ABS塑件的注射成型工艺分析及模具设计外文翻译

合集下载

注射成型塑料注塑模具、注射模具外文文献翻译

注射成型塑料注塑模具、注射模具外文文献翻译

2.3注射成型2.31注射成型注塑主要用于热塑性塑料零件的生产,也是最古老的方法之一。

目前注塑成型占所有塑料树脂消费量的30%。

典型的注塑产品是杯,容器,工具外壳,手柄,旋钮,电气和通信部件(如电话接收器),玩具,和水暖配件。

聚合物熔体由于其分子量高,所以粘度很高;他们不能像金属一样在重力流作用下直接倒进模具中,但在高压下,必须强制进入模具中。

因此,金属铸件的力学性能主要是由模具壁的传热率决定的,这决定了在最后的铸造中晶粒尺寸和晶粒取向, 在注射成型中的熔体注射在高压力产生的剪切力是最终在材料的分子取向的主要原因。

因此,成品的机械性能受模具内注入条件和的冷却条件两者的影响。

注塑已应用于热塑性塑料和热固性材料,泡沫部分,并已修改以产生的反应注射成型(RIM)过程中,热固性树脂系统的两个组件同时注入和快速聚合在模具内。

然而大多数注射成型是热塑性塑料进行,后面的讨论集中于这样的造型。

一个典型的注塑成型周期或序列由五个阶段组成(见图2-1):(1)注射或模具填充;(2)包装或压缩;(3)保压;(4)冷却;(5)部分弹射。

图2 - 1注射成型过程塑料芯块(或粉末)被装入进料斗,穿过一条在注射料筒中通过旋转螺杆的作用下塑料芯块(或粉末)被向前推进的通道。

螺杆的旋转迫使这些芯块在高压下对抗使它们受热融化的料筒加热壁。

加热温度在265至500华氏度之间。

随着压力增强,旋转螺杆被推向后压直到积累了足够的塑料能够发射。

注射活塞迫使熔融塑料从料筒,通过喷嘴、浇口和流道系统,最后进入模具型腔。

在注塑过程中,模具型腔被完全充满。

当塑料接触冰冷的模具表面,便迅速固化形成表层。

由于型芯还处于熔融状态,塑料流经型芯来完成模具的填充。

典型地,在注塑过程中模具型腔被填充至95%~98%。

然后模具成型过程将进行至压紧阶段。

当模具型腔充满的时候,熔融的塑料便开始冷却。

由于塑料冷却过程中会收缩,这增加了收缩痕、气空、尺寸不稳定性等瑕疵。

塑料注塑模具中英文对照外文翻译文献

塑料注塑模具中英文对照外文翻译文献

外文翻译及原文(文档含英文原文和中文翻译)【原文一】CONCURRENT DESIGN OF PLASTICS INJECTION MOULDS AbstractThe plastic product manufacturing industry has been growing rapidly in recent years. One of the most popular processes for making plastic parts is injection moulding. The design of injection mould is critically important to product quality and efficient product processing.Mould-making companies, who wish to maintain the competitive edge, desire to shorten both design and manufacturing leading times of the by applying a systematic mould design process. The mould industry is an important support industry during the product development process, serving as an important link between the product designer and manufacturer. Product development has changed from the traditional serial process of design, followed by manufacture, to a more organized concurrent process where design and manufacture are considered at a very early stage of design. The concept of concurrent engineering (CE) is no longer new and yet it is still applicable and relevant in today’s manuf acturing environment. Team working spirit, management involvement, total design process and integration of IT tools are still the essence of CE. The application of The CE process to the design of an injection process involves the simultaneous consideration of plastic part design, mould design and injection moulding machine selection, production scheduling and cost as early as possible in the design stage.This paper presents the basic structure of an injection mould design. The basis of this system arises from an analysis of the injection mould design process for mould design companies. This injection mould design system covers both the mould design process and mould knowledge management. Finally the principle of concurrent engineering process is outlined and then its principle is applied to the design of a plastic injection mould.Keywords :Plastic injection mould design, Concurrent engineering, Computer aided engineering, Moulding conditions, Plastic injection moulding, Flow simulation1.IntroductionInjection moulds are always expensive to make, unfortunately without a mould it can not be possible ho have a moulded product. Every mould maker has his/her own approach to design a mould and there are many different ways of designing and building a mould. Surely one of the most critical parameters to be considered in the design stage of the mould is the number of cavities, methods of injection, types of runners, methods of gating, methods of ejection, capacity and features of the injection moulding machines. Mould cost, mould quality and cost of mould product are inseparableIn today’s completive environment, computer aided mould filling simulation packages can accurately predict the fill patterns of any part. This allows for quick simulations of gate placements and helps finding the optimal location. Engineers can perform moulding trials on the computer before the part design is completed. Process engineers can systematically predict a design and process window, and can obtain information about the cumulative effect of the process variables that influence part performance, cost, and appearance.2.Injection MouldingInjection moulding is one of the most effective ways to bring out the best in plastics. It is universally used to make complex, finished parts, often in a single step, economically, precisely and with little waste. Mass production of plastic parts mostly utilizes moulds. The manufacturing process and involving moulds must be designed after passing through the appearance evaluation and the structure optimization of the product design. Designers face a hugenumber of options when they create injection-moulded components. Concurrent engineering requires an engineer to consider the manufacturing process of the designed product in the development phase. A good design of the product is unable to go to the market if its manufacturing process is impossible or too expensive. Integration of process simulation, rapid prototyping and manufacturing can reduce the risk associated with moving from CAD to CAM and further enhance the validity of the product development.3. Importance of Computer Aided Injection Mould DesignThe injection moulding design task can be highly complex. Computer Aided Engineering (CAE) analysis tools provide enormous advantages of enabling design engineers to consider virtually and part, mould and injection parameters without the real use of any manufacturing and time. The possibility of trying alternative designs or concepts on the computer screen gives the engineers the opportunity to eliminate potential problems before beginning the real production. Moreover, in virtual environment, designers can quickly and easily asses the sensitivity of specific moulding parameters on the quality and manufacturability of the final product. All theseCAE tools enable all these analysis to be completed in a meter of days or even hours, rather than weeks or months needed for the real experimental trial and error cycles. As CAE is used in the early design of part, mould and moulding parameters, the cost savings are substantial not only because of best functioning part and time savings but also the shortens the time needed to launch the product to the market.The need to meet set tolerances of plastic part ties