江苏省2016-2017学年第二学期4月月考八年级数学试题
2016-2017年江苏省泰州市姜堰实验中学八年级(下)第一次月考数学试卷(解析版)

A.AE∥BC C.△BDE 是等边三角形 二、填空题
B.∠ADE=∠BDC D.△ADE 的周长是 9
7.(3 分)为了了解我市 6000 名学生参加初中毕业会考数学考试的成绩情况,从中抽取了
200 名考生的成绩进行统计,在这个问题中,样本容量是
.
8.(3 分)“准确度量四边形的外角和,结果是 360°”,这是
(1)说明四边形 ACEF 是平行四边形; (2)当∠B 满足什么条件时,四边形 ACEF 是菱形,并说明理由.
24.已知如图,在菱形 ABCD 中,对角线 AC、BD 相交于点 O,DE∥AC,AE∥BD. (1)求证:四边形 AODE 是矩形; (2)若 AB=6,∠BCD=120°,求四边形 AODE 的面积.
C、是中心对称图形,故本选项错误;
D、是中心对称图形,故本选项错误;
故选:B.
2.(3 分)以下问题,不适合用全面调查的是( )
5.(3 分)如图所示是由四根木棒搭成的平行四边形框架,AB=8cm,AD=6cm,在此位置 上,使 AB 固定,逆时针转动 AD.则关于▱ ABCD 面积变化情况叙述正确的是( )
A.先变大,再变小 B.先变小,再变大
第 1 页(共 20 页)
C.保持不变 D.转动过程中,▱ ABCD 面积没有最大值 6.(3 分)在等边△ABC 中,D 是边 AC 上一点,连接 BD,将△BCD 绕点 B 逆时针旋转 60°, 得到△BAE,连接 ED,若 BC=5,BD=4.则下列结论错误的是( )
第 3 页(共 20 页)
(1)在正方形网格中,画出△AB′C′;
(2)求出四边形 BCB′C′的面积;
(3)设点 P(a,b)是△ABC 边上的一点,点 P 绕点 A 顺时针方向旋转 90°后的对应点是
2016-2017学年上人教版八年级数学第一次月考试卷

2016-2017 学年上八年级数学第一次月考试卷(时间: 90 分钟分数:100分)班级: _________姓名: __________一、选择题(每题 2 分,共 24 分)1、已知三角形的两边长分别为 3 和 5,则这个三角形的第三边长可能是()A、2B、3C、8D、92、如图, D,E 分别是△ ABC 的边 AC 、BC 的中点,那么以下说法中不正确的是()A、 DE 是△ BCD 的中线B、BD 是△ ABC 的中线C、 AD=DC ,BE=ECD、AD=EC , DC=BE第2题图第3题图3、如图,图中是△ ABC 的外角的是()A、∠ EAB 、∠ EAD B 、∠ EAD 、∠ DACC、∠ EAB、∠ EAD 、∠ DAC D 、∠ EAB、∠ DAC4、如图,在△ ABC 中, BE 是△ ABC 的高,此中画法正确的选项是()A、B、C、D、5、在△ ABC 中,∠ A :∠ B:∠ C=3:4:5,则∠ C=()A、45°B、60°C、75°D、90°6、要使一个六边形的木架稳固,起码要钉()根木条A、9 根B、6 根C、4 根D、3 根7、一个多边形的内角和是 900°,则这个多边形的边数是()A、 7B、8C、9D、108、在四边形 ABCD中, AB=AD ,CB=CD,若连结 AC 、BD 订交于点 O,则图中全等三角形共有()A、1 对B、2 对C、3 对D、4 对9、如图,已知△ AB D≌△ CDB ,且 AB 、CD 是对应边,下边四个结论中不正确的是()A、△ ABD 和△ CDB 的周长相等B、∠ ABD =∠ CBDC、AD∥BCD、∠ C+∠ ABC=180°第9题图第12题图10、以下说法:①形状同样的两个图形是全等形;②面积相等的两个三角形是全等三角形;③全等三角形的周长相等,面积也相等;④在△ABC和△ DEF中,若∠A=∠D,∠B=∠E,∠C=∠ F,则这两个三角形关系可记作△ ABC≌△ DEF.此中正确的个数是()A、1个B、2个C、3个D、4个11、在△ ABC 和△ A’B’C’中, AB=A’B’,AC=A’C’, 要证明△ ABC≌ △A’B’C’, 须增添一个条件,这个条件能够是①∠A=∠ A’, ②∠ B=∠ B’ , ③BC=B’C’中的()A、①或②或③B、①或②C、①或③D、②或③12、如图,在△ ABC和△ DEF中,AB=DE,∠ B=∠E,要增添一个条件使△ ABC≌△DEF,则以下条件中错误的选项是()A、BC=EFB、∠ A=∠ DC、AC=DFD、∠ C=∠ F二、填空题(每题 3 分,共 30 分)13、建筑高楼经常需要用塔吊来吊建筑资料,而塔吊的上部是三角形构造,这是由于: ______________________________.14、如图,用符号表示图中全部的三角形__________________________________________________________________________.第14题图第16题图第17题图15、已知等腰三角形的两边长分别是2,4,则这个等腰三角形的周长是_______.16、如图, AB=AD , CB=CD,∠ B=31°,∠ BAD=5 4°,则∠ ACD的度数是___________.17、如图,在 Rt △ABC中,∠ C=90°,∠ ABC的均分线 BD交 AC于点 D. 若CD=3,则点 D 到 AB的距离是 __________.18、如图,∠ ABC=∠DEF,AB=DE,要说明△ ABC≌△ DEF,(1)若以“ SAS”为依照,还需增添的条件是 _____________;( 2)若以“ ASA”为依照,还需增添的条件是 ____________;( 3)若以“ AAS” 依照,需增添的条件是____________.第18第19第2019、如,若 AB∥CD,∠ 1=45°, ∠2=35°,∠ 3=__________.20、如,小亮从 A 点出,沿着直前10 米后向左 30,再沿着直前10 米,又向左 30,⋯⋯,照走下去,他第一次回到出地 A 点,一共走了 __________米.21、如所示,若△ ABD≌△ ACE,∠ B 与∠ C 是角,若AE=5㎝, BE=7㎝,∠ ADB=100°,∠ AEC=,AC=___________.第21第2222、在如所示的 6× 5 方格中,每个小方格都是 1 的正方形,△ ABC是格点三角形(即点恰巧是正方形的点),与△ ABC有一条公共 BC且全等的全部格点三角形的个数是 __________个.三、解答题( 46 分)23、一个多形的内角和与它的外角和 2520°,个多形的数是多少?(8 分)24、如所示,在△ ABC中,∠ A=38°,∠ ABC=70°, CD⊥ AB于点 D,CE均分∠ACB.求∠ DCE的度数 . (8 分)25、如图,在△ AFD和△ CEB中,点 A、E、F、C在同一条直线上, AE=CF,∠B=∠D, AD∥BC.求证: DF=BE( 8 分)26、如图, BC⊥AC, BD⊥AD,AC=AD,点 E 在 AB上,求证: CE=DE( 10 分)27、如图,点 M、 N 分别是正五边形 ABCDE的 BC、CD上的点,且 BM=CN, AM与BN订交于点 P. 求证:(1)△ ABM≌△ BCN;(2)求∠ APN的度数 . (12 分)。
2016-2017学年度初一第一学期第二次月考模拟试题(数学)

2016-2017学年度第一学期第二次月考模拟试题六年级数学(满分120分 考试时间90分钟)第一卷一、填空题(每题3分,共36分)1、在代数式中:7,,1,1,43,4,3,21232xyn x x ab xy a π---单项式的个数有( ) A 、3个 B 、4个 C 、5个 D 、6个 2、下列说法正确的是( ) A 、单项式43abc 的系数和次数都是3 B 、单项式334r π的系数是π34,次数是3 C 、单项式4322y x 的次数是9 D 、单项式z y x 225.0-的系数是-0.5,次数是4 3、下列说法正确的有( )①π的相反数是14.3-; ②符号相反的数互为相反数; ③()8.3--的相反数是3.8; ④一个数和它的相反数不可能相等; ⑤正数与负数互为相反数.4、点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论: 甲:0<-a b 乙:0>+b a 丙:b a < 丁:0>ab正确的是( )A 、甲乙B 、丙丁C 、甲丙D 、乙丁 5、方程1273422--=--x x 去分母得( ) A 、2-2(2x -4)=-(x -7) B 、12-2(2x -4)=-x -7 C 、12-2(2x -4)=-(x -7) D 、12-4x +4=-x +7 6、若21=x 是方程x a x 33-=-的解,则a=( ) A 、2 B 、25C 、4D 、67、一个四次多项式与一个五次多项式的和一定是( )A 、九次多项式B 、五次多项式C 、四次多项式D 、无法确定 8、已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( ) A :a a b b >+>->-11 B :b b a a ->->>+11 C :b a b a ->>->+11 D :a b a b >->+>-11 9、若,0≠ab 则bba a +的取值不可能是( ) A 、0 B 、1 C 、2 D 、-210、某品牌商品,按标价九折出售,仍可获得20%的利润。
江苏省徐州十三中2016-2017学年八年级(上)月考数学试卷(10月份)(解析版)

