初二数学期末模拟试卷
第一学期八年级数学期末试卷初二模拟三
第一学期八年级期末试卷一1、最简二次根式b a 34+与162++-b b a 是同类二次根式,则a = ,b = 。
2、若代数式x +11在实数范围内有意义,则x 取值范围是__________________3、化简:2)21(-=_____________. 4、一元二次方程0)1()12(2=-+++m x m x 的根的情况是_______________________5、某校去年对实验器材的投资为2万元,预计今明两年的投资额为8万元,若设该校区这两年在实验器材投资上的平均增长率为x ,则可列方程为______________6、如果正比例函数x m y )3(-=中,y 的值随自变量x 的增大而减小,那么m 的取值范围是:____________________.7、如果2->m ,那么反比例函数x m y 2+=的图像在第___________象限.8、等腰三角形一底角为30°,底边上的高为9cm ,则这个等腰三角形的腰长为__________9、直角三角形中,自锐角顶点所引的两条中线长为5和40,那么这个直角三角形的斜边长为______10、 已知三角形的周长为12cm, ∠A 、∠B 的角平分线的交点到AB 的距离为2cm ,则S △ABC =_________cm 211、下列说法中不正确的是( )A 、三个角度之比为3:4:5的三角形是直角三角形B 、三边之比为3:4:5的三角形是直角三角形C 、三个角度之比为1:2:3的三角形是直角三角形D 、三边之比为1:2:3的三角形是直角三角形12、等边三角形边长为a ,则该三角形的面积为( )A 、23aB 、223aC 、243aD 、233a 13、对于任意实数a 、b ,下列等式总能成立的是( )A 、b a b a +=+2)(B 、b a b a +=+22C 、22222)(b a b a +=+D 、b a b a +=+2)(14、若103-=a ,则代数式262--a a 的值是( ) A 、0 B 、1 C 、-1 D 、1015、如果04)2(3)2(2=-+++y x y x ,那么y x 2+的值为( )A 、1B 、-4C 、1 或-4D 、-1或316、把方程01422=--x x 化为n m x =+2)(的形式,则m 、n 的值是( ) A 、23,2==n m B 、23,1=-=n m C 、4,1==n m D 、2==n m 17. 若一直角三角形两边长分别为12和5,则第三边长为( )A. 13B. 13或119C. 13或15D. 1518. 直角三角形的周长为12,斜边长为5,则面积为( )A. 12B. 10C. 8D. 619. 一根旗杆在离地面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高( )A. 10.5米B. 7.5米C. 12米D. 8米20. 如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯子距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯子将平滑( )A. 9分米B. 15分米C. 5分米D. 8分米21、计算(1)62148)32(323⨯---+(2)计算:362322421--+22、 解方程(1)x 2+4x-5=0 (2)(x-2)(x+3)=6623、应用题某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件,后来经过市场调查,发现这种商品的单价每降低1元,其销量可增加10件(1) 求商场经营该商品原来一天可获利润多少元?(2) 要使商场经营该商品一天获利润2160元,则每件商品应降价多少元?24.已知一个正比例函数的图像与反比例函数xy 6=的图像都经过点A (3,-m )。
初二上期末数学模拟试卷
1. 下列各数中,属于有理数的是()A. √3B. πC. 0.101001…D. 2.52. 已知a,b是实数,且a+b=0,则下列等式中正确的是()A. a²+b²=0B. a²-b²=0C. ab=0D. a²+b²=13. 下列各组数中,互为相反数的是()A. 3和-2B. -3和3C. 0和0D. 1和-14. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)5. 下列各式中,正确的是()A. (-a)²=a²B. (a+b)²=a²+2ab+b²C. (a-b)²=a²-2ab+b²D. (a+b)²=a²-2ab+b²6. 下列各式中,正确的是()A. (-a)³=-a³B. (a+b)³=a³+3a²b+3ab²+b³C. (a-b)³=a³-3a²b+3ab²-b³D. (a+b)³=a³-3a²b+3ab²-b³7. 已知等腰三角形ABC中,AB=AC,且∠BAC=60°,则∠B=()A. 30°B. 45°C. 60°D. 90°8. 下列函数中,自变量x的取值范围正确的是()A. y=√(x-1)B. y=√(x²-1)C. y=√(x²+1)D. y=√(x-1)(x+1)9. 下列函数中,函数图象是直线的是()A. y=2x+3B. y=x²-1C. y=√xD. y=2x²-3x10. 已知一次函数y=kx+b(k≠0)的图象经过点A(2,-3),且与x轴的交点为B(-2,0),则该函数图象与y轴的交点坐标是()A.(0,3)B.(0,-3)C.(0,1)D.(0,-1)11. 0.5的平方根是______。
八年级上册期末数学模拟试卷6
16.如图,在平面直角坐标系中,点A,B的坐标分别是(1,5)、(5,1),若点C在x轴上,且A,B,C三点构成
的三角形是等腰三角形,则这样的C点共有个.
17.如图,已知梯形ABCD,AD∥BC,AD=DC=4,BC=8,点N在BC上,CN=2,E是AB中点,在AC上找一点M使EM+MN的值最小,此时其最小值等于.
