第1章 分式的测试卷
湘教版八年级数学上册第1章测试卷(含答案)
湘教版八年级数学上册第1章测试卷(含答案)第1章检测卷时间:120分钟。
满分:120分一、选择题(每小题3分,共30分)1.要使分式 $\frac{3}{x-2}$ 有意义,则 $x$ 的取值应满足(。
)。
A。
$x>2$。
B。
$x<2$。
C。
$x\neq-2$。
D。
$x\neq2$2.生物学家发现了一种病毒的长度约为0.xxxxxxxx毫米,数据0.xxxxxxxx用科学记数法表示为()。
A。
$0.432\times10^{-5}$。
B。
$4.32\times10^{-7}$。
C。
$4.32\times10^{-6}$。
D。
$43.2\times10^{-7}$3.根据分式的基本性质,分式 $\frac{-a}{a-b}$ 可变形为()。
A。
$\frac{a}{a+b}$。
B。
$\frac{-a-b}{a}$。
C。
$\frac{-a}{a+b}$。
D。
$\frac{-a}{a+b}$4.如果分式 $\frac{xy}{x+y}$ 中的 $x$、$y$ 都扩大为原来的2倍,那么所得分式的值()。
A。
扩大为原来的2倍。
B。
缩小为原来的$\frac{1}{2}$。
C。
不变。
D。
不确定5.化简 $\frac{2}{a-aa-2a+1}\div\frac{2}{a+1a-1}$ 的结果是()。
A。
$a$。
B。
$\frac{a}{a+1}$。
C。
$\frac{-a}{a-1}$。
D。
$\frac{a-1}{a+1}$6.若分式 $\frac{|x|-4}{x^2-2x-8}$ 的值为 $-1$,则 $x$ 的值为()。
A。
$4$。
B。
$-4$。
C。
$4$ 或 $-4$。
D。
$-2$7.速录员XXX打2500个字和XXX打3000个字所用的时间相同,已知XXX每分钟比XXX多打50个字,求两人的打字速度。
设XXX每分钟打 $x$ 个字,根据题意列方程,正确的是()。
A。
$\frac{2500}{x}=\frac{3000}{x+50}$。
第1章 分式数学八年级上册-单元测试卷-湘教版(含答案)
第1章分式数学八年级上册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、若a+b=3,ab=-7,则的值为()A.-B.-C.-D.-2、若关于x的方程的解是负数,则m的取值范围是:()A. B. C. 且 D. 且3、下列运算正确的是()A. B. C. D.4、下列计算正确的是()A. B. C. D.5、要使分式有意义,则x的取值范围是()A. B. C. D.6、若分式中,x、y都扩大4倍,则该分式的值( )A.不变B.扩大到原来的4倍C.扩大到原来的16倍D.缩小到原来的7、化简分式的结果是()A. B. C. D.8、的值为 ()A.-4B.4C.D.9、下列有理式中是分式的是()A. B. C. D.10、已知分式的值等于零,则x的值为()A.1B.±1C.-1D.11、计算的结果是-1的式子是()A. B. C. D.12、下列各式是分式的是()A. B. C. D.13、小亮的妈妈到超市购买大米,第一次按原价购买,用了100元,几天后,遇上这种大米按原价降低了出售,她用120元又购买了一些,两次一共购买了.设这种大米的原价是每kgx元,则根据题意所列的方程是()A. B. C.D.14、已知()A. B. C. D.15、根据分式的基本性质,分式可以变形为()A. B. C.﹣ D.﹣二、填空题(共10题,共计30分)16、分式,,的最简公分母是________17、函数中,自变量x的取值范围是________.18、若分式有意义,则x取值范围是________.19、分式方程的解为________.20、若,则________.21、方程=的解是________.22、分式:①,②,③,④中,最简分式有________(只填序号)23、使分式的值等于零的x是________.24、已知,则实数A ________ B________25、若a,b都是实数,,则a b的值为________.三、解答题(共5题,共计25分)26、化简:.27、已知:代数式.(1)当m为何值时,该式的值大于零?(2)当m为何整数时,该式的值为正整数?28、先化简,再从中选一个合适的数作为的值代入求值.29、先化简再求值:-,其中x=2.30、先化简,再求值:(﹣)÷,其中x= .参考答案一、单选题(共15题,共计45分)1、C2、D3、C4、D5、D6、B7、C8、C9、C10、A11、A13、B14、C15、A二、填空题(共10题,共计30分)16、17、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
湘教版2020八年级数学第一章分式自主学习培优测试卷B卷(附答案详解)
湘教版2020八年级数学第一章分式自主学习培优测试卷B 卷(附答案详解)1.在解答题目:“请你选取一个自己喜欢的数值,求22121x x x --+的值”时,有四位同学解答结果如下:甲:当1x =-时,原式0=;乙:当0x =时,原式1=;丙:当1x =时,原式0=;丁:当2x =时,原式3=-.其中解答错误的是()A .甲B .乙C .丙D .丁2.下列约分正确的是( )A .623m m m =B .b c b a c a +=+C .22x y x yx y -=+- D .x y y x += 3.下列计算正确的是( )A .4381-=B .()2636--=C .23324-=-D .3115125⎛⎫-= ⎪⎝⎭ 4.下列运算正确的是( )A .326·a a a =B .()326a a -=C .752a a a ÷=D .-2mn mn mn -=-5.有理式2x ,1()3x y +,3x π-,5a x -,24x y-中,整式有() A .1个 B .2个 C .3个D .4个(注意:π是表示一个常数)6.下列运算正确的是( )A .a 2+a 2=a 4B .236()()a a -=-C .326()a a ⎡⎤-=⎣⎦ D .2323()a a a ÷=7.计算()22ba a -⨯ 的结果为A .bB .b -C . abD .b a 8.下列运算正确的是( )。
A .236a a a =B .21a a a -=C .236()a a =D .842a a a ÷= 9.下列式子中不是分式的是( )A .b aB .2aC .2aD .m n a b ++ 10.22238()4xy z z y ⋅- 等于( ).A .6xyzB .23384xy z yz -- C .-6xy D .6x 2yz11.甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,则乙施工队单独完成此项工程需_____天.12.计算:2018211()22--+-+-=_______________. 13.计算:201()( 3.14)2π----=_______________. 14.若分式||33x x-+的值是0,则x 的值为________. 15.当x________________时,分式x x 2+有意义. 16.计算:111(1)a a a +++=_____. 17.1111x x -+-=(x-1)-(x +1)=-2(____) 18.当x____________+13x - 在实数范围内有意义。
人教版八年级数学上册第1单元测试卷
人教版八年级数学上册第1单元测试卷学习八年级数学第一单元知识不在于力量多少,而在能坚持多久。
下面由店铺为你整理的人教版八年级数学上册第1单元测试卷附答案,希望对大家有帮助!人教版八年级数学上册第1单元测试卷第1章分式类型之一分式的概念1.若分式2a+1有意义,则a的取值范围是 ( )A.a=0B.a=1C.a≠-1D.a≠02.当a ________时,分式1a+2有意义.3. 若式子2x-1-1的值为零,则x=________.4.求出使分式|x|-3(x+2)(x-3)的值为0的x的值.类型之二分式的基本性质5.a,b为有理数,且ab=1,设P=aa+1+bb+1,Q=1a+1+1b+1,则P____Q(填“>”、“<”或“=”).类型之三分式的计算与化简6.化简1x-3-x+1x2-1(x-3)的结果是 ( )A.2B.2x-1C.2x-3D.x-4x-17.化简x(x-1)2-1(x-1)2的结果是______________.8.化简:1+1x÷2x-1+x2x.9.先化简:1-a-1a÷a2-1a2+2a,再选取一个合适的值代入计算.10.先化简,后求值:x-1x+2•x2-4x2-2x+1÷1x2-1,其中x2-x=0.类型之四整数指数幂11.计算:(1)(-1)2 013-|-7|+9×(7-π)0+15-1;(2)(m3n)-2•(2m-2n-3)-2÷(m-1n)3.类型之五科学记数法12.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 096 3贝克/立方米.数据“0.000 096 3”用科学记数法可表示为__________________ .类型之六解分式方程13.分式方程12x2-9-2x-3=1x+3的解为 ( )A.x=3B.x=-3C.无解D.x=3或-314.解方程:2x-1=1x-2.15.解方程:23x-1-1=36x-2.类型之七分式方程的应用16.李明到离家2.1千米的学校参加九年级联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行匀速回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校,已知李明骑自行车的速度是步行速度的3倍,且李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?17.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求:甲、乙两个工厂每天分别能加工多少件新产品.人教版八年级数学上册第1单元测试卷答案1.C2.≠-23.34.【解析】要使分式的值为0,必须使分式的分子为0,且分母不为0,即|x|-3=0且(x+2)(x-3)≠0.解:要使已知的分式的值为0,x应满足|x|-3=0且(x+2)•(x-3)≠0.由|x|-3=0,得x=3或x=-3,检验知:当x=3时,(x+2)(x-3)=0,当x=-3 时,(x+2)(x-3)≠0,所以满足条件的x的值是x=-3.5.=6.B 【解析】原式=1x-3-1x-1(x-3)=1-x-3x-1=x-1x-1-x-3x-1=2x-1.7.1x-18.解:原式=x+1x÷x2-1x=x+1x×x(x+1)(x-1)=1x-1.9.解:原式=1-a-1a×a(a+2)(a+1)(a-1)=1-a+2a+1=-1a+1.当a=3时,原式=-13+1=-14.(a的取值为0,±1,-2外的任意值)10.【解析】本题是一道含有分式乘除混合运算的分式运算,先化简,然后把化简后的最简结果与已知条件相结合,不难发现计算方法.解:原式=x-1x+2•(x+2)(x-2)(x-1)2•(x+1)(x-1)1=(x-2)•(x+1)=x2-x-2.当x2-x=0时,原式=0-2=-2.11.【解析】先算乘方,再算乘除.解:(1)原式=-1-7+3+5=0;(2)原式=m-6n-2•2-2m4n6÷m-3n3=14m-6+4-(-3)n-2+6-3=14mn.12.9.63×10-513.C 【解析】方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.检验:当x=3时,(x+3)(x-3)=0,即x=3不是原分式方程的解,故原方程无解.14.解:方程两边都乘(x-1)(x-2),得2( x-2)=x-1,去括号,得2x-4=x-1,移项,得x=3.经检验,x=3是原方程的解,所以原分式方程的解是x=3.15.解:方程两边同时乘6x-2,得4-(6x-2)=3,化简,得-6x=-3,解得x=12.检验:当x=12时,6x-2≠0,所以x=12是原方程的解.16.【解析】(1)相等关系:从学校步行回家所用的时间-从家赶往学校所用的时间=20分钟;(2)比较回家取道具所用总时间与42分的大小.解:(1)设李明步行的速度是x米/分,则他骑自行车的速度是3x 米/分,根据题意,得2 100x-2 1003x=20,解得x=70,经检验,x=70是原方程的解,所以李明步行的速度是70米/分.(2)因为2 10070+2 1003×70+1=41(分)<42(分),所以李明能在联欢会开始前赶到学校.17.【解析】本题的等量关系为:甲工厂单独加工完成这批产品所用天数-乙工厂单独加工完成这批产品所用天数=10;乙工厂每天加工的数量=甲工厂每天加工的数量×1.5,则若设甲工厂每天加工x件产品,那么乙工厂每天加工1.5x件产品,根据题意可分别表示出两个工厂单独加工完成这批产品所用天数,进而列出方程求解.解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意,得1 200x-1 2001.5x=10,解得x=40,经检验x=40是原方程的根,所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.。
八年级上册数学《分式》单元测试含答案
一.选择题
1.若分式 在实数范围内有意义,则实数x的取值范围是()
A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣2
[答案]D
[解析]
[分析]
直接利用分式有意义的条件分析得出答案.
