大学物理刚体运动学
大学物理第五章刚体力学1
例:课本P182习题5.5
质量连续分布: J r2dm
dm为质量元,简称质元。其计算方法如下:
质量为线分布 dm dl 其中、、分
质量为面分布
dm ds
别为质量的线密 度、面密度和体
质量为体分布 dm dV 密度。
线分布
面分布
体分布
例1、求质量为m、半径为R的均匀圆环的转动 惯量。轴与圆环平面垂直并通过圆心。
a物对地=
g-a 3
0
a人对地=
2a
0 3
g
习题册 P12 典型例题4
典例4.一个质量为M半径为R的匀质球壳可 绕一光滑竖直中心轴转动。轻绳绕在球壳 的水平最大圆周上,又跨过一质量为m半径 为r的匀质圆盘,此圆盘具有光滑水平轴, 然后在下端系一质量也为m的物体,如图。 求当物体由静止下落h时的速度v。
B
已知滑轮对 o 轴的转动惯量
J=MR2/4 ,设人从静止开始以
相对绳匀速向上爬时,绳与滑
轮间无相对滑动,求 B 端重物
上升的加速度?
解:受力分析如图 由题意 a人=aB=a
由牛顿第二定律 由转动定律 :
人 : Mg T 2 Ma
B
:
T
1
1 4
Mg
1 Ma 4
① ②
对滑轮 :
(T2 -T1)R J
再利用 v 2ah 得
1
v
12mgh
2
4M 9m
练习1.一轻绳跨过两个质量为 m、半径为 r 的均匀圆盘状定滑轮, 绳的两端分别挂着质量为 2m 和 m 的重物,如图所示,绳与滑轮间 无相对滑动,滑轮轴光滑,两个定滑轮的转动惯量均为 mr2/2, 将由 两个定滑轮以及质量为 2m 和 m 的重物组成的系统从静止释放,求 重物的加速度和两滑轮之间绳内的张力。
大学物理试题库刚体力学 Word 文档
大学物理试题库刚体力学 Word 文档大学物理试题库刚体力学word文档第三章刚体力学一、刚体运动学(定轴转动)---角位移、角速度、角加速度、线量与角量的关系1、刚体做定轴转动,下列表述错误的是:【】a;各质元具备相同的角速度;b:各质元具备相同的角加速度;c:各质元具备相同的线速度;d:各质元具备相同的角位移。
2、半径为0.2m的飞轮,从静止开始以20rad/s2的角加速度做定轴转动,则t=2s时,飞轮边缘上一点的切向加速度a?=____________,法向加速度an=____________,飞轮转过的角位移为_________________。
3、刚体任何复杂的运动均可理解为_____________和______________两种运动形式的合成。
二、转动惯量1、刚体的转动惯量与______________和___________________有关。
2、长度为l,质量为m的光滑木棒,顾其一端a点旋转时的转动惯量ja=_____________,拖其中心o点旋转时的转动惯量jo=_____________________。
3、半径为r、质量为m的光滑圆盘拖其中心轴(旋转轴盘面)旋转的转动惯量j=___________。
4、【】两个匀质圆盘a和b的密度分别就是?a和?b,若?a??b,但两圆盘的质量和厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为ja和jb则:(a)ja?jb;(b)ja?jb(c)ja?jb(d)不能确定三、刚体动力学----旋转定理、动能定理、角动量定理、角动量动量1、一短为l的轻质细杆,两端分别紧固质量为m和2m的小球,此系统在直角平面内可以绕开中点o且与杆横向的水平扁平紧固轴(o轴)旋转.已经开始时杆与水平成60°角,处在静止状态.无初输出功率地释放出来以后,杆球这一刚体系统拖o轴旋转.系统拖o轴的转动惯量j=___________.释放出来后,当杆转至水平边线时,刚体受的合外力矩m=______;角加速度______.2、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩mr外,还受到恒定外力矩m的作用.若m=20nm,轮子对固定轴的转动惯量为j=15kgm2.在t=10s内,轮子的角速度由??=0增大到?=10rad/s,则mr=_______.3、【】银河系有一可以视作物的天体,由于引力汇聚,体积不断膨胀。