18.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:
3.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()
A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1
4.下列运算正确 是( )
A. B. C. D.
5.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是( )
(1)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;
此时 =;
(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.
(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.
八年级上册数学期末模拟测试题6
2024长郡双语中学八年级期末模拟考试数学试卷二
八上期末模拟卷姓名_____________班级_________一.选择题(每小题3分,共30分)1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.a2•a4=a8B.(a2)2=a4C.(2a)3=2a3D.a10÷a2=a53.下列等式从左边到右边的变形,属于因式分解的是()A.ax+ay+a=a(x+y)B.(x﹣2)(x+2)=x2﹣4C.m2﹣6m+9=(m﹣3)2D.x2﹣y2+1=(x+y)(x﹣y)+14.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1B.﹣1<a<C.﹣<a<1D.a>5.若分式有意义,则x的取值范围是()A.x<2B.x≠0C.x≠1且x≠2D.x≠26.若,则a+b的值为()A.1B.0C.﹣1D.27.下列二次根式中,最简二次根式是()A.B.C.D.8.我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,并给出了另外一个证明,下面四幅图中,不能证明勾股定理的是()A.B.C.D.9.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,B,D,E三点在一条直线上,若∠1=26°,∠3=56°,则∠2的度数为()A.30°B.56°C.26°D.82°10.如图,等边△ABC中,D为AC中点,点P、Q分别为AB、AD上的点,且BP=AQ=4,QD=3,在BD上有一动点E,则PE+QE的最小值为()A.7B.8C.10D.12请把选择题答案填在下列表格中:题号12345678910答案二.填空题(每小题3分,共18分)11.已知a m =27,a n =3,则a n -m =.12.计算:﹣|﹣4|=.13.实数0.00000052用科学记数法可表示为.(第14题)14.如图,△ABC ≌△DEC ,点B 的对应点E 在线段AB 上,∠DCA =40°,则∠B 的度数是.15.如图,在△ABC 中,∠C =90°,AC =8,BC =6,D 为AC 上一点,若BD 是∠ABC 的角平分线,则CD =.16.若a 3+3a 2+a =0,求12242+-a a a =.三.解答题(共9题,共72分)(第15题)17.因式分解(每小题3分,共6分):(1)a 3b ﹣ab(2)3ax 2+6axy +3ay 218.计算(每小题4分,共8分):(1)(2)19.解分式方程(每小题4分,共8分)(1)(2)20.(6分)先化简,再求值:(﹣1)÷,其中a=﹣1.21.(8分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.22.(8分)已知,如图,Rt△ABC中,∠B=90°,AB=6,BC=4,以斜边AC为底边作等腰三角形ACD,腰AD刚好满足AD∥BC,并作腰上的高AE.(1)求证:AB=AE;(2)求等腰三角形的腰长CD.23.(8分)中国•哈尔滨冰雪大世界,始创于1999年,是由黑龙江省哈尔滨市政府为迎接千年庆典神州世纪游活动,凭借哈尔滨的冰雪时节优势,而推出的大型冰雪艺术精品工程,展示了北方名城哈尔滨冰雪文化和冰雪旅游魅力.2024年在准备冰雪大世界的建造时,需要取冰,现安排甲、乙两个采冰队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队取240立方米的冰比乙队取同样体积的冰少用2天.(1)甲、乙两个采冰队每天能采冰的体积分别是多少立方米?(2)如需40天采冰1840立方米.甲乙共同工作队若干天后,甲另有任务,剩下的由乙队独立完成,为了能在规定的时间内完成任务,至少安排甲队工作多少天?24.(3分+3分+4分)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:am +an +bm +bn =(am +an )+(bm +bn )=a (m +n )+b (m +n )=(a +b )(m +n ).(1)①分解因式:ab ﹣a ﹣b +1;②若a ,b (a >b )都是正整数且满足ab ﹣a ﹣b ﹣4=0,求a +b 的值;(2)若a ,b 为实数且满足ab ﹣a ﹣b ﹣4=0,s =a 2+3ab +b 2+3a ﹣b ,求s 的最小值.25.(3分+3分+4分)如图,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的一点,F 为AB 边上一点,连接CF ,交BE 于点D 且∠ACF =∠CBE ,CG 平分∠ACB 交BD 于点G ,(1)求证:CF =BG ;(2)延长CG 交AB 于H ,连接AG ,过点C 作CP ∥AG 交BE 的延长线于点P ,求证:PB =CP +CF ;(3)在(2)问的条件下,当∠GAC =2∠FCH 时,若S △AEG =3,BG =6,求AC 的长.。
初二数学期末模拟试卷
