大物习题10剖析

合集下载

详细版大学物理学-习题解答习题10.doc

详细版大学物理学-习题解答习题10.doc

第十章10-1 无限长直线电流的磁感应强度公式为B =μ0I2πa ,当场点无限接近于导线时(即a →0),磁感应强度B →∞,这个结论正确吗?如何解释?答:结论不正确。

公式aIB πμ20=只对理想线电流适用,忽略了导线粗细,当a →0,导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。

10-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理∑⎰=⋅ii I l d B 0μ得 0=⋅⎰l d B,说明圆形环路L 内的电流代数和为零,并不是说圆形环路L 上B 一定为零。

10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论:(1)在各条闭合曲线上,各点的磁感应强度B的大小是否相等?(2)在闭合曲线c 上各点的B是否为零?为什么? 解: ⎰μ=⋅al B 08d⎰μ=⋅bal B 08d⎰=⋅cl B 0d(1)在各条闭合曲线上,各点B的大小不相等.(2)在闭合曲线C 上各点B 不为零.只是B的环路积分为零而非每点0=B .题10-3图习题10-2图10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论?答:两个垂直的电流元之间相互作用力不是等值、反向的。

B l Id F d⨯= 20ˆ4rr l Id B d ⨯= πμ 2212122110221212201112)ˆ(4ˆ4r rl d I l d I r r l d I l d I F d ⨯⨯=⨯⨯=πμπμ 2121211220212121102212)ˆ(4ˆ4r rl d I l d I r r l d I l d I F d ⨯⨯=⨯⨯=πμπμ ))ˆ()ˆ((4212121221************r r l d l d r r l d l d I I F d F d ⨯⨯+⨯⨯-=+πμ 2122112210212112221212102112)(ˆ4))ˆ()ˆ((4r l d l d rI I r l d r l d l d r l d I I F d F d⨯⨯=⋅-⋅=+πμπμ 一般情况下 02112≠+F d F d由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。

大学物理第十章课后答案

大学物理第十章课后答案

题图10-1题10-1解图d第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。

分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有ACAB U U =。

解:(1)设B 、C 板上的电荷分别为B q 、C q 。

因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。

导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。

作如图中虚线所示的圆柱形高斯面。

因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =-2A B q q =-即 ()A B C q q q =-+ ①又因为: ACAB U U =而: 2AC ACdU E =⋅ AB AB U E d =⋅∴ 2AC AB E E =于是:002C B σσεε =⋅ 两边乘以面积S 可得: 002C B S S σσεε =⋅即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-2(2) 00222C C A AC C AC AC q d d d U U U U E S σεε =+==⋅=⋅=⋅ 733412210210 2.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求:(1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ;(2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。

大学物理解答 (10)

大学物理解答 (10)

大学物理习题集解答农科类说明:字母为黑体者表示矢量2006.01练习一质点力学中的基本概念和基本定律一.选择题 C B A二.填空题1. 2.2. 6 t ; t+t3三.计算题1.取坐标如图,船的运动方程为x=[l2(t)-h2]1/2因人收绳(绳缩短)的速率为v0,即d l/d t=-v0.有u=d x/d t=(l d l/d t)/(l2-h2)1/2=- v0 (x2+h2)1/2/xa= d v/d t=- v0[x (d x/d t)/ (x2+h2)1/2]/x-[(x2+h2)1/2/x2] (d x/d t)=- v0{-h2/[ x2 (x2+h2)1/2]}[ - v0 (x2+h2)1/2/x] =- v02h2/ x3负号表示指向岸边.2. 取坐标如图,石子落地坐标满足x=v0t cosθ=s cosαy=v0t sinθ-gt2/2=s sinα解得tanα=tanθ-gt/(2v0cosθ)t=2v0sin(θ-α)/(g cosα)s=x/cosα= v0t cosθ / cosα=2v02sin(θ-α)cosθ/(g cos2α)当v0,α给定时,求s的极大值. 令d s/dθ=0,有0=d s/dθ=[2v02/(g cos2α)]²[cos(θ-α)cosθ- sin(θ-α)sinθ]=[2v02 cos(2θ-α)/(g cos2α)]cos(2θ-α)=02θ-α=π/2 θ=π/4+α/2所以,当θ=π/4+α/2时, s有极大值,其值为s max=2v02sin(π/4-α/2)cos(π/4+α/2)/(g cos2α) = v02[sin(π/2)-sinα] /(g cos2α)= v02(1-sinα)/(g cos2α)练习二流体静力学与流体的流动一.选择题 B B B二.填空题1.处处垂直器壁2.2PO三.计算题1.解:取水中距下缘h 深的点P=(4-h)ρg (不计大气压强)F=PS=PLdh(把水和坝的接触面分成细长条)dM=Fh=h(4-h)ρgLdh则水对下缘的力矩M=⎰40dM=⎰40h(4-h)ρgLdh=2.1³107 Nm 对坝身而言 G=ρgV则 M′=3ρgV/2=1.08³108 Nm2.解:(1)木块所受的浮力F=ρ油gV1+ρ水gV2=8.4NF=m/g ∴m=F/g=0.84㎏(2) P=P0+ρ油g³0.1+ρ水g³0.02=1.023³105 Pa练习三液体的表面性质一. 选择题 A B A二. 填空题1. 1.3³105 Pa2. 0.216m三.计算题1.解:如右图没吹气泡时有ρg h1=2α/R (h1=0.04) 吹气泡时P=P0+ρg h2+2α/R (h2=0.10)=1.027³105 Pa2. 解:如右图 吹水银泡时 P= P0+ρgh 1+2α/R=1.045³105Pa 管内空气的压强P=P0-ρg h 2+2αcos40°/r P0-P=3000N/ m 2h 2=1.18cm练习四 伯努力方程及应用 一.选择题 C A A 二.填空题1. 352. 0.75m/s,3m/s三.计算题 1. 由 222212112121gh V P gh V Pρρρρ++=++ 2211S V S V =)(1041pa P P += m h h 121=-s m V /21= 1221S S = s m V V /4212==∴)()(2121222112h h g V V P P -+-+=∴ρρpa 510151.1⨯=pa P P 4021038.1⨯=- 即第二点处的压强高出大气压强pa 41038.1⨯ 2.323322221211212121gh V P gh V P gh V P ρρρρρρ++=++=++ 01P P = 01=V 03P P = 3322S V S V =s m h h g V /3.13)(2313=-=∴s m V V /65.62132==∴pa V h h g P P 42221121006.1021)(⨯=--+=∴ρρs m S V Q /266.002.03.13333=⨯==练习五 黏滞流体的流动一. 选择题 C A D 二. 填空题 1.2.78³10-3Pa 2. 16三. 计算题1.解:由v=[(P 1-P 2)/4ηL ](R 2-r 2)令r=0得 P 1-P 2=v ²4ηL/R2=2301.0210005.141.0⨯⨯⨯⨯-=8.0N/m 2 2.解:根据泊肃叶公式lP P r Q η8)(214-π=而 tmQ ∆∆=ρ1 gh P P ρ=-12tm l gh r ∆∆π=/824ρηs Pa 60/106.61.085.08.910)9.1()102/1.0(36242⋅⨯⨯⨯⨯⨯⨯⨯π=--= 0.0395 Pa ²s练习六 流体力学习题课 一. 选择题 A B B 二. 填空题1. 2.2³108J2.VT/4三.计算题1.解:根据佰努力方程 P0=ρg h1=PC+ρVC2/2= PD+ρ VD2/2SD=2SC VC=2VD得 P0-PC=3ρgh1 又 P0-PC=ρgh2 所以 h2/h1=32. 解: P内=P0-2α/rP内(l- l′)s=P0 l sl′= l(P内-P0)/ P内=0.013m练习七简谐振动的特征及描述一.选择题 C A D二.填空题1. 4π/3,4.5cm/s2,x=2cos(3t/2-π/2).1.0.2rad/s,-0.02sin(0.2t+0.5)(SI),0.02 rad/s.三.计算题1.(1) v=d x/d t= -3.0sin(5t-π/2) (SI) 所以v0=3.0m/s(2)F=ma=-mω2A cos(5t-π/2)=-mω2x当x=A/2时F= -1.5N2.弹簧振子的圆频率ω=[k/(M+m)]1/2子弹射入木块时动量守恒,有-mv0=(M+m)vv= -mv0/(M+m)即[d x/d t]x=0=-Aωsinϕ0= -mv0/(M+m)知sinϕ0>0即ϕ0在一、二象限. 因t=0时x0=A cosϕ0=0得ϕ0=±π/2所以A=[mv0/(M+m)]/ω=mv0/[k(M+m)]1/2 ϕ0=π/2故系统的振动方程x={mv0/[k(M+m)]1/2}cos{[k/(M+m)]1/2t+π/2}练习八简谐振动的合成一.选择题 B E C二.填空题1. x2 = 0.02cos ( 4πt-2π/3 ) (SI).2. 2π2mA2/T2.三.计算题1.(1)平衡时,重力矩与弹力矩等值反向,设此时弹簧伸长为∆x0,有mgl/2-k∆x0l'= mgl/2-k∆x0l/3=0设某时刻杆转过角度为θ, 因角度小,弹簧再伸长近似为θ l'=θ l/3,杆受弹力矩为M k=-l'F k=-(l/3)[(∆x0+θ l/3)k]=-k (∆x0l/3+θ l2/3)合力矩为M G+ M k= mgl/2-k (∆x0l/3+θ l2/3)=-kθ l2/3依转动定律,有-kθ l2/3=Jα= (ml2/3)d2θ /d t2d2θ /d t2+ (k/m)θ=0即杆作简谐振动.(2) ω=mk T=2πkm(3) t=0时,θ=θ0, dθ /d t ⎢t=0=0,得振幅θA=θ0, 初位相ϕ0=0,故杆的振动表达式为θ=θ0cos(mk t)2.因A1=4³10-2m, A2=3³10-2mϕ20=π/4, ϕ10=π/2,有A=[A12+A22+2A1A2cos(ϕ20-ϕ10)]1/2=6.48⨯10-2mtgϕ0=(A1sinϕ10+A2sinϕ20)/(A1cosϕ10+A2cosϕ20) =2.061ϕ0=64.11○ ϕ0=244.11○因x0=A cosϕ0=x10+x20=A1cosϕ10+A2cosϕ20=5.83⨯10-2m>0ϕ0在I、IV象限,故ϕ0=64.11○=1.12rad所以合振动方程为x=6.48⨯10-2cos(2πt+1.12) (SI)。