大学物理第5章刚体
l 3 mg 1 2 2 3g M 3 1 2 2 J 4l 2 ml 3
B
例2 如图,质量均为m的两物体A和B。A放在倾角 20 为a的光滑斜面上,通过绕在定滑轮上的细绳与B相 连,定滑轮是质量为m 半径为R的圆盘。求绳中张 力T1和T2以及A和B的加速度aA 、aB 。
解 受力 N , mg , 只有mg产生力矩
系统对0轴的力矩:
N
0
A
30
mg mg
L L M o M 0 A M 0 B mg mg sin 600 2 2 1 1 2 系统对O轴的J: J J A J B ml 2 ml 2 ml 2 3 3 3
F F F11
第一项的方向垂直于轴,对轴力矩为零:
10
将第二项的数值定义为力对轴的力矩,即
M轴
r F
方向平行于轴
二、刚体定轴转动定律 dL 由质点的角动量定理: M r F dt 刚体是 N 个质点组成的特殊质点系:
第 i个质点有
对 N 个质点求和
4. 线量与角量关系
ai
dvi d dri ai ri dt dt dt d ri ( ri ) dt dv d at ri ri 切向分量 dt dt v2 2 法向分量 an ri ri
注意:1.转动定律是力矩的瞬时作用规律,与牛顿第二 定律地位相当。 2.式中力矩、角加速度、转动惯量都是相对同一 转轴而言。
5.3 转动惯量的计算
一、转动惯量的定义 由 M 轴外 J 可知
13
在M相同的条件下,J 越大, 越小,转动状态越难改变。
大学物理第三章刚体力学
薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理
大学物理_第二章_刚体
2rdr
m
R2
2
rdr
(2) 求 d J
利用上题结果 dJ = r2 dm
r 0
(3) 求 J
dr
J
r 2dm
m
Rr2
0
m
R2
2
rdr
1 mR 2 2
J 1 mR 2
2
例3:求均匀细杆对中心轴及边缘轴的转动惯量
对质心轴 (1) dm dx m dx
l
mO
在半径为r、宽度为dr的面积元dS上的质元
0
具有相同的线速度v。则dS上阻力的大小为:
dF f dS f 2 r dr
考虑盘的上下表面,故阻力矩大小为
dM 2 r dF
总阻力矩
R
M dM 0 (2r f 2 r)dr
m
R
0 (2r kv 2 r)dr
与力的作用点的位置和方向都有关。即,只有力矩才
能改变刚体的转动。当M=0时,刚体匀速转动或静止
r
f11 f
f⊥
m
M
r
f
M r f11 f rf11 r f
对转动没影响 M r f r f
大小f:应 M 理 r解f s为 in在方转向动:平沿面r 内f
2
1 3
mL2
又如求均匀圆盘对于通过其边缘一点 O 的平行
轴的转动惯量:
JO JC md2
Jo
1 2
mR2
mR2
3 mR2 2
大学物理2-1第5章
若质量离散分布:
(质点,质点系)
J i mi ri2
J r2 dm
若质量连续分布:
dm dl
其中: d m d s
d m dV
例题补充 求质量为m,半径为R 的均匀圆环的对中心 轴的转动惯量。 解: 设线密度为λ; d m d l
J R dm
2
2R
0
R dl
2
o
R
dm
R2 2R mR2
例题5-3 求质量为m、半径为R 的均匀薄圆盘对中心轴 的转动惯量。 解: 设面密度为σ。
取半径为 r 宽为d r 的薄圆环,
R
d m d s 2 r d r
J r d m r 2 2r 2 d r
2
3 3g 2L
2)由v r得: v A L
L 3 3 gL 3 3 gL vB 2 8 2
5.2 定轴转动刚体的功和能
一、刚体的动能 当刚体绕Oz轴作定轴转动时,刚体上各质元某一瞬时 均以相同的角速度绕该轴作圆周运动。
2 2 质元mi的动能 E ki mi v i mi ( i ri )2 mi ri 2
2)取C 点为坐标原点。 在距C 点为x 处取dm 。 说明
A
A
x dm
B
L
C
x
x
xd m B
L2
L2
2 mL x 2 d x 12
JC x 2 d m
L 2 L 2
