.19.(1)k≤8;(2)k =-13.【分析】(1)由根的情况,根据根的判别式,可得到关于k 的不等式,则可求得k 的取值范围; (2)由根与系数的关系可用k 表示出两根之和、两根之积,由条件可得到关于k 的方程,则可求得k 的值.【详解】(1)∵关于x 的方程2610x x k -++=有两个实数根,∴△≥0,即(-6)2−4(k+1)≥0,解得k≤8;(2)由根与系数的关系可得x 1+x 2=6,x 1x 2=k+1, 由121112x x +=- 可得:2(x 1+x 2)=−x 1x 2,∴2×6=−(k+1),∴k =-13,【点睛】本题主要考查根的判别式及根与系数的关系,熟练掌握根的个数与根的判别式的关系是解题的关键.20.缆车垂直上升了186 m .【分析】在Rt ABC 中,sin 200sin1654BC AB α=⋅=⨯︒≈米,在Rt BDF 中,sin 200sin42132DF BD β=⋅=⨯︒≈,即可求出缆车从点A 到点D 垂直上升的距离.【详解】解:在Rt ABC中,斜边AB=200米,∠α=16°,BC ABα=⋅=⨯︒≈(m),sin200sin1654在Rt BDF中,斜边BD=200米,∠β=42°,=⋅=⨯︒≈,DF BDβsin200sin42132因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.21.10m【分析】设AB=x米,则BC=(80-2x)米,根据矩形的面积公式得出关于x的一元二次方程,解之即可得出x的值,故可求出AD的长.【详解】解:设AB=xm,则BC=(80-2x)m,根据题意得x(80-2x)=350,解得x1=5,x2=35,当x=5时,80-2x=70>20,不合题意舍去;当x=35时,80-2x=10,答:AD的长为10m.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(1)一次函数为112y x=-+,反比例函数为12yx=-;(2)△AHO的周长为12【详解】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)∵tan∠AOH=AH OH=43∴AH=43OH=4∴A(-4,3),代入kyx=,得k=-4×3=-12∴反比例函数为12 yx =-∴12 2m -=-∴m=6∴B(6,-2)∴43 62a ba b-+=⎧⎨+=-⎩∴a=12-,b=1∴一次函数为112y x=-+(2)5OA==△AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.23.(1)y=﹣x2+2x+3;(2)该函数图象如图所示;见解析(3)x的取值范围x≤﹣1或x≥3.【分析】(1)用待定系数法将A(﹣1,0),C(0,3)坐标代入y=﹣x2+bx+c,求出b和c即可. (2)利用五点绘图法分别求出两交点,顶点,以及与y轴的交点和其关于对称轴的对称点,从而绘图即可.(3)根据A,B,C 三点画出函数图像,观察函数图像即可求出x 的取值范围.【详解】解:(1)∵二次函数y =﹣x 2+bx+c 的图象经过点A (﹣1,0),C (0,3),∴103b c c --+=⎧⎨=⎩,得23b c =⎧⎨=⎩, 即该函数的解析式为y =﹣x 2+2x+3;(2)∵y =﹣x 2+2x+3=﹣(x ﹣1)2+4,∴该函数的顶点坐标是(1,4),开口向上,过点(﹣1,0),(3,0),(0,3),(2,3), 该函数图象如右图所示;(3)由图象可得,当y≤0时,x 的取值范围x≤﹣1或x≥3.【点睛】本题考查二次函数综合问题,结合待定系数法求二次函数解析式以及二次函数性质和二次函数图像的性质进行分析.24.(1)1m =-,3n =,(-1,4);(2)在y 轴上存在点D (0,3)或D (0,1),使△ACD 是以AC 为斜边的直角三角形【分析】(1)把A(-3,0),B(1,0)代入22y mx x n =-+解方程组即可得到结论;(2)过C 作CE ⊥y 轴于E ,根据函数的解析式求得C(-1,4),得到CE=1,OE=4,设()0D a ,,得到4OD a DE a ==-,,根据相似三角形的性质即可得到结论.【详解】(1)把A(−3,0)、B(1,0)分别代入22y mx x n =-+,96020m n m n ++=⎧⎨-+=⎩,解得:1m =-,3n =,则该抛物线的解析式为:223y x x =--+,∵2223(1)4y x x m =--+=-++,所以顶点C 的坐标为(1-,4);故答案为:1m =-,3n =,顶点C 的坐标为(1-,4);(2)如图1,过点C 作CE ⊥y 轴于点E ,假设在y 轴上存在满足条件的点D ,设D (0,c ),则OD c =,∵()()3014A C --,,,,∴1CE =,3OA =,4OE =,4ED c =-,由∠CDA =90︒得∠1+∠2=90︒,又∵∠2+∠3=90︒,∴∠3=∠1,又∵∠CED =∠DOA =90︒,∴△CED ∽△DOA , ∴CEDOED OA =, 则143cc =-,变形得2430c c -+=,解得11c =,23c =.综合上述:在y轴上存在点D(0,3)或D(0,1),使△ACD是以AC为斜边的直角三角形.【点睛】本题考查了二次函数综合题,待定系数法求函数的解析式,相似三角形的判定和性质,正确的理解题意是解题的关键.25.(1)见解析;(2)证明见解析;(3)【详解】【分析】(1)先求出AB,BC,AC,再分情况求出CD或AD,即可画出图形;(2)先判断出∠A+∠ADB=140°=∠ADC,即可得出结论;(3)先判断出△FEH∽△FHG,得出FH2=FE•FG,再判断出,继而求出FG•FE=8,即可得出结论.【详解】(1)由图1知,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴12AC ABCD BC==或2AC BCCD AB==,∴CD=10或CD=2.5同理:当∠CAD=90°时,AD=2.5或AD=10,(2)∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△BDC,∴BD是四边形ABCD的“相似对角线”;(3)如图3,∵FH是四边形EFGH的“相似对角线”,∴△EFH与△HFG相似,∵∠EFH=∠HFG,∴△FEH∽△FHG,∴FE FH FH FG,∴FH2=FE•FG,过点E作EQ⊥FG于Q,∴,∵12FG×∴12∴FG•FE=8,∴FH2=FE•FG=8,∴【点睛】本题考查了相似三角形的综合题,涉及到新概念、相似三角形的判定与性质等,正确理解新概念,熟练应用相似三角形的相关知识是解题的关键.。

