高二数学上册第二章综合检测试题(含答案解析)
高二数学选修1-2全册第2章综合素质检测

第二章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.有如下一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”,这个推理的结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 [答案] C[解析] 推理形式不完全符合三段论推理的要求,故推出的结论是错误的.2.已知数列{a n }的前n 项和S n =n 2·a n (n ≥2),而a 1=1,通过计算a 2、a 3、a 4,猜想a n =( )A.2(n +1)2 B.2n (n +1) C.22n -1 D.22n -1 [答案] B[解析] 考查归纳推理.a 2=S 2-S 1=22a 2-1∴a 2=13a 3=S 3-S 2=32·a 3-22·a 2=9a 3-4×13∴a 3=16a 4=S 4-S 3=42·a 4-32a 3=16a 4-9×16∴a 4=110由此猜想a n =2n (n +1)3.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,问第100项为( )A .10B .14C .13D .100[答案] B[解析] 设n ∈N *,则数字n 共有n 个所以n (n +1)2≤100即n (n +1)≤200, 又因为n ∈N *,所以n =13,到第13个13时共有13×14291项,从第92项开始为14,故第100项为14.4.如果x 2+y 2+Dx +Ey +F =0与x 轴相切于原点,那么( )A .F =0,D ≠0,E ≠0B .E =0,F =0,D ≠0C .D =0,F =0,E ≠0D .D =0,E =0,F ≠0 [答案] C[解析] ∵圆x 2+y 2+Dx +Ey +F =0与x 轴相切于原点,∴圆过原点,F =0,又圆心在y 轴上,∴D =0,E ≠0.5.已知a <b <0,下列不等式中成立的是( )A .a 2<b 2B.a b <1 C .a <4-bD.1a <1b [答案] C[解析] ∵a <b <0,∴-b >0,4-b >4,∴a <4-b .6.已知f 1(x )=cos x ,f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),f 4(x )=f 3′(x ),…,f n (x )=f n -1′(x ),则f 2011(x )等于( )A .sin xB .-sin xC .cos xD .-cos x [答案] D[解析] 由已知,有f 1(x )=cos x ,f 2(x )=-sin x ,f 3(x )=-cos x ,f 4(x )=sin x ,f 5(x )=cos x ,…,可以归纳出:f 4n (x )=sin x ,f 4n +1(x )=cos x ,f 4n +2(x )=-sin x ,f 4n +3(x )=-cos x (n ∈N *).所以f 2011(x )=f 3(x )=-cos x .7.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20等于( ) A .0B .- 3 C. 3D.32[答案] B[解析] a 2=0-30+1=-3,a 3=-3-3-3·3+1=3,a 4=0,所以此数列具有周期性,0,-3,3依次重复出现.因为20=3×6+2,所以a 20=- 3.8.已知1+2×3+3×32+4×32+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a ,b ,c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a ,b ,c[答案] A[解析] 令n =1,2,3,得⎩⎪⎨⎪⎧3(a -b )+c =1,9(2a -b )+c =7,27(3a -b )+c =34.所以a =12,b =c =14. 9.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值( )A .一定大于零B .一定等于零C .一定小于零D .正负都有可能 [答案] A[解析] f (x )=x 3+x 是奇函数,且在R 上是增函数,由a +b >0得a >-b ,所以f (a )>f (-b ),即f (a )+f (b )>0,同理f (a )+f (c )>0,f (b )+f (c )>0,所以f (a )+f (b )+f (c )>0.10.用反证法证明命题“若整数系数一元二次方程ax 2+bx +c =0(a ≠0)有有理根,那么a 、b 、c 中至少有一个是偶数”,下列各假设中正确的是( )A .假设a ,b ,c 都是偶数B .假设a ,b ,c 都不是偶数C .假设a ,b ,c 中至多有一个是偶数D .假设a ,b ,c 中至多有两个偶数[答案] B[解析] 对命题的结论“a ,b ,c 中至少有一个是偶数”进行否定假设应是“假设a ,b ,c 都不是偶数”.因为“至少有一个”即有一个、两个或三个,因此它的否定应是“都不是”.11.已知数列{a n }的通项公式a n =1(n +1)2(n ∈N *),记f (n )=(1-a 1)(1-a 2)(1-a 3)…(1-a n ),通过计算f (1)、f (2)、f (3)、f (4)的值,由此猜想f (n )=( )A.n +22(n +1) B.n +24n C.2n -1(n +1)2 D.n +1n (n +1) [答案] A12.若sin A a =cos B b =cos C c,则△ABC 是( ) A .等边三角形B .有一个内角是30°的直角三角形C .等腰直角三角形D .有一个内角是30°的等腰三角形[答案] C[解析] ∵sin A a =cos B b =cos C c,由正弦定理得, sin A a =sin B b =sin C c ,∴sin B b =cos B b =cos C c =sin C c, ∴sin B =cos B ,sin C =cos C ,∴∠B =∠C =45°,∴△ABC 是等腰直角三角形.二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上)13.对于“求证函数f (x )=-x 3在R 上是减函数”,用“三段论”可表示为:大前提是“对于定义域为D 的函数f (x ),若对任意x 1,x 2∈D 且x 2-x 1>0,有f (x 2)-f (x 1)<0,则函数f (x )在D 上是减函数”,小前提是“________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________”,结论是“f (x )=-x 3在 R 上是减函数”.[答案] 对于任意x 1,x 2∈R 且x 2-x 1>0,有f (x 2)-f (x 1)=-x 32+x 31=-(x 2-x 1)(x 22+x 1x 2+x 21)=-(x 2-x 1)·⎣⎡⎦⎤⎝⎛⎭⎫x 2+x 122+34x 21<0 14.在△ABC 中,D 为边BC 的中点,则AD →=12(AB →+AC →).将上述命题类比到四面体中去,得到一个类比命题:________________________________________________________________________.[答案] 在四面体A -BCD 中,G 为△BCD 的重心,则AG →=13(AB →+AC →+AD →)15.已知数列{a n },a 1=12,a n +1=3a n a n +3,则a 2、a 3、a 4、a 5分别为________,猜想a n =________.[答案] 37,38,39,310,3n +5. 16.已知函数f (x )=x 2-cos x ,对于⎣⎡⎦⎤-π2,π2上的任意x 1,x 2,有如下条件: ①x 1>x 2;②x 21>x 22;③|x 1|>x 2.其中能使f (x 1)>f (x 2)恒成立的条件序号是______.[答案] ②[解析] 易知函数f (x )是偶函数,且在⎝⎛⎭⎫0,π2上是增函数,故能使f (x 1)>f (x 2)恒成立的条件只有②x 21>x 22.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)已知:a 、b 、c ∈R ,且a +b +c =1.求证:a 2+b 2+c 2≥13[解析] 证明:由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca .三式相加得a 2+b 2+c 2≥ab +bc +ca .∴3(a 2+b 2+c 2)≥(a 2+b 2+c 2)+2(ab +bc +ca )=(a +b +c )2.由a +b +c =1,得3(a 2+b 2+c 2)≥1,即a 2+b 2+c 2≥13. 18.(本题满分12分)设{a n },{b n }是公比不相等的两个等比数列,若c n =a n +b n ,请证明数列{c n }不是等比数列.[证明] 假设数列{c n }是等比数列,则(a n +b n )2=(a n -1+b n -1)(a n +1+b n +1).①因为{a n },{b n }是等比数列,设公比分别为p ,q ,则有a 2n =a n -1·a n +1,b 2n =b n -1·b n +1.②整理①式,并将②代入得2a n b n =a n +1b n -1+a n -1b n +1.所以2a n b n =a n p ·b n q +a n p ·b n q ,即2=p q +q p. 因为p ≠q ,所以p q +q p≠2,得出矛盾,所以假设不成立. 故数列{c n }不是等比数列.19.(本题满分12分)若x >0,y >0,用分析法证明:(x 2+y 2)12>(x 3+y 3)13.[证明] 要证(x 2+y 2)12>(x 3+y 3)13, 只需证(x 2+y 2)3>(x 3+y 3)2,即证x 6+3x 4y 2+3x 2y 4+y 6>x 6+2x 3y 3+y 6,即证3x 4y 2+3y 4x 2>2x 3y 3.又因为x >0,y >0,所以x 2y 2>0,故只需证3x 2+3y 2>2xy .而3x 2+3y 2>x 2+y 2≥2xy 成立,所以(x 2+y 2)12>(x 3+y 3)13成立. 20.(本题满分12分)证明下列等式,并从中归纳出一个一般性的结论.2cos π4=2, 2cos π8=2+2, 2cos π16=2+2+2, ……[证明] 2cos π4=2·22= 2 2cos π8=21+cos π42 =2·1+222=2+ 22cos π16=21+cos π82 =21+122+22 =2+2+ 2 …2cos π2n +1=2+2+2+…n 个根号21.(本题满分12分)已知数列{a n }满足a 1=3,a n ·a n -1=2·a n -1-1.(1)求a 2,a 3,a 4;(2)求证:数列⎩⎨⎧⎭⎫1a n -1是等差数列,并求出数列{a n }的通项公式.[解析] (1)由a n ·a n -1=2·a n -1-1得a n =2-1a n -1, 代入a 1=3,n 依次取值2,3,4,得a 2=2-13=53,a 3=2-35=75,a 4=2-57=97(2)证明:由a n ·a n -1=2·a n -1-1变形,得(a n -1)·(a n -1-1)=-(a n -1)+(a n -1-1),即1a n -1-1a n -1-1=1, 所以{1a n -1}是等差数列. 由1a 1-1=12,所以1a n -1=12+n -1,变形得a n -1=22n -1, 所以a n =2n +12n -1为数列{a n }的通项公式. 22.(本题满分14分)已知函数f (x )对任意实数a 、b 都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)求证:f (x )是R 上的增函数.(2)若f (4)=5,解不等式f (3m 2-m -2)<3.[解析] (1)证明:设任意x 1,x 2∈R ,且x 2>x 1,则有x 2-x 1>0,利用已知条件“当x >0时,f (x )>1”得f (x 2-x 1)>1,而f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1>0,即f (x 2)>f (x 1),所以f (x )是R 上的增函数.(2)由于f (4)=f (2)+f (2)-1=5,所以f (2)=3.由f (3m 2-m -2)<3得f (3m 2-m -2)<f (2).由f (x )是R 上的增函数,得3m 2-m -2<2,解得-1<m <43.。
高二数学选修第2章综合素质检测

第二章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列各对双曲线中,既有相同的离心率又有相同的渐近线的是( ) A.x 23-y 2=1和x 29-y 23=1 B.x 23-y 2=1和x 2-y 23=1 C .y 2-x 23=1和x 2-y 23=1 D.x 23-y 2=1和y 23-x 29=12.(2010·四川文,3)抛物线y 2=8x 的焦点到准线的距离是( ) A .1 B .2 C .4D .83.若方程x 2a -y2b =1表示焦点在y 轴上的椭圆,则下列关系成立的是( )A.-b >aB.-b <aC.b >-aD.b <-a4.椭圆a 2x 2-a 2y 2=1的一个焦点是(-2,0),则a 等于( )A.1-34B.1-54C.-1±34D.-1±545.设双曲线焦点在x 轴上,两条渐近线为y =±12x ,则该双曲线的离心率为( )A .5B. 5C.52D.546.已知以F 1(-2,0)、F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .3 2B .2 6C .27D .4 27.x 2a 2-y 2b 2=1与x 2b 2-y 2a2=1(a >b >0)的渐近线( ) A .重合 B .不重合,但关于x 轴对称 C .不重合,但关于y 轴对称 D .不重合,但关于直线y =x 对称8.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a ,b ,m 为边长的三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形9.动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( ) A .(4,0)B .(2,0)C .(0,2)D .(0,-2)10.命题甲是“双曲线C 的方程为x 2a 2-y 2b 21”,命题乙是“双曲线C 的渐近线方程为y =±ba x ”,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 11.如图所示,在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线12.过点C (4,0)的直线与双曲线x 24-y 212=1的右支交于A 、B 两点,则直线AB 的斜率k 的取值范围是( )A .|k |≥1B .|k |> 3C .|k |≤ 3D .|k |<1二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.已知长方形ABCD ,AB =4,BC =3,则以A 、B 为焦点,且过C 、D 两点的椭圆的离心率为________.14.设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是________.15.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0)若椭圆上存在点P 使a sin ∠PF 1F 2=csin ∠PF 2F 1,则该椭圆的离心率的取值范围为________.16.已知F 1、F 2为椭圆的焦点,等边三角形AF 1F2两边的中点M ,N 在椭圆上,如图,则椭圆的离心率为__________________.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)求以椭圆3x 2+13y 2=39的焦点为焦点,以直线y =±x2为渐近线的双曲线方程.18.(本题满分12分)P 是椭圆x 2a 2+y2b 2=1(a >b >0)上且位于第一象限的一点,F 是椭圆的右焦点,O 是椭圆中心,B 是椭圆的上顶点,H 是直线x =-a2c (c 为椭圆的半焦距)与x 轴的交点,若PF ⊥OF ,HB ∥OP ,试求椭圆的离心率e .[分析] 先确定点H 、B 、P 的坐标,由HB ∥OP ,得斜率k HB =k OP ,建立a ,b ,c 的关系式,进而求出e .19.(本题满分12分)已知直线y =kx -2交抛物线y 2=8x 于A 、B 两点,且AB 的中点的横坐标为2,求弦AB 的长.20.(本题满分12分)已知抛物线的顶点在原点,焦点在x 轴上,其准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点;又抛物线与双曲线的一个交点为M ⎝⎛⎭⎫32,-6,求抛物线和双曲线的方程.21.(本题满分12分)已知椭圆、抛物线、双曲线的离心率构成一个等比数列且它们有一个公共的焦点(4,0),其中双曲线的一条渐近线方程为y =3x ,求三条曲线的标准方程.22.(本题满分14分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A 、B ,求双曲线C 的离心率的取值范围.1[答案] A[解析] A 中离心率都为233,渐近线都为y =±33x . 2[答案] C[解析] 本题考查抛物线的焦点到准线的距离. 3[答案] A[解析] 方程x 2a -y2b =1表示焦点在y 轴上的椭圆,∴b <0,∴-b >a . 4[答案] B[解析] 椭圆a 2x 2-a 2y 2=1可化为x 21a 2+y2-2a =1,∴a <0,排除C 、D. 当a =1-54时,1a 2=6+25,-2a=2(5+1), ∴6+25-25-2=4,∴一个焦点是(-2,0). 5[答案] C[解析] ∵b a =12,∴b 2a 2=14=c 2-a 2a 2=e 2-1=14,∴e 2=54,e =52.6[答案] C[解析] 设椭圆方程为x 2a 2+y 2b2=1(a >b >0),由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1x +3y +4=0,得(a 2+3b 2)y 2+83b 2y +16b 2-a 2b 2=0,由Δ=0及a 2-b 2=4可得a 2=7,∴2a =27.7[答案] D[解析] 双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,双曲线x 2b 2-y 2a 2=1的渐近线方程为y =±ab x ,又直线y =±b a x 与y =±ab x 关于直线y =x 对称.8[答案] B[解析] 双曲线的离心率e 1=a 2+b 2a ,椭圆的离心率e 2=m 2-b 2m ,由a 2+b 2a ·m 2-b2m =1得a 2+b 2=m 2,故为直角三角形.9[答案] B[解析] ∵直线x +2=0恰好为抛物线y 2=8x 的准线,由抛物线定义知,动圆必过抛物线焦点(2,0).10[答案] A[解析] 双曲线x 2a 2-y 2b 2=1的渐近线为y =±b a x ,而渐近线为y =±b a x 的双曲线方程为x 2a 2-b 2b 2=λ(λ≠0).11[答案] D[解析] ∵点P 到直线C 1D 1的距离等于它到定点C 1的距离, ∴动点P 到直线BC 的距离等于它到定点C 1的距离. 12[答案] B[解析] 如图所示,l 1平行于y =3x ,l 2平行于y =-3x ,由图可看出,当过C 由l 1位置逆时针方向转到l 2位置之间的直线与双曲线x 24-y 212=1的右支都有两个交点,此时k >3或k <- 3. 