1) 刚体的转动惯量是由刚体的总质量、质量分布、 转轴的位置三个因素共同决定; 2) 同一刚体对不同转轴的转动惯量不同, 凡提到转动惯量 必须指明它是对哪个轴的。
大学物理刚体归纳总结
大学物理刚体归纳总结在大学物理学习中,刚体是一个重要的概念,广泛应用于力学、动力学和静力学等领域。
本文将对刚体的定义、特点以及相关定理进行归纳总结,旨在帮助读者更好地理解和掌握刚体的基本知识。
一、刚体的定义和特点刚体是指可以看作一个整体、无论受到什么力都能保持形状不变的物体。
在实际应用中,我们常常将刚体简化为点、线或面,以便进行研究和计算。
刚体具有以下特点:1. 形状不变性:无论刚体受到外力的作用,其形状都不会发生改变。
2. 外力作用点的变化不引起内部构件间相对位置的改变:即刚体内各个质点之间的相对位置保持不变。
3. 刚体内各个质点之间的相对位置保持不变:即刚体内构件间的距离和角度不会发生变化。
二、刚体的运动学性质1. 刚体的平动:刚体作平动时,刚体上每个点的速度都相同,且方向相同。
2. 刚体的转动:刚体作转动时,刚体上的各点绕着同一条轴旋转。
这个轴称为刚体的转轴,刚体绕转轴的转动速度相同。
刚体平衡的条件是力矩的和等于零。
力矩是由力对刚体产生的转动效果,其大小与力的大小、作用点到转轴的距离和力的夹角相关。
四、刚体静力学定理与公式1. 雅可比定理:在刚体有多个力作用时,可以将这些力简化为只有一个力等效,该力的大小、方向和作用点都与原有多个力相同,这个力称为合力。
2. 力的合成定理:当刚体上有多个力作用时,可以将这些力合成为一个结果力,该力等效于原有多个力的合力。
3. 力矩的平衡条件:对于处于平衡状态的刚体,刚体上力矩的和必须等于零。
4. 平衡条件的应用:根据刚体平衡条件,可以解决各种与刚体平衡有关的问题,如悬挂物体的平衡、天平的平衡等。
五、刚体动力学定理与公式1. Euler定理:刚体绕固定轴的转动,转动惯量与角加速度和转矩之间存在关系,即转动惯量等于转矩与角加速度的比值。
2. 动量定理:外力矩与刚体的角动量之间存在关系,外力矩等于刚体的角动量关于时间的变化率。
3. 动能定理:刚体的动能与角速度和转动惯量之间存在关系,动能等于转动惯量与角速度平方的乘积的一半。
大学物理_第06章 刚体力学
接触点相同线速度时: 1r1 2r2
联立解得:
1
J1
J1 ( r1 r2
)2
J2
0
2
r1 r2
J1
J1
(
r1 r2
)2
J
2
0
书上177页
解: dm
2 rdr
m2 rdr R2
2mrdr R2
df
2mrdr R2
g
dM
r
2mrdr R2
g et
2mr 2dr R2
g
M
R
dM
0
R 0
2mr 2 dr R2
dm dV
其中、、分别为质量线密度、面密度和体密度。
转动惯量
2). 转动惯量的计算:
质点、圆环、圆筒绕中心轴转动
z
z
Rm
oR m
R
m
o
质点的转动惯量为
Jo mR2
对于匀质圆环和薄圆筒,因各质元到轴的垂直距
离都相同,则有
Jo mR2
圆盘、圆柱绕中心轴转动
对于质量为m、半径为R、厚为l 的均匀圆盘取半径为 r宽
需要一个动力学方程 — 角动量定理
角动量定理: M dL
dt
转轴转动角动量表达式:
Mz
dLz dt
转轴分量角动量定理表达式:
n
Lz z mi (xi2 yi2 ) z J i1
转动定律:
Mz
dLz dt
d (J)
dt
J
d
dt
J
z v
r
P
当刚体绕固定轴转动时,刚体对该轴的转动惯量与角加速 度的乘积等于外力对此轴的合力距。 — 定轴转动定律
大学物理课件第3章-刚体
刚体力学是大学物理课程的重要组成部分。它涵盖了刚体的定义、运动学、 动力学、静力学、力学、弹性和应用等多个方面内容,为学习者提供了全面 的知识体系。
刚体的定义
刚体的概念
刚体是指具有固定形状和 大小,并且内部各点相对 位置保持不变的物体。
理想刚体的定义
理想刚体是指无限刚度、 无限强度、不变形且能够 保持自身形状和大小的物 体。
刚体的动力学
刚体的动量
刚体的动量是其质 量乘以速度,刚体 受到外力时动量会 发生变化。
刚体的角动量
刚体的角动量是其 惯性矩乘以角速度, 刚体绕固定轴旋转 时角动量会发生变 化。