一、选择题(每题4分,共40分)1. 下列各数中,属于有理数的是()A. √9B. √-16C. πD. 0.1010010001……2. 已知a、b是相反数,那么a+b的值是()A. 0B. aC. -bD. 2a3. 下列各数中,能被3整除的是()A. 12.3B. 23.4C. 45.6D. 56.74. 如果一个长方体的长、宽、高分别为a、b、c,那么它的体积是()A. abcB. a+b+cC. a²+b²+c²D. a²b²c²5. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 平行四边形C. 矩形D. 等边三角形6. 下列等式中,正确的是()A. (a+b)² = a² + b²B. (a-b)² = a² - b²C. (a+b)² = a² + 2ab + b²D. (a-b)² = a² - 2ab + b²7. 已知一元二次方程ax²+bx+c=0(a≠0)的判别式Δ=b²-4ac,当Δ=0时,方程有两个相等的实数根,则a、b、c的关系是()A. a=0,b=0,c=0B. a≠0,b=0,c≠0C. a=0,b≠0,c≠0D. a≠0,b≠0,c≠08. 下列各数中,绝对值最小的是()A. -5B. -4C. 0D. 39. 已知直线l的斜率为2,那么直线l的倾斜角α的取值范围是()A. 0°<α<90°B. 0°≤α<90°C. 0°<α≤90°D. 0°≤α≤90°10. 在平面直角坐标系中,点P的坐标为(2,-3),点Q的坐标为(-1,5),则线段PQ的中点坐标是()A. (1,2)B. (1,-2)C. (3,2)D. (3,-2)二、填空题(每题5分,共25分)11. -3的相反数是__________。
初二数学期末考试模拟试卷及答案详解
y xoyxoy xoy xo八年级数学下学期期末考试模拟试卷及答案详解一、选择题(每小题3分,共30分)1、在函数y=1x-3 中,自变量x 的取值范围是 ( )A .3x ≠B .0x ≠C .3x >D .3x =2、下列计算正确的是 ( )A .623x x x =B .()248139x x --= C.111362a a a --= D.()021x +=3、下列说法中错误的是 ( )A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形4、刘翔为了迎战2008年北京奥运会刻苦进行110米拦训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的 ( )A .平均数B .中位数C .众数D .方差 5、点P (3,2)关于x 轴的对称点'P 的坐标是 ( ) A .(3,-2) B .(-3,2) C .(-3,-2) D .(3,2)6、下列运算中正确的是 ( )A .1y x x y +=B .2233x y x y +=+C .221x y x y x y+=-- D .22x y x y x y +=++ 7、如图,已知P 、Q 是△ABC 的BC 边上的两点,且BP=PQ=QC=AP=AQ,则∠BAC 的大小为 ( ) A .120° B .110° C .100° D .90°8、如图,在□ABCD 的面积是12,点E ,F 在AC 上,且AE =EF =FC ,则△BEF 的面积为( ) A. 6 B. 4 C. 3 D. 29、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了骑车的速度继续匀速行驶,下面是行使路程s (米)关于时间t (分)的函数图象,那么符合这个同学行驶情况的图像大致是 ( )A .B .C .D .10、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( ) A.梯形的下底是上底的两倍 B.梯形最大角是120°C Q P B AECBD AC.梯形的腰与上底相等 D.梯形的底角是60°二、填空题(每小题3分,共30分)11、若分式x 2-4x 2-x-2的值为零,则x 的值是 .12、已知1纳米=1109 米,一个纳米粒子的直径是35纳米,这一直径可用科学计数法表示为 米. 13、如图,已知OA =OB ,点C 在OA 上,点D 在OB 上,OC =OD ,AD 与BC 相交于点E ,那么图中全等的三角形共有 对.14、如图,ACB DFE BC EF ==∠∠,,要使ABC DEF △≌△,则需要补充一个条件,这个条件可以是 .15、已知y 与x-3成正比例,当x=4时,y=-1;那么当x=-4时,y= 。
湖南省永州市零陵区八年级下学期期末数学模拟试卷(含答案)
湖南省永州市零陵区八年级下学期期末数学模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.下列条件中,使△ABC不是直角三角形的是()A.a=3,b=4,c=5B.a2+b2=c2C.a:b:c=2:2:3D.∠A:∠B:∠C=1:2:32.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.3.某英语单词“Novelcoronavirus”中,字母“n”出现的频率是()A.B.C.2D.14.如图,在平行四边形ABCD中,若点E是BD的中点,点M是AD上一动点,连接MB,MC,ME,并延长ME交BC于点N,设MD=tAM,有以下结论:①当t=1时,则BM=CM;②当t=2时,则S△MNC=S△EBM;③若△ABM≌△NMC,则MN⊥BD.其中正确的是()A.①B.②C.③D.②③5.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.∠ABD=∠CBD C.AB=BC D.AC=BD6.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是()A.B.C.D.7.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1>y2>0D.y1=y28.如图,∠MON=60°,OA平分∠MON,P是射线OA上的一点,且OP=4,若点Q是射线OM上的一个动点,则PQ的最小值为()A.1B.2C.3D.49.如图,在矩形ABCD中,AB=m,BC=6,点E在边CD上,且CE=m.