2016-2017学年江苏省徐州十三中八年级(上)月考数学试卷(10月份)一、选择题(每题3分,共24分)1.有下列四种说法:①所有的等边三角形都全等;②两个三角形全等,它们的最大边是对应边;③两个三角形全等,它们的对应角相等;④对应角相等的三角形是全等三角形.其中正确的说法有()A.1个B.2个C.3个D.4个2.下列轴对称图形中,只有两条对称轴的图形是()A.B.C.D.3.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点6.直角三角形三边垂直平分线的交点位于三角形的()A.三角形内B.三角形外C.斜边的中点 D.不能确定7.如图,正方形网格中,已有两个小正方形被涂黑,再涂黑另外一个小正方形,使整个被涂黑的图案构成一个轴对称图形的方法有()A.5 B.6 C.4 D.78.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AC,下列结论正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定二、填空题(每题3分,共24分)9.从你学过的几何图形中举出一个轴对称图形的例子:.10.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).11.如图,已知∠B=∠E,AB=DE,要推得△ABC≌△EDF,若以“AAS”为依据,缺条件.12.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.13.如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.则△AEG的周长为.14.如图,将长方形ABCD沿对角线BD折叠,使C恰好落在C'位置,∠DBC=25°,则∠ABC'= °.15.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= cm.16.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE等于.三、解答题(本大题共7小题,共52分)17.如图,以AB为对称轴,画出△CDE的对称图形△C1D1E1.18.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.19.如图,已知AB=CD,∠B=∠C,求证:△ABO≌△DCO.20.如图,已知AC⊥AB,DB⊥AB,AC=BE,CE=ED.求证:(1)△CAE≌△EBD;(2)CE⊥DE.21.如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)AC垂直平分BD.22.如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC 上,且BD=DF.求证:(1)DE=DC;(2)BE=CF.23.如图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q 在线段CD上由C点向D点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?2016-2017学年江苏省徐州十三中八年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(每题3分,共24分)1.有下列四种说法:①所有的等边三角形都全等;②两个三角形全等,它们的最大边是对应边;③两个三角形全等,它们的对应角相等;④对应角相等的三角形是全等三角形.其中正确的说法有()A.1个B.2个C.3个D.4个【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】根据全等三角形的判定方法对各小题分析判断即可得解.【解答】解:①所有的等边三角形,对应角相等,对应边不一定相等,所以不一定都全等,故本小题错误;②两个三角形全等,它们的最大边是对应边,正确;③两个三角形全等,它们的对应角相等,正确;④对应角相等的三角形对应边不一定相等,不一定是全等三角形,故本小题错误;综上所述,正确的说法有②③共2个.故选B.2.下列轴对称图形中,只有两条对称轴的图形是()A.B.C.D.【考点】P3:轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形,看各个图形有几条对称轴即可.【解答】解:A、有两条对称轴,符合题意;B、C、都只有一条对称轴,不符合题意;D、有六条,对称轴,不符合题意;故选A.3.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【考点】KB:全等三角形的判定.【分析】根据题目所给条件∠ABC=∠DCB,再加上公共边BC=BC,然后再结合判定定理分别进行分析即可.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS【考点】N2:作图—基本作图;KB:全等三角形的判定.【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【解答】解:连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,,∴△OAC≌△OBC(SSS).故选:B.5.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点【考点】KG:线段垂直平分线的性质.【分析】根据垂直平分线的性质,可得到三角形的三个顶点距离相等的点是三条边的垂直平分线的交点.【解答】解:三角形的三个顶点距离相等的点是三条边的垂直平分线的交点.故选:D.6.直角三角形三边垂直平分线的交点位于三角形的()A.三角形内B.三角形外C.斜边的中点 D.不能确定【考点】KG:线段垂直平分线的性质.【分析】垂直平分线的交点是三角形外接圆的圆心,由此可得出此交点在斜边中点.【解答】解:∵直角三角形的外接圆圆心在斜边中点可得直角三角形三边垂直平分线的交点位于三角形的斜边中点.故选C.7.如图,正方形网格中,已有两个小正方形被涂黑,再涂黑另外一个小正方形,使整个被涂黑的图案构成一个轴对称图形的方法有()A.5 B.6 C.4 D.7【考点】P8:利用轴对称设计图案.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,选择的位置共有5处.故选:A.8.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AC,下列结论正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定【考点】KF:角平分线的性质.【分析】取AE=AD,然后利用“边角边”证明△ACD和△ACE全等,根据全等三角形对应边相等可得CD=CE,然后利用三角形的任意两边之和大于第三边解答.【解答】解:如图,取AE=AD,∵对角线AC平分∠BAD,∴∠BAC=∠DAC,在△ACD和△ACE中,,∴△ACD≌△ACE(SAS),∴CD=CE,∵BE>CB﹣CE,∴AB﹣AD>CB﹣CD.故选A.二、填空题(每题3分,共24分)9.从你学过的几何图形中举出一个轴对称图形的例子:正方形.【考点】P3:轴对称图形.【分析】结合轴对称图形的概念进行求解即可.【解答】解:学过的几何图形中是轴对称图形的有:正方形、长方形、圆、等边三角形等.故答案为:正方形(答案不唯一).10.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD (添加一个条件即可).【考点】KB:全等三角形的判定.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.11.如图,已知∠B=∠E,AB=DE,要推得△ABC≌△EDF,若以“AAS”为依据,缺条件∠ACB=∠DFE .【考点】KB:全等三角形的判定.【分析】根据“AAS”三角形全等的判定方法作出判断即可.【解答】解:∵∠B=∠E,AB=DE,∴要推得△ABC≌△EDF,若以“AAS”为依据,缺条件∠ACB=∠DFE.故答案为:∠ACB=∠DFE.12.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是 3 cm.【考点】KF:角平分线的性质.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.13.如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.则△AEG的周长为7 .【考点】KG:线段垂直平分线的性质.【分析】由题意知,DE、FG分别是边AB、AC的垂直平分线,根据线段垂直平分线的性质,可得,BE=AE,AG=GC,又C=AE+AG+EG,BC=8,所以,代入即可得△AEG出.【解答】解:如图.∵DE、FG分别是边AB、AC的垂直平分线,∴BE=AE,AG=GC,∴BE+GC=AE+AG,=AE+AG+EG,∴C△AEG=BE+GC+EG,=BC,又∵BC=7,=7.∴C△AEG故答案为:7.14.如图,将长方形ABCD沿对角线BD折叠,使C恰好落在C'位置,∠DBC=25°,则∠ABC'= 40 °.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】依据正方形的性质可知∠ABC=90°,由折叠的性质可知∠C′BD=∠DBC=25°,故此可求得问题的答案.【解答】解:根据折叠的性质可知∠CBD=∠DBC′=25°.∴∠CBC′=50°.∵ABCD为正方形,∴∠ABC=90°.∴∠ABC′=∠ABC﹣∠CBC′=40°.故答案为:40°.15.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= 2 cm.【考点】KF:角平分线的性质.【分析】过点D,作DF⊥BC,垂足为点F,根据BD是∠ABC的角平分线,得DE=DF,根据等高的三角形的面积之比等于其底边长之比,得△BDC与△BDA的面积之比,再求出△BDA的面积,进而求出DE.【解答】解:如图,过点D,作DF⊥BC,垂足为点F∵BD是∠ABC的角平分线,DE⊥AB,∴DE=DF∵△ABC的面积是30cm2,AB=18cm,BC=12cm,=•DE•AB+•DF•BC,即×18×DE+×12×DE=30,∴S△ABC∴DE=2(cm).16.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE等于 2 .【考点】KD:全等三角形的判定与性质.【分析】如图作BF⊥DC交DC的延长线于F.由△AEB≌△CBF,推出BE=BF,推出四边形BFDE是正方形,由S△ABE =S△BFC,推出四边形ABCD的面积=正方形BFDE的面积,即BE2=4,即可解决问题.【解答】解:如图作BF⊥DC交DC的延长线于F.∵BE⊥AD,BF⊥CD,∴∠F=∠DEB=∠D=90°,∴四边形BFDE是矩形,∴∠EBF=90°∵∠EBC+∠ABE=90°,∠EBC+∠CBF=90°,∴∠CBF=∠ABE,在△AEB和△BFC中,,∴△AEB≌△CBF,∴四边形BFDE是正方形,∵S△ABE =S△BFC,∴四边形ABCD的面积=正方形BFDE的面积,∴BE2=4,∵BE>0,∴BE=2.故答案为2.三、解答题(本大题共7小题,共52分)17.如图,以AB为对称轴,画出△CDE的对称图形△C1D1E1.【考点】P7:作图﹣轴对称变换.【分析】分别作C、E、D关于直线AB的对称点,连接得出三角形即可.【解答】解:如图,分别作C、E、D关于直线AB的对称点C1、E1、D1,连接C1E1、E1D1、C1D1,则△C1D1E1为所求.18.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.【考点】N2:作图—基本作图.【分析】(1)作出∠AOB的平分线,(2)作出CD的中垂线,(3)找到交点P 即为所求.【解答】解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.19.如图,已知AB=CD,∠B=∠C,求证:△ABO≌△DCO.【考点】KB:全等三角形的判定.【分析】直接利用全等三角形的判定方法利用AAS得出即可.【解答】证明:在△ABO和△DCO中,,∴△ABO≌△DCO(AAS).20.如图,已知AC⊥AB,DB⊥AB,AC=BE,CE=ED.求证:(1)△CAE≌△EBD;(2)CE⊥DE.【考点】KD:全等三角形的判定与性质.【分析】(1)由AC⊥AB于点A,BD⊥AB于点B,得到∠A=∠B=90°,推出Rt △ACE≌Rt△BED即可;(2)根据全等三角形的性质得到∠AEC=∠D,由∠D+∠BED=90°,等量代换得到∠AEC+∠BED=90°,即可得到结论.【解答】解:(1)证明:∵AC⊥AB于点A,BD⊥AB于点B,∴∠A=∠B=90°,在△RtACE和△RtBED中,,∴Rt△ACE≌Rt△BED;(2)∵Rt△ACE≌Rt△BED,∴∠AEC=∠D,∵∠D+∠BED=90°,∴∠AEC+∠BED=90°,∴∠CED=180°﹣90°=90°,∴CE⊥DE.21.如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:(1)△ABC≌△ADC;(2)AC垂直平分BD.【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【分析】(1)由∠1=∠2,∠3=∠4,再加AC为公共边可证△ABC≌△ADC;(2)由(1)可得BC=DC,AB=AD,可得A、C都在BD的垂直平分线上,可得结论.【解答】证明:(1)在△ABC和△ADC中,,∴△ABC≌△ADC(ASA);(2)由(1)知△ABC≌△ADC,∴CB=CD,AB=AC,∴点C、A在线段BD的垂直平分线上,∴AC垂直平分BD.22.如图,△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC 上,且BD=DF.求证:(1)DE=DC;(2)BE=CF.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】(1)根据角平分线上的点到角的两边的距离相等证明即可;(2)利用“边角边”证明△BDE和△FDC全等,再根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠C=90°,∴DC⊥AC,∵是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.23.如图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q 在线段CD上由C点向D点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】正方形的四边相等,四个角都是直角.(1)①速度相等,运动的时间相等,所以距离相等,根据全等三角形的判定定理可证明.②因为运动时间一样,运动速度不相等,所以BP≠CQ,只有BP=CP时才相等,根据此可求解.(2)知道速度,知道距离,这实际上是个追及问题,可根据追及问题的等量关系求解.【解答】解:(1)①∵t=1秒,∴BP=CQ=4×1=4厘米,∵正方形ABCD中,边长为10厘米∴PC=BE=6厘米,又∵正方形ABCD,∴∠B=∠C,∴△BPE≌△CQP②∵VP ≠VQ,∴BP≠CQ,又∵△BPE≌△CQP,∠B=∠C,则BP=PC,而BP=4t,CP=10﹣4t,∴4t=10﹣4t∴点P,点Q运动的时间秒,∴厘米/秒.(2)设经过x秒后点P与点Q第一次相遇,由题意,得4.8x﹣4x=30,解得秒.∴点P共运动了厘米∴点P、点Q在A点相遇,∴经过秒点P与点Q第一次在A点相遇.2017年6月7日- 21 -。
八年级数学(下册)第一次月考数学试卷(含答案解析) (4)

八年级(下)第一次月考数学试卷一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠25.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°二、填空题题(3分×10=30分)9.我国国旗上的五角星有条对称轴.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=°.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为厘米.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有对全等三角形.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=°.16.如图:作∠AOB的角平分线OP的依据是.(填全等三角形的一种判定方法)17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.2016-2017学年江苏省淮安市盱眙县八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【考点】全等三角形的应用.【分析】根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠2【考点】全等三角形的判定.【分析】根据全等三角形的判定可以添加条件∠1=∠2.【解答】解:条件是∠1=∠2,∴∠ABE=∠DBC,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),故选D5.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A图有两边相等,而夹角不一定相等,二者不一定全等;B图与三角形ABC有两边及其夹边相等,二者全等;C图有两边相等,而夹角不一定相等,二者不一定全等;D图与三角形ABC有两角相等,二者不一定全等;故选B6.根据下列条件,能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长【考点】全等三角形的判定.【分析】根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.【解答】解:A、满足SSA,不能判定全等;B、不是一组对应边相等,不能判定全等;C、满足AAA,不能判定全等;D、符合SSS,能判定全等.故选D.7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC ∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°【考点】全等三角形的性质.【分析】先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB即可得出∠BAD的度数.【解答】解:∵△ABC≌△ADE,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°﹣28°﹣95°=57°,∴∠BAD=∠DAE+∠EAB=77°.故选D.二、填空题题(3分×10=30分)9.我国国旗上的五角星有5条对称轴.【考点】轴对称的性质.【分析】根据轴对称图形的定义,可直接求得结果.【解答】解:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有5条对称轴.故答案为:5.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=25°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D和∠F,再根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∠A=80°,∠C=75°,∴∠D=∠A=80°,∠F=∠C=75°,∴∠E=180°﹣∠D﹣∠F=25°.故答案为:25.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11.【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:AB=DC.【考点】全等三角形的判定.【分析】条件是AB=DC,根据SAS推出即可.【解答】解:添加的条件是:AB=DC,理由是:∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故答案为:AB=DC.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为5厘米.【考点】全等三角形的应用.【分析】首先利用SAS定理判定△AOB≌△A′OB′,然后再根据全等三角形对应边相等可得A′B′=AB=5cm.【解答】解:连接AB,∵把两根钢条A′B、AB′的中点连在一起,∴AO=A′O,BO=B′O,在△ABO和△A′B′O中,∴△AOB≌△A′OB′(SAS),∴A′B′=AB=5cm,故答案为:5.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有3对全等三角形.【考点】全等三角形的判定.【分析】由已知易得△ABD≌△ACD,从而运用全等三角形性质及判定方法证明△BDE≌△CDE,△ABE≌△ACE.【解答】解:图中的全等三角形共有3对.∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD,∠BAD=∠CAD,在△BDE与△CDE中,,∴△BDE≌△CDE(SAS),∴BE=CE,在△ABE与△ACE中,,∴△ABE≌△ACE(SSS).故答案为:3.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=10°.【考点】全等三角形的判定与性质.【分析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=40°,求出∠EAC的度数,然后即可求出∠AEC的度数.【解答】解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,在Rt△CAE与△RtDAE中,,∴Rt△CAE≌Rt△DAE(HL),∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=40°,∴∠CAB=90°﹣40°=50°,∴∠EAC=10°.故答案为:10.16.如图:作∠AOB的角平分线OP的依据是SSS.(填全等三角形的一种判定方法)【考点】作图—基本作图;全等三角形的判定.【分析】根据作法可知OC=OD,PC=PD,OP=OP,故可得出△OPC≌△OPD,进而可得出结论.【解答】解:在△OPC与△OPD中,∵,∴△OPC≌△OPD(SSS),∴OP是∠AOB的平分线.故答案为:SSS.17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出4个.【考点】作图—复杂作图.【分析】能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个【解答】解:如图,可以作出这样的三角形4个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2(2)S四边形A1B1C1D1=12﹣1﹣1﹣﹣2=.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.【考点】作图—应用与设计作图;全等图形.【分析】观察图形发现:这个正方形网格的总面积为16,因此只要将面积分为8,即占8个方格,并且图形要保证为相同即可.【解答】解:如下图所示:21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.【考点】全等三角形的性质.【分析】根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.【解答】解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠D=∠A,全等三角形对应边相等可得DO=AO,再根据三角形的内角和定理列式计算即可求出∠DCO,BD=BO+DO计算即可得解.【解答】解:∵△AOB≌△DOC,∴∠D=∠A=80°,DO=AO=18,在△COD中,∠DCO=180°﹣∠D﹣∠DOC=180°﹣80°﹣30°=70°,BD=BO+DO=23+18=41.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.【考点】全等三角形的判定与性质.【分析】由已知两对边相等,加上公共边AB=AB,利用SSS得到三角形ABC与三角形ABD全等,利用全等三角形对应角相等得到∠CAB=∠DAB,即可得证.【解答】证明:在△ABC与△ABD中,,∴△ABC≌△ABD(SSS),∴∠CAB=∠DAB,∴AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.【考点】全等三角形的判定与性质.【分析】欲证明AD=BC,只要证明△ACB≌△CAD即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ACD,在△ACB和△CAD中,,∴△ACB≌△CAD(SAS),∴AD=BC(全等三角形的对应边相等).25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【分析】欲证明AB∥DE,只需证得∠B=∠FED.由Rt△ABC≌Rt△DEF,根据全等三角形的性质推知该结论即可.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据两个等腰直角三角形的性质得:AB=AC,AD=AE,∠BAC=∠EAD=90°,由等式性质得:∠BAE=∠CAD,根据SAS证明两三角形全等;(2)由等腰直角三角形得两锐角为45°,再由全等三角形的性质得:∠ACD=∠B=45°,所以∠BCD=90°,则CD⊥BE.【解答】证明:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS);(2)CD⊥BE,理由是:∵△ABC是等腰直角三角形,∴∠ABC=∠ACB=45°,∵△ABE≌△ACD,∴∠ACD=∠ABC=45°,∴∠BCD=∠ACB+∠ACD=45°+45°=90°,∴CD⊥BE.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定与性质.【分析】直接利用全等三角形的判定与性质分别得出△MOE≌△NOD(SAS),△MDC≌△NEC(AAS),△DOC≌△EOC(SSS),进而得出答案.【解答】解:他的做法正确;理由:在△MOE和△NOD中∵,∴△MOE≌△NOD(SAS),∴∠OME=∠DNO,∵OM=ON,OD=OE,∴DM=EN,∴在△MDC和△NEC中,∴△MDC≌△NEC(AAS),∴DC=EC,在△DOC和△EOC中,∴△DOC≌△EOC(SSS),∴∠DOC=∠EOC,∴OC就是∠AOB的平分线.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是矩形;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.【考点】四边形综合题;全等三角形的判定与性质;平行四边形的判定;矩形的判定;旋转的性质.【分析】思考与实践:(1)根据矩形的定义:有一个角是直角的平行四边形是矩形进行判断即可;(2)取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,根据旋转后三角形的一条边与四边形的一边在同一条直线上,构成平行四边形.发现与运用:=S□ABGH即可;(1)过点E作AB的平行线,交BC于点G,交AD的延长线于点H,得出S梯形ABCD(2)分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH一起拼接到△FBH位置即可.【解答】解:(Ⅰ)(1)如图2所示,△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,∴EF∥AB,又∵在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,∴∠FDP+∠ADP=180°,∴AD和DF在同一条直线上,那么构成的新图形是一个四边形,又∵AD∥BC,∴四边形ABEF是一个平行四边形,∵∠A=90°,∴拼成的新图形是矩形.故答案为:矩形;(2)如图所示,取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,△PEA绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,所以EF∥BC,由于图中AB∥CD所以图中四边形BCFE是平行四边形.(Ⅱ)(1)如下图所示,过点E作AB的平行线,交BC于点G,交AD的延长线于点H,∵AH∥CG,∴∠H=∠CGE,∵E是CD的中点,∴DE=CE,又∵∠DEH=∠CEG,∴△DEH≌△CEG(AAS),∴S△DEH =S△CEG,∵AH∥BC,AB∥HC,∴四边形ABGH是平行四边形,∵EF⊥AB于点F,AB=5,EF=4,∴平行四边形ABGH的面积=AB×EF=5×4=20,∴梯形ABCD的面积=五边形ABGEDD的面积+△CEG的面积=五边形ABGEDD的面积+△DEH的面积=平行四边形ABGH的面积=20;(2)能.如图5,分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH 一起拼接到△FBH位置即可.。
2016-2017学年度第二学期梯级强化训练月考试题及答案八年级语文(三) 部编人教版八年级下册