in to all aspects of the moulding process, including part size and shape, resin chemical structure, the fillers used, mould cavity layout, gating, mould cooling and the release mechanisms used. Given this complexity, designers often use computer design tools, such as finite element analysis (FEA) and mould filling analysis (MFA), to reduce development time and cost. FEA determines strain, stress and deflection in a part by dividing the structure into small elements where these parameters can be well defined. MFA evaluates gate position and size to optimize resin flow. It also defines placement of weld lines, areas of excessive stress, and how wall and rib thickness affect flow. Other finite element design tools include mould cooling analysis for temperature distribution, and cycle time and shrinkage analysis for dimensional control and prediction of frozen stress and warpage.The CAE analysis of compression moulded parts is shown in Figure 1. The analysis cycle starts with the creation of a CAD model and a finite element mesh of the mould cavity. After the injection conditions are specified, mould filling, fiber orientation, curing and thermal history, shrinkage and warpage can be simulated. The material properties calculated by the simulation can be used to model the structural behaviour of the part. If required, part design, gate location and processing conditions can be modified in the computer until an acceptable part is obtained. After the analysis is finished an optimized part can be produced with reduced weldline (known also knitline), optimized strength, controlled temperatures and curing, minimized shrinkage and warpage.Machining of the moulds was formerly done manually, with a toolmaker checking each cut. This process became more automated with the growth and widespread use of computer numerically controlled or CNC machining centres. Setup time has also been significantly reduced through the use of special software capable of generating cutter paths directly from a CAD data file. Spindle speeds as high as 100,000 rpm provide further advances in high speed machining. Cutting materials have demonstrated phenomenal performance without the use of any cutting/coolant fluid whatsoever. As a result, the process of machining complex cores and cavities has been accelerated. It is good news that the time it takes to generate a mould is constantly being reduced. The bad news, on the other hand, is that even with all these advances, designing and manufacturing of the mould can still take a long time and can be extremely expensive.Figure 1 CAE analysis of injection moulded partsMany company executives now realize how vital it is to deploy new products to market rapidly. New products are the key to corporate prosperity. They drive corporate revenues, market shares, bottom lines and share prices. A company able to launch good quality products with reasonable prices ahead of their competition not only realizes 100% of the market before rival products arrive but also tends to maintain a dominant position for a few years even after competitive products have finally been announced (Smith, 1991). For most products, these two advantages are dramatic. Rapid product development is now a key aspect of competitive success. Figure 2 shows that only 3–7% of the product mix from the average industrial or electronics company is less than 5 years old. For companies in the top quartile, the number increases to 15–25%. For world-class firms, it is 60–80% (Thompson, 1996). The best companies continuously develop new products. AtHewlett-Packard, over 80% of the profits result from products less than 2 years old! (Neel, 1997)Figure 2. Importance of new product (Jacobs, 2000)With the advances in computer technology and artificial intelligence, efforts have been directed to reduce the cost and lead time in the design and manufacture of an injection mould. Injection mould design has been the main area of interest since it is a complex process involving several sub-designs related to various components of the mould, each requiring expert knowledge and experience. Lee et. al. (1997) proposed a systematic methodology and knowledge base for injection mould design in a concurrent engineering environment.4.Concurrent Engineering in Mould DesignConcurrent Engineering (CE) is a systematic approach to integrated product development process. It represents team values of co-operation, trust and sharing in such a manner that decision making is by consensus, involving all per spectives in parallel, from the very beginning of the productlife-cycle (Evans, 1998). Essentially, CE provides a collaborative, co-operative, collective and simultaneous engineering working environment. A concurrent engineering approach is based on five key elements:1. process2. multidisciplinary team3. integrated design model4. facility5. software infrastructureFigure 3 Methodologies in plastic injection mould design, a) Serial engineering b) Concurrent engineeringIn the plastics and mould industry, CE is very important due to the high cost tooling and long lead times. Typically, CE is utilized by manufacturing prototype tooling early in the design phase to analyze and adjust the design. Production tooling is manufactured as the final step. The manufacturing process and involving moulds must be designed after passing through the appearance evaluation and the structure optimization of the product design. CE requires an engineer to consider the manufacturing process of the designed product in the development phase.A good design of the product is unable to go to the market if its manufacturing process is impossible. Integration of process simulation and rapid prototyping and manufacturing can reduce the risk associated with moving from CAD to CAM and further enhance the validity of the product development.For years, designers have been restricted in what they can produce as they generally have todesign for manufacture (DFM) – that is, adjust their design intent to enable the component (or assembly) to be manufactured using a particular process or processes. In addition, if a mould is used to produce an item, there are therefore automatically inherent restrictions to the design imposed at the very beginning. Taking injection moulding as an example, in