九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是米.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.14.写出一个图象位于二、四象限的反比例函数的表达式,y=.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:,你的理由是:.三、解答题(本题共30分,每小题5分)17.计算:|.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是.29.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠PAB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.【考点】比例的性质.【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案.【解答】解:两边都除以ab,得=,故A正确;B、两边都除以20,得=,故B错误;C、两边都除以4b,得=,故C错误;D、两边都除以5a,得=,故D错误.故选:A.【点评】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】概率公式;条形统计图.【专题】计算题.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了条形统计图.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象的增减性来比较m与n的大小.【解答】解:∵反比例函数中系数2>0,∴反比例函数的图象位于第一、三象限,且在每一象限内y随x的增大而减小.又∵点A(1,m)与点B(3,n)都位于第一象限,且1<3,∴m>n.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,解答该题时,也可以把点A、B的坐标分别代入函数解析式求得相应的m、n的值,然后比较它们的大小即可.8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD 的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】连结BC,如图,根据圆周角定理得到∠ACB=90°,则利用勾股定理得到BC=,再利用面积法可得到y=,CD为半径时最大,即y的最大值为2,此时x=2,由于y与x函数关系的图象不是抛物线,也不是一次函数图象,则可判断A、C错误;利用y最大时,x=2可对B、D进行判断.【解答】解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∴BC==,∵CD•AB=AC•BC,∴y=,∵y的最大值为2,此时x=2.故选B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用圆周角定理得到∠ACB=90°.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是1:9.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵两个相似三角形的相似比是1:3,又∵相似三角形的面积比等于相似比的平方,∴这两个三角形面积的比是1:9.故答案为:1:9.【点评】本题考查了相似三角形的性质,注意:相似三角形的面积比等于相似比的平方.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是12米.【考点】正多边形和圆.【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.【解答】解:如图所示:∵正六边形的半径为2米,∴OA=0B=2米,∴正六边形的中心角∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=OB,∴AB=2米,∴正六边形的周长为6×2=12(米);故答案为:12.【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.【考点】弧长的计算.【专题】应用题.【分析】首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.【解答】解:根据题意,可得,∴(m),即的长是m.故答案为:.【点评】此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.写出一个图象位于二、四象限的反比例函数的表达式,y=答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:否,你的理由是:y<﹣2.【考点】反比例函数的性质.【分析】根据反比例函数图象所经过的象限和函数的增加性解答.【解答】解:否,理由如下:∵反比例函数,且x>1,∴反比例函数的图象位于第四象限,∴y<﹣2.故答案是:否;y<﹣2.【点评】本题考查了反比例函数的性质.注意在本题中,当x>0时,y<0.三、解答题(本题共30分,每小题5分)17.计算:|.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=×﹣+﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠BDC=90°.∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠DCB+∠ACD=90°.∴∠A=∠DCB.又∵∠ACB=∠BDC=90°,∴△ABC∽△CBD;(2)解:∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴CD=,∵CD⊥AB,∴BD===.【点评】本题考查了相似三角形的判定,解直角三角形,熟练掌握相似三角形的判定定理是解题的关键.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)运用配方法把一般式化为顶点式;(2)根据二次函数的性质解答即可;(3)根据二次函数的开口方向和对称轴解答即可.【解答】解:(1)y=x2﹣6x+5=(x﹣3)2﹣4;(2)二次函数的图象的对称轴是x=3,顶点坐标是(3,﹣4);(3)∵抛物线的开口向上,对称轴是x=3,∴当x≤3时,y随x的增大而减小.【点评】本题考查的是二次函数的三种形式和二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键,注意二次函数的性质的应用.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.【考点】作图-旋转变换.【专题】作图题.【分析】(1)在BA上截取BC′=BC,延长CB到A′使BA′=BA,然后连结A′C′,则△A′BC′满足条件;(2)先利用勾股定理计算出AB=2,再利用旋转的性质得BA=BA′,∠ABA′=90°,然后根据等腰直角三角形的性质计算AA′的长即可.【解答】解:(1)如图,△A′BC′为所作;(2)∵∠ABC=90°,B C=1,AC=,∴AB==2,∵△ABC沿逆时针方向旋转90°得到△A′BC′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=AB=2.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,n)代入y=﹣2x求出n的值,确定A点坐标为(﹣1,2),然后把A(﹣1,2)代入y=可求出k的值,从而可确定反比例函数的解析式;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,则B点坐标为(﹣1,0),C点坐标为(0,2),由于PA=OA,然后利用等腰三角形的性质易确定满足条件的P点坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了等腰三角形的性质.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得出DC=BC,进而利用tan30°=求出答案.【解答】解:由题意可得:AB=46m,∠DBC=45°,则DC=BC,故tan30°===,解得:DC=23(+1).答:永定楼的高度CD为23(+1)m.【点评】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.【考点】抛物线与x轴的交点.【专题】证明题.【分析】(1)令y=0,使得二次函数变为一元二次方程,然后求出方程中△的值,即可证明结论;(2)令y=0,使得二次函数变为一元二次方程,然后对方程分解因式,又因此二次函数的图象与x 轴两个交点的横坐标都是整数,从而可以求得符合要求的正整数m的值.【解答】解:(1)证明:∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2(m≠0),△=[﹣(m+2)]2﹣4×m×2=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0∴0=mx2﹣(m+2)x+2(m≠0)有两个实数根,即二次函数y=mx2﹣(m+2)x+2(m≠0)的图象与x轴总有交点;(2)∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2=(mx﹣2)(x﹣1),∴,又∵此二次函数的图象与x轴两个交点的横坐标都是整数,∴正整数m的值是:1或2,即正整数m的值是1或2.【点评】本题考查抛物线与x轴的交点,解题的关键是建立二次函数与一元二次方程之间的关系,然后找出所求问题需要的条件.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的定义即可得出四边形AECD为平行四边形;(2)作FM⊥CD于M,由平行四边形的性质得出DF=EF=2,由已知条件得出△DFM是等腰直角三角形,DM=FM=DF=2,由含30°角的直角三角形的性质和勾股定理得出CF=2FM=4,CM=2,得出DC=DM+CM=2+2即可.【解答】(1)证明:∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形;(2)解:作FM⊥CD于M,如图所示:则∠FND=∠FMC=90°,∵四边形AECD为平行四边形,∴D F=EF=2,∵∠FCD=30°,∠FDC=45°,∴△DFM是等腰直角三角形,∴DM=FM=DF=2,CF=2FM=4,∴CM=2,∴DC=DM+CM=2+2.【点评】本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的判定与性质,通过作辅助线构造直角三角形是解决问题(2)的关键.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.【考点】抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)由二次函数的图象与x轴有两个交点得出判别式△>0,得出不等式,解不等式即可;(2)二次函数y1=x2+2x+m﹣5的图象经过把点B坐标代入二次函数解析式求出m的值,即可得出结果;点B(1,0);(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.【解答】解:(1)∵二次函数y1=x2+2x+m﹣5的图象与x轴有两个交点,∴△>0,∴22﹣4(m﹣5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m﹣5的图象经过点(1,0),∴1+2+m﹣5=0,解得:m=2,∴它的表达式是y1=x2+2x﹣3,∵当x=0时,y=﹣3,∴C(0,﹣3);(3)由图象可知:当y2<y1时,x的取值范围是x<﹣3或x>0.【点评】本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.【考点】切线的判定.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的直径.【解答】(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O的直径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2+,则抛物线的对称轴为直线x=1,利用点C与点A关于直线x=1对称得到C点坐标为(2,2);然后利用二次函数图象上点的坐标特征求D点坐标;(3)画出抛物线,如图,先利用待定系数法求出直线BC的解析式为y=x+1,再利用平移的性质得到图象G向下平移1个单位时,点A在直线BC上;图象G向下平移3个单位时,点D在直线BC上,由于图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,所以1<t≤3.【解答】解:(1)把A(0,2)和B(1,)代入得,解得,所以抛物线解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴抛物线的对称轴为直线x=1,∵点C与点A关于此抛物线的对称轴对称,∴C点坐标为(2,2);当x=4时,y=x2﹣x+2=8﹣4+2=6,∴D点坐标为(4,6);(3)如图,。

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)

人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.方程x2-2x-24=0的根是( )A.x1=6,x2=4 B.x1=6,x2=-4C.x1=-6,x2=4 D.x1=-6,x2=-42.一个不透明的袋子中装有2个白球和3个黑球,这些球除了颜色外无其他差别,从中摸出3个球,下列事件属于必然事件的是( )A.至少有1个球是白色球B.至少有1个球是黑色球C.至少有2个球是白色球D.至少有2个球是黑色球3.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.16x2-6x+21,有以下结论:①当x>5时,y随x的增大而4.对于二次函数y=12增大;②当x=6时,y有最小值3;③图象与x轴有两个交点;④图象是由抛物x2向左平移6个单位长度,再向上平移3个单位长度得到的.其中正确结线y=12论的个数为( )A.1 B.2C.3 D.4⏜的长是5.如图,四边形ABCD内接于⊙O,⊙O的半径为3.若∠D=120°,则AC( )πA.πB.23C .2πD .4π6.如图,在△AOB 中,OA =4,OB =6,AB =2√7,将△AOB 绕原点O 旋转90°,则旋转后点A 的对应点A ′的坐标是( )A .(4,2)或(-4,2)B .(2√3,-4)或(-2√3,4)C .(-2√3,2)或(2√3,-2)D .(2,-2√3)或(-2,2√3)7.如图,AB 是O 的直径,ACD CAB ∠=∠ 2AD = 4AC =,则O 的半径为( )A .B .C .D8.如图,四边形ABCD 中,60A ∠=︒ //AB CD DE AD ⊥交AB 于点E ,以点E 为圆心 、DE 为半径且6DE =的圆交CD 于点F ,则阴影部分的面积为( )A .6π-B .12π-C .6πD .12π 9.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .3(1)6210x x -= B .3(1)6210x -=C .(31)6210x x -=D .36210x =10.如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A ,B 是圆上的两点,O 为圆心,∠AOB =120°,小强从点A 走到点B ,走便民路比走观赏路少走( )A .(6π-6√3)米B .(6π-9√3)米C .(12π-9√3)米D .(12π-18√3)米二、填空题:本题共6个小题,每小题3分,共18分。

北师大版九年级上学期期末学业教学质量监测数学试题(含答案)

北师大版九年级上学期期末学业教学质量监测数学试题(含答案)

第1页(共23页)北师大新版九年级上册数学期末复习试卷说明:1.本试卷分为第Ⅰ卷和第Ⅰ卷,满分为120分,考试时间90分钟.2.用黑色或蓝色钢笔或圆珠笔在答卷上作答.第Ⅰ卷一.选择题(本大题10小题,每小题3分,共30分)1.下列方程属于一元二次方程的是( )A .x 2+y ﹣2=0B .x +y =3C .x 2+2x =3D .x +x 1=52.已知3a =2b (a ≠0,b ≠0),下列变形错误的是( )A .32b a= B .32a b= C .23a b= D .3b2a=3.关于菱形,下列说法错误的是( )A .对角线互相平分B .对角线互相垂直C .四条边相等D .对角线相等4.在中ABC R △t 中,ⅠC = 90,若ⅠABC 的三边都缩小5倍,则A sin 的值( )A . 放大5倍B . 缩小5倍C . 不变D .无法确定5.关于x 的一元二次方程9x 2﹣6x +k =0有两个不相等的实根,则k 的范围是( )A .k <1B .k >1C .k ≤1D .k ≥16.如图,已知Ⅰ1=Ⅰ2,那么添加下列一个条件后,仍无法判定ⅠABC ~ⅠADE 的是()A .DE BCAD AB = B .AE ACAD AB = C .ⅠB =ⅠD D .ⅠC =ⅠAED第2页(共23页)7. 如图,已知ABC R △t 中,斜边BC 上的高AD =3,B cos =53,则AC 的长为( ) A . 3 B . 3.5 C . 4.8 D . 58.四张完全相同的卡片上,分别画有菱形、矩形、等边三角形、等腰梯形,现从中随机抽取一张卡片上画的恰好是中心对称图形的概率为( )A .41B .21C .43 D .1 9.如下表给出了二次函数y =x 2+2x ﹣10中x ,y 的一些对应值,则可以估计一元二次方程y =x 2+2x ﹣10的一个近似解(精确到0.1)为( )A .2.2B . 2.3C . 2.4D . 2.510. 如图,点A 在反比例函数y 1=x 20(x >0)的图象上,过点A 作AB Ⅰx 轴,垂足为B ,交反比例函数y 2=x8的图象于点C ,P 为轴上一点,连接P A ,PC ,则ⅠAPC 的面积为( )A . 6B . 8C . 12D . 20第6题图 第7题图 第10题图 第Ⅰ卷二.填空题(本大题7小题,每小题4分,共28分)第3页(共23页)11.方程x 2=4x 的解是.12.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知ⅠAOD =120°,AB =2.5则AC 的长为。

九年级期末考试(数学)试题含答案

九年级期末考试(数学)试题含答案

九年级期末考试(数学)(考试总分:120 分)一、单选题(本题共计8小题,总分24分)1.(3分)下列成语描述的事件是随机事件的是( )A.海枯石烂B.画饼充饥C.瓜熟蒂落D.守株待兔2.(3分)窗花剪纸是我国传统民间艺术。

