初中数学2016-2017学年广东省佛山市禅城区七年级下期末考试数学试题及答案
广东省2016-2017学年七年级下学期期末数学试卷
广东省2016-2017学年七年级下学期期末数学试卷广东省2016-2017学年七年级下学期期末数学试卷一、选择题:每小题3分,共30分.在四个选项中只有一项是正确的.1.在平面直角坐标中,点P(1,﹣3)在()A.第一象限。
B.第二象限。
C.第三象限。
D.第四象限2.下列调查中,适宜采用全面调查方式的是()A.旅客上飞机前的安全检查。
B.对广州市2014-2015学年七年级学生身高现状的调查。
C.多某品牌食品安全的调查。
D.对一批灯管使用寿命的调查3.下列实数中,属于无理数的是()A.。
B.。
C.3.14.D.4.的算术平方根是()A.3.B.±3.C.±。
D.5.点M(2,﹣1)向上平移3个单位长度得到的点的坐标是()A.(2,﹣4)。
B.(5,﹣1)。
C.(2,2)。
D.(﹣1,﹣1)6.甲乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的船速与水流速度分别是()A.24km/h,8km/h。
B.22.5km/h,2.5km/h。
C.18km/h,24km/h。
D.12.5km/h,1.5km/h7.已知下列命题:①相等的角是对顶角;②邻补角的平分线互相垂直;③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两条直线平行.其中真命题的个数为()A.个。
B.1个。
C.2个。
D.3个8.若m>n,则下列不等式中成立的是()A.m+a<n+b。
B.ma<nb。
C.ma>na。
D.a﹣m<a ﹣n9.方程kx+3y=5有一组解是,则k的值是()A.1.B.﹣1.C.。
D.210.天河区某中学组织师生共500人参加社会实践活动,有A,B两种型号的客车可供租用,两种客车载客量分别为40人、50人.要求每辆车必须满载.则师生一次性全部到达公园的乘车方案有()A.1种。
B.2种二、填空题:每小题3分,共18分.11.12.不等式组的解集是__________.13.若点M(a+3,a﹣2)在x轴上,则a=__________.14.若3x﹣2y=11,则用含有x的式子表示y,得y=__________.15.若a+1和﹣5是实数m的平方根,则a的值为__________.16.若|x+2y﹣5|+|2x﹣y|=0,则3x+y=__________.广东省2016-2017学年七年级下学期期末数学试卷一、选择题:每小题3分,共30分。
佛山市七年级下册末数学试卷及答案
一、填空题1.若20212a -=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.答案:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵,且,均为整数,又∵,,∴可分为以下几种情况:①,,解得:,;②,,解得:或,;③,解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.2.如图,直线//MN PQ ,MN 与直线AB ,AC 分别交于D ,E ,PQ 与直线AB ,AC 分别交于F ,G ,若75C ∠=︒,26BGF ∠=︒,则AEN ∠=_________度.答案:131【分析】过点C 作CH ∥MN ,根据平行线的性质求出∠NEC 即可.【详解】解:过点C 作CH ∥MN ,∵,∴CH ∥PQ ,∴,∵,∴,∵CH ∥MN ,∴,∴故答案为:131.解析:131【分析】过点C 作CH ∥MN ,根据平行线的性质求出∠NEC 即可.【详解】解:过点C 作CH ∥MN ,∵//MN PQ ,∴CH ∥PQ ,∴26HCB BGF ∠=∠=︒,∵75ACB ∠=︒,∴49ACH ∠=︒,∵CH ∥MN ,∴49CEN ACH ∠=∠=︒,∴131180CEN AEN ∠︒∠==︒-故答案为:131.【点睛】本题考查了平行线的性质与判定,解题关键是恰当作平行线,根据平行线的性质进行推理计算.3.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到A n,则A2021的坐标是___________.答案:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,2021÷4=505•••1,所以A2021的坐标为(505×2+1,0),则A2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.4.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.答案:(45,5)【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐解析:(45,5)【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形1y =直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐标是偶数时,以偶数为横坐标,纵坐标为右下角横坐标的偶数的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于1y =直线上最右边的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=,右下角的点的横坐标为2时,如下图点(2,1)A ,共有4个,242=,右下角的点的横坐标为3时,共有9个,293=,右下角的点的横坐标为4时,如下图点(4,1)B ,共有16个,2164=,⋯右下角的点的横坐标为n 时,共有2n 个, 2452025=,45是奇数,∴第2025个点是(45,1),202520214-=,点是(45,1)向上平移4个单位,∴第2021个点是(45,5).故答案为:(45,5).【点睛】本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.5.如图,动点P在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点(2,2),第2次运动到点(4,0)A,第3次接着运动到点(6,1)按这样的运动规律,经过第2021次运动后动点P的坐标是________.答案:【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动解析:(4042,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(2,2),第2次接着运动到点(4,0),第3次接着运动到点(6,1),∴第4次运动到点(8,0),第5次接着运动到点(10,2),⋯,∴横坐标为运动次数的2倍,经过第2021次运动后,动点P的横坐标为4042,纵坐标为2,0,1,0,每4次一轮,∴经过第2021次运动后,202145051÷=⋅⋅⋅,故动点P的纵坐标为2,∴经过第2021次运动后,动点P的坐标是(4042,2).故答案为:(4042,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.6.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排行,如(0,1),(0,2),(1,2),(1,3),(0,3),(-1,3),......根据这个规律探索可得,第40个点的坐标为_____________.答案:(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解析:(1,9)【分析】观察可知,纵坐标的数值与点的个数相等,然后求出第40个点的纵坐标,以及在这一坐标中的序数,再根据纵坐标是奇数的从右到左计数,纵坐标是偶数的从左到右计数,然后解答即可.【详解】解:(0,1),共1个,(0,2),(1,2),共2个,(1,3),(0,3),(-1,3),共3个,…,依此类推,纵坐标是n的共有n个坐标,1+2+3+…+n =()12n n +, 当n =9时,()9912+=45,所以,第40个点的纵坐标为9,45-40-(9-1)÷2=1,∴第40个点的坐标为(1,9).故答案为:(1,9).【点睛】本题考查了点的坐标与规律变化问题,观察出纵坐标的数值与相应的点的坐标的个数相等是解题的关键.7.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |.(1)若数轴上的点M ,N 分别对应的数为2M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.答案:2【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可.【详解】解:(1)由题意,M ,N 间的距离为(222==;∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧,∴MN 的中点表示的数为1;(2)∵1a c b c -=-=且a b ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1,∴点C 为AB 的中点,2AB =, ∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下: 1>若点A 位于点B 左边: ①若点D 在点A 左边,如图所示:此时,37222BD AD AB =+=+=; ②若点D 在点A 右边,如图所示:此时,31222BD AB AD =-=-=; 2>若点A 位于点B 右边:①若点D 在点A 左边,如图所示:此时,31222BD AB AD =-=-=; ②若点D 在点A 右边,如图所示:此时,37222BD AD AB =+=+=; 综上,线段BD 的长度为12或72, 故答案为:2;21;12或72. 【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.8.请先在草稿纸上计算下列四个式子的值:313312+333123++33331234+++333312326++++=__________.答案:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】+3n++=1+2+3+n∴3+=35126++=1+2+326故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.9.现定义一种新运算:对任意有理数a、b,都有a⊗b=a2﹣b,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.答案:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.我们可以用符号f(a)表示代数式.当a是正整数时,我们规定如果a为偶数,f(a)=0.5a;如果a为奇数,f(a)=5a+1.例如:f(20)=10,f(5)=26.设a1=6,a2=f(a1),a3=f(a2)…;依此规律进行下去,得到一列数:a1,a2,a3,a4…(n为正整数),则2a1﹣a2+a3﹣a4+a5﹣a6+…+a2013﹣a2014+a2015=_____.答案:7【分析】本题可以根据代数式f(a)的运算求出a1,a2,a3,a4,a5,a6 ,a7的值,根据规律找出部分an的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论解析:7【分析】本题可以根据代数式f(a)的运算求出a1,a2,a3,a4,a5,a6,a7的值,根据规律找出部分a n的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论.【详解】解:观察,发现规律:a1=6,a2=f(a1)=3,a3=f(a2)=16,a4=f(a3)=8,a5=f(a4)=4,a6=f(a5)=2,a7=f(a6)=1,a8=f(a7)=6,…,∴数列a1,a2,a3,a4…(n为正整数)每7个数一循环,∴a1-a2+a3-a4+…+a13-a14=0,∵2015=2016-1=144×14-1,∴2a1-a2+a3-a4+a5-a6+…+a2013-a2014+a2015=a1+a2016+(a1-a2+a3-a4+a5-a6+…+a2015-a2016)=a1+a7=6+1=7.故答案为7.【点睛】本题考查了规律型中的数字的变化类以及代数式求值,解题的关键是根据数的变化找出变换规律,并且巧妙的借助了a1-a2+a3-a4+…+a13-a14=0来解决问题.11.若[x]表示不超过x的最大整数.如[π]=3,[4]=4,[﹣2.4]=﹣3.则下列结论:①[﹣x]=﹣[x];②若[x]=n,则x的取值范围是n≤x<n+1;③x=﹣2.75是方程4x﹣[x]+5=0的一个解;④当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2.其中正确的结论有 ___(写出所有正确结论的序号).答案:②④【分析】根据若表示不超过的最大整数,①取验证;②根据定义分析;③直接将代入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]解析:②④【分析】代根据若[]x表示不超过x的最大整数,①取 2.5x验证;②根据定义分析;③直接将 2.75入,看左边是否等于右边;④以0为分界点,分情况讨论.【详解】解:①当x=2.5时,[﹣2.5]=﹣3,﹣[2.5]=﹣2,∴此时[﹣x]与﹣[x]两者不相等,故①不符合题意;②若[x]=n,∵[x]表示不超过x的最大整数,∴x的取值范围是n≤x<n+1,故②符合题意;③将x=﹣2.75代入4x﹣[x]+5,得:4×(﹣2.75)﹣(﹣3)+5=﹣3≠0,故③不符合题意;④当﹣1<x<1时,若﹣1<x<0,[1+x]+[1﹣x]=0+1=1,若x=0,[1+x]+[1﹣x]=1+1=2,若0<x<1,[1+x]+[1﹣x]=1+0=1;故④符合题意;故答案为:②④.【点睛】本题主要考查取整函数的定义,是一个新定义类型的题,解题关键是准确理解定义求解.12.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.答案:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周), 滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周), 滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周), 滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π, 故答案为:﹣8π. 【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键.13.若()220a -=.则a b =______.答案:1 【分析】根据平方数和算术平方根的非负性即可求得a 、b 的值,再带入求值即可. 【详解】 ∵, ∴,∴a-2=0, b+1=0, ∴a=2,b =-1, ∴=, 故答案为:1 【点睛】 本题主要考解析:1 【分析】根据平方数和算术平方根的非负性即可求得a 、b 的值,再带入a b 求值即可. 【详解】∵()220a -,∴()220a -==,∴a -2=0, b +1=0, ∴a =2,b =-1, ∴a b =2(1)1-=, 故答案为:1 【点睛】本题主要考查非负数的性质,解题的关键是掌握偶次乘方的非负性和算数平方根的非负性. 14.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.答案:【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An 的一般规律,从而可求得结果. 【详解】 ∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,, 解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果. 【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1 即2021(1010,1)A 故答案为:()1010,1 【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律. 15.31y -312x -xy的值是____. 答案:【分析】首先根据与互为相反数,可得+=0,进而得出,然后用含的代数式表示,再代入求值即可. 【详解】解:∵与互为相反数, ∴+=0,∴ ∴ ∴.故答案为:. 【点睛】本题主要考查了实数 解析:12【分析】,进而得出1120-+-=y x ,然后用含x 的代数式表示y ,再代入求值即可. 【详解】解:∵∴,∴1120-+-=y x ∴2y x = ∴1=22x x y x =. 故答案为:12. 【点睛】本题主要考查了实数的运算以及相反数,根据相反数的概念求得y 与x 之间的关系是解题关键.16.教材在第七章复习题的“拓广探索”中,曾让同学们探索发现:在平面直角坐标系中,线段中点的横坐标(纵坐标)分别等于对应线段的两个端点的横坐标(纵坐标)和的一半.例如:点(1,1)A 、点(5,1)B ,则线段AB 的中点M 的坐标为(3,1).请利用以上结论解决问题:在平面直角坐标系中,点(3,)E a a +,(,1)F b a b ++,若线段EF 的中点G 恰好在x 轴上,且到y 轴的距离是2,则a b -=______答案:或19 【分析】根据线段的中点坐标公式即可得求出、的值,从而可得到答案. 【详解】 解:点,, 中点,,中点恰好位于轴上,且到轴的距离是2, ,解得:或, 或19;故答案为:或19. 【点睛解析:5-或19 【分析】根据线段的中点坐标公式即可得求出a 、b 的值,从而可得到答案. 【详解】解:点(3,)E a a +,(,1)F b a b ++,∴中点3(2a b G ++,1)2a ab +++, 中点G 恰好位于x 轴上,且到y 轴的距离是2,∴1023||22a ab a b +++⎧=⎪⎪⎨++⎪=⎪⎩, 解得:23a b =-⎧⎨=⎩或613a b =⎧⎨=-⎩,5a b ∴-=-或19; 故答案为:5-或19. 【点睛】本题考查坐标与图形性质,中点坐标公式,解题的关键是根据线段的中点坐标公式求出a 、b 的值.17.已知M是满足不等式a <NM N +的平方根为__________.答案:±3 【分析】先通过估算确定M 、N 的值,再求M+N 的平方根. 【详解】 解:∵, ∴, ∵, ∴, ∵, ∴,∴a 的整数值为:-1,0,1,2, M=-1+0+1+2=2, ∵, ∴, N=7解析:±3 【分析】先通过估算确定M 、N 的值,再求M+N 的平方根. 【详解】解:∵< ∴221,∵∴23<,∵a < ∴23a -<<,∴a 的整数值为:-1,0,1,2, M=-1+0+1+2=2, ∵∴78<,N=7, M+N=9, 9的平方根是±3; 故答案为:±3. 【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.18.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,=2,[﹣2.56]=﹣3,[=﹣2.按这个规定,[1]=_____.答案:-5 【详解】 ∵3<<4, ∴−4<−<−3, ∴−5<−−1<−4, ∴[−−1]=−5. 故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出的范围.解析:-5 【详解】 ∵,∴,∴,∴故答案为−5.点睛:本题考查了估算无理数的大小的应用,解决此题的关键是求出13的范围. 19.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点,若:5:2BAE CAE ∠∠=,则CAE ∠的度数为__________.(用含α的代数式表示).答案:或 【分析】根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再由,,列出等量关系求解即可得出结论;②若点运动到下方,根据解析:41203α︒-或36047α︒-【分析】根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可得出结论;②若点E运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再由5:2BAE CAE ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可得出结论. 