13[答案] 12[解析] ∵AB =2c =4,∴c =2. 又AC +CB =5+3=8=2a ,∴a =4.即椭圆离心率为c a =12.14[答案] x 22+y 2=1[解析] ∵双曲线2x 2-2y 2=1的离心率为2, ∴所求椭圆的离心率为22, 又焦点为(±1,0),∴所求椭圆的方程为x22+y 2=1.15[答案] (2-1,1)[解析] 考查椭圆的定义、正弦定理以及最值问题. 由正弦定理可得PF 2sin ∠PF 1F 2=PF 1sin ∠PF 2F 1,∴sin ∠PF 2F 1sin ∠PF 1F 2=PF 1PF 2=ca =e , 故PF 1+PF 2PF 2=2a PF 2=e +1,而PF 2=2a e +1<a +c ,∴2e +1<1+e ,故e >2-1,又∵e <1,∴e ∈(2-1,1). 16[答案]3-1[解析] 连接MF 2,则等边三角形AF 1F 2中,|MF 1|=12F 1F 2|=c ,|MF 2|=32|F 1F 2|=3c ,由定义知|MF 1|+|MF 2|=2a ,即c +3c =2a ,解得ca=3-1.17[解析] 椭圆3x 2+13y 2=39可化为x 213+y23=1,其焦点坐标为(±10,0),∴所求双曲线的焦点为(±10,0), 设双曲线方程为:x 2a 2-y2b2=1(a >0,b >0)∵双曲线的渐近线为y =±12x ,∴b a =12,∴b 2a 2=a 2-c 2a 2=a 2-10a 2=14, ∴a 2=403,b 2=103, 即所求的双曲线方程为:3x 240+3y 2101.18[解析] 依题意,知H ⎝⎛⎭⎫-a 2c ,0,F (c,0),又由题设得B (0,b ),x P =c ,代入椭圆方程结合题设解得y P =b 2a.因为HB ∥OP ,所以k HB =k OP . 由此得b -00+a 2c=b2a c ab =c 2,从而得c a =b c ⇒e 2=a 2-c 2c2=e -2-1.∴e 4+e 2-1=0,又0<e <1, 解得e =5-12. [点评] 求椭圆离心率的常见思路:一是先求a 、c ,再计算e ;二是依据条件的信息,结合有关的知识和a 、b 、c 、e 的关系式,构造e 的一元方程,再求解.19[解析] 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -2y 2=8x 得k 2x 2-(4k +8)x +4=0① ∵k ≠0,∴x 1+x 2=4k +8k 2,又∵x 1+x 2=4,∴4k +8k 2=4,解得k =-1或k =2, 当k =-1时,①中Δ=0,直线与抛物线相切.当k =2时,x 1+x 2=4,x 1x 2=1,|AB |=1+4·(x 1+x 2)2-4x 1x 2=5·16-4=215, ∴弦AB 的长为215.20[解析] ∵抛物线的顶点在原点,焦点在x 轴上,与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个交点为M ⎝⎛⎭⎫32,-6,∴设抛物线方程为y 2=2px (p >0),将点M 坐标代入得p =2, ∴y 2=4x ,其准线为x =-1,∵抛物线的准线过双曲线的一个焦点,∴双曲线的焦点为(±1,0)且点M ⎝⎛⎭⎫32,-6在双曲线上, ∴a 2=14b 2=34,双曲线的方程为4x 2-4y23=1.21[解析] 因为双曲线的焦点在x 轴上,故其方程可设为x 2a 2-y 2b 21(a >0,b >0),又因为它的一条渐近线方程为y =3x ,所以ba=3,即b 2a 2=c 2-a 2a2=e 2-1= 3.解得e =2,因为c =4,所以a =2,b =3a =23,所以双曲线方程为x 24-y212=1.因为椭圆、抛物线、双曲线的离心率构成一个等比数列,所以这个等比数列的中间项一定是抛物线的离心率1,由等比数列性质可得椭圆和双曲线的离心率互为倒数,因此,椭圆的离心率为12,设椭圆方程为x 2a 21+y 2b 21=1(a 1>b 1>0),则c =4,a 1=8,b 21=82-42=48.所以椭圆的方程为x 264+y 248=1,易知抛物线的方程为y 2=16x .22[解析] 由C 与l 相交于两个不同点,故知方程组⎩⎪⎨⎪⎧x 2a 2-y 2=1,x +y =1有两组不同的实根,消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0①.所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0,解得0<a <2,且a ≠1. 双曲线的离心率e =1+a 2a =1a2+1,因为0<a <2且a ≠1. 所以e >62,且e ≠ 2. 即离心率e 的取值范围为⎝⎛⎭⎫62,2∪(2,+∞).。
第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章直线和圆的方程专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一第二章直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息。
2.请将答案正确填写在答题卡上。
第I卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线 $ $l_1\parallell_2$,则实数 $k=$()。
A。
$-2$B。
$-1$C。
$1$D。
$2$2.(2020·XXX高一月考)直线$l_1:(a-2)x+(a+1)y+4=0$,$l_2:(a+1)x+ay-9=0$ 互相垂直,则 $a$ 的值是()。
A。
$-0.25$B。
$1$C。
$-1$D。
$1$ 或 $-1$3.(2020·XXX高一月考)直线 $l:(m-1)x-my-2m+3=0$($m\in R$)过定点 $A$,则点 $A$ 的坐标为()。
A。
$(-3,1)$B。
$(3,1)$C。
$(3,-1)$D。
$(-3,-1)$4.(2020·广东高二期末)设 $a\in R$,则“$a=1$”是“直线$ax+y-1=0$ 与直线 $x+ay+1=0$ 平行”的()。
A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件5.(2020·黑龙江高一期末)若曲线 $y=4-x^2$ 与直线$y=k(x-2)+4$ 有两个交点,则实数 $k$ 的取值范围是()。
A。
$\left[\frac{3}{4},1\right]$B。
$\left[\frac{3}{4},+\infty\right)$C。
$(1,+\infty)$D。
$(1,3]$6.(2020·XXX高三其他)已知直线 $x+y=t$ 与圆$x+y=2t-t^2$($t\in R$)有公共点,则 $\frac{t(4-t)}{9}$ 的最大值为()。
高二数学北师大必修单元检测:第二章 解三角形 B 含解析

8.(2014四川高考)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()
A.240( -1)mB.180( -1)m
C.120( -1)mD.30( +1)m
解析:如图,作AD⊥BC,垂足为D.
由题意,得DC=60×tan60°=60 (m),
即| || |= .
所以S△ABC= |·sinA= .
答案:
15.(2014课标全国Ⅰ高考)如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.
A.10B.9C.8D.5
解析:由23cos2A+cos2A=0,得cos2A= .
∵A∈ ,∴cosA= .
∵cosA= ,∴b=5或b=- (舍).
答案:D
3.(2014江西高考)在△ABC中,内角A,B,C所对的边分别为a,b,c,若c2=(a-b)2+6,C= ,则△ABC的面积是()
A.3B. C. D.3
(1)求C和BD;
(2)求四边形ABCD的面积.
解:(1)由题设及余弦定理得
BD2=BC2+CD2-2BC·CDcosC
=13-12cosC,①
BD2=AB2+DA2-2AB·DAcosA
=5+4cosC.②
由①②得cosC= ,故C=60°,BD= .
(2)四边形ABCD的面积
S= AB·DAsinA+ BC·CDsinC
答案:
12.(2014福建高考)在△ABC中,A=60°,AC=4,BC=2 ,则△ABC的面积等于.
高中数学 第二章 随机变量及其分布 章末综合检测(二)(含解析)新人教A版高二选修2-3数学试题

章末综合检测(二)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.4个高尔夫球中有3个合格、1个不合格,每次任取一个,不放回地取两次,若第一次取到合格的高尔夫球,则第二次取到合格高尔夫球的概率为( )A.12 B .23 C.34D .45解析:选B.法一:记事件A ={第一次取到合格的高尔夫球}, 事件B ={}第二次取到合格的高尔夫球.由题意可得P (AB )=3×24×3=12,P (A )=3×34×3=34,所以P (B |A )=P (AB )P (A )=1234=23.法二:记事件A ={}第一次取到合格的高尔夫球,事件B ={}第二次取到合格的高尔夫球,由题意可得事件B 发生所包含的基本事件数n (AB )=3×2=6,事件A 发生所包含的基本事件数n (A )=3×3=9.所以P (B |A )=n (AB )n (A ) =69 =23.2.设随机变量X 的分布列为P (X =i )=a (13)i(i =1,2,3),则a 的值为( )A .1B .913 C.1113D .2713解析:选D.因为P (X =1)=a 3,P (X =2)=a 9,P (X =3)=a 27.所以a 3+a 9+a 27=1,所以a =2713.3.甲、乙两颗卫星同时独立的监测台风.在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为( )A .0.95B .0.6C .0.05D .0.4解析:选A.法一:在同一时刻至少有一颗卫星预报准确可分为:①甲预报准确,乙预报不准确;②甲预报不准确,乙预报准确;③甲预报准确,乙预报准确.这三个事件彼此互斥,故至少有一颗卫星预报准确的概率为0.8×(1-0.75)+(1-0.8)×0.75+0.8×0.75=0.95.法二:“在同一时刻至少有一颗卫星预报准确”的对立事件是“在同一时刻两颗卫星预报都不准确”,故至少有一颗卫星预报准确的概率为1-(1-0.8)×(1-0.75)=0.95.4.已知随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则D (2X +1)等于( ) A .6 B .4 C .3D .9解析:选A.因为D (2X +1)=D (X )×22=4D (X ),D (X )=6×12×⎝ ⎛⎭⎪⎫1-12=32,所以D (2X +1)=4×32=6.5.如果随机变量X 表示抛掷一个各面分别标有1,2,3,4,5,6的均匀的正方体向上面的数字,则随机变量X 的均值为( )A .2.5B .3C .3.5D .4解析:选C.P (X =k )=16(k =1,2,3,…,6),所以E (X )=1×16+2×16+…+6×16=16(1+2+…+6)=16×6×(1+6)2=3.5.6.若随机变量X 服从正态分布,其正态曲线上的最高点的坐标是(10,12),则该随机变量的方差等于( )A .10B .100 C.2πD .2π解析:选C.由正态分布密度曲线上的最高点⎝ ⎛⎭⎪⎫10,12知12π·σ=12,即σ=2π,所以D (X )=σ2=2π.7.已知随机变量ξ的分布列如下:若E (ξ)=2,则D (ξ)A .0 B .2 C .1D .12解析:选A.由题意得a =1-13=23,所以E (ξ)=13m +23n =2,即m +2n =6.又D (ξ)=13×(m -2)2+23(n -2)2=2(n -2)2,所以当n =2时,D (ξ)取最小值为0.8.设随机变量X ~N (μ,σ2)且P (X <1)=12,P (X >2)=p ,则P (0<X <1)的值为( )A .12pB .1-pC .1-2pD .12-p 解析:选D.由正态曲线的对称性知P (X <1)=12,故μ=1,即正态曲线关于直线x =1对称,于是P (X <0)=P (X >2),所以P (0<X <1)=P (X <1)-P (X <0)=P (X <1)-P (X >2)=12-p .9.排球比赛的规则是5局3胜制(无平局),在某排球比赛中,甲队在每局比赛中获胜的概率都相等,为23,前2局中乙队以2∶0领先,则最后乙队获胜的概率是( )A .49B .827C .1927D .4081解析:选C.最后乙队获胜的概率含3种情况:(1)第三局乙胜;(2)第三局甲胜,第四局乙胜;(3)第三局和第四局都是甲胜,第五局乙胜.故最后乙队获胜的概率P =13+23×13+⎝ ⎛⎭⎪⎫23×13=1927,故选C. 10.节日期间,某种鲜花进货价是每束2.5元,销售价每束5元;节日卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X 服从如表所示的分布列若进这种鲜花500A .706元 B .690元 C .754元D .720元解析:选A.因为E (X )=200×0.2+300×0.35+400×0.3+500×0.15=340, 所以利润的均值为340×(5-2.5)-(500-340)×(2.5-1.6)=706元,故选A. 11.某个游戏中,一个珠子按如图所示的通道,由上至下滑下,从最下面的六个出口出来,规定猜中者为胜,如果你在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为( )A .516B .532C .16D .以上都不对解析:选A.由于珠子在每个叉口处有“向左”和“向右”两种走法,因而基本事件个数为25.而从出口3出来的每条线路中有2个“向右”和3个“向左”,即共C 25条路线,故所求的概率为C 2525=516.12.某商家进行促销活动,促销方案是顾客每消费1 000元,便可以获得奖券1X ,每X 奖券中奖的概率为15,若中奖,则商家返还中奖的顾客现金1 000元.小王购买一套价格为2 400元的西服,只能得到2X 奖券,于是小王补偿50元给一同事购买一件价格为600元的便服,这样小王就得到了3X 奖券.设小王这次消费的实际支出为ξ元,则E (ξ)=( )A .1 850B .1 720C .1 560D .1 480解析:选A.根据题意知,ξ的可能取值为2 450,1 450,450,-550,且P (ξ=2 450)=⎝ ⎛⎭⎪⎫45=64125,P (ξ=1 450)=C 13⎝ ⎛⎭⎪⎫15⎝ ⎛⎭⎪⎫45=48125,P (ξ=450)=C 23⎝ ⎛⎭⎪⎫15·⎝ ⎛⎭⎪⎫45=12125,P (ξ=-550)=C 33⎝ ⎛⎭⎪⎫15=1125,所以E (ξ)=2 450×64125+1 450×48125+450×12125+(-550)×1125=1 850.二、填空题:本题共4小题,每小题5分.13.邮局工作人员整理,从一个信箱中任取一封信,记一封信的质量为X (单位:克),如果P (X <10)=0.3,P (10≤X ≤30)=0.4,那么P (X >30)等于________.解析:根据随机变量的概率分布的性质,可知P (X <10)+P (10≤X ≤30)+P (X >30)=1,故P (X >30)=1-0.3-0.4=0.3.答案:0.314.一批产品的二等品概率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数, 则D (X )=________.解析:X ~B (100,0.02),所以D (X )=np (1-p )=100×0.02×0.98=1.96. 答案:1.9615.一个均匀小正方体的6个面中,三个面上标注数字0,两个面上标注数字1,一个面上标注数字2.将这个小正方体抛掷2次,则向上的数字之积的数学期望是________.解析:设ξ表示两次向上的数字之积, 则P (ξ=1)=13×13=19,P (ξ=2)=C 12×13×16=19,P (ξ=4)=16×16=136,P (ξ=0)=34,所以E (ξ)=1×19+2×19+4×136=49.答案:4916.在等差数列{a n }中,a 4=2,a 7=-4,现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续取数3次,假设每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为________.(用数字作答)解析:由a 4=2,a 7=-4可得等差数列{a n }的通项公式为a n =10-2n (n =1,2,3,…).{a n }的前10项分别为8,6,4,2,0,-2,-4,-6,-8,-10.由题意知三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为25,取得负数的概率为12,在三次取数中,取出的数恰好为两个正数和一个负数的概率为C 23⎝ ⎛⎭⎪⎫25⎝ ⎛⎭⎪⎫12=625. 答案:625三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某一射手射击所得环数X 的分布列如下:(1)求m (2)求此射手“射击一次命中的环数≥7”的概率.解:(1)由分布列的性质得m =1-(0.02+0.04+0.06+0.09+0.29+0.22)=0.28. (2)P (射击一次命中的环数≥7)=0.09+0.28+0.29+0.22=0.88.18.(本小题满分12分)某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(1)求这名同学得300分的概率; (2)求这名同学至少得300分的概率.解:记“这名同学答对第i 个问题”为事件A i (i =1,2,3),则P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6.(1)这名同学得300分的概率P 1=P (A 1A —2A 3)+P (A —1A 2A 3)=P (A 1)P (A —2)P (A 3)+P (A —1)P (A 2)P (A 3)=0.8×0.3×0.6+0.2×0.7×0.6=0.228. (2)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)·P (A 2)·P (A 3)=0.228+0.8×0.7×0.6=0.564.19.(本小题满分12分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望; (ii)设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.