连接BE,将△BCE沿BE折叠,点C的对应点C'恰好落在边AD上,则m=()A.3B.2C.D.510.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=或t=,其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分32分,每小题4分)11.函数y=中,自变量x的取值范围是________.12.已知一个n边形的内角和等于1980°,则n=________.13.有人做过掷硬币的实验,掷一枚一元硬币4040次,结果正面向上的次数为2048次,则正面向上的频率是________(保留两位有效数字).14.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是________.15.已知一次函数y=2x+5,当﹣2≤x≤6时,y的最大值是________.16.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、AC、AD的中点,EF=3,则AB的长度为________.17.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A1B1C1D1,A2B2C2D2,A3B3C3D3…每个正方形四条边上的整点的个数.按此规律推算出正方形A10B10C10D10四条边上的整点共有________个.18.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为________.三.解答题(共8小题,满分78分)19.(8分)如图,AB=AC,直线l过点A,BM⊥直线l,CN⊥直线l,垂足分别为M、N,且BM=AN.(1)求证△AMB≌△CNA;(2)求证∠BAC=90°.20.(8分)为了解某校七年级学生的跳高水平,随机抽取该年级60名学生进行跳高测试,并把测试成绩分成四组,绘制成如图所示的频数表和未完成的频数分布直方图(每组含前一个边界值,不含后一个边界值).某校七年级60名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29161.29~1.39a1.39~1.4912(1)求a的值;(2)把频数分布直方图补充完整;(3)求跳高成绩在1.29m(含1.29m)以上的学生数占参加测试学生数的百分比.21.(8分)如图,在平面直角坐标系中,A(﹣5,3)、B(﹣4,4)、C(﹣3,2).(1)将△ABC向下平移4个单位,再向右平移2个单位,画出平移后的图形△A1B1C1(2)画出△ABC关于直线x=﹣1的对称图形△A2B2C2(3)求△ABC的面积S△ABC.22.(10分)如图,在△ABC中,AB=AC,点E、F分别是BC、AC边上的中点,过点A 作AD∥BC,交EF的延长线于点D(1)求证:四边形ABED是平行四边形;(2)若AB=4,∠BAC=120°,求四边形ABED的周长.23.(10分)小黄自驾游去了离家156千米的M地,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?24.(10分)如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AE=8,AB=4,求PE的长.25.(12分)(1)如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB =EC,BE=CD,连接AE、DE,求证△AED是等腰直角三角形.(2)如图2,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,直线AC交x轴于点D,且∠CAB=45°,则点D的坐标为________.26.(12分)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE.(1)如图1,当点P在线段BD上时,连接CE,BP与CE的数量关系是________;CE 与AD的位置关系是________;(2)当点P在线段BD的延长线上时,(1)中的结论是否还成立?若成立,请予以证明,若不成立,请说明理由;(请结合图2的情况予以证明或说理)(3)如图3,在(2)的条件下,连接BE,若AB=2,BE=,求四边形ADPE的面积.参考答案1.解:A、∵32+42=52,∴△ABC是直角三角形,不符合题意;B、∵a2+b2=c2,∴△ABC是直角三角形,不符合题意;C、∵22+22≠32,∴△ABC不是直角三角形,符合题意;D、∵∠A:∠B:∠C=1:2:3,∴∠C=90°,∴△ABC是直角三角形,不符合题意;故选:C.2.解:A、是中心对称图形,也是轴对称图形,不符合题意;B、不是中心对称图形,是轴对称图形,不符合题意;C、是中心对称图形,不是轴对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:C.3.解:在“Novelcoronavirus”中,字母的总数是16,字母“n”有2个,因而字母“n”出现的频率是:=.故选:B.4.解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠BDA=∠DBC,∵点E是BD的中点,∴DE=BE,在△DME和△BNE中,,∴△DME≌△BNE(ASA),∴DM=BN,ME=NE,∵t=1,∴AM=DM=AD,∴BN=BC=CN,∴只有当MN⊥BC时,CM=BM,∴①错误,当t=2时,则DM=2AM,∴BN=2CN,∴S△BMN=2S△MNC,∵ME=EN,∴S△BEM=S△BMN,∴S△BEM=S△MNC,故②正确,若△ABM≌△NMC,则BM=MC,当BM不一定等于BN,∴MN⊥BD不一定成立,故③错误,故选:B.5.解:添加AC=BD,理由如下:∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选:D.6.解:A、一条直线反映k>0,b>0,一条直线反映k>0,b<0,故本选项错误;B、一条直线反映出k>0,b<0,一条直线反映k>0,b<0,一致,故本选项正确;C、一条直线反映k<0,b>0,一条直线反映k>0,b<0,故本选项错误;D、一条直线反映k>0,b<0,一条直线反映k<0,b<0,故本选项错误.