【详解】解:如图,若点E 运动到l 1上方,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=, 1801802BAC ABD α∴∠=︒-∠=︒-,又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠+∠∠=,5(1802):2CAE CAE α︒-+∠∠=, 解得180241205312CAE αα︒-∠==︒--; 如图,若点E 运动到l 1下方,//AC BD ,CBD ACB α∴∠=∠=,BC 平分ABD ∠,22ABD CBD α∴∠=∠=, 1801802BAC ABD α∴∠=︒-∠=︒-,又5:2BAE CAE ∠∠=,5():2BAC CAE CAE ∴∠-∠∠=, 5(1802):2CAE CAE α︒--∠∠=, 解得180236045712CAE αα︒-︒-∠==+. 综上CAE ∠的度数为41203α︒-或36047α︒-. 故答案为:41203α︒-或36047α︒-. 【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等,合理应用平行线的性质是解决本题的关键. 20.一副直角三角只如图①所示叠成,含45︒角的三角尺ADE 固定不动,将含30角的三角尺ABC 绕顶点A 顺时针转动,使BC 与三角形ADE 的一边平行,如图②,当15BAD ∠=︒时,//BC DE ,则()90360BAD BAD ∠︒<∠<︒其他所有符合条件的度数为________.答案:105°、195°、240°和285°【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图,当BC∥AE时,∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB解析:105°、195°、240°和285°【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图,当BC∥AE时,∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当BC∥DE时,延长BA,交DE于F,则∠AFE=∠B=60°,∴∠DAF=∠AFE-∠D=60°-45°=15°,∴∠DAB=15°+180°=195°;如图,当BC∥AD时,∠CAD=∠C=30°,∴∠BAD=360°-30°-90°=240°;如图,当BC∥AE时,∠CAE=∠C=30°,∴∠CAD=45°-30°=15°,锐角∠DAB=90°-∠CAD=75°,∴旋转角∠DAB=360°-75°=285°,故答案为:105°、195°、240°和285°.【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.21.如图,△ABC中,∠C=90︒,AC=5cm,CB=12cm,AB=13cm,将△ABC沿直线CB向右平移3cm得到△DEF,DF交AB于点G,则点C到直线DE的距离为______cm.答案:【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD、CD,作CH⊥DE于H,依题意可得AD=BE=3cm,∵梯形ACED解析:7513 【分析】 根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH ⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 的面积()()2131235452S cm =⨯++⨯=, ∴()1153134522ADC DCE S S CH +=⨯⨯+⨯⋅=, 解得7513CH =; 故答案为:7513. 【点睛】 本题考查的是图形的平移和点到直线的距离,注意图形平移前后的形状和大小不变,以及平移前后对应点的连线相等.22.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.答案:4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;同理,点M在与2l的距离是1的点,在与2l平行,且到2l的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;到2l的距离是1的点,在与2l平行且与2l的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.23.一副三角尺按如图所示叠放在一起,其中点,B D重合,若固定三角形AOB,将三角形ACD绕点A顺时针旋转一周,共有 _________次出现三角形ACD的一边与三角形AOB的某一边平行.答案:【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°或135°;;解析:8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°或135°;;(2)如图2,当AC边与OB平行时,∠BAD=90°+45°=135°或45°;(3)如图3,DC边与AB边平行时,∠BAD=60°+90°=150°,(4)如图4,DC边与OB边平行时,∠BAD=135°+30°=165°,(5)如图5,DC边与OB边平行时,∠BAD=45°﹣30°=15°;(6)如图6,DC边与AO边平行时,∠BAD=15°+90°=105°(7)如图7,DC边与AB边平行时,∠BAD=30°,(8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°;综上所述:∠BAD的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.24.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)答案:【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠解析:【详解】作IF∥AB,GK∥AB,JH∥AB因为AB∥CD所以,AB∥CD∥ IF∥GK∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.25.如图①:MA1∥NA2,图②:MA11NA3,图③:MA1∥NA4,图④:MA1∥NA5,……,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1______.(用含n的代数式表示)答案:【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2解析:n180︒【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,…,第n个图, ∠A1+∠A2+∠A3+…+∠A n+1学会从=n180︒,故答案为180n︒.点睛:平行线的性质.26.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________答案:【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.解析:【解析】试题分析:过B作BE∥m,则根据平行公理及推论可知l∥BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.27.已知:如图,直线AB 、CD 相交于点O ,OA 平分∠EOC ,若∠EOC :∠EOD =2:3,则∠BOD 的度数为________.答案:36°【分析】先设∠EOC =2x ,∠EOD =3x ,根据平角的定义得2x+3x =180°,解得x =36°,则∠EOC =2x =72°,根据角平分线定义得到∠AOC ∠EOC72°=36°,然后根据对顶解析:36°【分析】先设∠EOC =2x ,∠EOD =3x ,根据平角的定义得2x +3x =180°,解得x =36°,则∠EOC =2x =72°,根据角平分线定义得到∠AOC 12=∠EOC 12=⨯72°=36°,然后根据对顶角相等得到∠BOD =∠AOC =36°.【详解】解:设∠EOC =2x ,∠EOD =3x ,根据题意得2x +3x =180°,解得x =36°,∴∠EOC =2x =72°,∵OA 平分∠EOC ,∴∠AOC 12=∠EOC 12=⨯72°=36°, ∴∠BOD =∠AOC =36°.故答案为:36°【点睛】考查了角的计算,角平分线的定义和对顶角的性质.解题的关键是明确:1直角=90°;1平角=180°,以及对顶角相等.28.已知:如图,CD 平分ACB ∠,12180∠+∠=︒,3A ∠=∠,440∠=︒,则CED ∠=___.答案:100°【分析】先由同位角相等,证得,进而证得,再由平行线的性质得出与的数量关系,然后由已知条件求得,最后用减去,即可求得答案.【详解】解:,平分,故答案为:.【点睛解析:100°【分析】先由同位角相等,证得//EF AB ,进而证得//AC DE ,再由平行线的性质得出CED ∠与ACB ∠的数量关系,然后由已知条件求得ACB ∠,最后用180︒减去ACB ∠,即可求得答案.【详解】解:12180∠+∠=︒,1180BDC ∠+∠=︒2BDC ∴∠=∠//EF AB ∴3BDE ∴∠=∠3A ∠=∠A BDE ∴∠=∠//AC DE ∴180ACB CED ∴∠+∠=︒ CD 平分ACB ∠,440∠=︒2424080ACB ∴∠=∠=⨯︒=︒180********CED ACB ∴∠=︒-∠=︒-︒=︒故答案为:100︒.【点睛】本题考查了平行线的判定与性质,解题的关键是熟练掌握相关判定定理与性质定理. 29.如图,将长方形ABCD 沿EF 折叠,点D 落在AB 边上的H 点处,点C 落在点G 处,若30AEH ∠=︒,则EFC ∠等于______︒.答案:105°【分析】根据折叠得出∠DEF=∠HEF ,求出∠DEF 的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可.【详解】解:∵将长方形ABCD 沿EF 折叠,点D 落在AB 边上解析:105°【分析】根据折叠得出∠DEF =∠HEF ,求出∠DEF 的度数,根据平行线的性质得出∠DEF +∠EFC =180°,代入求出即可.【详解】解:∵将长方形ABCD 沿EF 折叠,点D 落在AB 边上的H 点处,点C 落在点G 处, ∴∠DEF =∠HEF ,∵∠AEH =30°, ∴1180752DEF HEF AEH ∠=∠=︒-∠=︒(), ∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DEF +∠EFC =180°,∴∠EFC =180°-75°=105°,故答案为:105°.【点睛】本题考查了平行线的性质,折叠的性质等知识点,能求出∠DEF =∠HEF 和∠DEF +∠EFC =180°是解此题的关键.30.将1236按如图方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则()7,3所表示的数是___________.答案:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列6【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】解:(7,3)表示第7排从左向右第3个数,可以看出奇数排最中间的一个数都是1,1+2+3+4+5+6+3=24,24÷4=6,则(7,36,6.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.31.某景区游船码头派车原定于8点整准时到达景区入口接工作人员,由于汽车在路上因故障导致8:10时车还未到达景区入口,于是工作人员步行前往码头.走了一段时间后遇到了前来接他的汽车,他上车后汽车立即掉头继续前进.到达码头时已经比原计划迟到了20min.已知汽车的速度是工作人员步行速度的6倍,则汽车在路上因故障耽误的时间为____min.答案:【解析】【分析】正常8:00到景区,出故障后,耽误t分钟,8点t分到景区,他在景区等了10分钟,车没来,就走了a分钟,在8点(10+a)分时遇到了车,他走a分钟的路程,车走分钟就走完,也就是在解析:【解析】【分析】正常8:00到景区,出故障后,耽误t分钟,8点t分到景区,他在景区等了10分钟,车。
佛山市七年级下学期期末数学试题题
佛山市七年级下学期期末数学试题题一、选择题1.下列判断正确的是( )A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2 C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式2.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .3.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .3 4.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( )A .3秒B .4秒C .5秒D .6秒5.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( )A .22B .70C .182D .2066.﹣3的相反数是( )A .13- B .13 C .3- D .37.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1128.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( )A .50°B .130°C .50°或 90°D .50°或 130° 9.计算:2.5°=( )A .15′B .25′C .150′D .250′ 10.﹣3的相反数是( )A .13- B .13 C .3- D .311.已知一个多项式是三次二项式,则这个多项式可以是( )A .221x x -+B .321x +C .22x x -D .3221x x -+12.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .13.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定14.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯15.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB . A .1个B .2个C .3个D .4个 二、填空题16.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
广东省佛山市七年级下学期数学期末考试试卷
广东省佛山市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共14题;共28分)1. (2分)下列命题中,错误的个数是()(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A . 1个B . 2个C . 3个D . 4个2. (2分)(2019·新泰模拟) 下列运算正确的是()A . x2+x3=x5B . (x-2)2=x2-4C . (3x3)2=6x6D . x-2÷x-3=x3. (2分)多项式2x2+6x3中各项的公因式是()A . x2B . 2xC . 2x3D . 2x24. (2分)据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000007克,用科学记数法表示此数正确的是()A . 7.0×108B . 7.0×10-8C . 0.7×109D . 0.7×10-95. (2分)已知梯形的上、下底分别是1和5,则两腰可以是()A . 3和8B . 4和8C . 2和2D . 3和56. (2分) (2018八上·洛阳期中) 在下列图形中,正确画出△ABC的AC边上的高的图形是()A .B .C .D .7. (2分)关于x,y的方程组的解满足x+y=6,则m的值为()A . 1B . 2C . 3D . 48. (2分)如图,Rt△ABC中,∠ACB =90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为()A . 40°B . 30°C . 20°D . 10°9. (2分)(2017·应城模拟) 如图,直线l1∥l2 ,CD⊥AB于点D,∠1=40°,则∠2的度数为()A . 50°B . 45°C . 40°D . 30°10. (2分)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A . 先右转50°,后右转40°B . 先右转50°,后左转40°C . 先右转50°,后左转130°D . 先右转50°,后左转50°11. (2分) (2017七下·江东月考) 今有鸡兔若干,它们共有24个头和74只脚,则鸡兔各有()A . 鸡10,兔14B . 鸡11,兔13C . 鸡12,兔12D . 鸡13,兔1112. (2分) (2019八下·浏阳期中) 若平行四边形的一边长为10cm,则下列四组数据可以作为平行四边形的两条对角线的长度的是()A . 6cm 8cmB . 8cm 12cmC . 8cm 14cmD . 6cm 14cm13. (2分)由下面的图形得到的乘法公式是()A . (a+b)2=a2+2ab+b2B . (a﹣b)2=a2﹣2ab+b2C . a2﹣b2=(a+b)(a﹣b)D . (a+b)2﹣(a﹣b)2=4ab14. (2分)下列说法正确的有()①三角形的外角大于它的内角;②三角形的一个外角等于和它不相邻的两个内角之和;③三角形的外角中至少有两个钝角;④三角形的外角都是钝角.A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共8分)15. (1分) (2019七下·常熟期中) 计算: ________.16. (1分) (2016七下·邻水期末) 3x与9的差是非负数,用不等式表示为________.17. (2分) (2017八上·罗山期中) 如图,∠ADC=________°.18. (1分) (2016九上·芜湖期中) 如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y= x上一点,则点B与其对应点B′间的距离为________.19. (2分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为________ .20. (1分) (2019八下·南岸期中) 随着电影《流浪地球》的热映,科幻大神刘慈欣的著作受到广大书迷的追捧,《流浪地球》《球状闪电》《三体》《超新星纪元》四部小说在某网上书城热销.已知《流浪地球》的销售单价与《球状闪电》相同,《三体》的销售单价是《超新星纪元》单价的3倍,《流浪地球》与《超新星纪元》的单价和大于40元且不超过50元;若自电影上映以来,《流浪地球》与《超新星纪元》的日销售量相同,《球状闪电》的日销售量为《三体》日销售量的3倍,《流浪地球》与《三体》的日销售量和为450本,且《流浪地球》的日销售量不低于《三体》的日销量的且小于230本;《流浪地球》《三体》的日销量额之和比《球状闪电》《超新星纪元》的日销售额之和多1575元.则当《流浪地球》《三体》这2部小说日销额之和最多时,《流浪地球》的单价为________元.三、解答题 (共6题;共48分)21. (10分) (2019八下·汕头月考) 已知,求的值。
2016-2017学年七年级下期末数学试卷及答案解析
2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。
广东省佛山市禅城区七年级(下)期末数学试卷
弹簧的长度/cm
12 12.5 13 13.5 14 14.5 15 15.5 16
第4页(共7页)
(1)弹簧不挂物体时的长度是
cm;
(2)随着 x 的变化,y 的变化趋势是:
;
(3)根据表中数据的变化关系,写出 y 与 x 的关系式,并指出自变量的取值范
围是
.
24.(9 分)如图,在四边形 ABCD 中,AD∥BC,E 为 CD 的中点,连接 AE、
四块小长方形,然后按图 b 的形状拼成一个正方形.
(1)图 b 中,大正方形的边长是
.阴影部分小正方形的边长是
;
(2)观察图 b,写出(m+n)2,(m﹣n)2,mn 之间的一个等量关系,并说明理
由.
22.(7 分)如图,△ABC 中
(1)尺规作图:作 AB 的垂直平分线 DE,交 AC 于点 D,交 AB 于点 E.
为
.
14.(3 分)已知△ABC 中,AB=2,BC=5,且 AC 的长为偶数,则 AC 的长
为
.
15.(3 分)计算:(x3﹣2x)÷( x)=
.
16.(3 分)如果将(a+b)n(n 为非负整数)的每一项按字母 a 的次数由大到小
排列,可以得到下面的等式(1),然后将每个式子的各项系数排列成(2):
;
25.