解:(1)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(2)(i)随机变量X 的所有可能取值为0,1,2,3. P (X =k )=C k4·C 3-k3C 37(k =0,1,2,3). 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×35+1×35+2×35+3×435=127.(ii)设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A =B ∪C ,且B 与C 互斥.由(i)知,P (B )=P (X =2),P (C )=P (X =1),故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67.所以,事件A 发生的概率为67.20.(本小题满分12分)进货商当天以每份1元的进价从报社购进某种报纸,以每份2元的价格售出.若当天卖不完,剩余报纸以每份0.5元的价格被报社回收.根据市场统计,得到这个月的日销售量X (单位:份)的频率分布直方图(如图所示),将频率视为概率.(1)求频率分布直方图中a 的值;(2)若进货量为n (单位:份),当n ≥X 时,求利润Y 的表达式; (3)若当天进货量n =400,求利润Y 的分布列和数学期望E (Y ).解:(1)由题图可得,100a +0.002×100+0.003×100+0.003 5×100=1,解得a =0.001 5.(2)因为n ≥X ,所以Y =(2-1)X -0.5(n -X )=1.5X -0.5n .(3)销售量X 的所有可能取值为200,300,400,500,由第二问知对应的Y 分别为100,250,400.由频率分布直方图可得P (Y =100)=P (X =200)=0.20, P (Y =250)=P (X =300)=0.35, P (Y =400)=P (X ≥400)=0.45.利润Y 的分布列为Y 100 250 400 P0.200.350.45所以E (Y )21.(本小题满分12分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X 、Y 分别表示这4个人去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解:(1)依题意,这4人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4),则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i .这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫23+C 44⎝ ⎛⎭⎪⎫134=19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能的取值为0,2,4.由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781,所以ξ的分布列是22.(本小题满分12分)该店铺中的A ,B ,C 三种商品有购买意向.该淘宝小店推出买一种送5元优惠券的活动.已知某网民购买A ,B ,C 商品的概率分别为23,p 1,p 2(p 1<p 2),至少购买一种的概率为2324,最多购买两种的概率为34.假设该网民是否购买这三种商品相互独立.(1)求该网民分别购买B ,C 两种商品的概率;(2)用随机变量X 表示该网民购买商品所享受的优惠券钱数,求X 的分布列和数学期望. 解:(1)由题意可知至少购买一种的概率为2324,所以一种都不买的概率为1-2324=124,即⎝ ⎛⎭⎪⎫1-23(1-p 1)(1-p 2)=124.① 又因为最多购买两种商品的概率为34,所以三种都买的概率为1-34=14,即23p 1p 2=14.② 联立①②,解得⎩⎪⎨⎪⎧p 1=12,p 2=34或⎩⎪⎨⎪⎧p 1=34,p 2=12.因为p 1<p 2,所以某网民购买B ,C 两种商品的概率分别为p 1=12,p 2=34.(2)用随机变量X 表示该网民购买商品所享受的优惠券钱数,由题意可得X 的所有可能取值为0,5,10,15.则P (X =0)=124,P (X =5)=23×12×14+13×12×14+13×12×34=14,P (X =10)=23×12×14+23×12×34+13×12×34=1124, P (X =15)=23×12×34=14.所以X 的分布列为则E (X )=0×124+5×14+10×24+15×4=12.。
第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章 直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2B .-1C .0D .12.(2020·洮南市第一中学高一月考)直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25B .1C .-1D .1或-13.(2020·江苏省海头高级中学高一月考)直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)-B .(3,1)C .(3,1)-D .(3,1)--4.(2020·广东高二期末)设a R ∈,则“a =1”是“直线ax+y -1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件,5.(2020·黑龙江高一期末)若曲线y 与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦B .3,4⎛⎫+∞⎪⎝⎭C .(1,+∞)D .(1,3]6.(2020·浙江柯城。
衢州二中高三其他)已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( )A .4B .289C .329D .3277.(2020·广东高一期末)若两平行直线20,(0)x y m m ++=>与30x ny --=则m +n =( ) A .0B .1C .1-D .2-8.(2020·北京市第五中学高三其他)过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( ) A .30°B .45°C .60°D .90°二、多选题(每题不止有一个选项为正确答案,每题5分,共20分)9.(2020·江苏省苏州第十中学校高一期中)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 距离的最大值为12+ 10.(2020·江苏徐州.高一期末)已知直线12:10,:(2)330l x my l m x y +-=-++=,则下列说法正确的是( )A .若12l l //,则m =-1或m =3B .若12l l //,则m =3C .若12l l ⊥,则12m =-D .若12l l ⊥,则12m =11.(2020·江苏扬州.高一期末)已知直线l 与圆22:240C x y x y a ++-+=相交于,A B 两点,弦AB 的中点为()0,1M ,则实数a 的取值可为( ) A .1B .2C .3D .412.(2020·江苏省江阴高级中学高一期中)下列说法正确的是( ) A .直线32()y ax a a R =-+∈必过定点(3,2) B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y +=第II 卷(非选择题)三、填空题(每题5分,共20分)13.(2020·湖南张家界。
高二数学选择性必修一第二章综合练习

高二数学选择性必修一第二章综合练习一、单项选择题:1.若过两点()3,A a ,()4,2B -的直线的斜率为1-,则a 等于( )A .2-B .1-C .1D .22.若两条平行直线1l :340x y m -+=与2l :3410x y -+=之间的距离是2,则m 的值为( )A .9-或11B .8-或10C .7-或12D .8-或113.已知两圆相交于两点(),2A a -,(),4B b ,且两圆圆心都在直线30x y +-=上,则ab 的值为( )A .3-B .2-C .0D .14.若θ∈R ,则直线cos 1y x θ=-的倾斜角的取值范围为( )A .3,44ππ⎡⎤⎢⎥⎣⎦B .30,,224πππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦C .30,,44πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭D .30,,424πππ⎡⎤⎛⎤ ⎢⎥⎥⎣⎦⎝⎦5.已知圆1C :()()22131x y -+-=和圆2C :()()22249x y ++-=交于A ,B 两点,则线段AB 所在直线的方程为( )A .330x y +-=B .310x y -+=C .340x y +-=D .320x y --= 6.已知点P 是圆C :2220x y x +-=上的一个动点,点P 到直线l :()00x y b b -+=>的距离的最小值为1,圆M :2220x y mx +-=与圆C 外切,且与直线l 相切,则m 的值为( )A .2- B .5- C .4 D .-二、多项选择题。
7.关于直线l :20x +=,下列说法正确的有( ) AB .倾斜角为150︒C .在x 轴上的截距为2-D .直线l 不经过第一象限8.点P 在圆1C :()()22111x y +++=上,点Q 在圆2C :22440x y x y m +---=上,则( )A .实数m 的取值范围为()8,-+∞B .当4m =-时,||PQ 的最小值为3,最大值为3C .当圆1C 和圆2C 外切时,8m =D .当圆1C 的圆心在圆2C 上时,圆1C 和圆2C 三、填空题:本题共2小题。
第二章直线和圆的方程章末质量检测试卷 - 高二新教材数学上学期(人教A版2019选择性必修第一册)

第二章直线和圆的方程质量检测卷(时间:120分钟分值:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.过点A(3,-4),B(-2,m)的直线l的斜率为-2,则m的值为()A.6B.1C.2D.4解析:由题意知直线l的斜率为-2,则m+4=-2,解得m=6.-2-3答案:A2.过点(-1,2),且斜率为2的直线的方程是()A.2x-y+4=0B.2x+y=0C.2x-y+5=0D.x+2y-3=0解析:因为直线过点(-1,2),且斜率为2,所以该直线方程为y-2=2(x+1),即2x-y+4=0.答案:A3.圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2解析:由题意,知圆的半径r=√12+12=√2,所以圆的方程为(x-1)2+(y-1)2=2.答案:D4.过点(2,0)且与直线2x-4y-1=0平行的直线的方程是()A.x-2y-1=0B.2x+y-4=0C.x-2y-2=0D.x+2y-2=0解析:由题意,知直线2x-4y-1=0的斜率k=1,故所求直线的方程为2(x-2),化简得x-2y-2=0.y-0=12答案:C5.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为()A.√3B.2C.√6D.2√3解析:由题意,知过原点且倾斜角为60°的直线方程为y=√3x.因为圆的方程可化为x2+(y-2)2=4,所以半径r=2,圆心为(0,2),且(0,2)到直线y=√3x的距离d=1,所以弦长为2√22-12=2√3.答案:D6.当点P在圆x2+y2=1上运动时,连接点P与定点Q(3,0),线段PQ 的中点M的轨迹方程是()A.(x+3)2+y2=1B.(x -3)2+y 2=1C.(2x -3)2+4y 2=1D.(2x +3)2+4y 2=1解析:设动点P 的坐标为(x 0,y 0),PQ 的中点M 的坐标为(x ,y ), 可得{x =x 0+32,y =y 02,解得{x 0=2x -3,y 0=2y . 因为点P (x 0,y 0)在圆x 2+y 2=1上, 所以(2x -3)2+(2y )2=1,即(2x -3)2+4y 2=1. 所以点M 的轨迹方程是(2x -3)2+4y 2=1. 答案:C7.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为 ( )A.x 2+y 2-2x -3=0B.x 2+y 2+4x =0C.x 2+y 2+2x -3=0D.x 2+y 2-4x =0解析:由题意设圆心坐标为C (a ,0)(a >0).因为圆C 与直线3x +4y +4=0相切,圆C 的半径为2,所以√9+16=2,解得a =2,所以圆心为C (2,0),所以圆C 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0. 答案:D8.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为x 2+y 2≤1,若将军从点A (3,0)处出发,河岸线所在直线方程为x +y =4,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为 ( )A.√17-1B.√17-√2C.√17D.3-√2解析:如图所示,设点A 关于直线x +y =4的对称点为A'(a ,b ),军营所在区域的圆心为O ,连接A'O.根据题意,|A'O |-1为最短距离. 所以线段AA'的中点为(a+32,b 2),直线AA'的斜率为1, 所以直线AA'的方程为y =x -3. 根据题意,得{a+32+b2=4,b =a -3,解得{a =4,b =1,所以点A'的坐标为(4,1),所以|A'O |=√42+12=√17, 所以|A'O |-1=√17-1,即“将军饮马”的最短总路程为√17-1.答案:A二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知A(-2,-4),B(1,5)两点到直线l:ax+y+1=0的距离相等,则实数a 的值为()A.-3B.3C.-1D.1解析:因为A(-2,-4),B(1,5)两点到直线l:ax+y+1=0的距离相等,所以√a2+1=√a2+1,即|2a+3|=|a+6|,解得a=3或a=-3.故选AB.答案:AB10.已知直线l1:x+ay-a=0和直线l2:ax-(2a-3)y-1=0,下列说法正确的是()A.直线l2始终过定点(23,1 3 )B.若l1∥l2,则a=1或a=-3C.若l1⊥l2,则a=0或a=2D.当a>0时,l1始终不过第三象限解析:直线l2:a(x-2y)+3y-1=0始终过定点(23,13),A项正确;当a=1时,l1,l2重合,B项错误;由1×a +a ×(3-2a )=0,得a =0或a =2,C 项正确;直线l 1的方程可化为y =-1a x +1,可知其始终过点(0,1).当a >0时,直线l 1的斜率为负,不会过第三象限,D 项正确.故选ACD . 答案:ACD11.过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线的方程为 ( ) A.x =-2 B.x =2 C.4x -3y +4=0 D.4x +3y -4=0解析:根据题意,知圆(x -1)2+(y -1)2=1的圆心为(1,1),半径r =1. 过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,若切线的斜率不存在,此时切线的方程为x =2,符合题意;若切线的斜率存在,设此时切线的斜率为k ,则其方程为y -4=k (x -2),即kx -y -2k +4=0,所以√k 2+1=1,解得k =43,则切线的方程为4x -3y +4=0.综上所述,切线的方程为x =2或4x -3y +4=0. 故选BC . 答案:BC12.若圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2+2x -4y =0的交点为A ,B ,则有( )A.公共弦AB 所在直线的方程为x -y =0B.线段AB 的垂直平分线的方程为x +y -1=0C.公共弦AB 的长为√22D.P 为圆O 1上一动点,则点P 到直线AB 的距离的最大值为√22+1 解析:已知圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2+2x -4y =0的交点为A ,B ,两圆的方程相减可得圆O 1与圆O 2的公共弦AB 所在直线的方程为 x -y =0,故A 项正确;由题意,知O 1(1,0),O 2(-1,2),线段O 1O 2所在直线斜率为-1,线段O 1O 2的中点为(0,1),所以线段AB 的垂直平分线的方程为y -1=-x ,即x +y -1=0,故B 项正确;由题意,知圆O 1:x 2+y 2-2x =0的圆心为O 1(1,0),半径r 1=1,圆心O 1(1,0)到直线x -y =0的距离d =√2=√22,所以点P 到直线AB 的距离的最大值为√22+1,圆O 1与圆O 2的公共弦AB 的长为2√1-12=√2,故C 项错误,D 项正确.故选ABD . 答案:ABD三、填空题:本题共4小题,每小题5分,共20分.13.若直线l 1:ax +y +2a =0与直线l 2:x +ay +3=0互相平行,则实数a =±1.解析:由两直线平行的条件,得{a 2-1=0,3a -2a ≠0,解得a =±1.14.圆C :x 2+y 2-2x -4y +4=0的圆心到直线l :3x +4y +4=0的距离d =3. 解析:由题意,知圆心坐标为(1,2),所以圆心到直线l :3x +4y +4=0的距离d =√32+42=3.15.已知圆C 1:x 2+y 2=1和圆C 2:(x -4)2+(y -3)2=r 2(r >0)外切,则r 的值为4;若点A (x 0,y 0)在圆C 1上,则x 02+y 02-4x 0的最大值为5.(本题第一空2分,第二空3分)解析:由两个圆外切可得圆心距等于两个圆的半径之和, 所以√(4-0)2+(3-0)2=1+r ,解得r =4.因为点A (x 0,y 0)在圆C 1上,所以x 02+y 02=1,且x 0∈[-1,1], 所以x 02+y 02-4x 0=1-4x 0∈[-3,5], 所以x 02+y 02-4x 0的最大值为5.16.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,角A 的平分线所在直线的方程为y =0,顶点B 的坐标为(1,2),则△ABC 的面积为12.解析:由方程组{x -2y +1=0,y =0,求得点A 的坐标为(-1,0).因为边AB所在直线的斜率为k AB =1,且角A 的平分线所在直线的方程为y =0,所以边AC 所在直线的斜率为-1,其方程为y =-(x +1),即y =-x -1.因为BC 边上的高所在直线的方程为x -2y +1=0,所以边BC 所在直线的斜率为-2,所以边BC 所在直线的方程为y -2=-2(x -1),即y =-2x +4.联立方程,得{y =-2x +4,y =-x -1,解得{x =5,y =-6,即顶点C 的坐标为(5,-6),所以|BC |=4√5,点A 到直线BC 的距离d =√5=√5,所以△ABC 的面积为S =12|BC |·d =12×4√5×√5=12.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在△ABC 中,点A 的坐标为(0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0.