2016-2017学年度第二学期梯级强化训练月考试题及答案八年级语文(三)部编人教版八年级下册2016-2017学年度第二学期梯级强化训练月考试题八年级语文(三)第一单元——第三单元、第五单元、题号一二三四总分得分考生注意:本试卷满分120分,考试时间120分钟。
得分评卷人一、积累和运用(共6小题,计18分)1.选出下列注音完全正确的一项()(2分)A.真谛(dì) 蓬蒿(hāo) 窥探(kuī) 美味佳肴(y āo)B.璀璨(càn) 咫尺(bǐ) 哂笑(xī) 藏污纳垢(g òu)C.胆怯(qìe)和煦(xù) 尴尬(gā) 鸢飞戾天(l ì)D.虐待(nuè) 媲美(pì) 朔方(suò) 箪瓢屡空(dān) 2.选出下列没有错别字的一项()(2分)A.沧茫狩猎一视同仁相辅相成B.蜿蜒凋零随机英变目空一切C.鲲鹏禁锢颤颤巍巍莫衷一是D.狼籍内涵张弛不定不容置疑3.下列各句中加点的成语使用不恰当的一句是()(2分)A.当敌人冲进大厅的时候,只见他正襟危坐,那副处变不惊、视死如归的气节真让人敬佩!B.篮球比赛输了,不要怨天尤人,而要吸取教训,加紧训练,提高技艺。
C.经过大家的努力,我们终于登峰造极,在山顶欣赏到了美好的景色。
D.一队的人力已是够强的了;可跟二队一比;就有点相形见绌了。
4.默写(6分)(1)____________________,东风无力百花残。
(2)怀旧空吟闻笛赋,____________________。
(3),草色遥看近却无。
(4)人生自古谁无死?____________________。
(5),,此事古难全。
5.按照要求,改正下面这段文字中画线处的错误。
(4分)“五四”青年节前夕,①为了关注大学生的思想状况,提高青年人的责任意识,②幸福社区举行《青春与责任》主题演讲比赛。
③大学生周思宇演讲时情真意切,激起阵阵掌声。
2016--2017第二次月考年级综合排名

班级 考号 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 90101 90110 90118 90212 90130 90125 90217 90122 90316 90209 90117 90225 90417 90404 90327 90407 90221 90203 90128 90202 90409 90306 90528 90208 90602 90421 90517 90325 90321 90205 90215 90708 90415 90420 90530 90218 90617 姓名 陈泽楷 陈嘉洋 陈卓 张杞 贺巧 裴天钰 程争争 王盼盼 闫冰 朱昊天 杨付航 周梦琦 张海鹏 岳恒彬 朱思思 尚珂 魏来 姬宇航 张海鑫 曹权宝 张硕 尹浩南 张文欣 郭志权 付鹏 彭柳 侯启文 刘宇腾 赵烨 陆欣妍 姚子拓 王艳芳 张子怡 王博雅 刘克 徐念念 王如春 总分 688.5 668.5 666.5 662 659 658 654 652.5 652 647.5 646.5 645 645 638.5 638 633.5 631.5 631.5 631 630 627.5 624.5 624 623.5 622.5 620 619.5 619 619 610 609.5 596 591.5 590.5 587 583 581 总分年次 2 9 12 14 17 19 21 22 23 7 30 32 32 42 43 49 50 50 52 55 60 67 68 71 73 74 75 77 77 97 99 125 130 131 137 146 149 总分班次 1 2 3 4 5 6 7 8 9 10 11 12 12 14 15 16 17 17 19 20 21 22 23 24 25 26 27 28 28 30 31 32 33 34 35 36 37 语文 132 131 117 122 130 130 125 129 128 117 129 128 125 120 128 129 119 124 117 122 109 118 126 133 114 120 116 113 125 125 123 122 127 123 115 121 126 语文年次 4 6 170 81 8 8 40 10 16 170 10 16 40 126 16 10 142 56 170 81 204 156 29 3 194 126 181 199 40 40 67 81 23 67 189 103 29 语文班次 2 3 36 24 4 4 16 6 9 36 6 9 16 32 9 6 34 21 36 24 48 35 14 1 44 32 41 46 16 16 22 24 12 22 43 29 14 数学 149 148 138 132 135 135 127 133 138 142 119 128 133 119 131 115 113 128 119 139 140 101 129 101 128 113 128 127 110 109 142 120 105 113 104 100 98 数学年次 1 3 24 59 43 43 86 53 24 13 128 80 53 128 63 143 147 80 128 23 21 183 76 183 80 147 80 86 158 160 13 121 172 147 175 185 188 数学班次 1 2 7 13 9 9 20 11 7 3 23 16 11 23 14 26 27 16 23 6 5 39 15 39 16 27 16 20 30 31 3 22 36 27 37 41 42 英语 134.5 129.5 131.5 135 126 124 131 122.5 124 120.5 134.5 126 127 133.5 119 130.5 136.5 115.5 124 111 116.5 126.5 129 116.5 137.5 128 108.5 121 128 126 86.5 121 116.5 115.5 117 126 106 英语年次 10 20 15 7 38 45 16 53 45 65 10 38 30 13 76 19 5 104 45 130 91 35 22 91 2 26 148 62 26 38 198 62 91 104 86 38 159 英语班次 4 10 7 3 17 21 8 25 21 30 4 17 15 6 31 9 2 36 21 41 33 16 12 33 1 13 43 28 13 17 48 28 33 36 32 17 45 政治 75 74 76 71 76 77 73 75 74 69 75 76 72 74 70 73 72 73 78 71 66 76 69 73 58 69 71 67 74 74 66 67 72 64 66 67 68 政治年次 19 30 10 74 10 6 43 19 30 101 19 10 61 30 89 43 61 43 4 74 135 10 101 43 192 101 74 123 30 30 135 123 61 158 135 123 118 政治班次 7 10 3 25 3 2 15 7 10 30 7 3 22 10 29 15 22 15 1 25 37 3 30 15 44 30 25 34 10 10 37 34 22 41 37 34 33 历史 63 61 59 61 58 54 65 62 56 64 56 59 60 58 58 63 57 62 63 58 57 68 54 68 49 58 61 55 59 65 58 54 53 60 59 60 59
八年级(下)第三次月考数学测试卷

八年级第二学期第三次月考数学试题(满分:100 时间:100分钟 )一、选择题(每小题分,共22分)1.下列命题中正确的是( )A.对角线互相平分的四边形是菱形B.对角线互相平分且相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形2.某花木场有一块等腰梯形ABCD 的空地,其各边的中点分别是E 、F 、G 、H 测量得对角线AC=10米,现想用篱笆围成四边形EFGH 场地,则需篱笆总长度是( )A. 40米B.30米C.20米D.10米3. 已知,直角梯形的一条腰长为cm 5,这腰与底成︒30的角,则这梯形的另一腰的长为( )A .cm 10B .cm 5C .cm 5.2D .cm 5.74. 计算11a a+的结果是( ).A .1aB .2aC .12a a +D .12a 5.在平行四边形、矩形、正方形、等腰梯形、直角梯形中,不是轴对称图形的有( )A. 1个B.2个C.3个D.4个6. 如图,点D 、E 、F 分别是AB 、BC 、CA 边的中点,则图中的平行四边形一共有( ). 第6题图(A)1个 (B)2个 (C)3个 (D)4个7. 等腰梯形的腰与两底的差相等,则腰与底夹的锐角为( )A .030B .045C .060D .01208. 据下列条件,能判断四边形ABCD 是平行四边形的是( )A. AB ∥CD,AD=BCB.AB=AD,CB=CDC.∠B=∠C,∠A=∠D. D.AB=CD,AD=BC9.用科学记数法表示-0.0000064记为( )A :-64×10-7B :-0.64×10-4C :-6.4×10-6D :-64010.知双曲线6y x=-,则下列各点中一定在该双曲线上的是( ) A.(3,2 )B.(-2,-3 )C.(2,3 )D.(3,-2) 11.某服装销售商在进行市场占有率的调查时,他最应该关注的是( )A. 服装型号的平均数B. 服装型号的众数C. 服装型号的中位数D. 最小的服装型号二、填空题(每空格题2分,共26分)12. 如图,在平行四边形ABCD 中,DB =DC ,∠C=700,AE⊥BD 于E ,则∠DAE =_________度13. 如图,在平行四边形ABCD 中,EF ∥BC ,GH ∥AB ,EF 、GH 的交点P 在BD 上,图中面积相等的四边形共有____对。
人教版八年级数学第二学期月考测试题(一)

第1页,共6页第2页,共6页学校 班级 姓名 座号装 订 线2011—2012学年度第二学期八年级数学月考测试题(一)考试时间:100分钟 满分:110分一、选择题。
(本大题满分30分,每小题3分)1.代数式-32x ,4x y-,x+y ,21x π+,78,53b a 中是分式的有( )A .1个B .2个C .3个D .4个 2.分式||22x x --的值为零,则x 的值为( ) A .0 B .2 C .-2 D .2或-2 3.如果把分式x yxy+中的x 、y 同时扩大2倍,那么该分式的值( ) A .扩大为原来的2倍; B .缩小为原来的12; C .不变; D .缩小为原来的144.若分式方程231x x -=1m x -有增根,则m 的值为( )A .3B .-3C .1D .-15.人体中成熟红细胞的平均直径为0.0000077m ,用科学记数法表示为( ) A .7.7×10-5m B .77×10-6m ; C .77×10-5m D .7.7×10-6m 6.下列函数关系式中不是表示反比例函数的是( )A .xy=5B .y=C .y=-3x-1D .y=7.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致( )AB C D8.满足函数y=k (x-1)和函数y=kx(k ≠0)的图象大致是( )9.如果反比例函数y=kx的图象经过点(-4,-5),那么这个函数的解析式为( ) A .y=-20x B .y=20x C .y=20x D .y=-20x10.在反比例函数y=-1x的图象上有三点(x 1,y 1),(x 2,y 2),(x 3,y 3),若x 1>x 2>0>x 3,则下列各式正确的是( )A .y 3>y 1>y 2B .y 3>y 2>y 1C .y 1>y 2>y 3D .y 1>y 3>y 2 二、填空题。
八年级数学下第一次月考试卷

八年级数学下第一次月考试卷2017八年级数学下第一次月考试卷数学集中并引导我们地精力、自尊和愿望去认识真理,并由此而生活在上帝地大家庭中。
正如文学诱导人们地情感与了解一样,数学则启发人们地想象与推理。
以下是店铺为大家提供的2017八年级数学下第一次月考试卷,欢迎大家学习参考。
一、选择题1.下列函数y= x,y=2x﹣1,y= ,y=2﹣3x中,是一次函数的有( )A.4个B.3个C.2个D.1个2.下列函数中,y随x的增大而减小的有( )A.y=﹣3x+1B.y=2x﹣1C.y=x﹣1D.y= x﹣53.一次函数y=x+1不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.一次函数y=kx+b的图象如图所示,则k、b的符号( )A.k<0,b>0B.k>0,b>0C.k<0,b<0D.k>0,b<05.下面哪个点不在函数y=﹣2x+3的图象上( )A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)6.一次函数y=﹣5x+3的图象经过的象限是( )A.一,二,三B.二,三,四C.一,二,四D.一,三,四7.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x+10D.y=﹣x﹣18.已知关于x的方程mx+x=2无解,那么m的值是( )A.m=0B.m≠0C.m≠﹣1D.m=﹣19.下列方程中,是二项方程的是( )A.x3+2=0B.x3+2x=0C.x4+2x3+1=0D. +5=010.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为( )A. B. C. D.二、填空题11.一次函数y=4x﹣3的截距是.12.已知一次函数y=kx﹣2的图象经过点(﹣1,2),则k= .13.函数y=﹣2x+4与x轴的交点坐标为,与y轴的交点坐标为.14.直线y=3x+2是由直线y=3x﹣5向平移个单位得到的.15.如果一次函数y=(2m+3)x+1的函数值y随着x值增大而减小,那么m的取值范围是.16.函数y=﹣ x+1的图象经过第象限.17.已知点A(﹣1,a),B(2,b)在函数y=﹣3x+4的图象上,则a 与b的大小关系是.18.若直线y=kx+b经过第一、三、四象限,则k 0,b 0.19.在关于x的方程2ax﹣1=0(a≠0)中,把a叫做.20.已知关于x的方程2x2+mx﹣1=0是二项方程,那么m= .三、简答题21.在实数范围内解下列方程(1)x2﹣9=0(2)8(x﹣1)3﹣27=0.22.解下列关于x的方程.(1)a2x+x=1;(2)b(x+3)=4.23.已知等腰三角形的周长为12cm,若底边长为y cm,一腰长为x cm.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.24.已知一次函数图象经过点A(1,3)和B(2,5).求:(1)这个一次函数的解析式.(2)当x=﹣3时,y的值.25.已知函数y=(2m+1)x+m﹣3,(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.已知一次函数y=kx+b的图象如图所示:(1)函数值y随x的增大而;(2)当x 时,y>0;(3)当x<0时,y的取值范围是;(4)根据图象写出一次函数的解析式为.27.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2015-2016学年上海市宝山区XX中学八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题1.下列函数y= x,y=2x﹣1,y= ,y=2﹣3x中,是一次函数的有( )A.4个B.3个C.2个D.1个【考点】一次函数的定义.【分析】根据一次函数的定义进行判断.【解答】解:y= x属于正比例函数,是特殊的一次函数,属于一次函数;y=2x﹣1,y=2﹣3x符合一次函数的定义,属于一次函数,y= 属于反比例函数.综上所述,一次函数的个数是3个.故选:B.【点评】本题考查了一次函数的定义.注意:正比例函数是特殊的一次函数.2.下列函数中,y随x的增大而减小的有( )A.y=﹣3x+1B.y=2x﹣1C.y=x﹣1D.y= x﹣5【考点】一次函数的性质.【分析】根据一次函数的增减性,当k<0时y随x的增大而减小可求得答案.【解答】解:在y=kx+b(k≠0)中,当k<0时,y随x的增大而减小,在四个选项中,只有A选项y=﹣3x+1中的k=﹣3<0,∴在y=﹣3x+1中,y随x的增大而减小,故选A.【点评】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b(k≠0)中,当k<0时,y随x的增大而减小,当k>0时,y随x的增大而增大.3.一次函数y=x+1不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的图象与系数的关系求出一次函数y=x+1经过的象限即可.【解答】解:∵一次函数y=x+1中,k=1>0,b=1>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故选D.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限是解答此题的关键.4.一次函数y=kx+b的图象如图所示,则k、b的符号( )A.k<0,b>0B.k>0,b>0C.k<0,b<0D.k>0,b<0【考点】一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又有k>0时,直线必经过一、三象限;故知k>0.再由图象过而、四象限,即直线与y轴正半轴相交,所以b>0.则k、b的符号k<0,b>0.故选A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b 的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5.下面哪个点不在函数y=﹣2x+3的图象上( )A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.【解答】解:A、当x=﹣5时,y=﹣2x+3=13,点在函数图象上;B、当x=0.5时,y=﹣2x+3=2,点在函数图象上;C、当x=3时,y=﹣2x+3=﹣3,点不在函数图象上;D、当x=1时,y=﹣2x+3=1,点在函数图象上;故选C.【点评】本题考查了点的坐标与函数解析式的关系,当点的横纵坐标满足函数解析式时,点在函数图象上.6.一次函数y=﹣5x+3的图象经过的象限是( )A.一,二,三B.二,三,四C.一,二,四D.一,三,四【考点】一次函数的性质.【分析】根据直线解析式知:k<0,b>0.由一次函数的性质可得出答案.【解答】解:∵y=﹣5x+3∴k=﹣5<0,b=3>0∴直线经过第一、二、四象限.故选C.【点评】能够根据k,b的符号正确判断直线所经过的象限.7.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x+10D.y=﹣x﹣1【考点】两条直线相交或平行问题;待定系数法求一次函数解析式.【专题】待定系数法.【分析】根据一次函数的图象与直线y=﹣x+1平行,且过点(8,2),用待定系数法可求出函数关系式.【解答】解:由题意可得出方程组,解得:,那么此一次函数的解析式为:y=﹣x+10.故选:C.【点评】本题考查了两条直线相交或平行问题,由一次函数的一般表达式,根据已知条件,列出方程组,求出未知数的值从而求得其解析式;求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.8.已知关于x的方程mx+x=2无解,那么m的值是( )A.m=0B.m≠0C.m≠﹣1D.m=﹣1【考点】一元一次方程的解.【分析】根据方程无解可得出m的值.【解答】解:假设mx+x=2有解,则x= ,∵关于x的方程mx+x=2无解,∴m+1=0,∴m=﹣1时,方程无解.故选:D.【点评】本题考查了一元一次方程的解,掌握一元一次方程的解是解题的关键.9.下列方程中,是二项方程的是( )A.x3+2=0B.x3+2x=0C.x4+2x3+1=0D. +5=0【考点】高次方程.【分析】根据二项方程的定义对各选项进行判断.【解答】解:x2+2=0为二项方程;x3+2x=0为三次方程;x4+2x3+1=0为四次方程; +5=0为分式方程.故选A.【点评】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.10.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为( )A. B. C. D.【考点】函数的图象.【分析】由已知列出函数解析式,再画出函数图象,注意自变量的取值范围.【解答】解:由题意得函数解析式为:Q=40﹣5t,(0≤t≤8)结合解析式可得出图象.故选:B.【点评】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.。
2016-2017第二学期八年级生物月考试卷