;
声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
日期:2019/1/6 9 :09:47;用 户:qgjyus er1022 8;邮箱:qg jyus er10228.21957 750;学号:2 1985234
第7页(共7页)
二、填空题(本题共 6 小题,每小题 3 分,满分 18 分) 11.1.23×10﹣5; 12.20°、70°; 13.30°; 14.4 或 6; 15.2x2﹣4;
广东省佛山市七年级下学期数学期末考试试卷
广东省佛山市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七上·洛川期中) 对于数轴上﹣a表示的数理解不正确的是()A . 一定是在原点左侧B . 与a表示的数到原点的距离相等C . 有可能在原点的右侧D . 有可能在原点上2. (2分) (2019八下·江都月考) 下列调查中,最适合采用抽样调查的是()A . 对某地区现有的16名百岁以上老人睡眠时间的调查B . 对“神舟十一号”运载火箭发射前零部件质量情况的调查C . 对某校九年级三班学生视力情况的调查D . 对某市场上某一品牌电脑使用寿命的调查3. (2分) (2020八上·衢州期中) 若a<b,则运用不等式性质变形正确的是()A . a+4>b+4B . a-3>b-3C .D . -2a>-2b4. (2分)(2017·哈尔滨模拟) 不等式组的解集在数轴上表示为()A .B .C .D .5. (2分) (2019七下·重庆期中) 有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直④在同一平面内,过一点有且只有一条直线与已知直线垂直。
其中真命题是()A . ①②B . ②③C . ①④D . ③④6. (2分)一群学生前往北仑港区进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.大家发现一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.设男生有x人,女生有y人,那么下列数量关系成立的是()A .B .C .D .7. (2分)已知三角形ABC平移后得到三角形A1B1C1 ,且A(-2,3),B(-4,-1),C1(m , n),C (m+5,n+3),则A1 , B1两点的坐标为()A . (3,6),(1,2)B . (-7,0),(-9,-4)C . (1,8),(-1,4)D . (-7,-2),(0,-9)8. (2分) (2019七下·北京期末) 点P(2-4m , m-4)不可能在的象限为()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)不等式组的正整数解的个数是()A . 1个B . 2个C . 3个D . 4个10. (2分)关于x、y的方程组的解x、y的和为12,则k的值为()A . 14B . 10C . 0D . ﹣1411. (2分)已知a,b为常数,若ax+b>0的解集是x<,则bx-a<0的解集是是().A . x>-3B . x<-3C . x>3D . x<312. (2分)(2020·永嘉模拟) 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三:人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2019七上·吴兴期中) ________. ________.14. (1分) (2019七上·洪泽期末) 若一个角的度数是26°45′,则这个角的余角为________°.15. (1分) (2019七下·梁园期末) 一组数据,最大值与最小值的差为16,取组距为4,则组数为________.16. (1分) (2020七下·杭州期中) 关于x,y的方程组,有下列三种说法:①当a=8时,x,y互为相反数;②x,y都是负整数的解只有1组;③ 是该方程组的解。
佛山市七年级下学期期末数学试题及答案
佛山市七年级下学期期末数学试题及答案一、选择题1.把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为( )A .114°B .126°C .116°D .124° 2.下列计算中正确的是( )A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a = 3.不等式3x+2≥5的解集是( )A .x≥1B .x≥73C .x≤1D .x≤﹣14.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +5.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠1 6.下列等式从左到右的变形属于因式分解的是( ) A .a 2﹣2a+1=(a ﹣1)2B .a (a+1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .211()x x x x +=+ 7.x 2•x 3=( )A .x 5B .x 6C .x 8D .x 9 8.若x 2+kx +16是完全平方式,则k 的值为( )A .4B .±4C .8D .±89.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .610.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠4D .∠1=∠A 二、填空题 11.若关于x 、的方程()2233b a ax b y -+++=是二元一次方程,则b a =_______12.已知m a =2,n a =3,则2m n a -=_______________.13.已知30m -=,7m n +=,则2m mn +=___________.14.计算24a a ⋅的结果等于__.15.已知()223420x y x y -+--=,则x=__________,y=__________.16.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.17.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABC S=,则图中阴影部分的面积是 ________.18.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.19.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.20.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.三、解答题21.已知关于x 、y 的二元一次方程组21322x y x y k +=⎧⎪⎨-=-⎪⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若()2421y x +=,求k 的值; (3)若14k ≤,设364m x y =+,且m 为正整数,求m 的值. 22.先化简,再计算:(2a +b )(b -2a )-(a -b )2,其中a =-1,b =-223.如图,在方格纸内将△ABC 经过一次平移得到A B C ''',图中标出了点B 的对应点B '.(1)在给定的方格纸中画出平移后的A B C ''';(2)画出BC 边上的高AE ;(3)如果P 点在格点上,且满足S △PAB =S △ABC (点P 与点C 不重合),满足这样条件的P 点有 个.24.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX+∠ACX=°;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =140°,∠BG 1C =77°,求∠A 的度数.25.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a 箱,苹果b 箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?②若老徐希望获得总利润为1000元,则a b +=?26.解下列方程组(1)29321x y x y +=⎧⎨-=-⎩. (2)34332(1)11x y x y ⎧+=⎪⎨⎪--=⎩.27.如图,甲长方形的两边长分别为1m +,7m +;乙长方形的两边长分别为2m +,4m +.(其中..m 为.正整数...)(1)图中的甲长方形的面积1S ,乙长方形的面积2S ,比较: 1S 2S (填“<”、“=”或“>”);(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S 与图中的甲长方形面积1S 的差(即1S S )是一个常数,求出这个常数;(3)在(1)的条件下,若某个图形的面积介于1S 、2S 之间(不包括1S 、2S )并且面积为整数,这样的整数值有且只有16个,求m 的值.28.如图,一个三角形的纸片ABC ,其中∠A=∠C ,(1)把△ABC 纸片按 (如图1) 所示折叠,使点A 落在BC 边上的点F 处,DE 是折痕.说明 BC ∥DF ;(2)把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 内时 (如图2),探索∠C 与∠1+∠2之间的大小关系,并说明理由;(3)当点A 落在四边形BCED 外时 (如图3),探索∠C 与∠1、∠2之间的大小关系.(直接写出结论)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用平行线的性质求出∠3即可解决问题.【详解】如图,∵a ∥b ,∴∠2=∠3,∵∠3=∠1+90°,∠1=34°,∴∠3=124°,∴∠2=∠3=124°,故选:D .【点睛】此题考查平行线的性质,三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.2.C解析:C【分析】根据同底数幂的加法和乘法法则进行计算判断即可.【详解】解:A 、23a a +无法合并,故A 选项错误;B 、23a a +无法合并,故B 选项错误;C 、235a a a =,故C 选项正确;D 、235a a a =,故D 选项错误.故选:C【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.3.A解析:A【解析】分析:根据一元一次不等式的解法即可求出答案.详解:3x+2≥5,3x≥3,∴x≥1.故选A .点睛:本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.4.D解析:D【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .5.D解析:D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A 、∠C=∠1不能判定任何直线平行,故本选项错误;B 、∠A=∠2不能判定任何直线平行,故本选项错误;C 、∠C=∠3不能判定任何直线平行,故本选项错误;D 、∵∠A=∠1,∴EB ∥AC ,故本选项正确.故选:D .【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.6.A解析:A【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是因式分解,故A 正确;B 、是整式的乘法运算,故B 错误;C 、是单项式的变形,故C 错误;D 、没把一个多项式转化成几个整式积的形式,故D 错误;故选:A .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.7.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x 2•x 3=x 2+3=x 5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.8.D解析:D【分析】利用完全平方公式的结构特征判断即可求出k 的值.【详解】∵216x kx ++是完全平方式,∴8k =±,故选:D .【点睛】本题考查完全平方式,熟悉完全平方式的结构特征并能灵活运用是解答的关键.9.B解析:B【解析】分析:推出DF∥CE,推出∠FDB=∠ECB,∠EDF=∠CED,根据DE∥AC推出∠ACE=∠DEC,根据角平分线得出∠ACE=∠ECB,即可推出答案.详解:∵CE⊥AB,DF⊥AB,∴DF∥CE,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.10.D解析:D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、∵∠A+∠2=180°,∴AB∥DF,故本选项错误;B、∵∠A=∠3,∴AB∥DF,故本选项错误;C、∵∠1=∠4,∴AB∥DF,故本选项错误;D、∵∠1=∠A,∴AC∥DE,故本选项正确.故选:D.【点睛】点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.二、填空题11.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,故答案是:−1. 解析:1【解析】根据题意得:2121{30baab-=+=≠+≠,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.12.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an)2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的解析:2 9【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m÷a2n=a m÷(a n)2=2÷9=2 9故答案为2 9【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 14..【分析】直接利用同底数幂的乘法运算法则求出答案.【详解】原式.故答案为:.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键. 解析:6a .【分析】直接利用同底数幂的乘法运算法则求出答案.【详解】原式246a a +==.故答案为:6a .【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.15..【解析】试题分析:因,所以,解得.考点:和的非负性;二元一次方程组的解法.解析:⎩⎨⎧==12y x .【解析】 试题分析:因()223420x y x y -+--=,所以⎩⎨⎧=--=-024302y x y x ,解得⎩⎨⎧==12y x . 考点:a 和2a 的非负性;二元一次方程组的解法.16.65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解解析:65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥C D ,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.17.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案.【详解】解: 三边的中线AD 、BE 、CF 的公共点为G ,图中阴影部分的面积是故答案为:6.【点睛】解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案.【详解】 解: ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBDGCD GCE AGE AGF BGF S S S S S S ∴=== 2,BG GE = 2,BGCGEC S S ∴= ,DGC CGE S S ∴=GBD GCD GCE AGE AGF BGF S S S S S S ∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6.【点睛】 本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.18.220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CED+∠EDC=180°,∠C=40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.19.128【分析】由ADBC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵A解析:128【分析】由AD//BC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵AD//BC,∠1=64°,∴∠DEF=∠1=64°,由折叠的性质可得∠FEG=∠DEF=64°,∴∠2=∠1+∠EFG=64°+64°=128°.故答案为:128.【点睛】本题主要考察两直线平行的性质、折叠的性质以及矩形的性质,重点在于利用已知条件找到角度之间的关系.20.【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式,去括号,得,移项,得,合并同类项,得,系数化为1,得,则最小的整数解为- 解析:72【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=, 解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键.三、解答题21.(1)218524k x ky -⎧=⎪⎪⎨-⎪=⎪⎩;(2)52k =或12k =-;(3)1或2. 【分析】(1)根据题意直接利用加减消元法进行计算求解即可;(2)由题意根据01(0)a a =≠和11n =以及2(1)1n -=(n 为整数)得到三个关于k 的方程,求出k 即可;(3)根据题意用含m 的代数式表示出k ,根据14k ≤,确定m 的取值范围,由m 为正整数,求得m 的值即可.【详解】 解:(1)21322x y x y k ⎧+=⎪⎪⎨⎪-=-⎪⎩①②, ①+②得:3412x k =+-,解得:218k x -=, ①-②得:3212y k =-+,解得:524k y -=, ∴二元一次方程组的解为:218524k x k y -⎧=⎪⎪⎨-⎪=⎪⎩. (2)∵01(0)a a =≠,2(42)1y x +=,∴20y =,即52204k -⨯=,解得:52k =; ∵11n =,2(42)1y x +=,∴421x +=,即214218k -⨯+=,解得:12k =-; ∵2(1)1n -=(n 为正整数),2(42)1y x +=,∴4212x y +=-,为偶数,即214218k -⨯+=-,解得:52k =-; 当52k =-时,3532115222y k =-+=++=,为奇数,不合题意,故舍去. 综上52k =或12k =-. (3)∵215213643647842k k m x y k --=+=⨯+⨯=+,即172m k =+, ∴2114m k -=, ∵14k ≤, ∴211144m k -=≤,解得94m ≤,∵m 为正整数,∴m=1或2.【点睛】本题考查解二元一次方程组以及解一元一次不等式,根据题意列出不等式是解题的关键.22.-5a 2+2ab ,-1【分析】先利用平方差公式和完全平方公式进行计算,然和合并同类项,最后把a ,b 的值代入即可.【详解】()()()22222()=4222b a a a b b a ab b a b --++----2222=42b a a b ab ---+252a ab =-+,当a =-1,b =-2时,原式=-1.【点睛】本题考查了整式的化简求值,解题的关键是熟练掌握混合运算的顺序和整式的乘法公式.23.(1)见解析;(2)见解析;(3)8【分析】(1)由点B 及其对应点B′的位置得出平移的方向和距离,据此作出点A 、C 平移后的对应点,再首尾顺次连接即可得;(2)根据三角形高线的概念作图即可;(3)由S △PAB =S △ABC 知两个三角形共底、等高,据此可知点P 在如图所示的直线m 、n 上,再结合图形可得答案.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,垂线段AE 即为所求;(3)如图所示,满足这样条件的点P 有8个,故答案为:8.【点睛】本题主要考查作图-平移变换,解题的关键是掌握平移变换的定义和性质,据此得出变换后的对应点及三角形高线的概念、共底等高的三角形面积问题.24.(1)∠BDC=∠A+∠B+∠C,理由见解析;(2)①40°;②90°;③70°.【分析】(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=12(∠ADB+∠AEB)+∠A,易得答案.③由②方法,进而可得答案.【详解】解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC +∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∴∠DCE=12(ADB+∠AEB)+A=40°+50°=90°;③由②知,∠BG1C=110(ABD+∠ACD)+A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°,∴110(40﹣x)x=77,∴14﹣110x+x=77,∴x =70,∴∠A 为70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C 是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.25.(1)草莓35箱,苹果25箱;(2)①340元,②53或52【分析】(1)抓住题中关键的已知条件,老徐购得草莓和苹果共60箱,刚好花费3100元,设未知数列方程组,求解方程即可;(2)①由题意列二元一次方程,可得到34120a b +=,列式求出他在乙店获利;②根据老徐希望获得总利润为1000元,建立关于a 、b 的二元一次方程,整理可得18034a b -=,再根据a 、b 的取值范围及a 一定是4的整数倍,即可求出结果; 【详解】 (1)解:设草莓购买了x 箱,苹果购买了y 箱,根据题意得:6060403100x y x y ⎧+=⎨+=⎩, 解得3525x y ⎧=⎨=⎩.答:草莓购买了35箱,苹果购买了25箱;(2)解:①若老徐在甲店获利600元,则1520600ab +=, 整理得:34120a b +=,他在乙店的获利为:()()12351625a b -+-, =()820434a b -+,=820-4120⨯,=340元;②根据题意得:()()1520123516251000a b a b ++-+-=, 整理得:34180ab +=, 得到18034ab -=,∵a、b 均为正整数,∴a 一定是4的倍数,∴a 可能是0,4,8…,∵035a ≤≤,025b ≤≤, ∴当且仅当a=32,b=21或a=25,b=24时34180a b +=成立, ∴322153a b +=+=或28+24=52.故答案为340元;53或52.【点睛】本题主要考查了二元一次方程组的应用,根据题意列式是解题的关键.26.(1)272x y =⎧⎪⎨=⎪⎩;(2)692x y =⎧⎪⎨=⎪⎩【分析】(1)根据加减消元法,即可求解;(2)先去分母,去括号,移项,合并同类项,再通过加减消元法,即可求解.【详解】(1)29321x y x y +=⎧⎨-=-⎩①②, +①②得:48x =.解得:2x =, 把2x =代入①得:229y +=,解得:72y =, ∴方程组的解为272x y =⎧⎪⎨=⎪⎩; (2)原方程可化为3436329x y x y +=⎧⎨-=⎩①②, ①-②得:627y =,解得:92y =, 把92y =代入②得:399x -=,解得:6x =, ∴方程组的解为692x y =⎧⎪⎨=⎪⎩. 【点睛】本题主要考查解二元一次方程组,掌握加减消元法,是解题的关键.27.(1)>;(2)9;(3)9.【分析】(1)根据矩形的面积公式计算即可;(2)根据矩形和正方形的周长和面积公式即可得到结论;(3)根据题意列出不等式,然后求解即可得到结论.【详解】解:(1)图①中长方形的面积21(7)(1)87S m m m m , 图②中长方形的面积22(4)(2)68S m m m m , 1221S S m ,m 为正整数,m 最小为1,2110m ,12S S ∴>;(2)依题意得,正方形的边长为:2(71)44m m m ; 则:221(4)(87)9S S m m m ,是一个定值;(3)由(1)得,1221S S m ,根据某个图形的面积介于1S 、2S 之间(不包括1S 、2S )并且面积为整数,这样的整数值有且只有16个,∴当162117m 时, ∴1792m , m 为正整数,9m ∴=.【点睛】本题考查了完全平方方公式的几何背景,多项式的乘法,整式的混合运算,一元一次不等式,熟记相关运算法则是解题的关键.28.(1)见解析;(2)∠1+∠2=2∠C ;(3)∠1-∠2=2∠C.【分析】(1)根据折叠的性质得∠DFE=∠A ,由已知得∠A=∠C ,于是得到∠DFE=∠C ,即可得到结论;(2)先根据四边形的内角和等于360°得出∠A+∠A′=∠1+∠2,再由图形翻折变换的性质即可得出结论;(3)∠A′ED=∠AED (设为α),∠A′DE=∠ADE (设为β),于是得到∠2+2α=180°,∠1=β-∠BDE=β-(∠A+α),推出∠2-∠1=180°-(α+β)+∠A ,根据三角形的内角和得到∠A=180°-(α+β),证得∠2-∠1=2∠A ,于是得到结论.【详解】解:(1) 由折叠知∠A=∠DFE,∵∠A=∠C ,∴∠DFE=∠C ,∴BC ∥DF ;(2)∠1+∠2=2∠A.理由如下:∵∠1+2∠AED =180°, ∠2+2∠ADE =180°,∴∠1+∠2+2(∠ADE +∠AED)=360°.∵∠A +∠ADE +∠AED =180°,∴∠ADE +∠AED =180°-∠A ,∴∠1+∠2+2(180°-A)=360°,即∠1+∠2=2∠C.(3)∠1-∠2=2∠A.∵2∠AED +∠1=180°,2∠ADE -∠2=180°,∴2(∠ADE+∠AED)+∠1-∠2=360°.∵∠A+∠ADE+∠AED=180°,∴∠ADE+∠AED=180°-∠A,∴∠1-∠2+2(180°-∠A)=360°,即∠1-∠2=2∠C.【点睛】考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180°,综合题,但难度不大,熟记性质准确识图是解题的关键.。