故选:B.7.解:∵k=﹣4<0,∴y随x的增大而减小,又∵x1>x2,∴y1<y2.故选:A.8.解:作PQ′⊥OM于Q′,∵∠MON=60°,OP平分∠MON,∴∠POQ′=30°,∴PQ′=OP=2,由垂线段最短可知,PQ的最小值是2,故选:B.9.解:∵四边形ABCD是矩形,∴AD=BC=6,CD=AB=m,∠A=∠D=∠C=90°.∵将△BCE沿BE折叠,点C的对应点C'恰好落在边AD上,∴BC'=BC=6,∠BC'E=∠C=90°,C'E=CE=m,DE=CD﹣CE=m﹣m=m,∴DE=C'E,∴∠DC'E=30°,∴∠AC'B=180°﹣90°﹣30°=60°,∴AB=BC'×sin∠AC'B=6×=3,即m=3;故选:A.10.解:由图象可知A、B两城市之间的距离为300km,故①正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,把y=150代入y甲=60t,可得:t=2.5,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(2.5,150)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,乙的速度:150÷(2.5﹣1)=100,乙的时间:300÷100=3,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故②正确;甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;令|y甲﹣y乙|=40,可得|60t﹣100t+100|=40,即|100﹣40t|=40,当100﹣40t=40时,可解得t=,当100﹣40t=﹣40时,可解得t=,又当t=时,y甲=40,此时乙还没出发,当t=时,乙到达B城,y甲=260;综上可知当t的值为或或或t=时,两车相距40千米,故④不正确;故选:B.11.解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.12.解:设这个多边形的边数为n,则(n﹣2)•180°=1980°,解得n=13.故答案为:13.13.解:掷一枚一元硬币4040次,结果正面向上的次数为2048次,则正面向上的频率是2048÷4040≈0.51.14.解:∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故答案为:1.15.解:∵一次函数y=2x+5,∴该函数的图象y随x的增大而增大,∵﹣2≤x≤6,∴当x=6时,y取得最大值,此时y=17,故答案为:17.16.解:∵E、F分别是AC、AD的中点,∴AE=EC,AF=DF,∴EF∥CD,CD=2EF,∵EF=3,∴CD=6,∵∠ACB=90°,D是AB的中点,∴AB=2CD=12,故答案为12.17.解:A1B1C1D1四条边上的整点共有8个,即4+4×1=8,A2B2C2D2四条边上的整点共有16个,即4+4×3=16,正方形A3B3C3D3四条边上的整点的个数有4+4×5=24,…正方形A10B10C10D10四条边上的整点的个数有:4+4×19=80,故答案为:80.18.解:∵四边形ABCD为正方形,BC=4,∴∠CDF=∠BCE=90°,AD=DC=BC=4,又∵DE=AF=1,∴CE=DF=3,∴在△CDF和△BCE中,,∴△CDF≌△BCE(SAS),∴∠DCF=∠CBE,∵∠DCF+∠BCF=90°,∴∠CBE+∠BCF=90°,∴∠BGC=90°,∵在Rt△BCE中,BC=4,CE=3,∴BE=5,∴BE•CG=BC•CE,∴CG===,∵△CDF≌△BCE(SAS),∴CF=BE=5,∴GF=CF﹣CG=5﹣=2.6.故答案为:2.6.19.证明:(1)∵BM⊥直线l,CN⊥直线l,∴∠AMB=∠CNA=90°,在Rt△AMB和Rt△CNA中,,∴Rt△AMB≌Rt△CNA(HL);(2)由(1)得:Rt△AMB≌Rt△CNA,∴∠BAM=∠ACN,∵∠CAN+∠ACN=90°,∴∠CAN+∠BAM=90°,∴∠BAC=180°﹣90°=90°.20.解:(1)a=60﹣8﹣16﹣12=24(人),答:a的值为24;(2)补全频数分布直方图如下:(3)×100%=60%,答:跳高成绩在1.29m(含1.29m)以上的学生数占参加测试学生数的60%.21.解:如图,添加网格结构,(1)如图所示,△A1B1C1为所求作的三角形;(2)△A2B2C2为所求作的三角形;(3)S△ABC=2×2﹣×1×1﹣×1×2﹣×1×2=4﹣﹣1﹣1=1.5.22.(1)证明:∵点E、F分别是BC、AC边上的中点∴DE∥AB,又AD∥BC,∴四边形ABED是平行四边形;(2)解:连接AE,∵AB=AC,点E是BC边上的中点,∴∠AEB=90°,∠BAE==60°,∴∠ABE=30°,∴在Rt△ABE中,,∴,由(1)知,四边形ABED是平行四边形,∴四边形ABED的周长=.23.解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=60.∴y=60x(0≤x≤0.8),∴当x=0.5时,y=60×0.5=30.故小黄出发0.5小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=45.故小黄出发1.5小时时,离目的地还有45千米.24.(1)证明:∵PQ垂直平分BE,∴PB=PE,OB=OE,∵四边形ABCD是矩形,∴AD∥BC,∴∠PEO=∠QBO,在△BOQ与△EOP中,,∴△BOQ≌△EOP(ASA),∴PE=QB,又∵AD∥BC,∴四边形BPEQ是平行四边形,又∵PB=PE,∴四边形BPEQ是菱形;(2)解:设PE=BP=x,则AP=8﹣x,在Rt△ABP中,AP2+AB2=BP2,即(8﹣x)2+42=x2,解得x=5,∴PE=5.25.(1)证明:∵在△ABE和△ECD中,,∴△ABE≌△ECD(SAS),∴AE=DE,∠AEB=∠EDC,在Rt△EDC中,∠C=90°,∴∠EDC+∠DEC=90°.