大学物理课后习题答案整理(杨晓峰版)-习题10-12答案

大学物理课后习题答案整理(杨晓峰版)-习题10-12答案

QA 4πε0 R1
,UB
=
QB 4πε0 R2

两球等势,可得, QB
=
R2QA R1
此时系统的电容为: C
=
QA + QB U
=
1+
R2 R1
QA
QA
= 4πε0 ( R1 + R2 )
4πε 0 R1
(3)静电平衡,导体球表面附近的电场强度为 E = σ ,两球表面附近 ε0
的电场强度之比为:
习题 10-12 解答:
解:基本思路:(1) 用电容定义 C = Q 计算,两个金属导体球相距很远,可看作孤 U
立导体球计算。 (2)将两球用细导线连接后,两球等势,对应求出每个球所带的电荷,用
电容定义计算系统的电容。 (3)根据静电平衡时导体表面附近的的电场强度公式 E = σ 即可求两球表 ε0
面附近的电场强度之比。 计算过程: 解:(1)设金属导体球 A 带电荷 Q ,
此时其电势为U = Q 4πε0 R1
其电容 C1
=
Q U
=
4πε 0 R1
同理,可计算得金属导体球 B 的电容 C2 = 4πε0R2
(2)两球用细导线连接后,设两球分别带电荷为 QA 、 QB ,
两导体球电势为U A
=
EA EB
= σA σB
= QA QB

大物书后习题答案整理(杨晓峰版)-习题10

大物书后习题答案整理(杨晓峰版)-习题10

( R1 < r < R2 )
E2
=
λ2 2πε 0 r
( R2 < r < R3 )
∫ ⋅ ∫ 则 BA 两圆筒的电势差为
R1
U BA = E
R2
d r = R1 −λ1 d r = λ1 ln R2 R2 2πε0r 2πε 0 R1
∫ ⋅ ∫ BC 两圆筒的电势差为
R3
UBC = ER2源自drR3习题 10-4 解答:
答案:C 基本思路:金属球上任一点的电势V 等于点电荷 q 和金属球表面感应电荷 q '
在球心激发的电势之和。在球面上任意选取一电荷元 dq ',电荷元可以看作点电
∫ 荷,金属球表面的感应电荷在点 O 激发的电势为 V ' = dq ' ,故 O 点总电势 S 4πε0 R
为 V0
=
q 4πε 0 d
+V
' ,而接地金属球的电势 V0
=
0 ,由此可解出感应电荷 q '。
计算过程:
金属球接地,其球心电势
∫ V0
=
q 4πε 0 d
+
dq ' = 0 S 4πε 0R
感应电荷总量
q
'
=

dq
'
=

Rq d
=

q 2
习题 10-5 解答:
答案:D 分析: 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自
Q + q ,电荷分布呈球对称,对应电场分布也球对称,可用高斯定理计算空间电 场分布。再根据电场强度与电势的关系或者电势叠加原理可得出相应区域内的电 势分布。

大学物理下册第10章课后题答案

大学物理下册第10章课后题答案

习题10-3图第10章 静电场中的导体和电介质习 题一 选择题10-1当一个带电导体达到静电平衡时,[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高(D) 导体内任一点与其表面上任一点的电势差等于零 答案:D解析:处于静电平衡的导体是一个等势体,表面是一个等势面,并且导体内部与表面的电势相等。

10-2将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将[ ](A) 升高 (B)降低 (C)不会发生变化 (D)无法确定 答案:A解析:不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

10-3将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图10-3所示),则[ ](A) N 上的负电荷入地 (B) N 上的正电荷入地 (C) N 上的所有电荷入地 (D) N 上所有的感应电荷入地 答案:A解析:带负电的带电体M 移到不带电的导体N 附近的近端感应正电荷;在远端感应负电荷,不带电导体的电势将低于无穷远处,因此导体N 的电势小于0,即小于大地的电势,因而大地的正电荷将流入导体N ,或导体N 的负电荷入地。

故正确答案为(A )。

10-4 如图10-4所示,将一个电荷量为q电的导体球附近,点电荷距导体球球心为d 。

设无穷远 处为零电势,则在导体球球心O 点有[ ] (A) 0E =,04πε=q V d(B) 204πε=qE d ,04πε=qV d(C) 0E =,0V = (D) 204πε=q E d , 04πε=qV R答案:A解析:导体球处于静电平衡状态,导体球内部电场强度为零,因此0E =。

导体球球心O 点的电势为点电荷q 及感应电荷所产生的电势叠加。

大物 上海交大课后答案 第十章

大物 上海交大课后答案 第十章

习题1010-1.一观察者测得运动着的米尺长0.5m ,问此尺以多大的速度接近观察者?解:由动尺缩短公式2201cv l l -=,可得22115.0cv -⨯=m/s 106.2238⨯==c v10-2.在参考系S 中,一粒子沿直线运动,从坐标原点运动到了m 105.18⨯=x 处,经历时间为s 00.1=t ∆,试计算该过程对应的固有时。