七年级下数学期末试卷含答案
第1页 共10页2016—2017学年度第二学期期末考试(说明:全卷共有六个大题,23个小题,满分120分,考试时间120分钟;答案一律写在答题卷上,否则成绩无效.)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)相交,4.下列调查中,调查方式选择正确的是( )A .为了了解一批灯泡的使用寿命,选择全面调查;B .为了了解某班同学的身高情况,选择抽样调查;C .为了了解航天飞机各个零件是否安全,选择全面调查;D .为了了解生产的一批炮弹的杀伤半径,选择全面调查.5.已知⎩⎨⎧=+=+1034443b a b a ,则a +b 等于( )A .5B .4C .3D .26.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判 断结果是否大于190?”为一次操作,如果操作恰好进行三次才停止,那么x 的取值范 围是( )A .B .C .D . 二、填空题(本大题共6小题,每小题3分,共18分) 7.点P (3,-4)到 x 轴的距离是 .8.已知a,b 为两个连续的整数,且a <13<b ,则a +b = .9.如图,将一副三角板和一张对边平行的纸条按下列方式 摆放,两个三角板的一直角边重合,含30°角的直角三 角板的斜边与纸条一边重合,含45°角的三角板的一个 顶点在纸条的另一边上,则∠1的度数是 ° .10.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路线如图所示。
则点A 2017的坐标为 .11.已知实数x 、y 满足632=-y x ,并且3-≥x,2<y ,现有y x k 2-=,则k 的取12.如图,三角形ABC 中∠BAC =70°,点D 是射线BC 上一点(不与点B 、C 重合),DE ∥AB 交直线AC 于E ,DF ∥AC 交直线AB 于F ,则∠FDE 的度数为 . 三、(本大题共5小题,每小题6分,共30分) 13.计算:1623483+---.14.若方程组 472+=+⎧⎨-=⎩x y kx y k 的解x 与y 是互为相反数,求k 的值.学校 班级 姓名 座号装订线228≤<x 6422≤<x 6222≤<x 208≤<x第2页 共10页15.解不等式组⎪⎩⎪⎨⎧->+≥--13414)2(3x x x x ,并把解集在数轴上表示出来.116. 如图,DE ∥BC ,∠1 +∠2 =180°,∠3 =40°,求∠B 的度数.17.如图,△ABC 在平面直角坐标系中.A (0,4) (1)在图中画出△ABC 关与y 轴的对称△A′B′C′; (2)在图中画出△A′B′C′的平移图形,使A′的对应点A ″的坐标为(-3,-2)并写出对应点B ″,C ″的坐标. . 四、(本大题共3小题,每小题8分,共24分) 18.如图,已知OA ∥BE ,OB 平分∠AOE ,∠4=∠1,∠2与∠3互余, 求证:(1)DE ∥OB ;(2)DE ⊥CD .19. 如图,在平面直角坐标系中A (a ,0), B (b ,0),C (-1,2) 且0)42(122=-++++b a b a .(1)求a ,b 的值;(2)在y 轴上是否存在一点M ,使△COM 的面积为△ABC 面积的一半,求出点M 的坐标.20.某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将获得的数据进行整理,绘制出两幅不完整的统计图,请根据统计图回答问题.(1)这次活动一共调查了_____名学生; (2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于_______度; (4)若该学校有3000人,请你估计该学校选择足球项目的学生人数约是________人.五、(本大题共2小题,每小题9分,共18分)21. (1)请你根据图1回答下列问题:①若∠DEC+∠ACB=180°,可以得到哪两条线段平行?②在①的结论下,如果∠1=∠2,又能得到哪两条线段平行?(2分)(2)请你在图2中按下面的要求画图(画图工具和方法不限):过点A画AD⊥BC于D,过点D 画DE∥AB交AC于E,在线段AB上任取一点F,以F为顶点,FB为一边画∠BFG,使∠BFG =∠ADE,∠BFG的另一边FG与线段BC交于点G.(2分)(3)请你根据(2)中画图时给出的条件,猜想FG与BC的位置关系,并给予证明.(5分)六、(本大题共1小题,共12分.)23.如乙图,长方形ABCD在平面直角坐标系中,点A(1,8),B(1,6),C(7,6).点X,Y分别在x,y的正半轴上.(1)请直接写出D点的坐标.(2)连接线段OB,OD,OD交BC于E,如甲图,∠BOY的平分线和∠BEO的平分线交于点F,若∠BOE = n ,求∠OFE的度数(用n表示).(3)若长方形ABCD以每秒1个单位的速度向下运动,设运动的时间为t秒,问是否存在某一时刻t,使△OBD的面积等于长方形ABCD的面积的32?若存在,请求出t的值;若不存在,请说明理由.第3页共10页第4页 共10页章贡区2016-2017学年第二学期期末考试七年级数学试题参考答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.C 2.B 3.B 4.C 5.D 6.A 二、填空题(本大题共6小题,每小题3分,共18分) 7. 4 8. 7 9. 15 10 .(1008,1) 11 .52≤<k 12.70°;110° 三、(本大题共5小题,每小题6分,共30分)13解:原式2424=--+ …………… …4分= …………………………………6分14.解:472+=+⎧⎨-=⎩x y k x y k① + ②得:3(x+y )=2k +7 ………………………………2分∴372+<+k y x ……………………………3分 又∵x 与y 互为相反数 ∴0372=+k ………4分 ∴27-=k …………………………………6分15.解: 3(2)41413x x xx --≥⎧⎪⎨+>-⎪⎩①②解①得:x ≤1,…………………………………………1.5分 解②得:x >-4;……………………………………… 3分 解集为:-4<x ≤1;……………………………………5分 不等式组解集在数轴表示如下图:(虚实点、长度单位,画图正确)…………6分16.解:∵∠1 +∠2 =180°,∠DFE +∠2 =180° ;∴∠1=∠DFE ; …………………………2分 ∴AB ∥EF , ………………………………3分 ∴∠ADE =∠3 ;……………………………4分 又∵DE ∥BC ,∴∠ADE =∠B , ………… 5分 ∴∠B =∠3 =40°.……………………………6分17. 解:(1)如图每个图各2分 ……………………4分(2) B ″(2,-4) ,C ″(-1,-5) ……………………6分四、(本大题共3小题,每小题8分,共24分)18.证明: (1)∵OA ∥BE ,∴∠AOB =∠ 4. …………………1分 又∵OB 平分∠AOE ,∴∠AOB =∠2, …………………2分 ∴∠4=∠2.又∵∠4=∠1, …………………3分 ∴∠2=∠1,①② ① ②A ′B ′C ′A ″B ″C ″第5页 共10页∴DE ∥OB , …………………4分 (2)∴∠EDF =∠BOF . …………………5分 又∵∠2+∠3=90°,∴∠EDF =∠BOF =90°,…………………7分 ∴DE ⊥CD . …………………8分19.解:(1)∵ 0)42(122=-++++b a b a∴⎩⎨⎧=-+=++042012b a b a ……………2分∴⎩⎨⎧=-=32b a ……………4分(2)∴ A (-2,0), B (3,0),∵C (-1,2)∴S △ABC =22⨯AB =5, ……………5分设M (0,y ) ∴S △COM =25210=⨯-y ……………6分∴5±=y …………………………7分 (3) 108 …………………………………6分 (4) 960 …………………………………8分 五、(本大题共2小题,每小题9分,共18分).21. 解:(1)① DE ∥ BC , (2) DC ∥ FG . ······················ 2分(2) 画图正确,字母标注正确得2分 ······························· 4分 (3)FG ⊥BC . ···················· 5分 证明:∵ DE ∥AB , ∴ ∠1=∠3. ··························· 6分 又∵ ∠1=∠2, ∴ ∠2=∠3, ∴ AD ∥FG . ···················· 7分 ∵ AD ⊥BC 于D , ∴ ∠CAD=90°. ·························· 8分 ∵ AD ∥FG , ∴ ∠FGB =∠CDA=90°,∴ FG ⊥BC ······················ 9分22.解: (1)设商场计划购进A 种设备x 套,B 种设备y 套,由题意得 ⎩⎨⎧=-+-=+31)6.12()25.2(1246.12x y x ……………2分解得:⎩⎨⎧==4030y x答:商场计划购进A 种设备30套,B 种设备40套;……………4分(2)设商场购进A 种设备a 套,则B 种设备(70-a )套, 由题意得 ⎩⎨⎧≥--+-≤-+8.29)70)(6.12()25.2(120)70(6.12a a a a ……………6分解得:2018≤≤a ……………8分 答:有三种购买方案,分别是购买A 种设备18套,购买B 种设备52套;或购买A 种设备19套,购买B 种设备51套; 或购买A 种设备20套,购买B 种设备50套.…………………………………………9分六、(本大题共12分)23.解: (1)(7,8); ……………………………2分∵四边形ABCD 是长方形, ∴AB =DC ,AD =BC ,∵点A (1,8),B (1,6),C (7,6),第6页 共10页∴AB = DC = 2,AD =BC = 6 ∴D 点的坐标为:(7,8);(2)过F 作FG ∥OX ,如图1所示:∵∠BOY 的平分线和∠BEO 的平分线交于点F ,BOY FOY BOF ∠=∠=∠∴21,BEO OEF BEF ∠=∠=∠21, ∵BC ∥OX ,∴∠BEO =∠EOX , ……………………………3分 设∠BEO =2x ,则∠EOX =2x ,则∠FOX =21∠BOY +∠BOE +∠EOX =21∠BOY +n +2x , 又∵21∠BOY =21(90°-n -2x )=45°-21n -x ,∴∠FOX =45°-21n -x +n+2x =45°+21n +x , …………………4分∵BC ∥FG ∥OX ,∴∠EFG =∠BEF =x , ……………………………5分 ∴∠OFG =180°-∠FOX =135°-21n -x , ∴∠OFE =∠EFG +∠OFG =135°-21n ; ……………………6分 (3)存在某一时刻,使△OBD 的面积等于长方形ABCD 面积的32,t =2或 ;t =325………………………………………8分当长方形ABCD 在第一象限时,延长DA 交y 轴于M ,如图2所示, ∴AM ⊥OY ,∵S 矩形ABCD =2×6=12,S △OBD =S △ODM -S △ABD -S 梯形AMOB =12×32, ∴21×(8-t )×7-21×12-21(2+8-t )×1=12×32, 解得:t =3. …………………………………10分当长方形ABCD 在第四象限时,延长DA 交y 轴于E ,延长CB 交y 轴于F ,如图3所示,∴AE ⊥OY ,∴BF ⊥OY ,∵S △OBD =S △ODE -S 梯形BFED -S △OBF =12×32, ∴21×(t -8)×7 + 21(1+7)×2-21×1×(t -8+2)=12×32, 解得:t =325. ………………………………………12分第7页 共10页八年级数学试题参考答案一、选择题(本大题共6小题,每小题3分,共18分) 1.A 2. D 3.D 4. C 5.C 6.B 二、填空题(本大题共6小题,每小题3分,共18分) 7、3≤x ; 8、7; 9、下, 3; 10、34 ;11、2.5 ;12、1或2;三、(本大题5小题,每小题6分,共30分) 13、(1)解:原式=33631631+-…………………………2分 =33 ………………………………3分(2)能选取(1,—2)和(—1,2)两点画线为最佳,其他合理即可…… ………………………………6分 14、(1) (2)(1)CD 即为线段AB 的垂直平分线; (3 (2) ∠EAB =45°与∠F AB =45°两种情况写出一种即可 15、解:原式=ab ab a a b a b a 222))((-+÷-+=2)())((b a aa b a b a -∙-+ =b a b a -+当32+=a ,32-=b 时,原式=)32(32)32(32--+-++=324=33216. 解:能。
2016-2017学年初一下数学期末试卷含答案
2016~2017学年第二学期期末调研测试卷初一数学 2017.6本试卷由选择题、填空题和解答题三部分组成,共28题,满分130分,考试时间120分钟. 注意事项:1. 答题前,考生务必将学校、班级、姓名、考试号等信息填写在答题卡相应的位置上;2. 考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效.一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上) 1. 11()2-等于A.12 B.2 C.12- D.2- 2. 下列计算中,正确的是A. 235235x x x += B. 236236x x x =gC. 322()2x x x ÷-=- D. 236(2)2x x -=- 3. 不等式321x +>-的解集是A. 13x >- B. 13x <- C. 1x >- D. 1x <-4. 方程组425x y x y +=⎧⎨-=⎩的解是A. 31x y =⎧⎨=⎩ B. 22x y =⎧⎨=⎩ C. 13x y =⎧⎨=⎩ D. 4x y =⎧⎨=⎩ 5.如图,由下列条件不能得到//AB CD 的是A. 34∠=∠B. 12∠=∠C. 180B BCD ∠+∠=︒D. 5B ∠=∠6. 如图,已知点,,,A D C F 在同一条直线上,,AB DE BC EF ==,要使ABC DEF ∆≅∆,还需要添加一个条件是A. BCA F ∠=∠B. B E ∠=∠C. //BC EFD. A EDF ∠=∠ 7. 若2,2mna a ==,则2m na-的值是A. 1B. 12C.34 D. 438. 下列命题:①同旁内角互补,两直线平行;②若a b =,则a b =;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是A. 4个B. 3个C. 2个D. 1个9. 如图,在ABC ∆中,已知点,D E 分别为,BC AD 的中点,2EF FC =,且ABC ∆的面积12,则BEF ∆的面积为 A. 5 B.92 C. 4 D. 7210. 如图,在ABC ∆中,,,,50B C BF CD BD CE A ∠=∠==∠=︒,则FDE ∠的度数为 A. 75° B. 70° C. 65° D. 60°二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上) 11. 已知一粒米的质量约为0. 000021千克,数字0. 000021用科学记数法表示为 . 12. 一个n 边形的内角和是720°,那么n = .13. 若0a >,并且代数式216x ax ++是一个完全平方式,则a = .14. 若5,3a b ab +==,则22a b + = .15. 若二元一次方程组2943x y x y +=⎧⎨-=⎩的解恰好是等腰ABC ∆的两边长,则ABC ∆的周长为 . 16. 若不等式组1020x x a +>⎧⎨-<⎩的最大正整数解是3,则a 的取值范围是 .17. 如图,四边形ABCD 中,点,M N 分别在,AB BC 上,将BMN ∆沿MN 翻折,得FMN ∆,若//,//MF AD FN DC ,则B ∠= .18. 如图所示,在ABC ∆中,,AB AC AD =是ABC ∆的角平分线,,DE AB DF AC ⊥⊥,垂足分别是,E F ,连结EF .给出下列结论:①DA 平分EDF ∠;②,AE AF DE DF ==;③EF AD ⊥;④图中共有5对全等三角形,其中正确的结论有 . (把你认为正确的结论的序号都填上)三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上) 19. (本题满分5分) 分解因式: 2(5)4x +-. 20. (本题满分5分)解方程组:1139x y x y ⎧-=⎪⎨⎪+=⎩ 21. (本题满分6分)先化简,再求值: 2(1)(2)(3)x x x +---,其中2x =-. 22. (本题满分6分)解不等式组:21113x x x +≥-⎧⎪+⎨>-⎪⎩,并把它的解集在数轴上表示出来.23. (本题满分8分)如图,C 是线段AB 的中点,123,CD CE ∠=∠=∠=. (1)求证: ACD BCE ∆≅∆;(2)若70A ∠=︒,求E ∠的度数.24. (本题满分8分)如图,方格纸中每个小正方形的边长均为1, ABC ∆的三个顶点都在小正方形的顶点上. (1)利用三角板在图中画出ABC ∆中AB 边上的高,垂足为H . (2)①画出将ABC ∆先向右平移2格,再向上平移2格得到的111A B C ∆ ; ②平移后,线段AB 扫过的部分所组成的封闭图形的面积为 .25. (本题满分8分)如图,CD 是ABC ∆的角平分线,点E 是AC 边上的一点,EC ED =. (1)求证: //ED BC ; (2) 30,65A BDC ∠=︒∠=︒,求DEC ∠的度数.26. (本题满分10分)某电器超市销售每台进价分别为200元、170元的,A B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本) (1)求,A B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.27. (本题满分10分)如图,已知正方形ABCD 中,边长为10 cm ,点E 在AB 边上,BE = 6cm.点P 在线段BC 上以4 cm/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上以a cm/秒的速度由C 点向D 点运动,设运动的时间为t 秒.(1) CP 的长为 cm(用含t 的代数式表示);(2)若存在某一时刻t ,使得EBP ∆和PCQ ∆同时为等腰直角三角形时,求t 与a 的值. (3)若以,,E B P 为顶点的三角形和以,,P C Q 为顶点的三角形全等,求t 与a 的值.28. (本题满分10分) 探究发现:如图①,在ABC ∆中,45B C ∠=∠=︒,点D 在BC 边上,点E 在AC 边上,且ADE AED ∠=∠,连结DE .(1)当60BAD ∠=︒时,求CDE ∠的度数;(2)当点D 在BC (点,B C 除外)边上运动时,试探究BAD ∠与CDE ∠的数量关系;深入探究:如图②,若B C ∠=∠,但45C ∠≠︒,其它条件不变,试继续探究BAD ∠与CDE ∠的数量关系.。
佛山初中数学七年级下期末经典复习题(含答案解析)