初中生物试卷第1页,共8页2016-2017第二学期八年级生物月考试卷一、选择题(本大题共25小题,共50.0分) 1.下列植物的生殖方式中,属于有性生殖的是( )A.用蒜辦繁殖大蒜B.将甘薯秧插入土中,长出新植株C.用白菜种子繁殖大白菜D.用椒草的叶繁殖椒草 2.如图是苍蝇的生殖和发育示意图,下列叙述错误的是A.苍蝇各题发育的顺序是4→2→3→1B.蝗虫的发育也同样经历过这几个阶段C.这种发育属于完全变态发育D.蜜蜂、蚊子都属于这种发育类型 3.下列属于相对性状的是( )A.豌豆的红花与豌豆的白花B.玉米的高茎与大豆的矮茎C.兔的短毛和白毛D.兔的白毛和猫的白毛 4.民俗说:“龙生龙,凤生凤,老鼠生儿会打洞。
”这说明了生物的( )A.生长现象B.适应现象C.遗传现象D.变异现象 5.下列性状中属于一对相对性状的是A.豚鼠的白毛和黑毛B.绵羊的长毛和细毛C.豌豆的黄粒和皱粒D.菊花和桃花的红色 6.下列现象属于生物变异的是( ) A.黑猫和白狗的体色有差异B.变色龙在草地上呈绿色,在树干上呈灰色C.蝴蝶的幼虫和成虫,其形态结构明显不同D.母兔生出一窝小兔,毛色各不相同 7.初中生物试卷第2页,共8页A. B. C.D.8.“基因身份证”是利用现在国内外最先进的DNA 指纹技术制作的。
基因身份证上的信息主要取自( )A.细胞壁B.细胞膜C.细胞质D.细胞核 9.如下图,同一株水毛茛,裸露在空气中的叶和浸在水中的叶,表现出两种不同的形态,前者呈扁平状后者深裂而呈丝状,这种现象说明A.生物的性状不受基因影响B.生物性状是基因和环境相互作用的结果C.生物的性状只受基因影响D.生物的性状只受环境影响10.某生物卵细胞中含12条染色体,该生物受精卵分裂形成的体细胞中染色体数目是( )A.12对B.12条C.24对D.6条 11.某细胞中有两对基因,分别位于两对染色体上,下列图解中正确的是( )初中生物试卷第3页,共8页A. B. C.D.12.基因在亲子代间“传递”的桥梁是A.生殖细胞B.卵细胞C.精子D.受精卵 13.父亲Y 染色体上的致病基因传给儿子的概率是( )A.100%B.50%C.25%D.0 14.一对夫妇已经生了一个女孩,再生一个孩子,是男孩的可能性是A.OB.25%C.50%D.100% 15.培育柑橘脱毒苗最有效的方法是( )A.嫁接B.种子繁殖C.组织培养D.扦插 16.2016年11月18日,我国神舟十一号飞船顺利返回,航天员景海鹏、陈冬在天宫二号与神舟十一号组合体内开展了为期30天的驻留,创造了中国航天员太空驻留时间的新纪录,完成了一系列空间科学实验和技术试验。
2016-2017学年陕西省西安市高新一中八年级(下)第四次月考数学试卷