解:以粒子为S '系,利用t '∆=∆0.866t s '∆==。

10-3.长度01m l =的米尺静止于'S 系中,与x ′轴的夹角'θ=30°,'S 系相对S 系沿x 轴运动,在S 系中观测者测得米尺与x 轴夹角为=θ45°。

试求:(1)'S 系和S 系的相对运动速度。

(2)S 系中测得的米尺长度。

解:(1)米尺相对S '静止,它在,x y ''轴上的投影分别为:0cos 0.866m x L L θ''==,0sin 0.5m y L L θ''==。

米尺相对S 沿x 方向运动,设速度为v ,对S 系中的观察者测得米尺在x 方向收缩,而y 方向的长度不变,即:x L L =,y y L L '=故:tan y y xxL L L L L θ''===。

把ο45θ=及,y L L ''0.50.866=,故:0.816v c = (2)在S 系中测得米尺长度为0.707m sin 45y L L ==︒。

10-4.一门宽为a ,今有一固有长度0l (0l >a )的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。

若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为多少?解:门外观测者测得杆长为运动长度,l l =1a ≤时,可认为能被拉进门,则:a l ≤解得杆的运动速率至少为:u =10-5.两个惯性系中的观察者O 和O '以0.6c (c 表示真空中光速)的相对速度相互接近,如果O 测得两者的初始距离是20m ,则O '测得两者经过多少时间相遇? 解:O 测得相遇时间为t ∆:0200.6L t v c∆==O ' 测得的是固有时t '∆:∴ tt γ∆'∆==88.8910s -=⨯,或者,O '测得长度收缩:00.8LL L L L t v'===∆=8080.80.8208.8910s 0.60.6310L t c -⨯'∆===⨯⨯⨯10-6.一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少?解:335l l '====∴ 45v c ==10-7.从S 系观察到有一粒子在01=t 时由m 1001=x 处以速度c v 98.0=沿x 方向运动,s 10后到达2x 点,如在S '系(相对S 系以速度c u 96.0=沿x 方向运动)观察,粒子出发和到达的时空坐标2211,,,x t x t ''''各为多少?(0='=t t 时,S '与S 的原点重合),并算出粒子相对S '系的速度。

大学物理考题及答案剖析

大学物理考题及答案剖析

一、简答题:(每小题6分,共5题,合计30分) 1、简谐运动的概念是什么?
参考答案:如果做机械振动的质点,其位移与时间的关系遵从正弦(或余弦)函数规律,这样
的振动叫做简谐运动,又名简谐振动。

因此,简谐运动常用sin()x A t ωϕ=+作为其运动学定义。

其中振幅A ,角频率ω,周期T ,和频率f 的关
系分别为: 2T
π
ω= 、2f ωπ= 。

2、相干光的概念是什么?相干的条件是什么?
参考答案:频率相同,且振动方向相同的光称为相干光。

或满足相干条件的光也可称为相干光。

相干条件如下
这两束光在相遇区域;振动方向相同;振动频率相同;相位相同或相位差保持恒定; 那么在两束光相遇的区域内就会产生干涉现象。

3、高斯定理的定义是什么?写出其数学公式
通过任意闭合曲面的电通量等于该闭合曲面所包围的所有电荷量的代数和。

1
01
n
e i
i E dS q ε=Φ=
⋅=∑⎰
4、什么叫薄膜干涉?什么叫半波损失?
参考答案:由薄膜两表面反射光或透射光产生的干涉现象叫做薄膜干涉;
波从波疏介质射向波密介质时反射过程中,反射波在离开反射点时的振动方向相对于入射波到达入射点时的振动相差半个周期,这种现象叫做半波损失。