order to process a component successfully, at a minimum, the following design elements need to be taken into account:1. . geometry;. draft angles,. Non re-entrants shapes,. near constant wall thickness,. complexity,. split line location, and. surface finish,2. material choice;3. rationalisation of components (reducing assemblies);4. cost.In injection moulding, the manufacture of the mould to produce the injection-moulded components is usually the longest part of the product development process. When utilising rapid modelling, the CAD takes the longer time and therefore becomes the bottleneck.The process design and injection moulding of plastics involves rather complicated and time consuming activities including part design, mould design, injection moulding machine selection, production scheduling, tooling and cost estimation. Traditionally all these activities are done by part designers and mould making personnel in a sequential manner after completing injection moulded plastic part design. Obviously these sequential stages could lead to long product development time. However with the implementation of concurrent engineering process in the all parameters effecting product design, mould design, machine selection, production scheduling,tooling and processing cost are considered as early as possible in the design of the plastic part. When used effectively, CAE methods provide enormous cost and time savings for the part design and manufacturing. These tools allow engineers to virtually test how the part will be processed and how it performs during its normal operating life. The material supplier, designer, moulder and manufacturer should apply these tools concurrently early in the design stage of the plastic parts in order to exploit the cost benefit of CAE. CAE makes it possible to replace traditional, sequential decision-making procedures with a concurrent design process, in which all parties can interact and share information, Figure 3. For plastic injection moulding, CAE and related design data provide an integrated environment that facilitates concurrent engineering for the design and manufacture of the part and mould, as well as material selection and simulation of optimal process control parameters.Qualitative expense comparison associated with the part design changes is shown in Figure 4 , showing the fact that when design changes are done at an early stages on the computer screen, the cost associated with is an order of 10.000 times lower than that if the part is in production. These modifications in plastic parts could arise fr om mould modifications, such as gate location, thickness changes, production delays, quality costs, machine setup times, or design change in plastic parts.Figure 4 Cost of design changes during part product development cycle (Rios et.al, 2001)At the early design stage, part designers and moulders have to finalise part design based on their experiences with similar parts. However as the parts become more complex, it gets rather difficult to predict processing and part performance without the use of CAE tools. Thus for even relatively complex parts, the use of CAE tools to prevent the late and expensive design changesand problems that can arise during and after injection. For the successful implementation of concurrent engineering, there must be buy-in from everyone involved.5.Case StudyFigure 5 shows the initial CAD design of plastics part used for the sprinkler irrigation hydrant leg. One of the essential features of the part is that the part has to remain flat after injection; any warping during the injection causes operating problems.Another important feature the plastic part has to have is a high bending stiffness. A number of feeders in different orientation were added to the part as shown in Figure 5b. These feeders should be designed in a way that it has to contribute the weight of the part as minimum aspossible.Before the design of the mould, the flow analysis of the plastic part was carried out with Moldflow software to enable the selection of the best gate location Figure 6a. The figure indicates that the best point for the gate location is the middle feeder at the centre of the part. As the distortion and warpage of the part after injection was vital from the functionality point of view and it has to be kept at a minimum level, the same software was also utilised to yiled the warpage analysis. Figure 5 b shows the results implying the fact that the warpage well after injection remains within the predefined dimensional tolerances.6. ConclusionsIn the plastic injection moulding, the CAD model of the plastic part obtained from commercial 3D programs could be used for the part performance and injection process analyses. With the aid ofCEA technology and the use of concurrent engineering methodology, not only the injection mould can be designed and manufactured in a very short of period of time with a minimised cost but also all potential problems which may arise from part design, mould design and processing parameters could be eliminated at the very beginning of the mould design. These two tools help part designers and mould makers to develop a good product with a better delivery and faster tooling with less time and money.References1. Smith P, Reinertsen D, The time-to-market race, In: Developing Products in Half the Time. New York, Van Nostrand Reinhold, pp. 3–13, 19912.Thompson J, The total product development organization. Proceedings of the SecondAsia–Pacific Rapid Product Development Conference, Brisbane, 19963.Neel R, Don’t stop after the prototype, Seventh International Conference on Rapid Prototyping, San Francisco, 19974.Jacobs PF, “Chapter 3: Rapid Product Development” in Rapid Tooling: Technologies and Industrial Applications , Ed. Peter D. Hilton; Paul F. Jacobs, Marcel Decker, 20005.Lee R-S, Chen, Y-M, and Lee, C-Z, “Development of a concurrent mould design system: a knowledge based approach”, Computer Integrated Manufacturing Systems, 10(4), 287-307, 19976.Evans B., “Simultaneous Engineering”, Mechanical Engi neering , V ol.110, No.2, pp.38-39, 19987.Rios A, Gramann, PJ and Davis B, “Computer Aided Engineering in Compression Molding”, Composites Fabricators Association Annual Conference , Tampa Bay, 2001【译文一】塑料注塑模具并行设计塑料制品制造业近年迅速成长。