刚体的动能
刚体的动能是其质 量乘以速度的平方, 与速度和质量有关。
刚体的动力学定 理
动力学定理描述了 刚体受力和加速度 之间的关系,F = ma。
实际刚体的特点
实际刚体在外力作用下会 发生微小的形变,但变形 较小,可以近似看作刚体。
刚体的运动学
1
刚体的运动状态
刚体可以既进行平动运动,也可以进行转动运动。
2
刚体的平动运动
刚体的平动运动包括直线运动和曲线运动,由质心位置和速度决定。
3
刚体的转动运动
刚体的转动运动包括绕固定轴的转动,由角位移和角速度决定。
刚体的静力学
1 刚体的平衡条件
刚体在平衡状态下,力 矩和力的合力为零。
2 刚体的平衡性质
刚体在平衡状态下,质 心位置不变,不会发生 任何运动。
3 刚体的平衡实例
如天平平衡ቤተ መጻሕፍቲ ባይዱ桥梁平衡 等实际应用中,刚体的 平衡性质起到重要作用。
刚体的力学
刚体的受力分析
通过力的分析,可以确定刚体 受力的大小、方向和作用点。
大学物理刚体力学
大学物理刚体力学标题:大学物理中的刚体力学在物理学的研究中,大学物理是引领我们探索自然界规律的重要途径。
而在大学物理中,刚体力学是一个相对独特的领域,它专注于研究物体在受到外力作用时的质点运动规律。
本文将探讨大学物理中的刚体力学。
一、刚体概念及特性刚体是指物体内部各质点之间没有相对位移,形状和体积不发生变化的理想化物体。
在刚体力学中,我们通常将刚体视为一个整体,研究其宏观运动规律。
刚体具有以下特性:1、内部质点无相对位移。
2、刚体不发生形变,形状和体积保持不变。
3、刚体在运动过程中,内部任意两质点间的距离保持不变。
二、刚体力学的基础知识1、刚体的运动形式刚体的运动形式包括平动、转动和振动。
平动是指刚体沿直线作均匀速度的运动;转动是指刚体绕某轴线作角速度变化的运动;振动是指刚体在平衡位置附近作往复运动的周期性运动。
2、刚体的动力学基础动力学是研究物体运动状态变化的原因和规律的科学。
在刚体力学中,动力学的基本方程包括牛顿第二定律、动量定理和动能定理等。
这些方程为我们提供了分析刚体运动状态变化的基本工具。
三、刚体的转动惯量转动惯量是描述刚体转动惯性大小的物理量。
它与刚体的质量、形状和大小有关。
在物理学中,转动惯量是研究刚体转动规律的重要参数。
通过计算转动惯量,我们可以了解刚体在受到外力矩作用时角速度变化的规律。
四、刚体的角动量角动量是描述物体绕某轴线旋转的物理量,与物体的质量、速度和半径有关。
在刚体力学中,角动量是一个非常重要的概念。
它可以帮助我们理解刚体在受到外力矩作用时的角速度变化规律。
同时,角动量守恒定律也是刚体力学中的一个重要定律。
在已知刚体的质量、转动惯量和角动量的基础上,我们可以建立刚体的动力学方程。
动力学方程可以帮助我们分析刚体在受到外力作用时的运动状态变化规律。
对于复杂的动力学问题,我们通常需要借助数学软件进行数值模拟和分析。
六、总结在大学物理中,刚体力学是一个相对独立且具有重要应用价值的领域。
大学物理刚体力学
一 刚体定轴转动的运动方程 如图,一刚体定轴转动,如何确
定该刚体的位置。在固定轴上固结 ox
轴。
设想在刚体上有一直线 op,在刚
o
体转动中,op与 ox的夹角 t 不断
变化,是时间 t 的函数, t 一定,
则刚体的位置确定(或曰刚体上的所
有质点的位置确定), t 变化,说明 刚体的位置变化。 因而,用 t
可确定刚体的位置。
t
为刚体定轴转动的运动方程。
如同质点一维运动时的 x x t
固定轴
t
p
x
刚 体
二 角速度
设t
t
t t t t
则 t t t
称为角位移,代数量。
o
平均角速度
t
瞬时角速度
lim
t 0
t
t
即
d 对运动方程求一阶导数。
dt
固定轴
t
段如何求解此题?轮质量不计。仅研究 A和 B
二物体,绳仅为连接体。则有
o
T2
m2 a
m2 g
T 1 m1
m2
a B
m1 g
m1
A
T1 T2
然而,此处要考虑轮(因给出了质量与半径)-----刚体。此为一刚
体与二质点组成得物体系。如何求解:用隔离体法,分析各物体受力。
mN
o
o
T2
mg
T2
m2 a
若是变化的,同理得瞬时角加速度.