5、元芳,此题你怎么看?
π
2r
即圆柱面外一点的磁场与全部电流都集中在轴线上的一根无限长线电流产生的磁场相同的。

0 (r<R)
B=
即圆柱面内无磁场。

大学物理习题集加答案解析

大学物理习题集加答案解析

大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量= ×10-8 W·m2·K4标准大气压1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0= ×1012 F/m真空磁导率0=4×107H/m=×106H/m普朗克常量h = ×1034 J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统.(E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是(A) E正比于f;(B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变;(B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化.二.填空题1.如图所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP, 则和Q的数量关系式为,且与Q为号电荷(填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1;将其撤走,改放一个等量的点电荷q,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d<<R)环上均匀带正电, 总电量为q ,如图所示, 则圆心O处的场强大小E = ,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R, 设半圆柱面沿轴线单位长度上的电量为,如图所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形, 电荷线密度为= 0 sin, 式中0为一常数, 为半径R与X 轴所成的夹角, 如图所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E处处不等;(B) 球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C) 球面上的电场强度矢量E的方向一定指向球心;(D) 球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D) 在无电荷的电场空间,电场线可以相交.4.如图,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2 .(B) R2E/2.(C) R2E.(D) R2E.5.真空中有AB两板,相距为d ,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2 ) .(B) q2/(0 S) .(C) 2q2/(0 S).(D) q2/(20 S) .二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+ 和,点P1和P2与两带电线共面,其位置如图所示,取向右为坐标X正向,则= ,= .2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .3.如图所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S ,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q 的点电荷,O、P间距离为h ,试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A) S面上的E必定为零;(B) S面内的电荷必定为零;(C) 空间电荷的代数和为零;(D) S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A) S面上所有点的E必定不为零;(B) S面上有些点的E可能为零;(C) 空间电荷的代数和一定不为零;(D) 空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A) 如高斯面上E处处为零,则该面内必无电荷;(B) 如高斯面内无电荷,则高斯面上E处处为零;(C) 如高斯面上E处处不为零,则高斯面内必有电荷;(D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场.4.图示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小, r表示离对称轴的距离)(A) “无限长”均匀带电直线;(B) 半径为R的“无限长”均匀带电圆柱体;(C) 半径为R的“无限长”均匀带电圆柱面;(D) 半径为R的有限长均匀带电圆柱面.5.如图所示,一个带电量为q 的点电荷位于立方体的A角上,则通过侧面a b c d 的电场强度通量等于:(A) q / 240.(B) q / 120.(C) q / 6 0 .(D) q / 480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为( 0)及2 ,如图所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量= ;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b 两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量= ,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′ , 两球心间距离= d, 如图所示, 求:(1) 在球形空腔内,球心O处的电场强度E0;(2) 在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且= d .练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A) 都是常量.(B) 都不是常量.(C) E是常量, U不是常量.(D) U是常量, E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S, 并把它移至无穷远处(如图,若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(B) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(C) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(D) -i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强;(C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动;(E) 场强处处相同的电场中,各点的电位也处处相同.4.如图,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A) .(B) .(C) .(D) .5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到各点,电场力作功相等.(C) 从A到D,电场力作功最大.(D) 从A到C,电场力作功最大.二.填空题1.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .2.如图,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致, 从A点经任意路径到B点的场强线积分= .3.如图所示,BCD是以O点为圆心, 以R为半径的半圆弧, 在A点有一电量为+q的点电荷, O点有一电量为–q的点电荷, 线段= R, 现将一单位正电荷从B点沿半圆弧轨道BCD移到D点,则电场力所作的功为.三.计算题1.电量q均匀分布在长为2 l的细杆上, 求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点) .2.一均匀带电的球层, 其电荷体密度为, 球层内表面半径为R1 , 外表面半径为R2 ,设无穷远处为电势零点, 求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A) 电场强度相等的地方电势一定相等;(B) 电势梯度绝对值大的地方场强的绝对值也一定大;(C) 带正电的导体上电势一定为正;(D) 电势为零的导体一定不带电2.以下说法中正确的是(A) 场强大的地方电位一定高;(B) 带负电的物体电位一定为负;(C) 场强相等处电势梯度不一定相等;(D) 场强为零处电位不一定为零.3. 如图,真空中有一点电荷Q及空心金属球壳A, A处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是(A) E M≠0, E N=0 ,Q在M处产生电场,而在N处不产生电场;(B) E M =0, E N≠0 ,Q在M处不产生电场,而在N处产生电场;(C) E M =E N =0 ,Q在M、N处都不产生电场;(D) E M≠0,E N≠0,Q在M、N处都产生电场;(E) E M =E N =0 ,Q在M、N处都产生电场.4.如图,原先不带电的金属球壳的球心处放一点电荷q1, 球外放一点电荷q2,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3 , q1受的总电场力为F, 则(A) F1=F2=F3=F=0.(B) F1= q1 q2 / ( 4 0d2 ) ,F2 = 0 , F3 = 0, F=F1 .(C) F1= q1 q2 / ( 4 0d2 ) , F2 = 0,F3 = q1 q2 / ( 4 0d2 ) (即与F1反向), F=0 .(D) F1= q1 q2 / ( 4 0d2 ) ,F2 与F3的合力与F1等值反向,F=0 .(E) F1= q1 q2 / ( 4 0d2 ) , F2= q1 q2 / ( 4 0d2 ) (即与F1反向), F3 = 0, F=0 .5.如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q, 则B球(A)带正电.(B) 带负电.(C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中, P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A = .2.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q 的质点以直线为轴线作匀速圆周运动,该质点的速率v = .三.计算题1.如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C 都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度之比值1/2.22.已知某静电场的电势函数U=-+ ln x(SI) ,求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D , 电势分别为U A、U C、U D ,其附近的电场强度分别为E A、E C、E D , 则:(A) A>D ,C = 0 , E A> E D , E C = 0 , U A = U C = U D .(B) A>D ,C = 0 , E A> E D , E C = 0 , U A > U C = U D .(C) A=C ,D≠0 , E A= E C=0, E D ≠0 , U A = U C =0 , U D≠0.(D) D>0 ,C <0 ,A<0 , E D沿法线向外, E C沿法线指向C ,E A平行AB指向外,U B >U C > U A .2.如图,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B) Q.(C) +Q/2.(D) –Q/2.3.导体A接地方式如图,导体B带电为+Q,则导体A(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电.4.半径不等的两金属球A、B ,R A = 2R B ,A球带正电Q ,B球带负电2Q,今用导线将两球联接起来,则(A) 两球各自带电量不变.(B) 两球的带电量相等.(C) 两球的电位相等.(D) A球电位比B球高.5. 如图,真空中有一点电荷q , 旁边有一半径为R的球形带电导体,q距球心为d ( d > R ) 球体旁附近有一点P ,P在q与球心的连线上,P点附近导体的面电荷密度为.以下关于P点电场强度大小的答案中,正确的是(A) / (20 ) + q /[40 ( d-R )2 ];(B) / (20 )-q /[40 ( d-R )2 ];(C) / 0 + q /[40 ( d-R )2 ];(D)/ 0-q /[40 ( d-R )2 ];(E)/ 0;(F) 以上答案全不对.二.填空题1.如图,一平行板电容器, 极板面积为S,,相距为d,若B板接地,,且保持A板的电势U A=U0不变,,如图, 把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间, 则导体薄板C的电势U C = .2.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度= , 地面电荷是电荷(填正或负).3.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1 = cm 和r2 = cm 的两个球形导体, 各带电量q = ×108C, 两球心相距很远, 若用细导线将两球连接起来, 并设无限远处为电势零点,求: (1)两球分别带有的电量;(2)各球的电势.2.如图,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量, 有一关系式为P = 0(r1)E , 电位移矢量公式为D = 0E + P ,则(A) 二公式适用于任何介质.(B) 二公式只适用于各向同性电介质.(C) 二公式只适用于各向同性且均匀的电介质.(D) 前者适用于各向同性电介质, 后者适用于任何电介质.2.电极化强度P(A) 只与外电场有关.(B) 只与极化电荷产生的电场有关.(C) 与外场和极化电荷产生的电场都有关.(D) 只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R, 带电量为Q的导体球, 测得距中心O为r 处的A点场强为E A =Q r /(40r3) ,现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图所示,此时下列各公式中正确的是(A) A点的电场强度E A=E A / r;(B) ;(C) =Q/0;(D) 导体球面上的电荷面密度= Q /( 4R2 ).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C, 极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A) C↓,U↑,W↑,E↑.(B) C↑,U↓,W↓,E不变.(C) C↑,U↑,W↑,E↑.(D) C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 1/4倍.(D) 4倍.二.填空题1.一平行板电容器,充电后断开电源, 然后使两极板间充满相对介电常数为r的各向同性均匀电介质, 此时两极板间的电场强度为原来的倍, 电场能量是原来的倍.2.在相对介电常数r= 4 的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E = .3.一平行板电容器两极板间电压为U,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d , 则电介质中的电场能量密度w = .三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R 1=2cm ,R2= 5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图所示为其横截面),试求距离轴线R=处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1) 球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功(2) 使球上电荷从零开始加到Q的过程中,外力共作多少功练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图(1)所示,并联时如图(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A) I1 =I2 J1 = J2 I1 = I2 J1 = J2.(B) I1 =I2 J1 >J2 I1<I2 J1 = J2.(C) I1<I2 J1 = J2 I1 = I2 J1>J2.(D) I1<I2 J1 >J2 I1<I2 J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1 、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A) I1<I2 J1<J2 I1= I2 J1 = J2.(B)I1 =I2 J1 =J2 I1= I2 J1 = J2.(C)I1=I2 J1 = J2 I1<I2 J1<J2.(D)I1<I2 J1<J2 I1<I2 J1<J2.3.室温下,铜导线内自由电子数密度为n= × 1028个/米3,电流密度的大小J= 2×106安/米2,则电子定向漂移速率为:(A)×10-4米/秒.(B) ×10-2米/秒.(C) ×102米/秒.(D) ×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示,则在柱与筒之间与轴线的距离为r 的点的电场强度为:(A) 2rI/ (l2).(B) I/(2rl).(C) Il/(2r2).(D) I/(2rl).5.在如图所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3 ,方向如图,则由A到B的电势增量U B-U A为:(A) 2-1-I1 R1+I2 R2-I3 R .(B) 2+1-I1(R1 + r1)+I2(R2 + r2)-I3 R.(C) 2-1-I1(R1-r1)+I2(R2-r2) .(D) 2-1-I1(R1 + r1)+I2(R2 + r2) .二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2 = .(铜电阻率×106·cm , 铝电阻率×106 · cm , )2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成, 设电子的电量为e , 其平均漂移率为v , 导体中单位体积内的自由电子数为n , 则电流密度的大小J = , J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a , r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图所示的电路中,两电源的电动势分别为1=9V和2 =7V,内阻分别为r1 = 3和r2= 1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) =arccos(eBD/p).(B) =arcsin(eBD/p).(C) =arcsin[BD /(ep)].(D) =arccos[BD/(e p)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图所示,则(A)两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B) 其动能和动量都改变.(C) 其动能不变,动量改变.(D) 其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B) a、b都不会回到出发点.(C) a先回到出发点.(D) b先回到出发点.5. 如图所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A) T1 = T2,q1和q2都向顺时针方向旋转;(B) T1 = T 2,q1和q2都向逆时针方向旋转(C) T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D) T1 = T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1. 一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=×10-2m的螺旋运动,如图所示,则磁场的方向, 电子速度大小为.2. 磁场中某点处的磁感应强度B=-(T), 一电子以速度v=×106i+×106j (m/s)通过该点,则作用于该电子上的磁场力F= .3.在匀强磁场中,电子以速率v=×105m/s作半径R=的圆周运动.则磁场的磁感应强度的大小B= .三.计算题1.如图所示,一平面塑料圆盘,半径为R ,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。