一、选择题1.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=()A.100°B.130°C.150°D.80°2.点M(2,-3)关于原点对称的点N的坐标是: ( )A.(-2,-3) B.(-2, 3) C.(2, 3) D.(-3, 2)3.估计10+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间4.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,则k的值是()A.k=-5 B.k=5 C.k=-10 D.k=105.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是() A.第一象限 B.第二象限 C.第三象限 D.第四象限6.2-的相反数是()A.2-B.2C.12D.12-7.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多8.点 P(m + 3,m + 1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)9.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩10.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE11.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2B.2C.3D.﹣312.在实数0,-π,3,-4中,最小的数是()A.0B.-πC.3D.-413.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个14.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A.≥-1 B.>1 C.-3<≤-1 D.>-315.下列说法正确的是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D.在平面内过一点有且只有一条直线垂直于已知直线.二、填空题16.已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N(下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知)∴ AB ∥()∴∠BAE=(两直线平行,内错角相等)又∵∠1=∠2∴∠BAE ﹣∠1= ﹣∠2即∠MAE=∴ ∥NE ( )∴∠M=∠N ( )17.不等式组11{2320x x ≥--<的解集为________.18.如果一个数的平方根为a+1和2a-7, 这个数为 ________19.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.20.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 种购买方案.21.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.22.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______.23.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =_____.24.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.25.不等式30x -+>的最大整数解是______三、解答题26.计算:(1﹣3)0+|2|﹣2cos45°+(14)﹣1 27.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?28.如图①,已知AB∥CD,点E、F分别是AB、CD上的点,点P是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图①中,过点E作射线EH交CD于点N,作射线FI,延长PF到G,使得PE、FG分别平分∠AEH、∠DFl,得到图②.(1)在图①中,过点P作PM∥AB,当α=20°,β=50°时,∠EPM=度,∠EPF=度;(2)在(1)的条件下,求图②中∠END与∠CFI的度数;(3)在图②中,当FI∥EH时,请直接写出α与β的数量关系.29.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=100°,∠D=30°,求∠AEM的度数.30.某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.B3.B4.A5.D6.B7.C8.D9.A10.D11.B12.D13.C14.A15.D二、填空题16.见解析【解析】【分析】由已知易得AB∥CD则∠BAE=∠AEC又∠1=∠2所以∠MAE=∠AEN则AM∥EN故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线17.【解析】∵解不等式①得:x⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x<18.9【解析】【分析】根据一个正数的平方根互为相反数可得出a的值代入后即可得出这个正数【详解】由题意得:a+1=﹣(2a﹣7)解得:a=2∴这个正数为:(2+1)2=32=9故答案为:9【点睛】本题考查19.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过20.2【解析】设甲种运动服买了x套乙种买了y套根据准备用365元购买两种运动服其中甲种运动服20元/套乙种运动服35元/套在钱都用尽的条件下可列出方程且根据xy必需为整数可求出解解:设甲种运动服买了x套21.(-2-2)【解析】【分析】先根据相和兵的坐标确定原点位置然后建立坐标系进而可得卒的坐标【详解】卒的坐标为(﹣2﹣2)故答案是:(﹣2﹣2)【点睛】考查了坐标确定位置关键是正确确定原点位置22.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时23.40或80【解析】当这两个角是对顶角时(2x-10)=(110-x)解之得x=40;当这两个角是邻补角时(2x-10)+(110-x)=180解之得x=80;∴x的值是40或80点睛:本题考查了两条24.【解析】【分析】本题可设打x折根据保持利润率不低于5可列出不等式:解出x的值即可得出打的折数【详解】设可打x折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关25.2【解析】解不等式-x+3>0可得x<3然后确定其最大整数解为2故答案为2点睛:此题主要考查了不等式的解法和整数解得确定解题关键是利用不等式的基本性质3解不等式然后才能从解集中确定出最大整数解三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】1=1303=502=23=100∠︒∴∠︒∴∠∠︒ .故选A.2.B解析:B 【解析】试题解析:已知点M (2,-3),则点M 关于原点对称的点的坐标是(-2,3),故选B .3.B解析:B【解析】 解:∵3104<<,∴41015<<.故选B . 10 的取值范围是解题关键.4.A解析:A【解析】【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值.【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x y x y -=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.5.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.6.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .7.C解析:C【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.8.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 9.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.10.D解析:D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.12.D解析:D【解析】【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-4的大小,∵|-π|<|-4|,∴最小的数是-4.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.13.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A15.D解析:D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D.二、填空题16.见解析【解析】【分析】由已知易得AB∥CD则∠BAE=∠AEC又∠1=∠2所以∠MAE=∠A EN则AM∥EN故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线解析:见解析【解析】【分析】由已知易得AB∥CD,则∠BAE=∠AEC,又∠1=∠2,所以∠MAE=∠AEN,则AM∥EN,故∠M=∠N.【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补,两直线平行)∠BAE=∠AEC(两直线平行,内错角相等)又∵∠1=∠2,∴∠BAE −∠1=∠AEC −∠2,即∠MAE =∠NEA ,∴AM ∥EN ,(内错角相等,两直线平行)∴∠M =∠N (两直线平行,内错角相等)【点睛】考查平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.17.【解析】∵解不等式①得:x ⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x< 解析:223x -≤<【解析】 112320x x ⎧≥-⎪⎨⎪-<⎩①②∵解不等式①得:x ⩾−2,解不等式②得:x<23, ∴不等式组的解集为−2⩽x<23, 故答案为−2⩽x<23. 18.9【解析】【分析】根据一个正数的平方根互为相反数可得出a 的值代入后即可得出这个正数【详解】由题意得:a+1=﹣(2a ﹣7)解得:a=2∴这个正数为:(2+1)2=32=9故答案为:9【点睛】本题考查解析:9【解析】【分析】根据一个正数的平方根互为相反数可得出a 的值,代入后即可得出这个正数.【详解】由题意得:a +1=﹣(2a ﹣7),解得:a =2,∴这个正数为:(2+1)2=32=9.故答案为:9.【点睛】本题考查了平方根及解一元一次方程的知识,解答本题的关键是掌握正数的两个平方根互为相反数.19.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩【解析】【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.【详解】111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==. 故答案为510x y ⎧⎨⎩==. 【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.20.2【解析】设甲种运动服买了x 套乙种买了y 套根据准备用365元购买两种运动服其中甲种运动服20元/套乙种运动服35元/套在钱都用尽的条件下可列出方程且根据xy 必需为整数可求出解解:设甲种运动服买了x 套解析:2【解析】设甲种运动服买了x 套,乙种买了y 套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x ,y 必需为整数可求出解.解:设甲种运动服买了x 套,乙种买了y 套,20x+35y=365x=,∵x ,y 必须为正整数,∴>0,即0<y <,∴当y=3时,x=13当y=7时,x=6.所以有两种方案.故答案为2.本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.21.(-2-2)【解析】【分析】先根据相和兵的坐标确定原点位置然后建立坐标系进而可得卒的坐标【详解】卒的坐标为(﹣2﹣2)故答案是:(﹣2﹣2)【点睛】考查了坐标确定位置关键是正确确定原点位置解析:(-2,-2)【解析】【分析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.22.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩; 又∵8.31.2a b =⎧⎨=⎩,∴ 28.31 1.2x y +=⎧⎨-=⎩, 解得 6.32.2x y =⎧⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛.23.40或80【解析】当这两个角是对顶角时(2x-10)=(110-x)解之得x=40;当这两个角是邻补角时(2x-10)+(110-x)=180解之得x=80;∴x 的值是40或80点睛:本题考查了两条解析:40或80【解析】当这两个角是对顶角时,(2x -10) =(110-x ),解之得x =40;当这两个角是邻补角时,(2x -10) +(110-x ) =180,解之得x =80;∴x 的值是40或80.点睛:本题考查了两条直线相交所成的四个角之间的关系及分类讨论的数学思想,两条直线相交所成的四个角或者是对顶角的关系,或者是邻补角的关系,明确这两种关系是解答本题的关键.24.【解析】【分析】本题可设打x 折根据保持利润率不低于5可列出不等式:解出x 的值即可得出打的折数【详解】设可打x 折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关 解析:【解析】【分析】本题可设打x 折,根据保持利润率不低于5%,可列出不等式:12008008005%10x ,⨯-≥⨯ 解出x 的值即可得出打的折数. 【详解】 设可打x 折,则有12008008005%10x ,⨯-≥⨯ 解得7.x ≥即最多打7折.故答案为7.【点睛】考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键.25.2【解析】解不等式-x+3>0可得x <3然后确定其最大整数解为2故答案为2点睛:此题主要考查了不等式的解法和整数解得确定解题关键是利用不等式的基本性质3解不等式然后才能从解集中确定出最大整数解解析:2【解析】解不等式-x+3>0,可得x <3,然后确定其最大整数解为2.故答案为2.点睛:此题主要考查了不等式的解法和整数解得确定,解题关键是利用不等式的基本性质3解不等式,然后才能从解集中确定出最大整数解.三、解答题26.【解析】【分析】先分别计算0次幂、化简绝对值、特殊角的三角函数值、负指数幂的计算,然后再按运算顺序进行计算即可.【详解】(100112cos454-⎛⎫+-+ ⎪⎝⎭=1242+⨯+=5. 【点睛】本题考查了实数的混合运算,涉及到0次幂、负指数幂的运算,熟练掌握各运算法则是解题的关键.27.小型车有38辆,中型车有12辆【解析】【分析】设小型车有x 辆,中型车有y 辆,根据“小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元”,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设小型车有x 辆,中型车有y 辆,根据题意得:501015560x y x y +=⎧⎨+=⎩, 解得:3812x y =⎧⎨=⎩, 答:小型车有38辆,中型车有12辆.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.28.(1)20,70;(2)80°;(3)90°;【解析】【分析】(1)由PM ∥AB 根据两直线平行,内错角相等可得∠EPM=∠AEP=20°,根据平行公理的推论可得PM ∥CD ,继而可得∠MPF=∠CFP=50°,从而即可求得∠EPF ;(2)由角平分线的定义可得∠AEH=2α=40°,再根据AD ∥BC ,由两直线平行,内错角相等可得∠END=∠AEH=40°,由对顶角相等以及角平分线定义可得∠IFG=∠DFG=β=50°,再根据平角定义即可求得∠CFI 的度数;(3)由(2)可得,∠CFI=180°-2β,由AB ∥CD ,可得∠END=2α,当FI ∥EH 时,∠END=∠CFI ,据此即可得α+β=90°.【详解】(1)∵PM ∥AB ,α=20°,∴∠EPM=∠AEP=20°,∵AB ∥CD ,PM ∥AB ,∴PM ∥CD ,∴∠MPF=∠CFP=50°,∴∠EPF=20°+50°=70°,故答案为20,70;(2)∵PE 平分∠AEH ,∴∠AEH=2α=40°,∵AD ∥BC ,∴∠END=∠AEH=40°,又∵FG 平分∠DFI ,∴∠IFG=∠DFG=β=50°,∴∠CFI=180°-2β=80°; (3)由(2)可得,∠CFI=180°-2β, ∵AB ∥CD ,∴∠END=∠AEN=2α,∴当FI ∥EH 时,∠END=∠CFI ,即2α=180°-2β,∴α+β=90°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键.29.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【解析】分析:(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.本题解析:(1)证明:∵∠CED=∠GHD,∴CE∥GF(2)答:∠AED+∠D=180°理由:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE∥GF,∴∠C=180°﹣130°=50°∵AB∥CD,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°.点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.30.(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润大,最多为7550元.【解析】【分析】(1)设购进甲种型号的电视机x台,则乙种型号的电视机y台.数量关系为:两种不同型号的电视机50台,金额不超过76000元;(2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.【详解】解:(1)设购进甲种型号的电视机x台,则乙种型号的电视机(50-x)台.则1500x+2100(50-x)≤76000,解得:x≥4813.则50≥x≥4813.∵x是整数,∴x=49或x=50.故有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润为:49×(1650-1500)+(2300-2100)=7550(元)方案二的利润为:50×(1650-1500)=7500(元).∵7550>7500∴方案一的利润大,最多为7550元.【点睛】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.。
佛山市顺德区七年级下期末考试数学试题(有答案)
第二学期期末教学质量检测七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟.注意事项:1. 所有解答全部写(涂)在答题卡相应的位置上,不能答在试卷上2. 用铅笔进行画线、绘图时,要求痕迹清晰.、选择题(每小题3分,共30 分)1.F列是轴对称图形的是(2.3.A. B.人体内的淋巴细胞直径约是0.0000051米,将0.0000051用科学记数法表示为(5 —6B. 0.51 X 10C. 5.1 X 10C.5A. 0.51 X 10F列运算正确的是(2 3 5A. m ?m = mD.0.51 x 106)B. (mn)2= mn23、2 9C. (m ) = mD.气象台预报“明天下雨的概率是85%” .对此信息,下列说法正确的是(A.明天将有85%的地区下雨C.明天下雨的可能性比较大5.要使x2+mx+4=(x+2)2成立,那么m的值是(A. 4B. —4C. 24.6.如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A.两点之间,线段最短C.垂线段最短)B.明天将有85%的时间下雨D.明天肯定下雨D.A处垂直拉至起跳线I的点BB.过两点有且只有一条直线D.过一点可以作无数条直线.如果/ 2 =那么/1的大小是()A. 58oB. 48oC.8.已知等腰△ABC中,/ I A= 40o, 则的大小为(A. 40oB. 70oC. 100oD. 40o 或7.如图,把一块三角板的直角顶点放在直尺的一边上42o70o第6题图9.将常温中的温度计插入一杯的热水中,温度计的度数与时间的关系可用下列图象近似刻画的是10. 如图,AD是厶ABC的角平分线,点E是AB边上一点,AE= AC, EF // BC,交AC于点F.下列结论正确的是(①/ADE = Z ADC :②厶CDE是等腰三角形;③CE平分 / DEF ; ④ AD垂直平分CE;⑤AD = CE .A.①②⑤B.①②③④C.②④⑤D.①③④⑤二、填空题(每小题4分,共24分)3 211. 计算:-2 2 = __________________________________ .12. 计算:(2 a 5)(a -3) = _____________________________把两根钢条AAI BB •的中点连在一起,可以做成一个测量内槽宽的工具(卡.若测得AB = 8厘米,则工件内槽AB宽为________________________________________________________________14.已知m n -2019 , m-n 二空8,则201915.下表是某种数学报纸的销售份数x (份)份数x (份)1234价钱y (元)0.5 1.0 1.5 2.016. 如图,已知AD是等腰△ ABC底边BC上的中线,BC= , AD =,点E、F是AD的三等分点,则阴影部分的面积为_________________________ .三、解答题(一)(每小题6分,共18分)1 . t017•计算:|?|-2 2018、—,亠4、2 3 4 10・ 218. 计算:(一3a )-a a a -a " a19. 先化简,再求值:||(x -2y)2-(x • y)(x - y) -7y2亠 2y,其中x 二?,y - -2第16题图第13题图13.如图,钳厘米.m2 - n2的值为B四、解答题(二)(每小题7分,共21分) 20. 如图,已知 AC // BD.(1) 作乙BAC 的平分线,交BD 于点M (尺规作图, 保留作图痕迹,不用写作法);(2) 在(1)的条件下,试说明.BAM =/AMB .21. 一个不透明的盒子里装有 30个除颜色外其它均相同的球,其中红球有 个,白球有3个, 黄球•现小李从盒子里随机摸出一个球,若是红球,则小李获胜;小李把摸出的球放回盒子里摇匀, 由小马随机摸出一个球,若为黄球,则小马获胜.(1) 当m = 4时,求小李摸到红球的概率是多少? (2)当m 为何值时,游戏对双方是公平的?22.如图,已知 BC 是厶ABD 的角平分线,BC = DC ,Z A = Z E = 30°, Z D = 50°.(1) 写出AB = DE 的理由; (2) 求Z BCE 的度数.五、解答题(三)(每小题9分,共27 分) 23.某公司技术人员用“沿直线 AB 折叠检验塑胶带两条边缘线 a 、b 是否互相平行”.(1) 如图1,测得Z 1 = Z 2,可判定a // b 吗?请说明理由;(2) 如图2,测得Z 1 = Z 2,且Z 3 =Z 4,可判定a // b 吗?请说明理由; (3) 如图3,若要使a // b ,贝U Z 1与Z 2应该满足什么关系式?请说明理由.24. 我们在小学已经学过了“对边分别平行的四边形叫做平行四边 形”.如图1,平行四边形 MNPQ 的一边作左右平移,图 2反映它的边NP 的长度l(cm)随时间t(s)变化而变化的情况. 请解答下列问题: (1)在这个变化过程中,自变量是 __________ ,因变量是 ______(2)观察图2,PQ 向左平移前,边 NP 的长度是 ___________________ cm ,请你根据图象呈现的规律写出秒间I 与t 的关系式;其它均为第22题图25. 已知点A、D在直线I的同侧.(1) 如图1,在直线I上找一点C,使得线段AC+DC最小(请通过画图指出点C的位置);(2) 如图2,在直线I上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G ,连结EM交CD于点F.①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线I的位置关系,并说明理由.25 老3E 25总匪2七年级数学试卷参考答案一.选择题(共10小题.每小題3分.