d
dt
或
d 2
dt 2
o
单位 弧度 或 rad
矢量式为
秒2
s2
d
dt
减速转动
同样,在定轴转动中,角加速度仅两个
大学物理:第 05 章 刚体力学基础
j
i
设作用在质元Dmi上的外力
位于转动平面内。
z
合外力对刚体做的元功: P
力矩的功:
功率:
三、刚体定轴转动的动能定理
合外力矩对刚体所作的功等于刚体转动动能的增量。
四、刚体的重力势能
以地面为势能零点,刚体和地球 系统的重力势能:
z
i O
五、 刚体定轴转动的功能原理
将重力矩作的功用重力势能差表示:
如:直立旋转陀螺不倒。
o
此时,即使撤去轴承的支撑作用, 刚体仍将作 定轴转动——定向回转仪—— 可以作定向装置。
二、非刚体( J 可变)的角动量守恒
当 J 增大, 就减小,当 J 减小, 就增大。
如:芭蕾舞,花样滑冰中的转动, 恒星塌缩 (R0,0) (R,) 中子星 的形成等。
[例5-11] 水平转台(m1 、 R ) 可绕竖直的中心轴转动,初角 速度0,一人(m2 )立在台中心,相对转台以恒定速度u沿 半径向边缘走去,计算经时间 t,台转过了多少角度。 解:人与转台组成的系统对竖直 轴的角动量守恒:
(2)
(3) (4)
[例5-16] 细杆A : (m , L)可绕轴转动,水平处静止释放, 在竖直位置与静止物块B : (m) 发生弹性碰撞,求碰后: (1)物块B的速度 vB ,(2)细杆A 的角速度2 , (3)细杆A 转过的最大角度 θmax 。 解: B
A
碰后反方向转动。
A
B
[例5-17] 圆锥体R,h,J,表面有浅槽,令以ω0转动, 小滑块m 由静止从顶端下滑,不计摩擦,求滑到底部滑 块相对圆锥体的速度、圆锥体角速度。
是关于刚体定轴转动的动力学方程。 (与 F = ma 比较) 推广到 J 可变情形: ——刚体定轴转动的角动量定理
6.1 刚体运动学(大学物理)
1、转动惯量
刚体转动时,刚 体内的各质点作圆周 运动,刚体的动能等 于各质点动能之和。
mn
m1
rn
r1
r2 m2
1 1 1 2 2 2 Ek m1v1 m2v2 mnvn 2 2 2 n n 1 1 2 2 mivi mi (ri ) i 1 2 i 1 2 1 n 2 2 ( miri ) 2 i 1
1 l 1 2 2 J ml m ml 结果与前相同。 3 12 2
t
0
1 2 0 0 t t 2
v v 2a( x x0 )
2 2 0
2 ( )
2 2 0 0
匀变速转动
六 角量与线量之间的关系
1、位移与角位移之间的关系 刚体转过 刚体上的一点 位移 s
o
r
s
x
s r
第六章 刚体力学
本章主要内容:
6-1 刚体的运动 6-2 刚体的角动量、转动动能、转动惯量
6-3 力矩
刚体定轴转动定律
6-4 定轴转动的动能定理 6-5 刚体对定轴的角动量守恒定律
6-6 进动*
本章学习要求
2.理解转动惯量、力矩的概念,掌握转动定律。 3.掌握刚体转动的动能定理、角动量定理。
1.掌握刚体定轴转动的特点,理解角坐标、角位移 角速度、角加速度的概念。
1 n 刚体的转动动能 Ek ( miri2 ) 2 2 i 1 1 2 与平动动能比较 Ek mv 2 n 2 miri :相对于转轴的特征的物理量
i 1
转动惯量的定义:
单位:kg ·m2
J m r
i 1
大学物理03-刚体力学基础
J
r
m
2
dm
• 刚体的形状(质量分布)
16
J
注 意
r
m
2
dm
只有对于几何形状规则、质量连续且均匀分布 的刚体,才能用积分计算出刚体的转动惯量
例3-2 一均匀细棒,质量为 m ,长为 l 。求该棒对下列转轴 的转动惯量:(1)通过棒中心且与棒垂直的轴;(2)通过 棒的一端且与棒垂直的轴。 解:取如图坐标,在棒上任取质元,到转轴的垂直距离为x, 长度为 d x,该质元的质量为 dm = (m/l )dx (质量为线分布)。 A L/2 C
S
O
Mz r d
P
F
M r F
O r
F
P
F
F //
大小: M rF sin Fd 方向: 由右手螺旋法则确定
转动平面
F 应该理解为外力在转动平面内的 分力F//
转动平面
在定轴转动中,M 的方向只有两种可能指向。若先选 定了转轴的正方向,则 M 与转轴方向一致时取正 值,反之为负值
11
(3) 如果有几个外力矩作用在刚体上,则合力矩等 于各个力矩的代数和
M
i i i
ri Fi
12
2
二 刚体绕定轴的转动定律
刚体可视为由许多质点组成的,而每一个质点都遵从质点力学 的规律。刚体转动定律可由牛顿第二定律直接导出。
Fi f i mi ai mi ri
一、力对转轴的力矩
力是引起质点运动状态变化的原因,而力 矩是引起转动物体运动状态变化的原因
(2) 外力F 不在转动平面内(任意力) 可将 F 分解为转动平面内的分力 F// 和垂直于转动平面的分力F F不能引起刚体转动状态的变化 力矩:
大学物理力学第五章1刚体、转动定律
(12)
例1、如图所示,A、B为两个相同的绕着轻绳的定滑
轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且
F=Mg.设A、B两滑轮的角加速度分别为βA和β B,
不计滑轮轴的摩擦,则有
(A) β A= β B. (B) β A> β B. (C) β A< β B. (D) 开始时β A= β B,以后β A< β B.