2016-2017学年陕西省西安市高新一中八年级(下)第四次月考数学试卷(考试时间:90分满分:100分)一、选择题(每小题3分,共30分)1.(3分)下列方程中,是一元二次方程的有()①x2+3x=;②7x2=0;③=x;④(x+3)2=(x+2)(x﹣3);⑤2x2﹣5y=0;⑥ax2+bx+c=0.A.1个B.2个C.3个D.4个2.(3分)根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()x 3.23 3.24 3.25 3.26ax2+bx+c﹣0.06 ﹣0.02 0.03 0.09A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.263.(3分)下列各组中的四条线段a,b,c,d成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=14.(3分)已知一元二次方程x2﹣6x+9=1的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.10 B.10或8 C.9 D.85.(3分)某厂一月份生产机器100台,计划第一季度共生产380台.设二、三月份每月的平均增长率为x,则根据题意列出的方程是()A.100(1+x)2=380B.100(1+x)+100(1+x)2=380C.100+100(1+x)2=380D.100+100(1+x)+100(1+x)2=3806.(3分)如图,六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和,若丙的直角边长为2,且丁的面积比丙的面积小,则丁的直角边长是()A.B.C.D.7.(3分)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.B.C.D.8.(3分)如图所示,小明、小刚利用两个转盘进行游戏;规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得5分,否则小刚得3分,此规则对小明和小刚()A.公平B.对小明有利C.对小刚有利D.不可预测9.(3分)若关于x的一元二次方程x2+kx+4k2﹣3=0的两根分别是x1,x2,则满足x1x2﹣x1﹣x2=0,则k 的值为()A.﹣1或B.﹣1 C.D.不存在10.(3分)对于一元二次方程ax2+bx+c=0(a≠0)下列说法正确的是()①若a,c异号,则方程ax2+bx+c=0(a≠0)一定有实数根;②若b2﹣5ac>0,则方程ax2+bx+c=0(a≠0)一定有两个不相等实数根;③若b=a+c,则方程ax2+bx+c=0(a≠0)有两个不相等的实数根;④若方程ax2+bx+c=0(a≠0)的两根符号相同,那么方程cx2+bx+a=0(c≠0)的两根符号也相同.A.只有①③B.只有①④C.只有①②D.只有②④二、填空题(每小题3分,共21分)11.(3分)关于x的方程(m﹣2)﹣x+3=0是一元二次方程,则m=.12.(3分)已知一元二次方程2x2﹣3x﹣1=0的两根为x1,x2,则=.13.(3分)若是方程x2﹣4x+c=0的一个根,则另一根为,c=.14.(3分)已知关于x的一元二次方程kx2﹣(2k+3)x+k+1=0有实数根,则实数k的取值范围是.15.(3分)某初一2班举行“激情奥运”演讲比赛,共有甲、乙、丙三位选手,班主任让三位选手抽签决定演讲先后顺序,从先到后恰好是甲、乙、丙的概率是.16.(3分)从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是.17.(3分)如图,在△ABC中,∠B=90°,AB=BC=10 cm,点P从A出发沿射线AB以1cm/s的速度作直线运动,点Q从C出发沿边BC的延长线以2cm/s的速度作直线运动,如果P,Q分别从A,B同时出发,经过秒,△PCQ的面积为24 cm2?三、解答题(共49分)18.解下列方程:(1)=3.(2)(y+2)2=(3y﹣1)2.(3)(x﹣2)(x+5)=8.(4)(2x+1)2=﹣6x﹣3.(5)2x2﹣3x﹣2=0.(6)4x2﹣12x﹣1=0(配方法).19.在某中学第八届校园文化艺术节中,其中有三个年级老师参加的“校园歌手大奖赛”,艺术节组委会要求三个年级先进行预赛,选出男、女各一名选手参加决赛,七、八、九年级选手编号分别为男1号,女1号;男2号,女2号;男3号,女3号,比赛规则是男女各一人组成搭档进行决赛比赛.(1)求是同一年级男、女教师选手组成搭档的概率.(2)求低年级男教师与高年级女教师组成搭档的概率.20.某班毕业联欢会设计的即兴表演节目的摸球游戏,游戏采用一个不透明的盒子,里面装有五个分别标有数字1、2、3、4、5的乒乓球,这些球除数字外,其它完全相同,游戏规则是参加联欢会的50名同学,每人将盒子乒乓球摇匀后闭上眼睛从中随机一次摸出两个球(每位同学必须且只能摸一次).若两球上的数字之和是偶数就给大家即兴表演一个节目;否则,下个同学接着做摸球游戏,依次进行.(1)用列表法或画树状图法求参加联欢会同学表演即兴节目的概率;(2)估计本次联欢会上有多少个同学表演即兴节目.21.某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.(1)填表(不需化简)入住的房间数量房间价格总维护费用提价前 60 200 60×20提价后(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入﹣维护费用)22.由点P(14,1),A(a,0),B(0,a)确定的△PAB的面积为18.(1)如图,若0<a<14,求a的值.(2)如果a>14,请画图并求a的值.23.已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(1)若折叠后使点B与点A重合,求点C的坐标.(2)若折叠后点B落在边OA上的点为B′,是否存在点B′,使得四边形BCB′D是菱形?若存在,请说明理由并求出菱形的边长;若不存在,请说明理由.2016-2017学年陕西省西安市高新一中八年级(下)第四次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列方程中,是一元二次方程的有()①x2+3x=;②7x2=0;③=x;④(x+3)2=(x+2)(x﹣3);⑤2x2﹣5y=0;⑥ax2+bx+c=0.A.1个B.2个C.3个D.4个【分析】一元二次方程是指含有一个未知数,并且所含未知数的项的最高次数是2此的整式方程,根据定义判断即可.【解答】解:一元二次方程有②③,共2个,故选:B.【点评】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.2.(3分)根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()x 3.23 3.24 3.25 3.26ax2+bx+c﹣0.06 ﹣0.02 0.03 0.09A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.26【分析】根据函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,再根据函数的增减性即可判断方程ax2+bx+c=0一个解的范围.【解答】解:函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;由表中数据可知:y=0在y=﹣0.02与y=0.03之间,∴对应的x的值在3.24与3.25之间,即3.24<x<3.25.故选:C.【点评】掌握函数y=ax2+bx+c的图象与x轴的交点与方程ax2+bx+c=0的根的关系是解决此题的关键所在.3.(3分)下列各组中的四条线段a,b,c,d成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=1【分析】如果两条线段的乘积等于另外两条线段的乘积,我们就说这四条线段叫做成比例线段.【解答】解:A、×3≠×2,故错误;B、4×10≠5×6,故错误;C、2×=×,故正确;D、2×3≠1×4,故错误.故选:C.【点评】考查了比例线段的概念.注意相乘的时候,让最大的和最小的相乘,剩下的两条再相乘,看它们的积是否相等.4.(3分)已知一元二次方程x2﹣6x+9=1的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.10 B.10或8 C.9 D.8【分析】先求得方程的两根,再把方程两根分别为底可求得三角形的三边长,即可求得答案.【解答】解:解方程x2﹣6x+9=1可得x=2或x=4,当△ABC的底为2时,则三角形的三边长为2、4、4,满足三角形三边关系,其周长为10,当△ABC的底为4时,则三角形的三边长为4、2、2,不满足三角形三边关系,舍去,∴△ABC的周长为10,故选:A.【点评】本题主要考查一元二次方程的解法及等腰三角形的性质,求得方程的两根是解题的关键,注意分类讨论.5.(3分)某厂一月份生产机器100台,计划第一季度共生产380台.设二、三月份每月的平均增长率为x,则根据题意列出的方程是()A.100(1+x)2=380B.100(1+x)+100(1+x)2=380C.100+100(1+x)2=380D.100+100(1+x)+100(1+x)2=380【分析】由于一月份生产机器100台,设二、三月份每月的平均增长率为x,由此得到二月份生产机器100(1+x)台,三月份生产机器100(1+x)2台,又计划第一季度共生产380台,由此可以列出关于x的方程.【解答】解:设二、三月份每月的平均增长率为x,∵一月份生产机器100台,∴二月份生产机器100(1+x)台,三月份生产机器100(1+x)2台,依题意得100+100(1+x)+100(1+x)2=380.故选:D.【点评】此题主要考查了求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.6.(3分)如图,六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和,若丙的直角边长为2,且丁的面积比丙的面积小,则丁的直角边长是()A.B.C.D.【分析】设出丁的直角边为x,表示出其它,再用面积建立方程即可.【解答】解:设丁的直角边为x,依题意得:2x+2x=×22+x2,整理可得x2﹣8x+4=0,解得x=4±2,∵4+2>2,不合题意舍,4﹣2<2,合题意,∴x=4﹣2,故选:D.【点评】本题主要考查了等腰三角形的性质和矩形的性质及一元二次方程的应用,列出一元二次方程是解题的关键.7.(3分)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.B.C.D.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两人平局的情况,再利用概率公式即可求得答案.【解答】解:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:小强石头剪刀布小华石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小颖平局的概率为:=.故选:B.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.8.(3分)如图所示,小明、小刚利用两个转盘进行游戏;规则为小明将两个转盘各转一次,如配成紫色(红与蓝)得5分,否则小刚得3分,此规则对小明和小刚()A.公平B.对小明有利C.对小刚有利D.不可预测【分析】游戏是否公平,关键要看游戏双方取胜的机会是否相等,计算配成紫色和不是紫色的概率,比较概率就可以得出答案.【解答】解:两个转盘各转一次,配成颜色所有的情况如下:(红1,红3)(红1,蓝2)(红2,蓝2)(红2,红3)(蓝1,红3)(蓝1,蓝2)(绿,红3)(绿,蓝2)共8种情况.所以P(紫色)=,P(其他颜色)=,而5×=3×;因此规则对小明和小刚公平.故选:A.【点评】判断游戏公平性就要计算每个人取胜的概率,概率相等就公平,否则就不公平.9.(3分)若关于x的一元二次方程x2+kx+4k2﹣3=0的两根分别是x1,x2,则满足x1x2﹣x1﹣x2=0,则k 的值为()A.﹣1或B.﹣1 C.D.不存在【分析】利用根与系数的关系,把问题转化为关于k的方程,注意判别式≥0这个隐含条件.【解答】解:∵x2+kx+4k2﹣3=0的两根分别是x1,x2,∴x1+x2=﹣k,x1•x2=4k2﹣3,∵x1x2﹣x1﹣x2=0,∴4k2﹣3+k=0,解得k=﹣1或,∵k=﹣1时,△<0,方程没有实数根,∴k=,故选:C.【点评】本题考查根与系数的关系,根的判别式的应用,记住x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=,是解题的关键.10.(3分)对于一元二次方程ax2+bx+c=0(a≠0)下列说法正确的是()①若a,c异号,则方程ax2+bx+c=0(a≠0)一定有实数根;②若b2﹣5ac>0,则方程ax2+bx+c=0(a≠0)一定有两个不相等实数根;③若b=a+c,则方程ax2+bx+c=0(a≠0)有两个不相等的实数根;④若方程ax2+bx+c=0(a≠0)的两根符号相同,那么方程cx2+bx+a=0(c≠0)的两根符号也相同.A.只有①③B.只有①④C.只有①②D.只有②④【分析】根据判别式的值、根与系数的关系即可一一判断.【解答】解:①若a,c异号,则方程ax2+bx+c=0(a≠0)一定有实数根;正确,理由△=b2﹣4ac>0.②若b2﹣5ac>0,则方程ax2+bx+c=0(a≠0)一定有两个不相等实数根;错误,无法判断△的符号;③若b=a+c,则方程ax2+bx+c=0(a≠0)有两个不相等的实数根;错误,∵△=(a+c)2﹣4ac=(a﹣c)2≥0,也可能有两个相等的实数根.④若方程ax2+bx+c=0(a≠0)的两根符号相同,那么方程cx2+bx+a=0(c≠0)的两根符号也相同,正确,∵△=b2﹣4ac>0,a、c同号,∴两根符号相同.故选:B.【点评】本题考查根与系数的关系,根的判别式等知识,灵活运用所学知识是解题的关键.二、填空题(每小题3分,共21分)11.(3分)关于x的方程(m﹣2)﹣x+3=0是一元二次方程,则m=﹣2 .【分析】根据一元二次方程的定义知,m2﹣2=2,且m﹣2≠0,据此可以求得m的值.【解答】解:∵关于x的方程(m﹣2)﹣x+3=0是一元二次方程,∴m2﹣2=2,且m﹣2≠0,解得,m=﹣2;故答案是:﹣2.【点评】本题考查了一元二次方程的定义.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.12.(3分)已知一元二次方程2x2﹣3x﹣1=0的两根为x1,x2,则=﹣3 .【分析】因为x1,x2是一元二次方程2x2﹣3x﹣1=0的两根,有根与系数的关系可得x1+x2和x1•x2的值,把通分,再把得x1+x2和x1•x2的值代入即可得到问题的答案.【解答】解:∵一元二次方程2x2﹣3x﹣1=0中,a=2,b=﹣3,c=﹣1,x1,x2为方程的两根,∴x1+x2=﹣=,x1•x2==﹣,∵=,∴==﹣3,故答案为:﹣3.【点评】本题考查了根与系数的关系:若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c =0(a≠0)的两根时,x1+x2=﹣,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.13.(3分)若是方程x2﹣4x+c=0的一个根,则另一根为,c= 1 .【分析】将2+代入原方程,即可得c的值,并且求出原方程,然后再解方程即可.【解答】解:∵是方程x2﹣4x+c=0的一个根,∴﹣4(2+)+c=0解得:c=1.所以原方程为:x2﹣4x+1=0.解得:x1=2+,x2=2﹣.故填空答案分别为:2﹣,1.【点评】本题主要考查根与系数的关系,比较简单,代入求解即可.14.(3分)已知关于x的一元二次方程kx2﹣(2k+3)x+k+1=0有实数根,则实数k的取值范围是k≥﹣且k≠0 .【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程kx2﹣(2k+3)x+k+1=0有实数根,∴,解得:k≥﹣且k≠0.故答案为:k≥﹣且k≠0.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,列出关于k的一元一次不等式组是解题的关键.15.(3分)某初一2班举行“激情奥运”演讲比赛,共有甲、乙、丙三位选手,班主任让三位选手抽签决定演讲先后顺序,从先到后恰好是甲、乙、丙的概率是.【分析】列举出所有情况,让从先到后恰好是甲、乙、丙的情况数除以总情况数即为所求的概率.【解答】解:∵甲、乙、丙三位选手的先后顺序共有6种情况,恰好是甲、乙、丙的情况只有一种,∴恰好是甲、乙、丙的概率是.【点评】本题考查的是随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.(3分)从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是.【分析】根据题意先画出图形,求出总的情况数,再求出符合条件的情况数,最后根据概率公式进行计算即可.【解答】解:从数﹣2,﹣,0,4中任取1个数记为m,再从余下,3个数中,任取一个数记为n.根据题意画图如下:共有12种情况,∵正比例函数y=kx的图象经过第三、第一象限,∴k=mn>0.由树状图可知符合mn>0的情况共有2种,∴正比例函数y=kx的图象经过第三、第一象限的概率是=.故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)如图,在△ABC中,∠B=90°,AB=BC=10 cm,点P从A出发沿射线AB以1cm/s的速度作直线运动,点Q从C出发沿边BC的延长线以2cm/s的速度作直线运动,如果P,Q分别从A,B同时出发,经过4或6或12 秒,△PCQ的面积为24 cm2?【分析】分两种情况:P在线段AB上;P在线段AB的延长线上;进行讨论即可求得P运动的时间.【解答】解:设当点P运动x秒时,△PCQ的面积为24cm2,①当P在线段AB上,此时CQ=2x,PB=10﹣x,S△PCQ=•2x•(10﹣x)=24,化简得x2﹣10x+24=0,解得x=6或4;②P在线段AB的延长线上,此时CQ=2x,PB=x﹣10,S△PCQ=•2x•(x﹣10)=24,化简得x2﹣10x﹣24=0,解得x=12或﹣2,负根不符合题意,舍去.所以当点P运动4秒、6秒或12秒时△PCQ的面积为24cm2.故答案为:4或6或12.【点评】此题主要考查了三角形面积公式和一元二次方程的应用,根据已知分两种情况进行讨论是解题关键.三、解答题(共49分)18.解下列方程:(1)=3.(2)(y+2)2=(3y﹣1)2.(3)(x﹣2)(x+5)=8.(4)(2x+1)2=﹣6x﹣3.(5)2x2﹣3x﹣2=0.(6)4x2﹣12x﹣1=0(配方法).【分析】(1)变形后开方,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,开方,即可得出两个一元一次方程,求出方程的解即可;(3)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;(4)移向后分解因式,即可得出两个一元一次方程,求出方程的解即可;(5)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(6)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)=3,(x+3)2=9,x+3=±3,x1=0,x2=﹣6;(2)(y+2)2=(3y﹣1)2.(y+2)2﹣(3y﹣1)2,=0,[(y+2)+(3y﹣1)][(y+2)﹣(3y﹣1)]=0,(y+2)+(3y﹣1)=0,(y+2)﹣(3y﹣1)=0,y1=﹣,y2=;(3)(x﹣2)(x+5)=8.整理得:x2+3x﹣18=0,(x﹣3)(x+6)=0,x﹣3=0,x+6=0,x1=3,x2=﹣6;(4)(2x+1)2=﹣6x﹣3,(2x+1)2+3(2x+1)=0,(2x+1)(2x+1+3)=0,2x+1=0,2x+1+3=0,x1=﹣,x2=﹣2;(5)2x2﹣3x﹣2=0,(2x+1)(x﹣2)=0,2x+1=0,x﹣2=0,x1=﹣,x2=2;(6)4x2﹣12x﹣1=04x2﹣12x=1,x2﹣3x+()2=+()2,(x﹣)2=,x﹣=±,x1=,x2=.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.19.在某中学第八届校园文化艺术节中,其中有三个年级老师参加的“校园歌手大奖赛”,艺术节组委会要求三个年级先进行预赛,选出男、女各一名选手参加决赛,七、八、九年级选手编号分别为男1号,女1号;男2号,女2号;男3号,女3号,比赛规则是男女各一人组成搭档进行决赛比赛.(1)求是同一年级男、女教师选手组成搭档的概率.(2)求低年级男教师与高年级女教师组成搭档的概率.【分析】(1)根据题意先画出树状图,得出全部等情况数与符合条件的情况数目,求二者的比值就是其发生的概率.(2)求得低年级男教师与高年级女教师组成搭档的数目,利用概率公式求解即可.【解答】解:(1)根据题意画树状图如下:∵一共有9种等情况数,是同一年级男、女教师选手组成搭档的有3种,∴是同一年级男、女教师选手组成搭档的概率为==;(2)∵低年级男教师与高年级女教师组成搭档的有3种,∴低年级男教师与高年级女教师组成搭档的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.某班毕业联欢会设计的即兴表演节目的摸球游戏,游戏采用一个不透明的盒子,里面装有五个分别标有数字1、2、3、4、5的乒乓球,这些球除数字外,其它完全相同,游戏规则是参加联欢会的50名同学,每人将盒子乒乓球摇匀后闭上眼睛从中随机一次摸出两个球(每位同学必须且只能摸一次).若两球上的数字之和是偶数就给大家即兴表演一个节目;否则,下个同学接着做摸球游戏,依次进行.(1)用列表法或画树状图法求参加联欢会同学表演即兴节目的概率;(2)估计本次联欢会上有多少个同学表演即兴节目.【分析】(1)可用列表法列举出所有情况,看两球上的数字之和是偶数的情况占总情况的多少即可;(2)表演节目的同学数=学生总数×相应概率.【解答】解:(1)如下表:从上表可以看出,一次性共有20种可能结果,其中两数为偶数的共有8种.将参加联欢会的某位同学即兴表演节目记为事件A,∴P(A)=P(两数和为偶数)==;(2)∵50×=20(人),∴估计有20名同学即兴表演节目.【点评】用到的知识点为:部分的具体数目=总体数目×部分相应概率.21.某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.(1)填表(不需化简)入住的房间数量房间价格总维护费用提价前 60 200 60×20提价后60﹣200+x(60﹣)×20(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入﹣维护费用)【分析】(1)住满为60间,x表示每个房间每天的定价增加量;定价每增加10元时,就会有一个房间空闲,房间空闲个数为,入住量=60﹣房间空闲个数,列出代数式;(2)用:每天的房间收费=每间房实际定价×入住量,每间房实际定价=200+x,列出方程.【解答】解:(1)∵增加10元,就有一个房间空闲,增加20元就有两个房间空闲,以此类推,空闲的房间为,∴入住的房间数量=60﹣,房间价格是(200+x)元,总维护费用是(60﹣)×20.故答案是:60﹣;200+x;(60﹣)×20;(2)依题意得:(200+x)(60﹣)﹣(60﹣)×20=14000,整理,得x2﹣420x+32000=0,解得x1=320,x2=100.当x=320时,有游客居住的客房数量是:60﹣=28(间).当x=100时,有游客居住的客房数量是:60﹣=50(间).所以当x=100时,能吸引更多的游客,则每个房间的定价为200+100=300(元).答:每间客房的定价应为300元.【点评】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.由点P(14,1),A(a,0),B(0,a)确定的△PAB的面积为18.(1)如图,若0<a<14,求a的值.(2)如果a>14,请画图并求a的值.【分析】(1)当0<a<14时,作PD⊥x轴于点D,由P(14,1),A(a,0),B(0,a)就可以表示出△ABP 的面积,建立关于a的方程求出其解即可;(2)当a>14时,作PD⊥x轴于点D,由P(14,1),A(a,0),B(0,a)就可以表示出△ABP的面积,建立关于a的方程求出其解即可.【解答】解:(1)当0<a<14时,如图,作PD⊥x轴于点D,∵P(14,1),A(a,0),B(0,a),∴PD=1,OD=14,OA=a,OB=a,∴S△PAB=S梯形OBPD﹣S△OAB﹣S△ADP=×14(a+1)﹣a2﹣×1×(14﹣a)=18,解得:a1=3,a2=12;(2)当a>14时,如图,作PD⊥x轴于点D,∵P(14,1),A(a,0),B(0,a),∴PD=1,OD=14,OA=a,OB=a,∴S△PAB=S△OAB﹣S梯形OBPD﹣S△ADP=a2﹣×14(a+1)﹣×1×(a﹣14)=18,解得:a1=,a2=(不合题意,舍去);∴a=.【点评】本题考查了坐标与图形的性质,三角形的面积公式的运用,梯形的面积公式的运用,点的坐标的运用,解答时运用三角形和梯形的面积建立方程求解是关键.23.已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.(1)若折叠后使点B与点A重合,求点C的坐标.(2)若折叠后点B落在边OA上的点为B′,是否存在点B′,使得四边形BCB′D是菱形?若存在,请说明理由并求出菱形的边长;若不存在,请说明理由.【分析】(1)折叠后使点B与点A重合,则C在AB的中垂线上,Rt△AOC中利用勾股定理即可得到方程,求得C的坐标;(2)当B'C∥AB(或B'D∥BO)时,四边形BCB'D是菱形,则△OB'C∽△OAB,依据相似三角形的对应边的比相等即可求得B′C的长度,然后根据△AB'D∽△AOB,即可求得B′D的长.从而证得B'C=BC=B'D=BD.【解答】解:(1)设C(0,m),(m>0),则CO=m,BC=AC=(4﹣m),在Rt△AOC中,有(4﹣m)2﹣m2=4,整理得,12m=8,∴m=1.5,∴C(0,1.5);(2)存在,当B'C∥AB(或B'D∥BO)时,四边形BCB'D是菱形,∵∠AOB=90°,OA=2,OB=4,∴AB=2,∵B'C∥AB,∴△OB'C∽△OAB,∴,设B'C=BC=x,则,解得,x=2,∵B'C∥AB,∴∠CBD+∠BCB'=180°,又∵∠CBD=∠CB'D,∴∠CB'D+∠BCB'=180°,∴B'D∥BO,∴△AB'D∽△AOB,∴,设B'D=BD=y,∴,解得:y=20﹣8,∴B'C=BC=B'D=BD,∴四边形BCB'D是菱形,∴存在点B',使得四边形BCB'D是菱形,此时菱形的边长为20﹣8.【点评】本题考查翻折问题,关键是根据勾股定理、相似三角形的判定与性质、菱形的性质的综合应用进行解答。
初中数学试卷分析