模具设计外文翻译---塑料成型过程.

模具设计外文翻译---塑料成型过程.

外文翻译原文Plastics forming processesThere is a wide range of processing methods that may be used for plastics. Nevertheless, they all involve three or four basic stages: softening, shaping, solidifying and cooling of the moulds (for thermoplastics only). Common materials for moulding processes are thermoplastics and thermoset polymers. Principal methods of processing thermoplastics include extols ion, blow moulding, rotational moulding, thermoforming and injection moulding; but as for thermosets, compression, transfer and reaction injection moulding are frequently used.1 ExtrusionExtrusion is one of the most important forming processes for the reason that pellets, which are used for many other moulding processes, are normally produced by this process. In fact, some moulding processes are post-extrusion operations, such as blow moulding and thermoform moulding. Extnlsion is basically a process of continuously shaping a fluid polymer through the orifice of a die, and subsequently solidifying it into a product of a uniform cross-section. An extruding machine may have one or two screws, or no screw (screwless). Single-screw extruders, as seen in Figure 1, are the most commonly used machines. Screwless (ram) extruders allow a precise control of the melt flow rate and are gaining popularity. They are particularly suited for high viscosity. In recent years, there has been a steady increase in the use of twin screw extruders. These machines permit a wider ranger of possibilities in terms of output rates, mixing efficiency and heat generation. They are, however, considerably more mon extrusion products include filaments of circular cross-section, profiles of irregular cross-section, axisymmetric tubes and pipes, and flat products such as films or sheets. Almost all types of intricate cross-sectional shapes with large lengths are made by extrusion moulding, which many other discrete forming processes, such as compression, transfer and injection moulding, are incapable of producing.FIGURE 1.Single-screw extruder.2 Blow mouldingThis process begins with the preparation of a soft, extruded and preformed thermoplastic tube over a core pin.As the mould halves close, air pressure inflates the thinwalled preform and forces it outwards against the mould sides. Figure 2 shows the process at two stages. The preform can be made by either extras ion or injection. Blow moulds are subjected to moderate pressures and clamping forces, compared to injection moulds. Thus, they can be made of a light material such as aluminmm, which has advantages of light weight and high heat conductivity.Blown-ware containers are commonly used for packaging beverage and other fluid food, e.g. narrow neck plastic bottles for mineral water, milk, alcoholic beverage and carbonated beverages. Other non-food products packed in the blown-ware containers include cosmetics, pharmaceuticals, paint and powder products. Blow moulding is also used to produce some huge products in size, such as shipping drums and stationary storage tanks whose volumes may reach as high as 10 000 litres [5]. These tanks are used for underground fuel storage and septic tanks.Stage 1: Preform extrusion Stage 2: BlowingFIGURE 2.Extrusion blow moulding3 Rotational mouldingLike blow moulding, rotational moulding is also used to produce hollow plastic articles, though the principles in each method differ a lot. During the process, a carefully weighed charge of plastic powder is placed in one half of a metal mould. The mould halves are then clamped together and heated on an oven. When heated, the mould rotates about two axes at right angles to each other. After a time the plastics will be sufficiently softened to form a homogeneous layer on the surface of the mould. The process is attractive for a number of reasons. Firstly, as it is a low-pressure process, the moulds are relatively simple and inexpensive. Secondly, the product is virtually strata-free. Thirdly, a uniform thickness can be easily achieved. Finally, it is possible to introduce reinforcement into the products, and their surface can be textured as desired. However, the cycle times are longer compared to blow or injection moulding. The mould-handling device, capable of imparting double rotations, is the central element of rotational moulding equipment. There are two major types of equipment: shuttle cart system, as shown Figure 3, and swing/rotary arm system. Rotational moulding is good at producing very large, thick-walled articles which could not be produced economically by any other processes. The largest capacity of arotational-moulding made tank is recorded at about 75 000 litres [4].FIGURE 3.Shuttle cart rotational moulding.The Institution of Professional Engineers New Zealand4 Compression mouldingCompression moulding is often used to produce articles from thermoset materials, though it can also be used for thermoplastics. The moulding operation used for thermosets is illustrated in Figure 4. A large number of compression moulded thermoset products can be found in electrical and electronic applications. Glass-fibre reinforcement can be easily added to meet the heat resistance requirement. However, the limitation with this process is that the product has to be simple in shape and without thin walls or fragile inserts. Numerous rubber products are compression moulded. A useful feature of it is its ability to have metal inserts that form strong bonds with the product and are often used to attach the product to structures. Tyres are the most common products made by compression moulding.FIGURE pression moulding.5 Transfer mouldingTransfer moulding is similar to compression moulding except that, instead of the moulding material being pressurised in the cavity, it is pressurised in a separate chamber and then forced through an opening and into a closed mould cavity. The advantage of transfer moulding is that thepreheating of the material injected through a narrow orifice improves the temperature distribution in the material and hence accelerates the cross-linking reaction in thermosets. As a result the cycle