∴∠AEB+∠DEC=90°.∵∠AEB+∠DEC+∠AED=180°,∴∠AED=90°.∴△AED是等腰直角三角形;(2)解:如图2,过点B作BE⊥AB,交AD于点E,过点E作EF⊥OD,交OD于点F,把x=0代入y=﹣2x+2中,得y=2,∴点A的坐标为(0,2),∴OA=2,把y=0代入y=﹣2x+2,得﹣2x+2=0,解得x=1,∴点B的坐标为(1,0),∴OB=1,∵AO⊥OB,EF⊥BD,∴∠AOB=∠BFE=90°,∵AB⊥BE,∴∠ABE=90°,∠BAE=45°,∴AB=BE,∠ABO+∠EBF=90°,又∵∠ABO+∠OAB=90°,∴∠OAB=∠EBF,在△AOB和△BFE中,,∴△AOB≌△BFE(AAS),∴BF=OA=2,EF=OB=1,∴OF=3,∴点E的坐标为(3,1),设直线AC的解析式为y=kx+b,由题意可得,解得,∴直线AC的解析式为y=﹣x+2,令y=0,解得x=6,∴D(6,0).26.解:(1)如图1,连接AC,∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∴∠ABD=∠CBD=30°,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE,∠P AE=60°,∵∠BAC=∠P AE,∴∠BAP=∠CAE,在△BAP和△CAE中,,∴△BAP≌△CAE(SAS),∴BP=CE,∠ABP=∠ACE=30°,延长CE交AD于H,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD,故答案为:BP=CE,CE⊥AD;(2)当点P在线段BD延长线上时,(1)中的结论还成立,理由如下:如图2,连接AC交BD于O,设CE交AD于H,∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE,∠P AE=60°,∵∠BAP=∠CAE,在△BAP和△CAE中,,∴△BAP≌△CAE(SAS),∴BP=CE,∠ABP=∠ACE=30°,∵∠CAH=60°,∴∠CAH+∠ACH=90°,∴∠AHC=90°,即CE⊥AD;(3)如图3,连接AC交BD于O,连接CE,作EH⊥AP于H,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ABC,∴∠ABO=30°,∴AO=1,BO=DO=,∴BD=2,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵BE=,BC=AB=2,∴CE===3,∴由(2)知BP=CE=3,∴DP=BP﹣BD=3﹣2=,∴OP=2,∴AP===,∵△APE是等边三角形,∴AH=AP=,AE=AP=EP=,∴EH==,∵S四边形ADPE=S△ADP+S△APE,∴S四边形ADPE=DP•AO+AP•EH=××1+××=,∴四边形ADPE的面积是.。
初二数学期末模拟试题及答案
初二数学期末模拟题(总分100分 答卷时间120分钟)一、选择题:本大题共8小题,每小题2分,共16分.在每小题给出 的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入 题前括号内.【 】1.计算23()a 的结果是A .a 5B .a 6C .a 8D .3 a 2【 】2.若正比例函数的图像经过点(-1,2),则这个图像必经过点A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)【 】3.下列图形是轴对称图形的是A .B .C .D .【 】4.如图,△ACB ≌△A’CB’,∠BCB’=30°,则∠ACA’的度数为A .20°B .30°C .35°D .40°【 】5.一次函数y =2x -2的图象不经过...的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限 【 】6.从实数 2-,31-,0,π,4 中,挑选出的两个数都是无理数的为 A .31-,0 B .π,4 C .2-,4 D .2-,π 【 】7.若0a >且2x a =,3ya =,则x ya-的值为A .-1B .1C .D .【 】8.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t (单位:分)之间的函数关系题号 一 二三总分 结分人19~20 21~22 23~24 25~262728 得分CABB 'A '(第4题)(第8题)s /千米t /分3 2 1 O610如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为A .12分B .10分C .16分D .14分二、填空题:本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上. 9.计算:32128x x ⎛⎫⨯-⎪⎝⎭= .10.一次函数(24)5y k x =++中,y 随x 增大而减小,则k 的取值范是 . 11.分解因式:22mn m n -= .12.如图,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =16°,则∠C 的度数 为------ .13.计算:(1-)2009-(π-3)0+4= .14.当12s t =+时,代数式222s s t t -+的值为 .15.若225(16)0x y -++=,则x +y = . 16.如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x = 过点A ,则不等式20x k x b <+<的解集为 . 17.如图,小量角器的零度线在大量角器的零度线上, 且小量角器的中心在大量角器的外缘边上.如果 它们外缘边上的公共点P 在小量角器上对应的度数为66°,那么在大量角器上对应的度数为__________ (只需写出0°~90°的角度).18.已知△ABC 中,AB =BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个.