2016—2017学年第二学期数学月考试卷分析一、试题分析这次期中考试全面提高数学教育质量,有利于初中数学课程改革和教学改革,培养学生的创新精神和实践能力;有利于减轻学生过重的负担,促进学生主动、活泼、生动地学习.这次考试主要考察了初三数学21至24章第一节的内容。
主要内容有:一元二次方程、二次函数、旋转、圆的有关性质。
试卷的总体难度适宜,能坚持“以纲为纲,以本为本的原则”,在加强基础知识的考查的同时,还加强了对学生的能力的考查的比例设置考题,命题能向课程改革靠拢.注重基础,加大知识点的覆盖面,控制题目的烦琐程度,题目力求简洁明快,不在运算的复杂上做文章;整体布局力求合理有序,提高应用题的考查力度,适当设置创新考题,注重知识的拓展与应用,适应课程改革的形势.二.试卷分析得分率较高的题目有:1-6,8,9,15,11-13,21,22,25;这些题目都是基本知识的应用,说明多数学生对基础知识掌握较好。
得分率较低的题目有:7,10,14-20,23,24,26;下面就得分率较低的题目简单分析如下:15题添加辅助线有困难,20题找规律对幂的形式不太熟悉。
.26题根本就没读懂题目.主要考察旋转的有关知识,主要是有分类讨论的要求,大部分学生不会,会的也不能答全,以致于失分严重。
三.存在问题1、两极分化严重2、基础知识较差。
我们在阅卷中发现,部分学生基础知识之差让人不可思议.3、概念理解没有到位4、缺乏应变能力5、审题能力不强,错误理解题意四、今后工作思路1、强化纲本意识,注重“三基”教学我们提出要加强基础知识教学要加强对学生“三基”的教学和训练,使学生掌握必要的基础知识、基本技能和基本方法.在概念、基本定理、基本法则、性质等教学过程中,要加强知识发生过程的教学,使学生加深对基础知识的理解;要加强对学生数学语言的训练,使学生的数学语言表达规范、准确、到位;要加强运算能力的教学,使学生明白算理,并选择简捷、合理的算法,提高运算的速度和准确率;要依纲据本进行教学,踏踏实实地教好第一遍,切不可不切实际地脱离课本,搞难题训练,更不能随意补充纲本外的知识.教学中要立足于把已学的知识弄懂弄通,真正让学生形成良好的认知结构和知识网络,打好初中数学基础,全面提高学生的数学素质.2、强化全面意识,加强补差工这次考试数学的统计数据进一步说明,在数学学习上的困难生还比较多,怎样使这些学生尽快“脱贫”、摆脱中考成绩个位数的困境,以适应在高一级学校的继续学习和当今的信息时代,这是我们每一个初中数学教育工作者的一个重要研究课题.重视培优,更应关注补差.课堂教学中,要根据本班的学情,选择好教学内容,合理地确定教学的起点和进程.课外要多给学习有困难的学生开“小灶”,满腔热情地关心每一位后进生,让他们尽快地跟上其他同学,促进全体学生的进步和发展.3、强化过程意识,暴露思维过程数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.数学教学中,应当有意识地精选一些典型例题和习题进行思维训练.激发学生的学习积极性,向学生提供充分从事数学活动的机会.暴露学生把抽象的数学问题具体化和形象化的过程;要让学生多说解题思路和解决问题的策略,暴露学生解决数学问题的思维过程;经常性地进行数学语言的训练,暴露学生对复杂的数学语言进行分解与简化的过程;要通过一题多解和一题多变的训练,暴露学生对数学问题多种解法的比较与反思过程.让学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验.4、教学中要重在凸现学生的学习过程,培养学生的分析能力。
2013-2014学年江苏省徐州市第三中学八年级下4月月考数学试题

徐州市第三中学2013-2014学年第二学期4月月考八年级数学试题命题人:徐成祥 2014-4-12一.选择题:(4分×6=24分)1.如果把分式yx xy+2中的x 和y 都扩大3倍,那么分式的值 ( ) A .不变 B .缩小3倍 C .扩大6倍 D .扩大3倍 2.不等式2(x -2)≤x -2的非负整数解的个数为 ( ) A.1个 B.2个 C.3个 D.4个 3.如果关于x 的分式方程xmx x -=--552无解,则m 的值为 ( ) A. 5B. 3C. -5D. -34.函数22)1(-+=m x m y 是反比例函数,则m 的值为 ( )A. 1B. -1C. 1或-1D. 任意实数5.如果不等式组⎩⎨⎧>-<+nx x x 737的解集是4>x ,则n 的取值范围是 ( )A .4≥nB .4≤nC .4=nD .4<n 6.若点M (2,2)和N (b ,-1-n 2)是反比例函数xky =的图象上的两个点, 则一次函数b kx y +=的图象经过 ( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限二.填空题:(4分×7=28分)1.已知0≠x ,x x x 31211++= 。
2.反比例函数xmy -=2的图象是双曲线,在每一个象限内,y 随x 的增大而减小,若点A (-3,1y ),B (-1,2y ),C (2,3y )都在该双曲线上, 则1y 、2y 、3y 的大小关系为 。
(用“<”连接)3.如右图,直线y =-1.5x +3上有一点P ,则不等式 -1.5x +3>1.5的解集是 .4.已知线段AB=10,C 是AB 的一个黄金分割点,则AC=5.不等式a ≤x ≤3只有5个整数解,则a 的范围是6.如果 a 2=b 3,则bba +的值为 。
7.已知反比例函数xm y )23(1-=,当m 时,其图象的两个分支在第一、三象限内;当m 时,其图象在每个象限内y 随x 的增大而增大。
江苏省南通市海安市海陵中学2023-2024学年八年级下学期4月月考数学试题(解析版)