time is reduced and there is less distortion in the product. The improved flow of material also means that more intricate shapes can be produced. Parts with fragile inserts like electric appliance parts, electronic components and connectors that may enclose coils, integrated circuits, and plugs can also be easily made.6 ThermoformingSheet thermoforming was developed in the 1950s. The limitations such as poor wall thickness distribution and large peripheral waste restricted its use to simple packaging applications. In recent years, however, there have been major advances in machine design and materials, which have resulted in a wide range of products being made by thermoforming. There are three types of thermoforming processes (Figure 5): vacuum moulding, air pressure moulding, and mechanical moulding.The moulds, which are not subjected to high pressure, are often made from cast or machined alumininm for small and medium sizes, and they do not require a good surface finish. The product surface quality is largely dependent upon that of the sheet material.Products made by thermoforming can be small as well as large. Smaller products are made in high output machines, using multi-cavity moulds. Such products are often found in the food industry and medical applications, for example, jelly or cream containers, cups, robs and trays. These small items can have relatively complex shapes with reasonably even thickness. Large products are generally made from cut sheets at a lower though-put rate, and they are usually of simple shapes. Fisher & Paykel's vacuum form moulding machines produce the majority of pre-forms for refrigerators and freezers. Many other interior parts are also made by the same or similar processes.FIGURE 5.Three basic methods of thermoforming.7 Injection mouldingInjection moulding has always been one of the most common processing methods for plastics. Nowadays countless parts in many electrical appliances, automobiles and office equipment are injection moulded. The most common injection moulding machinery is the reciprocating screw machine, whose process can be divided into several stages as seen in Figure 6. At the plastication stage, the feed unit operates as an extntder, melting and homogenising the material in the screw/barrel system. The screw, however, is allowed to retract in order to make room for themolten material in a space at the cylinder head, called material reservoir, between the screw tip and a closed valve or an obstntction of solidified material from the previous shot. At the injection stage, the screw is used as a ram (piston) for rapid transfer of the molten material from the reservoir to the cavity between the two halves of the closed mould. Since the mould is kept at a temperature below the solidification temperature of the material, it is essential to inject the molten material rapidly enough to ensure complete filling of the cavity. A high holding or packing pressure is normally exerted, to partially compensate for the thermal contraction of the material upon cooling. The cooling of the material in the mould often limits the production time because of the low thermal conductivity of polymers. The mould, after being cooled, can be opened and the solid product ejected.Although the screw machine is by far the most popular, plunger injection machines are also used to give products some unique features. There is no shearing or mixing action, as a plunger does not rotate. The resulting moulded part can take on a marbled appearance with swirls of two or more colours. This may be the desired finish for certain products. Regardless of different machines, injection moulding yields a high productivity and allows the products to have many fine details such as bosses, location pins, mounting holes, bushings, ribs, flanges, etc. All these features can eliminate many subs equent assembly and finishing operations.A large variety of products can be injection moulded. These include (a) micro-products, moulded in multiple cavity moulds on small precision machines, such as components for watches and microelectronics; (b) medium size products, moulded continuously in very large numbers in dedicated machines or in relatively small runs; and (c) large products, moulded by large machines, such as car dashboard frames, TV cabinets, garden furniture, and small boat hulls. Many of these large plastic parts have a solid skin and a cellular inner structure, hence the process is also known as structural foam moulding.FIGURE 6.Sequence of operations in injection moulding.8 Reaction injection mouldingReaction injection moulding is a relatively new process, which involves the rapid mixing, in precise proportions, of two or more highly reactive liquid components and the immediate injection of the mixture in a closed mould Polymerisation takes place in the mould in a very short period oftime, yielding a solid product. The process is particularly suited to the production of large and relatively thin parts, with less capital investment and operating costs than in thermoplastic injection moulding. The process is also energy efficient, but requires good control of complex reactions.9 ConclusionsBy and large, each moulding process mentioned above has its pros and cons in terms of the materials, products and cost. The plastics industry plays an important role in today's manufacturing industry. Plastics moulding is the most popular process. Whereas injection moulding continues to dominate the sector, other moulding processes make some important contributions toward manufacture of many specific products. Faced by numerous challenges, new processes are making their way into the market. Conscious of energy consumption, moulding machine manufacturers are contemplating innovative designs to economise on the process. There is also a demand for these manufacturers to develop either smaller or larger moulding machines to meet customer demands. The fact that more and more newly developed materials use moulding processes for a manufacturing method provides an extra dimension for the development of the moulding industry.外文翻译译文塑料成型过程有很多关于塑料成型的方法。