攀枝花学院大学物理第10和11章习题解答(张雪峰主编)

攀枝花学院大学物理第10和11章习题解答(张雪峰主编)

第10章 振动与波10-13 一简谐振动的运动方程为x 0.02cos(8t )(m),4ππ=+求圆频率ω、频率ν、周期T 、振幅A 和初相甲ϕ。

分析:可采用比较法求解。

将题给运动方程与简谐运动方程的一般式)cos(ϕω+=t A x 作比较,即可求得各量。

解:将))(48cos(02.0m t x ππ+=与)cos(ϕω+=t A x 比较,可得A=0.02m ,s rad /8πω=,4πϕ=, s T 41822===ππωπ,z H T 44111===ν 10-14 一边长为a 的正方形木块浮于静水中,其浸入水中部分的高度为a/2,用手轻轻地把木块下压,使之浸入水中的部分高度为a ,然后放手,试证明,如不计水的粘滞阻力,木块将作简谐振动,并求其振动的周期和频率。

分析:要证明木块作简谐运动,需要分析木块在平衡位置附近上下运动时,它所受的合外力F 与位移x 间的关系,如果满足F=-kx ,则木块作简谐运动。

通过F=-kx 即可求得振动周期和频率。

证:木块处于平衡状态时,浮力大小为321ga F ρ=。

当木块上下作微小振动时,取木块处于力平衡时的质心位置为坐标原点O ,竖直向下为x 轴正向。

则当木块向下偏移x 位移时,受合外力为'=+∑F P F式中P 为木块所受重力,其方向向下,大小为321ga mg P ρ==(等于平衡状态时的浮力); F '为此时木块所受浮力,其方向向上,大小为x ga ga x ga F F 23221ρρρ+=+=' 则木块所受合外力为kx x ga x ga ga ga F P F -=-=--='-=∑22332121ρρρρ 式中2ga k ρ=是一常数。

这表明木块在其平衡位置上下所作的微小振动是简谐运动。

由22md xF dt=∑可得木块运动的微分方程为 2220d x ga xdt mρ+=令22ga mρω=,(321a m ρ=)可得其振动周期和频率分别为22T πω==,1T ν==10-15已知简谐振动图线如图10-46所示,求谐振动方程及速度表达式。

大学物理上册课后练习答案解析

大学物理上册课后练习答案解析

初速度大小为dt1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。

现测得其加速度 a = A-B V ,式中A 、1-1 已知质点的运动方程为:x 10t30t 2 ,y 15t 20t 2。

式中x 、y 的单位为m , t 的单位为s 。

试求: (1)初速度的大小和方向;(2)加速度的大小和方向。

分析由运动方程的分量式可分别求出速度、 加速度 分析本题亦属于运动学第二类问题,与上题不同之 处在于加速度是速度 V 的函数,因此 需将式d V = a (V )d t 分离变量为-d ^ dt 后再两边积分.a(v)的分量 再由运动合成算出速度和加速度的大小和方向. 解选取石子下落方向为y 轴正向,下落起点为坐标原点.vdv dv v 0A Bv(3)船在行驶距离 x 时的速率为v=v 0e kx 。

一 dv[证明](1)分离变数得 — kdt ,v第一章质点的运动B 为正恒量,求石子下落的速度和运动方程。

解(1)速度的分量式为Vv y当 t = 0 时,V o x = -10 m sdx10 60tdt dy15 40t dt-1, V o y = 15 m-1(1)由题dvadt 用分离变量法把式 A Bv(1)改写为dvA Bv将式(2)两边积分并考虑初始条件,有(1)dt ⑵V 0 V 0x V 0y 18.0m得石子速度 V -(1 e Bt)B 设V o 与x 轴的夹角为a 则tanV 0y V ox由此可知当,t is 时,v A为一常量,通常称为极限速度Ba= 123 °1(2)加速度的分量式为a x dV x dt 60a ydV y dt40或收尾速度.(2)再由v—y —(1 e 氏)并考虑初始条件有dt BytABtdy -(1 e )dt 0 0 BA A得石子运动方程y t 2 (e Bt 1)B B 2则加速度的大小为 a .. a x 2a y 272.1 ms 2a y2 设a 与x 轴的夹角为B,则tan B -a x3B= -33 °1 '(或326 °9 )1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于 阻力得到一个与速度反向、 大小与船速平方成正比例的加 速度,即a = - kv 2, k 为常数。

大学物理教程第10章习题答案报告

大学物理教程第10章习题答案报告

思 考 题10.1 人体也向外发出热辐射,为什么在黑暗中还是看不见人呢? 答:人体的辐射频率太低, 远离可见光波段,在远红外波段, 由于为非可见光, 所以是看不到人体辐射的,在黑暗中也是如此。

10.1刚粉刷完的房间从房外远处看,即使在白天,它的开着的窗口也是黑的。

为什么? 答:光线从窗户进去后经过多次反射,反射光的强度越来越弱,能再从窗户射出的光线非常少,窗户外的人看到的光线非常弱,因此觉得窗口很暗。

10.3 在光电效应实验中,如果(1)入射光强度增加一倍;(2)入射光频率增加一倍,各对实验结果有什么影响?答:(1)在光电效应中每秒从光阴极发射的光电子数与入射光强成正比。

入射光强度增加一倍时,饱和电流增加一倍。

(2)当入射光的频率增大时,光电子的最大初动能增大,遏止电压也增大,但入射光的频率和遏止电压两者不是简单的正比关系。

10.4 若一个电子和一个质子具有同样的动能,哪个粒子的德布罗意波长较大? 答:电子的德布罗意波长较大。

10.5 n=3的壳层内有几个次壳层,各次壳层都可容纳多少个电子?答:n=3的壳层内有3个次壳层,各次壳层可容纳的电子数分别为2、6、10。

10.6 完成下列核衰变方程。

(1)?234238+−→−Th U(2)?9090+−→−Y Sr (3)?2929+−→−Ni Cu (4)Zn Cu 2929?−→−+ 答:(1)e H Th U 422349023892+−→−(2)e Y Sr 0190399038-+−→−(3)e Ni Cu 0129282929++−→−(4)Zn e Cu 2930012929−→−++习 题10.1 夜间地面降温主要是由于地面的热辐射。

如果晴天夜里地面温度为-50C ,按黑体辐射计算,每平方米地面失去热量的速率多大?解:依题意,可知地面每平方米失去的热量即为地面的辐射出射度2484/2922681067.5m W T M =⨯⨯==-σ10.2 宇宙大爆炸遗留在空间均匀、各向同性的背景热辐射相当于3K 的黑体辐射。

大学物理习题册详细解析(电磁学、光学)

大学物理习题册详细解析(电磁学、光学)