(1)求直线AB 的方程; (2)求直线BC 的方程.解:(1)由已知,得直线AB 的斜率为2, 所以AB 边所在直线的方程为y -1=2(x -0), 即2x -y +1=0.(2)由{2x -y +1=0,2x +y -3=0,得{x =12,y =2, 即点B 的坐标为(12,2).设点C 的坐标为(m ,n ),则由已知条件得{m +2n -4=0,2×m 2+n+12-3=0, 解得{m =2,n =1,所以点C 的坐标为(2,1).所以BC 边所在直线的方程为y -12-1=x -212-2,即2x +3y -7=0.18.(12分)已知直线l 1:mx +8y +n =0和直线l 2:2x +my -1=0,试分别确定满足下列条件的m ,n 的值.(1)l 1与l 2相交于点(m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1. 解:(1)因为l 1与l 2相交于点(m ,-1), 所以点(m ,-1)在l 1,l 2上.将点(m ,-1)代入l 2的方程,得2m -m -1=0,解得m =1. 所以交点的坐标为(1,-1).把点(1,-1)的坐标代入l 1的方程,得n =7. 所以m =1,n =7.(2)要使l 1∥l 2,则有{m 2-16=0,m ×(-1)-2n ≠0,解得{m =4,n ≠-2或{m =-4,n ≠2.(3)要使l 1⊥l 2,则有2m +8m =0,解得m =0. 将m =0代入直线l 1的方程,得y =-n8.因为l 1在y 轴上的截距为-1, 所以-n8=-1,解得n =8.所以m =0,n =8.19.(12分)已知直线l :y =kx +3(k >0)与x 轴、y 轴围成的三角形面积为94,圆M 的圆心在直线l 上,与x 轴相切,且在y 轴上截得的弦长为4√6.(1)求直线l 的方程(结果用一般式表示); (2)求圆M 的标准方程.解:(1)在直线方程y =kx +3(k >0)中,令x =0,得y =3;令y =0,得x =-3k . 所以12×3×|-3k |=94. 因为k >0,所以k =2.所以直线l 的方程为2x -y +3=0.(2)设圆M 的标准方程为(x -a )2+(y -b )2=r 2(r >0).由题意可知{2a -b +3=0,|b |=r ,(2√6)2+|a |2=r 2,解得{a =-5,b =-7,r =7或{a =1,b =5,r =5.故圆M 的标准方程为(x +5)2+(y +7)2=49 或(x -1)2+(y -5)2=25.20.(12分)一座圆拱桥,当水面在如图所示的位置时,拱顶离水面2 m,水面宽12 m,当水面下降1 m 后,水面宽多少米?解:以圆拱顶点为原点,以过圆拱顶点的竖直直线为y 轴,建立如图所示的平面直角坐标系.设圆拱所在圆的圆心为C ,水面所在弦的端点为A ,B ,则由已知可得A (6,-2).设圆的半径为r ,则C (0,-r),即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入可得r =10,所以圆的方程为x 2+(y +10)2=100.当水面下降1 m 后,可设A'(x 0,-3)(x 0>0)在圆上,代入x 2+(y +10)2=100,解得x 0=√51,即当水面下降1 m 后,水面宽为2x 0=2√51 m .21.(12分)在平面直角坐标系Oxy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)若圆C 与直线x -y +a =0交于A ,B 两点,且OA ⊥OB ,求a 的值. 解:(1)由题意,得曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+2√2,0), (3-2√2,0).故可设圆C 的圆心为(3,t ),则有32+(t -1)2=(2√2)2+t 2,解得t =1, 所以圆C 的半径为√32+(1-1)2=3,所以圆C 的方程为(x -3)2+(y -1)2=9.(2)设A (x 1,y 1),B (x 2,y 2),则两点的坐标满足方程组{x -y +a =0,(x -3)2+(y -1)2=9.消去y 整理,得2x 2+(2a -8)x +a 2-2a +1=0.由已知可得,判别式Δ=56-16a -4a 2>0,且x 1+x 2=4-a ,x 1x 2=a 2-2a+12.①由于OA ⊥OB ,可得x 1x 2+y 1y 2=0.因为y 1=x 1+a ,y 2=x 2+a ,所以2x 1x 2+a (x 1+x 2)+a 2=0. ②由①②,得a =-1,经检验a =-1满足Δ>0,所以a =-1.22.(12分)已知圆M 与直线x =2相切,圆心M 在直线x +y =0上,且直线x -y -2=0被圆M 截得的弦长为2√2.(1)求圆M 的方程,并判断圆M 与圆N :x 2+y 2-6x +8y +15=0的位置关系.(2)若在x 轴上的截距为-1且不与坐标轴垂直的直线l 与圆M 交于A ,B 两点,在x 轴上是否存在定点Q , 使得k AQ +k BQ =0?若存在,求出Q 点坐标;若不存在,说明理由.解:(1)设圆M 的圆心为M (a ,-a ),半径为r ,则{r =|a -2|,√2=√r 2-(2√22)2,解得{a =0,r =2,即圆心坐标为(0,0),r =2, 所以圆M 的方程为x 2+y 2=4.由题意知,圆N 的圆心为(3,-4),半径R =√10,r +R =2+√10,R -r =√10-2.因为|MN |=5,√10-2<5<√10+2,所以圆M 与圆N 相交.(2)存在.方法一:设l :x =my -1(m ≠0),A (x 1,y 1),B (x 2,y 2),由{x =my -1,x 2+y 2=4,得(m 2+1)y 2-2my -3=0.由根与系数的关系,得{y 1+y 2=2mm 2+1,y 1y 2=-3m 2+1. 假设存在Q (t ,0)满足条件, 则k AQ =y 1x 1-t =y 1my 1-t -1,k BQ =y 2x 2-t =y 2my 2-t -1,由k AQ +k BQ =0,得y 1my 1-t -1+y 2my 2-t -1=0, 即y 1[my 2-(t+1)]+y 2[my 1-(t+1)](my 1-t -1)(my 2-t -1) =2my 1y 2-(t+1)(y 1+y 2)(my 1-t -1)(my 2-t -1) =-6m -2m (t+1)(m 2+1)(my 1-t -1)(my 2-t -1)=0, 即2m (t +4)=0且m ≠0,所以t =-4. 所以存在Q (-4,0)满足条件. 方法二:设l :y =k (x +1)(k ≠0),A (x 1,y 1),B (x 2,y 2). 由{y =k (x +1),x 2+y 2=4,得(k 2+1)x 2+2k 2x +k 2-4=0, 则{x 1+x 2=-2k 2k 2+1,x 1x 2=k 2-4k 2+1. 假设存在Q (t ,0)满足条件, 则k AQ +k BQ =y 1x 1-t +y 2x 2-t =k (x 1+1)x 1-t +k (x 2+1)x 2-t =k [(x 1+1)(x 2-t )+(x 2+1)(x 1-t )](x 1-t )(x 2-t ) =k [2x 1x 2-t (x 1+x 2)-2t+x 1+x 2](x 1-t )(x 2-t ) =k [2k 2-8+2k 2t -2k 2t -2t -2k 2](k 2+1)(x 1-t )(x 2-t )=k(-8-2t)=0,(k2+1)(x1-t)(x2-t)解得t=-4.所以存在Q(-4,0)满足条件.。
高二数学必修2第二章测试题及答案解析

高中数学必修高2第二章测试题试卷满分:150分 考试时间:120分钟班级___________ 姓名__________ 学号_________ 分数___________一、选择题(每小题5分,共60分)1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对 2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45o 角D 、11AC 与1B C 成60o角5、若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是A 、l ∥aB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有公共点 6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行; (3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有A 、1B 、2C 、3D 、4 7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取EFGH 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点必P 在直线AC 上 B 、点P 必在直线BD 上C 、点P 必在平面ABC 内D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M , a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有 A 、0个 B 、1个 C 、2个 D 、3个9、点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O ,若PA=PB=PC ,则点O 是ΔABC 的( ) A 、内心 B 、外心 C 、重心 D 、垂心10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是A 、23 B 、76 C 、45D 、5611、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB 的距离为4,那么tan θ的值等于A 、34B 、35CD12、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为A 、2VB 、3VC 、4VD 、5V二、填空题(每小题5分,共20分)13、已知直线a ⊥直线b, a//平面β,则b 与β的位置关系为 .14、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为 15、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形 ABCD 一定是 .16.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线, 给出四个论断:① m ⊥ n ②α⊥β ③ m ⊥β ④ n ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:______________________________________.三、解答题(共70分,要求写出主要的证明、解答过程)18、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG. 求证:EH ∥BD . (10分)17、如图,PA ⊥平面ABC ,平面PAB ⊥平面PBC 求证:AB ⊥BC (12分)QPC'B'A'CBAPABCH G FE D BA C19、已知ABC ∆中90ACB ∠=o,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .(12分)20.如图,PA ⊥平面ABC ,AE ⊥PB ,AB ⊥BC ,AF ⊥PC,PA=AB=BC=2(1)求证:平面AEF ⊥平面PBC ; (2)求二面角P —BC —A 的大小;(3)求三棱锥P —AEF 的体积.(12分)S D CB AA B C P EF21、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.。
2024版高二上册第二章数学易错综合练习题

2024版高二上册第二章数学易错综合练习题试题部分一、选择题(每题2分,共20分)1. 已知函数f(x) = x² 2x + 1,那么f(1)的值是()。
A. 0B. 1C. 2D. 32. 若a、b为实数,且a+b=3,ab=2,则a²+b²的值为()。
A. 5B. 7C. 8D. 103. 下列函数中,奇函数是()。
A. y = x³B. y = x²C. y = x⁴D. y = |x|4. 已知等差数列{an}的公差为2,若a1=1,则第10项a10的值是()。
A. 17B. 19C. 21D. 235. 若直线y=2x+1与x轴的交点为A,与y轴的交点为B,则线段AB的长度是()。
A. √5B. √10C. √15D. √206. 若复数z满足|z1|=1,则z在复平面内对应的点位于()。
A. 圆心为(1,0)、半径为1的圆上B. 圆心为(0,1)、半径为1的圆上C. 圆心为(1,0)、半径为2的圆上D. 圆心为(0,1)、半径为2的圆上7. 在等比数列{bn}中,若b1=1,b3=8,则公比q的值为()。
A. 2B. 3C. 4D. 58. 已知sinθ=1/2,且θ为第二象限角,则cosθ的值为()。
A. √3/2B. 1/2C. √3/2D. 1/29. 若二次函数y=ax²+bx+c的图像开口向上,且顶点坐标为(2,3),则a的值()。
A. >0B. <0C. =0D. 无法确定10. 若平行线l1:3x4y+7=0,l2:3x4y+c=0,则c的值为(),使得l1与l2的距离为2。
A. 17B. 9C. 5D. 1二、判断题(每题2分,共20分)1. 若a、b为实数,且a>b,则a²>b²。
()2. 函数y=2x+3的图像是一条过原点的直线。
()3. 在等差数列中,若m+n=2p,则am+an=2ap。
2022-2023学年人教版高二数学复习精练第二章 直线与圆的方程-综合检测卷(基础卷)(解析版)

第二章 直线与圆方程本卷满分150分,考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若直线1:2330l x y --=与2l 互相平行,且2l 过点(2,1),则直线2l 的方程为( ) A .3270x y +-= B .3240x y -+= C .2330x y -+= D .2310x y --=【答案】D【解析】因为直线1:2330l x y --=与2l 互相平行,所以设直线2l 的方程为230x y m -+=, 因为直线2l 过点(2,1), 所以430m -+=,得1m =-, 所以直线2l 的方程为2310x y --=, 故选:D2.已知直线l 的方程为sin 10,x R αα-=∈,则直线l 的倾斜角范围是( ) A .20,,33πππ⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭B .50,,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭ C .50,,66πππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭D .20,,33πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭【答案】B【解析】由直线l 的方程为sin 10x α+-=, 所以y = 即直线的斜率k =,由1sin 1α-≤≤.所以k ≤≤,又直线的倾斜角的取值范围为0,,由正切函数的性质可得:直线的倾斜角为50,,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭. 故选:B3.已知“m t ≤”是“220x y m ++=”表示圆的必要不充分条件,则实数t 的取值范围是( )A .()1,-+∞ B .[)1,+∞C .(),1-∞D .(),1-∞-【答案】B【解析】若表示圆,则22(40+->m , 解得1m <.“m t ≤”是“220x y m ++=”表示圆的必要不充分条件, 所以实数t 的取值范围是[1,)+∞. 故选:B4.已知直线3410x y --=与圆22:(1)(2)16C x y -++=相交于A ,B 两点,P 为圆C 上的动点,则PAB △面积的最大值为( )A .B .C .D .【答案】C【解析】由22:(1)(2)16C x y -++=可知:圆心(1,2)C -,半径为4, 圆心C 到直线AB 距离|381|25d +-==,∴||AB ==∴()max11||()622PAB SAB r d =⋅+=⨯= 故选:C5.已知直线2y kx k =-+与圆()()22214x y -+-=相交于P 、Q 两点,则弦PQ 最短时所在的直线方程是( ) A .10x y ++= B .10x y +-= C .10x y --= D .10x y -+=【答案】D【解析】直线y =kx -k +2=k (x -1)+2,所以直线恒过A (1,2), 因为22(21)(12)4-+-< ,故该点在圆内,设圆心为B (2,1),由圆的几何性质知,当直线y =kx -k +2与直线AB 垂直时,弦PQ 最短, 此时,直线AB 的斜率为21112AB k -==--, ∴kPQ =1,∴弦PQ 最短时所在的直线方程是y -2=x -1,即x -y +1=0, 故选:D6.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为()2,4B ,若将军从点()2,0A -处出发,河岸线所在直线方程为-2+80x y =,则“将军饮马”的最短总路程为( ) AB .10 C.D.【答案】A【解析】如图,点A 关于直线的对称点为A ',则A B '即为“将军饮马 ”的最短总路程,设(),A a b ',则22+8=0221122a b b a -⎧-⨯⎪⎪⎨⎪⨯=-⎪+⎩,解得2224,55a b =-=,则A B '= 故“将军饮马”故选:A7.已知圆C :22(2)2x y -+=,点P 是直线l :420x y --=上的动点,过点P 引圆C 的两条切线PA 、PB ,其中A 、B 为切点,则直线AB 经过定点( ) A .21(,)33-B .21(,)33-C .21(,)33--D .21(,)33【答案】D【解析】因为PA 、PB 是圆C 的两条切线,所以,PA AC PB BC ⊥⊥,因此点A 、B 在以PC 为直径的圆上,因为点P 是直线l :420x y --=上的动点,所以设(,42)P m m -,点(2,0)C , 因此PC 的中点的横坐标为:22m +,纵坐标为:42212m m -=-,12PC PC 为直径的圆的标准方程为:22221()(21)(17208)(1)24m x y m m m +-+-+=-+,而圆C :22(2)2(2)x y -+=, (1)(2)-得:(2)(42)220m x m y m ---+-=,即为直线AB 的方程,由(2)(42)220222(42)m x m y m x y m x y ---+-=⇒+-=+-22220342013x x y x y y ⎧=⎪+-=⎧⎪⇒⇒⎨⎨+-=⎩⎪=⎪⎩,所以直线AB 经过定点21(,)33,故选:D8.