塑料模具中英文对照外文翻译文献

塑料模具中英文对照外文翻译文献

中英文资料翻译The development of plastic mouldChina's industrial plastic moulds from the start to now, after more than half a century, there has been great development, mold levels have been greatly enhanced. Mould has been at large can produce 48-inch big-screen color TV Molded Case injection mold, 6.5 kg capacity washing machine full of plastic molds, as well as the overall car bumpers and dashboards, and other plastic mould precision plastic molds, the camera is capable of producing plastic mould , multi-cavity mold small modulus gear and molding mold. --Such as Tianjin and Yantai days Electrical Co., Ltd Polaris IK Co. manufactured multi-cavity mold VCD and DVD gear, the gear production of such size precision plastic parts, coaxial, beating requirements have reached a similar foreign the level of product, but also the application of the latest gear design software to correct contraction as a result of the molding profile error to the standard involute requirements. Production can only 0.08 mm thickness of a two-cavity mold and the air Cup difficulty of plastic doors and windows out of high modulus, and so on. Model cavity injection molding manufacturing accuracy of 0.02 to 0.05 mm, surface roughness Ra0.2 μ m, mold quality, and significantly increase life expectancy, non-hardening steel mould life up to 10~ 30 million, hardening steel form up to 50 ~ 10 million times, shorten the delivery time than before, but still higher than abroad, and the gap between a specific data table.Process, the multi-material plastic molding die, efficient multicolor injection mould, inserts exchange structure and core pulling Stripping the innovative design has also made great progress. Gas-assisted injection molding, the use of more mature technologies, such as Qingdao Hisense Co., Ltd., Tianjin factory communications and broadcasting companies, such as mold manufacturers succeeded in 29 ~ 34-inch TV thick-walled shell, as well as some parts on the use of gas-assisted mould technology Some manufacturers also use the C-MOLD gas-assisted software and achieved better results. Prescott, such as Shanghai, such as the new company will provide users with gas-assisted molding equipment and technology. Began promoting hot runner mold, and some plants use rate of more than 20 percent, the general heat-thermal hot runner, or device, a small number of units with the world's advanced level of rigorous hot runner-needle device, a small number of units with World advanced level of rigorous needle-hot runner mould. However, the use of hot runner overall rate of less than 10%, with overseas compared to 50 ~ 80%, the gap larger.In the manufacturing technology, CAD / CAM / CAE technology on the level of application of a new level to the enterprise for the production of household appliances representatives have introduced a considerable number of CAD / CAMsystems, such as the United States EDS UG Ⅱ, the United States Parametric Technology Pro / Engineer, the United States CV CADS5 company, the British company DOCT5 Deltacam, HZS's CRADE Japan, the company's Cimatron Israel, the United States AC-C-Tech Mold Company and Australia's MPA Mold flow Mold analysis software, and so on. These systems and the introduction of the software, althougha lot of money spent, but in our country die industry, and achievinga CAD / CAM integration, and to support CAE technology to forming processes such as molding and cooling, such as computer simulation, and achieved certain The technical and economic benefits, promote and facilitate China's CAD / CAM technology. In recent years, China's own development of the plastic mould CAD / CAM system has achieved significant development, the main guarantor Software Engineering Institute, is the development of CAXA, Huazhong University of Science HSC5.0 development of the system and injection mold CAE software, and so on, these Die of domestic software with the specific circumstances in the application of computer and lower prices, and other characteristics, in order to further universal CAD / CAM technology has created good conditions.In recent years, China has been more extensive use of some new plastic mold steel, such as: P20, 3Cr2Mo, PMS, SM Ⅰ, SM Ⅱ, and the quality of life of mold has a direct significant impact on the overall use of the still less . Plastic Moulds standard model planes, such as standard putter and spring has given more applications, and there have been some of the commercializationof domestic hot runner system components. However, at present China Die level of standardization and commercialization in the general level of below 30 percent and foreign advanced industrial countries has reached 70 percent compared to 80 percent, still a large gap. Table 1, at home and abroad plastic mould technology comparison table? Domestic projects abroad cavity injection model mm0.02 accuracy of 0.005 ~0.01 ~0.05mm cavity surface roughness Ra0.01 ~ 0.05 μ mRa0.20 μ m non-hardened steel die life 10 to 60 million 10 ~ 30 million hardened steel die life 160 ~ 300 million of 50 ~ 100 million hot runner mould overall utilization rate of more than 80 per cent less than 10 per cent level of standardization of 70 ~80% less than 30% of medium-sized plastic mould production cycle about a month 2 ~4 months in the mold industry in the amount of 30 to 40% 25 to 30% According to the parties concerned forecast, the market's overall vigorous mold is a smooth upward, in the next Die market, the development of plastic mould faster than the other Die, die in the proportion of industry will gradually improve. With the continuous development of the plastics industry, put on the plastic mold growing demands is a normal, and so sophisticated, large-scale, complex, long-life plastic mould development will be higher than the overall pace of development. At the same time, imports in recent years because of the mold, precision, large, complex, long-life die in the majority, therefore, reduce imports, increase Guochanhualu: perspective, in the mold of such high-end market share will gradually increase. The rapid development of theconstruction industry so that the various Profile Extrusion Die, PVC plastic pipe fittings Die Die market become a new economic growth point, the rapid development of highways, car tires also put a higher demand, radial tire Die, Die particularly active pace of development will also be higher than the overall average level of the plastic and wood, plastic and metal to make plastic molds in the automotive, motorcycle industry in the demand for huge household appliances industry in the "10th Five-Year Plan" period have greater development, especially refrigerators,air-conditioners and microwave ovens, and other parts of the great demand for plastic moulds, and electronics and communications products, in addition to audio-video products, such as color televisions, laptop computers and set-top boxes will be given a wider network development, which are Plastic Mold market is the growth point. Second, China's industrial and technological plastic mould the future direction of the major developments will include: 1, raising large, sophisticated, complex, long-life mold design and manufacturing standards and proportion. This is due to the molding plastic mould products increasingly large, complex and high-precision requirements, as well as requirements for high productivity and the development of a multi-mode due. 2, in the design and manufacture of plastic mould fully promote the use of CAD / CAM / CAE technology. CAD / CAM technology has developed into a relatively mature technology common in recent years CAD / CAM technology hardware and software prices has been reduced to SMEsgenerally acceptable level of popularity for further create good conditions; based on network CAD / CAM / CAE system integration structure the initial signs of emerging, and it will solve the traditional mixed CAD / CAM system can not meet the actual production process requirements of the division of collaboration; CAD / CAM software will gradually improve intelligence plastic parts and the 3-D mold design and prototyping process 3-D analysis will be in our plastic mould industries play an increasingly important role. 3, promote the use of hot runner technology, gas-assisted injection molding technology and high-pressure injection molding technology. Using hot runner mould technology can improve the productivity and quality of parts and plastic parts can be substantial savings of raw materials and energy conservation, extensive application of this technology is a big plastic mould changes. Hot Runner components formulate national standards, and actively produce cheap high-quality components, the development of hot runner mold is the key. Gas-assisted injection molding product quality can be guaranteed under the premise of substantially lower cost. Currently in the automotive and appliance industries gradually promote the use of the Chiang Kai-shek. Gas-assisted injection molding of the ordinary than the traditional injection of more parameters need to identify and control, and its more commonly used in large, complex products, mold design and control more difficult, therefore, the development of gas-assisted molding flow analysis software It seems veryimportant. On the other hand in order to ensure precision plastic parts to continue to study the development of technology and high-pressure injection molding and injection-compression molding mould and die technology is also very important. 4, the development of new plastics molding technology and rapid economic mold. To adapt to more variety, less volume of production. 5, and improve standardization of plastic mould standard parts usage. China's mold and die level of standard parts standardization still low, the gap between the large and foreign, to a certain extent constraining the development of industries in our country die, die to improve quality and reduce manufacturing costs Die, Die standard parts to vigorously promote the application. To this end, first of all, to formulate a unified national standards, and in strict accordance with the standards of production, secondly it is necessary to gradually scale production, to improve the commercialization of the standard of quality, and reduce costs;again it is necessary to further increase the standard specifications of varieties. 6, Die application quality materials and advanced surface treatment technology for improving the quality of life and mold it is necessary. 7, research and application of high-speed die measurement technology and reverse engineering. CMM-use 3D scanner or reverse engineering is the realization of plastic moulds CAD / CAM one of the key technologies.Research and Application of diversity, adjustment, cheap detection equipment is to achieve the necessary precondition forreverse engineering.塑料模具的发展我国塑料模工业从起步到现在,历经半个多世纪,有了很大发展,模具水平有了较大提高。