在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.(3分)已知关于x的一元二次方程(a+3)x2-2x+a2-9=0有一个根为x=0,则a的值为( )A.0B.±3C.3D.-3x2+1先向左平移2个单位,再向下平移3个单位,得到的抛物线4.(3分)把抛物线y=25的解析式为( )(x−2)2+4A.y=25(x+2)2−2B.y=25(x+2)2−4C.y=25(x−2)2+2D.y=255.(3分)如图,在⊙O中,AE是直径,半径OC⊙弦AB于点D,连接BE,若AB=2√7,CD=1,则BE的长是( )A.5B.6C.7D.86.(3分)如图,将⊙ABC绕点C顺时针方向旋转40°,得⊙A′B′C.若AC⊙A′B′,则⊙A等于( )A.50°B.60°C.70°D.80°的图象过矩形OABC的顶点B,OA,OC分别在x轴、y 7.(3分)如图,反比例函数y=kx轴的正半轴上,矩形OABC的对角线OB,AC交于点E(1,2),则k的值为( )A.4B.8C.-4D.-88.(3分)如图,在四边形ABCD中,AD∥BC,⊙A=45°,⊙C=90°,AD=4cm,CD=3cm.动点M,N同时从点A出发,点M以√2cm/s的速度沿AB向终点B运动,点N以2cm/s 的速度沿折线AD—DC向终点C运动.设点N的运动时间为t(s),⊙AMN的面积为S(cm2),则下列图象能大致反映S与t之间函数关系的是( )A.B.C.D.二、填空题(本题共计8小题,总分24分)9.(3分)方程2x2-5=-6x化一般式为______.10.(3分)在分别写着“线段、钝角、平行四边形、等边三角形”的4张卡纸中,小刚从中任意抽取一张卡纸,抽到的图形是中心对称图形的概率为______.11.(3分)已知抛物线y=x2-2x-3,则它的顶点坐标是______.12.(3分)在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b+1),则a+b=______.13.(3分)一个圆锥的侧面积是底面积的4倍,则这个圆锥的侧面展开图的中心角的度数为______.14.(3分)若a,b是一元二次方程x2-2020x-2021=0的两根,则a2-2021a-b=______.15.(3分)如图,半径为2的⊙O中有弦AB,以AB为折痕对折,劣弧恰好经过圆心O,则弦AB的长度为______.16.(3分)如图,在Rt⊙ABC中,⊙C=90°,AC=8,BC=6,将⊙ABC绕点C旋转,得到⊙A′B′C,点A的对应点为A′,P为A'B'的中点,连接BP.在旋转的过程中,线段BP长度的最大值为______.三、解答题(本题共计9小题,总分72分)17.(8分)解一元二次方程(1).2(x+1)2=3(x+1);(2).2x2-9x+8=0.18.(6分)如图,⊙ABC是⊙O的内接三角形,⊙BAC的外角平分线AP交⊙O于点P,连接PB,PC.求证:PB=PC.19.(6分)如图,⊙ABC是直角三角形,⊙C=90°,将⊙ABC绕点B逆时针旋转60°至⊙DEB,点E落在AB上.DE延长线交AC所在直线于点F.(1).求⊙AFE的度数;(2).求证:AF+EF=DE.20.(6分)“黄冈名师课堂”'是集黄冈众多名师的网络课堂,自上线以来受到了广大师生,家长和社会各界的好评.经统计,2020年10月在线听课的学生为66250人次,12月在线听课学生增加至95400人次。