共30分)I. B 2. C 3. A 4. C 5.A 6. C 7. D & D 9. B 10. B二填空题(共6小题,每小题4分,共24分)II. -32 12. 2a2-a- 15 13. 8 14. 2018 15. 24 16. 9三解答题(一)(共3小题.每小题6分,共18分)17. ................................................................................................................................. 原式3 分=-1 ............................................................................................................... 6 分18. 原式=9a*-aE-a8 ........................................................................................................ 4分=7 a8............................................................................................................... 6分・19•原式=[(x2一4xy + 4y2)一(x2 - y2)一7y2] * 2y ......................................................... 2分=(x2 - 4xy + 4y2 - r2 + y2 - 7y2) * 2y ....................................................................... 3分=(- 4xy - 2y2)手2y.............................................................................................. 4分=一2x一y ....................................................................................................... 5 分当x = *• y =— 2 时■原式=-2 x 2 = 1.................................................................................... 6 分四、解答题i二)(共3小题,每小题7分,共21分)20・(1)作图眈.............. 4分(2)由作图可知.AM是ZBAC平分线.A ZR4A7 = .......................... 5 分又••• AC// BD.A LCAM = LAMB(两亶线平行.内错角相等)•・•・・•・・6分•••= Z4WB ........................... 7分21.(】)这是一个等可能事件 ..................................... ・•••・ (1)当m = 4时.小李同学摸到红球的概率为帶二春.......................... 3分(2)这是一个等可能事件.当小李同学摸到红球与小玄同学摸到黄冰的可能性相同时.游戏对双方是公平的4分•••当m = 6时.游戏对双方是公22•解:(I) TBC是△/4BD的角平分线:.LABC LDBC ......................................... 1 分又°; BC = DC:•乙DBC = ZD:.LABC = ZD............................................. 2分在me和△£»(?中^ABC=乙DLA =厶 EBC= DC•••△££?£?£△ (AAS) (3)惬得m = 6.:.AB = DE ............... 4 分(2) TN" NE = 3(T,乙0 = 50。
广东省佛山市七年级下学期数学期末试卷
广东省佛山市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)在,0,-,sin30°四个实数中,无理数是()A .B . 0C . -D . sin30°【考点】2. (2分)某市在一次扶贫助残活动中,捐款约3180000元,请将3180000元用科学记数法表示为()A . 0.318×106元B . 3.18×106元C . 31.8×106元D . 318×106元【考点】3. (2分) (2020七下·北京期末) 如图,在立定跳远中,体育老师是这样测量运动员的成绩的,用一块直角三角板的一边附在起跳线上,另一边与拉直的皮尺重合,这样做的理由()A . 垂线段最短B . 过两点有且只有一条直线C . 过一点可以作无数条直线D . 两点之间线段最短【考点】4. (2分)(2018·北海模拟) 下面调查中,适合采用全面调查的是()A . 对南宁市市民进行“南宁地铁1号线线路”B . 对你安宁市食品安全合格情况的调查C . 对南宁市电视台《新闻在线》收视率的调查D . 对你所在的班级同学的身高情况的调查【考点】5. (2分) (2016八上·余杭期中) 下列命题中:(1)形状相同的两个三角形全等;(2)斜边和一条直角边对应相等的两个直角三角形一定全等;(3)等腰三角形两腰上的高线相等;(4)三角形的三条高线交于三角形内一点.其中真命题的个数有().A . 0个B . 1个C . 2个D . 3个【考点】6. (2分)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A . (1,3)B . (2,2)C . (2,4)D . (3,3)【考点】7. (2分) (2016七下·会宁期中) 下列说法错误的是()A . 两直线平行,内错角相等B . 两直线平行,同旁内角相等C . 对顶角相等D . 平行于同一条直线的两直线平行【考点】8. (2分)已知∠AOB=50°,∠BOC=30°,OD平分∠AOC,则∠AOD的度数为()A . 20°B . 80°C . 10°或40°D . 20°或80°【考点】9. (2分)在△ABC中,AD⊥BC,D为BC中点,则以下结论不正确的是().A . △ABC是等边三角形B . ∠B=∠CC . AD是BAC的平分线D . △ABD≌△ACD【考点】10. (2分) (2019七下·道里期末) 若不等式组的解集是x>4,则m的取值范围是()A . m>4B . m≥4C . m≤4D . m<4【考点】11. (2分)如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数别为x°、y°,根据题意,下列的方程组正确的是()A .B .C .D .【考点】12. (2分)(2017·虞城模拟) 在一次数学活动课上小芳,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于 MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=8,AB=30,请你帮助她算一下△ABD的面积是()A . 150B . 130C . 240D . 120【考点】二、填空题 (共6题;共7分)13. (1分) (2020七下·兴化期中) 已知三角形的两条边长分别为3cm和2cm,如果这个三角形的第三条边长为奇数,则这个三角形的周长为________cm.【考点】14. (1分) (2017七下·东城期中) 如图,,,将纸片的一角折叠,使点落在内,若,则的度数为________.【考点】15. (1分) (2016八上·河源期末) 平面直角坐标系中的点P(5,﹣12)到x的距离是________,到原点的距离是________.【考点】16. (1分) (2020八上·安丘月考) 点与点关于轴对称,则 ________.【考点】17. (2分)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE= ∠ACB,则∠B的度数是________.【考点】18. (1分)(2020·宜兴模拟) 如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF 绕点A旋转,当∠ABF最大时,S△ADE=________.【考点】三、解答题 (共8题;共83分)19. (5分)(2019·瑞安模拟)(1)计算:﹣4sin60°+(2 ﹣1)0;(2)化简:(x+2)2+x(x﹣4)【考点】20. (5分) (2019八上·邯郸月考) 先化简,再求值(1) ,其中x=1;(2),其中a=4【考点】21. (20分)(2018·井研模拟) 某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.【考点】22. (10分) (2020八下·莒县期末) 如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,直线交轴于点,直线与交于点(1)当时,求点的坐标(2)若的面积是,求直线解析式【考点】23. (10分) (2020七下·新昌期末) 某单位在疫情期间购买甲、乙两种防疫品共三次,只有一次甲、乙同时打折,其余两次均按标价购买,三次购买甲、乙的数量和费用如下表:购买甲的数量(个)购买乙的数量(个)购买总费用(元)第一次购物60501140第二次购物30701110第三次购物90801062(1)该单位在第________次购物时享受了打折优惠;(2)求出防疫品甲、乙的标价.【考点】24. (11分)三角板如图所示放置,在图上加弧线的角为多少度?(1)(2)【考点】25. (11分) (2019九上·雨花期中) 已知y1 , y2分别是关于x的函数,如果函数y1和y2的图象有交点,那么称y1 , y2为“亲密函数”,交点称为函数y1和y2的“亲密点”;若两函数图象有两个交点,横坐标分别是x1 , x2 ,称L=|x1﹣x2|为函数y1和y2的“亲密度”,特别地,若两函数图象只有一个交点,则两函数的“亲密度”L=0.(1)已知一次函数y1=2x﹣5与反比例函数y2=,请判断函数y1和y2是否为“亲密函数”,若是,请写出“亲密点”及“亲密度”L,若不是,请说明理由;(2)已知二次函数y=ax2﹣6x+c与x轴只有一个交点,与一次函数y=x﹣1的“亲密度”L=3,求二次数的解析式;(3)已知“亲密函数”y1=ax﹣2和y2=的“亲密度”L=0,“亲密点”为P(x0 , y0),将过P的抛物线y=ax2+bx+c(b>0)进行平移,点P的对应点为P1(1﹣m,2b﹣1),平移后的抛物线仍经过点P,当m≥﹣时,求平移后抛物线的顶点所能达到的最高点的坐标.【考点】26. (11分) (2020八上·漯河期末) 如图,△ ABC中,∠ ABC=90°,AB=BC,D在边 AC上,AE┴ BD于E.(1)如图 1,作CF⊥ BD于 F,求证:CF-AE=EF;(2)如图 2,若 BC=CD,求证:BD=2AE ;(3)如图3,作BM ⊥BE,且 BM=BE,AE=2,EN=4,连接 CM交 BE于 N,请直接写出△BCM的面积为________.【考点】参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共7分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共83分)答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。
广东省佛山市七年级下学期数学期末考试试卷
(2) 请补全条形统计图;
(3) 学校准备开展冬奥会的知识竞赛,该校共有4000名学生,请你估计这所学校本次竞赛“非常了解”和“比较了解”的学生总数。
21. (10分) (2020八上·昌平期末) “低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具 小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米 分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程 米 与时间 分钟 的关系如图,请结合图象,解答下列问题:
广东省佛山市七年级下学期数学期末考试试卷
姓名:________班级:________ 成绩:________
一、 选择题 (共10题;共29分)
1. (3分) (2017七下·江苏期中) 若a>b,则下列结论正确的是( )
A . a+2<b+2
B . a-5<b-5
C . <
D . 3a>3b
2. (3分) (2016七上·呼和浩特期中) 在﹣(﹣4),|﹣1|,﹣|0|,(﹣2)3这四个数中非负数共有( )个.
19-3、
20-1、
20-2、
20-3、
21-1、
21-2、
21-3、
22-1、
22-2、
22-3、
A .
B .
C .
D .
10. (2分) (2019八上·海州期中) 如图,在△ABC中,AB=AC,D为BC中点,∠BAD=20°, 则∠C的度数是( )
A . 20 °
B . 45°
C . 60°
D . 70°
二、 填空题 (共6题;共18分)
佛山市七年级下学期期末考试数学试题
佛山市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列计算正确的是()A . -|- |=B . =±7C . =2D . ± =±22. (2分)如下图所示,B左侧第二个人的位置是()A . (2,5)B . (5,2)C . (2,2)D . (5,5)3. (2分) (2020八下·宜兴期中) 以下问题,不适合用普查的是()A . 了解全班同学每周体育锻炼的时间B . 了解一批灯泡的使用寿命C . 学校招聘教师,对应聘人员面试D . 了解“神舟二号”飞船零部件的状况4. (2分)在,0,-,sin30°四个实数中,无理数是()A .B . 0C . -D . sin30°5. (2分)下列四种说法:①三角形三个内角的和为360°;②三角形一个外角大于它的任何一个内角;③三角形一个外角等于它任意两个内角的和;④三角形的外角和等于360°. 其中正确说法的个数为()A . 0B . 1C . 2D . 36. (2分) (2020七下·枣阳期末) 二元一次方程有无数多个解,下列四组值中不是该方程的解的是()A .B .C .D .7. (2分) (2017七下·阜阳期末) 不等式2x≥x-1的解集在数轴上表示正确的是()A .B .C .D .8. (2分)(2017·冠县模拟) 已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′与点A 对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A . (3,0)B . (3,﹣3)C . (3,﹣1)D . (﹣1,3)9. (2分)某班有x人,分y组活动,若每组7人,则余下3人;若每组8人,则最后一组只有3人.求全班人数,下列方程组中正确的是()A .B .C .D .10. (2分)下列各式中不是一元一次不等式组的是()A .B .C .D .二、填空题 (共4题;共5分)11. (1分) (2017九下·滨海开学考) 一组数据-2,-1,0,3,5的极差是________12. (1分)(2020·北京) 方程组的解为________.13. (1分) (2017七下·潮南期末) 已知(3x+2y﹣5)2与|4x﹣2y﹣9|互为相反数,则xy=________.14. (2分) (2016七上·庆云期末) 对于有理数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3.则①[8.9]=________;②[﹣7.9]=________.三、解答题 (共9题;共73分)15. (5分)(2017·钦州模拟) 计算:2﹣1+|﹣5|﹣sin30°﹣.16. (5分)解不等式组:.17. (8分) (2018七上·营口期末) 观察下列等式:第1个等式:a1= = × ;第2个等式:a2= = ×();第3个等式:a3= = ×();第4个等式:a4= = ×();…请解答下列问题:(1)按以上规律列出第5个等式:a5=________;(2)用含有n的代数式表示第n个等式:an=________=________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.18. (5分) (2019七下·全椒期末) 如图:已知∠1+∠2=180°,∠3=∠B,请问AB与DE是否平行,并说明理由.19. (10分)观察下列各式:13=12 , 13+23=32 , 13+23+33=62 ,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+…+1003 .20. (10分)(2014·茂名) 如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2,将矩形OABC向上平移4个单位得到矩形O1A1B1C1 .(1)若反比例函数y= 和y= 的图象分别经过点B、B1 ,求k1和k2的值;(2)将矩形O1A1B1C1向左平移得到O2A2B2C2 ,当点O2、B2在反比例函数y= 的图象上时,求平移的距离和k3的值.21. (9分)某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是________,并补全条形图________;(2) D等级学生人数占被调查人数的百分比为________,在扇形统计图中C等级所对应的圆心角为________°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.22. (10分)(2013·常州) 某饮料厂以300千克的A种果汁和240千克的B种果汁为原料,配制生产甲、乙两种新型饮料,已知每千克甲种饮料含0.6千克A种果汁,含0.3千克B种果汁;每千克乙种饮料含0.2千克A种果汁,含0.4千克B种果汁.饮料厂计划生产甲、乙两种新型饮料共650千克,设该厂生产甲种饮料x(千克).(1)列出满足题意的关于x的不等式组,并求出x的取值范围;(2)已知该饮料厂的甲种饮料销售价是每1千克3元,乙种饮料销售价是每1千克4元,那么该饮料厂生产甲、乙两种饮料各多少千克,才能使得这批饮料销售总金额最大?23. (11分)(2020·牡丹江) 在等腰中,,点D,E在射线上,,过点E作,交射线于点F.请解答下列问题:(1)当点E在线段上,是的角平分线时,如图①,求证:;(提示:延长,交于点M.)(2)当点E在线段的延长线上,是的角平分线时,如图②;当点E在线段的延长线上,是的外角平分线时,如图③,请直接写出线段,,之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若,则 ________.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共5分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共73分)15-1、16-1、17-1、17-2、17-3、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、。
佛山市七年级下学期数学期末试卷
佛山市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列图形中既是轴对称图形,又是中心对称图形的是()A . 圆B . 等腰三角形C . 平行四边形D . 直角三角形2. (2分)(2017·天河模拟) 下列计算正确的是()A . 2a+3b=5abB . a3•a2=a6C . (a﹣b)2=a2﹣b2D . (a2)4=a83. (2分)如图,下列说法正确的是()A . 如果∠1和∠2互补,那么l1∥l2B . 如果∠2=∠3,那么l1∥l2C . 如果∠1=∠2,那么l1∥l2D . 如果∠1=∠3,那么l1∥l24. (2分) (2019七下·西湖期末) 如图,大正方形的边长为,小正方形的边长为,,表示四个相同长方形的两边长().则① ;② ;③ ;④ ,中正确的是()A . ①②③B . ①②④C . ①③④D . ①②③④5. (2分)如图是用圆规和直尺画已知角的平分线的示意图,该画法是根据全等三角形识别中的()A . SSSB . ASAC . AASD . SAS6. (2分) (2017七下·岳池期末) 如图,一把矩形直尺沿直线断开并错位,点E,D,B,F在同一条直线上,若∠ADE=125°, 则∠DBC的度数为()A . 125°B . 75°C . 55°D . 65°7. (2分)同时掷一枚质地均匀的正方体骰子,骰子的六个面分别刻有1~6的点数,下列事件中是必然事件的是()A . 正面的点数是3B . 正面的点数2的倍数C . 正面的点数大于0D . 正面的点数小于68. (2分)(2017·河北模拟) 将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是()A .B .C .D .9. (2分)甲、乙两人从科技馆出发,沿相同的路线分别以不同的速度匀速跑向极地馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向极地馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象.则下列四种说法:①甲的速度为1.5米/秒;②a=750;③乙在途中等候甲100秒;④乙出发后第一次与甲相遇时乙跑了375米.其中正确的个数是()A . 1个B . 2个C . 3个D . 4个10. (2分)如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBA和△EDC一定是全等三角形;②△EBD是等腰三角形,EB=ED;③折叠后得到的图形是轴对称图形;④折叠后∠ABE 和∠CBD一定相等;其中正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共10题;共13分)11. (1分) (2020七下·莲湖期末) 数据0.0001用科学记数法表示为________.12. (1分) (2019七下·宝应月考) 计算: =________.13. (1分) (2019八上·连云港期末) 如图,A、B两地相距200km,一列火车从B地出发沿BC方向以的速度行驶,在行驶过程中,这列火车离A地的路程与行驶时间之间的函数关系式是________.14. (1分)(2018·市中区模拟) 如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是________.15. (1分)用剪刀剪东西时,剪刀张开的角度如图所示,若∠1=25°,则∠2=________16. (1分)如果点 P 是线段 AB 的黄金分割点,且 AP < PB ,那么的值为________.17. (2分)(2019·平谷模拟) 如图,AB=AD,AC=AE,请你添加一个适当的条件:________,使得△ABC≌△ADE.18. (1分)如图,平面直角坐标系xOy中,M点的坐标为(3,0),⊙M的半径为2,过M点的直线与⊙M的交点分别为A,B,则△AOB的面积的最大值为________,此时A,B两点所在直线与x轴的夹角等于________°.19. (2分) (2017七下·汶上期末) 已知:如图,四边形ABCD中,点C在AB的延长线上,连接DC.∠EDC=∠C,AD∥BE.求证:∠A=∠E.证明:∵∠EDC=∠C,∴AB∥________.(________)∴________ =________.(________)∵AD∥BE,∴∠A=________.(________)∴∠A=∠E.(等量代换)20. (2分)(2017·薛城模拟) 已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y1=k1x+b1 ,直线CD的表达式为y2=k2x+b2 ,则k1•k2=________.三、解答题 (共7题;共52分)21. (10分) (2017七下·景德镇期末) 先化简,后求值:,其中,.22. (5分)(2018·朝阳模拟) 先化简,再求值,其中 .23. (2分) (2019七下·邵武期中) 已知如图,CD⊥AB于D,EF⊥AB于F,∠1=∠2,请问DG∥BC吗?如果平行,请说明理由.24. (2分)(2019·抚顺) 为提升学生的艺术素养,某校计划开设四门选修课程:声乐、舞蹈、书法、摄影.要求每名学生必须选修且只能选修一门课程,为保证计划的有效实施,学校随机对部分学生进行了一次调查,并将调査结果绘制成如下不完整的统计表和统计图.学生选修课程统计表课程人数所占百分比声乐14舞蹈8书法16摄影合计根据以上信息,解答下列问题:(1) ________, ________.(2)求出的值并补全条形统计图.(3)该校有1500名学生,请你估计选修“声乐”课程的学生有多少名.(4)七(1)班和七(2)班各有2人选修“舞蹈”课程且有舞蹈基础,学校准备从这4人中随机抽取2人编排“舞蹈”在开班仪式上表演,请用列表法或画树状图的方法求所抽取的2人恰好来自同一个班级的概率.25. (2分) (2019八上·江岸期末) 如图1,已知等边三角形ABC,点P为AB的中点,点D、E分别为边AC、BC 上的点,∠APD+∠BPE=60°.(1)①若PD⊥AC,PE⊥BC,直接写出PD、PE的数量关系:________;②如图1,证明:AP=AD+BE________(2)如图2,点F、H分别在线段BC、AC上,连接线段PH、PF,若PD⊥PF且PD=PF,HP⊥EP.求∠FHP的度数;26. (20分)(2020·吉林模拟) 某公司种植和销售一种野山菌,已知该野山菌的成本是12元/千克,规定销售价格不低于成本,又不高于成本的两倍.经过市场调查发现,某天该野山菌的销售量y(千克)与销售价格x(元/千克)的函数关系如图所示:(1)求y与x之间的函数关系式;(2)求这一天销售野山菌获得的利润W的最大值。