注塑模具工艺立体光照成型毕业论文中英文对照资料外文翻译文献

注塑模具工艺立体光照成型毕业论文中英文对照资料外文翻译文献

注塑模具工艺中英文对照资料外文翻译文献附录2Integrated simulation of the injection molding process withstereolithography moldsAbstract Functional parts are needed for design verification testing, field trials, customer evaluation, and production planning. By eliminating multiple steps, the creation of the injection mold directly by a rapid prototyping (RP) process holds the best promise of reducing the time and cost needed to mold low-volume quantities of parts. The potential of this integration of injection molding with RP has been demonstrated many times. What is missing is the fundamental understanding of how the modifications to the mold material and RP manufacturing process impact both the mold design and the injection molding process. In addition, numerical simulation techniques have now become helpful tools of mold designers and process engineers for traditional injection molding. But all current simulation packages for conventional injection molding are no longer applicable to this new type of injection molds, mainly because the property of the mold material changes greatly. In this paper, an integrated approach to accomplish a numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. Comparisons with experimental results are employed for verification, which show that the present scheme is well suited to handle RP fabricated stereolithography (SL) molds.Keywords Injection molding Numerical simulation Rapid prototyping1 IntroductionIn injection molding, the polymer melt at high temperature is injected into the mold under high pressure [1]. Thus, the mold material needs to have thermal and mechanical properties capable of withstanding the temperatures and pressures of the molding cycle. The focus of many studies has been to create theinjection mold directly by a rapid prototyping (RP) process. By eliminating multiple steps, this method of tooling holds the best promise of reducing the time and cost needed to createlow-volume quantities of parts in a production material. The potential of integrating injection molding with RP technologies has been demonstrated many times. The properties of RP molds are very different from those of traditional metal molds. The key differences are the properties of thermal conductivity and elastic modulus (rigidity). For example, the polymers used in RP-fabricated stereolithography (SL) molds have a thermal conductivity that is less than one thousandth that of an aluminum tool. In using RP technologies to create molds, the entire mold design and injection-molding process parameters need to be modified and optimized from traditional methodologies due to the completely different tool material. However, there is still not a fundamental understanding of h ow the modifications to the mold tooling method and material impact both the mold design and the injection molding process parameters. One cannot obtain reasonable results by simply changing a few material properties in current models. Also, using traditional approaches when making actual parts may be generating sub-optimal results. So there is a dire need to study the interaction between the rapid tooling (RT) process and material and injection molding, so as to establish the mold design criteria and techniques for an RT-oriented injection molding process.In addition, computer simulation is an effective approach for predicting the quality of molded parts. Commercially available simulation packages of the traditional injection molding process have now become routine tools of the mold designer and process engineer [2]. Unfortunately, current simulation programs for conventional injection molding are no longer applicable to RP molds, because of the dramatically dissimilar tool material. For instance, in using the existing simulation software with aluminum and SL molds and comparing with experimental results, though the simulation values of part distortion are reasonable for the aluminum mold, results are unacceptable, with the error exceeding 50%. The distortion during injection molding is due to shrinkage and warpage of the plastic part, as well as the mold. For ordinarily molds, the main factor is the shrinkage and warpage of the plastic part, which is modeled accurately in current simulations. But for RP molds, the distortion of the mold has potentially more influence, which have been neglected in current models. For instance, [3] used a simple three-step simulation process to consider the mold distortion, which had too much deviation.In this paper, based on the above analysis, a new simulation system for RP molds is developed. The proposed system focuses on predicting part distortion, which is dominating defect in RP-molded parts. The developed simulation can be applied as an evaluation tool for RP mold design and process opti mization. Our simulation system is verified by an experimental example.Although many materials are available for use in RP technologies, we concentrate on usingstereolithography (SL), the original RP technology, to create polymer molds. The SL process uses photopolymer and laser energy to build a part layer by layer. Using SL takes advantage of both the commercial dominance of SL in the RP industry and the subsequent expertise base that has been developed for creating accurate, high-quality parts. Until recently, SL was primarily used to create physical models for visual inspection and form-fit studies with very limited func-tional applications. However, the newer generation stereolithographic photopolymers have improved dimensional, mechanical and thermal properties making it possible to use them for actual functional molds.2 Integrated simulation of the molding process2.1 MethodologyIn order to simulate the use of an SL mold in the injection molding process, an iterative method is proposed. Different software modules have been developed and used to accomplish this task. The main assumption is that temperature and load boundary conditions cause significant distortions in the SL mold. The simulation steps are as follows:1T he part geometry is modeled as a solid model, which is translated to a file readable by the flow analysis package.2Simulate the mold-filling process of the melt into a pho topolymer mold, which will output the resulting temperature and pressure profiles.3Structural analysis is then performed on the photopolymer mold model using the thermal and load boundary conditions obtained from the previous step, which calculates the distortion that the mold undergo during the injection process.4If the distortion of the mold converges, move to the next step. Otherwise, the distorted mold cavity is then modeled (changes in the dimensions of the cavity after distortion), and returns to the second step to simulate the melt injection into the distorted mold.5The shrinkage and warpage simulation of the injection molded part is then applied, which calculates the final distor tions of the molded part.In above simulation flow, there are three basic simulation mod ules.2. 2 Filling simulation of the melt2.2.1 Mathematical modelingIn order to simulate the use of an SL mold in the injection molding process, an iterativemethod is proposed. Different software modules have been developed and used to accomplish this task. The main assumption is that temperature and load boundary conditions cause significant distortions in the SL mold. The simulation steps are as follows:1. The part geometry is modeled as a solid model, which is translated to a file readable by the flow analysis package.2. Simulate the mold-filling process of the melt into a photopolymer mold, which will output the resulting temperature and pressure profiles.3. Structural analysis is then performed on the photopolymer mold model using the thermal and load boundary conditions obtained from the previous step, which calculates the distortion that the mold undergo during the injection process.4. If the distortion of the mold converges, move to the next step. Otherwise, the distorted mold cavity is then modeled (changes in the dimensions of the cavity after distortion), and returns to the second step to simulate the melt injection into the distorted mold.5. The shrinkage and warpage simulation of the injection molded part is then applied, which calculates the final distortions of the molded part.In above simulation flow, there are three basic simulation modules.2.2 