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。

( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。

若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。

10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。

2023届山西省(太原地区公立学校数学九年级第一学期期末综合测试试题含解析

2023届山西省(太原地区公立学校数学九年级第一学期期末综合测试试题含解析

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.如图所示,该几何体的俯视图是( )A .B .C .D .2.如图,在ABC ∆中,10AB =,8AC =,6BC =,以边AB 的中点O 为圆心作半圆,使BC 与半圆相切,点,P Q 分别是边AC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A .8B .9C .10D .123.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86分,方差如下表,你认为派谁去参赛更合适( ) 选手甲 乙 丙 丁 方差1.52.63.5 3.68A .甲B .乙C .丙D .丁 4.如图,厂房屋顶人字架(等腰三角形)的跨度BC =10m ,∠B =36°,D 为底边BC 的中点,则上弦AB 的长约为( )(结果保留小数点后一位sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A .3.6mB .6.2mC .8.5mD .12.4m5.已知正多边形的一个内角是135°,则这个正多边形的边数是( )A .3B .4C .6D .86.如图,一张矩形纸片ABCD 的长AB a =,宽BC b.=将纸片对折,折痕为EF ,所得矩形AFED 与矩形ABCD 相似,则a :b (= )A .2:1B .2:1C .3:3D .3:27.二次根式x 3-中,x 的取值范围是( )A .x 3≥B .x 3>C .x 3≤D .x 3<8.方程5x 2=6x ﹣8化成一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是( )A .5、6、﹣8B .5,﹣6,﹣8C .5,﹣6,8D .6,5,﹣89.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .10.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是().A.3个都是黑球B.2个黑球1个白球C.2个白球1个黑球D.至少有1个黑球二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系xOy中,P是直线y=2上的一个动点,⊙P的半径为1,直线OQ切⊙P于点Q,则线段OQ取最小值时,Q点的坐标为_____.12.若一个扇形的圆心角是120°,且它的半径是18cm,则此扇形的弧长是_______cm13.如图,D是反比例函数kyx=(k<0)的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=﹣x+m与323y x=-+的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为_______.14.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_____.15.如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB=º.16.如果A地到B地的路程为80千米,那么汽车从A地到B地的速度x千米/时和时间y时之间的函数解析式为______. 17.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.18.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD 长度为__cm.三、解答题(共66分)19.(10分)解方程:()12410x x -+=.()2()()229241x x -=+20.(6分)如图,在O 中,弦CD 垂直于直径AB ,垂足为E ,连结AC ,将ACE ∆沿AC 翻转得到ACF ∆,直线FC 与直线AB 相交于点G .(1)求证:FG 是O 的切线;(2)若B 为OG 的中点,①求证:四边形OCBD 是菱形;②若23CE =,求O 的半径长. 21.(6分)已知正比例函数12y x =的图象与反比例函数2(0k y k x =≠的图象交于一点M ,且M 点的横坐标为1. (1)求反比例函数的解析式;(2)当25x ≤≤时,求反比例函数2(0k y k x=≠的取值范围 22.(8分)如图,在△ABC 中,D 为BC 边上的一点,且∠CAD=∠B,CD=4,BD=2,求AC 的长23.(8分)阅读下列材料,关于x 的方程:x +1x =c +1c 的解是x 1=c ,x 2=1c ;x ﹣1x =c ﹣1c 的解是x 1=c ,x 2=﹣1c;x +2x=c +2c 的解是x 1=c ,x 2=2c ;x +3x =c +3c 的解是x 1=c ,x 2=3c ;…… (1)请观察上述方程与解的特征,比较关于x 的方程x +a x =c +a c (a ≠0)与它们的关系猜想它的解是什么,并利用“方程的解”的概念进行验证.(2)可以直接利用(1)的结论,解关于x的方程:x+33x-=a+33a-.24.(8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)如果商店销售这种商品,每天要获得1500元利润,那么每件商品的销售价应定为多少元?(3)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?25.(10分)已知二次函数y=ax2+bx+3的图象经过点 (-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?26.(10分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?参考答案一、选择题(每小题3分,共30分)1、C【解析】从上往下看,总体上是一个矩形,中间隔着一个竖直的同宽的小矩形,而挖空后长方体内的剩余部分用虚线表示为左右对称的两条靠近宽的线,选项C中图象便是俯视图.故选:C.2、C【分析】如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,如图当Q2在AB边上时,P2与A重合时,P2Q2最大值,由此不难解决问题.【详解】解:如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,∵AB=20,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP2A=90°,∴OP2∥BC.∵O为AB的中点,∴P2C=P2A,OP2=12BC=2.又∵BC是⊙O的切线,∴∠OEB=90°,∴OE∥AC,又O为AB的中点,∴OE=12AC=4=OQ2.∴P2Q2最小值为OQ2-OP2=4-2=2,如图,当Q2在AB边上时,P2与A重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=AO+OQ2=5+4=9,∴PQ长的最大值与最小值的和是20.故选:C.【点睛】本题考查切线的性质,三角形中位线定理,勾股定理的逆定理以及平行线的判定等知识,解题的关键是正确找到点PQ 取得最大值、最小值时的位置,属于中考常考题型.3、A【分析】根据方差的意义即可得.【详解】方差越小,表示成绩波动性越小、越稳定观察表格可知,甲的方差最小,则派甲去参赛更合适故选:A .【点睛】本题考查了方差的意义,掌握理解方差的意义是解题关键.4、B【分析】先根据等腰三角形的性质得出BD =12BC =5m ,AD ⊥BC ,再由cos B =BD AB,∠B =36°知AB =cos BD B ,代入计算可得.【详解】∵△ABC 是等腰三角形,且BD =CD , ∴BD =12BC =5m ,AD ⊥BC , 在Rt △ABD 中,∵cos B =BD AB,∠B =36°, ∴AB =cos BD B =5cos36︒≈6.2(m ),故选:B . 【点睛】本题考查解直接三角形的应用,解题的关键是根据等腰三角形的性质构造出直角三角形Rt △ABD ,再利用三角函数求解.5、D【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°, ∴边数=360845︒=︒, ∴这个正多边形的边数是1.故选:D .【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.6、B【分析】根据折叠性质得到AF =12AB =12a ,再根据相似多边形的性质得到AB AD AD AF =,即12a b b a =,然后利用比例的性质计算即可.【详解】解:∵矩形纸片对折,折痕为EF ,∴AF =12AB =12a , ∵矩形AFED 与矩形ABCD 相似, ∴AB AD AD AF =,即12a b b a =, ∴a ∶b.所以答案选B.【点睛】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等. 7、A【解析】根据二次根式有意义的条件:被开方数为非负数解答即可.∴x-3≥0,解得x≥3.故选A.【点睛】本题考查了二次根式有意义的条件.熟记二次根式的被开方数是非负数是解题关键.8、C【解析】根据一元二次方程的一般形式进行解答即可.【详解】5x 2=6x ﹣8化成一元二次方程一般形式是5x 2﹣6x+8=0,它的二次项系数是5,一次项系数是﹣6,常数项是8,故选C .【点睛】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.9、A【分析】根据题意结合图形,分情况讨论:①02x ≤≤时,根据12APQ S AQ AP ∆=⋅,列出函数关系式,从而得到函数图象;②24x ≤≤时,根据''''APQ CP Q ABQ AP D ABCD S S S S S ∆∆∆∆=---正方形列出函数关系式,从而得到函数图象,再结合四个选项即可得解.【详解】①当02x ≤≤时,∵正方形的边长为2cm , ∴21122APQ y S AQ AP x ∆==⋅=; ②当24x ≤≤时,APQ y S ∆=''''CP Q ABQ AP D ABCD S S S S ∆∆∆=---正方形()()()21112242222222x x x =⨯---⨯⨯--⨯⨯- 2122x x =-+, 所以,y 与x 之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A 选项图象符合,故选A .【点睛】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.10、D【分析】根据白球两个,摸出三个球必然有一个黑球.【详解】解:A 袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以A 不是必然事件; B .C .袋子中有4个黑球,有可能摸到的全部是黑球,B 、C 有可能不发生,所以B 、C 不是必然事件;D .白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,D 正确.故选D .【点睛】本题考查随机事件,解题关键在于根据题意对选项进行判断即可.二、填空题(每小题3分,共24分)11、(3±,32). 【分析】连接PQ 、OP ,如图,根据切线的性质得PQ ⊥OQ ,再利用勾股定理得到21OP -当OP 最小时,OQ 最小,然后求出OP 的最小值,得到OQ 的最小值,于是得到结论.【详解】连接PQ 、OP ,如图,∵直线OQ 切⊙P 于点Q ,∴PQ ⊥OQ ,在Rt △OPQ 中,OQ 22OP PQ -21OP -当OP 最小时,OQ 最小,当OP ⊥直线y =2时,OP 有最小值2,∴OQ 221-3设点Q 的横坐标为a ,∴S △OPQ =12×1312×2×|a , ∴a =3, ∴Q 223(3)2⎛⎫- ⎪ ⎪⎝⎭32, ∴Q 点的坐标为(32±,32), 故答案为(3,32). 【点睛】 本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理.12、12π 【分析】根据弧长公式180n r l π=代入可得结论. 【详解】解:根据题意,扇形的弧长为12018==12180180n r l πππ⨯⨯=, 故答案为:12π.【点睛】本题主要考查弧长的计算,解决本题的关键是要熟练掌握弧长公式.13、-1【详解】解:∵2y x =+的图象经过点C ,∴C (0,1), 将点C 代入一次函数y=-x+m 中,得m=1,∴y=-x+1,令y=0得x=1,∴A (1,0),∴S △AOC =12×OA×OC=1, ∵四边形DCAE 的面积为4,∴S 矩形OCDE =4-1=1,∴k=-1故答案为:-1.14、5【解析】试题解析:∵半径为10的半圆的弧长为:12×2π×10=10π ∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r ,则2πr=10π解得r=515、55【解析】分析:∵∠ACB 与∠AOB 是AB 所对的圆周角和圆心角,∠ACB =35º,∴∠AOB=2∠ACB=70°.∵OA=OB ,∴∠OAB=∠OBA=18070255︒-︒=︒. 16、80y x= 【分析】根据速度=路程÷时间,即可得出y 与x 的函数关系式.【详解】解:∵速度=路程÷时间, ∴80y x= 故答案为:80y x =【点睛】本题考查了根据行程问题得到反比例函数关系式,熟练掌握常见问题的数量关系是解答本题的关键.17、4【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm ,∴ac=cb,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.18、3【分析】如图,连接OD、OE、OF,由切线的性质和切线长定理可得OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,接着证明四边形OECF为正方形,则CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的长.【详解】解:如图,连接OE,OF,OD,∵⊙O为△ABC内切圆,与三边分别相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四边形OECF为矩形而OF=OE,∴四边形OECF为正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案为:3【点睛】本题考查了三角形的内切圆与内心,切线的性质,切线长定理,勾股定理,正方形的判定和性质,熟悉切线长定理是本题的关键.三、解答题(共66分)19、(1)x 1=2+3,x 2=2﹣3;(2)x 1=45,x 2=1. 【分析】解一元二次方程常用的方法有因式分解法和公式法,方程2410x x -+=在整式范围内不能因式分解,所以选择公式法即可求解;而方程229(2)4(1)x x -=+移项后方程左边可以利用平方差公式进行因式分解,易求出此方程的解.【详解】解:(1)x 2﹣4x+4=3,(x ﹣2)2=3,x ﹣2=±3,所以x 1=2+3,x 2=2﹣3;(2)9(x ﹣2)2﹣4(x+1)2=0,[3(x ﹣2)+2(x+1)][3(x ﹣2)﹣2(x+1)]=0,3(x ﹣2)+2(x+1)=0或3(x ﹣2)﹣2(x+1)=0,所以x 1=45,x 2=1. 【点睛】本题考查的是一元二次方程的解法,根据方程的特点和每一种解法的要点,选择合适的方法进行求解是关键.20、(1)见解析;(2)①见解析,②1【分析】(1)连接OC ,由OA=OC 得∠OAC=∠OCA ,结合折叠的性质得∠OCA=∠FAC ,于是可判断OC ∥AF ,然后根据切线的性质得直线FC 与⊙O 相切;(2)①连接OD 、BD ,利用直角三角形斜边上的中线的性质可证得CB=OC=OD=BD ,再根据菱形的判定定理即可判定;②首先证明△OBC 是等边三角形,在Rt △OCE 中,根据222OC OE CE =+,构建方程即可解决问题;【详解】(1)如图,连接OC ,∵OA=OC ,∴∠OAC=∠OCA ,由翻折的性质,有∠OAC=∠FAC ,∠AEC=∠AFC=90°,∴∠FAC=∠OCA ,∴OC ∥AF ,∴∠OCG=∠AFC=90°,故FG 是⊙O 的切线;(2)①如图,连接OD 、BD ,∵CD 垂直于直径AB ,∴OC=OD ,BC=BD ,又∵B 为OG 的中点, ∴12CB OG =, ∴CB=OB ,又∵OB=OC ,∴CB=OC ,则有CB=OC=OD=BD ,故四边形OCBD 是菱形;②由①知,△OBC 是等边三角形,∵CD 垂直于直径AB ,∴30OCE ∠=, ∴12OE OC =, 设⊙O 的半径长为R ,在Rt △OCE 中,有222OC OE CE =+,即2221()(23)2R R =+,解之得:4R =,⊙O 的半径长为:1.【点睛】本题属于圆综合题,考查了切线的判定,等边三角形的判定和性质,直角三角形斜边上的中线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用方程的思想解决问题.21、(1)22y x=;(2)215x ≤≤. 【分析】(1)根据M 点的横坐标为1,求出k 的值,得到反比例函数的解析式;(2)求出x=2,x=5时y 的取值,再根据反比例函数的增减性求出y 的取值范围.【详解】(1)正比例函数12y x =的图象与反比例函数()20k y k x=≠的图象交于一点M ,且M 点的横坐标为1. 1,2212M M M x y x ∴===⨯=,122M M k x y ∴=⋅=⨯=,∴反比例函数的解析式为22y x =; (2)在反比例函数22y x =中,当22,1x y ==, 当225,5x y ==, 在反比例函数22y x=中,20k =>, ∴当0x >时,2y 随x 的增大而减小,∴当25x ≤≤时,反比例函数()20k y k x =≠的取值范围为215x ≤≤. 【点睛】此题考查了三个方面:(1)函数图象上点的坐标特征;(2)用待定系数法求函数解析式;(3)反比例函数的增减性.22、AC =【分析】根据相似三角形的判定定理可得△CAD ∽△CBA ,列出比例式即可求出AC.【详解】解:∵CD=4,BD=2,∴BC=CD +BD=6∵∠CAD=∠B,∠C=∠C∴△CAD ∽△CBA ∴AC DC BC AC=∴26424AC BC CD =•=⨯=解得:AC =或-即AC =【点睛】此题考查的是相似三角形的判定及性质,掌握有两组对应角相等的两个三角形相似和相似三角形的对应边成比例是解决此题的关键.23、(1)方程的解为x 1=c ,x 2=a c ,验证见解析;(2)x =a 与x =363a a --都为分式方程的解. 【分析】(1)根据材料即可判断方程的解,然后代入到方程的左右两边检验即可;(2)将方程左右两边同时减去3,变为题干中的形式,即可得出答案.【详解】(1)方程的解为x 1=c ,x 2=a c , 验证:当x =c 时,∵左边=c +a c ,右边=c +a c, ∴左边=右边,∴x =c 是x +a x=c +a c 的解, 同理可得:x =a c 是x +a x=c +a c 的解; (2)方程整理得:(x ﹣3)+33x -=(a ﹣3)+33a -, 解得:x ﹣3=a ﹣3或x ﹣3=33a -,即x =a 或x =363a a --, 经检验x =a 与x =363a a --都为分式方程的解. 【点睛】本题主要为材料理解题,理解材料中方程的根的由来是解题的关键.24、 (1)180y x =-+;(2) 每件商品的销售价应定为130元或150元;(3)售价定为140元/件时,每天最大利润1600W =元.【分析】(1)待定系数法求解可得;(2)根据“每件利润×销售量=总利润”列出一元二次方程,解之可得;(3)根据以上相等关系列出函数解析式,配方成顶点式,利用二次函数性质求解可得.【详解】(1)设y 与x 之间的函数关系式为()0y kx b k =+≠,由所给函数图象可知:1305015030k b k b +=⎧⎨+=⎩, 解得:1180k b =-⎧⎨=⎩. 故y 与x 的函数关系式为180y x =-+;(2)根据题意,得:()()1001801500x x --+=,整理,得:2280195000x x -+=,解得:130x =或150x =,答:每件商品的销售价应定为130元或150元;(3)∵180y x =-+,∴()()()100100180W x y x x =-=--+228018000x x =-+- 2(140)1600x =--+,∴当140x =时,1600W =最大,∴售价定为140元/件时,每天最大利润1600W =元.【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式,理解题意确定相等关系,并据此列出函数解析式.25、(1)y=﹣x 2﹣2x+1;(2)点P (﹣2,1)在这个二次函数的图象上,【分析】(1)根据给定点的坐标,利用待定系数法求出二次函数解析式即可;(2)代入x=-2求出y 值,将其与1比较后即可得出结论.【详解】(1)设二次函数的解析式为y=ax 2+bx+1;∵二次函数的图象经过点(﹣1,0),(2,﹣5),则有:933428a b a b -=-⎧⎨+=-⎩ 解得;12a b =-⎧⎨=-⎩∴y=﹣x 2﹣2x+1.(2)把x=-2代入函数得y=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1,∴点P (﹣2,1)在这个二次函数的图象上,【点睛】考查待定系数法求二次函数解析式,二次函数图象上点的坐标特征,掌握待定系数法求二次函数解析式是解题的关键.26、(1)y=1440x﹣800;每辆次小车的停车费最少不低于3元;(2)y=﹣120x2+2040x﹣800;(3)每辆次小车的停车费应定为8元,此时的日净收入为7840元.【分析】(1)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式,然后根据日净收入不低于2512元,列出不等式,即可求出x的最小整数值;(2)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式;(3)根据x的取值范围,分类讨论:当x≤5时,根据一次函数的增减性,即可求出此时y的最大值;当x>5时,将二次函数一般式化为顶点式,即可求出此时y的最大值,从而得出结论.【详解】解:(1)由题意得:y=1440x﹣800∵1440x﹣800≥2512,∴x≥2.3∵x取整数,∴x最小取3,即每辆次小车的停车费最少不低于3元.答:每辆小车的停车费最少不低于3元;(2)由题意得:y=[1440﹣120(x﹣5)]x﹣800即y=﹣120x2+2040x﹣800(3)当x≤5时,∵1440>0,∴y随x的增大而增大∴当x=5时,最大日净收入y=1440×5﹣800=6400(元)当x>5时,y=﹣120x2+2040x﹣800=﹣120(x2﹣17x)﹣800=﹣120(x﹣172)2+7870∴当x=172时,y有最大值.但x只能取整数,∴x取8或1.显然,x取8时,小车停放辆次较多,此时最大日净收入为y=﹣120×14+7870=7840(元)∵7840元>6400元∴每辆次小车的停车费应定为8元,此时的日净收入为7840元.答:每辆次小车的停车费应定为8元,此时的日净收入为7840元.【点睛】此题考查的是一次函数和二次函数的综合应用,掌握实际问题中的等量关系、一次函数的增减性和利用二次函数求最值是解决此题的关键.。