已知点Q 在圆()()22:334M x y ++-=上,直线:2360l x y -+=与x 轴、y 轴分别交于点P 、R ,则下列结论中正确的有( )∴点Q 到直线l 的距离小于4.5 ∴点Q 到直线l 的距离大于1∴当QRP ∠最小时,RQ =∴当QRP ∠最大时,RQ =A .1个 B .2个C .3个D .4个【答案】C【解析】圆M 的圆心为()3,3M -,半径为2r =,圆心M 到直线l 的距离为2=>, 所以,直线l 与圆M 相离,点Q 到直线l 22,21-<2 4.5<,故∴对,∴错;直线:2360l x y -+=交x 轴于点()3,0P -,交y 轴于点()0,2R ,MR = 过点R 作圆M 的两条切线,切点分别为E 、N ,如下图所示:当QRP ∠最小时,点Q 与点E 重合,此时226QR RM r =-=,当QRP ∠最大时,点Q 与点N 重合,此时QR ==∴∴都对.故选:C.一、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.在下列四个命题中,错误的有( ) A .坐标平面内的任何一条直线均有倾斜角和斜率 B .直线的倾斜角的取值范围是[0,π]C .若一条直线的斜率为1,则此直线的倾斜角为45度D .若一条直线的倾斜角为α,则此直线的斜率为tanα 【答案】ABD 【解析】对于A ,倾斜角为90的直线斜率不存在 所以A 错误对于B直线的倾斜角的取值范围为0,所以B 错误对于C因为tan 1α=且[)0,απ∈,所以4πα=所以C 正确对于D 倾斜角为90的直线斜率不存在所以D 错误故选:ABD10.已知直线l :()()221310m x m y m ++---=与圆C :()()222116x y -++=交于A ,B 两点,则弦长|AB |的可能取值是( ) A .6 B .7C .8D .5【答案】BC【解析】:由()()221310m x m y m ++---=,得()23210x y m x y +-+--=,令230210x y x y +-=⎧⎨--=⎩解得1,1,x y =⎧⎨=⎩故直线l 恒过点(1,1)M .圆心(2,1)C ,半径4r =,CM =2AB r ≤,即8AB ≤. 故选:BC.11.已知直线:10l mx y m +-+=,圆22:2410E x y x y +--+=,则下列说法正确的是( )A .直线l 与圆E 一定有公共点B .当12m =-时直线l 被圆E 截得的弦最长C .当直线l 与圆E 相切时,34m =D .圆心E 到直线l 【答案】BCD【解析】由题意知直线l 过定点()1,1M -,且点M 在圆E 外部,所以A 错误;当12m =-时,l 的方程为230x y -+=,直线l 过圆心()1,2E ,截得的弦恰为直径,故B 正确;当l 与圆E2=,解得34m =,故C 正确;当l 与ME 垂直时,圆心E 到l 的距离取得最大值,其最大值为ME =D 正确. 故选:BCD.12.已知圆O :224x y +=和圆C :22231x y .现给出如下结论,其中正确的是( )A .圆O 与圆C 有四条公切线B .过C 且在两坐标轴上截距相等的直线方程为为5x y +=或10x y -+= C .过C 且与圆O 相切的直线方程为9x -16y +30=0D .P 、Q 分别为圆O 和圆C 上的动点,则PQ 3 【答案】AD【解析】圆22:4O x y +=的圆心(0,0)O ,半径为2;圆22:(2)(3)1C x y -+-=,圆心(2,3)C ,半径为1,A 中,圆心距||21OC >+,所以两个圆相离,所以两个圆有4条公切线,所以A 正确;B 中,过点(2,3)C 又过原点的直线在两坐标轴的截距相等,即32y x =在坐标轴上的截距相等,当直线不过O 时,设x y a +=,将C 的坐标代入可得5a =, 所以过点C 点在坐标轴的截距相等的直线为5x y +=, 过C 在两坐标轴上的截距相等的直线有两条,所以B 不正确;C 中,过点(2,3)C 的直线斜率不存在时,即直线2x =显然与圆O 相切,当切线的斜率存在时,设为3(2)y k x -=-,即230kx y k --+=, 圆心O 到直线的距离2d ==,解得512k =,则这时切线方程为:512260x y -+=,所以过C 且与圆O 相切的直线为2x =或512200x y -+=,故C 不正确;D 中,圆心距||OC =,由题意可得||PQ 的最大值为||(21)OC ++3,所以D 正确; 故选:AD .一、填空题:本题共4小题,每小题5分,共20分.13.设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是________.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】:()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=; 圆()()22:321C x y +++=,圆心()3,2C --,半径1r =, 依题意圆心到直线l 的距离1d ≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦14.若直线()100,0ax by a b +-=>>始终平分圆2224160x y x y +---=的周长,则12a b+的最小值为_______. 【答案】9【解析】由题知直线()100,0ax by a b +-=>>过圆心(1,2),得21a b +=,所以121222()(2)5549b a a b a b a b a b +=++=++≥+=,当22b a a b =,即13a b ==时,取等号. 故答案为:915.已知圆C :224210x y x y +--+=及直线l :()2y kx k k =-+∈R ,设直线l 与圆C 相交所得的最长弦长为MN ,最短弦为PQ ,则四边形PMQN 的面积为______.【答案】:将圆C 方程整理为22214x y -+-=,得圆心()21C ,,半径2r =, 将直线l 方程整理为()12y k x =-+,得直线l 恒过定点()12,,且()12,在圆C 内, ∴最长弦MN 为过()12,的圆的直径,即4MN =,最短弦PQ 为过()12,,且与最长弦MN 垂直的弦, 21112MN k -==--,1PQ k ∴=, ∴直线PQ 方程为21y x -=-,即10x y -+=,∴圆心C 到直线PQ的距离为d==PQ ∴= ∴四边形PMQN的面积11422S MN PQ =⋅=⨯⨯, 故答案为:16.过圆224x y +=内点M 作圆的两条互相垂直的弦AB 和CD ,则AB CD +的最大值为__.【答案】【解析】取AB 中点E ,CD 中点F ,如图,则OEMF 是矩形,2223OE OF OM +==,2AB AE ==CD =注意到0,0a b >>时,由222a b ab +≥得222()()2a b a b +≥+,从而a b +≤仅当a b =时取等号.所以AB CD +=≤=当且仅当2244OE OF -=-,即OE OF ==所以AB CD +的最大值是四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系中,光线l 过点()2,1A -,经x 轴反射后与圆D :()()22234x y -+-=有交点(1)当反射后光线经过圆心D ,求光线l 的方程; (2)当反射后光线与圆D 相切,求光线l 的方程.【答案】(1)10x y ++= (2))12y x -=+或)12y x -=+ 【解析】 (1)点()2,1A -关于x 轴对称的点为()2,1A '--,由光线的折射性质,反射光线经过圆心2,3O ,所以OA OA K K '=, 易知()()31122OA K '--==--,所以1OA K =-,所以光线l 的方程为10x y ++=.(2)设经过()2,1A '--的直线方程为()12y k x +=+由于折射光线与圆相切,所以圆心到直线的距离等于半径,即2d ==,化简得:33830k k -+=,解得k =所光线l 的方程为)12y x -=+或)12y x -=+. 18(12分).已知圆22:6440C x y x y +--+=.(1)若一直线被圆C 所截得的弦的中点为(2,3)M ,求该直线的方程;(2)设直线:l y x m =+与圆C 交于A ,B 两点,把CAB △的面积S 表示为m 的函数,并求S 的最大值. 【答案】(1)1y x =+(2)()11,1S m m -<=<≠-,最大值为92.【解析】(1)圆22:6440C x y x y +--+=化为标准方程为:()()22329x y -+-=. 则32123CM k -==--. 设所求的直线为m .由圆的几何性质可知:1C m M k k ⋅=-,所以1m k =,所以所求的直线为:()312y x -=⋅-,即1y x =+.(2)2AB因为直线:l y x m =+与圆C 交于A ,B 两点,所以03d <<,解得:11m -<<且1m ≠-.而CAB △的面积:()1121,1S m B m A d =⨯=-<<≠-因为2292AB d ⎛⎫+= ⎪⎝⎭所以221192222S AB d AB d ⎛⎫⎡⎤⎢⎥=⨯≤+ ⎪⎝⎭=⎢⎥⎣⎦(其中2AB d ==. 所以S 的最大值为92.19.在直角坐标系xOy 中,若圆C 与y 轴相切,且过点43,55P ⎛⎫- ⎪⎝⎭,圆心C 在直线20x y -=上.(1)求圆C 的标准方程; (2)若直线13y x =与圆C 交于A ,B 两点,求ABC 的面积. 【答案】(1)()()22214x y -+-=【解析】 【分析】(1)利用待定系数法可得圆的方程;(2)根据点到直线距离求得弦长,即可得三角形面积. (1)由圆心C 在直线20x y -=上,且圆C 与y 轴相切, 故设圆心()2,C a a ,圆的方程为()()22224x a y a a -+-=,又圆C 过点43,55P ⎛⎫- ⎪⎝⎭,则222432455a a a ⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭,即2210a a -+=, 解得1a =,即圆心()2,1C ,半径2r =,所以圆C 的标准方程为()()22214x y -+-=;(2)因为圆心()2,1C 到直线13y x =的距离d =,所以弦长AB ==,所以1122ABCSAB d =⋅⋅==. 20.(12分)已知圆M 与x 轴相切于点(a ,0),与y 轴相切于点(0,a ),且圆心M 在直线360x y --=上.过点P (2,1)的直线与圆M 交于1122(,),(,)A x y B x y 两点,点C 是圆M 上的动点.(1)求圆M 的方程;(2)若直线AB 的斜率不存在,求∴ABC 面积的最大值;(3)是否存在弦AB 被点P 平分?若存在,求出直线AB 的方程;若不存在,说明理由. 【答案】(1)()()22339x y -+-= (2)(3)存在,方程为240x y +-=【解析】(1)∴圆M 与x 轴相切于点(a ,0),与y 轴相切于点(0,a ),∴圆M 的圆心为M (a ,a ),半径r a =.又圆心M 在直线360x y --=上,∴360a a --=,解得3a =.∴圆M 的方程为:()()22339x y -+-=.(2)当直线AB 的斜率不存在时,直线AB 的方程为2x =,∴由()()222339y -+-=,解得3y =±∴12AB y y =-=易知圆心M 到直线AB 的距离1d =,∴点C 到直线AB 的最大距离为134+=.∴∴ABC面积的最大值为142⨯= (3)方法一:假设存在弦AB 被点P 平分,即P 为AB 的中点.又∴MA MB =,∴MP AB ⊥.又∴直线MP 的斜率为13223-=-, ∴直线AB 的斜率为-12. ∴()1122y x -=--. ∴存在直线AB 的方程为240x y +-=时,弦AB 被点P 平分.方法二:由(2)易知当直线AB 的斜率不存在时,126y y +=,∴此时点P 不平分AB .当直线AB 的斜率存在时,120x x -≠,假设点P 平分弦AB .∴点A 、B 是圆M 上的点,设()11,A x y ,()22,B x y .∴()()()()22112222339339x y x y ⎧-+-=⎪⎨-+-=⎪⎩ 由点差法得()()()()12121212660x x x x y y y y -+-+-+-=.由点P 是弦AB 的中点,可得12124,2x x y y +=+=, ∴121212y y x x -=--. ∴()1122y x -=-- ∴存在直线AB 的方程为240x y +-=时,弦AB 被点P 平分.21.(12分)已知圆C与直线30x -=相切于点(P,且与直线50x +=也相切.(1)求圆C 的方程;(2)若直线:30l mx y ++=与圆C 交于A ,B 两点,且0CA CB ⋅<,求实数m 的范围.【答案】(1)()2214x y ++=(2)1m 或7m <-【解析】(1):设圆C 的方程为()222()x a y b r -+-=,由题意得(2221r a b r ⎛=- ⎝⎪⎪⎪=⎨⎪⎪⎪+=⎪⎩,即(22222(1))54a r b b a a r ⎧⎪⎪++=⎨⎪+==⎩+⎪,解得1a =-,0b =,2r =,即圆C 的方程为()2214x y ++=.(2)解:由题意,得ACB ∠为钝角或平角,当A ,B ,C 共线时,3m =,此时ACB ∠为平角;当A ,B ,C 不共线时,3m ≠,ACB ∠为钝角,设圆心C 到直线l的距离为d ,则02d <<,于是,有0<,解之得1m 或7m <-,且3m ≠;综上,实数m 的取值范围是1m 或7m <-.22.(12分)莱昂哈德·欧拉(Leonhard Euler ,瑞士数学家),1765年在他的著作《三角形的几何学》中首次提出定理:三角形的重心(三条中线的交点)、垂心(三条高线的交点)和外心(三条中垂线的交点)共线.这条线被后人称为三角形的欧拉线.已知QMN 的顶点()1,0M ,()3,2N -,()1,4Q -.(1)求QMN 的欧拉线方程;(2)记QMN 的外接圆的圆心为C ,直线l :()10kx y k k ---=∈R 与圆C 交于A ,B 两点,且C l ∉,求ABC 的面积最大值.【答案】(1)2y =-【解析】(1) QMN 的顶点()1,0M ,()3,2N -,()1,4Q -利用两点之间距离公式知MN QN ==4MQ = 又222MN QN MQ +=,所以QMN 为等腰直角三角形, MQ 的中垂线方程是2y =-,也是MNQ ∠的平分线,三线合一, ∴欧拉线方程是2y =-.(2)由(1)知QMN 为等腰直角三角形,故外心为斜边MQ 中点, 即外心是()1,2C -,2r =圆心C 到直线l 的距离1d =≤,AB =所以12ABC S AB d =⋅=△利用二次函数性质知,当21d =时,即0k =时,max S。
高中数学 第二章 随机变量及其分布学业质量标准检测练习(含解析)新人教A版高二选修2-3数学试题

第二章 学业质量标准检测时间120分钟,满分150分.一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法不正确的是( C )A .某辆汽车一年中发生事故的次数是一个离散型随机变量B .正态分布随机变量等于一个特定实数的概率为0C .公式E (X )=np 可以用来计算离散型随机变量的均值D .从一副扑克牌中随机抽取5X ,其中梅花的X 数服从超几何分布[解析] 公式E (X )=np 并不适用于所有的离散型随机变量的均值的计算,适用于二项分布的均值的计算.故选C .2.若在甲袋内装有8个白球、4个红球,在乙袋内装有6个白球、5个红球,现从两袋内各任意取出1个球,设取出的白球个数为X ,则下列概率中等于C 18C 15+C 14C 16C 112C 111的是( C )A .P (X =0)B .P (X ≤2)C .P (X =1)D .P (X =2)[解析] 由已知易知P (X =1)=C 18C 15+C 14C 16C 112C 111.3.已知10件产品中有3件是次品,任取2件,若X 表示取到次品的件数,则E (X )等于( A )A .35 B .815 C .1415D .1[解析] 由题意知,随机变量X 的分布列为∴E (X )=0×715+1×715+2×15=15=5.4.(2018·全国卷Ⅱ理,8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( C )A .112B .114C .115 D .118[解析] 不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 210=45种情况,而和为30的有7+23,11+19,13+17这3种情况,∴所求概率为345=115.故选C .5.甲、乙、丙三人参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是( C )A .0.16B .0.24C .0.96D .0.04[解析] 三人都不达标的概率是(1-0.8)×(1-0.6)×(1-0.5)=0.04,故三人中至少有一人达标的概率为1-0.04=0.96.6.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( C )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的[解析]X =k 表示取出的螺丝钉恰有k 只为好的,则P (X =k )=C k 7C 4-k3C 410(k =1、2、3、4).∴P (X =1)=130,P (X =2)=310, P (X =3)=12, P (X =4)=16,∴选C .7.(2020·全国卷Ⅲ)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( C )A .0.01B .0.1C .1D .10[解析] 因为数据ax i +b i (i =1,2,…,n )的方差是数据x i (i =1,2,…,n )的方差的a 2倍,所以所求数据方差为102×0.01=1.故选C .8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p =( B )A .0.7B .0.6C .0.4D .0.3[解析] 由题意可知,10位成员中使用移动支付的人数X 服从二项分布,即X ~B (10,p ),所以DX =10p (1-p )=2.4,所以p =0.4或0.6.又因为P (X =4)<P (X =6),所以C 410p 4·(1-p )6<C 610p 6(1-p )4,所以p >0.5,所以p =0.6.二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.指出下列随机变量是离散型随机变量的是( AB ) A .小明回答20道选择题,答对的题数 B .某超市5月份每天的销售额C .某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差XD .某某某某市长江水位监测站所测水位在(0,29]这一X 围内变化,该水位站所测水位X [解析] A 项,小明回答的题数X 的取值可以一一列出,故X 为离散型随机变量;B 项,某超市5月份每天销售额可以一一列出,故为离散型随机变量;C 项,实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量,D 项,不是离散型随机变量,水位在(0,29]这一X 围内变化,不能按次序一一列举.故选AB .10.把一条正态曲线C 1沿着横轴方向向右移动2个单位,得到一条新的曲线C 2,下列说法中正确的是( ABC )A .曲线C 2仍然是正态曲线B .曲线C 1和曲线C 2的最高点的纵坐标相等C .以曲线C 2为概率密度曲线的总体的期望比以曲线C 1为概率密度曲线的总体的期望大2D .