广东省佛山市七年级下学期数学期末考试试卷
广东省佛山市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列实数中的无理数为()A .B .C . () 2D .2. (2分)下列调查中,最适合采用抽样调查方式的是()A . 对重庆某中学初2017级全体学生中考体考成绩的调查B . 为制作某校学生校服,对该校2017级某班学生的身高情况进行调查C . 对元宵节重庆市市场上彩色汤圆质量情况的调查D . 对用于发射卫星的运载火箭各零部件的检查3. (2分) (2017八下·海淀期末) 要得到函数的图象,只需将函数的图象()A . 向左平移3个单位B . 向右平移3个单位C . 向上平移3个单位D . 向下平移3个单位4. (2分)二次函数y=ax2+bx+c的图象如图所示,则点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分) (2016七下·十堰期末) 如图,已知AE∥BC,AC⊥AB,若∠ACB=50°,则∠FAE的度数是()A . 50°B . 60°C . 40°D . 30°6. (2分)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x辆,租用30座客车y辆,则不等式“45x+30y≥500”表示的实际意义是()A . 两种客车总的载客量不少于500人B . 两种客车总的载客量不超过500人C . 两种客车总的载客量不足500人D . 两种客车总的载客量恰好等于500人7. (2分)(2017·历下模拟) 如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为()A . 90°B . 100°C . 110°D . 120°8. (2分)已知关于x、y的方程组和方程组有相同的解,那么(a+b)2007的值为()A . ﹣2007B . ﹣1C . 1D . 20079. (2分)不等式组的解集是,则m的取值范围是()A . m≤2B . m≥2C . m≤1D . m>110. (2分)(2017·包头) 若关于x的不等式x﹣<1的解集为x<1,则关于x的一元二次方程x2+ax+1=0根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 无实数根D . 无法确定二、填空题 (共6题;共6分)11. (1分) (2017八上·高州月考) 若,,则的值为________.12. (1分)(2019·朝阳模拟) 比较大小: ________3.13. (1分)如图,三角形A′B′C′是由三角形ABC沿射线AC方向平移2cm得到的,若AC=3cm,则A′C=________cm.14. (1分) AB=2R是半圆的直径,C、D是半圆周上两点,并且弧AC与BD的度数分别是96°和36°,动点P在线段AB上,则PC+PD的最小值为________ .15. (1分) (2017八上·丹东期末) 如图,AB∥DE,∠A=120°,∠C=80°,则∠D的度数为________.16. (1分)关于x、y的方程组中,x+y=________三、解答题 (共7题;共62分)17. (10分)综合题。
2016-2017学年广东省佛山市禅城区七年级下期末考试数学试题和解析答案
2016-2017年第二学期禅城区初一下学期数学期末考试一、选择题1、计算:(x ²)³=( )A 、9xB 、6xC 、5x D 、x2、30000000用科学记数法表示为( )A 、3×810B 、0.3×810C 、3×610D 、3×7103、同学们,喜欢QQ 吧?以下这四个QQ 表情中哪个不是轴对称图形( )A 、第一个B 、第二个C 、第三个D 、第四个4、将一副三角板按如图所示位置摆放,其中∠α=∠β一定互余的是( )5、下列计算正确的是( )A 、(2a-1)²=2a ²-2a+1B 、(2a+1)²=4a ²+1C 、(-a-1)²=-a ²-2a+1D 、(2a-1)²=4a ²-4a+16、如图,已知AB ∥CD ,∠1=60°,则∠3=( )A 、90°B 、120°C 、60°D 、15°7、下列事件是不确定事件的是( )A 、守株待兔B 、水中捞月C 、风吹草动D 、水涨船高8、投掷硬币m 次,正面向上n 次,其频率p=mn ,则下列说法3正确的是( )A 、p 一定等于21B 、p 一定不等于21 C 、多投一次,p 更接近21 D 、投掷次数逐步增加,p 稳定在21附近 9、下列各组数据为三角形三边,不能构成三角形的是( )A 、4,8,7B 、3,4,7C 、2,3,4D 、13,12,510、小芳的爷爷每天坚持体育锻炼,某天他慢步走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小芳爷爷离家的距离y (米)与时间x (分钟)之间的关系的大致图象是( )二、填空题11、1.35×3-10=____________12、如图:已知∠1=∠2,要判定△ACO ≌△BCO ,则需要补充的一个条件为____________(只需补充一个即可)13、若(2x-3y )×M=9y ²-4x ²,则M 表示的式子为_____________14、在分别写着“线段、钝角、直角三角形、等边三角形”的4张卡纸中,小刚从中任意抽取一张卡纸,抽到是轴对称图形的概率为________15、如图,在△ABC 中,边BC 长为10,BC 边上的高AD 为6,点D 在BC 上运动,设BD 长为x (0<x <10),则△ACD 的面积y 与x 之间的关系式_____________________16、如图,将CD 翻折至CB 位置,已知AB ∥CD ,∠CBE=70°,则∠1的度数是________三、解答题(一)17、计算:(2x-3y)²-(y+3x)(3x-y)18、完成下列推理说明:如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE解:∵∠A=∠F(已知)∴_______∥_______(_________________________)∴______=∠1(_________________________)又∵∠C=∠D(已知)∴∠1=______(_________________________)∴BD∥CE19、假设圆柱的高是5cm,圆柱的底面半径由小到大变化时,(1)圆柱的体积如何变化?在这个变化的过程中,自变量、因变量各是什么?(2)如果圆柱底面半径为r(cm),那么圆柱的体积V(cm³)可以表示为_______________________(3)当r由1cm变化到10cm时,V由________cm³变化到________cm³四、解答题(二)20、一个口袋中装有3个白球、5个红球,这些球除了颜色外完全相同,充分摇匀后随机摸出一球,发现是白球(1)如果将这个白球放回,再摸出一球,它是白球的概率是多少?(2)如果将这个白球不放回,再摸出一球,它是白球的概率是多少?21、阅读下题及其证明过程:已知:如图,D是△ABC中BC的中点,EB=EC,∠ABE=∠ACE,试说明:∠BAE=∠CAE证明:在△AEB和△AEC中,EB=EC∠ABE=∠ACEAE=AE∴△AEB≌△AEC(第一步)∴∠BAE=∠CAE(第二步)问:(1)上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?(2)写出你认为正确的推理过程。
佛山市七年级数学试卷七年级苏科下册期末训练经典题目(含答案)
佛山市七年级数学试卷七年级苏科下册期末训练经典题目(含答案)一、幂的运算易错压轴解答题1.解答下列问题(1)已知2x=3,2y=5,求2x+y的值;(2)已知3m=4,3n=2,求的值;(3)若,求的值.2.阅读下列材料,并解决后面的问题.材料:我们知道,n个相同的因数a相乘记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=________;log216=________;log264=________.(2)通过观察(2)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?(3)由(2)题猜想,你能归纳出一个一般性的结论吗?log a M+log a N=________(a>0且a≠1,M>0,N>0),(4)根据幂的运算法则:a m•a n=a m+n以及对数的定义证明(3)中的结论.3.请阅读材料:①一般地,n个相同的因数a相乘:记为a n,如23=8,此时,指数3叫做以2为底8的对数,记为(即=3).②一般地,若a n=b(a>0且a≠1,b>0),则指数n叫做以a为底b的对数,记为(即=n),如34=81,则指数4叫做以3为底81的对数,记为(即=4).(1)计算下列各对数的值:log24________ ; log216=________ ; log264=________ .(2)观察(1)题中的三数4、16、64之间存在的关系式是________ ,那么log24、log216、log264存在的关系式是________(3)由(2)题的结果,你能归纳出一个一般性的结论吗?log a M+log a N=________ (a>0且a≠1,M>0,N>0)(4)请你运用幂的运算法则a m•a n=a m+n以及上述中对数的定义证明(3)中你所归纳的结论.二、平面图形的认识(二)压轴解答题4.[感知发现]:如图,是一个“猪手”图,AB∥CD,点E在两平行线之间,连接BE,DE ,我们发现:∠E=∠B+∠D证明如下:过E点作EF∥AB.∠B=∠1(两直线平行,内错角相等.)又 AB∥CD(已知)CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行.)∠2=∠D(两直线平行,内错角相等.)∠1+∠2=∠B+∠D(等式的性质1.)即:∠E=∠B+∠D(1)[类比探究]:如图是一个“子弹头”图,AB∥CD,点E在两平行线之间,连接BE,DE.试探究∠E+∠B+∠D=360°.写出证明过程.(2)[创新应用]:(1).如图一,是两块三角板按如图所示的方式摆放,使直角顶点重合,斜边平行,请直接写出∠1的度数.(2).如图二,将一个长方形ABCD按如图的虚线剪下,使∠1=120 ,∠FEQ=90°.请直接写出∠2的度数.5.如图,已知,,,点E在线段AB上,,点F在直线AD上,.(1)若,求的度数;(2)找出图中与相等的角,并说明理由;(3)在的条件下,点不与点B、H重合从点B出发,沿射线BG的方向移动,其他条件不变,请直接写出的度数不必说明理由.6.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=30°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE 平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.三、整式乘法与因式分解易错压轴解答题7.如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为 ________ .(只要写出一个即可)(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值②若三个实数x,y,z满足2x×4y÷8z= ,x2+4y2+9z2=44,求2xy-3xz-6yz的值8.有一个边长为m+3的正方形,先将这个正方形两邻边长分别增加1和减少1,得到的长方形①的面积为S1.(1)试探究该正方形的面积S与S1的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由;(2)再将这个正方形两邻边长分别增加4和减少2,得到的长方形②的面积为S2.①试比较S1, S2的大小;②当m为正整数时,若某个图形的面积介于S1, S2之间(不包括S1, S2)且面积为整数,这样的整数值有且只有16个,求m的值.9.(1)填空:________ ;________ ;________ ;(2)猜想:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)= ________(其中n为正整数,且n≥2);(3)利用(2)猜想的结论计算:①29+28+27+…+22+2+1②210-29+28-…-23+22-2.四、二元一次方程组易错压轴解答题10.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元。
佛山市七年级下学期期末数学试题及答案
佛山市七年级下学期期末数学试题及答案一、选择题1.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( ) A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b 2.现有两根木棒,它们长分别是40cm 和50cm ,若要钉成一个三角形木架,则下列四根木棒应选取( )A .10cm 的木棒B .40cm 的木棒C .90cm 的木棒D .100cm 的木棒 3.以下列各组线段为边,能组成三角形的是( ) A .2cm 、2cm 、4cmB .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm4.若(x+2)(2x-n)=2x 2+mx-2,则( ) A .m=3,n=1;B .m=5,n=1;C .m=3,n=-1;D .m=5,n=-1; 5.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80° 6.下列各式由左边到右边的变形,是因式分解的是( )A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++ ⎪⎝⎭ 7.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .256 8.下列计算正确的是( ) A .a +a 2=2a 2B .a 5•a 2=a 10C .(﹣2a 4)4=16a 8D .(a ﹣1)2=a ﹣2 9.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .256 10.如图,将△ABC 纸片沿DE 折叠,点A 的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2等于( )A .40°B .60°C .80°D .140°二、填空题11.若{14x y =-=是二元一次方程3x +ay =5的一组解,则a = ______ .12.已知22a b -=,则24a b ÷的值是____.13.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.14.已知2m+5n ﹣3=0,则4m ×32n 的值为____15.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.16.已知30m -=,7m n +=,则2m mn +=___________.17.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.18.计算:(12)﹣2=_____. 19.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.20.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.三、解答题21.计算:(1)-22+30(2)(2a )3+a 8÷(-a )5(3)(x +2y -3)(x -2y +3)(4)(m +2)2(m -2)222.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量23.如图1,在△ABC 的AB 边的异侧作△ABD ,并使∠C =∠D ,点E 在射线CA 上. (1)如图,若AC ∥BD ,求证:AD ∥BC ;(2)若BD ⊥BC ,试解决下面两个问题:①如图2,∠DAE =20°,求∠C 的度数;②如图3,若∠BAC =∠BAD ,过点B 作BF ∥AD 交射线CA 于点F ,当∠EFB =7∠DBF 时,求∠BAD 的度数.24.已知8m a =,2n a = .(1)填空:m n a += ; m n a -=__________.(2)求m 与n 的数量关系.25.阅读下列各式:(a•b )2=a 2b 2,(a•b )3=a 3b 3,(a•b )4=a 4b 4…回答下列三个问题:(1)验证:(2×12)100= ,2100×(12)100= ; (2)通过上述验证,归纳得出:(a•b )n = ; (abc )n = .(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.26.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ;(2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 .27.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立.28.在平面直角坐标系中,点A 、B 的坐标分别为(),0a ,()0,b ,其中a ,b 满足218|273|0a b a b +-+--=.将点B 向右平移15个单位长度得到点C ,如图所示.(1)求点A ,B ,C 的坐标;(2)动点M 从点C 出发,沿着线段CB 、线段BO 以1.5个单位长度/秒的速度运动,同时点N 从点O 出发沿着线段OA 以1个单位长度秒的速度运动,设运动时间为t 秒()012t <<.当BM AN <时,求t 的取值范围;是否存在一段时间,使得OACM OCN S S ≤四边形三角形?若存在,求出t 的取值范围;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解.【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=, ∴它们的大小关系是:b <a <d <c故选:C【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.2.B解析:B【解析】试题解析:已知三角形的两边是40cm和50cm,则10<第三边<90.故选40cm的木棒.故选B.点睛:三角形的三边关系:三角形任意两边之和大于第三边.3.C解析:C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm、2cm、4cm不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm、6cm、3cm不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm、6cm、3cm能组成三角形,故符合题意;D. ∵4+6<11,∴11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键. 4.A解析:A【解析】先根据多项式乘多项式的法则展开,再根据对应项的系数相等求解即可.∵(x+2)(2x-n)=2x2+4x-nx-2n,又∵(x+2)(2x-n)=2x2+mx-2,∴2x2+(4-n)x-2n=2x2+mx-2,∴m=3,n=1.“点睛”本题考查多项式乘以多项式的法则,利用多项式的乘法法则展开多项式,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.5.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA,CD交于点E.∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD互为对顶角∴∠2=∠EAD =70°故选:B.【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.6.B解析:B【分析】根据因式分解的意义求解即可.【详解】A、从左边到右边的变形不属于因式分解,故A不符合题意;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、从左边到右边的变形不属于因式分解,故C不符合题意;D、因式分解是把一个多项式化为几个整式的积的形式,而1x是分式,故D不符合题意.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】 本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.8.D解析:D【分析】根据负整数指数幂、合并同类项、幂的乘方与积的乘方、同底数幂的乘法等知识点进行作答.【详解】解:A 、a +a 2不是同类项不能合并,故本选项错误;B 、根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,∴a 5•a 2=a 7,故本选项错误;C 、根据幂的乘方法则:底数不变,指数相乘,(﹣2a 4)4=16a 16,故本选项错误;D 、(a ﹣1)2=a ﹣2,根据幂的乘方法则,故本选项正确;故选:D .【点睛】本题考查了合并同类项,同底数的幂的乘法,负整数指数幂,积的乘方等多个运算性质,需同学们熟练掌握.9.