上海初三九年级2018届金山区中考数学一模试卷及参考答案

上海初三九年级2018届金山区中考数学一模试卷及参考答案
长等于____________. 16. 如果一个正多边形每一个内角都等于 144°,那么这个正多边形的边数是____________. 17. 两圆内切,其中一个圆的半径长为 6,圆心距等于 2,那么另一个圆的半径长等于____________.
18. 如图 4,在矩形 ABCD 中, E 是 AD 上一点,把 V ABE 沿直 线 BE 翻折,点 A 正好落在 BC 边上的点 F 处,如果四边形 CDEF 和矩形 ABCD 相似,那么四边形 CDEF 和矩形 ABCD 面积比是
的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是
()
A. 30 厘米、45 厘米
B. 40 厘米、80 厘米
C. 80 厘米、120 厘米
D. 90 厘米、120 厘米
6. 在 RtV ABC 中, ÐACB = 90o, AC = 12, BC = 9 , D 是 AB 的中点, G 是 V ABC 的重心,
14. 点 (- 1, a), (- 2, b) 是 抛 物 线 y = x2 + 2x - 3 上 的 两 个 点 , 那 么 a 和 b 的 大 小 关 系 是 a
________ b (填“>”或“<”或“=”). 15. 如图 3, AB 是 e O 的弦, ÐOAB = 30o,OC ^ OA ,交 AB 于点 C ,若 OC = 6 ,则 AB 的
2018 年上海市金山区九年级第一学期期末考试数学试题
一、选择题(每小题 4 分,共 24 分)
1. 已知 a 、 b 是不等于 0 的实数, 2a = 3b ,那么下列等式中正确的是( )
A. a = 2 b3
B. a = 3 b2

福建省厦门市2018-2019学年第一学期九年级(上)期末数学测试卷(含答案)

福建省厦门市2018-2019学年第一学期九年级(上)期末数学测试卷(含答案)

2018-2019学年九(上)厦门市期末教学质量检测数学卷(满分150分;考试时间120分钟)一、选择题(本大题有10小题,每小题4分,共40分) 1.计算-5+6,结果正确的是( ).A.1B.-1C.11D.-112.如图1,在△ABC 中,∠C =90°,则下列结论正确的是( ).A. AB=AC +BCB.AB=AC·BCC. AB 2=AC 2+ BC 2D. AC 2=AB 2+BC 2 3.抛物线y=2(x -1)2-6的对称轴是( ).A.x =-6B.x =-1C. x =21D. x =14.要使分式11x 有意义,x 的取值范围是( ).A.x ≠0B. x ≠1C. x >-1D. x >1 5.下列事件是随机事件的是( ). A.画一个三角形,其内角和是360°B.投掷一枚正六面体骰子,朝上一面的点数小于7C.射击运动员射击一次,命中靶心D.在只装了红球的不透明袋子里,摸出黑球6.图2,图3分别是某厂六台机床十月份第一天和第二天生产 零件数的统计图,与第一天相比,第二天六台机床生产零件数的平均数与方差的变化情况是( ).A.平均数变大,方差不变B.平均数变小,方差不变C.平均数不变,方差变小D.平均数不变,方差变大7.地面上一个小球被推开后笔直滑行,滑行的距离要s 与时间t 的函 数关系如图4中的部分抛物线所示(其中P 是该抛物线的顶点) 则下列说法正确的是( ). A.小球滑行6秒停止 B.小球滑行12秒停止 C.小球滑行6秒回到起点 D.小球滑行12秒回到起点(图1)(图2)(图4)m m 生产的零件数(图3)8.在平面直角坐标系xOy 中,已知A (2,0),B (1,-1),将线段OA 绕点O 逆时针旋转,旋转角为α(0°<α<135°).记点A 的对应点为A 1,若点A 1与点B 的距离为6,则α为( ). A. 30° B.45° C.60° D.90°9.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD >AD ,则下列结论正确的是( ).A. CD <AD - BDB. AB >2BDC. BD >ADD. BC >AD10.已知二次函数y=ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1、x 2 (0< x 1<x 2 <4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范国是( ).A. 0<m <1B.1<m ≤2C.2<m <4D.0<m <4 二、填空题(本大题有6小题,每小题4分,共24分)11.投掷一枚质地均匀的正六面体酸子,投掷一次,朝上一面的点数为奇数的概率是______.12.已知x =2是方程x 2+ax -2=0的根,则a =______.13.如图5,已知AB 是⊙O 的直径,AB =2,C 、D 是圆周上的点,且 ∠CDB =30°,则BC 的长为______.14.我们把三边长的比为3:4:5的三角形称为完全三角形,记命题A : “完全三角形是直角三角形”.若命题B 是命题A 的逆命题,请写出命题B :____________________;并写出一个例子(该例子能判断命题B 是错误的) 15.已知AB 是⊙O 的弦,P 为AB 的中点,连接OA 、OP ,将△OPA 绕点O 旋转到△OQB . 设⊙O 的半径为1,∠AOQ =135°,则AQ 的长为______. 16.若抛物线y=x 2+bx (b >2)上存在关于直线y=x 成轴对称的两个点,则b 的取值范围 是______.三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程x 2-3x +1=018.(本题满分8分) 化简并求值:(1-12+x )÷2212+-x x ,其中x =2-1(图5)已知二次函数y=(x -1)2+n ,当x =2时,y =2.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.20. (本题满分8分)如图,已知四边形ABCD 是矩形.(1)请用直尺和圆规在边AD 上作点E ,使得EB=EC . (保留作图痕迹)(2)在(1)的条件下,若AB =4,AD =6,求EB 的长.21.(本题满分8分)如图7,在△ABC 中,∠C =60°,AB =4.以AB 为直径画⊙O ,交边AC于点D . AD 的长为34,求证:BC 是⊙O 的切线.已知动点P 在边长为1的正方形ABCD 的内部,点P 到边AD 、AB 的距离分别为m 、n .(1)以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系,如图①所示,当点P 在对角线AC 上,且m =41时,求点P 的坐标;(2)如图②,当m 、n 满足什么条件时,点P 在△DAB 的内部?请说明理由.23.(本题满分10分)小李的活鱼批发店以44元/公斤的价格从港口买进一批2000公斤的某品种活鱼,在运输过程中,有部分鱼未能存活,小李对运到的鱼进行随机抽查,结果如表一.由于市场调节,该品种活鱼的售价与日销售量之间有一定的变化规律,表二是近一段时间该批发店的销售记录.(1)请估计运到的2000公斤鱼中活鱼的总重量;(直接写出答案) (2)按此市场调节的观律,①若该品种活鱼的售价定为52.5元/公斤,请估计日销售量,并说明理由; ②考虑到该批发店的储存条件,小李打算8天内卖完这批鱼(只卖活鱼),且售价保持不变,求该批发店每日卖鱼可能达到的最大利润,并说明理由.(图②)已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.(1)如图10,当∠APQ=45°,AP=1,BP=22时,求⊙O的半径;(2)如图11,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.(图①) (图②)在平面直角坐标系xO y中,点A(0,2),B(p,q)在直线上, 抛物线m经过点B、C(p+4,q),且它的顶点N在直线l上.(1)若B(-2,1),①请在图12的平面直角坐标系中画出直线l与抛物线m的示意图;②设抛物线m上的点Q的模坐标为e(-2≤e≤0)过点Q作x轴的垂线,与直线l交于点H . 若QH=d,当d随e的增大面增大时,求e的取值范围(2)抛物线m与y轴交于点F,当抛物线m与x轴有唯一交点时,判断△NOF的形状并说明理由. yx –4–3–2–11234–4–3–2–11234O。

九年级数学上学期期末考试题 试题 (2)