四川大学大学物理习题册详细解析(电磁学、光学)[主编聂娅]四川大学物理学院二〇一二年十月大学物理习题册解答答静电场1一. 选择和填空题1. B ,2. A ,3.A ,4. D ,5. B 二. 填空题1. ()40216/R S Q ε∆π 由圆心O 点指向△S2. λ=Q / a 异号3.4(V/m ) 向上 4.3028R qdεπ 指向缺口 5.E R 2π三.计算题1. 解:如图所示,由于对称分布,放在中心处的q 0无论电荷多少都能取得平衡.因四个定点上的电荷受力情况相同,因此只需考虑任一顶点上的电荷受力情况.例如考虑D 点处的电荷,顶点A 、B 、C 及中心处的电荷所激发的电场对D 处点电荷的作用力的大小分别为:()2002000122/24a qq a qq qE f εεπ=π== ()202222824aq a q qE f B εεπ=π== 20234a q qE f A επ==20244a q qE f C επ== 各1分各力方向如图所示,α=45°.D 处电荷的受力平衡条件为:∑=0x f , ∑=0y f 用0cos cos 123=-+=∑ααf f f f x 3分 将f 1,f 2,f 3式代入上式化简得:()4/2210q q +==0.957 q 2分用∑=0y f 得同样结果.2.解:在φ处取电荷元,其电荷为d q =λd l = λ0R sin φ d φ它在O 点产生的场强为R R qE 00204d sin 4d d εφφλεπ=π= 3分在x 、y 轴上的二个分量d E x =-d E cos φ 1分 d E y =-d E sin φ 1分 对各分量分别求和⎰ππ=000d cos sin 4φφφελR E x =0 2分RR E y 0002008d sin 4ελφφελ-=π=⎰π 2分∴j Rj E i E E y x008ελ-=+= 1分3.解:(1)如图示,电荷元dx dq λ=(L Q=λ)在P 点的场强为20)(4x r dxdE -=πελ 整个带电直线在P 点的场强为)4/(4)(42202/2/20L r Lx r dxdE E L L -=-==⎰⎰-πελπελ 方向沿x 轴正向(2)根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为⎰'=L r dqE 24sin πεα利用几何关系22,sin x r r r r+=''=α,统一积分变量得 2202/3222/2/0412)(41rL r Qr x L r Q d x E L L +=+=⎰-πεπε当∞→L 时,若棒单位长度所代电荷λ为常量,则P 点电场强度 rL r LQ r E L 02202/41/21limπελπε=+=∞→4.解:将半球壳分割为一组平行细圆环,任一圆环所代电荷元θθπσσd R dS dq sin 22==,在点O 激发的电场强度为i r x x d q E d2/3220)(41+=πε 由于平行细圆环在O 激发的电场强度相同,利用几何关系θcos R x =xLzθsin R r =统一积分变量,有θθθεσθθπσθπεπεd d R R R r x xdq dE cos sin 2sin 2cos 41)(4102302/3220==+=积分得 02/004c o s s i n 2εσθθθεσπ==⎰d E四.证明题1.证明:以λ表示线上线电荷密度,如图。

大学物理第三版第10章部分习题解答解读

大学物理第三版第10章部分习题解答解读

ABC
(3) 从D点移动到B点.
r
q1
a/2 a/2
D q2
第10章部分习题解答
解: 由电势叠加原理得
UA
q1
4 0r 4 0
q2 r2 a2
1.8103V
同理得
UC
3108
4 0 0.1
3108
4 0 0.06
1.8103V
UB UD 0
第10章部分习题解答
(1) AAB q(U A U B ) 3.6 10 6 J (2) ACD q(UC U D ) 3.6 10 6 J (3) ABD q(UB UD ) 0
解:点电荷处在中心,电力线呈球
对称分布发射,每个面上的电通量
+q
应相等.
E ds 6
E
ds
1
q
E ds
s
1q
s
6 0
0
s a
A
s
a
如果点电荷移到立方体的一个顶角上?
建立以顶点电荷为中心,棱边长为 2a,且与原棱边平行的大立方体.
对大立方体而言,每个面
的面积为 4a2 ,它又由4个 面积为a2 的小平面组成.
E3 2 0 2 0 0
2010.5.22
第10章部分习题解答
P369题10.3.10
半径为R的无限长直圆柱体均匀带电,体
电荷密度为 .试求:场强分布,并画出E-r曲
线
解: 带电圆柱的电场分布具有
轴对称性,取半径为r,高为l,以
带电圆柱的轴为轴的圆柱面为
lr
高斯面(如图),则
R
(1) 圆柱体内r<R
1
4 0
q2q3 r22

10级大学物理习题册光学解析

10级大学物理习题册光学解析

10级大学物理习题册光学解析光的干涉(一) (48)1.用某单色光作杨氏双缝实验,双缝间距为0.6mm,在离双缝2.5m 处的屏上出现干涉条纹,现测得相邻明纹间的距离为2.27mm,则该单色光的波长是:( A)解: 由?x=Dλ/d得λ=dΔx/D=5.448×10-7m(A)5448? (B)2724? (C)7000? (D)10960?2.在杨氏双缝实验中,入射光波长为λ,屏上形成明暗相间的干涉条纹,如果屏上P点是第一级暗条纹的中心位置,则S1,S2至P点的光程差δ=r2-r1为(D)(A)λ (B)3λ/2 (C)5λ/2 (D)λ/2解: δ=r2-r1=(2k-1)λ/2 将k=1代入得δ=r2-r1=λ/23.在双缝实验中,两缝相距2mm,双缝到屏距离约1.5m,现用λ为5000?的单色平行光垂直照射,则中央明纹中心到第三级明纹中心的距离是:(C)解: x=k Dλ/d=1.125(mm)(A) 0.750mm (B) 2.625mm(C) 1.125mm (D) 0.563mm4.用平行单色光垂直照射双缝,若双缝之间的距离为d,双缝到光屏的距离为D,则屏上的P点为第八级明条纹位置,今把双缝之间的距离缩小为d′,则P点为第四级明条纹位置,那么d′/d=1/2,若d=0.1mm,D=1m,P点距屏中心O的距离为4cm,则入射光波长为5?10-7m。

解:由x=k Dλ/d=k'Dλ/d' 得d'/d= k'/k=4/8=1/2λ=x d/k D=4×10-2×0.1×10-3/8×1=5×10-7m5.在双缝实验中,用厚度为6μm 的云母片,覆盖其中一条缝,从而使原中央明纹位置变为第七级明纹,若入射光波长为5000?,则云母片的折射率为n = 1.58 。

解:δ0 =r -r =0δ=[(r -e )+ne ]-r=(n -1)e =7λ∴ n =1+7λ/e = 1.58 6.用折射率n=1.5的透明膜覆盖在一单缝上,双缝间距d=0.5mm ,D=2.5m ,当用λ=5000?光垂直照射双缝,观察到屏上第五级明纹移到未盖薄膜时的中央明纹位置,求:(1)膜的厚度及第10级干涉明纹的宽度;(2)放置膜后,零级明纹和它的上下方第一级明纹的位置分别在何处?解:已知n=1.5 , d=0.5mm , D=2.5×103mmλ=5×10- 4mm(1) δ =(n -1)e =5λ , e =5λ/(n -1)=5×10-3mmΔx =D λ/d=2.5×103mm ×5×10- 4mm/0.5mm=2.5mm(2)设置放膜后,屏幕下方第五级明纹移到原中央明纹处,则置放膜后的零级明纹移到原来上方第五级明纹处。

10浅淡高三物理习题的讲解.doc

10浅淡高三物理习题的讲解.doc

浅淡高三物理习题的讲解高三复习过程中,习题教学具有特定的作用,处理好习题可以起到深化、活化、反馈、补尝、巩固和提高的作用。

通过习题教学及练习,学生可以进一步深化、活化基本知识和基本技能,并能达到牢固地掌握概念,深刻的理解规律的目的。

通过习题教学及练习,教师可以随时得到有关习题学习情况的反馈信息,借以调整教学内容、方法和进程。

同时使学生把理解的基础知识能灵活运用,达到提高运用知识,分析问题和解决问题的能力的目的。

在习题教学中我认为注意以下几点:选好练习题为了发挥出物理习题在教学中的作用,选择恰当的习题是首要的工作。

在具体选择习题时应依据:教学的需要,教学原则和练习的目的。

而且,所选择的习题应具有以下几个特性。

(1)典型性从发展学生智能的需要出发,典型的问题应在内容和方法上都具有代表性,应能反映重点概念和规律的本质及其特征。

在保证基础知识覆盖面和重点知识重复率的前提下,遵循“少而精”的原则。

要对各种类型的题目进行严格筛选;适当控制题目的数量和难度。

例如,分析受力,可选:在光滑的斜面上,有一块竖直挡板挡住一个质量为m的球。

分析并计算所受的各种力。

通过分析和研究问题的典型含义,就可掌握这一类问题的分析方法和研究方法。

(2)针对性从知识的角度出发,习题的选择要针对教学大纲、教材和学生的实际情况。

尤其是学生学习的薄弱环节。

内容和方法要与学生的基础知识相联系。

例如:复习力和运动的关系, 可选从斜面上滑下到水平面这一类问题,回答物体的运动是否有力的作用?那些力,并通过具体实例分析说明。

(3)实际性习题的选择要注意把理想化模型同实际客体密切联系,理想化过程与实际物理过程有机结合。

这样,物理问题才更有实际意义。

例如,估算水分子的直径,通过实例分析,使学生明确理想化与实际问题间的区别与联系。

(4)启发性从培养学生的思维能力出发,要注意在培养定势思维的同时,更要注重变式思维的作用,为培养创造性思维奠定基础,使学生能够从内容和方法上都有所启发。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题10]10.1选择题(1) 对于安培环路定理的理解,正确的是:(A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流;(C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。