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 10.C解析:C【分析】根据平角定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠,再利用三角形的内角和定理进行转换,得34140B C ∠+∠=∠+∠=︒从而解题.【详解】解:根据平角的定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠.又34180A ∠+∠+∠=︒,180A B C ∠+∠+∠=︒,346080140B C ∴∠+∠=∠+∠=︒+︒=︒,∴123602(34)360214080∠+∠=︒-∠+∠=︒-⨯︒=︒,故选:C .【点睛】此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.二、填空题11.2【解析】【分析】把方程的解代入二元一次方程,即可得到一个关于a 的方程,即可求解.【详解】解:把代入方程得:-3+4a=5,解得:a=2.故答案是:2.【点睛】本题主要考查了二解析:2【解析】【分析】把方程的解代入二元一次方程,即可得到一个关于a 的方程,即可求解.【详解】解:把14x y =-⎧⎨=⎩代入方程得:-3+4a=5, 解得:a=2.故答案是:2.【点睛】本题主要考查了二元一次方程的解的定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.正确解一元一次方程是解题的关键.12.【分析】先将化为同底数幂的式子,然后根据幂的除法法则进行合并,再将代入计算即可.【详解】解:==,∵,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.解析:【分析】先将24a b ÷化为同底数幂的式子,然后根据幂的除法法则进行合并,再将22a b -=代入计算即可.【详解】解:24a b ÷=222a b ÷=()22a b -,∵22a b -=,∴原式=22=4.【点睛】本题考查了幂的除法法则,掌握知识点是解题关键.13.2【分析】根据点F 是CE 的中点,推出S△BEF=S△BEC,同理得S△EBC=S△ABC,由此可得出答案.【详解】∵点F 是CE 的中点,∴△BEF 的底是EF ,△BEC 的底是EC ,即EF=EC解析:2【分析】根据点F 是CE 的中点,推出S △BEF =12S △BEC ,同理得S △EBC =12S △ABC ,由此可得出答案. 【详解】∵点F 是CE 的中点,∴△BEF 的底是EF ,△BEC 的底是EC ,即EF=12EC ,高相等; ∴S △BEF =12S △BEC , 同理得S △EBC =12S △ABC ,∴S△BEF=14S△ABC,且S△ABC=8,∴S△BEF=2,故答案为:2.【点睛】本题考查了三角形的性质,充分运用三角形的面积公式以及三角形的中线的性质是解本题的关键.14.8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5解析:8【解析】试题分析: 直接利用幂的乘方运算法则将原式变形,再结合同底数幂的乘法运算法则求出答案.本题解析:∵2m+5n−3=0,∴2m+5n=3,则4m×32n=22m×25n=22m+5n=23=8.故答案为8.15.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000004,4的前面有8个0,所以n=8,所以0.00000004=4×10-8.故答案为:4×10-8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.21【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 17.14【分析】根据等底等高的三角形的面积相等,求出△AEC 的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD 的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△A解析:14【分析】根据等底等高的三角形的面积相等,求出△AEC 的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.【详解】解:∵BE=CE,S△ABC=12∴S△ACE=12S△ABC=12×12=6,∵AD=2BD,S△ABC=12∴S△ACD=23S△ABC=23×12=8,∴S1+S2=S△ACD+S△ACE=8+6=14.故答案为:14.【点睛】本题主要考查了三角形中线的性质,正确理解三角形中线的性质并学会举一反三是解题关键,要熟练掌握“等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比”.18.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:()﹣2===4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.解析:【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:(12)﹣2=2112⎛⎫⎪⎝⎭=114=4,故答案为:4.【点睛】本题考查负指数幂的计算,掌握即可.19.4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x ,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,解析:4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,y 个B 品牌足球,依题意,得:60x +75y =1500,解得:y =20−45x . ∵x ,y 均为正整数,∴x 是5的倍数,∴516x y =⎧⎨=⎩,1012x y =⎧⎨=⎩,158x y =⎧⎨=⎩,204x y =⎧⎨=⎩ ∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.20.四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得,解得,∴点M 坐标为,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得22111m n m n --=⎧⎨++=⎩, 解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.三、解答题21.(1)-3 (2)7a 3(3)x 2-4y 2+12y -9(4)m 4-8m 2+16【分析】(1)原式利用零指数幂法则及乘方的意义化简,计算即可得到结果;(2)先 利用积的乘方公式和同底数幂的除法公式计算,然后合并即可得到结果; (3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式先利用平方差方式计算,再利用完全平方公式计算即可得到结果.【详解】(1)2042331=-+-=-+;(2)()()533833()872a a a a a a ÷=+-=+-; (3) ()()()()23232323x y x y y x x y +--+---=+⎡⎤⎡⎤⎣⎦⎣⎦()2222234129x y x y y =--=-+-;(4)()()()()2222222m m m m +-+-=⎡⎤⎣⎦ ()42228146m m m =-+-=.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.22.(1)证明过程见解析;(2)12N AEM NFD ∠=∠-∠,理由见解析;(3)13∠N+∠PMH=180°. 【分析】(1)根据同旁内角互补,两直线平行即可判定AB ∥CD ;(2)设∠N=2α,∠M=3α,∠AEM=x ,∠NFD=y ,过M 作MP ∥AB ,过N 作NQ ∥AB 可得∠PMN=3α-x ,∠QNM=2α-y ,根据平行线性质得到3α-x =2α-y ,化简即可得到12N AEM NFD ∠=∠-∠; (3)过点M 作MI ∥AB 交PN 于O ,过点N 作NQ ∥CD 交PN 于R ,根据平行线的性质可得∠BPM=∠PMI ,由已知得到∠MON=∠MPN+∠PMI=3∠PMI 及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD ,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM ,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH ,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到1 3∠FNP=180°-∠PMH,即13∠N+∠PMH=180°.【详解】(1)证明:∵∠1=∠BEF,12180︒∠+∠=∴∠BEF+∠2=180°∴AB∥CD.(2)解:12N AEM NFD ∠=∠-∠设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB∵//AB CD,MP∥AB,NQ∥AB∴MP∥NQ∥AB∥CD∴∠EMP=x,∠FNQ=y∴∠PMN=3α-x,∠QNM=2α-y∴3α-x=2α-y即α=x-y∴12N AEM NFD ∠=∠-∠故答案为12N AEM NFD ∠=∠-∠(3)解:13∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.∵//AB CD,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM∴∠MON+∠PRF+∠RFM=360°-∠OMF即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI=13∠FNP∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH∠FNP-2×13∠FNP=180°-∠PMH13∠FNP=180°-∠PMH即13∠N+∠PMH=180°故答案为13∠N+∠PMH=180°【点睛】本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.23.(1)见解析;(2)35°;(3)117°【分析】(1)由AC∥BD得∠D=∠DAE,角的等量关系证明∠DAE与∠C相等,根据同位角得AD∥BC;(2)由BD⊥BC得∠HBC=90°,余角的性质和三角形外角性质解得∠C的度数为35°;(3)由BF∥AD得∠D=∠DBF,垂直的定义得∠DBC=90°,三角形的内角和定理,角的和差求得∠DBA=∠CBA=45°,由已知条件∠EFB=7∠DBF,角的和差得出∠BAD的度数为117°.【详解】解:(1)如图1所示:∵AC∥BD,∴∠D=∠DAE,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF ∥AD ,∴∠D =∠DBF ,又∵∠C =∠D ,∴∠C =∠D =∠DBF ,又∵BD ⊥BC ,∴∠DBC =90°,又∵∠D+∠DBA+∠BAD =180°,∠C+∠CBA+∠BAC =180°.∠BAC =∠BAD ,∴∠DBA =∠CBA =45°,又∵∠EFB =7∠DBF ,∠EFB =∠FBC+∠C ,∴7∠DBF =2∠DBF+∠DBC ,解得:∠DBF =18°,∴∠BAD =180°﹣45°﹣18°=117°.【点睛】本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键.24.(1)16;4;(2)m=3n ;【分析】(1)利用a m +n =a m ⋅a n 和a m -n =a m ÷a n 进行计算;(2)利用23=8再结合同底数幂的运算法则进行分析计算.【详解】(1)m n a +=a m ×a n =16;m n a -=a m ÷a n =4;(2)∵, ∴∴【点睛】本题考察了同底数幂的运算法则,熟练掌握同底数幂的运算法则是解题的关键.25.(1)1, 1, (2)a n b n , a n b n c n ,(3)132-.【解析】【分析】(1)先算括号内的乘法,再算乘方;先乘方,再算乘法;(2)根据有理数乘方的定义求出即可;(3)根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【详解】解:(1)(2×12)100=1,2100×(12)100=1; (2)(a•b )n =a n b n ,(abc )n =a n b n c n , (3)原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×132 =(﹣1)2015×132 =﹣1×132 =﹣132. 【点睛】本题主要考查了同底数幂的乘法和积的乘方,掌握运算法则是解答此题的关键.26.(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式; (4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式. 【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.27.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析【分析】(1)根据所给式子可知:()()22223121121181-⨯+⨯-⨯-==,()()22225322122182-⨯+⨯-⨯-==,()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;【详解】(1)∵第1个式子为: ()()22223121121181-⨯+⨯-⨯-==第2个式子为: ()()22225322122182-⨯+⨯-⨯-==第3个式子为: ()()22227523123183-⨯+⨯-⨯-==∴第5个式子为: ()()222225125111940⨯+-⨯-=-=即第5个式子为:2211940-=(2)根据题(1)的推理可得:第n 个式子: ()()2221218n n n +--=∵左边=224414418n n n n n +-++-==右边∴等式成立.【点睛】本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律.28.(1)(12,0)A (0,3)B (15,3)C(2)610.8t <<;存在,02t <≤或11.612t ≤<【分析】(1)根据题意构造方程组21802730a b a b +-=⎧⎨--=⎩,解方程组,问题得解; (2)①当010t <≤时,15 1.5BM t =-,12AN t =-,根据BM AN <构造不等式,求出t ,当1012t <<时, 1.515BM t =-,12AN t =-,根据BM AN <构造不等式,求出t ,二者结合,问题得解;②分别表示出BCN S 三角形、 OACB S 四边形,分010t <≤,1012t <<两种情况讨论,问题得解.【详解】解:(1)由题意得21802730a b a b +-=⎧⎨--=⎩, 解得123a b =⎧⎨=⎩, ∴(12,0)A ,(0,3)B ,(15,3)C(2)①当010t <≤时,15 1.5BM t =-,12AN t =-,BM AN <得15 1.512t t -<-,解得6t >则610t <≤;当1012t <<时, 1.515BM t =-,12AN t =-,BM AN <得1.51512t t -<-, 解得10.8t <,则1010.8t <<,综上,610.8t <<; ②1145153222BCN S BC OB =⨯⨯=⨯⨯=三角形 1181()(1215)3222OACB S OA BC OB =⨯+⨯=⨯+⨯=四边形 当010t <≤时, 81145(15 1.5)3222OACM OACB BMO S S S t =-=-⨯-⨯≤四边形四边形三角形 解得2t ≤,则02t <≤;当1012t <<时, 81145(1.515)15222OACM OACB BMC S S S t =-=-⨯-⨯≤四边形四边形三角形 解得11.6t ≥,则11.612t ≤<,综上02t <≤或11.612t ≤<.【点睛】本题考查了非负数的表达、平面直角坐标系中图形面积表示,不等式,方程组、分类讨论等知识,综合性较强.根据题意,分类讨论是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017年第二学期禅城区初一下学期数学期末考试
一、选择题
1、计算:(x²)³=()
A、9x
B、6x
C、5x
D、x
2、30000000用科学记数法表示为()
A、3×8
10
10 D、3×7
10 B、0.3×8
10 C、3×6
3、同学们,喜欢QQ吧?以下这四个QQ表情中哪个不是轴对称图形()
A、第一个
B、第二个
C、第三个
D、第四个
4、将一副三角板按如图所示位置摆放,其中∠α=∠β一定互余的是()
5、下列计算正确的是()
A、(2a-1)²=2a²-2a+1
B、(2a+1)²=4a²+1
C、(-a-1)²=-a²-2a+1
D、(2a-1)²=4a²-4a+1
6、如图,已知AB∥CD,∠1=60°,则∠3=()
A、90°
B、120°
C、60°
D、15°
7、下列事件是不确定事件的是()
3
A、守株待兔
B、水中捞月
C、风吹草动
D、水涨船高
8、投掷硬币m 次,正面向上n 次,其频率p=
m
n ,则下列说法 正确的是( ) A 、p 一定等于
21 B 、p 一定不等于2
1 C 、多投一次,p 更接近21 D 、投掷次数逐步增加,p 稳定在21附近 9、下列各组数据为三角形三边,不能构成三角形的是( )
A 、4,8,7
B 、3,4,7
C 、2,3,4
D 、13,12,5
10、小芳的爷爷每天坚持体育锻炼,某天他慢步走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小芳爷爷离家的距离y (米)与时间x (分钟)之间的关系的大致图象是( )
二、填空题
11、1.35×3-10=____________
12、如图:已知∠1=∠2,要判定△ACO ≌△BCO ,则需要补充
的一个条件为____________(只需补充一个即可)
13、若(2x-3y )×M=9y ²-4x ²,则M 表示的式子为_____________
14、在分别写着“线段、钝角、直角三角形、等边三角形”的4张卡纸中,小刚从中任意抽取一张卡纸,抽到是轴对称图形的概率为________
15、如图,在△ABC 中,边BC 长为10,BC 边上的高AD 为6,
点D 在BC 上运动,设BD 长为x (0<x <10),则△ACD 的面积
y与x之间的关系式_____________________
16、如图,将CD翻折至CB位置,已知AB∥CD,∠CBE=70°,
则∠1的度数是________
三、解答题(一)
17、计算:(2x-3y)²-(y+3x)(3x-y)
18、完成下列推理说明:
如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE
解:∵∠A=∠F(已知)
∴_______∥_______(_________________________)
∴______=∠1(_________________________)
又∵∠C=∠D(已知)
∴∠1=______(_________________________)
∴BD∥CE
19、假设圆柱的高是5cm,圆柱的底面半径由小到大变化时,
(1)圆柱的体积如何变化?在这个变化的过程中,自变量、因变量各是什么?(2)如果圆柱底面半径为r(cm),那么圆柱的体积V(cm³)可以表示为_________ ______________
(3)当r由1cm变化到10cm时,V由________cm³变化到________cm³
四、解答题(二)
20、一个口袋中装有3个白球、5个红球,这些球除了颜色外完全相同,充分摇匀后随机摸出一球,发现是白球
(1)如果将这个白球放回,再摸出一球,它是白球的概率是多少?
(2)如果将这个白球不放回,再摸出一球,它是白球的概率是多少?
21、阅读下题及其证明过程:
已知:如图,D是△ABC中BC的中点,EB=EC,∠ABE=∠ACE,
试说明:∠BAE=∠CAE
证明:在△AEB和△AEC中,
EB=EC
∠ABE=∠ACE
AE=AE
∴△AEB≌△AEC(第一步)
∴∠BAE=∠CAE(第二步)
问:(1)上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,
请指出错在哪一步?
(2)写出你认为正确的推理过程。
22、先化简,再求值:
[(a-b )²+(2a+b )(1-b )]÷(-
2
1a ),其中a 、b 满足a=20171-)(,b=-1-2-)(
三、解答题(三)
(1)直接回答:已知三角形的两边,能不能作出一个三角形?
(2)直接回答:已知三角形的三边,能不能作出一个三角形?
(3)已知三角形的两边和一角,试作三角形(要求:不写作法,保留作图痕迹)
a b θ
24、如图,在直角三角形ABC 中,∠B=90°,点M 、N 分别在边
BA ,BC 上,且BM=BN 。
(1)画出直角三角形ABC 关于直线MN 对称的三角形///C B A ;
(2)如果AB=a ,BC=b ,BM=x ,用a 、b 、x 的代数式表示三角形/AMA 的面积1S
25、把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积。
例如,由图1,可得等式:(a+2b)(a+b)=a²+3ab+2b²
(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来
(2)利用(1)中所得到的结论,解决下面的问题:
已知a+b+c=11,ab+bc+ac=38,求a²+b²+c²的值
(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF。
若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积
图1 图2 图3
参考答案
一、选择题
1、B
2、D
3、A
4、B
5、D
6、C
7、A
8、D
9、B
10、C
二、填空题
11、0.00135 12、OA=OB/∠ACO=∠BCO/∠A=∠B
13、-3x-2y 14、4
3 15、y=30-3x (0<x <10) 16、55°
三、解答题(一)
17、-5x ²-12xy+10y ²
18、解:∵∠A=∠F (已知)
∴DF ∥AC (内错角相等,两直线平行)
∴∠D=∠1(两直线平行,内错角相等)
又∵∠C=∠D (已知)
∴∠1=∠C (等量代换)
∴BD ∥CE
19、(1)圆柱的体积随着圆柱的底面半径的增大而增大。
自变量:圆柱的底面半径 因变量:圆柱的体积
(2)V=5πr ² (3)5π;500π
四、解答题(二)
20、(1)∵8
3353=+=(白球)P ∴它是白球的概率是8
3。
(2)∵7
21-351-3=+=(白球)P ∴它是白球的概率是7
2。
21、(1)解:不正确,第一步错误
(2)证明:∵D 是BC 的中点,EB=EC
∴∠BED=∠CED
∴∠AEB=∠AEC
在△AEB 和△AEC 中, EB=EC
∠AEB=∠AEC
AE=AE
∴△AEB ≌△AEC (SAS ) ∴∠BAE=∠CAE
22、-2a+8b-4;2
五、解答题(三)
23、(1)不能 (2)能 (3)略
24、解:(1)略
(2)连接//CC AA 、
∵∠B=90°,BM=BN
∴△BMN 是等腰直角三角形 ∴△/AMA 是等腰直角三角形
∴2221x 2
1-ax -a 21x -a 21==)(S 25、(1)(a+b+c )²=a ²+b ²+c ²+2ab+2ac+2bc
(2)45 (3)20。