九年级数学上学期期末考试题  试题 (2)

第51中2021-2021学年九年级数学上学期期末考试题制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日〔考试时间是是:120分钟;满分是:120分〕题号 一 二三 四合计 合计人复核人15 1617 18 19 20 21 22 23 24得分真情提示:亲爱的同学,欢送你参加本次考试,祝你答题成功! 1.请必须在规定的正确位置填写上座号,并将密封线内的工程填写上清楚.2.本试题一共有24道题.其中1—8题为选择题,请将所选答案的标号填写上在第8题后面给出表格的相应位置上;9—14题为填空题,请将做出之答案填写上在第14题后面给出表格的相应位置上;15—24题请在试卷给出的此题位置上做答.一、选择题〔此题满分是24分,一共有8道小题,每一小题3分〕以下每一小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每一小题选对得分;不选、选错或者选出的标号超过一个的不得分.请将1-8各小题所选答案的标号填写上在第8小题后面的表格内.+sin300= 〔 〕A. 2B.233+ C. 23D. 231+2. 如图,由高和直径一样的5个圆柱搭成的几何体,其左视图是〔 〕得 分 阅卷人 复核人A. B. C. D.3. 以下模拟掷硬币的试验不正确的选项是〔〕A.用计算器随机地取数,取奇数相当于正面朝上,取偶数相当于硬币正面朝下。

B.在袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上。

C.在没有大小王的扑克牌中随机地抽一张牌,抽到红色牌表示硬币正面朝上。

D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上。

4. 将抛物线y=x2平移得到抛物线y=(x+2)2,那么这个平移过程正确的选项是〔〕A. 向左平移2个单位 B 向下平移2个单位.C . 向上平移2个单位D. 向左平移2个单位5. 一个不透明的口袋里装有除颜色外都一样的8个白球和假设干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:现将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮一共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A. 92 B 72 .C . 80 D. 886. 如图是二次函数y=ax2+bx+c图象的一局部,且过点A〔3,0〕,二次函数图象的对称轴是x=1,以下结论正确的选项是〔〕A. b2>4ac B ac>0 .C . a﹣b+c>0 D. 4a+2b+c<07. 如图,Rt△ABC 内有边长分别有a,b,c 的三个正方形,那么a,b,c 满足的关系式是〔 〕 A 、b=a+c B 、b=ac C 、b²=a²+c² D 、b=2a=2b8. 如图,在矩形ABCD 中,AD=2AB ,AE 平分∠BAD ,DF ⊥AE 于F ,BF 交DE 、CD 于O 、H ,以下结论:①∠DEA=∠DEC ;②BF=FH ;③OE=OD ;④BC-CH=2EF .⑤AB=HF,其中正确结论的个数是〔 〕A. 2个 B 3个 .C . 4个 D. 5个请将1—8各小题所选答案的标号填写上在下面的表格内: 题号 1 2 3 4 5 6 7 8 答案二、填空题〔此题满分是18分,一共有6道小题,每一小题3分〕 请将 9—14各小题之答案填写上在第14小题后面的表格内.9.方程x 〔x —2〕=x —2的解是 。

2024届吉林省数学九年级第一学期期末经典试题含解析

2024届吉林省数学九年级第一学期期末经典试题含解析

2024届吉林省数学九年级第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是A.B.C.D.2.已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是( )①∠PAD=∠PDA=60º;②△PAO≌△ADE;③PO=2r;④AO∶OP∶PA=1∶2∶3.A.①④B.②③C.③④D.①③④3.一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A.14B.13C.512D.124.下列命题错误..的是( )A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等5.sin60tan45︒+︒的值等于()A .2B .322+ C .3D .16.如图所示,在ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则ABE ∆与ABCD 的面积比值为( )A .1:8B .1:4C .3:8D .3:47.下列事件是必然事件的是( ) A .打开电视机,正在播放篮球比赛 B .守株待兔C .明天是晴天D .在只装有5个红球的袋中摸出1球,是红球.8.抛物线y =2 x 2+3与两坐标轴....的公共点个数为( ) A .0个B .1个C .2个D .3个9.已知在Rt △ABC 中,∠C =90°,BC =5,那么AB 的长为( ) A .5sin AB .5cos AC .D .10.下列方程中,没有实数根的是( ) A .x 2﹣2x ﹣3=0 B .(x ﹣5)(x +2)=0 C .x 2﹣x +1=0D .x 2=1二、填空题(每小题3分,共24分)11.在二次函数中2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表: x ...... -1 0 1 2 3 4 ...... y......-7-2mn-2-7......则m 、n 的大小关系为m _______n .(填“>”,“=”或“<”) 12.正五边形的中心角的度数是_____.13.一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是_____. 14.若3是关于x 的方程x 2-x +c =0的一个根,则方程的另一个根等于____.15.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有___个.16.计算:2sin30°+tan45°=_____.17.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为_____. 18.已知方程x 2﹣3x ﹣5=0的两根为x 1,x 2,则x 12+x 22=_________. 三、解答题(共66分)19.(10分)如图,在ABC 中,90C ∠=︒,BAC ∠的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F (1)试判断直线BC 与O 的位置关系,并说明理由.(2)若3BD =,1BF =,求阴影部分的面积(结果保留π)20.(6分)如图,抛物线y =x 2+bx+c 与x 轴交于点A 和B (3,0),与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)若点M 是抛物线上在x 轴下方的动点,过M 作MN ∥y 轴交直线BC 于点N ,求线段MN 的最大值;(3)E 是抛物线对称轴上一点,F 是抛物线上一点,是否存在以A ,B ,E ,F 为顶点的四边形是平行四边形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.21.(6分)如图,已知二次函数23y x ax =++的图象经过点()2,3P -.(1)求a 的值和图象的顶点坐标。