以曲线C 2为概率密度曲线的总体的方差比以曲线C 1为概率密度曲线的总体的方差大2 [解析] 正态曲线沿着横轴方向水平移动只改变对称轴位置,曲线的形状没有改变,所得的曲线依然是正态曲线.在正态曲线沿着横轴方向水平移动的过程中,σ始终保持不变,所以曲线的最高点的纵坐标(即正态密⎭⎪⎫度函数的最大值12πσ不变,方差σ2也没有变化.设曲线C 1的对称轴为x =μ,那么曲线C 2的对称轴为x =μ+2,说明期望从μ变到了μ+2,增大了2.11.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论正确的是( ACD )A .2个球都是红球的概率为16B .2个球不都是红球的概率为13C .至少有1个红球的概率为23D .2个球中恰有1个红球的概率为12[解析] 设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2, 则P (A 1)=13,P (A 2)=12,且A 1,A 2独立;在A 中,2个球都是红球为A 1A 2,其概率为16,A 正确;在B 中,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为56,B 错误;在C 中,2个球中至少有1个红球的概率为1-P (A )P (B )=1-23×12=23,C 正确;在D中,2个球中恰有1个红球的概率为13×12+23×12=12,D 正确.故选ACD .12.甲罐中有3个红球、2个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出1个球放入乙罐,分别以A 1,A 2表示由甲罐中取出的球是红球、白球的事件,再从乙罐中随机取出1个球,以B 表示从乙罐中取出的球是红球的事件,下列命题正确的是( AD )A .P (B )=2330B .事件B 与事件A 1相互独立C .事件B 与A 2事件相互独立D .A 1,A 2互斥[解析] 由题意知P (A 1)=35,P (A 2)=25,P (B )=P (B |A 1)+P (B |A 2)=35×56+25×46==2330,A 正确;又P (A 1B )=12,因此P (A 1B )≠P (A 1)P (B ),B 错误;同理,C 错误;A 1,A 2不可能同时发生,故彼此互斥,故D 正确,故选AD .三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知随机变量ξ的分布列如下表,则a =__0.2__,E (ξ)=__1.8__.[解析] ;E (ξ)=0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8.14.一盒子中装有4只产品,其中3只一等品,1只二等品,从中取产品两次,每次任取1只,做不放回抽样.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,则P (B |A )=__23__.[解析] 由条件知,P (A )=34,P (AB )=C 23C 24=12,∴P (B |A )=P AB P A =23.15.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1、A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是__②④__(写出所有正确结论的序号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.[解析] 从甲罐中取出一球放入乙罐,则A 1、A 2、A 3中任意两个事件不可能同时发生,即A 1、A 2、A 3两两互斥,故④正确,易知P (A 1)=12,P (A 2)=15,P (A 3)=310,又P (B |A 1)=511,P (B |A 2)=411,P (B |A 3)=411,故②对③错;∴P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)·P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3)=12×511+15×411+310×411=922,故①⑤错误.综上知,正确结论的序号为②④.16.在等差数列{a n }中,a 4=2,a 7=-4,现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续取数3次,假设每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为__625__.(用数字作答)[解析] 由a 4=2,a 7=-4可得等差数列{a n }的通项公式为a n =10-2n (n =1,2,3,…).{a n }的前10项分别为8,6,4,2,0,-2,-4,-6,-8,-10.由题意知三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为25,取得负数的概率为12,在三次取数中,取出的数恰好为两个正数和一个负数的概率为C 23(25)2(12)1=625.四、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?[解析] 记事件A :最后从2号箱中取出的是红球; 事件B :从1号箱中取出的是红球.P (B )=42+4=23. P (B )=1-P (B )=13.(1)P (A |B )=3+18+1=49.(2)∵P (A |B )=38+1=13,∴P (A )=P (A ∩B )+P (A ∩B ) =P (A |B )P (B )+P (A |B )P (B ) =49×23+13×13=1127. 18.(本题满分12分)(2019·全国Ⅱ卷理,18)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.[解析] (1)X =2就是某局双方10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X =2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X =4且甲获胜,就是某局双方10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.19.(本题满分12分)甲、乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为X ,Y ,X 和Y 的分布列如下表.试对这两名工人的技术水平进行比较.[解析]E (X )=0×610+1×110+2×310=0.7,D (X )=(0-0.7)2×610+(1-0.7)2×110+(2-0.7)2×310=0.81.工人乙生产出次品数Y 的数学期望和方差分别为E (Y )=0×510+1×310+2×210=0.7,D (Y )=(0-0.7)2×510+(1-0.7)2×310+(2-0.7)2×210=0.61.由E (X )=E (Y )知,两人生产出次品的平均数相同,技术水平相当,但D (X )>D (Y ),可见乙的技术比较稳定.20.(本题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望E (X ). [解析] (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4, 则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为X 的数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0+1×521+2×1021+3×521+4×142=2. 21.(本题满分12分)某单位为了参加上级组织的普及消防知识竞赛,需要从两名选手中选出一人参加.为此,设计了一个挑选方案:选手从6道备选题中一次性随机抽取3题.通过考查得知:6道备选题中选手甲有4道题能够答对,2道题答错;选手乙答对每题的概率都是23,且各题答对与否互不影响.设选手甲、选手乙答对的题数分别为X ,Y . (1)写出X 的概率分布列(不要求计算过程),并求出E (X ),E (Y );(2)求D (X ),D (Y ).请你根据得到的数据,建议该单位派哪个选手参加竞赛. [解析] (1)X 的分布列为所以E (X )=1×15+2×35+3×5=2.由题意得,Y ~B (3,23),E (Y )=3×23=2.(2)由(1)得E (X )=E (Y ).D (X )=(1-2)2×15+(2-2)2×35+(3-2)2×15=25.∵Y ~B (3,23),∴D (Y )=3×23×13=23.∴D (X )<D (Y ).因此,建议该单位派甲参加竞赛.22.(本题满分12分)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.[解析] (1)令A 表示事件“三种粽子各取到1个”,由古典概型的概率计算公式有 P (A )=C 12C 13C 15C 310=14.(2)X 的可能取值为0,1,2,且 P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115综上知,X 的分布列为:故E (X )=0×715+1×15+2×15=5.。
高二数学上册综合检测试题(附答案和解析)

高二数学上册综合检测试题(附答案和解析)3.3.2一、选择题1.将0,1]内的均匀随机数a1转化为-2,6]内的均匀随机数a,需实施的变换为()答案]C解析]∵0≤a1≤1,∴0≤8a1≤8,∴-2≤8a1-2≤6.2.小红随意地从她的钱包中取出两枚硬币,已知她的钱包中有1分、2分币各两枚,5分币3枚,则她取出的币值正好是7分的概率是() A.17B.27C.37D.47答案]B解析]共有取法6+5+4+3+2+1=21种,其中币值正好为7分的必有一枚5分币,故有3×2=6种,∴概率P=621=27.3.从正六棱锥P-ABCD的侧棱和底边共12条棱中任取两条,能构成异面直线的概率为()A.111B.211C.411D.811答案]C解析]共能组成11+10+9+…+1=66对,其中为异面直线的有6×4=24对(∵侧棱都共面,底面多边形的边当然共面,∴异面的只有一条侧棱和底面的一条边的情形,一侧棱可与底面多边形的4条边构成异面直线),∴P=2466=411.4.在棱长为3的正方体内任取一个点,则这个点到各面的距离都大于1的概率为()A.13B.19C.127D.34答案]C解析]在正方体内到各面的距离都大于1的点的集合是以正方体的中心为中心、棱长为1的正方体,所以所求概率P=V小正方体V大正方体=133=127.5.某人利用随机模拟方法估计π的近似值,设计了下面的程序框图,运行时,从键盘输入1000,输出值为788,由此可估计π的近似值约为()A.0.788B.3.142C.3.152D.3.14答案]C解析]由条件知,投入1000个点(a,b),-1≤a≤1,-1≤b≤1,其中落入x2+y2≤1内的有788个.∵圆面积正方形面积=π4,∴π4≈7881000,∴π≈3.152.6.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于S3的概率为()A.13B.23C.19D.49答案]B解析]如图所示,作AD⊥BC于D,PE⊥BC于E,对于事件W=“△PBC的面积大于S3”,有12•BC•PE>13•12•BC•AD,即PE>13AD,∴BP>13AB,∴由几何概型的概率计算公式得P(W)=23ABAB=23.7.利用随机模拟法近似计算下图中阴影部分曲线y=2x与x=±1及x 轴围成的图形的面积时,设计了如下算法:设事件A为“随机向正方形内投点,所投的点落在阴影部分”.S表示阴影部分的面积.S1:用计数器n记录做了多少次投点试验,用计数器m记录其中有多少次(x,y)满足-1S2:用变换rand()*2-1产生-1~1之间的均匀随机数x表示所投的点的横坐标;用变换rand()*2产生0~2之间的均匀随机数y表示所投的点的纵坐标;S3:判断点是否落在阴影部分,即是否满足yS4:表示随机试验次数的计数器n的值加1,即n=n+1,如果还要继续试验,则返回步骤S2继续执行;S5:S=____①____;S6:输出S,结束.则①处应为()A.mB.mnC.4mD.4mn答案]D解析]∵阴影部分的面积为S,正方形的面积为4,由几何概型计算公式得P(A)=S4.所以mn=S4.所以S=4mn即为阴影部分面积的近似值.8.下面是随机模拟掷硬币试验的程序框图.其中a=0表示正面向上,a=1表示反面向上,则运行后输出的是() A.正面向上的频数B.正面向上的频率C.反面向上的频数D.反面向上的频率答案]D二、填空题9.若以连续掷两次骰子分别得到的点数m、n作为P点的坐标,则点P在圆x2+y2=25外的概率为______.答案]712解析]基本事件的总数为6×6=36(个),记事件A=“点P(m,n)落在圆x2+y2=25外”,即m2+n2>25,当m取1、2、3时,n只能取5或6,有2×3=6种;当m取4时,n只能取4、5、6有3种;当m取5或6时,n可取1至6的任何值,有2×6=12种.∴事件A包含的基本事件数共有6+3+12=21个,∴P(A)=2136=712.10.任意一个三角形ABC的面积为S,D为△ABC内任取的一个点,则△DBC的面积和△ADC的面积都大于S3的概率为________.答案]19解析]在AB上取三等分点E、F,过点E作EM∥BC交AC于M,过点F 作FN∥AC交BC于N,则当点D在△AEM内时,满足S△DBC>S3,在△BFN内时,满足S△DAC>S3,设EM与FN的交点为G,则当点D 在△EFG内时,同时满足S△DBC>S3,S△DAC>S3,∴所求概率P=S△EFGS△ABC=19.11.已知函数f(x)=-x2+ax-b.若a、b都是区间0,4]内的数,则f(1)>0成立的概率是________.答案]932解析]∵0≤a≤4,0≤b≤4,∴点(a,b)构成区域为正方形OBDE及其内部,∵f(1)=-1+a-b>0,∴a-b>1,满足条件的点构成区域为△ABC及其内部,其中A(1,0),B(4,0),C(4,3),S△ABC=92,所求概率P=S△ABCS四边形OBDE=924×4=932.三、解答题12.向边长为2的正方形内投飞镖,用随机模拟方法估计飞镖落在中央边长为1的正方形内的概率.解析]用几何概型概率计算方法可求得概率P=S小正方形S大正方形=14.用计算机随机模拟这个试验步骤如下:S1用计数器n记录做了多少次飞镖试验,用计数器m记录其中有多少次投在中央的小正方形内,置初始值n=0,m=0;S2用函数rand()*4-2产生两组-2~2的随机数x,y,x表示所投飞镖的横坐标,y表示所投飞镖的纵坐标;S3判断(x,y)是否落在中央的小正方形内,也就是看是否满足|x|S4表示随机试验次数的记数器n的值加1,即n=n+1,如果还需要继续试验,则返回步骤S2,否则,程序结束.程序结束后,飞镖投在小正方形内发生的频率mn表示概率的近似值,全班同学一块试验,看频率是否在14附近波动,次数越多,越有可能稳定在14附近.13.已知地铁列车每10min一班,在车站停1min.用随机模拟方法估计乘客到达站台立即乘上车的概率.解析]地铁列车每10min一班,在车站停1min可以看作在0~1min这个时间段内,车停在停车点,在1~11min这个时间段内行驶,乘客到达站台立即乘上车的条件是他在0~1min这个时间段内到达站台.设事件A={乘客到达站台立即乘上车}.S1用计算机产生一组0,1]区间的均匀随机数a1=RAND;S2经过伸缩变换a=11*a114.在长为18cm的线段AB上任取一点M,并以线段AM为边作正方形.用随机模拟法估计该正方形的面积介于36cm2与81cm2之间的概率,并写出算法.解析]正方形的面积只与边长有关,本题可以转化为在线段AB上任取一点M,使AM的长度介于6cm与9cm之间.设事件A={正方形的面积介于36cm2与81cm2之间}(1)利用计算器或计算机产生一组0到1区间的均匀随机数a1=RAND;(2)经过伸缩变换,a=a1*18;算法为:INPUT“n=”;nm=0DOi=1a=18*rand()15.如图,射击比赛使用的靶子是一个边长为50cm的正方形木板,由内到外画了五个同心圆,半径分别为5cm,10cm,15cm,20cm,25cm,由内到外依次为10环,9环,8环,7环,6环.某人在20m之外向此板射击,设击中线上或没有击中靶子时不算,可重新射击,假设击中靶子上任意位置的可能性相等.用随机模拟法估算下列概率:(1)得到8环以上(包括8环)的概率;(2)得到9环的概率;(3)得到8环以下(不包括8环)的概率.解析]设事件A=“得到8环以上(包括8环)”,事件B=“得到9环”,事件C=“得到8环以下(不包括8环)”.S1用计算器产生两组0,1]区间上的均匀随机数a1=RAND,b1=RAND……;16.利用随机模拟法近似计算图中阴影部分(曲线y=9-x2与x轴和y =x围成的图形)的面积.解析]设事件A为“随机向矩形内投点,所投的点落在阴影部分”.(1)利用计算器或计算机产生两组0到1区间的均匀随机数,x1=RAND,y1=RAND;(2)经过伸缩平移变换,x=(x1-0.5)*6,y=y1*9;设阴影部分的面积为S,矩形的面积为9×6=54.由几何概率公式得P(A)=S54.所以,阴影部分面积的近似值为:S≈54N1N.17.利用随机模拟法近似计算图中阴影部分(曲线y=x与直线x=2及x轴围成的图形)的面积.解析]设事件A“随机向正方形内投点,所投的点落在阴影部分”.S1用计数器n记录做了多少次试验,用计数器m记录其中有多少次(x,y)满足yS2用变换rand()*2产生0~2之间的均匀随机数x表示所投点的横坐标;用变换rand()*2产生0~2之间的均匀随机数y表示所投点的纵坐标;S3判断点是否落在阴影部分,即是否满足yS4表示随机试验次数的计数器n的值加1,即n=n+1.如果还要继续试验,则返回步骤S2继续执行,否则,程序结束.程序结束后,事件A发生的频率mn作为事件A概率的近似值.设阴影部分面积为S,正方形面积为4,则mn≈P(A)=S4,∴S≈4mn.。
第二章 直线和圆的方程 综合能力测试 - 高二上学期数学人教A版(2019)选择性必修第一册

第二章 直线和圆的方程一、单选题1.圆2)1(22=++y x 的圆心到直线3+=x y 的距离为( )。
A 、1B 、2C 、2D 、222.若平面内两条平行线1l :02)1(=+-+y a x 与2l :012=++y ax 间的距离为553,则实数=a ( )。