转动惯量的计算
1)定义 J miri2
J r 2dm
i
m
2) 对称的 简单的 查表
3) 平行轴定理
典型的几种刚体的转动惯量
m
m
l
细棒转轴通过中 心与棒垂直
J ml 2 12
l
细棒转轴通过端 点与棒垂直
J ml 2 3
M,R
M,R
o
圆环转轴通过环心与环面垂直
J MR2
薄圆盘转轴通过 中心与盘面垂直
以 m1 为研究对象 m1g T1 m1a 以 m 2 为研究对象 T2 m2a 以 M 为研究对象
(T1 T2 )R J J 1 MR 2 2
m 2 T2 M , R
(1) T1
T1
(2)
m1
m1
M ,R
m1g (3)
T2
m2
T2
T1
补充方程:
a R
(4)
联立方程(1)---(4)求解得
J 1 MR 2 2
m 2r
r l
球体转轴沿直径
J 2mr 2 5
圆柱体转轴沿几何轴
J 1 mr 2 2
转动定律应用举例 解题步骤: 1. 认刚体;
3. 分析力和力矩;
大学物理第5章刚体
B C
分析受力和力矩情况
第一篇 力 学
解:由ABC和绳子组成系统为研究对象,分析受力和力矩情况。
系统受到的合力矩: M m2 gr m3gr
对整个系统列出角动量定理积分形式
t
Mdt Lt L0
t0
分别计算,有 Mdt (m2gr m1gr)t
L0 0
0
L
LA
若质量连续分布 J r2dm
一维
二维
三维
dm
dl
线密度 dm dl
J r2dl
面密度 dm dS
J r2dS
体密度 dm dV
J r2dV
第一篇 力 学
例1.求长为L、质量为m的均匀细棒对图中不同轴的转动惯量。
解:取如图坐标,dm=dx
J A
L x2dx mL2 / 3
0
L
JC
2 L
x2dx
mL2
/12
2
A L
A
C
L/2
B X
B L/2 X
例2.求质量为m、半径为R的均匀圆环的转动惯量。轴与圆环平面垂
直并通过圆心。
解:
J R2dm R2 dm mR2
O
R
dm
第一篇 力 学
例3.求长求质量为m、半径为R均匀圆盘的转动惯量。轴与盘平面垂 直并通过盘心。
解:取半径为r宽为dr 的薄圆环
dm 2rdr
dJ r2dm 2r3dr
dr rR
J dJ R 2r3dr 1 R4
0
2
m
R 2
大学物理 刚体汇总
如果转轴是固定不动的,则刚体的转动称为定轴转动。 刚体的一般运动可看成刚体质心的平动与绕过质心的
轴的定轴转动的合运动。
3、描述刚体转动的物理量
转动平面:垂直于转动轴所作的平面
刚体重任一质点都在各自的转
动平面内作圆周运动,且具有相同
的角位移、角速度、角加速度。描
述刚体转动的物理量是角位移、角 速度、角加速度等。
转动平00面 θ
X
P
以刚体中的P点为例。 (1) 角位移
ω
开始时质点P在X轴,经t时间,
转过的角度为θ,θ即为角位移。
方向规定: 俯视转轴观察时,刚体
沿反时针方向转时时,θ为 正值;刚体沿顺时针方向转 动时,θ为负值。
合外力矩
M Firi sini
合内力矩
firi sini
刚体对OZ定轴的转动惯量 I miri2
以两质点为例
r1 f1 r2 f2 f1d f2d 0
r1
f1
内力中任一对作用力与反作用 力大小相等方向相反,则任一对作 用力与反作用力的力矩相加为零。
d r2
f2
合内力矩
与动量
P
mV
相似,动量矩是描述刚体绕定轴转动
状态的一个物理量。
二、 刚体冲量矩
冲量矩表示力矩在时间过程中的累积效应,是描述刚 体的转动状态发生改变的物理量。
冲量矩: 刚体所受合外力矩与力矩作用时间的乘积。
在dt时间元内,冲量矩为 Mdt
t2
在t1→t2时间内,冲量矩为 Mdt
米·牛顿·秒
t1
三、 角动量定理(动量矩定理)
0
大学物理 刚体力学
试计算飞轮的角加速
rO
F
mg
解 (1)
Fr J
Fr 98 0.2 39.2 rad s -2 J 0.5
(2) mg T ma
Tr J a r
两者区别
rO
mgr 98 0.2 -2 21 . 8 rad s J mr 2 0.5 10 0.22