2024年北京燕山区初三上学期期末考数学试卷和答案

2024年北京燕山区初三上学期期末考数学试卷和答案

燕山地区2023—2024学年第一学期九年级期末考试数学试卷2024.1一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.....1.下列图案是我国国产品牌汽车的标识,其中是中心对称图形的是A .B .C .D .2.已知点P 在半径为r 的⊙O 内,且OP =3,则r 的值可能为A .1B .2C .3D .43.下列函数中,当0x >时,y 随x 的增大而减小的是A .y =xB .y =1x +C .y =2x D .y =2x -4.一个小球在如图所示的地板上自由滚动,并随机停留在某块方砖上.如果每一块方砖除颜色外完全相同,则小球最终停留在白砖上的概率是A .13B .49C .59D .235.如图,点A ,B 在⊙O 上,点C 是劣弧AB ︵的中点,∠AOC =80°,则∠CDB 的大小为A .40°B .45°C .60°D .80°6.电影《志愿军:雄兵出击》于国庆档上映,首周累计票房约3.5亿元,第三周累计票房约6.8亿元.若每周累计票房的增长率相同,设增长率为x ,根据题意可列方程为A .23.5 6.8x =B .3.5(1 6.8)x +=C .23.5(1) 6.8x +=D .23.5(1) 6.8x -=7.如图,在平面直角坐标系xOy 中,△ABC 的三个顶点都在格点上,则△ABC 外接圆的圆心坐标为A .(3,2)B .(2,3)C .(2,2)D .(3,3)8.平面直角坐标系xOy 中,已知二次函数y =ax 2+bx (a ≠0)的部分图象如图所示,给出下面三个结论:①a •b >0;②二次函数y =ax 2+bx (a ≠0)有最大值4;③关于x 的方程ax 2+bx =0有两个实数根14=-x ,20=x .上述结论中,所有正确结论的序号是A .①②B .①③C .②③D .①②③二、填空题(共16分,每题2分)9.平面直角坐标系xOy 中,与点P (-4,1)关于原点对称的点的坐标是.10.一元二次方程(3)3x x x -=-的解是.11.将抛物线212y x =向左平移1个单位长度,得到抛物线的解析式为.12.已知某二次函数的图象开口向上,且顶点坐标为(1,3),则这个二次函数解析式可以是.13.如图,P A ,PB 是⊙O 的两条切线,切点为A ,B ,若∠AOB =90°,P A =3,则⊙O 的半径为.14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接AD ,若OE =3,CD =8,则AD 的长为.15.在一个不透明的盒子中共装有40个球,其中有a 个红球,这些球除颜色外无其他差别.为估计a 的值,小颖做摸球试验,她将盒子里面的球充分搅匀,任意摸出1个球记下颜色再放回,不断重复上述过程,记录实验数据如下:摸球的次数n 2050100200300400500摸到红球的次数m133262117181238301摸到红球的频率mn0.650.640.620.5850.6030.5950.602根据以上数据,估计a 的值约为.16.2023年第19届杭州亚运会的举办带热了吉祥物“宸宸、琮琮和莲莲”的销售.某网店经营亚运会吉祥物玩偶礼盒装,每盒进价为30元.当地物价部门规定,该礼盒销售单价最高不能超过50元/盒.在销售过程中发现该礼盒每周的销量y (件)与销售单价x (元)之间近似满足函数关系:2180-y x =+(30≤x ≤50).(1)设该网店每周销售该礼盒所获利润为w (元),则w 与x 的函数关系式为;(2)该网店每周销售该礼盒所获最大利润为元.(第14题)(第13题)宸宸琮琮莲莲三、解答题(共68分,第17-19题,每题5分,第20题6分,第21-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明,演算步骤或证明过程.17.解方程:220+-=.41x x18.已知250-,求代数式22=x x-x x x-+-的值.3(2)(1)19.2023年7月31日,北京遭遇140年以来最大的暴雨,房山地区受灾严重.为了做好防汛救灾工作,某社区特招募志愿工作者,小东和小北积极报名参加,根据社区安排,志愿者被随机分到A组(信息登记),B组(物资发放),C组(垃圾清运)的其中一组.(1)小东被分配到A组是事件(填“必然”,“随机”或“不可能”);小东被分配到A组的概率是.(2)请用列表或画树状图的方法,求出小东和小北被分配到同一组的概率.20.如图,将△ABC绕点B逆时针旋转得到△DBE,点C的对应点E恰好落在AB上.(1)若BC=6,BD=9,求线段AE的长.(2)连接AD,若∠C=110°,∠BAC=40°,求∠BDA的度数.21.阅读下面的材料一元二次方程及其解法最早出现在公元前两千年左右的古巴比伦人的《泥板文书》中.到了中世纪,阿拉伯数学家阿尔·花拉子米在他的代表作《代数学》中记载了求一元二次方程正数解的几何解法,我国三国时期的数学家赵爽在其所著《勾股圆方图注》中也给出了类似的解法.以x2+10x=39为例,花拉子米的几何解法步骤如下:①如图1,在边长为x的正方形的两个相邻边上作边长分别为x和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形;②一方面大正方形的面积为(x+)2,另一方面它又等于图中各部分面积之和,因为x2+10x=39,可得方程(x+)2=39+,则方程的正数解是x =.根据上述材料,解答下列问题.(1)补全花拉子米的解法步骤②;(2)根据花拉子米的解法,在图2的两个构图①②中,能够得到方程x 2-6x =7的正数解的正确构图是(填序号).22.已知关于x 的一元二次方程22(2)0x x m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为正整数,请你写出一个满足条件的m 值,并求出此时方程的根.23.已知二次函数23(0)+y ax bx a =+≠的图象经过点A (1,0),B (3,0).(1)求该函数的解析式;(2)当x >3时,对于x 的每一个值,函数y x n =+的值小于二次函数23+y ax bx =+的值,结合函数图象,直接写出n 的取值范围.24.如图,在△ABC 中,∠ACB =90°,点D 在AB 上,以AD 为直径作⊙O 与BC 相切于点E ,连接DE 并延长交AC 的延长线于点F .(1)求证:AF =AD ;(2)若CE =4,CF =2,求⊙O 的半径.图1①②25.学校组织九年级学生进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况.在两种不同的场景A 和场景B 下做对比实验,设实验过程中,该试剂挥发时间为x 分钟时,在场景A ,B 中的剩余质量分别为y 1,y 2(单位:克).下面是某研究小组的探究过程,请补充完整:记录y 1,y 2与x 的几组对应值如下:x (分钟)05101520…y 1(克)2523.52014.57…y 2(克)252015105…(1)在同一平面直角坐标系xOy 中,描出上表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1,y 2的图象;(2)进一步探究发现,场景A 的图象是抛物线的一部分,y 1与x 之间近似满足函数关系210.04+y x bx c =-+.场景B 的图象是直线的一部分,y 2与x 之间近似满足函数关系2y ax c =+(a ≠0).请分别求出场景A ,B 满足的函数关系式;(3)查阅文献可知,该化学试剂的质量不低于4克时,才能发挥作用.在上述实验中,记该化学试剂在场景A ,B 中发挥作用的时间分别为x A ,x B ,则x A x B (填“>”,“=”或“<”).26.在平面直角坐标系xOy 中,点M (-1,m ),N (3,n )在抛物线2y ax bx c =++(a >0)上,设抛物线的对称轴为x =t .(1)若m =n ,求t 的值;(2)若c <m <n ,求t 的取值范围.27.如图,△ABC 为等边三角形,点M 为AB 边上一点(不与点A ,B 重合),连接CM ,过点A 作AD ⊥CM 于点D ,将线段AD 绕点A 顺时针旋转60°得到线段AE ,连接BE .(1)依题意补全图形,直接写出∠AEB 的大小,并证明;(2)连接ED 并延长交BC 于点F ,用等式表示BF 与FC 的数量关系,并证明.28.在平面直角坐标系xOy 中,对于⊙C 和⊙C 外一点P 给出如下定义:连接CP 交⊙C 于点Q ,作点P 关于点Q 的对称点P′,若点P′在线段CQ 上,则称点P 是⊙C 的“关联点”.例如,图中P 为⊙C 的一个“关联点”.(1)⊙O 的半径为1.①如图1,在点A (2-,0),B (2,2),D (0,3)中,⊙O 的“关联点”是;②已知点M 在直线323y x =-上,且点M 是⊙O 的“关联点”,求点M 的横坐标m 的取值范围.(2)直线31()y x =--与x 轴,y 轴分别交于点E ,点F ,⊙T 的圆心为T (t ,0),半径为2,若线段..EF ..上所有点....都是⊙T 的“关联点”,直接写出t 的取值范围.图1备用图燕山地区2023—2024学年第一学期九年级期末考试数学试卷答案及评分参考2024年1月阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。

2018-2019学年上 学期期末考试九年级数学试题(含答案)

2018-2019学年上 学期期末考试九年级数学试题(含答案)

2018—2019学年九年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.(3分)下面左侧几何体的左视图是()A.B.C.D.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣36.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.18.(5分)x2﹣8x+12=0.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.(3分)下面左侧几何体的左视图是()A.B.C.D.【解答】解:从左面看,是一个长方形.故选C.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.【解答】解:∵=2,∴a=2b,∴==3.故选A.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.5.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣3【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选B.6.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=950.故选:D.7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=【解答】解:由题意可得:y==.故选:C.8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=60°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等【解答】解:A、二次函数y=(x+1)2﹣3的顶点坐标是(﹣1,﹣3),错误;B、将二次函数y=x2的图象向上平移2个单位,得到二次函数y=x2+2的图象,错误;C、菱形的对角线互相垂直且平分,错误;D、平面内,两条平行线间的距离处处相等,正确;故选D10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m【解答】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴=、=,即=、=,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长边长1m.故选:A.11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.【解答】解:∵一次函数y=ax+c的图象经过一三四象限,∴a>0,c<0,故二次函数y=ax2+x+c的图象开口向上,对称轴在y轴左边,交y轴于负半轴,故选:C.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选B.二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.【解答】解:∵共有3张卡片,卡片的正面分别标上数字﹣1,0,﹣2,卡片上的数字为负数的有2张,∴卡片上的数字为负数的概率为;故答案为:.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是x=﹣.【解答】解:y=﹣(x﹣1)(x+2)=﹣(x2+x﹣2)=﹣(x+)2+,∴二次函数y=﹣(x﹣1)(x+2)的对称轴为x=﹣,故答案为:x=﹣.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为4.【解答】解:∵点A在曲线y=(x>0)上,AB⊥x轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.【解答】解:作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=A D=6,∴OA=OB=6,∵OB=3OE,∴OE=2,EB=4,∵∠EBH=∠BEH=45°,∴EH=BH=2,∴AH=AB﹣BH=4,∵∠ADG+∠DAF=90°,∠DAF+∠EAH=90°,∴∠ADG=∠EAH,∵∠DAG=∠AHE,∴△DAG∽△AHE,∴=,∴=,∴AG=3,∴GH=AH﹣AG=,在Rt△EGH中,EG==.故答案为.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.【解答】解:原式=1﹣3+2+3=3.18.(5分)x2﹣8x+12=0.【解答】解:x2﹣8x+12=0,分解因式得(x﹣6)(x﹣2)=0,∴x﹣6=0,x﹣2=0,解方程得:x1=6,x2=2,∴方程的解是x1=6,x2=2.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.【解答】解:(1)画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球都是白色的有2种情况,∴随机从袋中摸出两个球,都是白色的概率是:=.(2)根据题意,得:=,解得:a=5,经检验a=5是原方程的根,故a=5.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CF,∴△CGE≌△FCG(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书300﹣10x本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为:300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.【解答】解:(1)如图1,过点C作CE⊥x轴于E,∴∠CEO=90°,∵∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴k=2×2=4,∴反比例函数解析式为y=,(2)如图2,过点D作DG⊥x轴于G,交BC于F,∵CB∥x轴,∴GF⊥CB,∵OA=4,由(1)知,OC=CE=2,∴AE=EC=2,∴∠ECA=45°,∠OCA=90°,∵OC∥AB,∴∠BAC=∠OCA=90°,∴AD⊥AC,∵A(4,0),AB∥OC,∴直线AB的解析式为y=x﹣4①,∵反比例函数解析式为y=②,联立①②解得,或(舍),∴D(2+2,2﹣2),∴AG=DG=2﹣2,∴AD=DG=4﹣2,∴DF=2﹣(2﹣2)=4﹣2,∴AD=DF,∵AD⊥AC,DF⊥CB,∴点D是∠ACB的角平分线上,即:CD平分∠ACB;(3)存在,∵点C(2,2),∴直线OC的解析式为y=x,OC=2,∵D(2+2,2﹣2),∴CD=2﹣2Ⅰ、如图3,当点P在点C右侧时,即:点P的横坐标大于2,∵S△POC=S△COD,∴设CD的中点为M,∴M(+2,),过点M作MP∥OC交双曲线于P,∴直线PM的解析式为y=x﹣2③,∵反比例函数解析式为y=④,联立③④解得,或(舍),∴P(+1,﹣1);Ⅱ、当点P'在点C左侧时,即:点P'的横坐标大于0而小于2,设点M关于OC的对称点为M',M'(m,n),∴=2,=2,∴m=2﹣,n=4﹣,∴M'(2﹣,4﹣),∵P'M'∥OC,∴直线P'M'的解析式为y=x+2⑤,联立④⑤解得,或(舍),∴P'(﹣1,+1).即:点P的坐标为(﹣1,+1)或P(+1,﹣1).23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【解答】解:(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(x+2)(x﹣4)或y=﹣x2+x+4或y=﹣(x﹣1)2+.(2)如图1中,作PE⊥x轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣x+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=kx+1中,得到k=,∴直线DP的解析式为y=x+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=x+1,PQ⊥PD,∴直线PQ的解析式为y=﹣x+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(x,0),则QD2=x2+1,QP2=(x﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴x2+1+(x﹣2)2+16=13,整理得x2﹣2x+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017--2018学年度第一学期期末教学质量检查九年级数学试题注意:请把答案写在答卷相应题号的位置上。