三、解答题:本大题共10小题,共60分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,第19题6分,第20题5分,共11分)19.(1)化简:)8(21)2)(2(b a b b a b a ---+. (2)分解因式:322x x x ---.ADCEB(第12题)(第17题)(第16题)OxBAy20.如图,一块三角形模具的阴影部分已破损.(1)如果不带残留的模具片到店铺加工一块与原来的模具△A B C 的形状和大小完全相同的模具△A B C ''',需要从残留的模具片中度量出哪些边、角?请简要说明理由.(2)作出模具ABC'''△的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).(第21题5分,第22题5分,共10分)21.已知2514x x -=,求()()()212111x x x ---++的值.22.如图,直线:1y x =+与直线:y m x n =+相交于点), 1(b P . (1)求b 的值;(2)不解关于y x ,的方程组100x y mx y n -+=⎧⎨-+=⎩请你直接写出它的解.O 1xyP b l 1 l 2(第22题)B CA(第20题)(第23题5分,第24题6分,共11分)23.如图,在平面直角坐标系x o y 中,(15)A -,,(10)B -,,(43)C -,. (1)在图中画出ABC △关于y 轴的对称图形111A B C △; (2)写出点111A B C ,,的坐标.24.如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ; (2)BO =DO .(第25题6分,第26题6分,共12分)25.只利用一把有刻度...的直尺,用度量的方法,按下列要求画图: (1)在图1中用下面的方法画等腰三角形ABC 的对称轴.123 4AB CDO (第24题)xy AB CO 524 6 -5-2(第23题)① 量出底边BC 的长度,将线段BC 二等分,即画出BC 的中点D ; ② 画直线AD ,即画出等腰三角形ABC 的对称轴. (2)在图2中画∠AOB 的对称轴,并写出画图的方法.【画法】26.已知线段AC 与BD 相交于点O ,连结AB 、DC ,E 为OB 的中点,F 为OC 的中点,连结EF (如图所示).(1)添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC . (2)分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,若添加条件②、③,以①为结论构成另一个命题,则该命题是_________命题 (选择“真”或“假”填入空格,不必证明).(第27题8分)27. 如图,在平面直角坐标系x O y 中,已知直线A C 的解析式为122y x =-+,直线A C 交x 轴于点C ,交y 轴于点A .(1)若一个等腰直角三角形OBD 的顶点D 与点C 重合,直角顶点B 在第一象限内,请直接写出点B 的坐标;O D CA B EF (第26题)A BC图1AOB 图2(2)过点B 作x 轴的垂线l ,在l 上是否存在一点P ,使得△AOP 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)试在直线AC 上求出到两坐标轴距离相等的所有点的坐标.(第28题8分)28. 元旦期间,甲、乙两个家庭到300 km 外的风景区“自驾游”,乙家庭由于要携带一些旅游用品,比甲家庭迟出发0.5 h (从甲家庭出发时开始计时),甲家庭开始出发时以60 km/h 的速度行驶.途中的折线、线段分别表示甲、乙两个家庭所走的路程y 甲(km )、y 乙(km )与时间x (h )之间的函数关系对应图象,请根据图象所提供的信息解决下列问题:(第27题)xA yC(D)BO(1)由于汽车发生故障,甲家庭在途中停留了 h ; (2)甲家庭到达风景区共花了多少时间;(3)为了能互相照顾,甲、乙两个家庭在第一次相遇后约定两车的距离不超过15 km ,请通过计算说明,按图所表示的走法是否符合约定.八年级数学(参考答案)一、选择题(本题共8小题;每小题2分,共16分)1.B 2.D 3.A 4.B 5.B 6.D 7.C 8.D二、填空题(本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.)5 y /km 16.5x /h2 A BCD E0.5 O (第28题)3009.514x -10.k <-2 11.m n (m -n ) 12.37° 13.0 14. 15.9 16.-2<x <-1 17.48° 18.7三、解答题(本大题共10小题,共60分.) 19.解:(1))8(21)2)(2(b a b b a b a ---+ 2224214bab b a +--= ab a 212-= (2)322x x x ---=2(1)x x x -++ =2(1)x x -+20.(1)只要度量残留的三角形模具片的∠B ,∠C 的度数和边BC 的长,因为两角及其夹边对应相等的两个三角形全等.(2)按尺规作图的要求,正确作出ABC '''∠的图形. 21.解:()()()212111x x x ---++=22221(21)1x x x x x --+-+++=22221211xxx x x --+---+=251x x -+当2514x x -=时, 原式=2(5)114115x x -+=+= 22.解:(1)∵),1(b 在直线1+=x y 上, ∴当1=x 时,211=+=b . (2)解是⎩⎨⎧==.2,1y x23.(1)画图正确;(2)111(4,3)A B C (1,5),(1,0),24.证明:(1)在△ABC 和△ADC 中1234A C A C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△ADC . (2)∵△ABC ≌△ADC ∴AB =A D又∵∠1=∠2 ∴BO =DO25.