3、转动惯量
(1)定义
J mi ri2
在(SI)中,J 的单位:kgm2
物理意义:转动惯量是对刚体转动惯性大小的量度,其大小 反映了改变刚体转动状态的难易程度。 (2) 与转动惯量有关的因素 ①刚体的质量及其分布 ②转轴的位置 (3) 转动惯量的计算
m1
①质量离散分布的刚体
J mi ri2
二、刚体定轴转动的转动定律
1.力矩
力
改变质点的运动状态
改变刚体的转动状态
质点获得加速度 刚体获得角加速度
力矩
(1) 力矩的定义式
M
M r F
大小:M Fr sin Fd M rF (2) 物理意义
是决定刚体转动的物理量,表明力的大 小、方向和作用点对物体转动的影响。
z
M
PP
x
参考 方向
x x
转动平面 转轴
(2)角速度
d dt
角速度方向用右手螺旋法则确定。
定轴转动的角速度仅有沿转轴的两个方向。
用正负号表示方向
d
(3) 角加速度
角加速度方向与 加速转动 相同。 方向相反
方向一致; 减速转动
(4) 角量与线量的关系
天津理工大学大学物理:刚体
17
质点的转动惯量: mr2
记住
质量为m,长为L的均匀细棒的转动惯量,假定
转轴通过棒的中心与棒垂直
I 1 mL2 12
Firi sini firi sini miri2
i
i
i
因为内力总是成对出现的,彼
此大小相等、方向相反,即内力的
作用和反作用是沿着同一直线等值
而反向,所以内力对转轴的力矩的
总和等于零,即
firi sini 0
i
因此上式变为 Firi sini miri2
所以上式可写成 M Frsin
F
0r
d
6
0
r
F2
F
d
F1
M Frsin
如果外力不在垂直于转轴的平面 内,可以把外力F分解成两个分力:一 个与转轴平行F2;另一个F1在转动平 面内, F2对刚体绕定轴转动不起作用, 只有F1能使物体转动。因此我们把F理
解为外力在转动平面内的分力。 7
m1 m2
m2g m1g
这就是质点动力学问题了。
22
2 如图所示,Q、R和S是附于刚性轻质细杆上的质量分别为 3m、2m和1m的三个质点,QR=RS=l,则系统对00’轴的转动 惯量为____________。
I mr2
I 3m(2l)2 2m(l)2
12ml2 2ml2 14ml2
其中 ait ri
等式两边分别乘上ri ,得到
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 刚体的平动和转动
(1) 刚体、刚体的平动
刚体:无论在多大的外力作用下,总是保持其形状、大小 不变,理想化的模型。
(2) 刚体的平动
刚体内任何一条给定的直线,在运动 中始终保持它的方向不变。
各质点具有相同的速度和 加速度,所以刚体平动时任何 一点的运动都可代表整个刚体 的运动。
L
r
P
Lxiˆ
Ly
ˆj
Lzkˆ
P63
Lz :质点对z轴的角动量
M
r
F
M
xiˆ
M
y
ˆj
M
zkˆ
Mz :质点对z 轴的力矩
M
r
F
(
xiˆ
yˆj
zkˆ)
(
Fxiˆ
Fy
ˆj
Fzkˆ)
( yFz zFy )iˆ (zFx xFz ) ˆj (xFy yFx )kˆ
M z (xFy yFx )
解(1)初角速度为0 =21500/60=50 rad/s,方向如图
对于匀变速转动,应用以角量表示的运动方程,
Or
在t=50s 时刻 =0,代入方程 =0+ t 得
0 50 rads2 3.14 rads2
t
50
(2)t=25s 时飞轮的角速度为
从开始制动到静止,飞轮的角位移
及转数N分别为
i
i
i
合外力矩M 合内力矩=0
I-转动惯量
M=I —转动定理
dω dt
d2 θ dt2
定轴转动定理(律)在转动问题中的地位 相当于平动时的牛顿第二定律
12
例:几个力同时作用在一个具有光滑固定转轴的刚体上, 讨论
如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变.