本试卷满分:120分,考试时间:100分钟一、选择题(每小题3分,共30分) 1、下面左图中所示几何体的左视图是( )2.下列方程中是一元二次方程的是( ) A.2)3)(2(x x x =-+ B.62=y C.51322=+-x x D.132=+y x 3.已知点(3,﹣4)在反比例函数xky =的图象上,则下列各点也在该反比例函数图象上的是( )A .(3,4)B .(-3,-4)C .(-2,6)D .(2,6)4.已知三角形的两边长分别是3和4,第三边是方程035122=+-x x 的一个根,则此三角形的周长是( )A.12B.14 C .15D .12或145.有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、等腰梯形四个图案,卡片背面完全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( ) A .41 B .21 C .43D . 16.下列说法中,不正确的是( ) A .两组对边分别平行的四边形是平行四边形 B.对角线互相平分且垂直的四边形是菱形C.一组对边平行另外一组对边相等的四边形是平行四边形D.有一组邻边相等的矩形是正方形7.如果ab=cd ,且abcd ≠0,则下列比例式不正确的是( ) A.d c b a = B.b d c a = C.a c d b = D.ca b d =8.已知一次函数b kx y +=的图象经过第一、三、四象限,则反比例函数xkby =的图象在( )A .一、二象限B .一、三象限C .三、四象限D .二、四象限 9.关于x 的一元二次方程0242=-+x kx 有实数根,则k 的取值范围是( ) A .2-≥k B .0k 2≠->且k C .02≠-≥k k 且 D .2-≤k10.如图,在矩形ABCD 中,AB=4,BC=3,点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( ) A.2 B. 25 C.5 D.825二.填空题:(每小题4分,共24分)11.如图,直线l 1//l 2//l 3且与直线a 、b 相交于点A 、B 、C 、D 、E 、F ,若AB=1,BC=2,DE=1.5,则DF= .12.在一个不透明的袋子中有50个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的频率约为36%,估计袋中白球 有 个.13.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x 人,则根据题意可列方程为 .14.反比例函数xky =(k>0)图象上有两点),(11y x 与),(22y x ,且210x x <<,则1y 2y (填“>”或“=”或“<”). 15.如图,在等边三角形ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且∠ADF=∠BED=∠CFE=90°,则△DEF 与△ABC 的面积之比为 .16. 如图,在正方形ABCD 中,对角线AC 与BD 相交于点O , 点E 在OC 上一点(不与点O 、C 重合),AF ⊥BE 于点F ,AF 交BD 于点G ,则下述结论:①BCE ABG ∆≅∆、②AG=BE 、 ③∠DAG=∠BGF 、④AE =DG 中,一定成立的有 . 三、解答题(一)(每小题6分,共18分)17、解方程:)2(4)2(3x x x -=-18. 如图,点O 是平面直角坐标系的原点,点A 、B 、C 的坐标分别是(1,-1)、(2,1)、(1,1). (1)作图:以点O 为位似中心在y 轴的左侧把原来的四边形OABC 放大两倍(不要求写出作图过程); (2)直接写出点A 、B 、C 对应点A ’、B ’、C ’的坐标.19.布袋里有四个小球,球表面分别标有2、3、4、6四个数字,它们的材质、形状、大小完全相同。

从中随机摸出一个小球记下数字为x ,再从剩下的三个球中随机摸出一个球记下数字为y ,点A 的坐标为(x,y).运用画树状图或列表的方法,写出A 点所有可能的坐标,并求出点A 在反比例函数xy 12=图象上的概率.四、解答题(二)(每小题7分,共21分)20.如图,为测量旗杆的高度,身高1.6m 的小明在阳光下的影长为1.4m ,同一时刻旗杆在太阳光下的影子一部分落在地面上,一部分落墙上,测量发现落在地面上的影长BC=9.2m ,落在墙上的影长CD=1.5m,请你计算旗杆AB 的高度.(结果精确到1m )21.如图,在等边三角形ABC 中,D 是BC 的中点,以AD 为边向左侧作等边三角形ADE. (1)求∠CAE 的度数.(2)取AB 的中点F ,连接CF 、EF.试证明四边形CDEF 是平行四边形.22.如图,某养猪户想用30米长的围栏设计一个矩形的养猪圈,其中猪圈一边靠墙MN ,另外三边用围栏围住,MN 的长度为15m ,为了让围成的猪圈(矩形ABCD )面积达到112m 2,请你帮忙计算一下猪圈的长与宽分别是多少?五、解答题(三)(每小题9分,共27分)23.如图,一次函数)13(++-=k x y 和反比例函数xky =的图象相交于点A 与点B.过A 点作AC ⊥x 轴于点C ,6=∆AOC S . (1)求反比例函数和一次函数的解析式; (2)求点A 与点B 的坐标; (3)求△AOB 的面积.24.如图,在矩形ABCD 中,AB=3cm ,BC=6cm.点P 从点D 出发向点A 运动,运动到点A 即停止;同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1cm/s.连接PQ 、AQ 、CP.设点P 、Q 运动的时间为ts.(1) 当t 为何值时,四边形ABQP 是矩形; (2) 当t 为何值时,四边形AQCP 是菱形; (3) 分别求出(2)中菱形AQCP 的周长和面积.25.如图1,在Rt △ABC 中,∠BAC=90º.AD ⊥BC 于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE ⊥OB 交BC 边于点E.(1) 求证:△ABF ∽△COE ;(2) 当O 为AC 边中点,且2=AB AC 时,如图2,求OE OF的值;(3) 当O 为AC 边中点,且n AB AC =时,直接写出OEOF 的值.九年级数学参考解答一、选择题(每小题3分,共30分)1.B2.B3.C4.A5.B6.C7.A8.D9.C 10.D 二、填空题(每小题4分,共24分) 11.4.5 12.18 13.110)1(=-x x 14. > 15.3116.①②④三、解答题(一)(每小题6分,共18分) 17.2,3421=-=x x 18.解:(1)如图,四边形OA ’B ’C ’为所求.(2)A ’(-2,2),B ’(-4,-2),C ’(-2,-2)19.解:依题意列表得:由上表可得,点A 的坐标共有12种结果,其中点A 在反比例函数xy 12=上的有4种:(2,6)、(3,4)、(4,3)、(6,2),∴点A 在反比例函数xy 12=上的概率为=12431. 四、解答题(二)(每小题7分,共21分) 20.(1)解:如图,过点D 作DE ⊥AB 交AB 于E ,∵∠B =∠BCD =90º ∴即四边形BCDE 为矩形 ∴BE =CD =1.5,ED =BC =9.2由已知可得4.16.1=ED AE ∴5.104.16.12.94.16.1≈⨯=⋅=DE AE ∴AB =AE+BE =10.5+1.5=12(m)因此,旗杆AB 的高度为12m.21.解:(1)∵△ABC 与△ADE 为等边三角形 ∴∠BAC =∠DAE =60º∵D 是BC 的中点 ∴∠CAD =∠DAB =⨯2160º=30º ∴∠CAE =∠CAD+∠DAE =30º+60º=90º (2)在等边△ABC 中,D 、F 分别是BC 、AB 的中点∴AD =CF ,∠FCB =⨯2160º=30º,AD ⊥BC 在等边△ADE 中,AD =DE ,∠ADE =60º∴CF =AD =DE ,∠EDB =90º-60º=30º=∠FCB ∴CF ∥DE ∴四边形CDEF 是平行四边形.22. 解:设猪圈靠墙的一边长为x 米,依题意得:112)230(=-x x即:056152=+-x x 解得:8,721==x x 当7=x 时,=-x 23030-7×2=16>15,不合题意,舍去. 当8=x 时,=-x 23030-8×2=14<15,符合题意. 答:猪圈的长是14m ,宽是8m.五、解答题(三)(每小题9分,共27分) 23.解:(1)设A 点坐标为),(y x ,∵A 点在反比例函数xky =图象上,∴k xy = ∵622=-=⋅=∆xyAC OC S AOC∴12-=xy xy =-12,即12-=k ∴反比例函数的解析式为xy 12-=,一次函数解析式为1+-=x y(2)由(1)可得⎪⎩⎪⎨⎧+-=-=112x y x y ,解得⎩⎨⎧-==3411y x ,⎩⎨⎧=-=4322y x ∴A (-3,4),B (4,-3)(3)过点B 作BD ⊥x 轴于点D ∵A (-3,4),B (4,-3) ∴ AC =4,BD=3设直线y =-x+1与x 轴交于点为E ∴ 0=-x+1 ∴ x =1 ∴ OE =1 ∴27312141212121=⨯⨯+⨯⨯=⋅+⋅=+=∆∆∆BD OE AC OE S S S BOE AOE ABC ∴ △AOB 的面积为2724. 解:(1)由已知可得,BQ =DP =t,AP =CQ =6-t在矩形ABCD 中,∠B =90º,AD//BC ,当BQ =AP 时,四边形ABQP 为矩形 ∴t =6-t ,得t =3 故当t =3s 时,四边形ABQP 为矩形. (2)由(1)可知,四边形AQCP 为平行四边形∴当AQ =CQ 时,四边形AQCP 为菱形即t t -=+6322时,四边形AQCP 为菱形,解得t =49 故当t =49s 时,四边形AQCP 为菱形. (3)当t =49时,AQ =415,CQ =415则周长为:4AQ =4×415=15cm 面积为:4453415=⨯=⋅AB CQ25.解:(1)证明:∵AD ⊥BC ∴∠DAC+∠C =90º∵∠BAC =90º, ∴∠DAC+∠BAF =90º ∴∠BAF =∠C. ∵OE ⊥OB, ∴∠BOA+∠COE =90º,∵∠BOQ+∠ABF =90º, ∴∠ABF =∠COE. ∴△ABF ∽△COE(2)∵∠BAC =90º,2=ABAC,AD ⊥BC ∴BCA Rt BAD Rt ∆∆∽ ∴2==ABACBD AD 设AB =1则AC =2,BC =5,BO =2 ∴552=AD ,55121==AD BD , ∵∠BDF =∠BOE =90º,∠FBD =∠EBO , ∴△BDF ∽△BOE. 由(1)知BF =OE ,设OE =BF =x ,∴xDF 2551=, ∴DF x 10=, 在△DFB 中,2210151x x +=, ∴32=x , ∴2342322=-=-=BF OB OF , ∴2232234==OE OF(3)n OEOF=。

相关文档
最新文档