(1)画图正确(2) ①利用有刻度的直尺,在∠AOB 的边OA 、OB 上分别截取OC 、OD ,使OC =OD ; ②连接CD ,量出CD 的长,画出线段CD 的中点E ; ③画直线OE ,直线OE 即为∠AOB 的对称轴. (作图正确2分,作法正确2分) 26.(1)∵∠OEF =∠OFE∴OE =OF ……∵E 为OB 的中点,F 为OC 的中点, ∴OB =OC ……又∵∠A =∠D ,∠AOB =∠DOC , △AOB ≌△DOC ∴AB=DC … (2)假 27.(1)B (2,2);(2)∵等腰三角形OBD 是轴对称图形,对称轴是l ,∴点O 与点C 关于直线l 对称,∴直线AC 与直线l 的交点即为所求的点P .把x =2代入122y x =-+,得y =1,∴点P 的坐标为(2,1) (3)设满足条件的点Q 的坐标为(m ,122m -+),由题意,得 122m m -+= 或 122m m -+=- 解得43m = 或4m =-∴点Q 的坐标为(,)或(4-,4)(漏解一个扣2分)28.(1)1;(2)易得y乙=50x-25当x=5时,y=225,即得点C(5,225).由题意可知点B(2,60),设BD所在直线的解析式为y=kx+b,∴5225,260.k bk b+=⎧⎨+=⎩解得55,50.kb=⎧⎨=-⎩∴BD所在直线的解析式为y=55x-50.当y=300时,x=7011.答:甲家庭到达风景区共花了7011h.(3)符合约定.由图象可知:甲、乙两家庭第一次相遇后在B和D相距最远.在点B处有y乙-y= -5x+25=-5×2+25=15≤15;在点D有y—y乙=5x-25=7511≤15.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学期末模拟试卷
班级 姓名 得分
一.选择题(每小题3分,8小题共24分) 1.下列计算正确的是( )
A . 5
3
2
x x x =+ B .6
3
2
x x x =⋅ C .5
3
2)(x x = D .2
35x x x =÷ 2. 在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是 ( )
A .
B .
C .
D .
3.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,则b a -的值为( ) A .-1 B .1 C .-3 D . 3 4.下列命题中,正确的是( )
A .三角形的一个外角大于任何一个内角
B .三角形的一条中线将三角形分成两个面积相等的三角形
C .两边和其中一边的对角分别相等的两个三角形全等
D .三角形的三条高都在三角形内部 5. 下列各式从左到右的变形是因式分解的是( )
A .2)1(3222++=++x x x
B .22))((y x y x y x -=-+
C .222()x xy y x y -+=-
D .)(222y x y x -=-
6.等腰三角形一个角等于70o ,则它的底角是( )
A .70o
B .55o
C . 60o
D . 70o 或55o
7. 果把分式y
x xy
+中的x 和y 都扩大2倍,即分式的值····························( )
A.扩大4倍;
B.扩大2倍; C 、不变; D.缩小2倍 8.已知m
6x =,3n
x =,则2m n
x -的值为( )。
A 、9
B 、
43 C 、12 D 、34
二、填空题(每小题3分,6小题共18分)
9.空气的平均密度为00124.03
/cm g ,用科学记数法表示为__________3
/cm g .
10.已知2
37y x 与一个多项式之积是2
33
42
421728y x y x y x -+,则这个多项式是 .
11. 分解因式:4x 2-y 2= .
12.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件, 使得△AOD ≌△COB .你补充的条件是____________________。
13.若b a +=17,ab =60,则2
2
b a +=_________. 14. 如图,△ABC 中,∠BAC=120°,AD ⊥BC 于D ,
且AB+BD=DC ,则∠C=______°.
三、解答题(共58分)
15. 计算:)2)(2()34(y x y x y x x -+-+
16.先化简代数式22321(1)24
a a a a -+-÷+-,再从-2,2,0三个数中选一个适当的数作为a 的值代入求值.
17. 如图所示,已知等边三角形ABC 的周长是2a ,BM 是AC 边上的高,N 为BC•延长线上的一点,且CN=CM ,求BN 的长.
A
D
O
C
B
(第14题)
x
y A B C
O
5
2
4 6 -5
-2 18如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求
证:BF=2CF .
19.如图,在平面直角坐标系xOy 中,
A ()5,1-,
B ()0,1-,
C ()3,4-.
(1)请画出ABC △关于y 轴对称的A B C '''△
(其中A B C ''',,分别是A B C ,,的对应点, 不写画法);
(2)直接写出A B C ''',,三点的坐标:
(_____)(_____)(_____)A B C ''',,;
△ABC 的面积= .
20. 如图,点D 、E 在△ABC 的BC 边上,AB =AC ,AD =AE .求证:BD =CE .
21. (5分) 已知:∠A =∠D =90°,BD 与AC 相交于点O ,且BD =AC.求证:OB =OC
A
B
C
D
O
22.秋冬交界时节,我国雾霾天气频发,PM2.5颗粒物是形成雾霾的罪魁祸首(PM2.5是指大气中
直径小于或等于2.5微米的颗粒物),据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的槐树叶的片数相同,求一片槐树叶一年的平均滞尘量.
23、如图,在△ABC 中,∠ACB =90°,CE ⊥AB 于点E , AD =AC , AF 平分∠CAB 交CE 于点F ,DF 的延长线交AC 于点G ,试问:
(1)DF 与BC 有何位置关系?请说明理由。
(2)FG 与FE 有何数量关系?请证明你的结论。