海陵中学教育集团2023~2024学年度第二学期阶段性学情调查八 年 级 数 学(时间:120分钟,满分150分)一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题纸相应位置上)1. 下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A. 2,3,4B. 1C. 1,1,2D. 5,12,15【答案】B【解析】【分析】根据勾股定理的逆定理可知,两条较小的边的平方和等于第三条边的平方,即可构成直角三角形,依次即可求出答案.【详解】解:A 、∵,∴,∴不能构成直角三角形,故A 不符合题意;B 、∵,∴,∴能构成直角三角形,故B 符合题意;C 、∵,∴,∴不能构成直角三角形,故C 不符合题意;D 、∵,∴,∴不能构成直角三角形,故D不符合题意;2222313,416+==222234+≠22213+==2221+=222112,24+==222112+≠222125169,15225+==22212515+≠故选:B .【点睛】本题主要考查勾股定理逆定理,根据勾股定理的逆定理判断三边的关系,掌握勾股定理的逆定理是解题的关键.2. 如图,在中,,,,则的周长为( )A. B. C. D. 【答案】B【解析】【分析】根据平行四边形的性质可以得到、和的长,然后即可求得的周长.【详解】解:四边形平行四边形,,,,,,,,的周长为:.故选:B .【点睛】本题考查平行四边形的性质,解答本题的关键是明确题意,利用平行四边形性质解答.3. 若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( )A. 30°B. 45°C. 60°D. 75°【答案】B【解析】【分析】首先设平行四边形中两个内角分别为x °,3x °,由平行四边形的邻角互补,即可得x +3x =180,继而求得答案.【详解】解:设平行四边形中两个内角分别为x °,3x °,则x +3x =180,解得:x =45°,∴其中较小的内角是45°.故选:B .【点睛】此题考查了平行四边形的性质.注意平行四边形的邻角互补.是ABCD Y 6AC =12BD =5AB =OCD 2314179OC OD CD OCD ABCD 12AO CO AC ∴==12BO DO BD ==5AB CD ==6AC = 12BD =3OC ∴=6OD =OCD ∴△36514OC OD CD ++=++=4. 下列命题中,是真命题的是( )A. 对角线相等的菱形是正方形B. 对角线互相垂直的四边形是菱形C. 对角线相等且互相垂直的四边形是矩形D. 有一组对边相等,一组对角相等的四边形是平行四边形【答案】A【解析】【分析】根据平行四边形、矩形、菱形的判定定理即可求得【详解】A .对角线相等,说明这个菱形也是矩形,因而是正方形,故此选项是真命题,符合题意;B .对角线互相垂直的平行四边形是菱形,应把四边形改成平行四边形,故此选项是假命题,不符合题意;C .对角线互相平分且相等的四边形是矩形,应把互相垂直改成互相平分,此选项是假命题,不符合题意;D .有一组对边相等,一组对角相等的四边形不一定是平行四边形,此选项是假命题,不符合题意,反例:如下图所示:三角形,则对边与相等,对角与相等,但四边形不是平行四边形.故选A .【点睛】本题考查平行四边形、矩形、菱形的判定定理,掌握判定定理是解题关键.5. 如图,在四边形中,,,,,则( ).A. 20B. 25C. 35D. 30AEB CAD ≌AB CD B ∠D ∠ABCD ABCD 90D ACB ∠=∠=︒12CD =16AD =15BC =AB =【答案】B【解析】【分析】根据勾股定理求得的长度,再根据勾股定理即可求解.【详解】解:由勾股定理可得:故选B【点睛】此题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.6. 如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是( )A. 矩形B. 菱形C. 正方形D. 无法判断【答案】B【解析】【分析】作DF ⊥BC ,BE ⊥CD ,先证四边形ABCD 是平行四边形,再证Rt △BEC ≌Rt △DFC ,得BC =DC ,即可得出四边形ABCD 是菱形.【详解】解:如图,作DF ⊥BC ,BE ⊥CD由已知可得,AD BC ,AB CD∴四边形ABCD 是平行四边形在Rt △BEC 和Rt △DFC 中∴Rt △BEC ≌Rt △DFC ,∴BC =DC∴四边形ABCD是菱形AC 90D ACB ∠=∠=︒20AC ==25AB == BCE DCF BEC DFC BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩故选B .【点睛】本题考核知识点:菱形的判定,解题关键是通过全等三角形证一组邻边相等.7. 菱形具有而一般平行四边形不具有的性质是( )A. 对边平行B. 对边相等C. 对角线互相平分D. 对角线互相垂直【答案】D【解析】【分析】根据菱形的性质、平行四边形的性质逐项进行判断即可.【详解】A.对边平行是菱形和一般平行四边形都具有的性质,故A 不正确;B.对边相等是菱形和一般平行四边形都具有的性质,故B 不正确;C.对角线互相平分是菱形和一般平行四边形都具有的性质,故C 不正确;D.对角线互相垂直是菱形具有而一般平行四边形不具有的性质,故D 正确;故选:D .【点睛】本题主要考查了菱形的性质,菱形具有平行四边形的性质,又具有自己的特性,要注意运用菱形具备而一般平行四边形不具备的性质.如,菱形的对角线互相垂直.8. 如图,四边形是菱形,于点H ,若,则等于( )A. B. C. 5 D. 4【答案】B【解析】ABCD DH AB ⊥86AC DB ==,DH 125245【分析】利用菱形的性质以及勾股定理求得的长,再利用菱形的面积等于对角线乘积的一半,也等于边长乘以高解题.【详解】解:∵四边形为菱形,∴,设与交于点O ,∴,则,∴,∴,即.故选:B .【点睛】本题考查菱形性质,勾股定理,利用面积法求边上的高是解题的关键.9. 如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A. 75°B. 60°C. 55°D. 45°【答案】B【解析】【分析】由正方形的性质和等边三角形的性质得出∠BAE =150°,AB =AE ,由等腰三角形的性质和内角和得出∠ABE =∠AEB =15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD 正方形,的是AB ABCD AC BD ⊥AC BD 114322OA AC OB BD ====,5AB ===12ABCD S AC BD AB DH =⋅=⋅菱形16852DH ⨯⨯=245DH =∴∠BAD =90°,AB =AD ,∠BAF =45°,∵△ADE 是等边三角形,∴∠DAE =60°,AD =AE ,∴∠BAE =90°+60°=150°,AB =AE ,∴∠ABE =∠AEB=(180°−150°)=15°,∴∠BFC =∠BAF +∠ABE =45°+15°=60°;故选:B .【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.10. 如图,点A 、B 、C 在同一条线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,,,,连接DE ,设,,,给出下面三个结论:①;②;上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③【答案】D【解析】【分析】如图,过作于,则四边形是矩形,则,由,可得,进而可判断①的正误;由,可得,,,,则,是等腰直角三角形,由勾股定理得,,由,可得,进而可判断②的正误;由勾股定理得,即,则,进而可判断③的正误.【详解】解:如图,过作于,则四边形是矩形,12AB BC <90A C ∠=∠=︒EAB BCD ≌△△AB a =BC b =DE c =a b c +<ab +>)a bc +>D DF AE ⊥F ACDF DF AC a b ==+DFDE <a b c+<EAB BCD≌△△BE BD =CD AB a ==AE BC b ==ABE CDB ∠=∠90EBD ∠=︒BDE △BE ==AB AE BE +>a b +>222DE BD BE =+()2222c a b=+)c a b =<+D DF AE ⊥F ACDF∴,∵,∴,①正确,故符合要求;∵,∴,,,,∵,∴,,∴是等腰直角三角形,由勾股定理得,,∵,∴,②正确,故符合要求;由勾股定理得,即,∴,③正确,故符合要求;故选:D .【点睛】本题考查了矩形的判定与性质,全等三角形的性质,勾股定理,等腰三角形的判定,不等式的性质,三角形的三边关系等知识.解题的关键在于对知识的熟练掌握与灵活运用.二、填空题(本大题共有8小题,第11~12题每题3分,第13~18题每题4分,合计30分.不需写出解答过程,请把答案直接写在答题纸相应位置上)11. Rt △ABC 的两条直角边的长分别为4、5,则它的斜边长为________.【解析】【分析】直接根据勾股定理求解即可.【详解】∵Rt△ABC 的两条直角边的长分别为4、5,DF AC a b ==+DF DE <a b c +<EAB BCD ≌△△BE BD =CD AB a ==AE BC b ==ABE CDB ∠=∠90CBD CDB ∠+∠=︒90∠+∠=︒CBD ABE 90EBD ∠=︒BDE △BE ==AB AE BE +>a b +>222DE BD BE =+()2222c a b=+)c a b =<+=.【点睛】本题主要考查勾股定理,掌握勾股定理是解题的关键.12. 如图,在菱形中,,则的度数是_____.【答案】【解析】【分析】根据菱形的每一条对角线平分每一组对角结合平行线的性质可求得答案【详解】解:∵四边形为菱形,,∴,,∴,故答案为:.【点睛】本题主要考查了菱形的性质,解题的关键在于能够熟练掌握菱形的性质.13. 如图,在▱ABCD 中,∠BCD 的平分线交AD 于点E ,AB=3,AE=1,则BC=____.【答案】4【解析】【分析】只要证明DE=DC=3,AD=BC=4,即可解决问题.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB=CD=3,AD=BC ,∴∠DEC=∠BCE ,∵CE 平分∠BCD ,∴∠BCE=∠ECD ,ABCD 65ABD ∠=︒C ∠50︒ABCD 65ABD ∠=︒2130ABC ABD ∠=∠=︒AB CD 18050C ABC ∠=︒-∠=︒50︒∴∠DEC=∠ECD ,∴DE=CD=3,∴AD=AE+DE=1+3=4.∴BC=4.故答案为4.【点睛】题考查平行四边形的性质、等腰三角形的判定和性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.14. 我国古代数学著作《九章算术》中的一个问题:一根竹子高 1 丈(1 丈=10 尺),折断后顶端落在离竹子底端 3 尺处,问折断处离地面的高度为多少尺?如图,设折断处离地面的高度为 x 尺,根据题意,可列出关于 x 方程为:__________.【答案】【解析】【分析】设折断处离地面的高度为 x 尺,根据勾股定理列出方程即可【详解】解:设折断处离地面的高度为 x 尺,根据题意可得:故答案为:【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.15. 如图,正方形的对角线相交于点O ,点E 是正方形外部一点,以为边作正方形,与相交于点M ,与相交于点N ,若,,则四边形OMBN 的面积为 _____.()222103x x -=+()222103x x -=+()222103x x -=+ABCD OE OEFG OE AB OG BC 6AB =5OE =【答案】9【解析】【分析】过点O 作于点P ,过点O 作于点H ,根据正方形的性质得出,进而证明,即可得到四边形的面积等于正方形的面积,面积为9.【详解】解:过点O 作于点P ,过点O 作于点H ,,,四边形为矩形,,,四边形为正方形,,,,,,,与中,,在OP AB ⊥OH BC ⊥OP OH =MOP NOH ≌V V OMBN OPBH OP AB ⊥OH BC ⊥90MPO OHN \Ð=Ð=°90ABC ∠=︒ ∴OPBH 45ABO ∠=︒ BP OP \=∴OPBH OP OH ∴=90EOG Ð=°Q 90POH а=90MOP GOP \Ð+Ð=°90GOP HON Ð+Ð=°MOP NOH \Ð=ÐMOP △NOH △MPO NHO OP OHMOP NOH ∠=∠⎧⎪=⎨⎪∠=∠⎩,四边形的面积等于正方形的面积,,,正方形的面积,四边形的面积为9.故答案为:9.【点睛】本题主要考查对正方形的性质,全等三角形的性质和判定等知识点的理解和掌握,解决本题的关键是证明四边形是正方形.16. 如图,已知正方形的边长为2,点E 是边的中点,点是对角线上的一个动点,则线段的最小值是 _______________.【解析】【分析】连接,,根据正方形的对称性得到,根据题意得到,当E 、P 、C 三点共线时,取得最小值为,由勾股定理求出【详解】解:连接,如下图所示:∵正方形的边长为2,点E 是边AD 的中点,∴,,,由正方形的对称性可知:,∴,ASA MOP NOH \≌()V V ∴OMBN OPBH 6AB =Q 3BH ∴=∴OPBH 9=∴OMBN OPBH ABCD AD P BD PA PE +PC CE PC PA =PA PE PC PE CE +=+≥PC PE +CE CE ===PC CE ,ABCD 2AD CD ==90ADC ∠=︒1ED =PC PA =PA PE PC PE CE +=+≥∴当E 、P 、C 三点共线时,取得最小值为,在中,∴【点睛】本题考查了轴对称的性质,正方形的性质,勾股定理,两点之间线段最短等知识点;本题的关键是得到当E 、P 、C 三点共线时,取得最小值为进而求解.17. 在平面直角坐标系中,已知点,,请确定点C 的坐标,使得以A ,B ,C ,O 为顶点的四边形是平行四边形,则满足条件的所有点C 的坐标是______.【答案】或或【解析】【分析】分两种情况:①当为平行四边形的边时,②当为平行四边形的对角线时,讨论可得点C 的坐标.【详解】解:①当为平行四边形的边时,,∵,,,∴点C 坐标为或;②当为平行四边形的对角线时,,故答案为:或或.【点睛】此题考查了平行四边形的性质和坐标与图形性质,解答本题的关键是要注意分两种情况进行求解.18. 如图,在四边形中,,、、、分别是、、、的中点,若,则______.PC PE +CE Rt CDE △CE ===PA PE +PC PE +CE xOy ()1,1A ()1,1B -()2,0-()2,0()0,2AB AB AB AB OC =()1,1A ()1,1B -()0,0O ()2,0-()2,0AB ()0,2C ()2,0-()2,0()0,2ABCD AC BD a ==E F G H AB BC CD DA 2236EG FH +==a【答案】6【解析】【分析】连接,,,,可得是的中位线,,,分别是,,的中位线,,即四边形为菱形,可知对角线互相垂直,即可证得:,由此即可求得,即,由此即可求出.【详解】解:如图,连接,,,,∵、分别是、的中点,∴是的中位线,∴,同理可得,,分别是,,的中位线,∴,,∴,∴四边形为菱形,∴,且垂足为,∴,,EF FG GH EH EH ABD △EF FG GH ABC BCD △ACD 2a EH EF GH FG ====EFGH 22224a OE OH EH +==222(2)(2)OE OH a +=236a =6a =EF FG GH EH E H AB DA EH ABD △12EH BD ==EF FG GH ABC BCD △ACD 122a EF GH AC ===122a FG BD ==2a EH EF GH FG ====EFGH EG HF ⊥O 2EG OE =2FH OH =在中,根据勾股定理得:,等式两边同时乘以4得:,∴,即.故,(,负值不合题意舍去)故答案为:6.【点睛】本题主要考查的是菱形的性质,三角形中位线、勾股定理应用,重点在于根据中点做出对应的中位线.三、解答题(本大题共有6小题,共90分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19. 如图,在中,.(1)求的长;(2)求的面积.【答案】(1)6(2)12【解析】【分析】(1)四边形是平行四边形,,则,由得到,在中,由勾股定理得,即可得到答案;(2)由四边形是平行四边形得到,由,,即可得到的面积.【小问1详解】∵四边形是平行四边形,,∴,∵,∴,在中,由勾股定理得,∴;Rt OEH 22222()24a a OE OH EH +===22244OE OH a +=22(2)(2)OE OH a +=22236EG FH a +==6a =6a =-ABCD Y 108AB AD AC BC ==⊥,,AC ABO ABCD 8AD =8BC AD ==ACBC ⊥90ACB ∠=︒Rt ABC △222AC AB BC =-ABCD 3OA OC ==8BC AD ==ACBC ⊥ABO ABCD 8AD =8BC AD ==AC BC ⊥90ACB ∠=︒Rt ABC △222AC AB BC =-6AC ===【小问2详解】∵四边形是平行四边形,∴,∵,,∴的面积.【点睛】此题考查了平行四边形性质、勾股定理等知识,熟练掌握平行四边形性质是解题的关键.20. 如图,已知线段,且,求作矩形.小明的作法如下:①以A 为圆心,长为半径画弧;②以C 为圆心,长为半径画弧;③两弧交于点D ,连接.于是就作出了矩形.(1)尺规作图补全图形;(要求:用直尺和圆规作图,保留作图痕迹)(2)补全下述证明过程:∵,______.∴四边形是平行四边形.又∵ ,∴平行四边形是矩形.(_______)【答案】(1)见解析(2),,有一个角是直角的平行四边形是矩形【解析】【分析】此题考查了基本作图、平行四边形的判定、矩形的判定等知识,熟练掌握矩形的定义是解题的关键.(1)按照要求作图即可;(2)先利用两组对边分别相等的四边形是平行四边形证明四边形是平行四边形.再根据矩形的定义即可得到结论.【小问1详解】解:如图,四边形即为所求,【小问2详解】ABCD 3OA OC ==8BC AD ==ACBC ⊥ABO 11381222OA BC =⋅=⨯⨯=AB BC ,90ABC ∠=︒ABCD BC AB AD CD ,ABCD AB CD =ABCD ABCD AD BC =90ABC ∠=︒ABCD ABCD∵,.∴四边形是平行四边形.又∵,∴平行四边形是矩形.(有一个角是直角的平行四边形是矩形)故答案为:,,有一个角是直角的平行四边形是矩形21. 在,的对边分别为a ,b ,c ,,(1)如果,求b 、c 的长度;(2)如果,求a 、b 的长度.【答案】(1)(2),【解析】【分析】此题考查了勾股定理,等腰三角形的判定、含30度角的直角三角形的性质,熟记勾股定理的计算是解题的关键.(1)根据求出,再根据勾股定理求出b ;(2)求出,利用勾股定理求出a ,b 的长度.【小问1详解】解:在,,,,∴,∴;【小问2详解】如图,在,,,,AB CD =AD BC =ABCD 90ABC ∠=︒ABCD AD BC =90ABC ∠=︒Rt ABC △A B C ∠∠∠,,90C ∠=︒304A a ∠=︒=,456A c ∠=︒=,8b c ==a=b =30A ∠=︒28c a ==45B A ∠=∠=︒Rt ABC △90C ∠=︒30A ∠=︒4a =28c a ==b ===Rt ABC △90C ∠=︒45A ∠=︒6c =∴,∴,∴,∴,∴.22. 如图,已知在平行四边形中,点E ,F 是对角线上的两点,且,分别连接.求证:四边形是平行四边形.【答案】见解析【解析】【分析】本题考查了平行四边形的性质与判定,全等三角形的性质与判定,掌握平行四边形的性质与判定是解题的关键.根据平行四边形的性质,得,,根据平行线的性质得出,进而证明,得出,,进而得出 ,可得,进而即可得证.【详解】证明:四边形是平行四边形,,,又,.,,,又四边形是平行四边形.23. 如图,矩形纸片ABCD 中,AB =8,AD =6,折叠纸片使AD 边落在对角线BD 上,点A 落在点A ′处,折痕为DG ,求AG的长.45B A ∠=∠=︒a b =2222236a b a c +===a=b =ABCD BD BE DF =AE EC CF FA ,,,AECF AD BC =ADF CBE ∠=∠()SAS ADF CBE ≌△△AF CE =AFD CEB ∠=∠AFE BEC =∠∠AF EC ∥ ABCD ∴AD BC ∥AD BC =ADF CBE ∴∠=∠BE DF = ()SAS ADF CBE ∴△≌△AF CE ∴=AFD CEB∠=∠AFE FEC ∴∠=∠∴AF EC ∥AF CE= ∴AECF【答案】AG =3.【解析】【分析】由折叠的性质得∠BA′G =∠DA′G =∠A =90°,A′D =6,由勾股定理得BD =10,得出A′B =4,设AG =A′G =x ,则GB =8-x ,由勾股定理得出方程,解方程即可得出结果.【详解】∵矩形ABCD 折叠后AD 边落在BD 上,∴∠BA′G =∠DA′G =∠A =90°,∵AB =8,AD =6,∴A′D =6,BD=10,∴A′B =4,设AG =A′G =x ,则GB =8-x ,由勾股定理得:x 2+42=(8-x )2,解得:x =3,∴AG =3.【点睛】本题主要考查折叠的性质、矩形的性质、勾股定理,熟练掌握折叠的性质、勾股定理是解题的关键.24. 如图,同学们想测量旗杆的高度(米),他们发现系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知.小明和小亮同学应用勾股定理分别提出解决这个问题的方案如下:小明:①测量出绳子垂直落地后还剩余1米,如图1;②把绳子拉直,绳子末端在地面上离旗杆底部的距离米,如图2.小亮:先在旗杆底端的绳子上打了一个结,然后举起绳结拉到如图3点D 处,作垂直于点.(1)请你按小明的方案求出旗杆的高度;4AC =()BD BC =DF AC ,F DF EC =BC(2)在(1)的条件下,已知小亮举起绳结离旗杆的距离米,求此时绳结到地面的高度.【答案】(1)旗杆的高度为7.5米(2)米【解析】【分析】本题考查的是勾股定理的应用根据题意得出直角三角形是解答此题的关键.(1)由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答;(2)由题可知,米,米.在中根据勾股定理列出方程,求出,进而求解即可.【小问1详解】解:如图2,设旗杆的长度为米,则绳子的长度为米,在中,由勾股定理得:,解得:,故旗杆的高度为7.5米;【小问2详解】由题可知,米,米.在中,由勾股定理得:,解得:,米,米故绳结离地面1.5米高.25. 如图,在正方形中,E 是边上的一动点,点F 在边的延长线上,且,连接、. 4.5DE =DF 1.5DF =7.5BD BC == 4.5DE =Rt BDE 224.5BE +27.5=6BE =x (1)x +Rt ABC 2224(1)x x +=+7.5x =7.5BD BC == 4.5DE =Rt BDE 2224.57.5BE +=6BE =7.56 1.5EC BC BE ∴=-=-=1.5DF EC ∴==ABCD AB BC CF AE =DE DF(1)求证;(2)连接,取中点,连接并延长交于,连接.①依题意,补全图形:②求证;③若,用等式表示线段、与之间的数量关系,并证明.【答案】(1)见解析(2)①见解析;②见解析;③,见解析【解析】【分析】(1)证,得,再证,即可得出结论;(2)①依题意,补全图形即可;②由直角三角形斜边上的中线性质得,,即可得出结论;③先证是等腰直角三角形,得,再证,,,得,,,然后证,得,再由勾股定理即可求解.【小问1详解】证明:四边形是正方形,,,,又,,,,DE DF ⊥EF EF G DG BC H BG BG DG =45EGB ∠=︒BG H G AE 2224BG HG AE +=(SAS)ADE CDF ≌V V ADE CDF ∠=∠90EDF ∠=︒12DG EF =12BG EF =DEF 45DEG =︒∠DG EF ⊥12DG EF EG ==12BG EF EG FG ===45GDF ∠=︒45EDG DEG ∠∠==︒GBF GFB ∠=∠(ASA)CDH CDF ≌CH CF = ABCD AD CD ∴=90A B BCD ADC ∠=∠=∠=∠=︒90DCF ∴∠=︒AE CF = (SAS)ADE CDF ∴△≌△ADE CDF \Ð=Ð90ADE CDE ∠+∠=︒,即,;【小问2详解】①解:依题意,补全图形如图所示:②证明:由(1)可知,和都是直角三角形,是的中点,,,;③解:,证明如下:由(1)可知,,,,是等腰直角三角形,,为的中点,,,,,,,,,,,,,又,,,90CDF CDE ∴∠+∠=︒90EDF ∠=︒DE DF ∴⊥DEF BEF △G EF 12DG EF ∴=12BG EF =BG DG ∴=2224BG HG AE +=ADE CDF V V ≌DE DF ⊥DE DF ∴=DEF ∴ 45DEG ∴∠=︒G EF DG EF ∴⊥12DG EF EG ==12BG EF EG FG ===90EGD HGF DGF ∠∠∠∴===︒45GDF ∠=︒45EDG DEG ∠∠==︒GBF GFB ∠=∠45EGB ∠=︒ 22.5GBF GFB ∠∠∴==︒90DHF HFG DHF CDH ∠+∠=∠+∠=︒ 22.5HFG CDH ∠∠∴==︒22.5CDF GDF HDC CDH ∠∠∠∠∴=-=︒=90DCH DCF ∠∠==︒ CD CD =(ASA)CDH CDF ∴ ≌,在中,由勾股定理得:,,,,.【点睛】本题是四边形综合题,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形斜边上的中线性质、等腰三角形的性质、勾股定理等知识;熟练掌握正方形的性质和等腰直角三角形的判定与性质,证明三角形全等是解题的关键,属于中考常考题型.26. 已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.【答案】(1)证明见解析,AF =5cm .(2)①以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,秒.②a 与b 满足的数量关系式是a +b =12(ab ≠0).【解析】【分析】(1)先证明四边形AFCE 为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;根据勾股定理即可求得AF 的长;(2)分情况讨论可知,当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可.CH CF ∴=Rt GHF △222GF HG HF +=22HF CF AE == GF BG =222(2)BG HG AE ∴+=2224BG HG AE ∴+=43t =【详解】(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠CAD =∠ACB ,∠AEF =∠CFE ,∵EF 垂直平分AC ,垂足为O ,∴OA =OC ,∴△AOE ≌△COF ,∴OE =OF ,∴四边形AFCE 为平行四边形,又∵EF ⊥AC ,∴四边形AFCE 为菱形,设菱形的边长AF =CF =x cm ,则BF =(8﹣x )cm ,在Rt △ABF 中,AB =4cm ,由勾股定理得42+(8﹣x )2=x 2,解得x =5,∴AF =5cm .(2)①显然当P 点在AF 上时,Q 点在CD 上,此时A 、C 、P 、Q 四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形,∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,PC =QA ,∵点P 速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,∴PC =5t ,QA =12﹣4t ,∴5t =12﹣4t ,解得,∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,秒.②由题意得,以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,点P 、Q在互相平行的对应边上.的43t =43t =分三种情况:i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12﹣b,得a+b=12;ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12﹣b=a,得a+b=12;iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12﹣a=b,得a+b=12.综上所述,a与b满足的数量关系式是a+b=12(ab≠0).。
2016-2017学年度九年级语文第二学期第四次月考试题及答案(考查范围:人教版1-6单元,侧重第6