A 、2-B 、1-C 、1D 、23.过点P -且倾斜角为135的直线方程为( )A .30x y --=B .0x y --=C .0x y +=D .0x y ++= 4.圆1C :221x y +=与圆2C :()224310x y k x y +++-=(k ∈R ,0k ≠)的位置关系为( )A .相交B .相离C .相切D .无法确定5.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知ABC 的顶点()2,0A ,()0,4B ,AC BC =,则ABC 的欧拉线方程为( ) A .230x y +-=B .230x y -+=C .230x y --=D .230x y -+= 6.若直线l 将圆()()22129x y -++=平分,且在两坐标轴上的截距相等,则直线l 的方程为( )A .10x y ++=或20x y +=B .10x y -+=或20x y +=C .10x y -+=或20x y -=D .10x y --=或20x y -= 7.过坐标原点O 作圆()()22341x y -+-=的两条切线,切点为,A B ,直线AB 被圆截得弦AB 的长度为( )A BC D 8.已知圆M 的方程为22680x y x y +--=,过点()0,4P 的直线l 与圆M 相交的所有弦中,弦长最短的弦为AC ,弦长最长的弦为BD ,则四边形ABCD 的面积为( ) A .30B .40C .60D .80 二、多选题9. 下列说法中,正确的有( )A. 过点P (1,2)且在x ,y 轴截距相等的直线方程为30x y +-=B. 直线y =3x -2在y 轴上的截距为-2C. 直线 10x -+=的倾斜角为60°D. 过点(5,4)并且倾斜角为90°的直线方程为x -5=010. 如果0AB <,0BC <,那么直线0Ax By C ++=经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限11.已知圆O :x 2+y 2=4和圆M :x 2+y 2﹣2x +4y +4=0相交于A 、B 两点,下列说法正确的是( )A .圆M 的圆心为(1,﹣2),半径为1B .直线AB 的方程为x ﹣2y ﹣4=0C .线段AB 的长为2√55D .取圆M 上点C (a ,b ),则2a ﹣b 的最大值为4+√512.已知圆C :(x ﹣5)2+(y ﹣5)2=16与直线l :mx +2y ﹣4=0,下列选项正确的是(( )A .直线l 与圆C 不一定相交B .当m ≥1615时,圆C 上至少有两个不同的点到直线l 的距离为1C .当m =﹣2时,圆C 关于直线1对称的圆的方程是(x +3)2+(y +3)2=16D .当m =1时,若直线l 与x 轴,y 轴分别交于A ,B 两点,P 为圆C 上任意一点,当|PB |=3√2时,∠PBA 最小三、填空题13.已知点()P x y ,在直线10x y =++上运动,则()()2211x y +--取得最小值时点P 的坐标为_______.14.已知P 是直线l : 260x y ++=上一动点,过点P 作圆C :22230x y x ++-=的两条切线,切点分别为A 、B .则四边形PACB 面积的最小值为___________.15.已知圆心为(),0a 的圆C 与倾斜角为56π的直线相切于点(3,N ,则圆C 的方程为___________16.直线3y x =+D :(()2213x y +-=交与A ,B 两点,则直线AD 与BD 的倾斜角之和为_____________.四、解答题17.实数x ,y 满足x 2+y 2+2x ﹣4y +1=0,求:(1)y x−4的最大值和最小值;(2)2x +y 的最大值和最小值.18.已知点)2212(-+,P ,点)13(,M ,圆C :4)2()1(22=-+-y x 。
高二数学上学期第二次段考试题理含解析试题

卜人入州八九几市潮王学校“庐巢六校联盟〞二零二零—二零二壹高二数学上学期第二次段考试题理〔含解析〕第一卷〔选择题60分〕一、选择题〔本大题一一共12小题,每一小题5分,一共60分〕(3,1,4)A --,()3,5,10B -,那么线段AB 的中点M 的坐标为〔〕A.()0,4,6-B.()0,2,3-C.(0,2,3)D.()0,2,6-【答案】B 【解析】 【分析】利用中点坐标公式求解即可. 【详解】解:因为点(3,1,4)A --,()3,5,10B -,线段AB 的中点M 的坐标为()0,2,3-,应选:B.【点睛】此题考察中点坐标公式,是根底题.210ax y ++=与直线20x y +-=互相垂直,那么实数a =〔〕A.1B.2-C.23-D.13-【答案】B 【解析】 【分析】由直线的垂直关系可得()112a ⎛⎫-⨯-=- ⎪⎝⎭,解方程可得结果.【详解】直线210ax y ++=的斜率为2a -, 直线20x y +-=的斜率为1-,直线210ax y ++=与直线20x y +-=互相垂直,()112a ⎛⎫∴-⨯-=- ⎪⎝⎭,解得2a =-,应选B. 1〕1212||l l k k ⇔=;〔2〕12121l l k k ⊥⇔⋅=-,这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况,这一点一定不能掉以轻心.3.在空间四边形ABCD 的边AB ,BC ,CD ,DA 上分别取E ,F ,G ,H 四点,如EF 与HG 交于点M ,那么() A.M 一定在直线AC 上 B.M 一定在直线BD 上C.M 可能在直线AC 上,也可能在直线BD 上D.M 既不在直线AC 上,也不在直线BD 上 【答案】A 【解析】如图,因为EF∩HG=M, 所以M∈EF,M∈HG,又EF ⊂平面ABC ,HG ⊂平面ADC , 故M∈平面ABC ,M∈平面ADC , 所以M∈平面ABC∩平面ADC=AC.选A.点睛:证明点在线上常用方法先找出两个平面,然后确定点是这两个平面的公一共点,再确定直线是这两个平面的交线。
【高二】高二数学推理与证明综合检测综合测试题(有答案)

【高二】高二数学推理与证明综合检测综合测试题(有答案)第二章推理与证明综合检测时间120分钟,满分150分。
一、(本大题共12个小题,每小题5分后,共60分后.在每小题得出的四个选项中,只有一项就是合乎题目建议的)1.锐角三角形的面积等于底乘高的一半;直角三角形的面积等同于底乘坐低的一半;钝角三角形的面积等于底乘高的一半;所以,凡是三角形的面积都等同于底乘坐低的一半.以上推理运用的推理规则是( )a.三段论推理小说b.假言推理c.关系推理小说d.完全归纳推理[答案] d[解析] 所有三角形按角分,只有锐角三角形、rt三角形和钝角三角形三种情形,上述推理穷尽了所有的可能情形,故为完全归纳推理.2.数列1,3,6,10,15,…的关系式公式可能将就是( )a.a1=1,an+1=an+n(n∈n*)b.a1=1,an=an-1+n(n∈n*,n≥2)c.a1=1,an+1=an+(n-1)(n∈n*)d.a1=1,an=an-1+(n-1)(n∈n*,n≥2)[答案] b[解析] 记数列入{an},由未知观测规律:a2比a1多2,a3比a2多3,a4比a3多4,…,所述当n≥2时,an比an-1多n,可以得关系式关系a1=1,an-an-1=n(n≥2,n∈n*).3.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,因为( )a.大前提错误b.小前提错误c.推理小说形式错误d.不是以上错误[答案] c[解析] 大小前提都正确,其推理形式错误.故应选c.4.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈n*)时,检验n =1,左边马热里角的项是( )a.1b.1+2c.1+2+3d.1+2+3+4[答案] d[解析] 当n=1时,左=1+2+…+(1+3)=1+2+…+4,故高文瑞d.5.在r上定义运算?:x?y=x(1-y).若不等式(x-a)?(x+a)<1对任意实数x都成立,则( )a.-1<a<1b.0<a<2c.-12<a<32d.-32<a<12[答案] c[解析] 类比题目所给运算的形式,得到不等式(x-a)?(x+a)<1的简化形式,再求其恒成立时a的取值范围.(x-a)?(x+a)<1?(x-a)(1-x-a)<1即x2-x-a2+a+1>0不等式恒设立的充要条件就是δ=1-4(-a2+a+1)<0即4a2-4a-3<0解得-126.未知f(n)=1n+1n+1+1n+2+…+1n2,则( )a.f(n)中共有n项,当n=2时,f(2)=12+13b.f(n)中共存有n+1项,当n=2时,f(2)=12+13+14c.f(n)中共有n2-n项,当n=2时,f(2)=12+13d.f(n)中共存有n2-n+1项,当n=2时,f(2)=12+13+14[答案] d[解析] 项数为n2-(n-1)=n2-n+1,故高文瑞d.7.已知a+b+c=0,则ab+bc+ca的值( )a.大于0b.小于0c.不大于0d.不大于0[答案] d[解析] 解法1:∵a+b+c=0,∴a2+b2+c2+2ab+2ac+2bc=0,∴ab+ac+bc=-a2+b2+c22≤0.数学分析2:令c=0,若b=0,则ab+bc+ac=0,否则a、b异号,∴ab+bc+ac =ab<0,确定a、b、c,挑选d.8.已知c>1,a=c+1-c,b=c-c-1,则正确的结论是( )a.a>bb.a<bc.a=bd.a、b大小不定[答案] b[解析] a=c+1-c=1c+1+c,b=c-c-1=1c+c-1,因为c+1>c>0,c>c-1>0,所以c+1+c>c+c-1>0,所以a9.若凸k边形的内角和为f(k),则凸(k+1)边形的内角和f(k+1)(k≥3且k∈n*)等于( )a.f(k)+π2b.f(k)+πc.f(k)+32πd.f(k)+2π[答案] b[解析] 由凸k边形到凸(k+1)边形,增加了一个三角形,故f(k+1)=f(k)+π.10.若sinaa=cosbb=coscc,则△abc就是( )a.等边三角形b.存有一个内角就是30°的直角三角形c.等腰直角三角形d.存有一个内角就是30°的等腰三角形[答案] c[解析] ∵sinaa=cosbb=coscc,由正弦定理得,sinaa=sinbb=sincc,∴sinbb=cosbb=coscc=sincc,∴sinb=cosb,sinc=cosc,∴∠b=∠c=45°,∴△abc是等腰直角三角形.11.若a>0,b>0,则p=(ab)a+b2与q=ab?ba的大小关系就是( )a.p≥qb.p≤qc.p>qd.p<q[答案] a若a>b,则ab>1,a-b>0,∴pq>1;若0<a<b,则0<ab<1,a-b<0,∴pq>1;若a=b,则pq=1,∴p≥q.12.设立函数f(x)定义如下表中,数列{xn}满足用户x0=5,且对任一的自然数均存有xn+1=f(xn),则x2021=( )x12345f(x)41352a.1b.2c.4d.5[答案] c[解析] x1=f(x0)=f(5)=2,x2=f(2)=1,x3=f(1)=4,x4=f(4)=5,x5=f(5)=2,…,数列{xn}是周期为4的数列,所以x2021=x3=4,故应选c.二、题(本大题共4个小题,每小题4分后,共16分后.将恰当答案填上在题中横线上)13.半径为r的圆的面积s(r)=πr2,周长c(r)=2πr,若将r看作(0,+∞)上的变量,则(πr2)′=2πr.①①式需用语言描述为:圆的面积函数的导数等同于圆的周长函数.对于半径为r的球,若将r看做(0,+∞)上的变量,恳请你写下类似①式的式子:______________________________,你写给的式子需用语言描述为__________________________.[答案] 43πr3′=4πr2;球的体积函数的导数等于球的表面积函数.14.未知f(n)=1+12+13+…+1n(n∈n*),用数学归纳法证明f(2n)>n2时,f(2k+1)-f(2k)=________.[答案] 12k+1+12k+2+…+12k+1[解析] f(2k+1)=1+12+13+…+12k+1f(2k)=1+12+13+ (12)f(2k+1)-f(2k)=12k+1+12k+2+…+12k+1.15.观察①sin210°+cos240°+sin10°cos40°=34;②sin26°+cos236°+sin6°cos36°=34.两式的结构特点可以明确提出一个悖论的等式为________________.[答案] si n2α+cos2(30°+α)+sinαcos(30°+α)=34[解析] 观测40°-10°=30°,36°-6°=30°,由此猜想:sin2α+cos2(30°+α)+sinαcos(30°+α)=34.可以证明此结论是正确的,证明如下:sin2α+cos2(30°+α)+sinα?cos(30°+α)=1-cos2α2+1+cos(60°+2α)2+12[sin(30°+2α)-sin30°]=1+12[cos(60°+2α)-cos2α]+12sin(30°+2α)-12=1+12[-2sin(30°+2α)sin30°]+12sin(30°+2α)-12=34-12sin(30°+2α)+12sin(30°+2α)=34.16.设p就是一个数集,且至少所含两个数,若对任一a、b∈p,都存有a+b、a-b、ab、ab∈p(除数b≠0),则表示p就是一个数域.比如有理数集q就是数域;数集f={a+b2a,b∈q}也就是数域.存有以下命题:①整数集是数域;②若有理数集q?m,则数集m必为数域;③数域必为无限集;④存有无穷多个数域.其中正确命题的序号是________.(把你认为正确命题的序号都填上)[答案] ③④[解析] 考查理解、分析等学习能力.①整数a=2,b=4,ab不是整数;②如将有理数集q,添上元素2,得到数集m,则取a=3,b=2,a+b?m;③由数域p的定义言,若a∈p,b∈p(p中至少所含两个元素),则存有a+b∈p,从而a+2b,a+3b,…,a+nb∈p,∴p中必所含无穷多个元素,∴③对.④设x是一个非完全平方正整数(x>1),a,b∈q,则由数域定义知,f={a+bxa、b∈q}必是数域,这样的数域f有无穷多个.三、答疑题(本大题共6个小题,共74分后.求解应允写下文字说明、证明过程或编程语言步骤)17.(本题满分12分)已知:a、b、c∈r,且a+b+c=1.澄清:a2+b2+c2≥13.[证明] 由a2+b2≥2ab,及b2+c2≥2bc,c2+a2≥2ca.三式相乘得a2+b2+c2≥ab+bc+ca.∴3(a2+b2+c2)≥(a2+b2+c2)+2(ab+bc+ca)=(a+b+c)2.由a+b+c=1,得3(a2+b2+c2)≥1,即a2+b2+c2≥13.18.(本题满分12分后)证明以下等式,并从中概括出来一个一般性的结论.2cosπ4=2,2cosπ8=2+2,2cosπ16=2+2+2,……[证明] 2cosπ4=2?22=22cosπ8=21+cosπ42=2?1+222=2+22cosπ16=21+cosπ82=21+122+22=2+2+2…19.(本题满分12分)已知数列{an}满足a1=3,an?an-1=2?an-1-1.(1)谋a2、a3、a4;(2)求证:数列1an-1是等差数列,并写出数列{an}的一个通项公式. [解析] (1)由an?an-1=2?an-1-1得an=2-1an-1,代入a1=3,n依次值域2,3,4,得a2=2-13=53,a3=2-35=75,a4=2-57=97.(2)证明:由an?an-1=2?an-1-1变形,得(an-1)?(an-1-1)=-(an-1)+(an-1-1),即1an-1-1an-1-1=1,所以{1an-1}是等差数列.由1a1-1=12,所以1an-1=12+n-1,变形得an-1=22n-1,所以an=2n+12n-1为数列{an}的一个通项公式.20.(本题满分12分)已知函数f(x)=ax+x-2x+1(a>1).(1)证明:函数f(x)在(-1,+∞)上以增函数;(2)用反证法证明方程f(x)=0没有负根.[解析] (1)证法1:余因子x1,x2∈(-1,+∞),何不设x10,且ax1>0,又∵x1+1>0,x2+1>0,∴f(x2)-f(x1)=x2-2x2+1-x1-2x1+1=(x2-2)(x1+1)-(x1-2)(x2+1)(x1+1)(x2+1)=3(x2-x1)(x1+1)(x2+1)>0,于是f(x2)-f(x1)=ax2-ax1+x2-2x2+1-x1-2x1+1>0,故函数f(x)在(-1,+∞)上为增函数.证法2:f′(x)=axlna+x+1-(x-2)(x+1)2=axlna+3(x+1)2∵a>1,∴lna>0,∴axlna+3(x+1)2>0,f′(x)>0在(-1,+∞)上恒设立,即f(x)在(-1,+∞)上为增函数.(2)数学分析1:设立存有x0<0(x0≠-1)满足用户f(x0)=0则ax0=-x0-2x0+1,且0∴0故方程f(x)=0没负数根.解法2:设x0<0(x0≠-1)①若-1②若x00,ax0>0,∴f(x0)>0.综上,x<0(x≠-1)时,f(x)0,即方程f(x)=0无负根.21.(本题满分12分后)我们晓得,在△abc中,若c2=a2+b2,则△abc就是直角三角形.现在恳请你研究:若cn=an+bn(n>2),问△abc为何种三角形?为什么?[解析] 锐角三角形∵cn=an+bn(n>2),∴c>a,c>b,由c就是△abc的最小边,所以必须证△abc就是锐角三角形,只需证角c为锐角,即为证cosc>0.∵cosc=a2+b2-c22ab,∴必须证cosc>0,只要证a2+b2>c2,①注意到条件:an+bn=cn,于是将①等价变形为:(a2+b2)cn-2>cn.②∵c>a,c>b,n>2,∴cn-2>an-2,cn-2>bn-2,即cn-2-an-2>0,cn-2-bn-2>0,从而(a2+b2)cn-2-cn=(a2+b2)cn-2-an-bn=a2(cn-2-an-2)+b2(cn-2-bn-2)>0,这说明②式成立,从而①式也成立.故cosc>0,c就是锐角,△abc为锐角三角形.22.(本题满分14分)(2021?安徽理,20)设数列a1,a2,…an,…中的每一项都不为0.证明{an}为等差数列的充份必要条件就是:对任何n∈n+,都存有1a1a2+1a2a3+…+1anan+1=na1an+1.[分析] 本题考查等差数列、数学归纳法与充要条件等有关知识,考查推理论证、运算求解能力.解题思路就是利用裂项议和法证必要性,再用数学归纳法或综合法证明充分性.[证明] 先证必要性.设立数列{an}的公差为d.若d=0,则所述等式似乎设立.若d≠0,则1a1a2+1a2a3+…+1anan+1=1da2-a1a1a2+a3-a2a2a3+…+an+1-ananan+1=1d1a1-1a2+1a2-1a3+…+1an-1an+1=1d1a1-1an+1=1dan+1-a1a1an+1=na1an+1.再证充分性.证法1:(数学归纳法)设立所述的等式对一切n∈n+都设立.首先,在等式1a1a2+1a2a3=2a1a3两端同乘a1a2a3,即得a1+a3=2a2,所以a1,a2,a3成等差数列,记公差为d,则a2=a1+d.假设ak=a1+(k-1)d,当n=k+1时,观测如下两个等式1a1a2+1a2a3+…+1ak-1ak=k-1a1ak,①1a1a2+1a2a3+…+1ak-1ak+1akak+1=ka1ak+1②将①代入②,得k-1a1ak+1akak+1=ka1ak+1,在该式两端同乘a1akak+1,得(k-1)ak+1+a1=kak.将ak=a1+(k-1)d代入其中,整理后,得ak+1=a1+kd.由数学归纳法原理知,对一切n∈n,都有an=a1+(n-1)d,所以{an}是公差为d的等差数列.证法2:(轻易证法)依题意存有1a1a2+1a2a3+…+1anan+1=na1an+1,①1a1a2+1a2a3+…+1anan+1+1an+1an+2=n+1a1an+1.②②-①得1an+1an+2=n+1a1an+2-na1an+1,在上式两端同乘a1an+1an+2,得a1=(n+1)an+1-nan+2.③同理只须a1=nan-(n-1)an+1(n≥2)④③-④得2nan+1=n(an+2+an)即an+2-an+1=an+1-an,由证法1知a3-a2=a2-a1,故上式对任意n∈n*均成立.所以{an}是等差数列.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学上册第二章综合检测试题(含答案解析)第二章综合能力检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.