[答案:C](2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比;(B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比;(D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。

[答案:B](3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要() (A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。

[答案:B](4)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T 的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A )0.24J ;(B )2.4J ;(C )0.14J ;(D )14J 。

[答案:A]10.2 填空题(1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度 。

[答案:aIπμ220,方向垂直正方形平面](2)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求得(填能或不能)。

[答案:能, 不能](3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 。

电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 。

[答案:零,正或负或零](4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以 电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将 。

[答案:相同,不相同]10.3 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题10.3图10.4 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcdμ∴ 21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B ≠.10.5 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.10.6 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题10.6图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为 ⎰外B L·d l =I 0μ 这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 10.6 图10.7 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.10.8 已知磁感应强度0.2=B Wb ·m-2x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题10.8图所示题10.8图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或24.0-Wb )题10.9图10.9 如题10.9图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题10.9图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里.10.10 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题10.10图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B题10.10图解:如题10.10图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T52010103310502050102-⨯=⨯++-=..)..(πμπμI I B B T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题10.11图10.11 如题10.11图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题10.11图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

且θ-πθ==21221R R I I 电阻电阻. 1I 产生1B方向⊥纸面向外πθπμ2)2(2101-=R I B ,2I 产生2B方向⊥纸面向里πθμ22202R I B =∴1)2(2121=-=θθπI I B B 有 0210=+=B B B10.12 在一半径R =1.0cm I =5.0 A 通过,电流分布均匀.如题10.12图所示.试求圆柱轴线任一点P 处的磁感应强度.题10.12图解:因为金属片无限长,所以圆柱轴线上任一点P 的磁感应强度方向都在圆柱截面上,取坐标如题10.12图所示,取宽为l d 的一无限长直电流l RII d d π=,在轴上P 点产生B d 与R 垂直,大小为RI R R R IR I B 20002d 2d 2d d πθμ=πθπμ=πμ= RI B B x 202d cos cos d d πθθμ=θ= RI B B y 202d sin )2cos(d d πθθμ-=θ+π= ∴ 520202221037.6)]2sin(2[sin 22d cos -ππ-⨯=πμ=π--ππμ=πθθμ=⎰RI R I R I B x T 0)2d sin (2220=πθθμ-=⎰ππ-RI B y ∴ i B 51037.6-⨯= T10.13 氢原子处在基态时,它的电子可看作是在半径a =0.52×10-8cm 的轨道上作匀速圆周运动,速率v =2.2×108cm ·s -1.求电子在轨道中心所产生的磁感应强度和电子磁矩的值.解:电子在轨道中心产生的磁感应强度3004aav e B πμ ⨯= 如题10.13图,方向垂直向里,大小为134200==a evB πμ T 电子磁矩m P在图中也是垂直向里,大小为242102.92-⨯===eva a T e P m π 2m A ⋅ 题10.13图 题10.14图10.14 两平行长直导线相距d =40cm ,每根导线载有电流1I =2I =20A ,如题10.14图所示.求: (1)两导线所在平面内与该两导线等距的一点A(2)通过图中斜线所示面积的磁通量.(1r =3r =10cm,l =25cm)解:(1) 52010104)2(2)2(2-⨯=+=d I d I B A πμπμ T⊥纸面向外(2)r l S d d =612010110102.23ln 31ln 23ln 2])(22[1211-+⨯=πμ=πμ-πμ=-πμ+πμ=⎰lI l I l I ldr r d I r I r r r ΦWb10.15 一根很长的铜导线载有电流10A ,设电流均匀分布.在导线内部作一平面S ,如题10.15图所示.试计算通过S 平面的磁通量(沿导线长度方向取长为1m 的一段作计算).铜的磁导率0μμ=.解:由安培环路定律求距圆导线轴为r 处的磁感应强度⎰∑μ=⋅lI l B 0d2202RIr r B μπ=∴ 202RIrB πμ=题 10.15 图磁通量 60020)(1042-===⋅=Φ⎰⎰πμπμI dr R Ir S d B R s m Wb10.16 设题10.16图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论:(1)在各条闭合曲线上,各点的磁感应强度B的大小是否相等?(2)在闭合曲线c 上各点的B是否为零?为什么?解: ⎰μ=⋅al B 08d⎰μ=⋅bal B 08d⎰=⋅cl B 0d(1)在各条闭合曲线上,各点B的大小不相等.(2)在闭合曲线C 上各点B 不为零.只是B的环路积分为零而非每点0=B .题10.16图题10.17图10.17 题10.17图中所示是一根很长的长直圆管形导体的横截面,内、外半径分别为a ,b ,导体内载有沿轴线方向的电流I ,且I 均匀地分布在管的横截面上.设导体的磁导率0μμ≈,试证明导体内部各点)(b r a << 的磁感应强度的大小由下式给出: r a r a b IB 22220)(2--=πμ解:取闭合回路r l π2= )(b r a <<则 ⎰π=⋅lr B l B 2d2222)(ab Ia r I ππππ--=∑ ∴ )(2)(22220a b r a r I B --=πμ10.18 一根很长的同轴电缆,由一导体圆柱(半径为a )和一同轴的导体圆管(内、外半径分别为b ,c )构成,如题10.18图所示.使用时,电流I 从一导体流去,从另一导体流回.