[详解]∵代数式 在实数范围内有意义,
∴x+2]本题主要考查了分式有意义的条件,熟练掌握分母不为0时分式有意义是解题的关键.
[分析]
根据题意可得 ,解方程组可得A,B,再代入求值.
[详解]解:∵ ,
∴ ,
解得 ,
∴3A﹣B=6﹣4=2.
故3A﹣B的值是2.
[点睛]本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.
17.先约分,再求值: 其中 .
[答案]
[解析]
分析:先把分式的分子分母分解因式,约分后把A、B的值代入即可求出答案.
∴3x=36.
答:自行车的速度是12km/h,公共汽车的速度是36km/h.
[点睛]本题考核知识点:列分式方程解应用题.解题关键点:找出相等关系,列出方程.
20.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了 ,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?
[答案]
[解析]
[分析]
分式方程两边同乘3(x+1),解出x的解,再检验解是否满足.
[详解]解:方程两边都乘 ,
得: ,
解得: ,
经检验 是方程的解,
原方程的解为 .
[点睛]本题考查的知识点是分式方程的求解,解题关键是解出的解要进行检验.
16.若A,B为实数,且 ,求3A﹣B的值.
新湘教版八年级数学上册第一章测试试卷(附答案)
新湘教版八年级数学上册第一章测试试卷(附答案)第一章测试试卷时间:90分钟分值:120分一、选择题(每小题3分,共30分)1.若分式 $\dfrac{2x}{x-3}$ 有意义,则 $x$ 满足的条件是()。
A。
$x\neq 3$ B。
$x\geq 3$ C。
$x\leq 3$ D。
$x\neq 2$2.化简 $\dfrac{2x+1}{x^2-9}-\dfrac{3-x}{x+3}$ 的结果是()。
A。
$\dfrac{x-3}{x-1}$ B。
$\dfrac{2x-9}{3-x}$ C。
$\dfrac{1}{3-x}$ D。
$\dfrac{2x-9}{x^2-9}$3.化简 $\dfrac{1-\frac{1}{x+1}}{2}$ 的结果是()。
A。
$\dfrac{2}{x+1}$ B。
$\dfrac{2}{x+1}-1$ C。
$\dfrac{x+1}{2}$ D。
$\dfrac{1}{2}-\dfrac{1}{x+1}$4.下列运算正确的是()。
A。
$a\cdot a=a$ B。
$(\pi-3.14)=1$ C。
$\dfrac{1}{2}-1=-\dfrac{1}{2}$ D。
$x^8\div x^4=x^2$5.某种生物细胞的直径约为0.000 56 m,将0.000 56用科学记数法表示为()。
A。
$0.56\times 10^{-3}$ B。
$5.6\times 10^{-4}$ C。
$5.6\times 10^{-5}$ D。
$56\times 10^{-5}$6.分式方程 $\dfrac{x+1}{x}-\dfrac{1}{x-1}=2$ 的解为()。
A。
$x=1$ B。
$x=-1$ C。
$x=3$ D。
$x=-3$7.若关于 $x$ 的方程 $\dfrac{2ax+3}{4}=x$ 的解为 $x=1$,则 $a$ 的值为()。
A。
$1$ B。
$3$ C。
$-3$ D。
$-1$8.某中学“XXX”的全体同学租一辆面包车去某景点游览,面包车的租价为180元,出发时又增加了两名其他社团的同学,结果每个同学比原来少摊了3元车费。
第一章《分式》单元测试卷
湘教版数学试题 第1页(共4页) 数学试题 第2页(共4页)第一章《分式》单元测试卷(考试时间:120分钟 试卷满分:150分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.下列各式①x 3,①5y x +,①a -21,①2-πx 中,是分式的有( ) A. ①① B. ①① C. ①① D.①①①①2.小明做了四道题利用分式的基本性质进行化简的题,其中他做错的一道题是( )A.y x yx yx -=--22 B.y x y x y xy x -=-+-222 C.y x y xy x xy -=-2 D.xyx xy =23.下列计算正确的是( ) A. ()22x x =-- B.532x x x =+ C.()5232b a ab = D.a a a 2212=•-4.计算:13212++-+x x x x 的结果为( ) A. 5 B.13+x C. 13+x — D.13++x x5.计算:32-96-2-÷m m =( ) A. 33+m B.33+-m m C. 33-+m m D.33+m m6.下列计算中,错误的是( ) A. 633282x y x y -=⎪⎭⎫⎝⎛- B.4622391634c b c b =⎪⎪⎭⎫ ⎝⎛- C. 22222y x y x y x y x +-=⎪⎪⎭⎫ ⎝⎛+- D.n nnab a b 64232=⎪⎪⎭⎫ ⎝⎛- 7.对分式xyy x x y 41,3,22通分时,最简公分母是( ) A.2121xyB.2212y xC. 224xyD.212xy 8.对于非零的两个数a ,b ,规定ab b a 23-=*,若()2135=-*x ,则x 的值为( ) A. 65 B. 43 C. 32 D.61- 9.计新能源汽车环保节能,越来越受到消费者的喜爱。
湘教版数学八年级上册第一章《分式》单元测试卷
初中数学试卷金戈铁骑整理制作八年级上学期数学第一章《分式》单元测试卷一、选择题1、以下各式:1,x2x,5x,a2,0,,x1 20122x y yA、1个B、2个C、3个D2、若分式无心义,则x的值是()此中分式共有()4个x 1A 、0B 、1C 、-1D 、 13、以下约分正确的选项是()A、C 、m31m m3 9b3b 6a32aB、x y1x2D、xayb4、以下式子运算中,正确的选项是 ( )A、1a1b11B、b1C、a01D、bb2bab b a aab5、用科学计数法表示的数 3.6104写成小数是()A、0.00036B、-0.0036C、-0.00036D、-360006、计算11的正确结果是()1xA 、02xC、2D、2、x2x221x7、若非零实数x,y满足:x y2011xy,则分式11的值为()x yA、2011、2012C、-2012D、-20118、在一段坡路,小明骑自行车上坡的速度为每小时V千米,下坡时的速度为每小时V千米,则他在12这段路上、下坡的均匀速度是每小时()A、v1v2千米、v1v2千米、2v1v2千米D、没法确立v1v2v1v2二、填空题9、当x时,分式x2有意义3x 810、填空:(1)3a,(a)(2)a21 5xy10axya2411、填空:(1)(2)2=;(2)(1)2=___________.312、分式11,1的最简公分母为.2 x2y25xy13、计算:a29a 3 a 314、已知a1,分式a b的值为b32a5b15、当k 时,关于x的方程24x不会产生增根3x316、某工厂原计划a天完成b件产品,因为状况发生变化,要求提前x天完成任务,则此刻每天要比原计划每天多生产件产品.三、解答题17、计算(1)(3)2(5)20.31(2012)0(2)2x2(5y)(10y)53y26x21x2(3)4x29(4)2m12x332x49n2m7nm218、解方程(1)23(2)x141xx1x1x2119、先化简,再求值:m14m2(11),此中m=22 m22mm22m1m1m1精选文档20、请你先化简21x4,再采纳一个你喜爱的数代入求值。
第1章 分式 单元测试卷 2022-2023学年湘教版数学八年级上册
2022-2023学年湘教新版八年级上册数学《第1章 分式》单元测试卷一.选择题(共10小题,满分30分)1. 若分式2(1)(2)44x x x x +--+的值为0,则x 的值为( )A. 1-B. 2C. 2或1-D. 12. 在1x ,+m n m ,25ab ,23x π中,分式有( )A. 2个 B. 3个 C. 4个 D. 1个3. 如果把分式xy x y+中的x 和y 都扩大为原来的4倍,那么分式的值( )A. 扩大为原来的4倍B. 扩大为原来的2倍C. 不变D. 缩小为原来的124. 若将分式2223x x y -与分式2()x x y -通分后,分式2()x x y -的分母变为2(x ﹣y )(x+y ),则分式2223x x y-的分子应变为( )A. 6x 2(x ﹣y )2 B. 2(x ﹣y ) C. 6x 2 D. 6x 2(x+y )5. 分式216x 与13xy -的最简公分母是( )A. 36x y B. 26x y C. 218x y D. 318x y6. 计算a b b ac⋅的结果是( )A. ab abcB. a cC. 1cD. 07. 计算:0(20)-=( )A. 0B. 20C. 1D. 20-8. 若m -n =2,则代数式222m n m m m n-⋅+的值是( )A. -2B. 2C. -4D. 49. 给出以下方程:314x -=,32x =,3152x x +=+,132x x -=,其中分式方程的个数是( )A. 1B. 2C. 3D. 410. 已知113a b +=,114b c+=,115c a +=,则abc ab bc ca =++( )A.13 B. 14C. 15 D. 16二.填空题(共10小题,满分30分)11. 关于x 的方程2312x x x --=-的解为______.12. 已知两分式221x x -+11x +中间阴影覆盖了运算符号.(1)若覆盖了“+”,其运算结果为______;(2)若覆盖了“÷”,并且运算结果为1,则x 的值为______.13. 已知分式5x n x m ++(m ,n 为常数)满足表格中的信息:x 的取值2-0.4q 分式的值无意义03则q 的值是 _____.14. 当x ___________时,分式12x -的值为正数.15. 若关于x 的方程1222x m x x++=--有增根,则m 的值是______________.16. 若0(99)a =,1(0.1)b -=-,25()3c -=-,那么a 、b 、c 三数的大小为 ______.(用“<”连接)17. 代数式12x M x+÷+化简的结果是2x +,则整数M =______.当<2x -时,12x x++______12(填“>”“<”“=”)18. 下列四个分式:22x y x y ++、22x y x y --、22x y x y -+、22x y x y +-,其中最简分式有__________个.19. 受疫情的影响,“84”消毒液需求量猛增,某商场用4000元购进一批“84”消毒液后,供不应求,商场又用6750元购进第二批这种消毒液,所购的瓶数是第一批瓶数的1.5倍,但每瓶单价贵了1元,则该商场第一批购进“84”清毒液每瓶的单价为______元.20. 化简:2222444x y x xy y--+=_____.三.解答题(共6小题,满分90分)21. 已知分式236x x x ---.(1)当x 为何值时,此分式有意义?(2)当x 为何值时,此分式的值为零?22. 计算(1)22346()2x xy y x⋅-;(2)2221221a a a a a a-⋅-++.23. 计算:(1)2301()(48)2-÷⨯; (2)2213(3)34ab ab a b ⋅-24. 先化简,再求值:211211a a a a ⎛⎫÷- ⎪+++⎝⎭,其中1a =.25. 为做好新冠肺炎疫情防控,某学校购入了一批洗手液与消毒液.购买洗手液花费4000元,购买消毒液花费3000元,购买的洗手液瓶数是消毒液瓶数的2倍,每瓶消毒液的价格比每瓶洗手液的价格高5元.(1)求一瓶洗手液的价格与一瓶消毒液的价格分别是多少元?(2)由于疫情还未结束,学校决定再次购入一批相同质量品牌的洗手液与消毒液,洗手液和消毒液的瓶数分别都比第一次的购入量多100瓶.适逢经销商进行价格调整,每瓶洗手液的价格比第一次的价格降低5%4a,每瓶消毒液的价格比第一次的价格降低%a,最终第二次购买洗手液与消毒液的总费用只比第一次购买洗手液与消毒液的总费用多350元,求a的值.26. 已知A、B两地相距a km甲乙两人分别从A、B两地同时匀速出发,若相向而行,则经过a min后两人相遇,若同向而行,则经过b(b a>)min后甲追上乙.(1)试用含a,b的代数式表示甲、乙两人的速度v甲,v乙;(2)若73VV=甲乙,求ab的值;(3)若两人相向而行,第一次相遇后继续按原方向前进,其中甲到达B地后按原路返回.直接写出甲、乙从第一次相遇到再次相遇所需的时间.2022-2023学年湘教新版八年级上册数学《第1章 分式》单元测试卷一.选择题(共10小题,满分30分)【1题答案】【答案】A【解析】【分析】根据分式值为零且分式有意义的条件求解即可.【详解】解:∵分式2(1)(2)44x x x x +--+的值为0, ∴(x +1)(x -2)=0,且x 2-4x +4≠0,解得x =-1或x =2,且x ≠2,∴x =-1故选:A .【点睛】此题考查了分式值为零的条件,分式有意义的条件,熟记分式的知识是解题的关键.【2题答案】【答案】A【解析】【分析】根据一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式判断即可.【详解】解:在1x ,+m n m ,25ab ,23x π中,分式有:1x ,+m n m共2个,其余2个是整式,故选:A .【点睛】本题考查了分式的定义,注意π是数字,熟练掌握分式的定义是解题的关键.【3题答案】【答案】A【解析】【分析】根据分式的基本性质,进行计算即可解答.【详解】解:由题意得:44444x y xy x y x y⋅=++,∴如果把分式xy x y+中的x 和y 都扩大为原来的4倍,那么分式的值扩大为原来的4倍,故选:A .【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.【4题答案】【答案】C【解析】【分析】分式2223x x y -与分式 2()x x y -的公分母是2(x+y )(x ﹣y ),据此作出选择.【详解】解:因为分式2()x x y - 与分式2223x x y- 的公分母是2(x+y )(x ﹣y ),所以分式2()x x y -的分母变为2(x ﹣y )(x+y ),则分式2223x x y- 的分子应变为6x 2故选:C .【点睛】本题考查了通分.通分的关键是确定最简公分母.①最简公分母的系数取各分母系数的最小公倍数.②最简公分母的字母因式取各分母所有字母的最高次幂的积.【5题答案】【答案】B【解析】【分析】两个分母中系数的最小公倍数为6,所有字母因式x 与y 的最高次幂分别是x 2、y ,这三者的乘积则是最简公分母.【详解】分式216x 与13xy -的最简公分母是26x y ,故选:B .【点睛】本题考查了分式的最简公分母,知道如何找最简公分母是解题的关键.【6题答案】【答案】C【解析】【分析】根据分式的乘法运算法则来求解.【详解】解:1a b ab b ac abc c⋅==.故选:C .【点睛】本题主要考查了分式乘法的运算法则,理解约分是解答关键.【7题答案】【答案】C【解析】【分析】根据零指数幂的意义计算即可.【详解】解:0(20)1-= ,故选:C .【点睛】本题考查零指数幂的意义,掌握零指数幂公式01(0)a a =≠是解题的关键.【8题答案】【答案】D【解析】【分析】先因式分解,再约分得到原式=2(m -n ),然后利用整体代入的方法计算代数式的值.【详解】解:原式m n m n m +-=()()•2m m n+=2(m -n ),当m -n =2时,原式=2×2=4.故选:D .【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【9题答案】【答案】B【解析】【分析】利用分式方程的定义:分母中含有未知数的方程,进行逐一判断即可.【详解】解:314x -=中分母不含未知数,不是分式方程;32x=中分母含有未知数,是分式方程;3152x x +=+中分母含有未知数,是分式方程;132x x -=中分母不含未知数,不是分式方程,共有两个是分式方程,故B 正确.故选:B .【点睛】本题主要考查的是分式方程的定义,掌握定义并进行准确判断是解题的关键.【10题答案】【答案】D【解析】【分析】先把原条件通分变形可得3,4,5,ac bc ab ac ab bc abc abc abc +++===再把三式相加,再取倒数即可得到答案.【详解】解:∵113a b +=,114b c +=,115c a +=,∴3,4,5,a b b c a c ab bc ac+++=== ∴3,4,5,ac bc ab ac ab bc abc abc abc+++===22212,ac bc ac abc++∴= 6,ac bc ab abc++∴= ∴ 1.6abc ab bc ca =++故选D【点睛】本题考查的是分式的求值,掌握“倒数法求解分式的值”是解本题的关键.二.填空题(共10小题,满分30分)【11题答案】【答案】45x =【解析】【分析】根据解分式方程的规则进行求解即可,最后必须检验.【详解】解:去分母得:2(2)(2)3x x x x ---=,整理得:54x =,解得:45x =,经检验:4424(2)(2)05525x x -=⨯-=-≠,∴45x =是原方程的解.故答案为:45x =.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题关键,注意一定要对求出来的未知数的值进行检验.【12题答案】【答案】①. 1x - ②. 【解析】【分析】根据分式的加法与解分式方程分别计算即可求解.【详解】(1)221x x -++11x +()()21121111x x x x x x +--+===-++;(2)221x x -+÷111x =+,221111x x x -+⨯=+;221x -=,x ∴=,经检验x =是原方程的解,故答案为:1x -,【点睛】本题考查了分式的混合运算,解分式方程,正确的计算是解题的关键.【13题答案】【答案】4【解析】【分析】由表格中的数据,结合分式值无意义及分式值为0的条件可求解m ,n 值,即可求解分式,利用x q =时,5232q q -=+,计算可求解.【详解】解:由表格可知:当2x =-时0x m +=,且当0.4x =时,50x n +=,解得2m =,2n =-,∴分式为522x x -+,当x q =时,5232q q -=+,解得4q =,经检验,4q =是分式的解,故答案为:4.【点睛】本题主要考查分式的值,分式有意义的条件及分式的值为零的条件,解分式方程,求解m ,n 值是解题的关键.【14题答案】【答案】2x >【解析】【分析】根据题意可知分子10>,只要分母20x ->即可求解.【详解】解:∵分式12x -的值为正数,∴20x ->,解得2x >.故答案为:2x >.【点睛】本题考查了分式的值,根据题意列出不等式是解题的关键.【15题答案】【答案】-1【解析】【分析】利用分式方程解法的一般步骤解分式方程,令方程的解为2得到关于m 的方程,解方程即可得出结果.【详解】解:去分母得:1−(x +m )=2(x −2),去括号得:1−x −m =2x −4,移项,合并同类项得:−3x =m −5,∴53m x -=.∵关于x 的方程1222x m x x ++=--有增根,∴x =2∴523m -=,∴m =−1.故答案为:−1.【点睛】本题主要考查了解分式方程,分式方程的增根,理解分式方程增根的意义解答是解题的关键.【16题答案】【答案】b<c<a【解析】【分析】利用零指数幂的意义,负整数指数幂的意义分别计算a ,b ,c 的值,再进行大小比较,即可得出答案.【详解】解:∵0(99)a =,1(0.1)b -=-,25()3c -=-,∴1a =,10b =-,925c =,又∵910125-<<,∴b<c<a ,故答案为:b<c<a .【点睛】本题考查零指数幂,负整数指数幂,解题的关键是熟练掌握:01a =,1-=m ma a .【17题答案】【答案】①. 1x +##1x + ②. >【解析】【分析】根据题意可得()122x M x x+=⋅++,即可求解;然后把12x x ++变形为112x-+,即可求解.【详解】解:根据题意得:()122x M x x +=⋅++1x =+;∵12111222x x x x x++-==-+++,∵<2x -,即20x +<∴102x<+,∴102x->+,∴1112x ->+,即112x x+>+,∴1122x x +>+.故答案为:1x +,>【点睛】本题主要考查了分式的乘法运算以及化简,熟练掌握分式的运算法则是解题的关键.【18题答案】【答案】2##两【解析】【分析】最简分式是分式的分子、分母没有非零的公因式,即不能再约分,据此判断即可解答.【详解】解:22x y x y ++是最简分式,22x y x y --()()x y x y x y -=+-1x y=+,不是最简分式,22x y +是最简分式,22x y x y +-()()x y x y x y +=+-1x y=-,不是最简分式,故最简分式有2个,故答案为:2.【点睛】本题考查最简最简分式,判断一个分式是最简分式,主要看分式的分子、分母是不是有公因式.【19题答案】【答案】8【解析】【分析】设该商场第一批购进“84”清毒液每瓶的单价为x 元,根据所购的瓶数是第一批瓶数的1.5倍列分式方程解答.【详解】解:设该商场第一批购进“84”清毒液每瓶的单价为x 元,由题意得400067501.51x x ⨯=+,解得x =8,经检验,x =8是原方程的解,故答案为:8.【点睛】此题考查了分式方程的实际应用,正确理解题意列得分式方程是解题的关键.【20题答案】【答案】22x y x y +-【解析】【分析】先根据平方差公式和完全平方公式把分子与分母进行整理,然后进行约分即可.【详解】解:原式()()()2222x y x y x y -+=-2x y=-,故答案为:22x y x y +-.【点睛】此题考查了约分,用到的知识点是平方差公式和完全平方公式,关键是把要求的式子进行变形.三.解答题(共6小题,满分90分)【21题答案】【答案】(1)x ≠3且x ≠﹣2 (2)x =﹣3【解析】【分析】(1)根据分式有意义的条件是分母不等于零列出不等式计算即可;(2)根据分式值为零的条件是分子等于零且分母不等于零列式计算.【详解】(1)由题意得:x 2﹣x ﹣6≠0,解得:x ≠3且x ≠﹣2;(2)由题意得:|x |﹣3=0且x 2﹣x =6≠0,解得:x =﹣3,则当x =﹣3时,此分式的值为零.【点睛】本题考查了是的是分式有意义和分式值为零的条件,掌握分式有意义的条件和分式值为零的条件是解题的关键.【22题答案】【答案】(1)334x y- (2)2a 1-【解析】【分析】(1)先计算乘方,再计算乘法并化简;(2)先将分子与分母分解因式,再计算乘法并化简即可.【小问1详解】原式=623468x xy y x-⋅ =334x y-;【小问2详解】原式=()()()()211211a a a a a a +-⋅+- =2a 1-.【点睛】此题考查了分式的计算,正确掌握分式的计算法则及运算顺序是解题的关键.【23题答案】【答案】(1)116;(2)233214a b a b -【解析】【分析】(1)先算乘方,再算括号,后算除法即可;(2)根据单项式与多项式的乘法法则计算即可;【详解】解:(1)原式=4(641)÷⨯=464÷=116;(2)原式=221313343ab ab ab a b ⨯⨯-=233214a b a b -.【点睛】本题考查了负整数指数幂、零指数幂的意义,以及单项式与多项式的乘法计算,熟练掌握运算法则是解答本题的关键.【24题答案】【答案】11a +,12【解析】【分析】根据分式的运算法则,先计算括号里的,再将除法转化为乘法,对分子分母因式分解后约分化简,再将1a =代入化简得代数式即可求解.【详解】解:211211a a a a ⎛⎫÷- ⎪+++⎝⎭2112111a a a a a a +⎛⎫=÷- ⎪++++⎝⎭ 2211a a a a a =÷+++()211aa aa +=⨯+11a =+,将1a =代入上式得:原式11112==+.【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则及运算顺序是解决问题的关键.【25题答案】【答案】(1)一瓶洗手液的价格为 10元,一瓶消毒液的价格为15 元 (2)20【解析】【分析】(1)设一瓶洗手液的价格为x 元,则一瓶消毒液的价格为(x +5)元.根据题意可列出关于x 的分式方程,求出x 即可.(2)先求出第二次购入洗手液和消毒液各多少瓶,再结合题意列出关于a 的一元一次方程,解出a 即可.【小问1详解】解:设一瓶洗手液的价格为x 元,则一瓶消毒液的价格为(x +5)元.根据题意可列方程:4000300025x x =⨯+,解得:10x =,经检验8x =是原方程得解.∴一瓶洗手液的价格为10元,一瓶消毒液的价格为8+7=15元,答:一瓶洗手液的价格为10元,一瓶消毒液的价格为15元.【小问2详解】解:第二次购入洗手液400010050010+=瓶,购入消毒液300010030015+=瓶.根据题意可列等式:550010(1%)30015(1%)400030003504a a ⨯⨯-+⨯⨯-=++.解得:20a =.【点睛】本题考查一元一次方程和分式方程的实际应用.根据题意找准等量关系,列出相应方程是解答本题的关键.【26题答案】【答案】(1)v 甲=2a b b +,v 乙=2b a b - (2)25 (3)()b b a a b -+min【解析】【分析】(1)根据同向而行和相向而行分别列出方程,解之即可;(2)根据(1)中结果,得到73a b b a +=-,解之即可;(3)根据题意列出算式,再计算可得结果.【小问1详解】解:由已知可得()()a v v ab v v a ⎧+=⎪⎨-=⎪⎩甲乙甲乙,2a b v b +∴=甲,2b a v b-=乙;【小问2详解】73v a b v b a +==-甲乙,∴()()37a b b a +=-,∴3377a b b a +=-,∴104a b =,∴25a b =;【小问3详解】2()222b a a b b a a b a b b b-+-⋅⨯÷-=-.答:甲、乙从第一次相遇到再次相遇所需的时间为()min b a -.【点睛】本题考查了二元一次方程组,列分式及其计算,熟练运用路程公式是解题的关键.。
八年级上册数学《分式》单元测试题(带答案)
[答案]B
[解析]
[详解]解:去分母得:
由分式方程无解,得到 即
把 代入整式方程得:
故选B.
5.一份工作,甲单独做需A天完成,乙单独做需B天完成,则甲乙两人合作一天的工作量是()
A.A+BB. C. D.
[答案]D
[解析]
[分析]
甲、乙合做一天的工作量=甲一天的工作量+乙一天的工作量,把相关数值代入即可.
15.已知 ,则 =_____.
16.某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用时间相等,那么他 步行速度为_____千米/小时.
三.解答题(共72分,共8小题)
17.解下列分式方程:
(1) ;
(2) .
18.化简求值: ,其中x=1.
19.开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元
参考答案
第Ⅰ卷(选择题)
一.选择题(每小题3分,共10小题)
1.若把 变形为 ,则下列方法正确的是
A.分子与分母同时乘 B.分子与分母同时除以
C.分子与分母同时乘 D.分子与分母同时除以
[答案]B
[解析]
[分析]
把 中的分母利用平方差因式分解,再根据分式的基本性质即可解答.
[详解]根据分式的基本性质可得:
∴ = × ,
解得x=27,
经检验x=27是原方程的解,且符合题意.
即:小王用自驾车方式上班平均每小时行驶27千米.
故答案选:B.
[点睛]本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.
初中数学湘教版八年级上册第1章 分式1.3 整数指数幂-章节测试习题(2)
章节测试题1.【答题】已知1纳米=0.000 000 001米,则36纳米用科学记数法表示为()A.B.C.D.【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:36纳米=0.000 000 001×36米=3.6×10﹣8米;选B.方法总结:本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【答题】人体血液中,红细胞的直径约为0.0000077m.用科学记数法表示0.0000077m是()A. 0.77×10﹣5B. 7.7×10﹣5C. 7.7×10﹣6D. 77×10﹣7【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:绝对值小于1的正数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.选C.3.【答题】下列计算正确的是()A. 30=0B. ﹣|﹣3|=﹣3C. 3-1=﹣3D. =±3【答案】B【分析】根据负整数指数幂的运算法则、零指数幂、绝对值的性质等进行运算即可.【解答】解:A、30=1,故A错误;B、,故B正确;C、故C错误;D、,故D错误.选B.4.【答题】将0.000 102用科学记数法表示为()A. 1.02×104B. 1.02×I05C. 1.02×106D. 102×103【答案】A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 102=1.02×104选A.5.【答题】下列式子一定成立的是()A. ;B. ;C. ;D. .【答案】D【分析】根据负整数指数幂的运算法则和整式的运算等进行运算即可.【解答】A选项中,因为,所以A中计算错误;B选项中,因为,所以B中计算错误;C选项中,因为,所以C中计算错误;D选项中,因为,所以D中计算正确.选D.6.【答题】若,,,则a、b、c的大小关系是()A. a>b>cB. c=b>aC. a>c>bD. c>a>b【答案】D【分析】根据负整数指数幂的运算法则进行运算比较即可.【解答】∵,=-1,=1,∴c>a>b.选D.7.【答题】计算(﹣2)0的结果是()A. 1B. 0C. ﹣1D. ﹣2【答案】A【分析】根据零指数幂进行运算即可.【解答】解:原式=1选A.8.【答题】下列计算正确的是()A. a3﹣a2B. (ab3)2=a2b5C. 3a2•a﹣1=3aD. a6÷a2=a3【答案】C【分析】根据负整数指数幂的运算法则进行运算即可.【解答】A、∵a3与a 2不是同类项,无法计算,故此选项错误;B、∵(ab3)2=a2b6,故此选项错误;C、∵3a2·a﹣1=3a,正确;D、∵a6÷a2=a4,故此选项错误;选C.9.【答题】新亚商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为()A. 2×10﹣5B. 5×10﹣6C. 5×10﹣5D. 2×10﹣6【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,20万分之一=0.000 005=5×10﹣6,选B.10.【答题】计算|﹣6|﹣(﹣)0的值是()A. 5B. ﹣5C. 5D. 7【答案】A【分析】根据零指数幂和绝对值进行运算即可.【解答】|﹣6|﹣(﹣)0=6﹣1=5选A.11.【答题】有一种球状细菌,直径约为0.0000000018m,那么0.0000000018用科学记数法表示为()A. 18×10﹣10B. 1.8×10﹣9C. 1.8×10﹣8D. 0.18×10﹣8【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000000018= 1.8×10﹣9,选B.12.【答题】生物界和医学界对病毒的研究从来没有停过脚步,最近科学家发现了一种病毒的长度约为0.00000456mm,则数据0.00000456用科学记数法表示为()A. 4.56×10﹣5B. 0.456×10﹣7C. 4.56×10﹣6D. 4.56×10﹣8【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.00000456=4.56×10﹣6,选C.13.【答题】将3﹣1x(x+y)﹣3写成只含有正整数指数幂的形式是()A.B.C.D.【答案】B【分析】根据负整数指数幂的运算法则进行运算即可.【解答】根据负整数指数幂的意义,=(a≠0),所以3﹣1x(x+y)﹣3=,选B.14.【答题】下列计算正确的是()A. (﹣x3)2=x5B. (﹣3x2)2=6x4C. (﹣x)-2=D. x8÷x4=x2【答案】C【分析】根据负整数指数幂的运算法则和整式的乘方进行运算即可.【解答】根据积的乘方,可知(﹣x3)2=x6,故不正确;(﹣3x2)2=9x4,故不正确;根据负整指数幂的性质,可知(﹣x)﹣2==,故正确;根据同底数幂相除,可知x8÷x4=x4,故不正确.选C.15.【答题】下列算式正确的是()A. —30=1B. (—3)—1=C. 3—1= —D. (π—2)0=1【答案】D【分析】根据负整数指数幂的运算法则和零指数幂进行运算即可.【解答】解: A.﹣30=﹣1,故A错误;B.(﹣3)﹣1=﹣,故B错误;C.3﹣1=,故C错误;D.正确.选D.16.【答题】如果a=(-5) 2,b=(-0.1)-2,c=,那么a、b、c三数的大小为()A. a>b>cB. b>a>cC. a>c>bD. c>a>b【答案】B【分析】根据负整数指数幂的运算法则进行运算即可.【解答】解:选B.17.【答题】纳米是一种长度单位:1纳米米,某种植物花粉的直径约为50•纳米,那么用科学记数法表示该种花粉的直径为()A. 米B. 米C. 米D. 米【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:50纳米=50×10-9米= 5×10-8米.选C.18.【答题】生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA 分子直径约为0.000000201cm,这个数量用科学记数法可表示为()A. cmB. cmC. cmD. cm【答案】D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000201cm用科学记数法可表示为cm.选D.19.【答题】若,,,,则、、、大小关系正确的是()A.B.C.D.【答案】B【分析】根据负整数指数幂的运算法则进行运算即可.【解答】解:选B.20.【答题】将,,这三个数按从小到大的顺序排列,正确的结果是()A.B.C.D.【答案】D【分析】根据负整数指数幂的运算法则进行运算比较即可.【解答】解:选D.。
八年级数学上册第1章分式单元综合测试1含解析湘教版
《第1章分式》一、选择题1.下面各式中,x+y,,,﹣4xy,,分式的个数有()A.1个B.2个C.3个D.4个2.已知x≠y,下列各式与相等的是()A.B.C.D.3.要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠4.下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a ﹣1.其中,正确的是()A.①B.①②C.②③④D.①②③④5.若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.06.若把分式中的x和y都扩大3倍,且x+y≠0,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍7.如果分式的值为正整数,则整数x的值的个数是()A.2个B.3个C.4个D.5个8.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.9.若x满足=1,则x应为()A.正数B.非正数C.负数D.非负数10.已知=3,则的值为()A.B.C.D.﹣11.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.412.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.8113.x克盐溶解在a克水中,取这种盐水m克,其中含盐()克.A.B.C.D.二、填空题:14.分式、、的最简公分母是.15.已知,用x的代数式表示y=.16.若5x﹣3y﹣2=0,则105x÷103y=.17.若ab=2,a+b=﹣1,则的值为.18.计算6x﹣2(2x﹣2y﹣1)﹣3=.19.瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.20.使分式方程产生增根,m的值为.21.已知:=+,则A=,B=.22.当x=时,代数式和的值相等.23.用科学记数法表示:0.000000052=.24.计算=.三、解答题25.计算题(1)+(2)﹣(3)(﹣1)2+()﹣4﹣5÷(2005﹣π)0(4)1﹣÷(5)﹣a﹣b.26.解分式方程:(1)(2).27.有一道题:“先化简,再求值:()÷其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3",但她的计算结果也是正确的,请你解释这是怎么回事?28.点A、B在数轴上,它们所对应数分别是,且点A、B关于原点对称,求x的值.29.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?30.若,,求的值.湘教新版八年级数学上册《第1章分式》单元测试卷(1)参考答案与试题解析一、选择题1.下面各式中,x+y,,,﹣4xy,,分式的个数有()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在,的分母中含有字母,属于分式.在x+y,﹣4xy,的分母中不含有字母,属于整式.故选:B.【点评】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.已知x≠y,下列各式与相等的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分式的基本性质可以得到答案.【解答】解:∵x≠y,∴x﹣y≠0,∴在分式中,分子和分母同时乘以x﹣y得到:,∴分式和分式是相等的,∴C选项是正确的,故选:C.【点评】本题主要考查了分式的基本性质,解题的关键是熟练掌握分式的基本性质,此题基础题,比较简单.3.要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠【考点】分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母不能为0,即3x﹣7≠0,解得x.【解答】解:∵3x﹣7≠0,∴x≠.故选D.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.4.下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a ﹣1.其中,正确的是()A.①B.①②C.②③④D.①②③④【考点】负整数指数幂;零指数幂.【分析】①、④根据同底数幂作答;②由幂的乘方计算法则解答;③由零指数幂的定义作答.【解答】解:①a m.a n=a m+n,同底数幂的乘法:底数不变,指数相加;正确;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn,根据幂的乘方计算法则,正确;③若a≠b且ab≠0,当a=﹣b即a+b=0时,(a+b)0=1不成立,任何非零有理数的零次幂都等于1,错误;④∵a是自然数,∴当a=0时,a﹣3.a2=a﹣1不成立,错误.故选B.【点评】本题主要考查的是同底数幂的乘法、幂的乘方、零指数幂等知识.5.若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.0【考点】分式的值为零的条件.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,2x﹣4=0,∴x=2不满足条件.当x=﹣2时,2x﹣4≠0,∴当x=﹣2时分式的值是0.故选:B.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.6.若把分式中的x和y都扩大3倍,且x+y≠0,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍【考点】分式的基本性质.【分析】把原式中的x、y分别换成3x、3y进行计算,再与原分式比较即可.【解答】解:把原式中的x、y分别换成3x、3y,那么=×,故选C.【点评】本题考查了分式的基本性质,解题关键是用到了整体代入的思想.7.如果分式的值为正整数,则整数x的值的个数是()A.2个B.3个C.4个D.5个【考点】分式的值.【分析】由于x是整数,所以1+x也是整数,要使为正整数,那么1+x只能取6的正整数约数1,2,3,6,这样就可以求得相应x的值.【解答】解:由题意可知1+x为6的正整数约数,故1+x=1,2,3,6由1+x=1,得x=0;由1+x=2,得x=1;由1+x=3,得x=2;由1+x=6,得x=5.∴x为0,1,2,5,共4个,故选C.【点评】认真审题,抓住关键的字眼,是正确解题的出路.如本题“整数x”中的“整数”,“的值为正整数”中的“正整数”.8.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.【考点】列代数式(分式).【分析】房间数=住进房间人数÷每个房间能住的人数;一人无房住,那么住进房间的人数为:m﹣1.【解答】解:住进房间的人数为:m﹣1,依题意得,客房的间数为,故选A.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.9.若x满足=1,则x应为()A.正数B.非正数C.负数D.非负数【考点】分式的值;绝对值.【分析】根据=1可以得到x=|x|,根据绝对值的定义就可以求解.【解答】解:若x满足=1,则x=|x|,x>0,故选A.【点评】此题是分式方程,在解答时要注意分母不为0.10.已知=3,则的值为()A.B.C.D.﹣【考点】分式的基本性质.【分析】先把分式的分子、分母都除以xy,就可以得到已知条件的形式,再把=3,代入就可以进行计算.【解答】解:根据分式的基本性质,分子分母都除以xy得,==.故选B.【点评】解答本题关键在于利用分式基本性质从所求算式中整理出已知条件的形式,再进行代入计算,此方法中考题中常用,是热点.11.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.4【考点】由实际问题抽象出分式方程.【分析】关键描述语是:“3人挖出的土1人恰好能全部运走”.等量关系为:挖土的工作量=运土的工作量,找到一个关系式,看变形有几个即可.【解答】解:设挖土的人的工作量为1.∵3人挖出的土1人恰好能全部运走,∴运土的人工作量为3,∴可列方程为:,即,72﹣x=,故①②④正确,故正确的有3个,故选C.【点评】解决本题的关键是根据工作量得到相应的等量关系,难点是得到挖土的人的工作量和运土的人的工作量之间的关系.12.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.81【考点】分式的混合运算.【分析】由于()2÷()2=3,首先利用积的乘方运算法则化简,然后结合所求代数式即可求解.【解答】解:∵()2÷()2=3,∴×=3,∴a4b2=3,∴a8b4=(a4b2)2=9.故选B.【点评】此题主要考查了分式的混合运算,解题时首先把等式利用积的乘方法则化简,然后结合所求代数式的形式即可求解.13.x克盐溶解在a克水中,取这种盐水m克,其中含盐()克.A.B.C.D.【考点】列代数式(分式).【分析】盐=盐水×浓度,而浓度=盐÷(盐+水),根据式子列代数式即可.【解答】解:该盐水的浓度为,故这种盐水m千克,则其中含盐为m×=千克.故选:D.【点评】本题考查了列代数式,解决问题的关键是找到所求的量的等量关系.本题需注意浓度=溶质÷溶液.二、填空题:14.分式、、的最简公分母是6abc.【考点】最简公分母.【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:因为三分式中的常数项系数的最小公倍数是6,a 的最高次幂是1,b的最高次幂是1,c的最高次幂是1,所以三分式的最简公分母是6abc.故答案为:6abc.【点评】本题主要考查了最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.15.已知,用x的代数式表示y=.【考点】等式的性质.【分析】根据等式的基本性质可知:先在等式两边同乘(y﹣1),整理后再把x的系数化为1,即可得答案.【解答】解:根据等式性质2,等式两边同乘(y﹣1),得y+1=x (y﹣1)∴y+1=xy﹣x,∴y(x﹣1)=1+x∴y=.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.16.若5x﹣3y﹣2=0,则105x÷103y=100.【考点】同底数幂的除法.【分析】根据同底数幂的除法法则,可将所求代数式化为:105x ﹣3y,而5x﹣3y的值可由已知的方程求出,然后代数求值即可.【解答】解:∵5x﹣3y﹣2=0,∴5x﹣3y=2,∴105x÷103y=105x﹣3y=102=100.【点评】本题主要考查同底数幂的除法运算,整体代入求解是运算更加简便.17.若ab=2,a+b=﹣1,则的值为.【考点】分式的加减法.【分析】先将分式通分,再将ab=2,a+b=﹣1代入其中即可得出结论.【解答】解:原式===﹣.故答案为﹣.【点评】本题考查了分式的加减运算.解决本题首先应通分,然后整体代值.18.计算6x﹣2(2x﹣2y﹣1)﹣3=x4y3.【考点】单项式乘单项式;幂的乘方与积的乘方;负整数指数幂.【分析】结合单项式乘单项式的运算性质:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.进行求解即可.【解答】解:原式=6x﹣2x6y3=x4y3.故答案为:x4y3.【点评】本题考查了单项式乘单项式的知识,解答本题的关键在于熟练掌握该知识点的概念和运算性质.19.瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.【考点】规律型:数字的变化类.【分析】分子的规律依次是,32,42,52,62,72,82,92…,分母的规律是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,所以第七个数据是.【解答】解:由数据,,,可得规律:分子是,32,42,52,62,72,82,92分母是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,∴第七个数据是.故答案为:.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.20.使分式方程产生增根,m的值为±.【考点】分式方程的增根.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣3),得x﹣2(x﹣3)=m2∵原方程有增根,∴最简公分母x﹣3=0,即增根是x=3,把x=3代入整式方程,得m=±.故答案为:±.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.21.已知:=+,则A=1,B=2.【考点】分式的加减法.【分析】已知等式右边两项通分并利用同分母分式的加法法则计算,利用多项式相等的条件即可求出A与B的值.【解答】解:∵==,∴A+B=3,﹣2A﹣B=﹣4,解得:A=1,B=2,故答案为:1;2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.22.当x=9时,代数式和的值相等.【考点】解分式方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:=,去分母得:2x+3=3x﹣6,解得:x=9,经检验x=9是分式方程的解,故答案为:9【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.用科学记数法表示:0.000000052=5。
八年级上册数学《分式》单元检测含答案
一、填空题
1.下列等式成立的是().
A. B.
C. (x≠0)D.
[答案]C
[解析]
[分析]
根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.
[详解]解:A.分式的分子分母都加上x,分式的值一般会改变,故A错误;
B.分式的分子分母都减去x,分式的值一般会改变,故B错误;
C.分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C正确;
20.A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.
21.人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.
12.分式 , , 的最简公分母是________.
13. __________.
14.计算: =______________.
15.分式 的最简公分母是_____________.
三、解答题
16.化简:
17.计算: + .
18 解方程: .
19.若有理数A,B满足|A-1|+|A B-3|=0,试求 +…+ 的值.
D.该方程符合分式方程的定义,属于分式方程,故本选项错误.
故选B.
[点睛]本题考查了分式方程的定义:分母中含有未知数的方程叫做分式方程.
二、填空题
11 当A=_____时,分式 无意义.
[答案]
[解析]
[分析]
根据分式无意义的条件是分母等于0解答即可.
湘教版2020八年级数学第一章分式自主学习能力达标测试卷A卷(附答案详解)
∵分式 有意义,
∴ ,
∴ .
故选: .
【点睛】
考查了分式有意义的条件,解题关键抓住分式有意义的条件(分母不为0)列出不等式.
5.B
【解析】
【分析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a× ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
(1)将分式 化为带分式;
(2)当x取哪些整数值时,分式 的值也是整数?
(3)当x的值变化时,分式 的最大值为.
27.(1)计算:
(2)解方程:
28.(1)先化简,再求值: ,其中 .
(2)先化简 ,然后将 、 、 、1、 中,所有你认为合适的数作为 的值,代入求值.
参考答案
1.B
【解析】
【分析】
根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=10亩,根据等量关系列出方程即可.
【详解】
0.000002019= ,故选B.
【点睛】
本题考查了用科学记数法表示较小的数,一般形式为a× ,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
6.B
【解析】
【分析】
结合幂的乘方与积的乘方的概念和运算法则进行求解即可.
【详解】
解:A、(-3)2=9≠-9,本选项错误;
(2) a2b4+ ÷ ;
(3)(2x+y+z)(2x+y-z);
(4)先化简,再求值:
(3x+2)(3x-2)-5x(x-1)-(2x-1)2,其中x=- .
26.请仔细阅读下面材料,然后解决问题:
在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”.例如: , ;当分子的次数小于分母的次数时,我们称之为“真分式”,例如: , .我们知道,假分数可以化为带分数,例如: = =2+ =2 ,类似的,假分式也可以化为“带分式”(整式与真分式和的形式),例如: = =1+ .
八年级数学上册第一章分式测试题
八年级数学上册分式综合水平测试一、选择题:(每小题2分,共20分) 1.下列各式:2b a -,x x 3+,πy +5,()1432+x ,b a b a -+,)(1y x m -中,是分式的共有( )A.1个B.2个C.3个D.4个 2.下列判断中,正确的是( )A .分式的分子中一定含有字母B .当B =0时,分式B A无意义C .当A =0时,分式BA的值为0(A 、B 为整式)D .分数一定是分式 3.下列各式正确的是( )A .11++=++b a x b x aB .22xy x y = C .()0,≠=a ma na m n D .a m a n m n --= 4.下列各分式中,最简分式是( )A .()()y x y x +-8534B .y x x y +-22C .2222xy y x y x ++D .()222y x y x +- 5.化简2293mmm --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m-3 6.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍7.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .9448448=-++x xB .9448448=-++x x C .9448=+x D .9496496=-++x x 8.已知230.5x y z==,则32x y z x y z +--+的值是( )A .17 B.7 C.1 D.139.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.47 10.已知226a b ab +=,且0a b >>,则a ba b+-的值为( )A .2B .2±C .2D .2±二、填空题:(每小题2分,共16分)11.分式392--x x 当x _________时分式的值为零,当x ________时,分式x x 2121-+有意义.12.利用分式的基本性质填空: (1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 13.分式方程1111112-=+--x x x 去分母时,两边都乘以 . 14.要使2415--x x 与的值相等,则x =__________. 15.计算:=+-+3932a a a __________. 16. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 17.若分式231-+x x 的值为负数,则x 的取值范围是__________.18. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:(共64分) 19.计算:(6分)(1)11123x x x ++ (2)3xy 2÷xy 2620. 计算:(3分) ()3322232n mn m --⋅21. 计算(8分)(1)168422+--x x xx (2)m n n n m m m n n m -+-+--222.(7分) 先化简,后求值:222222()()12a a a a a b a ab b a b a b-÷-+--++-,其中2,33a b ==-23. 解下列分式方程.(8分) (1)xx 3121=- (2)1412112-=-++x x x24. 计算:(8分) (1)1111-÷⎪⎭⎫ ⎝⎛--x xx (2)4214121111x x x x ++++++-25.(8分)已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.(6分)先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).27.(10分)某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?答案一、选择题1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.A 9.B 10.A 二、填空题(每小题3分,共24分)11.=-3、≠1212.26a 、2a - 13.(1)(1)x x +- 14.6 15.3a - 16. 17.-1<x <23 18.2(提示:设24y y m +=,原方程变形为211x m x m -=--,方程两边同时乘以(1)(1)x m --,得(1)(1)(2)x m x m -=--,化简得m x +=2,即24y y m ++=2.三、解答题(共56分) 19.(1)原式=632666x x x ++=116x(2)原式=2236xxyy=212x 20.原式=243343m n m n -=1712m n - 21.(1)原式=2(4)(4)x x x --=4x x - (2)原式=2m n m n m n m n m n-++----=2m n m n m n -++--=m m n --22.原式=22222()()[]1()()()a a a a b a a b a b a b a b a b --÷-+--+--=2222()[]1()()()a ab a a a b a a b a b a b ----÷+-+-=2()()1()ab a b a b a b ab -+-÷+-- =a b a b a b a b +-+--=2aa b- 当2,33a b ==-时,原式=2232(3)3⨯--=43113=411 23.(1)方程两边同时乘以3(2)x x -,得32x x =-,解得x =-1,把x =-1代入3(2)x x -,3(2)x x -≠0,∴原方程的解,∴原方程的解是x =-1.(2)方程两边同乘以最简公分母(1)(1)x x +-,得4)1(2)1(=++-x x ,解这个整式方程得,1=x ,检验:把1=x 代入最简公分母(1)(1)x x +-,(1)(1)x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解.24.(1)原式=1111x x x-⎛⎫+⎪-⎝⎭=1111x x x x -+--=11x x x x --=1 (2)原式=241124(1)(1)(1)(1)11x x x x x x x x +-+++-+-+++ =224224111x x x ++-++=22222242(1)2(1)4(1)(1)(1)(1)1x x x x x x x +-++-++-+ =2222422224(1)(1)1x x x x x ++-+-++=444411x x +-+=4444444(1)4(1)(1)(1)(1)(1)x x x x x x +-+-++- =4484(1)4(1)1x x x ++--=881x -25.原式=222218339x x x x +-++--=22(3)2(3)(218)9x x x x --+++-2269x x +-=2(3)(3)(3)x x x ++-=23x -,∵918232322-++-++x x x x 是整数,∴23x -是整数, ∴3x -的值可能是±1或±2,分别解得x =4,x =2,x =5,x =1,符合条件的x 可以是1、2、4、5.26.①241≤x ≤300;②x m 12-,6012+-x m27.设原计划每小时加工x 个零件,根据题意得:1500150052x x-=,解得x =150,经检验,x =150是原方程的根,答:设原计划每小时加工150个零件.八 年 级 数 学 试 题一、选择题(每题3分,共24分)得 分评 卷 人1. 下列图案是轴对称图形的有( )A .1个B .2个C .3个D .4个 2.如果一个有理数的平方根和立方根相同,那么这个数是( )A. ±1B. 1C. 0D. 0和13. 下列说法:①用一张底片冲洗出来的2张1寸相片是全等形;②所有的正五边形是全等形;③全等形的周长相等;④面积相等的图形一定是全等形.其中正确的是( ) A. ①②③ B .①③④ C .①③ D .③4.将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后//A B E B 与与在同一条直线上,则∠CBD 的度数 ( ) A. 大于90° B. 等于90° C. 小于90° D. 不能确定 5. ( )A .9B .9±C .3D .3± 6. 估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D . 5与6之间 7. 如图1所示,将矩形纸片先沿虚线AB 按箭头方向向右对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )B B图1AEBDC A 'E 'A.B.C.D.8.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个二、填空题(每题4分,共32分)9. 无理数3-的相反数是_______,绝对值是___________.10. 在-3-1,0 这四个实数中,最大的是________,最小的是___________.11. 以下是一个简单的数值运算程序:当输入x的值为4-时,则输出的结果为___________.12. 已知等腰三角形的一个内角为70°,则另外两个内角的度数是___________ .13. 如图,△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.14. 如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB 于点E.若PE=2,则两平行线AD与BC间的距离为___________.(第13题图)15.如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB•的对称点,线得分评卷人段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是20cm ,则线段MN 的长是___________. 16. 如图所示,90E F ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有__________.(第15题图) ( 第16题图) 三、解答题(共56分)17. 计算(每小题5分,共10分)(1)(212()2-18.(6分)自由下落的物体的高度h (m )与下落时间t (s )的关系为h =4.9t 2.有一学生不慎让一个玻璃杯从19.6m 高的楼上自由下落,刚好另一学生站在与下落的玻璃杯同一直线的地面上,在玻璃杯下落的同时楼上的学生惊叫一声,这时楼下的学生能躲开吗(声音的速度为340m /s )?得 分评 卷 人19.(6分)已知:如图,D 是△ABC 的边AB 上一点, DF 交AC 于点E , DE =FE , FC ∥AB .求证:AD =CF .20. (6分)如图,写出A 、B 、C 关于y 轴对称的点坐标,并作出与△ABC 关于x 轴对称的图形.EABDC21. (8分) 认真观察下图4个图中阴影部分构成的图案,回答下列问题: (1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________; 特征2:_________________________________________________.(2)请在下图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征22.(8分) 如图,两条公路AB ,AC 相交于点A ,现要建个车站D ,使得D 到A 村和B 村的距离相等,并且到公路AB 、AC 的距离也相等. (1) 请在图1中画出车站的位置.(2) 若将A 、B 抽象为两个点,公路AC 抽象为一条直线,请在直线AC 上找一个点M ,使△ABM23.(10分)在△ABC 中,AB =CB ,∠ABC =90º,F 为AB 延长线上一点,点E 在BC 上,且DDAE =CF .(1)求证:Rt △ABE ≌Rt △CBF ; (2)若∠CAE =30º,求∠ACF 度数.24.(10分)数学课上,李老师出示了如下框中的题目.A小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论:AE DB (填“>”,“<”或“=”).BCEF(2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“<”或“=”).理由如下:如图2,过点E 作//EF BC ,交AC 于点F . (请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC ∆的边长为1,2AE =,求CD 的长(请你直接写出结果).一、选择题(24分)1. B2. C3. C4. B5. D6. C7. D8. A 二、填空题(32分)9. 3,3 ; 10. 0, -3; 11. 2 ; 12. 70°40°或55°55°;13. AC ,∠CAE ; 14. 4 ; 15. 20cm ; 16.①③④. 三、解答题(64分)17.(10分) (1)原式=7)2(9.061+--⨯…………………………2分 =7210961++⨯ ……………………………4分 =2039 …………………………………5分(2) 原式=)2(164222-⨯-+-…………………2分 =324222++-……………………………4分 = 24334-………………………………… 5分 18. (6分)解:根据题意得 6.199.42=t …………………1分 9.46.192=t …………………2分 2=t …………………3分声音传播所用的时间是 )(6.03406.19s ≈÷ …………………4分 因为 6.0< 2…………………………………5分答:楼下的学生能躲开。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章检测卷时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.要使分式3x -2有意义,则x 的取值应满足( )A .x >2B .x <2C .x ≠-2D .x ≠2 2.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为( )A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-73.根据分式的基本性质,分式-aa -b 可变形为( )A.a -a -bB.a a +b C .-a a -b D .-a a +b4.如果分式xy x +y 中的x 、y 都扩大为原来的2倍,那么所得分式的值( )A .扩大为原来的2倍B .缩小为原来的12C .不变D .不确定5.化简a +1a 2-a ÷a 2-1a 2-2a +1的结果是( )A.1aB .a C.a +1a -1 D.a -1a +16.若分式||x -4x 2-2x -8的值为0,则x 的值为( )A .4B .-4C .4或-4D .-27.速录员小明打2500个字和小刚打3000个字所用的时间相同,已知小刚每分钟比小明多打50个字,求两人的打字速度.设小刚每分钟打x 个字,根据题意列方程,正确的是( )A.2500x =3000x -50B.2500x =3000x +50C.2500x -50=3000xD.2500x +50=3000x8.下面是一位同学所做的6道题:①(-3)0=1;②a 2+a 3=a 6;③(-a 5)÷(-a )3=a 2;④4a -2=14a2;⑤(xy -2)3=x 3y -6;⑥⎝⎛⎭⎫a b 2÷⎝⎛⎭⎫b a -2=1.他做对的个数是( ) A .4个 B .3个 C .2个 D .1个9.对于非零的两个数a ,b ,规定a ⊕b =1b -1a .若1⊕(x +1)=1,则x 的值为( )A.32 B .1 C .-12 D.1210.若解分式方程k x -2=k -x 2-x -3产生增根,则k 的值为( )A .2B .1C .0D .任何数二、填空题(每小题3分,共24分)11.已知分式2x +1x +2,当x =________时,分式没有意义;当x =________时,分式的值为0;当x =2时,分式的值为________.12.化简1x +3+6x 2-9的结果是________.13.若||p +3=(-2017)0,则p =________.14.已知方程4mx +33+2x =3的解为x =1,那么m =________.15.若31-x 与4x 互为相反数,则x 的值是________.16.已知x +y =6,xy =-2,则1x 2+1y2=________.17.某市为处理污水,需要铺设一条长为5000m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m ,结果提前16天完成任务.设原计划每天铺设管道x m ,则可得方程________________.18.若x m =6,x n =9,则2x 3m x 2n ÷(x m ·x n )2·x n =108. 三、解答题(共66分)19.(8分)计算下列各题:(1)3a -3b 15ab ·10ab 2a 2-b 2;(2)(2a -1b 2)2·(-a 2b 3)·(3ab -2)3.20.(12分)解方程: (1)2-x x -3+13-x =1;(2)1+3x x -2=6x -2;(3)12x -1=12-34x -2.21.(1)(6分)先化简,再求值:⎝ ⎛⎭⎪⎫2x +1-2x -3x 2-1÷1x +1,其中x =-3;(2)(6分)先化简,再选一个你喜欢的数代入求值:2018a a 2-2a +1÷⎝ ⎛⎭⎪⎫a +1a 2-1+1.22.(8分)已知北海到南宁的铁路长210千米.动车(如图)投入使用后,其平均速度达到了普通火车的平均速度的3倍,这样由北海到南宁的行驶时间缩短了1.75小时.求普通火车的平均速度是多少.23.(8分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已抢修道路________米;(2)求原计划每小时抢修道路多少米.24.(8分)已知关于x 的方程x -4x -3-m -4=m3-x 无解,求m 的值.25.(10分)阅读下列材料: x +1x =c +1c 的解是x 1=c ,x 2=1c; x -1x =c -1c ,即x +-1x =c +-1c 的解是x 1=c ,x 2=-1c ; x +2x =c +2c 的解是x 1=c ,x 2=2c ; x +3x =c +3c 的解是x 1=c ,x 2=3c ; ……(1)请观察上述方程与解的特征,猜想方程x +πx =c +πc 的解,并验证你的结论;(2)利用这个结论解关于x 的方程:x +2x -1=a +2a -1.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.B 7.C 8.A 9.C10.B 解析:方程两边同时乘最简公分母x -2,得k =-(k -x )-3(x -2),整理,得k =3-x .∵原分式方程有增根.∴增根为x =2,∴k =3-x =1.故选B.11.-2 -12 54 12.1x -313.-4或-2 14.3 15.416.10 解析:1x 2+1y 2=x 2+y 2x 2y 2=(x +y )2-2xy(xy )2.∵x +y =6,xy =-2,∴原式=62-2×(-2)(-2)2=36+44=10.17.5000x -5000x +20=1618.108 解析:原式=2x 3m+2n -2m -2n +n=2x m +n .当x m =6,x n =9时,原式=108.19.解:(1)原式=3(a -b )15ab ·10ab 2(a +b )(a -b )=2b a +b.(4分)(2)原式=4a -2b 4·(-a 2b 3)·27a 3b -6=-108a -2+2+3b 4+3-6=-108a 3b .(8分)20.解:(1)方程两边同乘最简公分母(x -3),得2-x -1=x -3,解得x =2.(2分)检验:当x =2时,x -3≠0,∴x =2是原分式方程的解.(4分)(2)方程两边同乘最简公分母(x -2),得(x -2)+3x =6,(6分)解得x =2.(7分)检验:当x =2时,x -2=0,∴x =2不是原分式方程的解,∴原分式方程无解.(8分)(3)方程两边同乘最简公分母2(2x -1),得2=2x -1-3.整理,得2x =6,解得x =3.(10分)检验:当x =3时,2(2x -1)≠0,∴x =3是原分式方程的解.(12分)21.解:(1)原式=2(x -1)-(2x -3)(x +1)(x -1)·(x +1)=1x -1.(4分)当x =-3时,原式=-14.(6分)(2)原式=2018a (a -1)2÷a +1+a 2-1a 2-1=2018a (a -1)2·(a +1)(a -1)a (a +1)=2018a -1.(3分)∵a -1≠0且a ≠0且a +1≠0,即a ≠±1,0.(4分)当a =2019时,原式=1.(6分)22.解:设普通火车的平均速度为x 千米/时,则动车的平均速度为3x 千米/时.(2分)由题意得210x =2103x +1.75,解得x =80.(6分)经检验,x =80是原分式方程的解,且符合实际意义.(7分)答:普通火车的平均速度是80千米/时.(8分) 23.解:(1)1200(2分)(2)设原计划每小时抢修道路x 米.(3分)根据题意得1200x +3600-1200(1+50%)x =10.(4分)解得x =280.(6分)经检验,x =280是原分式方程的解,且符合实际意义.(7分)答:原计划每小时抢修道路280米.(8分)24.解:分式两边同乘最简公分母x -3,得x -4-(m +4)(x -3)=-m ,整理,得(3+m )x =8+4m .(3分)∵原方程无解,①当m =-3时,化简的整式方程为0=-4,不成立,方程无解;(5分)②当x =3时,分式方程有增根,即3(3+m )=8+4m ,解得m =1.(7分)综上所述,m =1或-3.(8分)25.解:(1)猜想方程x +πx =c +πc 的解是x 1=c ,x 2=πc .(2分)验证:当x =c 时,方程x+πx =c +πc 成立;(4分)当x =πc 时,方程x +πx =c +πc 成立.(6分) (2)x +2x -1=a +2a -1变形为(x -1)+2x -1=(a -1)+2a -1,(8分)∴x 1-1=a -1,x 2-1=2a -1,∴x 1=a ,x 2=a +1a -1.(10分)。