设有两组数据x1,x2,…,xn与y1,y2,…,yn,它们的平均数分别是x-和y-,则新的一组数据2x1-3y1+1,2x2-3y2+1,…,2xn-3yn+1的平均数是( ) A.2x--3y- B.2x--3y-+1 C.4x--9y- D.4x --9y-+1 [答案] B [解析] 设zi=2xi-3yi+1(i=1,2,…,n),则z=1n(z1+z2+…+zn)=2n(x1+x2+…+xn)-3n(y1+y2+…+yn)+1n(1+1+…+1) n个=2x-3y+1. 2.为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为( ) A.64 B.54 C.48 D.27 [答案] B [解析] 前两组中的频数为100×(0.05+0.11)=16. ∵后五组频数和为62,∴前三组频数和为38. ∴第三组频数为22. 又最大频率为0.32,故频数为0.32×100=32,∴a=22+32=54,故选B. 3.在简单随机抽样中,某一个个体被抽中的机会是( ) A.与第n次抽样有关,第一次抽中的机会要大些 B.与第n次抽样无关,每次抽中的机会都相等 C.与第n次抽样有关,最后一次抽中的机会大些 D.该个体被抽中的机会无法确定 [答案] B [解析] 简单随机抽样中,每个个体被抽中的机会相等,且与先后顺序无关. 4.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( ) A.85,85,85 B.87,85,86 C.87,85,85 D.87,85,90 [答案] C [解析] ∵得85分的人数最多为4人,∴众数为85;共10人中第五、六两人成绩为85分,∴中位数为85,平均数x=110(100+95+90×2+85×4+80+75)=87. 5.(09•宁夏海南理)对变量x,y观测数据(x1,y1)(i =1,2,…,10),得散点图1;对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图2.由这两个散点图可以判断.( ) A.变量x与y正相关,u与v正相关 B.变量x与y正相关,u与v负相关 C.变量x与y负相关,u与v正相关 D.变量x与y负相关,u 与v负相关 [答案] C [解析] 用散点图可以判断变量x与y负相关,u与v正相关. 6.(09•上海理)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( ) A.甲地:总体均值为3,中位数为4 B.乙地:总体均值为1,总体方差大于0 C.丙地:中位数为2,众数为3 D.丁地:总体均值为2,总体方差为3 [答案] D [解析] 排除法:A中,若连续10天甲地新增疑似病例数据分别为x1=x2=x3=x4=0,x5=x6=x7=x8=x9=4,x10=10,此时总体均值为3,中位数为4,但第10天新增疑似病例超过7,故A错;B中,若x1=x2=x3=x4=x5=x6=x7=x8=x9=0,x10=10,此时,总体均值为1,方差大于0,但第10天新增疑似病例超过7,故B错;C中,若x1=x2=x3=x4=0,x5=1,x6=3,x7=3,x8=3,x9=8,x10=9,此时,中位数为2,众数为3,但第9天、第10天新增疑似病例超过7,故C错,故选D. 7.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270. 关于上述样本的下列结论中,正确的是( ) A.②、③都不能为系统抽样 B.②、④都不能为分层抽样 C.①、④都可能为系统抽样 D.①、③都可能为分层抽样 [答案] D [解析] 因为③为系统抽样,所以选项A不对;因为②为分层抽样,所以选项B不对;因为④不为系统抽样,所以选项C不对.故选D. 8.x-是x1,x2,…,x100的平均值,a1为x1,x2,…,x40的平均值,a2为x41,x42,…,x100的平均值,则下列各式正确的是( ) A.x-=2a1+3a25 B.x-=3a1+2a25 C.x-=a1+a2 D.x-=a1+a22 [答案] A [解析] 由题意i=140xi =40a1,i=41100xi=60a2,∴x=i=1100xi100=40a1+60a2100=2a1+3a25. 9.(09•四川文)设矩形的长为a,宽为b,其比满足b�wa=5-12≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620 根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( ) A.甲批次的总体平均数与标准值更接近 B.乙批次的总体平均数与标准值更接近 C.两个批次总体平均数与标准值接近程度相同 D.两个批次总体平均数与标准值接近程度不能确定 [答案] A [解析] x甲=0.598+0.625+0.628+0.595+0.6395=0.617, x乙=0.618+0.613+0.592+0.622+0.6205=0.613,故选A. 10.下列两个变量间的关系是相关关系的是( ) A.电压一定时,电流与电阻 B.长方体的体积一定时,长与宽 C.正n边形的边数与内角之和 D.汽车的维修费用与跑的里程 [答案] D 11.经显示,家庭用液化气量(单位:升)与气温(单位:度)有一定的关系,如图所示,图(1)表示某年12个月中每个月的平均气温,图(2)表示某家庭在这年12个月中每个月的用气量,根据这些信息,以下关于家庭用气量与气温关系的叙述中,正确的是( ) A.气温最高时,用气量最多 B.当气温最低时,用气量最少 C.当气温大于某一值时,用气量随气温升高而增加 D.当气温小于某一值时,用气量随气温降低而增加 [答案] C [解析] 经比较可以发现,2月份用气量最多,而2月份温度不是最高,故排除A,同理可排除B.从5,6,7三个月的气温和用气量可知C正确. [点评] 从图上看,尽管10至12月气温在降低,用气量在增加,但不能选D,因为不满足“气温小于某一数值时”的要求,因此考虑问题一定要全面. 12.(09•山东理)某工厂对一批产品进行了抽样检测,右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品个数是( ) A.90 B.75 C.60 D.45 [答案] A [解析] 产品净重小于100克的频率 P=(0.050+0.100)×2=0.3,设样本容量为n,由已知36n=0.3,∴n=120. 而净重大于或等于98克而小于104克的产品的频率P′=(0.100+0.150+0.125)×2=0.75. ∴个数为0.75×120=90.故选A. 二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(09•江苏理)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号甲组 6 7 7 8 7 乙组 6 7 6 7 9 则以上两组数据的方差中较小的一个为s2=______. [答案] 25 [解析] x甲=6+7+7+8+75=7, x乙=6+7+6+7+95=7,∴s2甲=(6-7)2+(7-7)2+(7-7)2+(8-7)2+(7-7)25 =25, s2乙=(7-6)2+(7-7)2+(7-6)2+(7-7)2+(7-9)25 =65,则两组数据的方差中较小的一个为s2甲=25. 14.(09•广东理)随机抽取某产品n件,测得其长度分别为a1,a2,…,an,则如图所示的程序框图输出的s=________,s表示的样本的数字特征是________.(注:框图中的赋值符号“=”也可以写成“←”“:=”) [答案] 1n(a1+a2+…+an);样本平均数 [解析] 由程序框图知,当i=1时,x1=a1,此时S=a1. i=2时,x2=(2-1)S1+a22=a1+a22,此时S=a1+a22, i=3时,x3=(3-2)S2+a33=a1+a2+a33,此时S=a1+a2+a33… i=n-1时,xn-1=(n-2)Sn-2+an-1n-1=a1+a2+…+an-1n-1,此时S=a1+a2+…+an-1n-1, i=n时,可得S=a1+a2+…+ann,i=n+1不满足i≤n跳出循环,输出S后结束,故输出S=a1+a2+…+ann,它表示的样本的数字特征是a1,a2,…,an这n个数的平均数. 15.(09•福建理)某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中x)无法看清.若记分员计算无误,则数字x应该是____. [答案] 1 [解析] 由茎叶图可得9个分数为88,89,89,92,93,90+x,92,91,94,∴89+89+92+93+90+x+92+91=636+x=91×7,∴x=1. 16.从甲、乙、丙三个厂家生产的同一种产品中抽取8件产品,对其使用寿命跟踪调查结果如下(单位:年):甲:3,4,5,6,8, 8, 8, 10 乙:4,6,6,6,8, 9, 12,13 丙:3,3,4,7,9,10,11,12 三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲________,乙________,丙________. [答案] 众数平均数中位数 [解析] 甲、乙、丙三个厂家从不同角度描述了一组数据的特征.甲:此组数据8出现的次数最多, 8是该组数据的众数.乙:该组数据的平均数x=4+6×3+8+9+12+138=8,丙:该组数据的中位数是:7+92=8. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)对一射击选手的跟踪观测,其环数及相应频率如下:环数: 6 7 8 9 10 频率:15% 25% 40% 10% 10% 求该选手的平均成绩. [解析] 当样本数据对应频率已知时,可以直接运用求平均数. x=6×0.15+7×0.25+8×0.4+9×0.1+10×0.1=7.75. [点评] 若取值为x1,x2,…,xn的频率分别为p1,p2,…,pn,则其平均数为x1p1+x2p2+…+xnpn. 18.(本题满分12分)对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:甲:60 80 70 90 70 乙:80 60 70 80 75 问:甲、乙谁的平均成绩好?谁的各门功课较平衡? [解析] x甲=15×(60+80+70+90+70)=74, x乙=15×(80+60+70+80+75)=73, s甲=15×(142+62+42+162+42)≈10.2, s乙=15×(72+132+32+72+22)≈7.5.因为x甲>x 乙,s甲>s乙.所以甲的平均成绩较好,乙的各门功课较平衡. 19.(本题满分12分)某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,画出频率分布直方图如图(1)所示,已知130~140分数段的人数为90,90~100分数段的人数为a,求图(2)表示的运算的表达式. [解析] ∵900.05=a0.45,∴a=810,由程序框图知,n≤810时,执行循环体,因此S=1×2×3×4× (810)20.(本题满分12分)某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:甲:102,101,99,98,103,98,99;乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种? (2)将这两组数据用茎叶图表示; (3)将两组数据比较,说明哪个车间的产品较稳定. [解析] (1)因为间隔时间相同,故是系统抽样. (2)茎叶图如下: (3)甲车间:平均值:x1=17(102+101+99+98+103+98+99)=100,方差:s21=17[(102-100)2+(101-100)2+…+(99-100)2]≈3.43. 乙车间:平均值:x2=17(110+115+90+85+75+115+110)=100,方差:s22=17[(110-100)2+(115-100)2+…+(110-100)2]≈228.57. ∵x1=x2,s21<s22,∴甲车间的产品稳定. [点评] 从茎叶图可看出,甲车间的产品重量主要集中在98~103之间,而乙车间产品重量分布则较分散,故不计算方差也可直观作出判断:甲车间产品较稳定. 21.(本题满分12分)下表提供了某厂节能降耗技术改造后,生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据 y 3 4 5 6 y 2.5 3 4 4.5 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,求出y关于x的回归直线方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? [解析] (1)散点图如图. (2)x-=4.5,y-=3.5, b^=∑xiyi-4x- y-∑x2i -4x-2=66.5-6386-81=0.7, a^=3.5-0.7×4.5=0.35,∴回归直线方程为y^=0.7x+0.35. (3)90-(0.7×100+0.35)=19.65(t) ∴降低了19.65吨. 22.(本题满分14分)(09•宁夏海南理)某工厂有工人1000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数).从A类工人中的抽查结果和从B类工人中的抽查结果分别如下表1和表2. 表1 生产能力分组 [100,110) [110,120) [120,130) [130,140)[140,150) 人数 4 8 x 5 3 表2 生产能力分组 [110,120) [120,130) [130,140) [140,150) 人数 6 y 36 18 (1)先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论) (2)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数.(同一组中的数据用该组区间的中点值作代表) [解析] (1)由题意知A类工人中应抽查25名,B类工人中应抽查75名.故4+8+x+5+3=25,得x=5, 6+y+36+18=75,得y=15. 频率分布直方图如下从直方图可以判断:B类工人中个体间的差异程度更小. (2)xA=425×105+825×115+525×125+525×135+325×145=123, xB =675×115+1575×125+3675×135+1875×145=133.8, x=25100×123+75100×133.8=131.1. A类工人生产能力的平均数、B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123、133.8和131.1.附表随机数表03 47 43 73 86 36 96 47 36 61 46 98 63 71 62 33 26 16 80 45 60 11 14 10 95 97 74 24 67 62 42 81 14 57 20 42 53 32 37 32 27 07 36 07 51 24 51 79 89 73 16 76 62 27 66 56 50 26 71 07 32 90 79 78 53 13 55 38 58 59 88 97 54 14 10 12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76 55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28 18 18 07 92 45 44 17 16 58 0979 83 86 19 62 06 76 50 03 10 55 23 64 05 05 26 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 72 88 71 23 42 40 64 74 82 97 77 77 81 07 45 32 14 08 32 98 94 07 72 93 85 79 10 75 52 36 28 19 95 50 92 26 11 97 00 56 76 31 38 80 22 02 53 53 86 60 42 04 53 37 85 94 35 12 83 39 50 08 30 42 34 07 96 88 54 42 06 87 98 35 85 29 48 39 70 29 17 12 13 40 33 20 38 26 13 89 51 03 74 17 76 37 13 04 07 74 21 19 30 56 62 18 37 35 96 83 50 87 75 97 12 55 93 47 70 33 24 03 54 97 77 46 44 80 99 49 57 22 77 88 42 95 45 72 16 64 36 16 00 04 43 18 66 79 94 77 24 21 90 16 08 15 04 72 33 27 14 34 09 45 59 34 68 49 12 72 07 34 45 99 27 72 95 14 31 16 93 32 43 50 27 89 87 19 20 15 37 00 49 52 85 66 60 44 38 68 88 11 80 68 34 30 13 70 55 74 30 77 40 44 22 78 84 26 04 33 46 09 52 68 07 97 06 57 74 57 25 65 76 59 29 97 68 60 71 91 38 67 54 13 58 18 24 76 15 54 55 95 52 27 42 37 86 53 48 55 90 65 72 96 57 69 36 10 96 46 92 42 45 97 60 49 04 91 00 39 68 29 61 66 37 32 20 30 77 84 57 03 29 10 45 65 04 26 11 04 96 67 24 29 94 98 94 24 68 49 69 10 82 53 75 91 93 30 34 25 20 57 27 40 48 73 51 92 16 90 82 66 59 83 62 64 11 12 67 19 00 71 74 60 47 21 29 68 02 02 37 03 31 11 27 94 75 06 06 09 19 74 66 02 94 37 34 02 76 70 90 30 86 38 45 94 30 38 35 24 10 16 20 33 32 51 26 38 79 78 45 04 91 16 92 53 56 16 02 75 50 95 98 38 23 16 86 38 42 38 97 01 50 87 75 66 81 41 40 01 74 91 62 48 51 84 08 32 31 96 25 91 47 96 44 33 49 13 34 86 82 53 91 00 52 43 48 85 27 55 26 89 62 66 67 40 67 14 64 05 71 95 86 11 05 65 09 68 76 83 20 37 90 57 16 00 11 66 14 90 84 45 11 75 73 88 05 90 52 27 41 14 86 22 98 12 22 08 07 52 74 95 80 68 05 51 18 00 33 96 02 75 19 07 60 62 93 55 59 33 82 43 90 49 37 38 44 59 20 46 78 73 90 97 51 40 14 02 04 02 33 31 08 39 54 16 49 36 47 95 93 13 30 64 19 58 97 79 15 06 15 93 20 01 90 10 75 96 40 78 78 89 62 02 67 74 17 33。