设电流都是均匀地分布在导体的横截面上,求:(1)导体圆柱内(r <a ),(2)两导体之间(a <r <b ),(3)导体圆筒内(b <r <c )以及(4)电缆外(r >c )各点处磁感应强度的大小解: ⎰∑μ=⋅LI l B 0d(1)a r < 2202RIr r B μπ=202R IrB πμ=(2) b r a << I r B 02μπ=rIB πμ20=(3)c r b << I b c b r I r B 0222202μμπ+---=)(2)(22220b c r r c I B --=πμ (4)c r > 02=r B π0=B题10.18图题10.19图10.19 在半径为R 的长直圆柱形导体内部,与轴线平行地挖成一半径为r 的长直圆柱形空腔,两轴间距离为a ,且a >r ,横截面如题10.19图所示.现在电流I 沿导体管流动,电流均(1) (2) 解:空间各点磁场可看作半径为R ,电流1I 均匀分布在横截面上的圆柱导体和半径为r 电流2I -均匀分布在横截面上的圆柱导体磁场之和. (1)圆柱轴线上的O 点B 的大小:电流1I 产生的01=B ,电流2I -产生的磁场222020222rR Ir a a I B -==πμπμ ∴ )(222200r R a Ir B -=πμ(2)空心部分轴线上O '点B 的大小:电流2I 产生的02='B , 电流1I 产生的222022r R Ia a B -πμ=')(2220r R Ia -=πμ ∴ )(22200r R IaB -='πμ题10.20图10.20 如题10.20图所示,长直电流1I 附近有一等腰直角三角形线框,通以电流2I ,二者 共面.求△ABC 的各边所受的磁力. 解: ⎰⨯=ABAB B l I Fd 2daI I d I aI F AB πμπμ22210102== 方向垂直AB 向左 ⎰⨯=CAAC B l I F d 2 方向垂直AC 向下,大小为⎰++πμ=πμ=ad dAC dad I I r I rI F ln22d 210102 同理 BC F方向垂直BC 向上,大小⎰+πμ=ad dBc rI lI F 2d 102 ∵ ︒=45cos d d rl ∴ ⎰++πμ=︒πμ=ad aBC d ad I I r r I I F ln 245cos 2d 210120题10.21图10.21 在磁感应强度为B的均匀磁场中,垂直于磁场方向的平面内有一段载流弯曲导线,电流为I ,如题9-19解:在曲线上取ld 则 ⎰⨯=baab B l I F d∵ l d 与B 夹角l d <,2π>=B 不变,B 是均匀的.∴ ⎰⎰⨯=⨯=⨯=b ab aab B I B l I B l I F)d (d方向⊥ab 向上,大小BI F ab =ab题10.22图10.22 如题10.22图所示,在长直导线AB 内通以电流1I =20A ,在矩形线圈CDEF 中通有电流2I =10 A ,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0cm,b =20.0cm,d =1.0 cm (1)导线AB(2)解:(1)CD F方向垂直CD 向左,大小4102100.82-⨯==dI bI F CD πμ N 同理FE F方向垂直FE 向右,大小5102100.8)(2-⨯=+=a d I bI F FE πμ NCF F方向垂直CF 向上,大小为⎰+-⨯=+πμ=πμ=ad dCF dad I I r r I I F 5210210102.9ln 2d 2 N ED F方向垂直ED 向下,大小为5102.9-⨯==CF ED F F N(2)合力ED CF FE CD F F F F F+++=方向向左,大小为4102.7-⨯=F N合力矩B P M m⨯=∵ 线圈与导线共面∴ B P m//0=M.题10.23图10.23 边长为l =0.1m B =1T 的均匀磁场中,线圈平面与磁场方向平行.如题10.23图所示,使线圈通以电流I =10A ,求: (1)线圈每边所受的安培力; (2)对O O '轴的磁力矩大小;(3)从所在位置转到线圈平面与磁场垂直时磁力所作的功.解: (1) 0=⨯=B l I F bcB l I F ab⨯= 方向⊥纸面向外,大小为866.0120sin ==︒IlB F ab NB l I F ca⨯=方向⊥纸面向里,大小866.0120sin ==︒IlB F ca N(2)IS P m =B P M m⨯= 沿O O '方向,大小为221033.443-⨯===B l I ISB M m N ⋅(3)磁力功 )(12ΦΦ-=I A∵ 01=Φ B l 2243=Φ∴ 221033.443-⨯==B l I A J10.24 一正方形线圈,由细导线做成,边长为a ,共有N 匝,可以绕通过其相对两边中点的一个竖直轴自由转动.现在线圈中通有电流I ,并把线圈放在均匀的水平外磁场B中,线圈对其转轴的转动惯量为J .求线圈磁矩与磁场B的夹角为θ时,线圈受到的转动力矩.解:由线圈所受磁力矩B P M m⨯=得到θθsin sin 2B NIa B P M m ==10.25 一长直导线通有电流1I =20A ,旁边放一导线ab ,其中通有电流2I =10A ,且两者共面,如题10.25图所示.求导线ab 所受作用力对O 点的力矩. 解:在ab 上取r d ,它受力ab F ⊥d 向上,大小为rI rI F πμ2d d 102= F d 对O 点力矩F r M ⨯=d Md 方向垂直纸面向外,大小为r I I F r M d 2d d 210πμ== ⎰⎰-⨯===ba bar II M M 6210106.3d 2d πμ m N ⋅题10.25图10.26 电子在B =70×10-4Tr =3.0cm .已知B垂直于纸面向外,某时刻电子在A 点,速度v向上,如题10.26图.(1)试画出这电子运动的轨道;(2)求这电子速度v的大小; (3)求这电子的动能k E .题10.26图解:(1)轨迹如图(2)∵ rv m evB 2=∴ 7107.3⨯==m eBrv 1s m -⋅ (3) 162K 102.621-⨯==mv E J10.27 一电子在B =20×10-4T R =2.0cmh=5.0cm ,如题10.27 (1)(2)磁场B的方向如何?解: (1)∵ eBmv R θcos =θπcos 2v eB mh =题10.27 图∴ 6221057.7)2()(⨯=+=meBh m eBR v π1s m -⋅ (3)磁场B的方向沿螺旋线轴线.或向上或向下,由电子旋转方向确定.10.28 在霍耳效应实验中,一宽1.0cm ,长4.0cm ,厚1.0×10-3cm3.0A 的电流,当磁感应强度大小为B =1.5T 的磁场垂直地通过该导体时,产生1.0×10-5V 的横向电压.试求:(1)载流子的漂移速度; (2)每立方米的载流子数目.解: (1)∵ evB eE H = ∴lBU B E v HH ==l 为导体宽度,0.1=l cm ∴ 425107.65.110100.1---⨯=⨯⨯==lB U v H -1s m ⋅(2)∵ nevS I = ∴ evSI n = 524191010107.6106.13----⨯⨯⨯⨯⨯=29108.2⨯=3m -10.29 两种不同磁性材料做成的小棒,放在磁铁的两个磁极之间,小棒被磁化后在磁极间处于不同的方位,如题10.29图所示.试指出哪一个是由顺磁质材料做成的,哪一个是由抗磁质材料做成的?解: 见题10.29图所示.题10.29图题10.30图10.30 题10.30图中的三条线表示三种不同磁介质的H B -关系曲线,虚线是B =H 0μ关系的曲线,试指出哪一条是表示顺磁质?哪一条是表示抗磁质?哪一条是表示铁磁质? 答: 曲线Ⅱ是顺磁质,曲线Ⅲ是抗磁质,曲线Ⅰ是铁磁质.10.31 螺绕环中心周长L =10cm ,环上线圈匝数N =200匝,线圈中通有电流I =100 mA .(1)当管内是真空时,求管中心的磁场强度H和磁感应强度0B ;(2)若环内充满相对磁导率r μ=4200的磁性物质,则管内的B和H 各是多少?*(3)磁性物质中心处由导线中传导电流产生的0B 和由磁化电流产生的B′各是多少?解: (1) I l H l∑=⋅⎰dNI HL = 200==LNI H 1m A -⋅400105.2-⨯==H B μT(2)200=H 1mA -⋅05.1===H HB o r μμμ T(3)由传导电流产生的0B 即(1)中的40105.2-⨯=B T∴由磁化电流产生的05.10≈-='B B B T10.32 螺绕环的导线内通有电流20A ,利用冲击电流计测得环内磁感应强度的大小是1.0Wb ·m -2.已知环的平均周长是40cm ,绕有导线400匝.试计 (1)磁场强度; (2)磁化强度; *(3)磁化率; *(4)相对磁导率. 解: (1)4102⨯===I lNnI H 1m A -⋅(2)501076.7⨯≈-=H BM μ1m A -⋅(3)8.38≈=HMx m (3)相对磁导率 8.391=+=m r x μ10.33 一铁制的螺绕环,其平均圆周长L =30cm ,截面积为1.0 cm 2,在环上均匀绕以300匝导线,当绕组内的电流为0.032安培时,环内的磁通量为2.0×10-6Wb(1)环内的平均磁通量密度; (2)圆环截面中心处的磁场强度;解: (1) 2102-⨯=Φ=S B T (2) 0d NI l H =⋅⎰320==LNI H 1m A -⋅。

相关文档
最新文档