2016-2017学年度九年级语文第二学期第四次月考试题及答案(考查范围:人教版1-6单元,侧重第6单元)部编人教版九年级下册2016-2017学年度第二学期第四次月考九年级语文试题(卷)(人教版)(考查范围:1-6单元,侧重第6单元)注意事项:1、本试卷共8页,满分120分,时间120分钟,学生直接在试卷上答题;2、答卷前将密封线内的项目填写清楚。
一、积累运用(18分)1.下列加点字的读音正确的一项是()(2分)A.庖代(páo)攫取(jué)翘首(qiào)豁免(huò)B.恻隐(cè)陋习(lòu)犀兕(sì)涟漪(yī)C.山麓(loù)愤懑(mèn)阴霾(mái)打鼾(hān)D.癖性(pǐ)馈赠(kuì)恐吓(hè)瘠薄(jí)2.下列词语中没有错别字的一项是()(2分)A.盘缠唿哨浩瀚无垠封疆之界B.巍峨峥嵘不动声色有例可援C.弥撒意测不以为然忍禁不禁D.徘徊糍粑大煞风景顶礼模拜3.请从括号里所给的两个词语中,选出一个最符合语境的填写在横线上。
(2分)(1)悠悠岁月已抹去了绝大多数历史的(痕迹遗迹),历代古人的悲欢离合早已烟消云散。
(2)有的家长认为子女阅读课外文学名著、参加社会活动就是—(不学无术不务正业),这种观点失之偏颇。
4、古诗文默写(6分)(1)无限河山泪,。
(2),骨肉流离道路中。
(3)角声满天秋色里,。
(4),在河之洲。
(5),臣之妾畏臣,,皆以美于徐公。
5.阅读语段,按要求完成下面的题目。
(3分)①为了进一步响应党的十八大报告中提出的大力推进生态文明建设,我校团委、校绿色低碳协会组织了一场以“美丽校园”为主题的绿色低碳活动。
②经过同学们两个小时的辛勤劳动,()食堂门口荒芜的校园绿化带都播上了希望的种子,()同学们脸上露出了幸福的微笑。
(1)第①句有语病,请将修改后的句子写在下面的横线上。
2022-2023学年江苏省南通市如东县八年级第二学期第二次月考数学试卷

南通市如东县八年级数学第二学期阶段性测试卷(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题3分,共30分)1 .以下列长度的三条线段为边,能组成直角三角形的是()A2,3,4 B.6,8,10 C.5,11,12 D.7,9,112. 已知在平行四边形ABCD中,∠B+∠D=200°,则∠B的度数为()A.100°B.160°C.80°D.60°3.一次函数y=2x+1的图象经过的象限是()A.一、二、三B.一、二、四C.一、三、四D.二、三、四4.学校甲、乙两支国旗护卫队队员的平均身高均为1.7米,要想知道哪支国旗护卫队队员的身高更为整齐,通常需要比较他们身高的()A.平均数B.中位数C.众数D.方差5.一次函数的图象经过点(a,2),则a的值为()A. -1B. 0C. 1D.26.关于x的一元二次方程x²-6x+m=0有两个相等的实数根,则m的值是A.9B.10C.11D.127.如图,已知一次函数y=mx+n 的图象经过点P(-2,3)则关于x 的不等式mx+n<3的解集为()A.x>-3 B.x<-3C.x>-2 D.x<-28.若关于x 的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,且满足4a-2b+c=0,则()A.b=a B.c=2a C.a(x+2)2=0 D.-a(x-2)2=09.如图,在矩形ABCD中,AB=4,E,F是对角线AC上两点,AE=CF,过点E,F分别作AC的垂线,与边BC分别交于点G,H.若BG=1,CH=4,则EG+FH=()A.6B.5C.4D.310.已知y关于x的一次函数y=k(x-a)+a²-a+1,当a≤x≤a+2时,-2≤y≤3,则k的值等于()A. B.C.D.二、填空题(本大题共8小题,11,12每题3分,13—18每题4分,共30分)11.在平面直角坐标系中,点(2,3)关于原点对称的点的坐标为.▲·12.已知正比例函数y=kx的图象如图所示,则k的值可以是▲(写出一个即可)13.一组数据2,0,1,x,3的平均数是2,则x= ▲14.小明的期中数学成绩为80分,期末数学成绩为90分,将期中和期末按照4:6的比例计算,得到总评成绩,则小明的数学总评成绩为▲分.15.如图,平行四边形ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,AB=3,AD=4,则EF的长等于▲.16.南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步?”其大意是:矩形面积为八百六十四平方步,宽和长共六十步,问宽和长各几步?若设宽为x步,则根据题意可列方程为▲.17.若m,n是方程x²-2x-1=0的两个实数根,则2m²+4n²-4n+2022的值为▲18.如图,过菱形ABCD的顶点D作DE⊥AB,垂足为E,F为BC延长线上一点,连接EF,分别与菱形的边AD,CD相交于点G,H,DG=CF,O为BD的中点,连接OE,OH.若DH=1,DE=3,则△OEH的周长等于▲三、解答题(本大题共8小题,共90分.)19.(本小题满分10分)解方程:(1)x²-4x-1=0; (2)x(3x+1)=2(3x+1).为增强学生的防疫意识,学校拟选拔一支代表队参加市级防疫知识竞赛,甲、乙两支预选队(每队各10人)参加了学校举行的选拔赛,选拔赛满分为100分.现对甲、乙两支预选队的竞赛成绩进行整理、描述和分析,下面给出了部分信息:a.甲队10名学生的竞赛成绩是:92,84,92,92,96,84,92,100,82,96b.甲、乙两队学生竞赛成绩统计表:(1)在甲、乙两队学生竞赛成绩统计表中,m=.▲ ,n=. ▲ ;(2)学校准备从甲,乙两支预选队中选取成绩前10名(包括第10名)的学生组成代表队参加市级比赛,小聪的成绩正好是甲乙两队中某一队成绩的中位数,但他却落选了,请判断小聪所属的队伍,并说明理由.21.(本小题满分10分)如图,在平面直角坐标系x0y中,直线L1经过原点,且与直线L₂:y=-x+3交于点A(m,2),直线L2与y 轴交于点B.(1)求直线L1的函数解析式;(2)点P(0,n)在y轴上,过点P作平行于x轴的直线,分别与直线L1,L₂交于点M,N.若MN=2OB,求n的值.为了满足师生的阅读需求,某校图书馆的藏书从2019年底到2021年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年平均增长率;(2)该校期望2022年底藏书量达到8.6万册,按照(1)中藏书的年平均增长率,上述目标能实现吗?请通过计算说明.23.(本小题满分12分)如图,在四边形ABCD中,AC与BD交于点O,AO=CO,BO=DO,BD平分∠ABC(1)求证:四边形ABCD是菱形;⑵E为OB上一点,连接CE,若OE=1,CE=5,BC=25,求菱形ABCD的面积.学校体育器材室拟购进甲、乙两种实心球.某公司给出这两种实心球的销售方法为:甲种实心球的销售总额y(单位:元)与销售量x(单位:个)的函数关系如图所示;乙种实心球20元/个.(1)求y与x之间的函数关系;(2)若学校体育器材室拟购买这两种实心球共100个,且每种均不少于45个,请设计最省钱的方案,并说明理由.25.(本小题满分13分)如图,在正方形ABCD中,AB=4,E为BD上的动点,连接AE并延长交正方形ABCD的边于点F ,将AF绕点A逆时针旋转90°得到AG,点E的对应点为点H.(1)连接DH,求证:△ABE≌△ADH;(2)当AG=5时,求BF的长;(3)连接BH,请直接写出BH+AH的最小值.(第25题) (第25题备用图)定义:形如的函数称为正比例函数y=kx(k≠0)的“分移函数”,其中b叫“分移值”.例如,函数y=2x的“分移函数”其中“分移值”为1.(1)已知点(1,2k)在y=kx(k≠0)的“分移函数”的图象上,则k=.▲;(2)已知点P(2,1-m),P2(-3,2m+1)在函数y=2x的“分移函数”的图象上,求m的值;(3)已知矩形ABCD顶点坐标为A(1,0),B(1,2),C(-2,2),D(-2,0).函数y=kx的“分移函数”的“分移值”为3,且其图象与矩形ABCD有两个交点,直接写出k的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2016-2017学年第二学期4月月考
八年级数学试题
一.选择题:(4分×6=24分)
1.如果把分式
y
x xy
+2中的x 和y 都扩大3倍,那么分式的值 ( ) A .不变 B .缩小3倍 C .扩大6倍 D .扩大3倍 2.不等式2(x -2)≤x -2的非负整数解的个数为 ( ) A.1个 B.2个 C.3个 D.4个 3.如果关于x 的分式方程x
m
x x -=--552无解,则m 的值为 ( ) A. 5
B. 3
C. -5
D. -3
4.函数2
2
)1(-+=m x m y 是反比例函数,则m 的值为 ( )
A. 1
B. -1
C. 1或-1
D. 任意实数
5.如果不等式组⎩
⎨⎧>-<+n x x x 7
37的解集是4>x ,则n 的取值范围是 ( )
A .4≥n
B .4≤n
C .4=n
D .4<n
6.若点M (2,2)和N (b ,-1-n 2)是反比例函数x
k
y =
的图象上的两个点, 则一次函数b kx y +=的图象经过 ( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限
D .第二、三、四象限
二.填空题:(4分×7=28分)
1.已知0≠x ,x x x 31
211++= 。
2.反比例函数x
m
y -=2的图象是双曲线,在每一个象限内,y 随x 的增大而减小,若点
A (-3,1y ),
B (-1,2y ),
C (2,3y )都在该双曲线上, 则1y 、2y 、3y 的大小关
系为 。
(用“<”连接)
3.如右图,直线y =-1.5x +3上有一点P ,则不等式 -1.5x +3>1.5的解集是 .
4.已知线段AB=10,C 是AB 的一个黄金分割点,则
5.不等式a ≤x ≤3只有5个整数解,则a
6.如果 a 2=b 3
,则
b
b
a +的值为 。
7.已知反比例函数x
m y )23(1
-=
,当m 时,其图象的两个分支在第一、三象限内;
当m 时,其图象在每个象限内y 随x 的增大而增大。
三.解答题:(48分)
1.(1)已知a 、b 、c 、d 是成比例线段,其中a =3cm ,b =2cm ,c =6cm , 求线段d 的长。
(5分)
(2)已知线段a 、b 、c,a =4cm ,b =9cm ,线段c 是线段 a 和b 的比例中项。
求线段c 的长。
(5分)
2.先化简4
1)231(2-+÷-+
a a a , 然后请你给a 选取一个合适的值, 再求此时原式的值。
(6分)
3.某学校组织三好学生去野营,若每个帐篷住6人,则有20人没地方住;若每个帐篷住9人,则还有一个帐篷里不空也不满,问:有多少个帐篷?多少学生?(6分)
4.某市对城区沿江两岸的部分路段进行亮化工程建设,整个工程拟由甲、乙两个安装公司共同完成。
从两个公司的业务资料看到:若两个公司合做,则恰好用12天完成;若甲、乙合做9天后,由甲再单独做5天也恰好完成。
如果每天需要支付甲、乙两公司的工程费用分别为1.2万元和0.7万元。
(8分) 试问:(1)甲、乙两公司单独完成这项工程各需多少天?
(2)要使整个工程费用不超过22.5万元,则乙公司最少应施工多少天?
5.扬州火车站有某公司待运的甲种货物1530吨,乙种货物1150吨,现计划用50节A、B 两种型号的车厢将这批货物运至北京.已知每节A型货厢的运费是0.5万元,每节B型货厢的运费是0.8万元;甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,共有几种方案?请你设计出来,并说明哪种方案的运费最少,最少运费是多少(8分)?
6.邻居王阿姨在再就业中心的扶持下,创办了“便民”报刊零售点,对经营的某种晚报,王阿姨提供了如下信息:
①买进报纸每份0.35元,卖出每份0.5元;
②一个月内(以30天计),有22天每天可以卖出250份,其余每天只能卖出150份;
③一个月内,每天从报社买进的报纸份数必须相同,当天卖剩下的报纸可以每份0.25元退回报社.
根据上述信息,请你给王阿姨帮个忙:
(1
(2)设每天从报社买进该晚报x份(150x250)时,月利润为y元,试求出y关于x 的函数关系式,并求月利润的最大值。
(10分)。