答案:( D )
参考解答:在应用转动定律M=I 时应注意M是合外力矩,是外力
力矩之和,而不是合外力的力矩。几个力的矢量和为零,有合外力 矩也为零或不为零的两种情况,所以定轴转动的刚体其转速可能不 变,也可能改变。
例:一个有固定轴的刚体,受到两个力的作用。当这两个力的合力为零时, 它们对轴的合力矩也一定为零吗?举例说明之。
答: 并不是一定为零。 如汽车的方向盘可绕垂直于转盘且过盘中心的定轴转动。当驾驶员用
两手操纵方向盘时,就可在盘的左右两侧加上方向相反、大小相等的两个 力。对转盘而言,合外力为零,但这两个力的力矩大小相等,方向一致, 故合力矩不为零。
7
求力对z 轴的力矩Mz的(教材)简化步骤: M z (xFy yFx )
第1步,通过质点画z轴转动平面(过质点垂直转轴的平面,即 过质点的xy平面)
第2步,认定位矢和力在转动平面内的分量,
第3步,算出力对z轴的力矩.
M
zkˆ
r
F
r
F
( xiˆ
yˆj) (Fxiˆ
Fy
ˆj)
(xFy yFx )kˆ
0 t 50 25
50
0
50
0t
1
1 t2
2 50
1250
rad
2
25 78.5(rad s1) 的方向与0相同;
N 1250=625转 2 2
6
对轴的角动量和对轴的力矩,
讨论
矢量代数的一般处理方式:在具体的坐标系中,角动量(或
力矩)在各坐标轴的分量,就叫对轴的角动量(或力矩)。
—阻力矩。
9
(2) 外力不在垂直于转轴的平面内
P63 结论:z轴转动平面内的分量 的运算就是对z轴的力矩。
转轴 z
F
F
F1
0 rP
F2
o
转动平面
r轴
r
F轴
o
M
zkˆ
r
F
将F分解成
F1和F2。
F1与转轴平行, F2在转动平面内。
MF1对转r动F无2 (贡有献效,力仅矩考)虑。F2,
F1 M 、, 对转动无贡献。
v r
(圆周运动 :v r)
4
例设:某一时刚刻体 刚以 体每 上分 一钟点6P0的转位绕置z轴矢做量匀为速:运r动 ,3i( 沿4 jz轴5正k方向),
(单位为“10-2m”),若以“10-2ms-1”为单位,则该时刻P点 的速度为:
解:
2k 单位:(rad
s
1
),
v
r
2πk
(3i
4
j
将第2式两边乘以 ri 对刚体中所有 质点求和:
Firi sini firi sin θi Δmiri2
Firi sini firi sin θi (Δmiri2 )
i
i
i
合外力矩M 合内力矩=0 I-转动惯量
11
Firi sini firi sin θi Δmiri2
Firi sini firi sin θi (Δ miri2 )
刚体的平动时可看成质点。
1
(3)刚体的转动
刚体中各点都绕同一直线(转轴)作圆周运动.
转轴固定不动,称为定轴转动.
(4)转动运动学的物理量
转动平面:任取一垂直于转轴的平面
P为刚体上一质点,在转动平面
转轴
内绕0点作圆周运动。
具有角位移 d ,角速度 ,角加速度.
再任取一点K,在同一个dt内,
也转过同样的d角。
5k )
8πi
6πj
还可解行列式
i j k
0 0 2 π
6j 8i
3 4 5
5
刚体运动学综合例题: 一飞轮转速n =1500r/min,受到制动后均匀 地减速,经t =50 s后静止。
(1)求角加速度 和飞轮从制动开始到静止所转过的转数N;
0
(2)求制动开始后t =25s 时飞轮的角速度 ;
转轴 z
o
转动平面
o
r轴
r
F
F轴
结论:z轴转动平面内的分量的运算就是对z轴的力矩
8
2 转动定理 转动惯量(刚体动力学)
2.1力对转轴的力矩.
(1)外力在垂直于转轴的平面内。
MF
p 力F的作用点。
பைடு நூலகம்
M
r
F
p
0 r
方向,大小M rF sin
如果:方向 ,
M
,(同向)加速转动。
M
,(反向)减速
10
2.2 转动定理
fi
Fi
O ri
i i P(mi )
取质点P(mi ) 受外力Fi、内力fi,
并设Fi、
fi都在转动平面内。
现对P质点mi写出法、切向 运动方程(按牛顿定律 ):
Fi cosi fi cos θi Δmiain Δmiriω2
Fi sini fi sinθi Δmiai Δmiri
0 d
K d
dt
P
参考方向
因为: d , d 。
dt
dt
所以:刚体中任何其它质点都具有相同的,,
2
即(,, )三量具有普遍性。知一点 的(,, ),可知整个刚体的运动。 故用(,,)描写刚体的转动。
所以:定轴转动刚体中任何其它质点
都具有相同的,,
3
1.2 角速度矢量 转轴
v
P
0 r
的方向由右手螺旋定则 确定。 v与之间的矢量关系: