数控加工外文翻译
数控专业英语
数控专业英语数控专业英语340个数控专业是一个与机器打交道的专业,当然也少不了英语的学习,以下是本店铺整理的数控专业英语,欢迎参考阅读!1、ROM n.只读存储器2、rotate v.旋转3、rotation n.旋转4、rotor n.转子5、rough adj.粗糙的6、RPM n.转/分7、RSTR(restart) v.重启动8、run v.运行9、sample n.样本,示例10、save v.存储11、save as 另存为12、scale n.尺度,标度13、scaling n.缩放比例14、schedule n.时间表,清单15、screen n.屏幕16、screw n.丝杠,螺杆17、search v.搜索18、second n.秒19、segment n.字段20、select v.选择21、selection n.选择22、self-diagnostic 自诊断23、sensor n.传感器24、sequence n.顺序25、sequence number 顺序号26、series n.系列,adj.串行的27、series spindle n.数字主轴28、servo n.伺服29、set v.设置30、setting n.设置31、shaft n.轴32、shape n.形状33、shift v.移位34、SIEMENSE(德国)西门子公司35、sign n.符号,标记36、signal n.信号37、skip v,n.跳步38、slave adj.从属的39、SLC n.小型逻辑控制器40、slide n.滑台,v.滑动41、slot n.槽42、slow adj.慢43、soft key n.软键盘44、software n.软件45、space n.空格,空间46、SPC n.增量式脉冲编码器47、speed n.速度48、spindle n.主轴49、SRAM n.静态随机存储器50、SRH(search) v.搜索51、start v.启动52、statement n.语句53、stator n.定子54、status n.状态55、step n.步56、stop v.停止,n.挡铁57、store v.储存58、strobe n.选通59、stroke n.行程60、subprogram n.子程序61、sum n.总和62、surface n.表面63、SV(servo) n.伺服64、switch n.开关65、switch off v.关断66、switch on v.接通67、symbol n.符号,标记68、synchronous adj.同步的69、SYS(system) n.系统70、system n.系统71、tab n.制表键72、table n.表格73、tail n.尾座74、tandem adv.一前一后,串联75、tandem control n.纵排控制(加载预负荷的控制方式)76、tank n.箱体77、tap n,v.攻丝78、tape n.磁带,纸带79、tape reader n.纸带阅读机80、tapping n.攻丝81、teach in 示教82、technique n.技术,工艺83、temperature n.温度84、test v,n.测试85、thread n.螺纹86、time n.时间,次数87、tolerance n.公差88、tool n.刀具,工具89、tool pot n.刀杯90、torque n.扭矩91、tower n.刀架,转塔92、trace n.轨迹,踪迹93、track n.轨迹,踪迹94、tranducer n.传感器95、transfer v.传输,传送96、transformer n.变压器97、traverse v.移动98、trigger v.触发99、turn v转动,n转,回合100、turn off v.关断101、turn on v.接通102、turning n.转动,车削103、unclamp v.松开104、unit n.单位,装置105、unload n.卸载106、unlock v.解锁107、UPS n.不间断电源108、user n.用户109、value n.值110、variable n.变量,adj.可变的111、velocity n.速度112、velocity loop n.速度环113、verify v.效验114、version n.版本115、vertical a.垂直的116、voltage n.电压117、warning n.警告118、waveform n.波形119、wear n,v.磨损120、weight n.重量,权重121、wheel n.轮子,砂轮122、window n.窗口,视窗123、workpiece n.工件124、write v.写入125、wrong n.错误,adj.错的126、year n.年127、zero n.零,零位128、zone n.区域129、increment n.增量130、incremental adj.增量的131、indeX 分度,索引132、initial adj.原始的133、initialization n.C523初始化134、initialize v.初始化135、input n.v.输入136、INS() v.插入137、v.插入138、instruction n.说明139、interface n.接口140、internal adj.内部的141、interpolate v.插补142、interpolation n.插补143、interrupt v.中断144、interruption n.中断145、intervent n.间隔,间歇146、involute n.渐开线147、ISO n.国际标准化组织148、jog n.点动149、jump v.跳转150、key n.键151、keyboard n.键盘152、label n.标记,标号153、ladder diagram 梯形图154、language n.语言155、lathe n.车床156、LCD n.液晶显示157、least adj.最小的158、length n.长度159、LIB(library) n.库160、library n.库161、life n.寿命162、light n.灯163、limit n.极限164、limit switch n.限位开关165、line n.直线166、linear adj.线性的167、linear scale n.直线式传感器168、link n,v.连接169、list n,v.列表170、load n.负荷,v.装载171、local adj.本地的172、locate v.定位,插销173、location n.定位,插销174、lock v.锁定175、logic n.逻辑176、look ahead v.预,超前177、loop n.回路,环路178、LS n.限位开关179、LSI n.大规模集成电路180、machine n.机床,v.加工181、macro n.宏182、macro program n.宏程序183、magazine n.刀库184、magnet n.磁体,磁185、magnetic a.磁的186、main program n.主程序187、maintain v.维护188、maintenance n.维护189、MAN(manual) n.手动190、management n.管理191、manual n.手动192、master adj.主要的193、maX adj.最大的,n.最大值194、maXimum adj.最大的,n.最大值195、MDI n.手动数据输入196、meaning n.意义197、measurement n.测量198、memory n.存储器199、menu n.菜单200、message n.信息201、meter n.米202、metric adj.米制的203、mill n.铣床,v.铣削204、min adj.最小的,n.最小值205、minimum adj.最小的,n.最小值206、minus v.减,adj.负的207、minute n.分钟208、mirror image n.镜像209、miscellaneous function n.辅助功能210、MMC n.人机通讯单元211、modal adj.模态的212、modal G code n.模态G代码213、mode n.方式214、model n.型号215、modify v.修改216、module n.模块217、MON(monitor) v.监控218、monitor v.监控219、month n.月份220、motion n.运动221、motor n.电机222、mouse n.鼠标223、MOV(移动) v.移动224、move v.移动225、movement n.移动226、multiply v.乘227、N number n.程序段号228、N.M n.牛顿。
数控加工技术概述外文翻译、中英文翻译、外文文献翻译
原文:The digital control process technology is summarized1. digital control programming reaches such developmentThe digital control programming is the segment that be able to obviously bring into play the beneficial result in at the moment CAD/CAPP/CAM's system the most most , such is living to achieve to design the process automation and raise process accuracy and processes the quality and cuts down the product development cycle and so on the respect is brining into play the significant action . Being living possess the greats quantity applications such as aviation industry and auto industry and so on territorys . Since giving birth to the intense demand of practice , wide-ranging research has wholly been carried on to the digital control programming technique in the home and abroad , and acquires the plentiful and substantial fruit . The next reaches such to the digital control programming and develops to act as some to introduce .1.1 basic concept of digital control programmingThe digital control programming is through the spare parts drawings up the full process that obtains the digital control processing program . Its main mission is that the sword spot ( Cutterlocationpoint abbreviate CL's spot ) in the sword is processed away in the calculation .The point of intersection that sword the spot was oridinarily get to the cutting tool axial line against the cutting tool face still will be give out the sword shaft vector in much processs1.2 digital control programming technique development surveyMIT designed one kind of special language that is used in the inflexible spare parts digital control processing program establishments to the program problem in order to resolve in the digital control process , andis called APT ( AutomaticallyProgrammedTool ) in the 50's .Well-developed editions such as after APT time and again develops , takeed shape such as APTII and APTIII ( the stereoscopic cutting action is employd ) and APT ( the algorithm improves , add much coordinates surface processes the programming meritorous service capacity ) and APTAC ( Advancedcontouring ) ( add cuts the database administration system ) and APT/SS ( SculpturedSurface ) ( add engraves the camber processes the programming meritorous service capacity ) and so on .Adoping APT language drawing up digital control order to have easy the refineing of order , and gos away the strongs point such as sword control is agile and so on , and causes the digital control process the programming , and moves upward up yet possess much not suitable points to geometry element .APT through " assemble language " grade to the machine tool order : Adoping language definition spare parts geometry form shape , and is difficult to depict complex geometry form shape , and lack audio-visual quality of geometry ;The certification measure that the figure audio-visual that is short of to spare parts form shape and the cutting tool movement locus displays and the cutting tool locus ;Being difficult to effectively join with CAD's data bank and CAPP's system ;Not to act as easily up the high automation , the integrationizationIn view of the APT's language defect , in 1978 , France attained the system that the large rope airplane corporation starts development gathers assemble three dimensions design , analysis and NC's process integration , and is called in the interest of CATIA .Having ariseed alikely the systems such as EUCLID and NPU/GNCP and so on soon afterwards very quickly , the geometry moldswholly valid settlements of these systems and the spare parts geometry form shape display is designed mutually and mends generates the cutting tool locus , and the problems such as the imitation to go away the sword process displays and certification and so on promoteed CAD and CAM developing to the integration orientation . The approximately idea that system ( CIMS ) and parallel project ( CE ) was manufacture in the calculating machine integration take shape up the 80's gradually on the base that the CAD/CAM's integration being living is approximately attend school . At the moment , and the necessaries that CE developed in order to adapt to CIMS , the digital control programming system to integrationization and intelligentization the development .Being living the integration respect , with the development accords with the STEP ( StandardfortheExchangeofProductModelData ) criterion parameterization feature moldmaking and systematically gives priority to , having carried on the highly effective work of greats quantity at the moment is the home and abroad development heatpointBeing living the intelligentization respect , the work has start only a short while ago , and still awaits that we leave hard2、NCs' cutting tool locus generates the method study developing actualityDigital control programming core work is generateing the cutting tool locus , afterwards by such scattered one-tenth sword spot , places that the handle comes into being the digital control processing program afterwards viaing .The next cutting tool locus comes into being the means and actes as some and introduce2.1 baseding on a little and string , surface and part of the body NC's sword track formation meansCAD's technique moves through the two dimension mapping , andudergo the three dimensions wires frame and camber and the solid modelling generation , now the parameterization feature reacing is always moldded .Is living two dimension mapping together with three dimensions wires frame phase , in case the opening processes , the rough sketch is processed the digital control process is main with spot and string act as drive target , the plane area process and so on .This kind of level that personnel staff was requireed manipulating in the process is taller , complex mutually .Being living camber and the solid modelling generation , entity process had ariseed to based on .The entity process target is an entity ( oridinarily blendes for CSG and BREP express ) , its ( moreover , intersects , falls short of to operate ) but get yield through some fundamental parts of the body habitually after the set operation .The entity is processed not merely usable rough machining and semi precision work to the spare parts , and the great area cuts Yu Liang , and the effectiveness is processed in the raise , but also usable research together with development to digital control baseding on the feature programming system , is the feature process baseEntity process oridinarily possess entity rough sketch process and the entity area and processes two kinds .The entity process realization means slices law ( SLICE ) in the interest of the straturm , in immediate future slices by the process entity in the way of one series of level , afterwards to obtains the intersection comes into being the isometry string dos worthwhile the sword the going away locus .The original slave system needs the angle depart , the digital control process that the ACIS's geometry moldmaking being living achieved thiskind to based on a little on the terrace and the string and surface and entity Feature NC's sword track formation means 2.2 baseding onThe parameterization feature molds to possess the specified development particular period , yet baseds on that feature cutting tool locus formation means research starts only a short while ago .The feature processes to cause digital control programming personnel staff to be out to let drop the step geometry message to those ( in case : Spot , string , surface and entity ) manipulate , but transforing to carry on the digital control programming in the interest of directly to accords with the feature that engineers and technicians are used to , and liftd the programming effectiveness enormouslyW.R.Mail and A.J.Mcleod are living in their research to give out one to based on feature NC's code generating sub system , and this systematic work rule is : Spare parts every one process wholly may be regarded as to adjust to make up the total that the spare parts form shape feature group processed .In immediate future the queen completees spare parts process is not processed that to the feature adjusting entirely form the shape in that way either form shape feature component .But each form shape feature either form shape feature series NC's code may generate voluntarily .The system opened up at the moment merely is applicable to 2.5D's spare parts processThe LeeandChang opened up one kind of raised liberal camber feature cutting tool locus of means autogeneration in the way of fictitious border system .This systematic work rule is : Being living to inlay inner place the raised liberal camber into one the minimal long and square , so raised liberal camber feature is transformd into the hollow feature .Minimal the long and square incorporation against the end product pattern constituteed to be called one kind of indirect produce pattern on the fictitious pattern .That the cutting tool locus formation means separates into completees three paces : ( 1 ) and the cutting action polyhedron feature ;( 2 ) and cuts the liberal camber feature ;( 3 ) and the cutting action intersects the featureJongYunJung researcies baseds on the non- cutting action cutting tool locus formation problem of feature .The article process baseding on the feature locus separates into rough sketch process and processes two types with the inside area , and the definition this two types of process cutting action orientations , attains the aim that the entirety optimizes the cutting tool locus by means of decreasing the cutting action cutting tool locus .Type who talked about these fundamental features gos away sword way and cutting tool selection and process order and so on to main being aimed at of article some kinds of fundamental features ( hollow inner place Kong and step , trough ) , and averting repeatedly going away the sword by means of IP ( InterProgramming ) technique , with the non- cutting action cutting tool locus of optimization .Besides JongYunJong still is living , and his doctor in 1991 researcied tabrication feature extraction and baseds on feature cutting tool and the cutting tool way in the dissertationThe feature process base is an entity process , and surely of course also may think the entity process being more high-quality .Yet feature process distinct entity process , and entity process possess it oneself the limitations .Feature process chiefly possess below difference against entity process :Through approximately attends school says that the feature is the meritorous service capacity key element to make up the spare parts , and the operation that accords with engineers and technicians is used to , by engineers and technicians are know intimately ;The entity is the geometry target on low straturm , and is a geometric object that obtains after a series of Booleans calculation , and does not have whatever meritorous service capacity semantic information ;It frequently is adjusting the once only process of entire spare parts ( entity ) that the entity is processed .Yet in reality the spare parts is not very much probably merely once processed through in the way of the sword , frequently will go through a series of workmans of rough machining and semi precision work and precision work and so on stage , the place of spare parts difference oridinarily will be employd the difference cutting tool and process ;Now and then not only the spare parts will be employd up turning , but also employ up mill .Hence entity process is chiefly used spare parts rough machining and semi precision work .But but the feature on processing through essentially resolved the above-mentioned issue ;Feature process havees even more intellect .May regulate some kinds of settled admittedly process meanss as to the specially designated feature , particularly those have been living , and STEP's criterion the person who regulates the feature still more is such in this way .In case we wholly draw up the specially designated process means to all standards feature , it is you can imagine that spare parts that in thatway sufficiently succeed through the standard feature to those are processed such convenient quality .In case CAPP systematically be able to supply the relevant technology feature , NCP's system may decrease inputing mutually , and havees even more intellect enormously in that way .But these entity process can not achievedFeature process is favour of achieving through comprehensive integration of CAD , CAPP , NCP and CNC's system , and achieves the two-way going from place to place of message , in the interest of CIMS and even parallel project ( CE ) are settleed the well base ;It be helpless that but the entity is processed to theseNC's sword track formation means 2.3 being on active service in several main CAD/CAM's systems is analysedActive duty CAM constitutes reaching the main meritorous service capacityThat at the moment comparatively more mature CAM's system is main with two kinds of shapes achieves CAD/CAM's system integration : Integration CAD/CAM's system ( in case : UGII , Euclid and Pro/ENGINEERs and so on ) and independent relatively CAM's system ( in case : Mastercam and Surfcams and so on ) . Unitary less than the former data format is directly gaind the produce geometric model through CAD's system , but the latter is main gains the produce geometric model by means of the neutral papers through else CAD's systems . However , no matter is what the CAM's system growed the shape , wholly consising of five modules , in immediate future mutually technology parameter input module and cutting tool locus formation module and cutting tool locus compiler module and three dimensions process that dynamic imitation module and afterwards places the processing module . Next merely some famous CAD/CAM's system NC's process meanss are holied discussions .UGII's process means is analysedOridinarily think that UGII is the best in trade circle , and havees representativeness digital control software most .That such havees the distinguishing feature most is the cutting tool locus formation means that such meritorous service capacity is powerful .Consists of turning , milling and string cuts and so on the consummate process means .In it milling chiefly possess the below meritorous service capacity :And PointtoPoint: Completeing the different openings processesAnd PanarMill: Plane is milled .Consising of that the one-way walkes surely , the two-way row are slice , and the hoop is slice along with rough sketch process to await And FixedContour: Admittedly much projectionss are areed processed stably .Dominateeing on being living on the single camber either much camber the removing of cutting tool in the way of the projection means , and that the control cutting tool is removed may be the cutting tool locus that has generateed , a series of either suite stringAnd VariableContour: Variable projection is processedAnd Parameterline: Await that the parameter string is processed .The successive process of single camber either much camber may be adjustAnd ZigZagSurface: Cutting out processAnd RoughtoDepth: Rough machining .The depth is reachd assigning in the rough machining by Mao PiAnd CavityMill: The many stages depth mould cavity processes .Rough machining that particularly is applicable to the male contact with the hollow standardAnd SequentialSurface: The camber occuies simultaneously the workman .In accordance the spare parts and guides that and the thinking of check adjust the removing suppling the largesttest degree control of cutting toolEDSUnigraphics still consists of greats quantity else the respects meritorous service capacitys , and did not enumerate one by one here STRATA's process means is analysedSTRATA is a digital control programming system development environment , and it is establishing ACIS's geometry model building terrace onIt supplys two kinds of programming development environments in the interest of consumer , in immediate future NC's command language interface and the NC's operation C++ storehouse . It may back three to mill , and turning and string cut NC and process , and may back wire frame , camber and the entity geometry model building . Such NC's cutting tool locus formation means is baseding on the physical model . STRATA is baseded on , and what supplys the process means in entity NC's cutting tool locus formation type storehouse consists of : ProfileToolpath: Rough sketch processAreaClearToolpath: The area on plane processesSolidProfileToolpath: The entity rough sketch is processedSolidAreaClearToolpath: The area on entity plane processesSolidFaceToolPath: The entity face processesSolidSliceToolPath: The entity severs process on planeLanguagebasedToolpath: Baseding on , language cutting tool locus generatesElse CAD/CAM software , in case Euclid the person who awaits the NC's meritorous service capacity is each has his strong point , yet suchfundamental substance is almost alike , the not natural difference .2.4 main problem of systematic sword track formation means of active duty CAMIn accordance tradition CAD/CAM's system and CNC's system work means , CAM's system is with directly either the indirect means gains the produce geometry data model through CAD's system ( by means of neutral papers ) . CAM's system is with spot , string , surface in the three dimensions geometrics model and either the entity is the drive target , the cutting tool locus is processed in the formation , and afterwards the shape with the cutting tool locating file viaes the handle is placed , with the NC's code shape supplys to CNC's machine tool , the some respects problems under being living in entire CAD/CAM and the CNC's system operation process to be :CAM systematically can only gain produce low tier of geometry message through CAD's system , and can not seize voluntarily meritorous service capacity and the semantic information of produce geometry shape information and produce higher level .Hence manufacturing engineering master that entire CAM's process have to be living is very experience haves a hand in secondly , and completees mutually by means of the figure .In case : Manufacturing engineering master .The entire system automation degree is leted dropBeing living in the CAM's system generation cutting tool locus , equal also merely embodying low straturm geometry message ( right line and arc geometry locating information ) , along with the a little process control information ( as moving forward ) to rate , main shaft rotation speed and trading sword and so on .Hence , can not obtain the process technology parameter that haves something to do with against generateing the cutting tool locus yetThe produce data between CAM's system every module are not unitied , and the independence is opposite to each other to every module .For instance the cutting tool locating file is merely keep the minutes the cutting tool locus and is not keep the minutes the relevant process technology parameter , the dynamic imitation of three dimensions merely keeps the minutes that the cutting tool locus interference against runs into , but keep the minutes interference and process target and correlation process technology parameter that runs into happen against suchThe CAM systematically is an independence system .Not thering is the unitary produce data model between CAD's system together with the CAM's system , even if being the integrated CAD/CAM's system of integration in , one-way and unity is enjoyed also being only to message in all . CAM systematically can not sufficiently comprehend and complete message utilizing CAD's system to have something to do with the produce , feature message that especially haves something to do with against process , equal CAD's system can not gain the process data message that CAM systematically come into being yet . This is give parallel project implementation to bring the hardship3、digitals control techniques of simulation3.1 calculating machine imitation approximately idea and applicationThe angle through the project is see , and the imitation is the system by means of the test to the system model leave to research in the existing either design .Analysing the complex dynamic target , the imitation is one kind of valid means , may decrease the hazard , cuts down design and manufactures cycle , and practise thrift the investment .Calculating machine imitation is draing support from the calculatingmachine , and utilizes the system model to adjust actually systematically testing the process which researcied .It is swiftly developed in the wake of the calculating machine technique development , and is living in the imitation to passess the more and more significant position .Three foundation maneuveies between the key element that the calculating machine imitation process may be notify by means of the picture 1 are depictd :The model building maneuver is by means of viewing either examination to the actual system , and is living to over look the less important element to reach on the base that examine the variable , and the means in the way of physics either mathematics is depictd , thereby obtains the similar pattern of actual system simplification .The meritorous service with the actual system of the pattern here be able to together with between the parameter ought to have similarity and homologous qualityThe imitation pattern is the mathematical model to the system ( simplifying the pattern ) carries on the specified algorithm handle , and causes such become the appropriate shape ( in case turns into iterative operation pattern by the numerical integration ) afterwards , yet becomes " computation module computational mode " that be able to be receiveed by the calculating machine .The imitation pattern is two simplification patterns to the actual systemThe imitation test is shall system imitation pattern be living the process rund in the calculating machine .The imitation is researching actual system one kind of technique by means of the test , may clarify systematically immanent structure variable and the ambient condition effect by means of the technique of simulationCalculating machine technique of simulation main expressing of development tendency be living two respects : Application territory enlargement and imitation calculating machine intelligentization .The calculating machine technique of simulation not merely is living tradition project technique territory ( respects such as aviation , spaceflight and chemical industry and so on ) subsequent development , but also broadens up community economy and living beings and so on much non- project territorys , moreover , technique such as parallel processing , artificial intelligence , knowledge base and expert system and so on the development is affecing the imitation calculating machine development Digital control process imitation utilizes the calculating machine imitation practice process , being the forceful means to verify digital control processing program dependability and the calculation cutting action process , in order to decrease work attempies surely , and lifts production efficiency3.2 digital control technique of simulation research present situationThe APT process spare parts are completeed near the digital control order program control .In the interest of right quality to guarrantee the digital control order , guard against in process to intervene happenning , and is living in the actual manufacture , and constantly adopts attempting the anxious means to examine with what runs into .Yet this kind of means requiring a lot of labor expense is anticipateed , the cost expansively causes the manufacturing cost move upward , addd produce process time and production cycle .Adoping once more the locus to display the law afterwards , in immediate future in order to mark needle either pencil or writing brush replace the cutting tool , with colouring plank either paper replaces the work imitation cutting tool movement locus two dimension figure ( alsomay display the two dimension semi process locus ) , possess the considerably great limitations .Three dimension and the many-dimensionss as to the work are processed , the cutting action locus that the inspection that the stuff that also possess use easily to cut replaces the work ( in case , paraffin wax , lumber , midified resin and plastic material and so on ) comes is processed .Yet APT and the process field is very important occupied in the attempt .For this reason , people are living always to research replace gradually attempting the anxious calculating machine emulation mode , and is living to attempt to slice that the respects such as environment modeling and imitation calculation and graphic display and so on acquire the significant progress , and develops to raise pattern accurateness and imitation calculation real timeization and improvement real feeling of graphic display and so on orientations at the momentThrough attempies the pattern distinguishing feature sliceeing the environment seeing , NC's cutting action process imitation branch geometry imitation and mechanics imitation at the moment two respects .Geometry imitation is not consider that cutting action parameter and cutting force reach else the physics elements effects , the imitation cutting tool work geometric object movement , and with right quality of certification NC's order .The problem such as it may decrease either remove as a result of the machine tool injury that the program error causes and clamping apparatus damage either the cutting tool rolls over to snap and the spare parts are reported something as worthless and so on ;May decrease moreover through the product design up time manufacturing , and cut down the manufacturing cost .Cutting action process mechanics imitation pertains to the physics imitation category , and its dynamic mechanics property by means of the imitation cutting action process is forecast that the cutting tool breakage and cutting tool vibration and control cuts the parameter , thereby attains to optimize the cutting action process aimThe geometry technique of simulation development is in the wake of geometry model building technique development but development , and consists of that quality graphic display and the ration is intervened verifying two respects .At the moment the means in common use possess the immediate solid modelling law , and the means of figure image space baseding on is requestted the intersection law with the scattered vector3.3 immediate solid modelling lawThis kind of enveloping solid that the means is the work part of the body against the cutting tool movement takes shape is underway that the entity Boolean falls short of operating , and the work part of the body three dimensions patterns are continuously replaceed in the wake of the cutting action processSungurtekin and Velcker opened up a miller simulation system .The three dimensions patterns that ought to systematically adopt CSG's law to keep the minutes Mao Pi utilize some fundamental primitives like cuboid , the cylindrical body and taper part of the body , and the set operation , particularly operating , the area by Mao Pi and a series of cutting tool scannings is keep the minutes , afterwards usies the set difference and operates through Mao Pizhong's order take-offing the scanning area .Traverse when the so-called area by has sweep is cutting the cutting tool to move along some locuss area .Per length of Mao Pixing's shape that NC's code afterwards。
数控技术经验常用术语中英文对照
数控技术常用术语中英文对照更新时间:2007-3-28 为了方便读者阅读相关数控资料和国外数控产品的相关手册,在此选择了常用的数控词汇及其英语对应单词,所选用的数控术语主要参考国际标准ISO2806和中华人民共和国国家标准GB8129—1987以及近年新出现的一些数控词汇。
1)计算机数值控制(ComputerizedNumericalControl,CNC)用计算机控制加工功能,实现数值控制。
2)轴(Axis)机床的部件可以沿着其作直线移动或回转运动的基准方向。
3)机床坐标系(MachineCoordinateSister)固定于机床上,以机床零点为基准的笛卡尔坐标系。
4)机床坐标原点(MachineCoordinateOrigin)机床坐标系的原点。
5)工件坐标系(WorkpieceCoordinateSystem)固定于工件上的笛卡尔坐标系。
6)工件坐标原点(Wrok-piexeCoordinateOrigin)工件坐标系原点。
7)机床零点(Machinezero)由机床制造商规定的机床原点。
8)参考位置(ReferencePosition)机床启动用的沿着坐标轴上的一个固定点,它可以用机床坐标原点为参考基准。
9)绝对尺寸(AbsoluteDimension)/绝对坐标值(AbsoluteCoordinates)距一坐标系原点的直线距离或角度。
10)增量尺寸(IncrementalDimension)/增量坐标值(IncrementalCoordinates)在一序列点的增量中,各点距前一点的距离或角度值。
11)最小输人增量(LeastInputIncrement)在加工程序中可以输人的最小增量单位。
12)命令增量(LeastcommandIncrement)从数值控制装置发出的命令坐标轴移动的最小增量单位。
13)插补(Interpolation)在所需的路径或轮廓线上的两个已知点间根据某一数学函数(例如:直线,圆弧或高阶函数)确定其多个中间点的位置坐标值的运算过程。
数控车床工作名词中英文转换
车床工作名词(英文)CNC:computer numerical control工作台:(机)operating platform. service stand直径:diameter. Dia. Conjugate diameter(共轭直径)工作件:work piece扭矩:torque刀架:(机)tool post, knife rest进给量:feed rate 指的是刀具在进给运动方向上相对于工件的位移量垂直:vertical滑枕行程:ram travel ram (机)活塞横梁:beam, crossgirder刀杆:toolbar, cutterbar截面: section, cross section车削:turning , turnery镗:bore铣:mill切槽:grooving, fluting直角铣头:right-angle cutter head or milling head冶金:metallurgy汽轮机:turbine, steam turbine(涡轮机)直齿:(机)straight tooth, spur gear (机)正齿轮斜齿:helical tooth, helical 螺旋形的圆柱齿轮:cylindrical gear涡轮:turbine, worm wheel铣刀:milling cutter, milling-tool滚齿机,滚刀:hobbing反向机构:reverse mechanism人字齿轮:herringbone gear, double helical gear自动循环:automatic cycle滚珠:ball bearing, roll ball丝杠:lead screw螺距:screw pitch, thread pitch蜗杆:worm啮合:mesh, meshing加工模数:processing modulus孔径:aperture, bore diameter(孔径,内径)轴线:axis(轴,轴线),axes(轴线,轴心,坐标轴)轮廓:outline龙门铣床:planomiller, planer type milling machine轴承:bearing,bearings(复), axletree(轮轴)NSK: (Nippon Seiko Kabushiki Kaisha)日本精工株式会社门柱:post定位:fixed postion, location精度:precision(精度,), accuracy(数)精确度,准确性承重:load-bearing三轴:triaxial硬轨:pathway矩形:rectangle滑道:slideway, slide rail导轨:guide rail, lead rail底座:foundation, base, bottom case力流原理:power(weight,force) flow principle滑鞍:carriage, saddle超音频:superaudio, superaudio frequency硬化处理:hardening treatment, curing研磨:grind注塑:injection molding摩擦力:friction, frictional force预紧:Pre-tighten。
机加工专业单词中英对照
机加工专业(单词/词组)中英对照Aabrasion n. 磨料,研磨材料,磨蚀剂, adj. 磨损的,磨蚀的abrasive belt n. 砂带abrasive belt grinding n. 砂带磨削,用研磨带磨光abrasive cut-off machine n. 砂轮切断机abrasive dressing wheel n. 砂轮修整轮abrasive grain n. 磨料粒度abrasive grit n. 研磨用磨料,铁粒abrasive lapping wheel n. 磨料研磨轮accuracy of position n. 位置精度accuracy to shape n. 形状精度active cutting edge n. 主切削刃adapter flange n. 连接器法兰盘adjointing flanks n. 共轭齿廓align n. 找中(心),找正,对中,对准,找平,调直,校直,调整,调准angle milling cutter n. 角铣刀angular grinding n. 斜面磨削,斜磨法angular milling n. 斜面铣削angular plunge grinding n. 斜向切入磨削angular turning n. 斜面车削arbour n. 刀杆,心轴,柄轴,轴,辊轴attachment n. 附件,附件机构,联结,固接,联结法automatic bar machine n. 棒料自动车床automatic boring machine n. 自动镗床automatic copying lathe n. 自动仿形车床automatic double-head milling machine n. 自动双轴铣床automatic lathe n. 自动车床automatic turret lathe n. 自动转塔车床Bbelt grinding machine n. 砂带磨床bench lathe n. 台式车床bevel n. 斜角,斜面,倾斜,斜切,斜角规,万能角尺,圆锥的,倾斜的,斜边,伞齿轮,锥齿轮bevel gear cutting machine n. 锥齿轮切削机床bevel gear tooth system n. 锥齿轮系,锥齿轮传动系统borehole n. 镗孔,镗出的孔,钻眼boring n. 镗孔,钻孔,穿孔boring fixture n. 镗孔夹具boring machine n. 镗床boring tool n. 镗刀boring, drilling and milling machine n. 镗铣床broaching machine n.拉床,铰孔机,剥孔机broaching tool n. 拉刀broad finishing tool n. 宽刃精切刀,宽刃精车刀,宽刃光切刀CCalibrate vt. 校准〔正〕,刻度,分度,检查〔验〕,定标,标定,使标准化,使符合标准cam contour grinder n. 凸轮仿形磨床carbide tip n. 硬质合金刀片carbide turning tool n. 硬质合金车刀carbide-tipped tool n. 硬质合金刀具cast iron machining n. 铸铁加工,铸铁切削加工centerless cylindrical grinder n. 无心外圆磨床ceramic cutting tool n. 金属陶瓷刀具chamfer n.;vt. 倒角,倒棱chamfered cutting edge n. 倒角刀刃champ v. 焦急champing fixture n. 快换夹具champing jaw n. 快换卡爪chaser n. 螺纹梳刀,梳刀盘,板牙chatter vi.;n. 振动,振荡,震颤,刀振cherry n.;a. 樱桃,鲜红的,樱桃木制的chip n. 切屑,铁屑,刀片,刀头,片,薄片,芯片,基片chip breaker groove radius n. 断屑槽底半径,卷屑槽底半径chip clearance n. 切屑间隙chip cross-sectional area n. 切屑横截面面积chip curl n. 螺旋形切屑chip flow n. 切屑流chip formation n. 切屑形成chip removing process n. 去毛刺加工chip variable n. 切屑变量chuck n. 卡盘,夹盘,卡头,〔电磁〕吸盘,vt. 固定,装卡,夹紧,卡住chucker n. 卡盘车床,卡角车床circular drilling machine n. 圆工作台钻床circular path n. 环路,圆轨迹circular pitch measurement n. 周节测量circumference n. 圆周,周线,周界,周围,四周,范围close-grained a. 细颗粒的coffecient of tool thrust n. 刀具推力系数coil chip n. 卷状切屑cold circular saw n. 冷圆锯cold saw n. 冷锯column drilling machine n. 圆〔方〕柱立式钻床combined drill and milling cutter n. 复合钻铣床complete traverse grinding n. 横进给磨削,切入磨削computer-controlled machine n. 计算机控制机床,数控机床contact pattern n. 靠模continuous chip n. 连续切屑continuous spiral chip n. 连续螺旋切屑contour n. 轮廓,外形,外貌,轮廓线,回路,网路,电路,等高线,等值线,轮廓等高距a. 仿形的,靠模的contour grinding n. 仿形磨削,成形磨削contour milling n. 成形铣削,外形铣削,等高走刀曲面仿形法convex milling attachment n. 凸面铣削附件convex turning attachment n. 中凸车削附件,凸面车削附件coolant lubricant n. 冷却润滑剂coolant lubricant emulsion n. 冷却润滑乳液〔剂〕copy n. 样板,仿形,靠模工作法,拷贝复制品,v. 复制,模仿,抄录copy grinding n. 仿形磨床copy-mill n. 仿形铣copying turret lathe n. 仿形转塔车床corner n. 角,弯〔管〕头,弯管counterbore n. 埋头孔,沉孔,锥口孔,平底扩孔钻,平底锪钻, n.;vt. 扩孔,锪孔,镗孔,镗阶梯孔crankshaft grinding machine n. 曲轴磨床crankshaft turning lathe n. 曲轴车床creep feed grinding n. 缓进给磨削cross milling n. 横向铣削curly chip n. 卷状切屑,螺旋形切屑,切屑螺旋cut v.;n. 切削〔割〕,口,片,断,断开,削减,减少,断面,剖面,相交,凹槽cut off n. 切断〔开,去〕,关闭,停车,停止,断开装置,断流器,挡板,截止,截流cut teeth n. 铣齿cut-off grinding n. 砂轮截断,砂轮切割cutter n. 刀具,切削工具,截断器,切断器,切断机cutting n. 切削,切片,切割,切屑,金属屑,截槽cutting edge profile n. 切削刃轮廓〔外形,断面〕,切削刃角度cutting force n. 切削力cutting lip n. 切削刃,刀刃,钻唇,钻刃cutting operation n. 切削加工,切削操作,切削作业cutting rate n. 切削效率,切削速率cutting tool n. 刀具,切削工具,刃具cycle n. 周期,周,循环,一个操作过程,轮转,自行车cylindrical grinder n. 外圆磨床Ddamage n.;vt. 损坏〔害,伤,耗,失〕,破坏,事故,故障,伤害,危害deep-hole drilling n.深孔钻削deep-hole milling n. 深孔铣削design n. 设计,计算,计划,方案,设计书,图纸die-sinking n. 凹模dimension n. 尺寸,尺度,维度,量纲,因次direction of the feed motion n. 进给方向,进刀方向discontinuous chip n. 间断切屑distance n. 距离,间隔〔隙〕,长度,vt. 隔开double-column planer-miller n. 双柱龙门铣床dress v. 修饰,修整,平整,整理,清理,装饰,调制,准备,打磨,磨光,压平,轿直,清洗,清理,分级drilling n. 钻头,钻床,穿孔器,凿岩机,v. 钻孔,打孔,钻井,钻探drilling machine n. 钻床,钻机,钻孔机,打眼机drilling tool n. 钻孔〔削,井,眼〕工具Eedge point n. 刀口,刀刃efficiency n. 效率,效能,性能,功率,产量,实力,经济性,有〔功,实〕效end mill n. 立铣刀external grinding n. 外圆磨削Fface n. 表面,外观,工作面,表盘,屏,幕v. 面向,朝向,表面加工,把表面弄平face grinding machine n. 平面磨床face milling machine n. 端面磨床feed force n. 进给力feed motion n. 进给运动fine adjustment n. 精调,细调,微调fine boring n. 精密镗孔finish v.;n. 精加工,抛光,修整,表面粗糙度,完工,最后加工,最后阶段,涂层,涂料finish-cutting n. 精加工,最终切削fixture n. 夹具,夹紧装置,配件,零件,定位器,支架form n. 型式,类型,摸板,模型,形成,产生,成形,表格v. 形〔组,构〕成,产生,作出,成形,造型form-turn n. 成形车削free-cutting n. 自由切削,无支承切削,高速切削Ggap n. 间隔,间隙,距离,范围,区间,缺口,开口火花隙,vt. 使产生裂缝vi. 豁开gear cutting machine n. 齿轮加工机床,切齿机gear generating grinder n. 磨齿机gear hob n. 齿轮滚刀grinding cutter n. 磨具grinding force n. 磨削力grinding machine n. 磨床grinding wheel diameter n. 砂轮直径grinding wheel width n. 砂轮宽度groove n. 槽,切口,排屑槽,空心槽,坡口,vt. 切〔开,铣〕槽groove milling n.铣槽Hheadstock spindle n. 床头箱主轴,主轴箱主轴,头架轴helical tooth system n. 螺旋齿轮传动装置high precision lathe n. 高精度车床high-speed n. 高速high-speed machining n. 高速加工hob n. 齿轮滚刀,滚刀,螺旋铣刀,v. 滚铣,滚齿,滚削horsepower n. 马力hobbing machine n. 滚齿机,螺旋铣床,挤压制模压力机,反应阴模机hole n. 孔,洞,坑,槽,空穴,孔道,管道,v. 钻〔穿,冲,开〕孔,打洞hone n. vt. 磨石,油石,珩磨头,磨孔器,珩磨,honing machine n. 珩磨机,珩床,搪磨床,磨孔机,磨气缸机Iinclination n. 倾斜,斜度,倾角,斜角〔坡〕,弯曲,偏〔差,角〕转increment n. 增量,增加,增〔大〕长indexing table automatic n. 自动分度工作台infeed grinding n. 切入式磨削installation n. 装置,设备,台,站,安装,设置internal grinding n. 内圆磨削involute hob n. 渐开线滚刀Jjig boring machine n. 坐标镗床Kkeyway cutting n. 键槽切削加工knurling tool n. 滚花刀具,压花刀具,滚花刀Llaedscrew machine n. 丝杠加工机床lap grinding n. 研磨lapping n. 研磨,抛光,精研,搭接,擦准lathe n. 车床lathe dog n. 车床轧头,卡箍,鸡心夹头,离心夹头,制动爪,车床挡块lathe tool n. 车刀level n. 水平,水准,水平线,水平仪,水准仪,电平,能级,程度,强度,a. 水平的,相等的,均匀的,平稳的loading time n. 装载料时间,荷重时间,充填时间,充气时间lock n. 锁,栓,闸,闭锁装置,锁型,同步,牵引,v. 闭锁,关闭,卡住,固定,定位,制动刹住longitudinal grinding n. 纵磨low capacity machine n. 小功率机床〔机器〕Mmachine axis n. 机床中心线machine table n. 机床工作台machine tool n. 机床,工作母机machining n. 机械加工,切削加工machining (or cutting) variable n. 加工(或切削)变量machining allowance n. 机械加工余量machining cycle n. 加工循环machining of metals n. 金属切削加工,金属加工magazine automatic n. 自动化仓库,自动化料斗,自动存贮送料装置manufacture n. 制造者,生产者,厂商,产品,制造material removing rate n. 材料去除率metal cutting n. 金属切削metal-cutting technology n. 金属切削工艺学,金属切削工艺〔技术〕metal-cutting tool n. 金属切削刀具,金属切削工具micrometer adjustment n. 微调milling n. 铣削,磨碎,磨整,选矿milling feed n. 铣削进给,铣削走刀量,铣削走刀机构milling machine n. 铣床milling spindle n. 铣床主轴milling tool n. 铣削刀具,铣削工具mount v. 固定,安装,装配,装置,架设,n. 固定件,支架,座,装置,机构mounting n. 安装,装配,固定,机架,框架,装置mounting fixture n. 安装夹具,固定夹具NNose n. 鼻子,端,前端,凸头,刀尖,机头,突出部分,伸出部分number of revolutions n. 转数numerical control n. 数字控制numerically controlled lathe n. 数控车床Ooblique grinding n. 斜切式磨床operate v. 操纵,控制,运行,工作,动作,运算operating cycle n. 工作循环operation n. 运转,操作,控制,工作,作业,运算,计算operational instruction n. 操作说明书,操作说明operational safety n. 操作安全性,使用可靠性oscillating type abrasive cutting machine n. 摆动式砂轮切割机oscillation n. 振动,振荡,摆动,颤振,振幅out-cut milling n. 切口铣削oxide ceramics n. 氧化物陶瓷oxide-ceramic cutting tool n. 陶瓷刀具Pperformance n. 实行,执行,完成,特性,性能,成品,制作品,行为,动作,生产率,效率peripheral grinding n. 圆周磨削peripheral speed n. 圆周速度,周速,边缘速度perpendicular a. 垂直的,正交的,成直角的n. 垂直,正交,竖直,垂线,垂直面physical entity n. 实体,实物pitch n. 齿距,节距,铆间距,螺距,极距,辊距,坡度,高跨比,俯仰角pitch circle n. 节圆plain (or cylindrical) milling machine n. 普通(或圆柱形)铣床plain grinding n. 平面磨削plain turning n. 平面车床plane n. 平面,面,投影,刨,水平,程度,阶段,飞机a.平的v. 弄平,整平,刨,飞行plane milling n. 平面铣削plane-mill n. 平面铣刀,平面铣床plunge mill n. 模向进给滚轧机plunge-cut n. 切入式磨削,横向进给磨削,全面进刀法,全面进给法plunge-cut thread grinder n. 切入式螺纹磨床plunge-grinding n. 切入式磨削point n. 点,尖端,刀尖,针尖,指针,交点,要点,论点,特点v. 指,面向,瞄准,对准,表明,弄尖,强调power n. 功率,效率,能〔容,力〕量,动力,电源,能源v. 驱〔拖,带,发〕动,给...以动力power hacksaw n. 机动弓锯〔钢锯〕precision boring n. 精镗precision boring machine n. 精密镗床precision machining n. 精密机械加工pressure angle n. 压力角primary cutting edge n. 主切削刃principal feed motion n. 主进给运动,主进刀运动production method s n. 生产方法[式]profile n. 轮廓,形面,剖面,侧面图,分布图。
数控加工外文翻译
Numerical control technology and equipping development trend and countermeasureZhao Chang-ming Liu Wang-ju (CNC Machining Process and equipment, 2002,China)Abstract:Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry,Keywords:Numerical ControlTechnology, E quipment,industry Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Marx has ever said "the differences of different economic times, do not lie in what is produced, and lie in how to produce, produce with some means of labor ". Manufacturing technology and equipping the most basic means of production that are that the mankind produced the activity, and numerical control technology is nowadays advanced manufacturing technology and equips the most central technology. Nowadays the manufacturing industry all around the world adopts numerical control technology extensively, in order to improve manufacturing capacity and level, improve the adaptive capacity and competitive power to the changeable market of the trends. In addition every industrially developed country in the world also classifies the technology andnumerical control equipment of numerical control as the strategic materials of the country, not merely take the great measure to develop one's own numerical control technology and industry, and implement blockading and restrictive policy to our country in view of " high-grade, precision and advanced key technology of numerical control " and equipping. In a word, develop the advanced manufacturing technology taking numerical control technology as the core and already become every world developed country and accelerate economic development in a more cost-effective manner, important way to improve the overall national strength and national position.Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry, namely the so-called digitization is equipped, its technological range covers a lot of fields: (1)Mechanical manufacturing technology; (2)Information processing, processing, transmission technology; (3)Automatic control technology; (4)Servo drive technology;(5)Technology of the sensor; (6)Software engineering ,etc.Development trend of a numerical control technologyThe application of numerical control technology has not only brought the revolutionary change to manufacturing industry of the tradition, make the manufacturing industry become the industrialized symbol , and with the constant development of numerical control technology and enlargement of the application, the development of some important trades (IT , automobile , light industry , medical treatment ,etc. ) to the national economy and the people's livelihood of his plays a more and more important role, because the digitization that these trades needed to equip has already been the main trend of modern development.Numerical control technology in the world at present and equipping the development trend to see, there is the following several respect [1- ] in its main research focus. 1 A high-speed, high finish machining technology and new trend equippedThe efficiency, quality are subjavanufacturing technology. High-speed, highfinish machining technology can raise the efficiency greatly , improve the quality and grade of the products, shorten production cycle and improve the market competitive power. Japan carries the technological research association first to classify it as one of the 5 great modern manufacturing technologies for this, learn (CIRP) to confirm it as the centre in the 21st century and study one of the directions in international production engineering.I n the field of car industry, produce one second when beat such as production of 300,000 / vehicle per year, and many variety process it is car that equip key problem that must be solved one of; In the fields of aviation and aerospace industry, spare parts of its processing are mostly the thin wall and thin muscle, rigidity is very bad, the material is aluminium or aluminium alloy, only in a situation that cut the speed and cut strength very small high, could process these muscles, walls. Adopt large-scale whole aluminium alloy method that blank " pay empty " make the wing recently, such large-scale parts as the fuselage ,etc. come to substitute a lot of parts to assemble through numerous rivet , screw and other connection way, make the intensity , rigidity and dependability of the component improved. All these, to processing and equipping the demand which has proposed high-speed, high precise and high flexibility.According to EMO2001 exhibition situation, high-speed machining center is it give speed can reach 80m/min is even high , air transport competent speed can up to 100m/min to be about to enter. A lot of automobile factories in the world at present, including Shanghai General Motors Corporation of our country, have already adopted and substituted and made the lathe up with the production line part that the high-speed machining center makes up. HyperMach lathe of U.S.A. CINCINNATI Company enters to nearly biggest 60m/min of speed, it is 100m/min to be fast, the acceleration reaches 2g, the rotational speed of the main shaft has already reached 60 000r/min. Processing a thin wall of plane parts, spend 30min only, and same part general at a high speed milling machine process and take 3h, the ordinary milling machine is being processed to need 8h; The speed and acceleration of main shaft of dual main shaft lathes of Germany DMG Company are up to 120000r/mm and 1g.In machining accuracy, the past 10 years, ordinary progression accuse of machining accuracy of lathe bring 5μm up to from 10μm already, accurate grades ofmachining center from 3~5μm, rise to 1~1.5μm, and ultraprecision machining accuracy is it enter nanometer grade to begin already (0.01μm).In dependability, MTBF value of the foreign numerical control device has already reached above 6 000h, MTBF value of the servo system reaches above 30000h, demonstrate very high dependability .In order to realize high-speed, high finish machining, if the part of function related to it is electric main shaft, straight line electrical machinery get fast development, the application is expanded further . 1.2 Link and process and compound to process the fast development of the lathe in 5 axesAdopt 5 axles to link the processing of the three-dimensional curved surface part, can cut with the best geometry form of the cutter , not only highly polished, but also efficiency improves by a large margin . It is generally acknowledged, the efficiency of an 5 axle gear beds can equal 2 3 axle gear beds, is it wait for to use the cubic nitrogen boron the milling cutter of ultra hard material is milled and pared at a high speed while quenching the hard steel part, 5 axles link and process 3 constant axles to link and process and give play to higher benefit. Because such reasons as complicated that 5 axles link the numerical control system , host computer structure that but go over, it is several times higher that its price links the numerical control lathe than 3 axles , in addition the technological degree of difficulty of programming is relatively great, have restricted the development of 5 axle gear beds.At present because of electric appearance of main shaft, is it realize 5 axle complex main shaft hair structure processed to link greatly simplify to make, it makes degree of difficulty and reducing by a large margin of the cost, the price disparity of the numerical control system shrinks. So promoted 5 axle gear beds of head of complex main shaft and compound to process the development of the lathe (process the lathe including 5).At EMO2001 exhibition, new Japanese 5 of worker machine process lathe adopt complex main shaft hair, can realize the processing of 4 vertical planes and processing of the wanton angle, make 5 times process and 5 axles are processed and can be realized on the same lathe, can also realize the inclined plane and pour the processing of the hole of awls. Germany DMG Company exhibits the DMUV oution seriesmachining center, but put and insert and put processing and 5 axles 5 times to link and process in once, can be controlled by CNC system or CAD/CAM is controlled directly or indirectly.1.3 Become the main trend of systematic development of contemporary numerical control intelligently, openly, networkedly.The numerical control equipment in the 21st century will be sure the intelligent system, the intelligent content includes all respects in the numerical control system: It is intelligent in order to pursue the efficiency of processing and process quality, control such as the self-adaptation of the processing course, the craft parameter is produced automatically; Join the convenient one in order to improve the performance of urging and use intelligently, if feedforward control , adaptive operation , electrical machinery of parameter , discern load select models , since exactly makes etc. automatically; The ones that simplified programming , simplified operating aspect are intelligent, for instance intelligent automatic programming , intelligent man-machine interface ,etc.; There are content of intelligence diagnose , intelligent monitoring , diagnosis convenient to be systematic and maintaining ,etc..Produce the existing problem for the industrialization of solving the traditional numerical control system sealing and numerical control application software. A lot of countries carry on research to the open numerical control system at present, such as NGC of U.S.A. (The Next Generation Work-Station/Machine Control), OSACA of European Community (Open System Architecture for Control within Automation Systems), OSEC (Open System Environment for Controller) of Japan, ONC (Open Numerical Control System) of China, etc.. The numerical control system melts to become the future way of the numerical control system open. The so-called open numerical control system is the development of the numerical control system can be on unified operation platform, face the lathe producer and end user, through changing, increasing or cutting out the structure target(numerical control function), form the serration, and can use users specially conveniently and the technical know-how is integrated in the control system, realize the open numerical control system of different variety , different grade fast, form leading brand products with distinct distinction. System structure norm of the open numerical control system at present,communication norm , disposing norm , operation platform , numerical control systematic function storehouse and numerical control systematic function software development ,etc. are the core of present research.The networked numerical control equipment is a new light spot of the fair of the internationally famous lathe in the past two years. Meeting production line , manufacture system , demand for the information integration of manufacturing company networkedly greatly of numerical control equipment, realize new manufacture mode such as quick make , fictitious enterprise , basic Entrance that the whole world make too. Some domestic and international famous numerical control lathes and systematic manufacturing companies of numerical control have all introduced relevant new concepts and protons of a machine in the past two years, if in EMO2001 exhibition, " Cyber Production Center " that the company exhibits of mountain rugged campstool gram in Japan (Mazak) (intellectual central production control unit, abbreviated as CPC); The lathe company of Japanese big Wei (Okuma ) exhibits " IT plaza " (the information technology square , is abbreviated as IT square ); Open Manufacturing Environment that the company exhibits of German Siemens (Siemens ) (open the manufacturing environment, abbreviated as OME),etc., have reflected numerical control machine tooling to the development trend of networked direction.1.4 Pay attention to the new technical standard, normal setting-up1.4.1 Design the norm of developing about the numerical control systemAs noted previously, there are better common ability, flexibility, adaptability, expanding in the open numerical control system, such countries as U.S.A. ,European Community and Japan ,etc. implement the strategic development plan one after another , carry on the research and formulation of the systematic norm (OMAC , OSACA , OSEC ) of numerical control of the open system structure, 3 biggest economies in the world have carried on the formulation that nearly the same science planned and standardized in a short time, have indicated a new arrival of period of change of numerical control technology. Our country started the research and formulation of standardizing the frame of ONC numerical control system of China too in 2000.1.4.2 About the numerical control standardThe numerical control standard is a kind of trend of information-based development of manufacturing industry. Information exchange among 50 years after numerical control technology was born was all because of ISO6983 standard, namely adopt G, M code describes how processes, its essential characteristic faces the processing course, obviously, he can't meet high-speed development of modern numerical control technology's needs more and more already. For this reason, studying and making a kind of new CNC system standard ISO14649 (STEP-NC) in the world, its purpose is to offer a kind of neutral mechanism not depending on the concrete system, can describe the unified data model in cycle of whole life of the products, thus realize the whole manufacture process, standardization of and even each industrial field product information.The appearance of STEP-NC may be a revolution of the technological field of the numerical control, on the development and even the whole manufacturing industry of numerical control technology, will exert a far-reaching influence. First of all, STEP-NC puts forward a kind of brand-new manufacture idea, in the traditional manufacture idea, NC processes the procedures to all concentrate on individual computer. Under the new standard, NC procedure can be dispersed on Internet, this is exactly a direction of open , networked development of numerical control technology. Secondly, STEP-NC numerical control system can also reduce and process the drawing (about 75%), process the procedure to work out the time (about 35%) and process the time (about 50%) greatly.At present, American-European countries pay much attention to the research of STEP-NC, Europe initiates IMS plan (1999.1.1-2001.12.3) of STEP-NC. 20 CAD/CAM/CAPP/CNC users, manufacturers and academic organizations from Europe and Japan participated in this plan. STEP Tools Company of U.S.A. is a developer of the data interchange software of manufacturing industry in the global range, he has already developed the super model (Super Model ) which accuses of information exchange of machine tooling by counting, its goal is to describe all processing courses with the unified norm. Such new data interchange form has already been verified in allocating the SIEMENS, FIDIA and European OSACA-NCnumerical control at present.2 pairs of basic estimations of technology and industry development of numerical control of our countryThe technology of numerical control of our country started in 1958, the development course in the past 50 years can roughly be divided into 3 stages: The first stage is from 1958 to 1979, namely closed developing stage. In this stages, because technology of foreign countries blockade and basic restriction of terms of our country, the development of numerical control technology is comparatively slow. During "Sixth Five-Year Plan Period" , " the Seventh Five-Year Plan Period " of the country in second stage and earlier stage in " the Eighth Five-Year Plan Period ", namely introduce technology, digest and assimilate, the stage of establishing the system of production domesticization arisesing tentatively. At this stage , because of reform and opening-up and national attention , and study the improvement of the development environment and international environment, research , development and all making considerable progress in production domesticization of the products of the technology of numerical control of our country. The third stage is and during the "Ninth Five-Year Plan Period" on the later stage in "the Eighth Five-Year Plan Period" of the country, namely implement the research of industrialization, enter market competition stage. At this stage, made substantive progress in industrialization of the domestic numerical control equipment of our country. In latter stage for "the Ninth Five-Year Plan ", the domestic occupation rate of market of the domestic numerical control lathe is up to 50%, it is up to 10% too to mix the domestic numerical control system (popular).Make a general survey of the development course in the past 50 years of technology of numerical control of our country, especially through tackling key problems of 4 Five-Year Plans, all in all has made following achievements.(1)Have established the foundation of the technical development of numerical control, has mastered modern numerical control technology basically. Our country has already, the numerical control host computer, basic technology of special plane and fittings grasped and driven from the numerical control system and survey basically now, among them most technology have already possessed and commercialized thefoundation developed, some technology has already, industrialization commercialized. (2)Have formed the industrial base of numerical control tentatively. In tackling key problems the foundation that the achievement and some technology commercialize, set up the systematic factories of numerical control with production capacity in batches such as numerical control in Central China, numerical control of the spaceflight etc.. Electrical machinery plant of Lanzhou, such factory and the first machine tool plant of Beijing , the first machine tool plant of Jinan ,etc. several numerical control host computer factories of a batch of servo systems and servo electrical machineries as the numerical control in Central China, etc.. These factories have formed the numerical control industrial base of our country basically.(3)Have set up a numerical control research, development, managerial talent's basic team.Though has made considerable progress in research and development and industrialization of numerical control technology, but we will realize soberly, the research and development of the technology of advanced numerical control of our country, especially there is greater disparity in current situation and current demand of our country of engineering level in industrialization. Though very fast from watching the development of our country vertically, have disparity horizontally more than (compare foreign countries with) not merely engineering level, there is disparity too in development speed in some aspects, namely the engineering level disparity between some high-grade , precision and advanced numerical control equipment has the tendency to expand . Watch from world, estimate roughly as follows about the engineering level of numerical control of our country and industrialization level. (1)On the engineering level, in probably backward 10-1 years with the advanced level in foreign countries, it is bigger in high-quality precision and sophisticated technology.(2)On the industrialization level, the occupation rate of market is low, the variety coverage rate is little, have not formed the large-scale production yet; The specialized level of production of function part and ability of forming a complete set are relatively low; Appearance quality is relatively poor; Dependability is not high, the commercialized degree is insufficient; One's own brand effect that the domesticnumerical control system has not been set up yet, users have insufficient confidence. (3)On the ability of sustainable development, research and development of numerical control technology, project ability is relatively weak to the competition; It is not strong that the technological application of numerical control expands dynamics; Research, formulation that relevant standards are normal lag behind.It is analyzed that the main reason for having above-mentioned disparity has the following several respect.(1)Realize the respect. Know to industry's process arduousness , complexity and long-term characteristic of domestic numerical control insufficiently; It is difficult to underestimate to add strangling, system, etc. to the unstandard, foreign blockade of the market; It is not enough to analyse to the technological application level and ability of numerical control of our country.(2)System. Pay close attention to numerical control industrialization many in the issue, consider numerical control industrialization little in the issue synthetically in terms of the systematic one, industry chain in terms of technology; Have not set up related system, perfect training , service network of intact high quality ,etc. and supported the system.(3)Mechanism. It causes the brain drain, restraining technology and technological route from innovating again, products innovation that the bad machine is made, and has restricted the effective implementation of planning, has often planned the ideal, implement the difficulty.(4)Technology. The autonomous innovation in technology of enterprises is indifferent; the project of key technology is indifferent. The standard of the lathe lags behind, the level is relatively low, it is not enough for new standard of the numerical control system to study.3 pairs of strategic thinking of technology and industrialized development of numerical control of our country3.1 Strategic considerationOur country make big country, industry is it is it accept front instead of transformation of back end to try one's best to want in shifting in world, namely should master and make key technology advanced, otherwise in a new round ofinternational industrial structure adjustment, the manufacturing industry of our country will step forward and " leave the core spaces ". We regard resource, environment , market as the cost, it is only an international " machining center " in the new economic pattern of the world to exchange the possibility got and " assemble the centre ", but not master the position of the manufacturing center of key technology , will so influence the development process of the modern manufacturing industry of our country seriously.We should stand in the height of national security strategy paying attention to numerical control technology and industry's question , at first seen from social safety, because manufacturing industry whether our country obtain employment most populous trade, the development of manufacturing industry not only can improve the people's living standard but also can alleviate the pressure of employment of our country , ensure the stability of the society; Secondly seen from national defense security, the western developed country has classified all the high-grade , precision and advanced numerical control products as the strategic materials of the country, realizing the embargo and restriction to our country, " Toshiba incident " and " Cox Report " is the best illustration.3.2 Development tacticsProceed from the angles of the fundamental realities of the country of our country, regard the strategic demand of the country and market demand of national economy as the direction, regard improving our country and making the comprehensive competitive power of equipping industry and industrialization level as the goal, use the systematic method , be able to choose to make key technology upgraded in development of equipping industry and support technology supporting the development of industrialization in our country in initial stage of 21st century in leading factor, the ability to supply the necessary technology realizes making the jump development of the equipping industry as the content of research and development .Emphasize market demand is a direction, namely take terminal products of numerical control as the core, with the complete machine (Such as the numerical control lathe having a large capacity and a wide range, milling machine, high speed high precise high-performance numerical control lathe, digitized machinery of model,key industry key equipment, etc.) drive the development of the numerical control industry. Solve the numerical control system and relevant functions part especially The dependability that (digitized servo system and electrical machinery, high speed electric main shaft system and new-enclosure that equip, etc.) and production scale question. There are no products that scale will not have high dependability; Will not have cheap and products rich in the competitiveness without scale; Certainly, it is difficult to have day holding up one's head finally that there is no scale Chinese numerical control equipment.In equiping researching and developing high-grade , precision and advancedly , should emphasize the production, learning and research and close combination of the end user, regard " drawing, using, selling " as the goal, tackle key problems according to the national will, in order to solve the needing badly of the country.Numerical control technology, emphasized innovation, put emphasis on researching and developing the technology and products with independent intellectual property right before the competition, establish the foundation for the industry of numerical control of our country, sustainable development of equipment manufacture and even the whole manufacturing industry.二、译文数控技术和装备发展趋势及对策装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。
(数控加工)机械类数控外文翻译外文文献英文文献数控
(数控加工)机械类数控外文翻译外文文献英文文献数控NumericalControlOneofthemostfundamentalconceptsintheareaofadvancedmanufacturingte chnologiesisnumericalcontrol(NC).PriortotheadventofNC,allmachinetools weremanualoperatedandcontrolled.Amongthemanylimitationsassociatedwith manualcontrolmachinetools,perhapsnoneismoreprominentthanthelimitation ofoperatorskills.Withmanualcontrol,thequalityoftheproductisdirectlyre latedtoandlimitedtotheskillsoftheoperator.Numericalcontrolrepresentst hefirstmajorstepawayfromhumancontrolofmachinetools.Numericalcontrolmeansthecontrolofmachinetoolsandothermanufacturin gsystemsthoughtheuseofprerecorded,writtensymbolicinstructions.Rathert hanoperatingamachinetool,anNCtechnicianwritesaprogramthatissuesoperat ionalinstructionstothemachinetool,Foramachinetooltobenumericallycontr olled,itmustbeinterfacedwithadeviceforacceptinganddecodingthep2ogramm edinstructions,knownasareader.Numericalcontrolwasdevelopedtoovercomethelimitationofhumanoperato r,andithasdoneso.Numericalcontrolmachinesaremoreaccuratethanmanuallyo peratedmachines,theycanproducepartsmoreuniformly,theyarefaster,andthe long-runtoolingcostsarelower.ThedevelopmentofNCledtothedevelopmentofs everalotherinnovationsinmanufacturingtechnology:1.Electricaldischargemachining.sercutting.3.Electronbeamwelding.Numericalcontrolhasalsomademachinetoolsmoreversatilethantheirmanuallyoperatedpredecessors.AnNCmachinetoolcanautomaticallyproduceawidev arietyofpar4s,eachinvolvinganassortmentofundertaketheproductionofprod uctsthatwouldnothavebeenfeasiblefromaneconomicperspectiveusingmanuall ycontrolledmachinetoolsandprocesses.Likesomanyadvancedtechnologies,NCwasborninthelaboratoriesoftheMas sachusettsInstituteofTechnology.TheconceptofNCwasdevelopedintheearly1 950swithfundingprovidedbytheU.SAirForce.Initsearlieststages,NCmachine swereabletomakestraightcutsefficientlyandeffectively.However,curvedpathswereaproblembecausethemachinetoolhadtobeprogra mmedtoundertakeaseriesofhorizontalandverticalstepstoproduceacurve.The shorteristhestraightlinesmakingupthestep,thesmootheris4hecurve.Eachli nesegmentinthestepshadtobecalculated.Thisproblemledtothedevelopmentin1959oftheAutomaticallyProgrammedT ools(APT)languageforNCthatusesstatementssimilartoEnglishlanguagetodef inethepartgeometry,describethecuttingtoolconfiguration,andspecifythen ecessarymotions.ThedevelopmentoftheAPTlanguagewasamajorstepforwardint hefurtherdevelopmentofNCtechnology.TheoriginalNCsystemwerevastlydiffe rentfromthoseusedpunchedpaper,whichwaslatertoreplacedbymagneticplasti ctape.Atapereaderwasusedtointerprettheinstructionswrittenonthetapefor themachine.Together,all/fthisrepresentedgiantstepforwardinthecontrolo fmachinetools.However,therewereanumberofproblemswithNCatthispointinit sdevelopment.Amajorproblemwasthefragilityofthepunchedpapertapemedium.Itwascomm onforthepapercontainingtheprogrammedinstructionstobreakortearduringam achiningprocess,Thisproblemwasexacerbatedbythefactthateachsuccessivet imeapartwasproducedonamachinetool,thepapertapecarryingtheprogrammedin structionshadtorerunthoughtthereader.Ifitwasnecessarytoproduce100copi esofagivenpart,itwasalsonecessarytorunthepapertapethoughtthereader100 separatetimes.Fragilepapertapessimplycouldnotwithstandtherigorsofshop floorenvironmentandthiskindofrepeateduse.Thisledtothedevelopmentofaspecialmagnetictape.Whereasthepapertape carriedtheprogrammedinstructionsasaseriesofholespunchedinthetape,theT hismostimportantofthesewasthatitwasdifficultorimpossibletochangethein structionsenteredonthetape.Tomakeeventhemostminoradjustmentsinaprogra mofinstructions,itwasnecessarytointerruptmachiningoperationsandmakean ewtape.Itwasalsostillnecessarytorunthetapethoughtthereaderasmanytimes astherewerepartstobeproduced.Fortunately,computertechnologybecomearea lityandsoonsolvedtheproblemsofNC,associatedwithpunchedpaperandplastic tape.Thedevelopmentofaconceptknownasnumericalcontrol(DNC)solvethepaper andplastictapeproblemsassociatedwithnumericalcontrolbysimplyeliminati ngtapeasthemediumforcarryingtheprogrammedinstructions.Indirectnumeric alcontrol,machinetoolsaretied,viaadatatransmissionlink,toahostcompute randfedtothemachinetoolasneededviathedatatransmissionlinkage.Directnumericalcontrolrepresentedamajorstepforwardoverpunchedtapeandplasticta pe.However,itissubjecttothesamelimitationasalltechnologiesthatdependo nahostcomputer.Whenthehostcomputergoesdown,themachinetoolsalsoexperie ncedowntime.Thisproblemledtothedevelopmentofcomputernumericalcontrol.Thedevelopmentofthemicroprocessorallowedforthedevelopmentofprogra mmablelogiccontrollers(PLC)andmicrocomputers.Thesetwotechnologiesallo wedforthedevelopmentofcomputernumericalcontrol(CNC).WithCNC,eachmachi netoolhasaPLCoramicrocomputerthatservesthesamepurpose.Thisallowsprogr Csolvedtheproblems associateddowntimeofthehostcomputer,butitintroducedanotherproblemknow nasdatamanagement.Thesameprogrammightbeloadedontendifferentmicrocompu terswithnocommunicationamongthem.Thisproblemisintheprocessofbeingsolv edbylocalareanetworksthatconnectDigitalSignalProcessorsTherearenumeroussituationswhereanalogsignalstobeprocessedinmanywa ys,likefilteringandspectralanalysis,Designinganaloghardwaretoperformt hesefunctionsispossiblebuthasbecomelessandpractical,duetoincreasedper formancerequirements,flexibilityneeds,andtheneedtocutdownondevelopmen t/testingtime.Itisinotherwordsdifficultpmdesignanaloghardwareanalysis ofsignals.Theactofsamplingansignalintothehatarespecialisedforembeddedsignal processingoperations,andsuchaprocessoriscalledaDSP,whichstandsforDigi talSignalProcessor.TodaytherearehundredsofDSPfamiliesfromasmanymanufacturers,eachonedesignedforaparticularprice/performance/usagegroup.Man yofthelargestmanufacturers,likeTexasInstrumentsandMotorola,offerboths pecialisedDSP’sforcertainfieldslikemotor-controlormodems,andgeneralh igh-performanceDSP’sthatcanperformbroadrangesofprocessingtasks.Devel opmentkitsan`softwarearealsoavailable,andtherearecompaniesmakingsoftw aredevelopmenttoolsforDSP’sthatallowstheprogrammertoimplementcomplex processingalgorithmsusingsimple“drag‘n’drop”methodologies.DSP’smoreorlessfallintotwocategoriesdependingontheunderlyingarch itecture-fixed-pointandfloating-point.Thefixed-pointdevicesgenerallyo perateon16-bitwords,whilethefloating-pointdevicesoperateon32-40bitsfl oating-pointwords.Needlesstosay,thefixed-pointdevicesaregenerallychea per.Anotherimportantarchitecturaldifferenceisthatfixed-pointprocessor stendtohaveanaccumulatorarchitecture,withonlyone“generalpurpose”reg ister,makingthemquitetrickytoprogramandmoreimportantly,makingC-compil ersinherentlyinefficient.Floating-pointDSP’sbehavemorelikecommongene ral-purposeCPU’s,withregister-files.TherearethousandsofdifferentDSP’sonthemarket,anditisdifficulttas kfindingthemostsuitableDSPforaproject.Thebestwayisprobablytosetupacon straintandwishlist,andtrytocomparetheprocessorsfromthebiggestmanufact urersagainstit.The“bigfour”manufacturersofDSPs:TexasInstruments,Motorola,AT&Ta ndAnalogDevices.Digital-to-analogconversionInthecaseofMPEG-Audiodecoding,digitalcompresseddataisfedintotheDS Pwhichperformsthedecoding,thenthedecodedsampleshavetobeconvertedbacki ntotheanalogdomain,andtheresultingsignalfedanamplifierorsimilaraudioe quipment.Thisdigitaltoanalogconversion(DCA)isperformedbyacircuitwitht hesamename&DifferentDCA’sprovidedifferentperformanceandquality,asmea suredbyTHD(Totalharmonicdistortion),numberofbits,linearity,speed,filt ercharacteristicsandotherthings.TheTMS320familyDQPofTexasInstrumentsTheTLS320familyconsistsoffixed-point,floating-point,multiprocesso rdigitalsignalprocessors(D[Ps),andfoxed-pointDSPcontrollers.TMS320DSP haveanarchitecturedesignedspecificallyforreal-timesignalprocessing.Th e’F/C240isanumberofthe’C2000DSPplatform,andisoptimizedforcontrolapp lications.The’C24xseriesofDSPcontrollerscombinesthisreal-timeprocess ingcapabilitywithcontrollerperipheralstocreateanidealsolutionforcontr olsystemapplications.ThefollowingcharacteristicsmaketheTMS320familyth erightchoiceforawiderangeofprocessingapplications:---Veryflexibleinstructionset---Inherentoperationalflexibility---High-speedperformance---Innovativeparallelarchitecture---CosteffectivenessDeviceswithinagenerationoftheTMS320familyhavethesameCPUstructure butdifferenton-chipmemoryandperipheralconfigurations.Spin-offdevicesu senewcombinationsofOn-chipmemoryandperipheralstosatisfyawiderangeofne edsintheworldwideelectronicsmarket.Byintegratingmemoryandperipheralso ntoasinglechip,TMS320devicesreducesystemcostsandsavecircuitboardspace .The16-bit,fixed-pointDSPcoreofthe‘C24xdevicesprovidesanalogdesi gnersadigitalsolutionthatdoesnotsacrificetheprecisionandperformanceof theirsystemperformancecanbeenhancedthroughtheuseofadvancedcontrolalgo rithmsfortechniquessuchasadaptivecontrol,Kalmanfiltering,andstatecont rol.The‘C24xDSPcontrollerofferreliabilityandprogrammability.Analogco ntrolsystems,ontheotherhand,arehardwiredsolutionsandcanexperienceperf ormancedegradationduetoaging,componenttolerance,anddrift.Thehigh-speedcentralprocessingunit(CPU)allowsthedigitaldesignert oprocessalgorithmsinrealtimeratherthanapproximateresultswithlook-upta bles.TheinstructionsetoftheseDSPcontrollers,whichincorporatesbothsign alprocessinginstructionsandgeneral-purposecontrolfunctions,coupledwit htheextensivedevelopmenttimeandprovidesthesameeaseofuseastraditional8 -and16-bitmicrocontrollers.Theinstructionsetalsoallowsyoutoretainyour softwareinvestmentwhenmovingfromothergeneral-purpose‘C2xxgeneration, sourcecodecompatiblewiththe’C2xgeneration,andupwardlysourcecodecompa tiblewiththe‘C5xgenerationofDSPsfromTexasInstruments.The‘C24xarchitectureisalsowell-suitedforprocessingcontrolsignal s.Itusesa16-bitwordlengthalongwith32-bitregistersforstoringintermedia teresults,andhastwohardwareshiftersavailabletoscalenumbersindependent lyoftheCPU.Thiscombinationminimizesquantizationandtruncationerrors,an dincreasesp2ocessingpowerforadditionalfunctions.Suchfunctionsmightinc ludeanotchfilterthatcouldcancelmechanicalresonancesinasystemoranestim ationtechniquethatcouldeliminatestatesensorsinasystem.The‘C24xDSPcontrollerstakeadvantageofansetofperipheralfunctions thatallowTexasInstrumentstoquicklyconfigurevariousseriesmembersfordif ferentprice/performancepointsorforapplicationoptimization.Thislibraryofbothdigitalandmixed-signalperipheralsincludes:---Timers---Serialcommunicationsports(SCI,SPI)---Analog-to-digitalconverters(ADC)---Eventmanager---Systemprotection,suchaslow-voltageandwatchdogtimerTheDSPcontrollerperipherallibraryiscontinuallygrowingandchanging tosuittheoftomorrow’sembeddedcontrolmarketplace.TheTMS320F/C240isthefirststandarddeviceintroducedinthe‘24xserie sofDSPcontrollers.Itsetsthestandardforasingle-chipdigitalmotorcontrol ler.The‘240canexecute20MIPS.Almostallinstructionsareexecutedinasimpl ecycleof50ns.Thishighperformanceallowsreal-timeexecutionofverycomple8controlalgorithms,suchasadaptivecontrolandKalmanfilters.Veryhighsampl ingratescanalsobeusedtominimizeloopdelays.The‘240hasthearchitecturalfeaturesnecessaryforhigh-speedsignalp rocessinganddigitalcontrolfunctions,andithastheperipheralsneededtopro videasingle-chipsolutionformotorcontrolapplications.The‘240ismanufac turedusingsubmicronCMOStechnology,achievingalogpowerdissipationrating.A lsoincludedareseveralpower-downmodesforfurtherpowersavings.Someapplic ationsthatbenefitfromtheadvancedprocessingpowerofthe‘240include: ---Industrialmotordrives---Powerinvertersandcontrollers---Automotivesystems,suchaselectronicpowersteering,antilockbrake s,andclimatecontrol---ApplianceandHVACblower/compressormotorcontrols---Printers,copiers,andotherofficeproducts---Tapedrives,magneticopticaldrives,andothermassstorageproducts---RoboticandCNCmillingmachinesTofunctionasasystemmanager,aDSPmusthaverobuston-chipI/Oandotherp eripherals.Theeventmanagerofthe‘240isunlikeanyotheravailableonaDSP.T hisapplication-optimizedperipheralunit,coupledwiththehighperformanceD SPcore,enablestheuseofadvancedcontroltechniquesforhigh-precisionandhi gh-efficiencyfullvariable-speedcontrolofallmotortypes.Includeintheeve ntmanagerarespecialpulse-widthmodulation(PWM)generationfunctions,suchasaprogrammabledead-bandfunctionandaspacevectorPWMstatemachinefor3-ph asemotorsthatprovidesstate-of-the-artmaximumefficiencyintheswitchingo fpowertransistors.Thereindependentupdowntimers,eachwithit’sowncompareregister,sup portthegenerationofasymmetric(noncentered)aswellassymmetric(centered) PWMwaveforms.Open-LoopandClosed-LoopControlOpen-loopControlSystemsThewordautomaticimpliesthatthereisacertainamountofsophistication inthecontrolsystem.Byautomatic,itgenerallymeansThatthesystemisusually capableofadaptingtoavarietyofoperatingconditionsandisabletorespondtoa classofinputssatisfactorily.However,notanytypeofcontrolsystemhastheau ually,theautomaticfeatureisachievedbyfeed.gthefeedbackstructure,itiscalledanopen-loopsystem,whichisthesimp lestandmosteconomicaltypeofcontrolsystem.inaccuracyliesinthefactthato nemaynotknowtheexactcharacteristicsofthefurther,whichhasadefinitebear ingontheindoortemperature.Thisalcopointstoanimportantdisadvantageofth eperformanceofanopen-loopcontrolsystem,inthatthesystemisnotcapableofa daptingtovariationsinenvironmentalconitionsortoexternaldisturbances.I nthecaseofthefurnacecontrol,perhapsanexperiencedpersoncanprovidecontr olforacertaindesiredtemperatureinthehouse;butidthedoorsorwindowsareop enedorclosedintermittentlyduringtheoperatingperiod,thefinaltemperatureinsidethehousewillnotbeaccuratelyregulatedbytheopen-loopcontrol.Anelectricwashingmachineisanothertypicalexampleofanopen-loopsyst em,becausetheamountofwashtimeisentirelydeterminedbythejudgmentandesti mationofthehumanoperator.Atrueautomaticelectricwashingmachineshouldha vethemeansofcheckingthecleanlinessoftheclothescontinuouslyandturnitse dtoffwhenthedesireddegisedofcleanlinessisreached.Closed-LoopControlSystemsWhatismissingintheopen-loopcontrolsystemformoreaccurateandmoread aptablecontrolisalinkorfeedbackfromtheoutputtotheinputofthesystem.Ino rdertoobtainmoreaccuratebontrol,thecontrolledsignalc(t)mustbefedbacka ndcomparedwiththereferenceinput,andanactuatingsignalproportionaltothe differenceoftheoutputandtheinputmustbesentthroughthesystemtocorrectth eerror.Asystemwithoneormorefeedbackpat(slikethatjustdescribediscalled aclosed-loopsystem.humanbeingareprobablythemostcomplexandsophisticate dfeedbackcontrolsysteminexistence.Ahumanbeingmaybeconsideredtobeacont rolsystemwithmanyinputsandoutputs,capableofcarryingouthighlycomplexop erations.Toillustratethehumanbeingasafeedbackcontrolsystem,letusconsidert hattheobjectiveistoreachforanobjectonaperformthetask.Theeyesserveasas ensingdevicewhichfeedsbackcontinuouslythepositionofthehand.Thedistanc ebetweenthehandandtheobjectistheerror,whichiseventuallybroughttozeroa sthehandreachertheobject.Thisisatypicalexampleofclosed-loopcontrol.However,ifoneistoldtoreachfortheobjectandthenisblindolded,onecanonlyrea chtowardtheobjectbyestimatingitsexactposition.ItisAsantherillustrativ eexampleofaclosed-loopcontrolsystem,showstheblockdiagramoftherudderco ntrolsystemofThebasicalementsandtheblocadiagramofaclosed-loopcontrols ystemareshowninfig.Ingeneral,theconfigurationofafeedbackcontrolsystem maynotbeconstrainedtothatoffig&.Incomplexsystemstheremaybemultitudeof feedbackloopsandelementblocks.数控在先进制造技术领域最根本的观念之壹是数控(NC)。
数控技术专业英语词汇大全
数控技术专业英语词汇大全数控技术专业英语词汇大全(赶紧收藏吧!)2021-09-29金属加工1)计算机数值控制(Computerized Numerical Control, CNC)用计算机控制加工功能,实现数值控制。
2)轴(Axis)机床的部件可以沿着其作直线移动或回转运动的基准方向。
3)机床坐标系( Machine Coordinate Systern )固定于机床上,以机床零点为基准的笛卡尔坐标系。
4)机床坐标原点( Machine Coordinate Origin )机床坐标系的原点。
5)工件坐标系( Workpiece Coordinate System )固定于工件上的笛卡尔坐标系6)工件坐标原点( Wrok-piexe Coordinate Origin)工件坐标系原点。
7)机床零点( Machine zero )由机床制造商规定的机床原点。
8)参考位置( Reference Position )机床启动用的沿着坐标轴上的一个固定点,它可以用机床坐标原点为参考基准9)绝对尺寸(Absolute Dimension)/绝对坐标值(Absolute Coordinates)距一坐标系原点的直线距离或角度。
10)增量尺寸( Incremental Dimension ) /增量坐标值(Incremental Coordinates)在一序列点的增量中,各点距前一点的距离或角度值。
11)最小输人增量(Least Input Increment)在加工程序中可以输人的最小增量单位。
12)命令增量(Least command Increment)从数值控制装置发出的命令坐标轴移动的最小增量单位。
13)插补(InterPolation)在所需的路径或轮廓线上的两个已知点间根据某一数学函数(例如:直线,圆弧或高阶函数)确定其多个中间点的位置坐标值的运算过程。
14)直线插补(Llne Interpolation)这是一种插补方式,在此方式中,两点间的插补沿着直线的点群来逼近,沿此直线控制刀具的运动。
数控专业毕业设计外文翻译
Conventional Machining ProcessesConventional machining is the group of machining operations that use single- or multi-point tools to remove material in the form of chips. Metal cutting involves removing metal through machining operations. Machining traditionally takes place on lathes, drill presses, and milling machines with the use of various cutting tools. Most machining has very low set-up cost compared with forming, molding, and casting processes. However, machining is much more expensive for high volumes. Machining is necessary where tight tolerances on dimensions and finishes are required.Turning is one of the most common of metal cutting operations. In turning, a workpiece is rotated about its axis as single-point cutting tools are fed into it, shearing away excess material and creating the desired cylindrical surface. Turning can occur on both external and internal surfaces to produce an axially-symmetrical contoured part. Parts ranging from pocket watch components to large diameter marine propeller shafts can be turned on a lathe.Apart from turning, several other operations can also be performed on lathe.Boring and internal turning. Boring and internal turning are performed on the internal surfaces by a boring bar or suitable internal cutting tools. If the initial workpiece is solid, a drilling operation must be performed first. The drilling tool is held in the tailstock, and the latter is then fed against the workpiece. When boring is done in a lathe, the work usually is held in a chuck or on a face plate. Holes may be bored straight, tapered, or to irregular contours. Boring is essentially internal turning while feeding the tool parallel to the rotation axis of the workpiece.Facing is the producing of a flat surface as the result of a tool’s being fed across the end of the rotating workpiece. Unless the work is held on a mandrel, if both ends of the work are to be faced, it must be turned around after the first end is completed and then the facing operation repeated. The cutting speed should be determined from the largest diameter of the surface to be faced.Facing may be done either from the outside inward or from the center outward. In either case, the point of the tool must be set exactly at the height of center of rotation.Because the cutting force tends to push the tool away from the work, it is usually desirable to clamp the carriage to the lathe bed during each facing cut to prevent it from moving slightly and thus producing a surface that is not flat. In the facing of casting or other materials that have a hard surface, the depth of the first cut should be sufficient to penetrate the hard material to avoid excessive tool wear.Parting is the operation by which one section of a workpiece is severed from the remainder by means of cutoff tool. Because cutting tools are quite thin and must have considerable overhang, this process is less accurate and more difficult. The tool should be set exactly at the height of axis of rotation, be kept sharp, have proper clearance angles, and be fed into the workpiece at a proper and uniform feed rate.Threading can be considered as turning since the path to be travelled by the cutting tool is helical. However, there are some major differences between turning and threading. While in turning, the interest is in generating a smooth cylindrical surface, in threading the interest is in cutting a helical thread of a given form and depth which can be calculated from the formulae. There are two basic requirements for thread cutting. An accurately shaped and properly mounted tool is needed because thread cutting is a form-cutting operation. The resulting thread profile is determined by the shape of the tool and its position relative to the workpiece.The second by requirement is that the tool must move longitudinally in a specific relationship to the rotation of workpiece, because this determines the lead of the thread. This requirement is met through the use of the lead screw and the split unit, which provide positive motion of carriage relative to the rotation of spindleLathe bed is foundation of the engine lathe, which heavy, rugged casting is made to support the working parts of the lathe. The size and mass of the bed gives the rigidity necessary for accurate engineering tolerances required in manufacturing. On top of the bed are machined slideways that guide and align the carriage and tailstock, as they are move from one end of the lathe to the other.Headstock is clamped atop the bed at left-hand end of the lathe and contains the motor that drives the spindle whose axis is parallel to the guideways through a series of gears housed within the gearbox. The function of gearbox is to generate a number of different spindle speeds. A spindle gear is mounted on the rear of the spindle to transmit power through the change gears to the feeding box that distributes the power to the lead screw for threading or to the feed rod for turning.The spindle has a through hole extending lengthwise through which bar stocks can be fed if continuous production is used. The hole can hold a plain lathe center by its tapered inner surface and mount a chuck, a face plate or collet by its threaded outer surface.Carriage assembly is actually an H-shaped block that sits across the guideways and in front of lathe bed. The function of the carriage is to carry and move the cuttingtool longitudinally. It can be moved by hand or by power and can be clamped into position with a locking nut. The carriage is composed of the cross slide, compound rest, tool saddle, and apron.The cross slide is mounted on the dovetail guideways on the top of the saddle and it moved back and forth at 90°to the axis of the lathe by the cross slide lead screw. The lead screw can be hand or power activated.The compound rest is mounted on the cross slide and can be swiveled and clamped at any angle in a horizontal plane. The compound is typically used for cutting chamfers or tapers, but must also be used when cutting thread. The compound rest can only be fed by hand. There is no power to compound rest. The cutting tool and tool holder are secured in the tool post which is mounted directly to the compound rest.The tool saddle is an H shaped casting mounted on the top of the guideways and houses the cross slide and compound rest. It makes possible longitudinal, cross and angular feeding of the tool bit.The apron is attached to the front of the carriage and contains the gears and feed clutches which transmit motion from the feed rod or lead screw to carriage and cross slide. When cutting screw threads, power is provided to the gearbox of the apron by the lead screw. In all other turning operations, it is the feed rod that drives the carriage.Tailstock is composed of a low base and the movable part of the tail-stock proper, the transverse adjustments being made with a cross screw furnished with a square head. The two parts are hold together by the holding-down bolts which secure the tailstock to the bed.。
数控加工中常见设备的中英文对照
nc milling 数控铣床nc turning 数控车床nc grinding 数控磨穿turning center 车削中心(1):按英文字母排序3-Jaws indexing spacers 三爪、分割工具头A.T.C.system 加工中心机刀库Boring heads 搪孔头Boring machines 镗床Casting,aluminium 铸铝Casting,copper 铸铜Casting,gray iron 铸灰口铁Casting,malleable iron 可锻铸铁Casting,steel 铸钢Chamfer machines 倒角机Clamping/holding systems 夹具/支持系统CNC bending presses 电脑数控弯折机CNC boring machines 电脑数控镗床CNC drilling machines 电脑数控钻床CNC EDM wire-cutting machines 电脑数控电火花线切削机CNC electric discharge machines 电脑数控电火花机CNC engraving machines 电脑数控雕刻机CNC grinding machines 电脑数控磨床CNC lathes 电脑数控车床CNC machine tool fittings 电脑数控机床配件CNC milling machines 电脑数控铣床CNC shearing machines 电脑数控剪切机CNC toolings CNC刀杆CNC wire-cutting machines 电脑数控线切削机Coolers 冷却机Cutters 刀具Diamond cutters 钻石刀具Die casting dies 压铸冲模Die casting machines 压铸机Disposable toolholder bits 舍弃式刀头Drilling machines 钻床Drilling machines bench 钻床工作台Drilling machines,high-speed 高速钻床Drilling machines,multi-spindle 多轴钻床Drilling machines,radial 摇臂钻床Drilling machines,vertical 立式钻床drills 钻头Electric discharge machines(EDM) 电火花机Electric power tools 电动刀具Engraving machines 雕刻机Engraving machines,laser 激光雕刻机Etching machines 蚀刻机Fixture 夹具Forging,aluminium 锻铝Forging,cold 冷锻Forging,copper 铜锻Forging,other 其他锻造Forging,steel 钢锻Foundry equipment 铸造设备Gear cutting machines 齿轮切削机Gears 齿轮Grinder bench 磨床工作台Grinders,thread 螺纹磨床Grinders,tools & cutters 工具磨床Grinding machines 磨床Grinding machines,centerless 无心磨床Grinding machines,cylindrical 外圆磨床Grinding machines,universal 万能磨床Grinding tools 磨削工具Grinding wheels 磨轮Hand tools 手工具Honing machines 搪磨机Hydraulic components 液压元件Hydraulic power tools 液压工具Hydraulic power units 液压动力元件Hydraulic rotary cylinders 液压回转缸Jigs 钻模Lapping machines,centerless 无心精研机Lathe bench 车床工作台Lathes,automatic 自动车床Lathes,heavy-duty 重型车床Lathes,high-speed 高速车床Lathes,turret 六角车床Lathes,vertical 立式车床Lubricants 润滑液Lubrication Systems 润滑系统Machining centers,general 通用加工中心Machining centers,horizontal 卧式加工中心Machining centers,horizontal & vertical 卧式及立式加工中心Machining centers,vertical 立式加工中心Machining centers,vertical double-column type 立式双柱加工中心Magnetic tools 磁性工具Milling heads 铣头Milling machines 铣床Milling machines,bed type 床身式铣床Milling machines,duplicating 仿形铣床Milling machines,horizontal 卧式铣床Milling machines,turret vertical 六角立式铣床Milling machines,universal 万能铣床Milling machines,vertical 立式铣床Milling machines,vertical & horizontal 立式及卧式铣床Mold repair 模具维修Molds 模具Nail making machines 造钉机Oil coolers 油冷却器Planing machines 刨床Pneumatic power tools 气动工具Powder metallurgic forming machines 粉末冶金成型机Sawing machines 锯床Sawing machines,band 带锯床Saws,band 带锯Saws,hack 弓锯Saws,horizontal band 卧式带锯Saws,vertical band 立式带锯shafts 轴Shapers 牛头刨床Shearing machines 剪切机Slotting machines 插床spindles 主轴Tapping machines 攻螺丝机Vises 虎钳Vises,tool-maker 精密平口钳Wheel dressers 砂轮修整器(2)按中文拼音字母排序铝轮冒口切断机Overflow cutting machines for aluminium wheels 离心压力机Presses,eccentric六角立式铣床Milling machines,turret vertical六角车床Lathes,turret螺栓,螺帽及螺丝Bolts,screws & nuts螺纹磨床Grinders,thread冷却机Coolers冷锻Forging,cold冷锻冲压机Presses,cold forging立式双柱加工中心Machining centers,vertical double-column type立式铣床Milling machines,vertical立式油压拉床Vertical hydraulic broaching machine立式刨床Planing machines vertical立式车床Lathes,vertical立式带锯Saws,vertical band立式加工中心Machining centers,vertical立式及卧式铣床Milling machines,vertical & horizontal立式钻床Drilling machines,vertical联轴器Coupling连续溶解保温炉Aluminum continuous melting & holding furnaces 连续冲模Dies-progressive链传动Chain drive切断机Cutting-off machinesCNC刀杆CNC toolings曲柄压力机presses,crank修整机Finishing machines舍弃式刀头Disposable toolholder bits润滑系统Lubrication Systems润滑液Lubricants熔热处理炉Heating treatment funaces三爪、分割工具头3-Jaws indexing spacers 伺服冲床Presses,servo输送链Conveying chains手工具Hand tools砂轮修整器Wheel dressers蚀刻机Etching machines外圆磨床Grinding machines,cylindrical搪磨机Honing machines搪孔头Boring heads卧式铣床Milling machines,horizontal卧式带锯Saws,horizontal band卧式加工中心Machining centers,horizontal卧式及立式加工中心Machining centers,horizontal & vertical万能铣床Milling machines,universal万能磨床Grinding machines,universal镗床Boring machines弯曲机Bending machines弯管机Tube bending machines通用加工中心Machining centers,general铜锻Forging,copper铣头Milling heads铣床Milling machines无心磨床Grinding machines,centerless无心精研机Lapping machines,centerless压模Pressing dies压铸冲模Die casting dies压铸机Die casting machines油冷却器Oil coolers造链机Chain making tools造线机Cable making tools造钉机Nail making machines印刷电器板油压冲孔脱料系统PCB fine piecing systems摇臂钻床Drilling machines,radial硬(软)板(片)材及自由发泡板机组Hard/soft and free expansion sheet making plant辗压机Rolling machines液压元件Hydraulic components液压冲床Presses,hydraulic液压动力元件Hydraulic power units液压工具Hydraulic power tools液压回转缸Hydraulic rotary cylindersP型PVC高分子防水P type PVC waterproof rolled sheet making plant刨床Planing machines牛头刨床Shapers其他铸造Casting,other其他锻造Forging,other模芯Mold core模具Molds模具维修Mold repair模具打磨/磨纹Mold polishing/texturing模具单元Mold & die components模具加热器/冷却器Mold heaters/chillers磨轮Grinding wheels磨削工具Grinding tools磨床Grinding machines磨床工作台Grinder bench平衡设备Balancing equipment气油压虎钳Pneumatic hydraulic clamps 气动冲床Presses,pneumatic气动工具Pneumatic power tools轴shafts轴承Bearings轴承配件Bearing fittings轴承加工机Bearing processing equipment 肘杆式压力机Presses,knuckle joint铸铝Casting,aluminium铸铜Casting,copper铸造设备Foundry equipment铸钢Casting,steel铸灰口铁Casting,gray iron织麦激光切割机Woven-Cutting machines 重力铸造机Gravity casting machines重型车床Lathes,heavy-duty主轴spindles扳手Wrenches拔丝机Drawing machines保温炉Heat preserving furnaces插床Slotting machines齿轮Gears齿轮切削机Gear cutting machines冲压机Stamping parts冲子研磨器Punch formers超声波打磨机Grinders,ultrasonic车床工作台Lathe bench磁性工具Magnetic tools传动链Transmitted chains床身式铣床Milling machines,bed type带传动Belt drive带锯Saws,band带锯床Sawing machines,band电脑数控镗床CNC boring machines电脑数控弯折机CNC bending presses电脑数控铣床CNC milling machines电脑数控线切削机CNC wire-cutting machines电脑数控磨床CNC grinding machines电脑数控车床CNC lathes电脑数控电火花线切削机CNC EDM wire-cutting machines 电脑数控电火花机CNC electric discharge machines电脑数控雕刻机CNC engraving machines电脑数控机床配件CNC machine tool fittings电脑数控剪切机CNC shearing machines电脑数控钻床CNC drilling machines电动刀具Electric power tools电火花机Electric discharge machines(EDM)雕刻机Engraving machines刀片Blades刀具Cutters倒角机Chamfer machines多轴钻床Drilling machines,multi-spindle锻铝Forging,aluminium锻压机Presses,forging锻模Forging dies仿形铣床Milling machines,duplicating粉末冶金成型机Powder metallurgic forming machines反射炉Reverberatory furnaces钢锻Forging,steel高速车床Lathes,high-speed高速钻床Drilling machines,high-speed管筒制造机Pipe & tube making machines滚筒Rollers工具磨床Grinders,tools & cutters攻螺丝机Tapping machines弓锯Saws,hack虎钳Vises换模系统Mold changing systems夹盘Chucks夹具Fixture夹具/支持系统Clamping/holding systems剪切机Shearing machines加工中心机刀库A.T.C.system激光切割Laser cutting激光雕刻机Engraving machines,laser激光钢板切割机Laser cutting for SMT stensil 集合管Manifolds矫直机Straightening machines金属板成型机Sheet metal forming machines 金属板加工机Sheet metal working machines 锯片Blades,saw锯床Sawing machines卷边工具Crimping tools晶圆切割机Dicing saws精密平口钳Vises,tool-maker精研机Lapping machines可锻铸铁Casting,malleable iron快速换模系统Quick mold change systems 卡口Bayonet开关及按钮Switches & buttons钻石刀具Diamond cutters钻头drills钻模Jigs钻床Drilling machines钻床工作台Drilling machines bench自动压力机Presses,transfer 自动车床Lathes,automatic注油机Lubricators转台Rotary tables。
数控加工的主要用语中英文对照表
Blindhole
磨孔
Hole grinding
通孔
Throughhole
冲孔
punching
深孔
Deep hole
电火化打孔
Spark erosion perforation
内螺纹底孔
Internal screw thread bottom hole
钻中心孔
Center drilling
钻孔
drilling
样板划线
Template scribing
校直
straightening
配作
Match working
自动化制造系统
数字控制
Numerical control(NC)
计算机辅助设计
Computer aided design(CAD)
计算机数控
computer Numerical control(CNc)
圆锉(SG123)
round file
划针
scriber
铜锤
Copper hammer
样冲
Drift pin
木锤
Wooden mallet
錾子
Top chisel
切削工具
直柄麻花钻(GB1436)
Twist drill
锥柄麻花钻(GB1436)
Taper drill
锥柄锪钻(GB1143)
Taper—shank spotfacer
防水包装
Waterproof packaging
防霉包装
mouldproof packaging
防锈包装
Rustproof packaging
Rust preventive packaging
数控机床外文文献翻译、中英文翻译
数控机床外文文献翻译、中英文翻译原文一CNC machine toolsOutdate, J. and Joe, J. Configuration Synthesis of Machining Centers with Tool,JohnWiley & sons, 2001While the specific intention and application for CNC machines vary from one machine type to another, all forms of CNC have common benefits. Here are but a few of the more important benefits offered by CNC equipment.The first benefit offered by all forms of CNC machine tools is improved automation. The operator intervention related to producing work pieces can be reduced or eliminated. Many CNC machines can run unattended during their entire machining cycle, freeing the operator to do other tasks. This gives the CNC user several side benefits including reduced operator fatigue, fewer mistakes caused by human error, and consistent and predictable machining time for each work piece. Since the machine will be running under program control, the skill level required of the CNC operator (related to basic machining practice) is also reduced as compared to a machinist producing work pieces with conventional machine tools.The second major benefit of CNC technology is consistent and accurate work pieces. T oday's CNC machines boast almost unbelievable accuracy and repeatability specifications. This means that once a program is verified, two, ten, or one thousand identical work pieces can be easily produced with precision and consistency.A third benefit offered by most forms of CNC machine toolsis flexibility. Since these machines are run from programs, running a different workpiece is almost as easy as loading a different program. Once a program has been verified and executed for one production run, it can be easily recalled the next time the workpiece is to be run. This leads to yet another benefit, fast change over. Since these machines are very easy to set up and run, and since programs can be easily loaded, they allow very short setup time. This is imperative with today's just-in-time (JIT) product requirements.Motion control - the heart of CNCThe most basic function of any CNC machine is automatic, precise, and consistent motion control. Rather than applying completely mechanical devices to cause motion as is required on most conventional machine tools, CNC machines allow motion control in a revolutionary manner2. All forms of CNC equipment have two or more directions of motion, called axes. These axes can be precisely and automatically positioned along their lengths of travel. The two most common axis types are linear (driven along a straight path) and rotary (driven along a circular path).Instead of causing motion by turning cranks and handwheels as is required on conventional machine tools, CNC machines allow motions to be commanded through programmed commands. Generally speaking, the motion type (rapid, linear, and circular), the axes to move, the amount of motion and the motion rate (federate) are programmable with almost all CNC machine tools.A CNC command executed within the control tells the drive motor to rotate a precise number of times. The rotation of the drive motor in turn rotates the ball screw.And the ball screw drives the linear axis (slide). A feedbackdevice (linear scale) on the slide allows the control to confirm that the commanded number of rotations has taken place3. Refer to fig.1.fig.1 typical drive system of a CNC machine toolThough a rather crude analogy, the same basic linear motion can be found on a common table vise. As you rotate the vise crank, you rotate a lead screw that, in turn, drives the movable jaw on the vise. By comparison, a linear axis on a CNC machine tool is extremely precise. The number of revolutions of the axis drive motor precisely controls the amount of linear motion along the axis.How axis motion is commanded - understanding coordinate systemsIt would be infeasible for the CNC user to cause axis motion by trying to tell each axis drive motor how many times to rotate in order to command a given linear motion amount4. (This would be like having to figure out how many turns of the handle on a table vise will cause the movable jaw to move exactly one inch!) Instead, all CNC controls allow axis motion to be commanded in a much simpler and more logical way by utilizing some form of coordinate system. The two most popular coordinate systems used with CNC machines are the rectangular coordinate system and the polar coordinate system. By far, the more popular of these two is the rectangular coordinate system.The program zero point establishes the point of reference for motion commands in a CNC program. This allows the programmer to specify movements from a common location. If program zero is chosen wisely, usually coordinates needed forthe program can be taken directly from the print.With this technique, if the programmer wishes the tool to be sent to a position one inch to the right of the program zero point, X1.0 is commanded. If the programmer wishes the tool to move to a position one inch above the program zero point, Y1.0 is commanded. The control will automatically determine how many times to rotate each axis drive motor and ball screw to make the axis reach the commanded destination point . This lets the programmer command axis motion in a very logical manner. Refer to fig.2, 3.fig.2, 3.Understanding absolute versus incremental motionAll discussions to this point assume that the absolute mode of programming is used6. The most common CNC word used to designate the absolute mode is G90. In the absolute mode, the end points for all motions will be specified from the program zero point. For beginners, this is usually the best and easiest method of specifying end points for motion commands. However, there is another way of specifying end points for axis motion.In the incremental mode (commonly specified by G91), endpoints for motions are specified from the tool's current position, not from program zero. With this method of commanding motion, the programmer must always be asking "How far should I move the tool?" While there are times when the incremental mode can be very helpful, generally speaking, this is the more cumbersome and difficult method of specifying motion and beginners should concentrate on using the absolute mode.Be careful when making motion commands. Beginners have the tendency to think incrementally. If working in the absolute mode (as beginners should), the programmer should always be asking "To what position should the tool be moved?" This position is relative to program zero, NOT from the tools current position.Aside from making it very easy to determine the current position for any command, another benefit of working in the absolute mode has to do with mistakes made during motion commands. In the absolute mode, if a motion mistake is made in one command of the program, only one movement will be incorrect. On the other hand, if a mistake is made during incremental movements, all motions from the point of the mistake will also be incorrect.Assigning program zeroKeep in mind that the CNC control must be told the location of the program zero point by one means or another. How this is done varies dramatically from one CNC machine and control to another8. One (older) method is to assign program zero in the program. With this method, the programmer tells the control how far it is from the program zero point to the starting position of the machine. This is commonly done with a G92 (or G50) command at least at the beginning of the program and possiblyat the beginning of each tool.Another, newer and better way to assign program zero is through some form of offset. Refer to fig.4. Commonly machining center control manufacturers call offsets used to assign program zero fixture offsets. Turning center manufacturers commonly call offsets used to assign program zero for each tool geometry offsets.fig.4 assign program zero through G54Flexible manufacturing cellsA flexible manufacturing cell (FMC) can be considered as a flexible manufacturing subsystem. The following differences exist between the FMC and the FMS:1.An FMC is not under the direct control of thecentral computer. Instead, instructions from the centralcomputer are passed to the cell controller.2.The cell is limited in the number of part families itcan manufacture.The following elements are normally found in an FMC:Cell controllerProgrammable logic controller (PLC)More than one machine toolA materials handling device (robot or pallet)The FMC executes fixed machining operations with parts flowing sequentially between operations.High speed machiningThe term High Speed Machining (HSM) commonly refers to end milling at high rotational speeds and high surface feeds. For instance, the routing of pockets in aluminum airframe sections with a very high material removal rate1. Refer to fig.5 for the cutting data designations and for mulas. Over the past 60 years, HSM has been applied to a wide range of metallic and non-metallic workpiece materials, including the production of components with specific surface topography requirements and machining of materials with hardness of 50 HRC and above. With most steel components hardened to approximately 32-42 HRC, machining options currently include:Fig.5 cutting datarough machining and semi-finishing of the material in its soft (annealed) condition heat treatment to achieve the final required hardness = 63 HRC machining of electrodes and Electrical Discharge Machining (EDM) of specific parts of dies and moulds (specifically small radii and deep cavities with limited accessibility for metal cutting tools) finishing and super-finishing of cylindrical/flat/cavity surfaces with appropriate cemented carbide, cermets, solid carbide, mixed ceramic or polycrystalline cubic boron nitride (PCBN)For many components, the production process involves acombination of these options and in the case of dies and moulds it also includes time consuming hand finishing. Consequently, production costs can be high and lead times excessive.It is typical in the die and mould industry to produce one or just a few tools of the same design. The process involves constant changes to the design, and because of these changes there is also a corresponding need for measuring and reverse engineering.The main criteria are the quality level of the die or mould regarding dimensional, geometric and surface accuracy. If the quality level after machining is poor and if it cannot meet the requirements, there will be a varying need of manual finishing work. This work produces satisfactory surface accuracy, but it always has a negative impact on the dimensional and geometric accuracy.One of the main aims for the die and mould industry has been, and still is, to reduce or eliminate the need for manual polishing and thus improve the quality and shorten the production costs and lead times.Main economical and technical factors for the development of HSMSurvivalThe ever increasing competition in the marketplace is continually setting new standards. The demands on time and cost efficiency is getting higher and higher. This has forced the development of new processes and production techniques to take place. HSM provides hope and solutions...MaterialsThe development of new, more difficult to machine materials has underlined the necessity to find new machining solutions.The aerospace industry has its heat resistant and stainless steel alloys. The automotive industry has different bimetal compositions, Compact Graphite Iron and an ever increasing volume of aluminum3. The die and mould industry mainly has to face the problem of machining high hardened tool steels, from roughing to finishing.QualityThe demand for higher component or product quality is the result of ever increasing competition. HSM, if applied correctly, offers a number of solutions in thisarea. Substitution of manual finishing is one example, which is especially important on dies and moulds or components with a complex 3D geometry.ProcessesThe demands on shorter throughput times via fewer setups and simplified flows (logistics) can in most cases, be solved by HSM. A typical target within the die and mould industry is to completely machine fully hardened small sized tools in one setup. Costly and time consuming EDM processes can also be reduced or eliminated with HSM.Design & developmentOne of the main tools in today's competition is to sell products on the value of novelty. The average product life cycle on cars today is 4 years, computers and accessories 1.5 years, hand phones 3 months... One of the prerequisites of this development of fast design changes and rapid product development time is the HSM technique.Complex productsThere is an increase of multi-functional surfaces on components, such as new design of turbine blades giving newand optimized functions and features. Earlier designs allowed polishing by hand or with robots (manipulators). Turbine blades with new, more sophisticated designs have to be finished via machining and preferably by HSM . There are also more and more examples of thin walled workpiece that have to be machined (medical equipment, electronics, defense products, computer parts).Production equipmentThe strong development of cutting materials, holding tools, machine tools, controls and especially CAD/CAM features and equipment, has opened possibilities that must be met with new production methods and techniques5.Definition of HSMSalomon's theory, "Machining with high cutting speeds..." on which, in 1931, took out a German patent, assumes that "at a certain cutting speed (5-10 times higher than in conventional machining), the chip removal temperature at the cutting edge will start to decrease...".See fig.6.Fig.6 chip removal temperature as a result of the cutting speedGiven the conclusion:" ... seems to give a chance to improve productivity in machining with conventional tools at high cutting speeds..."Modern research, unfortunately, has not been able to verifythis theory totally. There is a relative decrease of the temperature at the cutting edge that starts at certain cutting speeds for different materials.The decrease is small for steel and cast iron. But larger for aluminum and other non-ferrous metals. The definition of HSM must be based on other factors.Given today's technology, "high speed" is generally accepted to mean surface speeds between 1 and 10 kilometers perminute, or roughly 3 300 to 33 000 feet per minute. Speeds above 10 km/min are in the ultra-high speed category, and are largely the realm of experimental metal cutting. Obviously, the spindle rotations required to achieve these surface cutting speeds are directly related to the diameter of the tools being used. One trend which is very evident today is the use of very large cutter diameters for these applications - and this has important implications for tool design.There are many opinions, many myths and many different ways to define HSM. Maintenance and troubleshooting Maintenance for a horizontal MCThe following is a list of required regular maintenance for a Horizontal Machining Center as shown in fig.7. Listed are the frequency of service, capacities, and type of fluids required. These required specifications must be followed in order to keep your machine in good working order and protect your warranty.Fig. 7 horizontal machining centerDailyTop off coolant level every eight hour shift (especially during heavy TSC usage).Check way lube lubrication tank level.Clean chips from way covers and bottom pan.Clean chips from tool changer.Wipe spindle taper with a clean cloth rag and apply light oil.WeeklyCheck for proper operation of auto drain on filter regulator. See fig. 8Fig. 8 way lube and pneumaticsOn machines with the TSC option, clean the chip basket on the coolant tank.Remove the tank cover and remove any sediment inside the tank. Be careful to disconnect the coolant pump from the controller and POWER OFF the control before working on the coolant tank. Do this monthly for machines without the TSC option.Check air gauge/regulator for 85 psi.For machines with the TSC option, place a dab of grease on the V-flange of tools. Do this monthly for machines without the TSC option.Clean exterior surfaces with mild cleaner. DO NOT usesolvents.Check the hydraulic counterbalance pressure according to the machine's specifications.Place a dab of grease on the outside edge of the fingers of the tool changer and run through all tools".MonthlyCheck oil level in gearbox. Add oil until oil begins dripping from over flow tube at bottom of sump tank.Clean pads on bottom of pallets.Clean the locating pads on the A-axis and the load station. This requires removing the pallet.Inspect way covers for proper operation and lubricate with light oil, if necessary.Six monthsReplace coolant and thoroughly clean the coolant tank.Check all hoses and lubrication lines for cracking.AnnuallyReplace the gearbox oil. Drain the oil from the gearbox, and slowly refill it with 2 quarts of Mobil DTE 25 oil.Check oil filter and clean out residue at bottom for the lubrication chart.Replace air filter on control box every 2 years.Mineral cutting oils will damage rubber based components throughout the machine.TroubleshootingThis section is intended for use in determining the solution to a known problem. Solutions given are intended to give the individual servicing the CNC a pattern to follow in, first, determining the problem's source and, second, solving the problem.Use common senseMany problems are easily overcome by correctly evaluating the situation. All machine operations are composed of a program, tools, and tooling. You must look at all three before blaming one as the fault area. If a bored hole is chattering because of an overextended boring bar, don't expect the machine to correct the fault.Don't suspect machine accuracy if the vise bends the part. Don't claim hole miss-positioning if you don't first center-drill the hole.Find the problem firstMany mechanics tear into things before they understand the problem, hoping that it will appear as they go. We know this from the fact that more than half of all warranty returned parts are in good working order. If the spindle doesn't turn, remember that the spindle is connected to the gear box, which is connected to the spindle motor, which is driven by the spindle drive, which is connected to the I/O BOARD, which is driven by the MOCON, which is driven by the processor. The moral here is doing replace the spindle drives if the belt is broken. Find the problem first; don't just replace the easiest part to get to.Don tinker with the machineThere are hundreds of parameters, wires, switches, etc., that you can change in this machine. Don't start randomly changing parts and parameters. Remember, there is a good chance that if you change something, you will incorrectly install it or break something else in the process6. Consider for a moment changing the processor's board. First, you have to download all parameters, remove a dozen connectors, replace the board, reconnect and reload, and if you make one mistake or bend one tiny pin itWON'T WORK. You always need to consider the risk of accidentally damaging the machine anytime you work on it. It is cheap insurance to double-check a suspect part before physically changing it. The less work you do on the machine the better.译文一数控机床虽然各种数控机床的功能和应用各不相同,但它们有着共同的优点。
数控加工英文词汇
数控加工英文词汇1)计算机数值操纵(Computerized Numerical Control, CNC)用计算机操纵加工功能,实现数值操纵。
2)轴(Axis)机床的部件能够沿着其作直线移动或者回转运动的基准方向。
3)机床坐标系(Machine Coordinate Systern )固定于机床上,以机床零点为基准的笛卡尔坐标系。
4)机床坐标原点(Machine Coordinate Origin )机床坐标系的原点。
5)工件坐标系(Workpiece Coordinate System )固定于工件上的笛卡尔坐标系6)工件坐标原点(Wrok-piexe Coordinate Origin)工件坐标系原点。
7)机床零点(Machine zero )由机床制造商规定的机床原点。
8)参考位置(Reference Position )机床启动用的沿着坐标轴上的一个固定点,它能够用机床坐标原点为参考基准9)绝对尺寸(Absolute Dimension)/绝对坐标值(Absolute Coordinates)距一坐标系原点的直线距离或者角度。
10)增量尺寸( Incremental Dimension ) /增量坐标值(Incremental Coordinates)在一序列点的增量中,各点距前一点的距离或者角度值。
11)最小输人增量(Least Input Increment)在加工程序中能够输人的最小增量单位。
12)命令增量(Least command Increment)从数值操纵装置发出的命令坐标轴移动的最小增量单位。
13)插补(InterPolation)在所需的路径或者轮廓线上的两个已知点间根据某一数学函数(比如:直线,圆弧或者高阶函数)确定其多个中间点的位置坐标值的运算过程。
14)直线插补(Llne Interpolation)这是一种插补方式,在此方式中,两点间的插补沿着直线的点群来逼近,沿此直线操纵刀具的运动。
数控加工常用英语,学会了令人刮目相看,收藏了
数控加工常用英语,学会了令人刮目相看,收藏了常用数控加工英语基本同上,不过NC就是Numerical Control,而不是数控铣床MC 是machine center 就是数控加工中心类似的有nc milling 数控铣床nc turning 数控车床nc grinding 数控磨穿turning center 车削中心3-Jaws indexing spacers 三爪、分割工具头A.T.C.system 加工中心机刀库Boring heads 搪孔头Boring machines 镗床Casting,aluminium 铸铝Casting,copper 铸铜Casting,gray iron 铸灰口铁Casting,malleable iron 可锻铸铁Casting,steel 铸钢Chamfer machines 倒角机Clamping/holding systems 夹具/支持系统CNC bending presses 电脑数控弯折机CNC boring machines 电脑数控镗床CNC drilling machines 电脑数控钻床CNC EDM wire-cutting machines 电脑数控电火花线切削机CNC electric discharge machines 电脑数控电火花机CNC engraving machines 电脑数控雕刻机CNC grinding machines 电脑数控磨床CNC lathes 电脑数控车床CNC machine tool fittings 电脑数控机床配件CNC milling machines 电脑数控铣床CNC shearing machines 电脑数控剪切机CNC toolings CNC刀杆CNC wire-cutting machines 电脑数控线切削机Coolers 冷却机Cutters 刀具Diamond cutters 钻石刀具Die casting dies 压铸冲模Die casting machines 压铸机Disposable toolholder bits 舍弃式刀头Drilling machines 钻床Drilling machines bench 钻床工作台Drilling machines,high-speed 高速钻床Drilling machines,multi-spindle 多轴钻床Drilling machines,radial 摇臂钻床Drilling machines,vertical 立式钻床drills 钻头Electric discharge machines(EDM) 电火花机Electric power tools 电动刀具Engraving machines 雕刻机Engraving machines,laser 激光雕刻机Etching machines 蚀刻机Fixture 夹具Forging,aluminium 锻铝Forging,cold 冷锻Forging,copper 铜锻Forging,other 其他锻造Forging,steel 钢锻Foundry equipment 铸造设备Gear cutting machines 齿轮切削机Gears 齿轮Grinder bench 磨床工作台Grinders,thread 螺纹磨床Grinders,tools & cutters 工具磨床Grinding machines 磨床Grinding machines,centerless 无心磨床Grinding machines,cylindrical 外圆磨床Grinding machines,universal 万能磨床Grinding tools 磨削工具Grinding wheels 磨轮Hand tools 手工具Honing machines 搪磨机Hydraulic components 液压元件Hydraulic power tools 液压工具Hydraulic power units 液压动力元件Hydraulic rotary cylinders 液压回转缸Jigs 钻模Lapping machines,centerless 无心精研机Lathe bench 车床工作台Lathes,automatic 自动车床Lathes,heavy-duty 重型车床Lathes,high-speed 高速车床Lathes,turret 六角车床Lathes,vertical 立式车床Lubricants 润滑液Lubrication Systems 润滑系统Machining centers,general 通用加工中心Machining centers,horizontal 卧式加工中心Machining centers,horizontal & vertical 卧式及立式加工中心Machining centers,vertical 立式加工中心Machining centers,vertical double-column type 立式双柱加工中心Magnetic tools 磁性工具Milling heads 铣头Milling machines 铣床Milling machines,bed type 床身式铣床Milling machines,duplicating 仿形铣床Milling machines,horizontal 卧式铣床Milling machines,turret vertical 六角立式铣床Milling machines,universal 万能铣床Milling machines,vertical 立式铣床Milling machines,vertical & horizontal 立式及卧式铣床Mold repair 模具维修Molds 模具Nail making machines 造钉机Oil coolers 油冷却器Planing machines 刨床Pneumatic power tools 气动工具Powder metallurgic forming machines 粉末冶金成型机Sawing machines 锯床Sawing machines,band 带锯床Saws,band 带锯Saws,hack 弓锯Saws,horizontal band 卧式带锯Saws,vertical band 立式带锯shafts 轴Shapers 牛头刨床Shearing machines 剪切机Slotting machines 插床spindles 主轴Tapping machines 攻螺丝机Vises 虎钳Vises,tool-maker 精密平口钳Wheel dressers 砂轮修整器(2):按中文拼音字母排序铝轮冒口切断机Overflow cutting machines for aluminium wheels离心压力机 Presses,eccentric六角立式铣床 Milling machines,turret vertical六角车床 Lathes,turret螺栓,螺帽及螺丝 Bolts,screws & nuts螺纹磨床 Grinders,thread冷却机 Coolers冷锻 Forging,cold冷锻冲压机 Presses,cold forging立式双柱加工中心 Machining centers,vertical double-column type立式铣床 Milling machines,vertical立式油压拉床 Vertical hydraulic broaching machine立式刨床 Planing machines vertical立式车床 Lathes,vertical立式带锯 Saws,vertical band立式加工中心 Machining centers,vertical立式及卧式铣床 Milling machines,vertical & horizontal立式钻床 Drilling machines,vertical联轴器 Coupling连续溶解保温炉Aluminum continuous melting & holding furnaces连续冲模 Dies-progressive链传动 Chain drive切断机 Cutting-off machinesCNC刀杆 CNC toolings曲柄压力机 presses,crank修整机 Finishing machines舍弃式刀头 Disposable toolholder bits润滑系统 Lubrication Systems润滑液 Lubricants熔热处理炉 Heating treatment funaces三爪、分割工具头 3-Jaws indexing spacers伺服冲床 Presses,servo输送链 Conveying chains手工具 Hand tools砂轮修整器 Wheel dressers蚀刻机 Etching machines外圆磨床 Grinding machines,cylindrical搪磨机 Honing machines搪孔头 Boring heads卧式铣床 Milling machines,horizontal卧式带锯 Saws,horizontal band卧式加工中心 Machining centers,horizontal卧式及立式加工中心 Machining centers,horizontal & vertical 万能铣床 Milling machines,universal万能磨床 Grinding machines,universal镗床 Boring machines弯曲机 Bending machines弯管机 Tube bending machines通用加工中心 Machining centers,general铜锻 Forging,copper铣头 Milling heads铣床 Milling machines无心磨床 Grinding machines,centerless无心精研机 Lapping machines,centerless压模 Pressing dies压铸冲模 Die casting dies压铸机 Die casting machines油冷却器 Oil coolers造链机 Chain making tools造线机 Cable making tools造钉机 Nail making machines印刷电器板油压冲孔脱料系统 PCB fine piecing systems摇臂钻床 Drilling machines,radial硬(软)板(片)材及自由发泡板机组 Hard/soft and free expansion sheet making plant辗压机 Rolling machines液压元件 Hydraulic components液压冲床 Presses,hydraulic液压动力元件 Hydraulic power units液压工具 Hydraulic power tools液压回转缸 Hydraulic rotary cylindersP型PVC高分子防水P type PVC waterproof rolled sheet making plant刨床 Planing machines牛头刨床 Shapers其他铸造 Casting,other其他锻造 Forging,other模芯 Mold core模具 Molds模具维修 Mold repair模具打磨/磨纹 Mold polishing/texturing模具单元 Mold & die components模具加热器/冷却器 Mold heaters/chillers磨轮 Grinding wheels磨削工具 Grinding tools磨床 Grinding machines磨床工作台 Grinder bench平衡设备 Balancing equipment气油压虎钳 Pneumatic hydraulic clamps气动冲床 Presses,pneumatic气动工具 Pneumatic power tools轴 shafts轴承 Bearings轴承配件 Bearing fittings轴承加工机 Bearing processing equipment 肘杆式压力机 Presses,knuckle joint铸铝 Casting,aluminium铸铜 Casting,copper铸造设备 Foundry equipment铸钢 Casting,steel铸灰口铁 Casting,gray iron织麦激光切割机 Woven-Cutting machines 重力铸造机 Gravity casting machines重型车床 Lathes,heavy-duty主轴 spindles扳手 Wrenches拔丝机 Drawing machines保温炉 Heat preserving furnaces插床 Slotting machines齿轮 Gears齿轮切削机 Gear cutting machines冲压机 Stamping parts冲子研磨器 Punch formers超声波打磨机 Grinders,ultrasonic车床工作台 Lathe bench磁性工具 Magnetic tools传动链 Transmitted chains床身式铣床 Milling machines,bed type带传动 Belt drive带锯 Saws,band带锯床 Sawing machines,band电脑数控镗床 CNC boring machines电脑数控弯折机 CNC bending presses电脑数控铣床 CNC milling machines电脑数控线切削机 CNC wire-cutting machines电脑数控磨床 CNC grinding machines电脑数控车床 CNC lathes电脑数控电火花线切削机 CNC EDM wire-cutting machines 电脑数控电火花机 CNC electric discharge machines电脑数控雕刻机 CNC engraving machines电脑数控机床配件 CNC machine tool fittings电脑数控剪切机 CNC shearing machines电脑数控钻床 CNC drilling machines电动刀具 Electric power tools电火花机 Electric discharge machines(EDM)雕刻机 Engraving machines刀片 Blades刀具 Cutters倒角机 Chamfer machines多轴钻床 Drilling machines,multi-spindle锻铝 Forging,aluminium锻压机 Presses,forging锻模 Forging dies仿形铣床 Milling machines,duplicating粉末冶金成型机 Powder metallurgic forming machines反射炉 Reverberatory furnaces钢锻 Forging,steel高速车床 Lathes,high-speed高速钻床 Drilling machines,high-speed管筒制造机 Pipe & tube making machines滚筒 Rollers工具磨床 Grinders,tools & cutters攻螺丝机 Tapping machines弓锯 Saws,hack虎钳 Vises换模系统 Mold changing systems夹盘 Chucks夹具 Fixture夹具/支持系统 Clamping/holding systems 剪切机 Shearing machines加工中心机刀库 A.T.C.system激光切割 Laser cutting激光雕刻机 Engraving machines,laser激光钢板切割机 Laser cutting for SMT stensil 集合管 Manifolds矫直机 Straightening machines金属板成型机 Sheet metal forming machines 金属板加工机 Sheet metal working machines 锯片 Blades,saw锯床 Sawing machines卷边工具 Crimping tools晶圆切割机 Dicing saws精密平口钳 Vises,tool-maker精研机 Lapping machines可锻铸铁 Casting,malleable iron快速换模系统 Quick mold change systems 卡口 Bayonet开关及按钮 Switches & buttons钻石刀具 Diamond cutters钻头 drills钻模 Jigs钻床 Drilling machines钻床工作台 Drilling machines bench自动压力机 Presses,transfer 自动车床 Lathes,automatic 注油机 Lubricators。
数控加工英语词汇
金属切削 metal cutting机床 machine tool金属工艺学 technology of metals 刀具 cutter摩擦 friction联结 link传动 drive/transmission轴 shaft弹性 elasticity频率特性 frequency characteristic 误差 error响应 response定位 allocation机床夹具 jig动力学 dynamic运动学 kinematic静力学 static分析力学 analyse mechanics拉伸 pulling压缩 hitting剪切 shear扭转 twist弯曲应力 bending stress强度 intensity三相交流电 three-phase AC磁路 magnetic circles变压器 transformer异步电动机 asynchronous motor 几何形状 geometrical精度 precision正弦形的 sinusoid交流电路 AC circuit机械加工余量 machining allowance 变形力 deforming force变形 deformation应力 stress硬度 rigidity热处理 heat treatment退火 anneal正火 normalizing脱碳 decarburization渗碳 carburization电路 circuit半导体元件 semiconductor element反馈 feedback发生器 generator直流电源 DC electrical source门电路 gate circuit逻辑代数 logic algebra外圆磨削 external grinding内圆磨削 internal grinding平面磨削 plane grinding变速箱 gearbox离合器 clutch绞孔 fraising绞刀 reamer螺纹加工 thread processing螺钉 screw铣削 mill铣刀 milling cutter功率 power工件 workpiece齿轮加工 gear mechining齿轮 gear主运动 main movement主运动方向 direction of main movement进给方向 direction of feed进给运动 feed movement合成进给运动 resultant movement of feed合成切削运动 resultant movement of cutting合成切削运动方向 direction of resultant movement of cutting 切削深度 cutting depth前刀面 rake face刀尖 nose of tool前角 rake angle后角 clearance angle龙门刨削 planing主轴 spindle主轴箱 headstock卡盘 chuck加工中心 machining center车刀 lathe tool车床 lathe钻削镗削 bore车削 turning磨床 grinder基准 benchmark钳工 locksmith锻 forge压模 stamping焊 weld拉床 broaching machine拉孔 broaching装配 assembling铸造 found流体动力学 fluid dynamics流体力学 fluid mechanics加工 machining液压 hydraulic pressure切线 tangent机电一体化 mechanotronics mechanical-electrical integration 气压 air pressure pneumatic pressure稳定性 stability介质 medium液压驱动泵 fluid clutch液压泵 hydraulic pump阀门 valve失效 invalidation强度 intensity载荷 load应力 stress安全系数 safty factor可靠性 reliability螺纹 thread螺旋 helix键 spline销 pin滚动轴承 rolling bearing滑动轴承 sliding bearing弹簧 spring制动器 arrester brake十字结联轴节 crosshead联轴器 coupling链 chain皮带 strap精加工 finish machining粗加工 rough machining变速箱体 gearbox casing腐蚀 rust氧化 oxidation磨损 wear耐用度 durability随机信号 random signal离散信号 discrete signal超声传感器 ultrasonic sensor集成电路 integrate circuit挡板 orifice plate残余应力 residual stress套筒 sleeve扭力 torsion冷加工 cold machining电动机 electromotor汽缸 cylinder过盈配合 interference fit热加工 hotwork摄像头 CCD camera倒角 rounding chamfer优化设计 optimal design可编程序逻辑控制器 Programmable Logic Controller PLC 电火花线切割加工 electrical discharge wire - cutting工业造型设计 industrial moulding design电火花加工 electric spark machining有限元 finite element滚齿 hobbing插齿 gear shaping伺服电机 actuating motor铣床 milling machine钻床 drill machine镗床 boring machine步进电机 stepper motor丝杠 screw rod导轨 lead rail组件 subassembly相图 phase diagram热处理 heat treatment固态相变 solid state phase changes 有色金属 nonferrous metal陶瓷 ceramics合成纤维 synthetic fibre车架 automotive chassis悬架 suspension转向器 redirector变速器 speed changer板料冲压 sheet metal parts孔加工 spot facing machining车间 workshop工程技术人员 engineer气动夹紧 pneuma lock电化学腐蚀 electrochemical corrosion 数学模型 mathematical model画法几何 descriptive geometry机械制图 Mechanical drawing投影 projection视图 view剖视图 profile chart标准件 standard component零件图 part drawing装配图 assembly drawing尺寸标注 size marking技术要求 technical requirements刚度 rigidity内力 internal force位移 displacement截面 section疲劳极限 fatigue limit断裂 fracture塑性变形 plastic distortion脆性材料 brittleness material刚度准则 rigidity criterion垫圈 washer垫片 spacer直齿圆柱齿轮 straight toothed spur gear斜齿圆柱齿轮 helical-spur gear直齿锥齿轮 straight bevel gear运动简图 kinematic sketch齿轮齿条 pinion and rack蜗杆蜗轮 worm and worm gear虚约束 passive constraint曲柄 crank摇杆 racker凸轮 cams共轭曲线 conjugate curve范成法 generation method定义域 definitional domain值域 range导数\\微分 differential coefficient求导 derivation定积分 definite integral不定积分 indefinite integral曲率 curvature偏微分 partial differential毛坯 rough游标卡尺 slide caliper千分尺 micrometer calipers攻丝 tap机械能守恒 conservation of mechanical energy 二阶行列式 second order determinant逆矩阵 inverse matrix线性方程组 linear equations概率 probability随机变量 random variable排列组合 permutation and combination 气体状态方程 equation of state of gas 动能 kinetic energy势能 potential energy动量 momentum桁架 truss轴线 axes余子式 cofactor逻辑电路 logic circuit触发器 flip-flop脉冲波形 pulse shape数模 digital analogy液压传动机构 fluid drive mechanism 机械零件 mechanical parts淬火冷却 quench淬火 hardening回火 tempering调质 hardening and tempering磨粒 abrasive grain结合剂 bonding agent砂轮 grinding wheel。
数控技术专业英语
• 交流电机 AC (alternate current) motor • 三相异步电机 three-phase asynchronous motor • 精密丝杆 precision lead screw • 滚珠丝杆 ball screw • 反馈 feedback • 传感器,变频器;变换器 transducer • 补偿 compensation • 误差 error • 切削力 cutting force • 机床控制单元 MCU (machine control unit)
二、重难点句 • Servo controls can be any group of electrical, hydraulic, or pneumatic devices which are used to control the position of machine tool slides. • In the open-loop system, the tape is fed into a tape reader which decodes the information punched on the tape and stores it briefly until the machine is ready to use it. The tape reader then converts the information into electrical pulses or signals. These signals are sent to the control unit, which energizes the servo control units. The servo control units direct the servomotors to perform certain functions according to the information supplied by the tape. The amount each servomotor will move depends upon the number of electrical pulses it receives from the servo control unit. • The closed-loop system is similar to the open-loop system with the exception that a feedback unit is introduced into the electrical circuit. This feedback unit, often called a transducer, compares the amount the machine table has been moved by the servomotor with the signal sent by the control unit. The control unit instructs the servomotor to make whatever adjustments are necessary until both the signal from the control unit and the one from the servo unit are equal.
数控类外文文献翻译、中英文翻译——模具型腔数控加工计算机辅助刀具选择和研究
Mould type of numerical control process computer assist the cutter choose and studyForewordNumerical control include cutter production and cutter of orbit choose two key problems process ,. The first problem has been got and studied extensivly and deeply over the past 20 years, a lot of algorithms developed have already got application in commercial CAD/ CAM system. Most CAM systems can produce the cutter orbit automatically after users input relevant parameters at present. Comparatively speaking , it is still not ripe to regard quality , efficiency as the research of choosing the problem of cutter of optimizing the goal correctly, do not have commercial CAM system that can offer the preferred decision support tool of cutter at present, therefore it is difficult to realize the integrating automatically and organically of CAD/ CAM.. The cutter is chosen to usually include cutter type and cutter size. Generally speaking , suitable for one processing cutter of target for much kind , one cutter can finish different processing tasks, so it is easier to only consider meeting the cutter that basically processes the requirement and choose, especially to geometirc characteristics of model such as the hole , trough ,etc.. But in fact, it is common for cutter to choose and sure optimization goal interrelate, for instance most heavy to cut efficiency , process time , minimum process cost , longest service life ,etc. at least, so the cutter is chosen it is a complicated optimization question. Such as mould type one of parts, because the geometirc form is complicated (usually include curved surface of freedom and island), influence geometry that cutter choose it restrains from to be can explicit to say among CAD model, need to design the corresponding algorithm to draw, therefore choose the cutter specification suitable and cutter association , it is not easy things by improving efficiency and quality processed in numerical control.Mould type generally with preparation method that numerical control mill, usually including rough machining, half finish machining , precise process of processing etc.. The principle of rough machining is to spare no effort to remove the surplus metal with high efficiency, therefore hope to choose the larger cutter, but the cutter is oversized, may causethe increase of the crude volume ; Half finish machining of tasks to remove rough machining leave over step that get off mainly; Finish machining mainly guarantees size of the part and surface quality. Consider , go on , select exist , sure by computer difficult automatically totally up till now, therefore assist the cutter to choose in the computer that we developed (Computer Aided Tool Selection , CATS) among the system, base on , provide one aid decision tool for user, rough machining , half finish machining , precise to process etc., the real policy-making power is still left to users, in order to give full play to the advantages of computer and people.1 Basic structure of the systemCATS system is CAD model, output for cutter type , cutter specification , mill depth of sharpening , enter the giving amount , rotational speed of main shaft (cut the pace ) and process six parameters such as time (such as Fig. 1), including choosing the aid decision tool in cutter type, rough machining cutter choose aid decision tool, half finish machining cutter choose aid decision tool and finish machining cutter choose aid decision tool ,etc.Given the rough machining in Xingqiang processing of the important position (usually rely time 5~10 times), rough machining, the system automatically optimize portfolio with cutlery functions to enhance overall processing efficiency. In addition to the decision-making tools, the system also has a detailed look cutlery norms, based on the type and size cutlery recommended processing parameters and assess the function of processing time, the last generation of the overall results of choice cutlery statements (figure 2). All the data and knowledge systems cutlery done by the background database support.2Key technologies and algorithms2.1C utlery type choiceAccording to Assistant Xingqiang digital processing practice, Xingqiang Xi state general processing cutlery into milling cutter, milling cutter radius milling cutter and the first three balls. D based cutlery diameter, radius radius r when r=0 for milling cutter, 0<R Cutlery can be divided into the overall style and embed films ceremony. For inlay film style, the key is to select the materials razor blades, razor blades materials choice depends on three elements : the processing of working materials, machine tools and cutlery jig stability of the state structures. Processing system will be translated intomaterial steel, stainless steel, cast iron, nonferrous metals, materials and hard to cut materials six groups. Machine tool jig stability into good, better and less than three levels. Cutlery investigation into the short and long cantilever structures two, the system automatically reasoning on the basis of the specific circumstances of razor blades materials, decision-making knowledge from Walter cutlery manual system by the users first choice cutlery type in the world. To embed film style cutlery, a rules-based automated reasoning suitable razor blades materials. For example, if the final processing of materials for the "steel", machine tool jig for good stability, cutlery cantilever structures for short, razor blades materials for WAP25.Rough machining cutlery portfolio optimizationXingqiang rough machining the aim is to maximize the removal of excess metal normally used milling cutter, take-cutting approach. Thus, 3D mould Xingqiang the rough machining process, is actually a series of 2.5D components Xingqiang processing. Cutlery optimization is to find a group of cutlery portfolio, allowing for maximum efficiency removal of most metals. Cutlery portfolio optimized basic methods as follows :A.To do some long step into knife in the direction of a group of vertical and horizontal search Xingqiang another entity to form a search layer.B.Derive closed to the contours.C.Calculated between Central and outside the island or islands and the distance between the key that affect cutlery choice geometric constraints algorithm flow As shown in figure 3D.According to the principle of the merger (adjacent to the critical distance will be smaller than the difference between the threshold) to search layer merger, graphic processing and identifying viable cutlery sets, a processing layer.E.Determine the use of each processing layer cutlery, cutlery Xingqiang processing portfolio.F.According cutlery recommended processing parameters (cutting speed, depth and into Xianxiao to speed), the calculation of material removal.G.According to the actual removal of the volume processing layer, the processing time for each processing layer.H.Xingqiang calculating the total processing time and residual volume.I.The overall portfolio of the Group cutlery processing efficiency assessment.J . Repeat a~i until derive optimal mix of cutlery. If time is the goal, called for the entire processing time t Xingqiang shortest portfolio to optimize cutlery.2.2Semi-finished cutlery choiceThe main purpose is to remove semi-finished rough machining residual contours of the new warrants. To completely remove height, depth must be greater than Xianxiao parts of each level to the surface distance x. Its algorithm steps are as follows :Step 1:entity models from parts of two adjacent to the cross section of the surface contours and the corresponding length;Step 2: The average length of contours;Step 3:calculate its width;Step 4 : calculating height floor to the surface of parts to the law distance x;Step 5 : steps 1~ repeat steps 4, each level of decision Xianxiao depth;Step 6 : calculate cutlery diameter D, by or under cutlery experience D=x/0.6 manual recommended;steps7 : choose Xianxiao x depth than the smallest cutlery.2.3fine cutlery choiceFine cutlery choice is the basic principle : cutlery parts surface radius smaller than the smallest size R curve radius r, the general admission R= (0.8~0.9) r. Its algorithm steps are as follows :Step 1 : from the smallest curve radius calculation model parts entities;Step 2 : From cutlery database search radius of less than a cutlery calculated radius of the curve all cutlery;Step 3 : select the best cutlery meet the above requirements;Step 4 : If all cutlery than the smallest curve radius, the smallest chosen as a recommended cutlery.3 summary and discussionMould type of craft of processing plan , need high technology and experience very usually, prepare NC time of data nearly and process time to be large. So person whoproduce of craft of processing plan and NC process demand of the order right away seem further more urgent automatically.This text system research mould type of craft cutter plan , choose problem, put forward mould of rough machining , half finish machining , finish machining principle and method that cutter chooses, the realization algorithm with corresponding structure , and has carried on the realization of preliminary programming under the environment of UG/OPEN API, have developed CATS prototype system. In cutter type and on the foundation that the specification is fixed, system also can recommend parameter of processing according to cutter manual (cut pace , mill , sharpen depth , enter person who give ,etc.), evaluate corresponding processing time. Final purpose its to realize integration of CAD/CAM really , produce through aftertreatment numerical control process the order.Need to point out , should improve the mould type totality of and process efficiency, need it from the rough machining , half finish machining , consideration on the whole of finish machining , make up and optimize many targets, this will be work that we want to carry on next .模具型腔数控加工计算机辅助刀具选择和研究引言数控加工中包括刀具轨迹的产生和刀具选择两个关键问题。
数控加工专用术语英文词汇
ASME常用词汇Abrasion, allowance for 磨损,裕量Accessibility,pressure vessels 压力容器可达性Access openings 通道孔Allowance for corrosion, erosion, or abrasion 腐蚀裕量侵蚀或/磨损裕量Applied linings, tightness 应用衬里密封性Approval of new materials, 新材料的批准Articles in Section V 第V卷中的各章Attachments 附件lugs and fitting 支耳和配件lugs for platforms, ladders, etc. 平台,梯子等的支耳nonpressure parts 非受压件nozzles 接管pipe and nozzle necks to vessel walls 在器壁上的管子和接管颈stiffening rings to shell 壳体上的刚性环Backing strip 垫板Bending stress, welded joints 弯曲应力,焊接接头Bend test 弯曲试验Blind flanges 盲板法兰Bolted flange connections 螺栓法兰连接bolt lands 螺栓载荷bolt stress 螺栓应力design of 关于设计flange moments 法兰力矩flange stresses 法兰应力materials 材料studs 双头螺栓tightness of 紧密性types of attachment 附件类型Bolts 螺栓Braced and stayed surfaces 支持和支撑面Brazed connections for nozzles 接管的钎焊连接Brazed joints, efficiency of 钎焊接头,焊缝系数maximum service temperature 最高使用温度strength of 强度Brazing, cleaning of brazed surfaces 钎焊,钎焊的表面清理fabrication by 用……制造filler metal 填充金属fluxes 钎焊剂heads into shells 封头接入壳体operating temperature 操作温度Buttstraps, curvature 对接盖板,曲率forming ends of 成型端thickness and corrosion allowance 厚度和腐蚀裕量973welding ends of 焊接端Carbon in material for welding 焊接用材料中的碳Cast ductile iron vessels, design 可锻铸铁容器,设计pressure-temperature limitations 压力-温度界限service restrictions 使用限制Castings 铸件carbon steel 碳钢defects 缺陷impact test 冲击试验inspection 检查quality factor 质量系数specifications 标准Cast iron circular dished heads 铸铁碟形封头Cast iron standard parts, small 铸铁标准部件,小件Cast iron pipe fittings 铸铁管件Cast iron vessels 铸铁容器corners and fillets 圆角和倒角head design 封头设计hydrostatic test 水压试验nozzles and fittings 接管和配件pressure-temperatures limitations 压力-温度界限Certificate of Authorization for Code Symbol Stamp 规范符号标志的认可证书Certification of material 材料证明书Certification of Nondestructive Personnel 无损检验人员证明书Magnetic Particle Examination 磁粉检验Liquid Penetrant Examination液体渗透检验Radiographic Examination 射线超声检验Ultrasonic Examination 超声检验Chip marks on integrally forged vessels 整体锻造容器上的缺口标志Circumferential joints alignment tolerance环向连接,组对公差assembling装配brazing钎焊vessels subjected to external pressure 承受外压的容器Clad material, inserted strips 覆层材料,嵌条examination 检查Clad plate 复合板Cleaning ,of brazed surfaces 钎焊表面清理of welded surfaces 焊接表面Clearance between surfaces to be brazed 钎焊表面间的间隙Combination, of different materials 不同材料组合of methods of fabrication制造方法Computed working pressure from hydrostatic tests 由水试验计算的工作压力Conical heads 锥形封头Conical sections 圆锥截面974Connections ,bolted flange (see Bolted flange connections)连接,螺栓法兰(见螺栓法兰连接)brazed 钎焊clamp 卡箍expanded 胀接from vessels to safety valves 由容器至安全阀studded 双头螺栓threaded 螺纹welded 焊接Cooling, after postweld heat treating 冷却,焊后热处理Corrosion allowance 腐蚀裕度Corrosion resistant linings 防腐蚀衬里Corrugated shells 波纹形壳体Corrugating Paper Machinery 波纹板机械Cover plates 盖板on manholes and handholes 在人孔和手孔上的spherically dished 球形封头Cracking, stress corrosion 应力腐蚀裂缝Cutting plates 板材切割Cylindrical shells, supplementary loading 柱状壳体,附加载荷thickness 厚度transition in 过渡段Data report, guide for preparation 准备数据报告的指南Defects in welded vessels, repair 修理焊接容器中的缺陷Definitions 定义Design, brazed vessels 设计钎焊容器carbon and low alloy steel vessels 碳钢及低合金钢容器cast ductile iron vessels 可锻铸铁容器cast iron vessels 铸铁容器clad vessels 覆层容器ferritic steel vessels with properutsenhanced by heat treatment 经热处理后提高抗拉性能的铁素体钢容器forged vessels 锻造容器high-alloy steel vessels 高合金钢容器loadings 载荷multichamber vessels 多受压室容器nonferrous vessels 非铁金属容器welded vessels 焊接容器design pressure 设计压力Diameter exemption 直径的豁免Dimensions, checking of 尺寸,校核Discharge of safety valves 安全阀泄放Dished heads (see formed heads) 碟形封头(见成形封头)Disks, rupture 防爆膜Dissimilar weld metal 不同金属的焊接975Distortion, of welded vessels 大变形、焊接容器supports to prevent 用支撑防止Drainage, discharge from safety and relief valves 排放,由安全阀和泄压阀泄放Drop weight tests 落锤试验Eccentricity of shells 壳体的偏心度Edges of plates, metal removal from 由加工板边去除金属tapered 锥度Efficiency, around openings for welded attachments 焊缝系数,环绕焊接附件孔口Elasticity, modulus of 弹性模量Electric resistance welding 电阻焊Ellipsoidal heads 椭圆封头Erosion, allowance for 侵蚀裕量Etching, of sectioned speciments 侵蚀,关于截面试样solutions for examination for materials 检验材料的溶液Evaporators 蒸发器Examination, of sectioned speciments 剖面试样的检验of welded joints 焊接接头的检验Exemptions diameter and volume 直径和容积的豁免Expanded connections 胀接连接External pressure, tube and pipe 外压管External pressure vessels 外压容器allowable working pressure for 许用工作压力charts 算图design of heads for 封头设计joints in shells of 壳体上的接头reinforcement for openings 开孔补强stiffening rings in shells 壳体上的刚性环supports for 支承thickness of shell 壳体厚度reducers 变径段Fabrication, brazed vessels 制造,钎焊容器Ferritic steels vessels with tensile proper ties enhanced by heat treatment, design经热处理后提高抗拉性能的铁素体钢容器,设计fabrication 制造head design 封头设计heat treatment热处理heat treatment verification tests 热处理验证试验marking 标志materials 材料stamping 标记welded joints 焊接接头Field assembly of vessels 容器的现场安装Filler plugs for trepanned holes 锥孔的管塞Fillet welds 角焊976Fired process tubular heaters 直接火管式加热炉Fitting attachments 附件装配Flange connections 法兰连接Flange contact facings 法兰接触面Flanges 法兰bolted design 螺柱法兰设计of formed heads for welding 用于焊接成型封头type of attachment 附件的类型Flat heads and covers, unstayed 无支撑平封头和盖板reinforcement of openings 开孔补强Flat spots on formed heads 成型封头上的平坦部分Flued openings 翻边开孔Forged parts, small 锻造部件,小的Forged vessels 锻造容器heat treatment 热处理localized thin areas 局部薄壁区welding 焊接Forgings 锻件identification of 识别Ultrasonic Examination 超声检验Formmanufacturer’s data report 制造厂数据报告格式partial report 零部件数据报告Formed heads 成型封头flued openings in 封头上翻边开孔insertion of, welded vessels 插入,焊接容器joint efficiency 接头系数knuckle radius 转角半径length of skirt 直边长度on welded vessels 在焊接容器上reinforcement for openings 开孔补强Forming 成型ends of shell plates and buttstraps 壳体板和对接搭板端forged heads 锻造封头shell sections and heads 筒节和封头Furnaces 炉子temperatures for postweld head treatment 焊后热处理温度Furnaces for heat treating 热处理炉temperature control of 炉温控制Galvanized vessels 镀锌容器Gasket materials 垫片材料Girth joints (see circumferential joints) 环缝接头(见环向接头)Handhole and manhole openings 手孔和人孔开孔Head flange (skirt) length 封头翻边(直边)长度977Head joints 封头接头brazing 钎焊welded 焊接Head openings 封头开孔entirely in spherical portion 全部在球体部分Head joints 封头接头concave and convex 凹面和凸面flat (see flat heads) 平板(见平封头)forged 锻造的formed (see Formed heads) 成型的(见成形封头)forming 面型thickness, after forming 厚度,成型之后Heads, design, conical 封头,设计,锥形ellipsoidal 椭圆形hemispherical 半球形spherically dished 球状碟形toriconical 带折边的锥形torispherical 带折边的球形torispherical, knuckle radius 带折边的球形,转角半径Heads and shells 封头和壳体external pressure, out-of-roundness 外压,不圆度openings through or near welded joints 通过或靠近焊缝处的开孔roundness tolerance 不圆度公差Heat exchangers 热交换器Heat treatment 热处理by fabricator 由制造厂进行carbon and low-alloy steel vessels 碳钢和低合金钢容器ferritic steel vessels with tensile properties enhanced by heat treatment 经过热处理后提高抗拉性能的铁素体的容器forged vessels 锻造容器furnaces 炉子high-alloy vessels 高合金容器of test specimens 试样的热处理verification tests of 热处理验证试验Hemispherical heads 半球形封头High pressure vessels 高压封头Holes 小孔for screw stays 用于螺丝固定for trepanning plug sections, refilling 用于穿孔螺塞部分,再填充telltale 指示孔unreinforced, in welded joints 不补强,在焊缝上Hubs, on flanges 高颈,在法兰上Hydrostatic proof tests 水压验证试验destructive 破坏性978prior pressure application 在升压之前Hydrostatic test 水压试验cast iron vessels 铸铁容器combined with pneumatic 与气压试验混合的enameled vessels 搪玻璃容器external pressure vessels 外压容器galvanized vessels 镀锌容器standard 标准welded vessels 焊接容器Identification 识别of forging 锻件of plates 平板of welds 焊接Identification markers, radiographs 识别标志,射线照相Impact test 冲击试验certification 证明properties 性能specimens 试样temperature 温度Inspection 检查before assembling 组装之前carbon and low-alloy steel 碳钢和低合金钢cast ductile iron vessels 可锻铸铁容器cast iron vessels 铸铁容器clad vessels 覆层容器during fabrication 在制造期间ferritic steel vessels with tensile properties enhanced by heat treatment 经过热处理后提高抗拉性能的铁素体的容器fitting up 组对forged vessels 锻造容器heat treatment, forgings 热处理,锻件high-alloy steel vessels 高合金钢容器magnetic particle 磁粉material 材料nonferrous vessels 非铁金属容器plate 板材postweld heat treatment 焊后热处理pressure vessels, accessibility 压力容器,可达性quality control 质量管理sectioning of welded joints 焊接接头的剖面检验spot examination 抽样检查steel castings 铸钢件surfaces exposed and component parts 暴露的表面和元件部分test specimens 试样979vessels 容器vessels exempted from 免检容器welded vessels 焊接容器Inspection openings 检查孔Inspectors 检查师access to plant 在厂内应有的便利control of stamping 打印管理duties 职责facilities 装备qualification 资格reports 报告Installation 安装pressure-relieving devices 泄压装置pressure vessel 压力容器Integral cast iron dished heads 整体铸铁碟形封头integrally finned tubes 整体翅片管Internal structures 内部构件Jacketed vessels 夹套容器Joints 接头brazed 钎焊circumferential (see Circumferential joints) efficiency, brazed 环缝(见环向接头)系数,钎焊welded 焊接electric resistance, butt welding 电阻,对接焊in cladding and applied linings 在覆层及衬里in vessels subjected to external pressure 在承受外压的容器lap (see Lap joints) 搭接(见搭接接头)longitudinal (see Longitudinal joints) 纵向(见纵向接头)tube-to-tubesheet 管子对管板Jurisdictional Review 权限审查Knuckles 过渡圆角radius 半径transition section 变径段Lap joints 搭接接头amount of overlap 搭接量brazed 钎焊longitudinal under external pressure 在外压作用下纵向的welded 焊接Laws Covering Pressure Vessels 涉及压力容器的法规Lethal gases or liquids 致命的气体或液体Ligaments, efficiency of 孔带,系数Limitation on welded vessels 焊接容器的限制Limit of out-of-roundness of shells 壳体不圆度的限制Linings 衬里corrosion resistant 抗腐蚀980Liquid penetrant examination 液体渗透检验Loadings 载荷Local postweld heat treatment 局部焊后热处理Longitudinal joints 纵向接头alignment tolerance 对准公差brazing 钎焊vessels subjected to external pressure 承受外压的容器Low-temperature operation 低温操作Low-temperature vessels brazed 低温容器,钎焊for gases and liquids 用于气体和液体impact test requirements 冲击试验要求impact test, when not required 冲击试验,当不要求时marking 标志materials 材料testing of materials 材料试验Lugs for ladders, platforms, and other 梯子,平台及其它附件的支耳Magnetic particle inspection 磁粉检查Manholes, and handholes 人孔,手孔cover plate for 盖板minimum vessel diameter requiring 所需最小容器直径Manufacture, responsibility of 制造者,职责Manufacturer’s Data Report (see Data Report) 制造厂数据报告(见数据报告) Manufacturer’s stamps 制造厂的印记Marking castings 标志,铸件materials 材料plates 板材standard pressure parts 标志受压件valves and fittings 阀门和配件with Code symbol 带有规范符号Markings, transfer after cutting plates 标志,板材切割以后的转移Materials, approval of new 材料,新材料的批准approval of repairs 修补的批准brazed vessels 钎焊容器carbon and low-alloy steel vessels 碳钢和低合金钢容器cast ductile iron 可锻铸铁castings 铸铁cast iron vessels 铸铁容器certification 合格证clad vessels 覆层容器combination of 组合材料ferritic steel vessels with tensile properties enhanced by heat treatment 经热处理后提高抗拉性能的铁素体钢容器forged vessels 锻造容器for nonpressure parts 非受压元件981heat treatment of 热处理high-alloy steel vessels 高合金钢容器inspection of 检查nonferrous vessels 非铁金属容器pipe and tube 管子plate 板rods and bars 杆和棒specification for 标准standard pressure, parts 标准受压元件unidentified 未鉴别的use of over thickness listed in Section Ⅱ采用超过列于第Ⅱ卷表中的厚度welded vessels 焊接容器Measurement, 测量dimensional 尺寸of out-of-roundness of shells 壳体不圆度Metal temperature determination 金属温度,确定control of 控制Mill undertolerance 钢厂负公差控制Minimum thickness of plate 板材的最小厚度控制Miscellaneous pressure parts 其它受压件控制Multichamber vessels design 多承压室容器,设计Multiple duplicate vessels 多个相同的容器Multiple safety valves 多个安全阀Nameplates 铭牌New materials 新材料Noncircular vessels 非圆形容器ligament efficiency 孔带系数nomenclature 术语obround design 长圆形设计rectangular design 矩形设计reinforcement 补强examples 实例Nonpressure parts, attachment of 非受压元件的连接Notch ductility test 缺口韧性试验Nozzle openings, reinforced 接管开孔,补强的unreinforced 非补强的vessels subjected to external pressure 承受外压得容器Nozzles attachment of to shell 接管,与壳体的连接minimum thickness of neck 缩颈的最小厚度(see also Connections)(也可见连接件)Nuts and washers 螺母和垫圈Offset of edges of plates at joints 在接头处板边的偏差Openings adjacent to welds 开孔,邻近焊缝closure of 封闭982for connections to brazed vessels 用于对钎焊容器的连接for drainage 用于排放head (see Openings head and shell) 封头(见开孔,封头和壳体)in flat heads 在平板封头上inspection 检查manhole (see Manholes) 人孔(见人孔)nozzle (see Nozzle opening) 接管(见接管开孔)shell (see Openings, head and shell) 壳体(见开孔,封头和壳体)through welded joints 通过焊接接头Openings, head and shell, computation of 开孔,封头和壳体,计算not requiring additional reinforcement 不需要附加补强reinforced, size 补强,尺寸reinforcement for adjacent openings 邻近开孔的补强reinforcement of 补强requiring additional reinforcement 需要附加补强shapes permissible 许用形式unreinforced, size 不补强的,尺寸Outlets, discharge, pressure relieving devices 排放口,出料,泄压装置Out-of-roundness 不圆度Overpressure limit for vessels 容器的超压极限Partial data report, manufacturer’s 零部件数据报告,制造厂的Parts, miscellaneous 部件,各种各样的Peening 捶击Pipe connections openings for 管子的连接,用于开孔Pipe fittings vessels built of 管子配件,制造的容器Pipe and tubes 各类管子Pipe used for shells 用作壳体的管子piping external to vessel 容器外的管子Plate, curvature 板,曲率measurement, dimensional check 测量,尺寸校核Plate edges cutting 板边,切割exposed left unwelded 留下不予焊接的显露部分inspection of 检查Plates 平板alignment 找准cover 盖板cutting 切割forming 成型heat treatment 热处理identification 标志impact test 冲击试验inspection 检查laying out 划线less than 6 mm thickness 厚度小6mm983markings transfer after cutting 标志,在切割以后的转移minimum thickness 最小厚度repair of defects 缺陷修理specifications 标准structural carbon steel 结构碳钢Plug welds 塞焊Pneumatic test 气压试验pressure 压力yielding 屈服Porosity welded joints 气孔,焊接接头Porosity charts 气孔图Postheat treatment 后热处理connections for nozzles and attachments 用于接管和附件的连接cooling after 随后的冷却furnace temperature 炉温inspection 检查local 局部requirements 要求temperature range 温度范围welded vessels 焊接容器Preheating 预热Preparation of plates for welding 焊接板材的准备pressure, design 压力,设计limits 极限(see also Working pressure, allowable) (也可见工作压力,许用)Pressure parts miscellaneous 受压件,其它的Pressure relieving devices 泄压装置discharge 排放installation and operation 安装和运转rupture disks 防爆模setting 整定Pressure vessels 压力容器exempted from inspection 免检Produce form of Specification 产品技术条件Proof test hydrostatic (see Hydrostatic proof test) 验证试验,水压(见水压试验) Qualification 评定of brazers 钎焊工of welders 焊工of welding procedure 焊接工艺Quality Control System 质量保证体系Quenching and tempering 淬火及回火Quick-actuating closures 快开盖Radiograph factor 射线照相系数Radiographing 射线照相984examination by 检查partial 部分quality factors 质量系数requirements 要求spot examination 抽样检查retests 重新试验thickness, mandatory minimum 规定最小厚度Radiographs, acceptance by inspector 射线照相,由检查员认为合格gamma rays, radium capsule γ射线,装镭的盒子interpretation by standard procedure 由标准程序的说明rounded indications 圆形显示Reaming holes for screw stays 为固定螺钉用的铰孔Reducer sections, rules for 变径段,规程Reinforcement 补强defined limits 规定的范围head and shell openings 封头及壳体开孔large openings 大开孔multiple openings 多个开孔nozzle openings 接管开孔of openings in shells, computation of 壳体上开孔,计算openings subject to rapid pressure fluctuation 经受压力突然波动的开孔Fluctuation 经受压力突然波动的开孔strength 强度Relief devices 泄放装置(see also Pressure relieving devices, Safety and relief Valves)(也可见泄压装置,安全阀和泄压阀)Relieving capacity of safety valves 安全阀排量Repairs, approval of defects in material 修理,材料中缺陷的认可defective Brazing 有缺陷的钎焊defects in forgings 锻件中的缺陷defects in welds 焊缝中的缺陷Responsibility of manufacturer 制造者的职责Retention of Records 记录的保存Radiographs 射线照相Manufacturer’s Data Reports 制造厂的数据报告Retests, frogings 复试,锻件impact specimens 冲击试样joints, welded 接头,焊接Rods, bars, and shapes 杆棒喝型材Rolled parts, small 轧制件,小件Rupture disks 爆破模Safety 安全性safety relief, and pressures relief valves, adjustable blow down, capacity certification 安全泄放和泄压阀,可调节的泄放,排放量证明985capacity, conversion 排量,换算connection to vessels 连接至容器construction 结构discharge pipe 排放管indirect operation 间接操作installation 安装installation on vessels in service 容器在役时的安装liquid relief 液体泄放marking 标志minimum requirements 最低要求pressure setting 压力整定spring loaded 受载弹簧springs, adjustment 弹簧,调节stop valves adjacent to 邻近的截止阀test 试验protective devices 防护装置for unfired steam boiler 对非直接火蒸气锅炉Scope 适用范围sectioning, closing holes left by 解剖,解剖孔的封闭etching plugs taken 解剖样的侵蚀examination by 检查Service restriction 使用限制Shapes, special 形状,特殊Shell plates, forming ends of 壳体用材料,封头成型Shells 壳体allowable working pressure 许用工作压力computation of openings in 开孔计算forming 成型made from pipe 由管子制造的stiffening rings 刚性环thickness 厚度Transition section 过渡段Sigma-phase formation σ相的形成Skirts length on heads 直边、封头上的长度support of vessels 裙座,容器支撑Slag inclusion welds 焊缝中的夹渣Special constructions 特殊结构Specification for materials 材料标准Spherical sections of vessels 容器的球形部分Spot examination of welded joints 焊接接头的抽样检查Springs for safety valves 安全阀的弹簧Stamping location of 打印位置multipressure vessels 多重压力容器omission of 省略986safety valves 安全阀with Code symbol 带有规范标记Stamps, certificate of authorization 钢印,授权low stress 低压力not to be covered 不应覆盖to be visible on plates 在板上可见Static head, in setting safety valves, effect of on limiting stresses 静压头,在整定安全阀时,影响,对极限应力Stayed surfaces 支撑表面Staying formed heads 成型封头的支撑Stays and staybolts, adjacent to edges of staybolted surface 支撑件及拉撑螺栓,邻近用螺栓拉撑得表面周边处allowable stress 许用应力area supported 支撑面dimensions 尺寸ends 端部location 位置pitch 节距screw, holes for 螺孔upset for threading 为车制螺纹的镦粗welded 焊接的Steam generating vessels, unfired 蒸汽锅炉,非直接火Steel, carbon content 钢,含碳量Stenciling plates for identification 在板材上打印标志Stiffening rings, attachment to shell 刚性环,和壳体的装配for vessels under external pressure 用于外压容器Stiffness, support of large vessels for 刚性,大容器支座Stop valves 截止阀adjacent to safety and relief valves 邻近于安全和泄压阀Strength of brazed joints 钎焊接头的强度Stress corrosion cracking 应力腐蚀裂缝Stress values, attachment weld 应力值,连接焊缝basis for establishing 确定的基础carbon and low-alloy steel 碳钢和低合金钢cast iron 铸铁ferritic steels with tensile properties enhanced by heat treatment 经热处理后提高抗拉性能的铁素体刚high-alloy steel高合金钢nonferrous metals 非铁金属Stud bolt threads 双头螺栓螺纹Studded connections 双头螺纹连接Supplementary design formulas 补充设计公式Supports, design 支座,设计pressure vessels 压力容器987temperature free movement under 在温度下活动不受约束types of steel permissible for 容许的钢材类型vessels subjected to external pressure 承受外压的容器Surface Weld Metal Buildup 金属堆焊表面Tables, effective gasket width b 表,有效垫片宽度bgasket materials and contact facings 垫片材料和接触面maximum allowable efficiencies for arc and gas welded joints 电弧焊和气焊接头的最大许用系数minimum number of pipe threads for connections 管螺纹连接的最少螺纹牙数molecular weights of gases and vapors 气体和蒸汽的分子量of stress values, carbon and low-alloy steel 应力值,碳钢和低合金钢cast iron 铸铁cast ductile iron 可锻铸铁ferritic steels with tensile properties enhanced by heat treatment经热处理后提高抗拉性能的铁素体钢high-alloy steel 高合金钢nonferrous metals 非铁金属welded carbon low-alloy pipe and tubes 焊接低合金碳钢管of values factor K系数K值factor M 系数Mfactor 系数postweld heat treatment requirements 焊后热处理要求recommended temperature ranges for heat treatment 推荐的热处理温度范围spherical radius factor K1 球半径系数K1Telltale holes 指示孔in opening reinforcement 开孔补强Temperature, definitions 温度,定义design 设计determination 确定free movement of vessel on supports 支座上的容器活动不受约束heat treatment 热处理limitations, of brazed vessels 限制,钎焊容器of cast ductile iron 可锻铸铁of postweld heat treating 焊后热处理metal, control of 金属,控制operating or working, definitions 操作或工作,定义zones of different 不同区域Termination point of a vessel 容器的界限点Test coupons 试样Test gages requirements 试验仪表,要求Test plates heat treatment 试板,热处理impact test 冲击试验production 生产Tests, hydrostatic proof 试验,水压验证988pneumatic (see pneumatic test) 气压,见气压试验vessels whose strength cannot be calculated 不能由计算求得强度的容器calculated 不能由计算求得强度的容器Thermal buffers 热缓冲器Thermocouples attachment 热电偶,安装Thickness gages, details 厚度量规,细节Thick shells, cylindrical 厚壳体,圆柱形spherical 球形Thin plates marking 薄板,标志Threaded connection 螺纹连接Threaded inspection openings 螺纹检查孔Threads, stud bolts 螺纹,双头螺栓Tolerances, forged shells and heads 公差,锻造容器及封头Toriconical heads 带折边的锥形封头Torispherical heads 带折边的球形封头Transfering marking on plates 板上标志的移植Transition in cylindrical shells 柱状壳体的过渡Trays and baffles, acting as partial shell stiffeners 塔盘及挡板,作为部分壳体加强圈Tubes and pipe 管子Tube-to-tubesheet joints 管子与管板的连接Ultrasonic examination of welds 焊缝的超声检验UM vessels UM 容器Unfired steam boiler 非直接火蒸汽锅炉Unidentified materials 未识别的材料Valves, connections 阀,连接safety and relief (see safety and relief valves) 安全和泄压装置Valves and fittings, marking 阀及其配件,标志Verification tests, heat treatment 验证试验,热处理Volume exemption 容器的免检Weld deposits, cleaning 焊接熔敷金属,清理peening 捶击Welded joints, category 焊接接头,类别description of types 类型的描述efficiency 焊缝系数impact test, across 冲击试验,横向postweld heat treating 焊后热处理radiographic examination, complete 射线照相检查,整个的rounded indications 圆形显示sectioning, etch test 解剖,侵蚀试验spot examination 抽样检查staggered, longitudinal 错开,轴向taper, plates of unequal thicknesses 锥度,不等厚板types around openings 类型,环绕开孔ultrasonic examination of 超声检验989Welded reinforcement of nozzle openings 接管开孔的焊缝补强Welded vessels 焊接容器holes in joints of 接头处的孔inspection 检查limitations on 限制tests of 试验Welders and welding operators 焊工和自动焊工identifying stamps 识别标记records of, by manufacturers 由制造厂所作的记录test of qualification 评定试验Welding 焊接cleaning of welded surfaces 焊件表面清理details, limitations 细节,限制forged vessels 锻造容器materials 材料materials having different coefficients of expansion 膨胀系数不同的材料of attachment around openings 开孔周围的连接plate, fitting up joints 平板,连接处的装配plate edges, matching 板边,匹配preparation of plates 钣材的制备procedure qualification 工艺评定processes 工艺test requirement 试验要求Weld metal, composition 焊缝金属,成分Welds acceptability, when radiographed 焊缝合格,用射线照相时when sectioned 解剖时fillet 填角identification of 识别plug 塞焊reinforcement, butt welds 补强,对接焊repairs of defects in 焊缝中缺陷的修补sharp angles, avoid at weld edges 尖角,避免在焊缝边上structural 结构tack 定位焊types, description 类型,描述ultrasonic examination of 超声检验Working pressure allowable, braced and stayed surfaces 许用工作压力,有拉撑和支撑表面by proof test 验证性试验definition of 定义990液压专业常用英语词汇一、阀类Solenoid valve 电磁阀Check valve 单向阀Cartridge valve 插装阀Sandwich plate valve 叠加阀Pilot valve 先导阀Pilot operated check valve 液控单向阀Sub-plate mount 板式安装Manifold block 集成块Pressure relief valve 压力溢流阀Flow valve 流量阀Throttle valve 节流阀Double throttle check valve 双单向节流阀Rotary knob 旋钮Rectifier plate 节流板Servo valve 伺服阀Proportional valve 比例阀Position feedback 位置反馈Progressive flow 渐增流量De-energizing of solenoid 电磁铁释放二、介质类Phosphate ester (HFD-R) 磷酸甘油酯Water-glycol (HFC) 水-乙二醇Emulsion 乳化液Inhibitor缓蚀剂Synthetic lubricating oil 合成油三、液压安装工程Contamination 污染Grout 灌浆Failure 失效Jog 点动Creep爬行Abrasion 摩擦Retract(活塞杆)伸出Extension (活塞杆)缩回Malfunction 误动作Pickling 酸洗Flushing 冲洗Dipping process 槽式酸洗Re-circulation 循环Passivity 钝化Nitric acid 柠檬酸Argon 氩气991Butt welding 对接焊Socket welding 套管焊Inert gas welding 惰性气体焊四、管接头Bite type fittings 卡套式管接头Tube to tube fittings 接管接头union 直通接管接头union elbow 直角管接头union tee 三通管接头union cross 四通管接头Mal stud fittings 端直通管接头Bulkhead fittings 长直通管接头Weld fittings 焊接式管接头Female connector fittings 接头螺母Reducers extenders 变径管接头Banjo fittings 铰接式管接头Adjustable fittings/swivel nut 旋转接头五、伺服阀及伺服系统性能参数Dynamic response 动态频响DDV-direct drive valve 直动式伺服阀NFPA-National Fluid Power Association 美国流体控制学会Phase lag 相位滞后Nozzle flapper valve 喷嘴挡板阀Servo-jet pilot valve 射流管阀Dither 颤振电流Coil impedance 线圈阻抗Flow saturation 流量饱和Linearity 线形度Symmetry 对称性Hysterics 滞环Threshold 灵敏度Lap 滞后Pressure gain 压力增益Null 零位Null bias 零偏Null shift 零飘Frequency response 频率响应Slope 曲线斜坡992模板类top plate上托板(顶板)top block上垫脚punch set上模座punch pad上垫板punch holder上夹板stripper pad脱料背板up stripper上脱料板male die公模(凸模)feature die公母模female die母模(凹模)upper plate上模板lower plate下模板die pad下垫板die holder下夹板die set下模座bottom block下垫脚bottom plate下托板(底板)stripping plate内外打(脱料板)outer stripper外脱料板inner stripper内脱料板lower stripper下脱料板993放电加工关连用语英汉对照bnormal glow 不规则辉光放电arc discharge 电弧放电belt 皮带centreless 无心chrome bronze 铭铜clearance angle 后角corner shear drop 直角压陷deflection 桡曲度discharge energy 放电能量dressing 修整dwell 保压flange 凸缘gap 间隙graphite 石墨graphite contraction allowance 电极缩小余量graphite holder 电极夹座hair crack 发裂horn 电极臂jump 跳刀magnetic base 磁性座master graphite 标准电极pipe graphite 管状电极pulse 脉冲rib working 肋部加工roller electrode 滚轮式电极rotary surface 旋转面shank 柄部sharp edge 锐角部tough bronze 韧铜traverse 摇臂tungsten bronze 青铜waviness 波形起伏work 工件working allowance 加工余量working dischard 加工废料994。
数控专业外文翻译--数控技术
外文原文:NUMERICAL CONTROLNumerical control(N/C)is a form of programmable automation in which the processing equipment is controlled by means of numbers,letters,and other symbols.The numbers,letters,and symbols are coded in an appropriate format to define a program of instructions for a particular workpart or job.When the job changes,the program of instructions is changed.The capability to change the program is what makes N/C suitable for low-and medium-volume production.It is much easier to write programs than to make major alterations of the processing equipment.There are two basic types of numerically controlled machine tools:point—to—point and continuous—path(also called contouring).Point—to—point machines use unsynchronized motors,with the result that the position of the machining head Can be assured only upon completion of a movement,or while only one motor is running.Machines of this type are principally used for straight—line cuts or for drilling or boring.The N/C system consists of the following components:data input,the tape reader with the control unit,feedback devices,and the metal—cutting machine tool or other type of N/C equipment.Data input,also called“man—to—control link”,may be provided to the machine tool manually,or entirely by automatic means.Manual methods when used as the sole source of input data are restricted to a relatively small number of inputs.Examples of manually operated devices are keyboard dials,pushbuttons,switches,or thumbwheel selectors.These are located on a console near the machine.Dials ale analog devices usually connected to a syn-chro-type resolver or potentiometer.In most cases,pushbuttons,switches,and other similar types of selectors aye digital input devices.Manual input requires that the operator set the controls for each operation.It is a slow and tedious process and is seldom justified except in elementary machining applications or in special cases.In practically all cases,information is automatically supplied to the control unit and the machine tool by cards,punched tapes,or by magnetic tape.Eight—channel punched paper tape is the most commonly used form of data input for conventional N /C systems.The coded instructions on the tape consist of sections of punched holes called blocks.Each block represents a machine function,a machining operation,or a combination of the two.The entire N/C program on a tape is made up of an accumulation of these successive data blocks.Programs resulting in long tapes all wound on reels like motion-picture film.Programs on relatively short tapes may be continuously repeated by joining the two ends of the tape to form a loop.Once installed,the tape is used again and again without further handling.In this case,the operator simply loads and unloads the parts.Punched tapes ale prepared on type writers with special tape—punching attachments or in tape punching units connected directly to a computer system.Tape production is rarely error-free.Errors may be initially caused by the part programmer,in card punching or compilation,or as aresult of physical damage to the tape during handling,etc.Several trial runs are often necessary to remove all errors and produce an acceptable working tape.While the data on the tape is fed automatically,the actual programming steps ale done manually.Before the coded tape may be prepared,the programmer,often working with a planner or a process engineer, must select the appropriate N/C machine tool,determine the kind of material to be machined,calculate the speeds and feeds,and decide upon the type of tooling needed. The dimensions on the part print are closely examined to determine a suitable zero reference point from which to start the program.A program manuscript is then written which gives coded numerical instructions describing the sequence of operations that the machine tool is required to follow to cut the part to the drawing specifications.The control unit receives and stores all coded data until a complete block of information has been accumulated.It then interprets the coded instruction and directs the machine tool through the required motions.The function of the control unit may be better understood by comparing it to the action of a dial telephone,where,as each digit is dialed,it is stored.When the entire number has been dialed,the equipment becomes activated and the call is completed.Silicon photo diodes,located in the tape reader head on the control unit,detect light as it passes through the holes in the moving tape.The light beams are converted to electrical energy,which is amplified to further strengthen the signal.The signals are then sent to registersin the control unit, where actuation signals are relayed to the machine tool drives.Some photoelectric devices are capable of reading at rates up to 1000 characters per second.High reading rates are necessary to maintain continuous machine—tool motion;otherwise dwell marks may be generated by the cutter on the part during contouring operations.The reading device must be capable of reading data blocks at a rate faster than the control system can process the data.A feedback device is a safeguard used on some N/C installations to constantly compensate for errors between the commanded position and the actual location of the moving slides of the machine tool.An N/C machine equipped with this kind of a direct feedback checking device has what is known as a closed-loop system.Positioning control is accomplished by a sensor which,during the actual operation,records the position of the slides and relays this information back to the control unit.Signals thus received ale compared to input signals on the tape,and any discrepancy between them is automatically rectified.In an alternative system,called an open—loop system,the machine is positioned solely by stepping motor drives in response to commands by a controllers.There are three basic types of NC motions, as follows:Point-to-point or Positional Control In point-to-point control the machine tool elements ( tools,table,etc.) are moved to programmed locations and the machining operations performed after the motions are completed. The path or speed of movement between locations is unimportant; only the coordinates of the end points of the motions are accurately controlled. This type of control is suitable for drill presses and some boring machines, where drilling, tapping, or boring operations must beperformed at various locations on the work piece. Straight-Line or Linear Control Straight-Line control systems are able to move the cutting tool parallel to one of the major axes of the machine tool at a controlled rate suitable for machining. It is normally only possible to move in one direction at a time, so angular cuts on the work piece are not possible, Consequently, for milling machines, only rectangular configurations can be machined or for lathes only surfaces parallel or perpendicular to the spindle axis can be machined. This type of controlled motion is often referred to as linear control or a half-axis of control. Machines with this form of control are also capable of point-to-point control.Continuous Path or Contouring Control In continuous path control the motions of two or more of the machine axes are controlled simultaneously, so that the position and velocity of the can be tool are changed continuously. In this way curves and surfaces can be machined at a controlled feed rate. It is the function of the interpolator in the controller to determine the increments of the individual controlled axes of the machines necessary to produce the desired motion. This type of control is referred to as continuous control or a full axis of control.Some terminology concerning controlled motions for NC machines has been introduced. For example, some machines are referred to as four-or five-or even six-axis machines. For a vertical milling machine three axes of control are fairly obvious, these being the usual X, Y, Z coordinate directions. A fourth or fifth axis of control would imply some form of rotary table to index the work piece or possibly to provide angular motion of the work head. Thus, in NC terminology an axis of control is any controlled motion of the machine elements ( spindles, tables, etc ). A further complication is use of the term half-axis of control; for example, many milling machines are referred to as 2.5-axis machine. This means that continuous control is possible for two motions (axes )and only linear control is possible for the third axis. Applied to vertical milling machines, 2.5axis control means contouring in the X, Y plane and linear motion only in the Z direction. With these machines three-dimensional objects have to be machined with water lines around the surface at different heights. With an alternative terminology the same machine could be called a 2CL machine (C for continuous, L for linear control ). Thus, a milling machine with continuous control in the X, Y, Z directions could be termed be a three-axis machine or a 3c machine, Similarly, lathes are usually two axis or 2C machines. The degree of work precision depends almost entirely upon the accuracy of the lead screw and the rigidity of the machine structure.With this system.there is no self-correcting action or feedback of information to the control unit.In the event of an unexpected malfunction,the control unit continues to put out pulses of electrical current.If,for example,the table on a N/C milling machine were suddenly to become overloaded,no response would be sent back to the controller.Because stepping motors are not sensitive to load variations,many N/C systems are designed to permit the motors to stall when the resisting torque exceeds the motor torque.Other systems are in use,however,which in spite of the possibility of damage to the machine structure or to themechanical system,ale designed with special high—torque stepping motors.In this case,the motors have sufficient capacity to“overpower’’the system in the event ofalmost any contingency.The original N/C used the closed—loop system.Of the two systems,closed and open loop,closed loop is more accurate and,as a consequence,is generally more expensive.Initially,open—loop systems were used almost entirely for light-duty applications because of inherent power limitations previously associated with conventional electric stepping motors.Recent advances in the development of electrohydraulic stepping motors have led to increasingly heavier machine load applications.MILLINGMilling is a basic machining process in which the surface is generated by the progressive formation and removal of chips of material from the workpiece as it is fed to a rotatingcutter in a direction perpendicular to the axis of the cutter.In some cases the workpiece isstationary and the cutter is fed to the work.In most instances a multiple—tooth cutter is used so that the metal removal rate is high,and frequently the desired surface is obtained in a single pass ofthe work.The tool used in milling is known as a milling cutter.It usually consists of a cylindrical body which rotates on its axis and contains equally spaced peripheral teeth that intermittently engage and cut the workpiece.In some cases the teeth extend part way across one or both ends of the cylinder.Because the milling principle provides rapid metal removal and can produce good surface finish,it is particularly well—suited for mass-production work,and excellent milling machines have been developed for this purpose.However,very accurate and versatile milling of a general-purpose nature also have been developed that are widely used in job-shop and tool and die work.A shop that is equipped with a milling machine and an engine lathe can machine almost any type of product of suitable size.Types of Milling Operations.Milling operations can be classified into two broad categories,each of which has several variations:1.In peripheral milling a surface is generated by teeth located in the periphery of the cutter body;the surface is parallel with the axis of rotation of the cutter.Both flat and formed surfaces san be produced by this method.The cross section of the resulting surface corresponds to the axial contour of the cutter.This procedure often is called slab milling.2.In face milling the generated flat surface is at right angles to the cutter axis and is the combined result of the actions of the portions of the teeth located on both the periphery and the face of the cutter.The major portion of the cutting is done by the peripheral portions of the teeth with the face portions providing a finishing action.The basic concepts of peripheral and face milling are illustrated in Fig.16—1.Peripheral milling operations usually are performed on machines having horizontal spindles,whereas face milling is done on both horizontal—and vertical-spindle machines.Surface Generation in Milling.Surfaces can be generated in milling by twodistinct1y different methods depicted in Fig.16-2.Note that in up milling the cutter rotates against the direction of feed the workpiece,whereas in down milling the rotation is in the same direction as the feed.As shown in Fig.16—2,the method of chip formation is quite different in the two cases.In up milling the chip is very thin at the beginning,where the tooth first contacts the work,and increases in thickness,becoming a maximum where the tooth leaves the work.The cutter tends to push the work along and lift it upward from the table.This action tends to eliminate any effect of looseness in the feed screw and nut of the milling machine table and results in a smooth cut.However,the action also tends to loosen the work from the clamping device so that greater clamping forcers must be employed. In addition the smoothness of the generated surface depends greatly on the sharpness of the cutting edges.In down milling,maximum chip thickness occurs close to the point at which the tooth contacts the work.Because the relative motion tends to pull the workpiece into the cutter,all possibility of looseness in the table feed screw must be eliminated if down milling is to be used.It should never be attempted on machines that are not designed for this type of milling.Inasmush as the material yields in approximately a tangential direction at the end of the tooth engagement,there is much less tendency for the machined surface to show tooth marks than when up milling is used.Another considerable advantage of down milling is that the cutting force tends to hold the work against the machine table,permitting lower clamping force to be employed.This is particularly advantageous when milling thin workpiece or when taking heavy cuts.Sometimes a disadvantage of down milling is that the cutter teeth strike against the surface of the work at the beginning of each chip.When the workpiece has a hard surface,such as castings do,this may cause the teeth to dull rapidly.Milling Cutters.Milling cutters Can be classified several ways.One method is to group them into two broad classes,based on tooth relief,as follows:1.Profile-cutters have relief provided on each tooth by grinding a small land back of the cutting edge.The cutting edge may be straight or curved.2.In form or cam-relieved cutters the cross section of each tooth is an eccentric curve behind the cutting edge,thus providing relief.All sections of the eccentric relief,parallel with the cutting edge,must have the same contour as the cutting edge.Cutters of this type are sharpened by grinding only the face of the teeth,with the contour of the cutting edge thus remaining unchanged.Another useful method of classification is according to the method of mounting the cutter.Arbor cutters are those that have a center hole so they can be mounted on an arbor.Shank cutters have either tapered or straight integral shank.Those with tapered shanks can be mounted directly in the milling machine spindle,whereas straight—shank cutters are held in a chuck.Facing cutters usually are bolted to the end of a stub arbor.Types of Milling Cutters.Plain milling cutters are cylindrical or disk—shaped,having straight or helical teeth on the periphery.They are used for milling flat surfaces.This type of operation is called plain or slab milling.Each tooth in a helical cutter engages the work gradually,and usually more than one tooth cuts at a giventime.This reduces shock and chattering tendencies and promotes a smoother surface.Consequently, this type of cutter usually is preferred over one with straight teeth.Side milling cutters are similar to plain milling cutters except that the teeth extend radially part way across one or both ends of the cylinder toward the center.The teeth may be either straight or helical.Frequently these cutters are relatively narrow,being disklike in shape. Two or more side milling cutters often are spaced on an arbor to make simultaneous.parallel cuts,in an operation called straddle milling.Interlocking slotting cutters consist of two cutters similar to side mills,but made to operate as a unit for milling slots.The two cutters are adjusted to the desired width by inserting shims between them.Staggered-tooth milling cutters are narrow cylindrical cutters having staggered teeth,and with alternate teeth having opposite helix angles.They are ground to cut only on the periphery,but each tooth also has chip clearance ground on the protruding side.These cutters have a free cutting action that makes them particularly effective in milling deep slots.Metal-slitting saws are thin,plain milling cutters,usually from 1/32 to 3/16 inch thick,which have their sides slightly "dished”to provide clearance and prevent binding.They usually have more teeth per inch of diameter than ordinary plain milling cutters and are used for milling deep,narrow slots and for cutting-off operations.中文译文:数控技术数控是可编程自动化技术的一种形式,通过数字、字母和其他符号来控制加工设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控加工中心技术发展趋势及对策原文来源:Zhao Chang-ming Liu Wang-ju (CNC Machining Process and equipment, 2002,China)一、摘要Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry,Keywords:Numerical ControlTechnology, E quipment,industry二、译文数控技术和装备发展趋势及对策装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。
马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。
制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最为核心的技术。
当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。
此外,世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。
总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。
数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域:(1)机械制造技术;(2)信息处理、加工、传输技术;(3)自动控制技术;(4)伺服驱动技术;(5)传感器技术;(6)软件技术等。
1. 数控技术的发展趋势数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。
从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面[1~4]。
1.1 高速、高精加工技术及装备的新趋势效率、质量是先进制造技术的主体。
高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。
为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(CIRP)将其确定为21世纪的中心研究方向之一。
在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。
近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。
这些都对加工装备提出了高速、高精和高柔性的要求。
从EMO2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右。
目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床。
美国CINCINNATI公司的HyperMach机床进给速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60 000r/min。
加工一个薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国DMG公司的双主轴车床的主轴速度及加速度分别达120000r/mm和1g。
在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~1.5μm,并且超精密加工精度已开始进入纳米级(0.01μm)。
在可靠性方面,国外数控装置的MTBF值已达6 000h以上,伺服系统的MTBF值达到30000h以上,表现出非常高的可靠性。
为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。
1.2 五轴联动加工和复合加工机床快速发展采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。
一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。
但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。
当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。
因此促进了复合主轴头类型5轴联动机床和复合加工机床(含5面加工机床)的发展。
在EMO2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工。
德国DMG公司展出DMUV oution系列加工中心,可在一次装夹下实现5面加工和5轴联动加工,可由CNC系统控制或CAD/CAM直接或间接控制。
1.3 智能化、开放式、网络化成为当代数控系统发展的主要趋势21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。
为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题。
目前许多国家对开放式数控系统进行研究,如美国的NGC(The Next Generation Work-Station/Machine Control)、欧共体的OSACA(Open System Architecture for Control within Automation Systems)、日本的OSEC(Open System Environment for Controller),中国的ONC(Open Numerical Control System)等。
数控系统开放化已经成为数控系统的未来之路。
所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。
目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。
网络化数控装备是近两年国际著名机床博览会的一个新亮点。
数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。
国内外一些著名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在EMO2001展中,日本山崎马扎克(Mazak)公司展出的“CyberProduction Center”(智能生产控制中心,简称CPC);日本大隈(Okuma)机床公司展出“IT plaza”(信息技术广场,简称IT广场);德国西门子(Siemens)公司展出的Open Manufacturing Environment(开放制造环境,简称OME)等,反映了数控机床加工向网络化方向发展的趋势。
1.4 重视新技术标准、规范的建立1.4.1 关于数控系统设计开发规范如前所述,开放式数控系统有更好的通用性、柔性、适应性、扩展性,美国、欧共体和日本等国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范(OMAC、OSACA、OSEC)的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和规范的制定,预示了数控技术的一个新的变革时期的来临。
我国在2000年也开始进行中国的ONC数控系统的规范框架的研究和制定。
1.4.2 关于数控标准数控标准是制造业信息化发展的一种趋势。
数控技术诞生后的50年间的信息交换都是基于ISO6983标准,即采用G,M代码描述如何(how)加工,其本质特征是面向加工过程,显然,他已越来越不能满足现代数控技术高速发展的需要。