Filling simulation of the melt2.2.1 Mathematical modelingComputer simulation techniques have had success in predicting filling behavior in extremely complicated geometries. However, most of the current numerical implementation is based on a hybrid finite-element/finite-difference solution with the middleplane model. The application process of simulation packages based on this model is illustrated in Fig. 2-1. However, unlike the surface/solid model in mold-design CAD systems, the so-called middle-plane (as shown in Fig. 2-1b) is an imaginary arbitrary planar geometry at the middle of the cavity in the gap-wise direction, which should bring about great inconvenience in applications. For example, surface models are commonly used in current RP systems (generally STL file format), so secondary modeling is unavoidable when using simulation packages because the models in the RP and simulation systems are different. Considering these defects, the surface model of the cavity is introduced as datum planes in the simulation, instead of the middle-plane.According to the previous investigations [4–6], fillinggoverning equations for the flow and temperature field can be written as:where x, y are the planar coordinates in the middle-plane, and z is the gap-wise coordinate; u, v,w are the velocity components in the x, y, z directions; u, v are the average whole-gap thicknesses; and η, ρ,CP (T), K(T) represent viscosity, density, specific heat and thermal conductivity of polymer melt, respectively.Fig.2-1 a–d. Schematic procedure of the simulation with middle-plane model. a The 3-D surface model b The middle-plane model c The meshed middle-plane model d The display of the simulation result In addition, boundary conditions in the gap-wise direction can be defined as:where TW is the constant wall temperature (shown in Fig. 2a).Combining Eqs. 1–4 with Eqs. 5–6, it follows that the distributions of the u, v, T, P at z coordinates should be symmetrical, with the mirror axis being z = 0, and consequently the u, v averaged in half-gap thickness is equal to that averaged in wholegap thickness. Based on this characteristic, we can divide the whole cavity into two equal parts in the gap-wise direction, as described by Part I and Part II in Fig. 2b. At the same time, triangular finite elements are generated in the surface(s) of the cavity (at z = 0 in Fig. 2b), instead of the middle-plane (at z = 0 in Fig. 2a). Accordingly, finite-difference increments in the gapwise direction are employed only in the inside of the surface(s) (wall to middle/center-line), which, in Fig. 2b, means from z = 0 to z = b. This is single-sided instead of two-sided with respect to the middle-plane (i.e. from the middle-line to two walls). In addition, the coordinate system is changed from Fig. 2a to Fig. 2b to alter the finite-element/finite-difference scheme, as shown in Fig. 2b. With the above adjustment, governing equations are still Eqs. 1–4. However, the original boundary conditions inthe gapwise direction are rewritten as:Meanwhile, additional boundary conditions must be employed at z = b in order to keep the flows at the juncture of the two parts at the same section coordinate [7]:where subscripts I, II represent the parameters of Part I and Part II, respectively, and Cm-I and Cm-II indicate the moving free melt-fronts of the surfaces of the divided two parts in the filling stage.It should be noted that, unlike conditions Eqs. 7 and 8, ensuring conditions Eqs. 9 and 10 are upheld in numerical implementations becomes more difficult due to the following reasons:1. The surfaces at the same section have been meshed respectively, which leads to a distinctive pattern of finite elements at the same section. Thus, an interpolation operation should be employed for u, v, T, P during the comparison between the two parts at the juncture.2. Because the two parts have respective flow fields with respect to the nodes at point A and point C (as shown in Fig. 2b) at the same section, it is possible to have either both filled or one filled (and one empty). These two cases should be handled separately, averaging the operation for the former, whereas assigning operation for the latter.3. It follows that a small difference between the melt-fronts is permissible. That allowance can be implemented by time allowance control or preferable location allowance control of the melt-front nodes.4. The boundaries of the flow field expand by each melt-front advancement, so it is necessary to check the condition Eq. 10 after each change in the melt-front.5. In view of above-mentioned analysis, the physical parameters at the nodes of the same section should be compared and adjusted, so the information describing finite elements of the same section should be prepared before simulation, that is, the matching operation among the elements should be preformed.Fig. 2a,b. Illustrative of boundary conditions in the gap-wise direction a of the middle-plane model b of thesurface model2.2.2 Numerical implementationPressure field. In modeling viscosity η, which is a function of shear rate, temperature and pressure of melt, the shear-thinning behavior can be well represented by a cross-type model such as:where n corresponds to the power-law index, and τ∗ characterizes the shear stress level of the transition region between the Newtonian and power-law asymptotic limits. In terms of an Arrhenius-type temperature sensitivity and exponential pressure dependence, η0(T, P) can be represented with reasonable accuracy as follows:Equations 11 and 12 constitute a five-constant (n, τ∗, B, Tb, β) representation for viscosity. The shear rate for viscosity calculation is obtained by:Based on the above, we can infer the following filling pressure equation from the governing Eqs. 1–4:where S is calculated by S = b0/(b−z)2η d z. Applying the Galerkin method, the pressure finite-element equation is deduced as:where l_ traverses all elements, including node N, and where I and j represent the local node number in element l_ corresponding to the node number N and N_ in the whole, respectively. The D(l_) ij is calculated as follows:where A(l_) represents triangular finite elements, and L(l_) i is the pressure trial function in finite elements.Temperature field. To determine the temperature profile across the gap, each triangular finite element at the surface is further divided into NZ layers for the finite-difference grid.The left item of the energy equation (Eq. 4) can be expressed as:where TN, j,t represents the temperature of the j layer of node N at time t.The heat conduction item is calculated by:where l traverses all elements, including node N, and i and j represent the local node number in element l corresponding to the node number N and N_ in the whole, respectively.The heat convection item is calculated by:For viscous heat, it follows that:Substituting Eqs. 17–20 into the energy equation (Eq. 4), the temperature equation becomes:2.3 Structural analysis of the moldThe purpose of structural analysis is to predict the deformation occurring in the photopolymer mold due to the thermal and mechanical loads of the filling process. This model is based on a three-dimensional thermoelastic boundary element method (BEM). The BEM is ideally suited for this application because only the deformation of the mold surfaces is of interest. Moreover, the BEM has an advantage over other techniques in that computing effort is not wasted on calculating deformation within the mold.The stresses resulting from the process loads are well within the elastic range of the mold material. Therefore, the mold deformation model is based on a thermoelastic formulation. The thermal and mechanical properties of the mold are assumed to be isotropic and temperature independent.Although the process is cyclic, time-averaged values of temperature and heat flux are used for calculating the mold deformation. Typically, transient temperature variations within a mold have been restricted to regions local to the cavity surface and the nozzle tip [8]. The transients decay sharply with distance from the cavity surface and generally little variation is observed beyond distances as small as 2.5 mm. This suggests that the contribution from the transients to the deformation at the mold block interface is small, and therefore it is reasonable to neglect the transient effects. The steady state temperature field satisfies Laplace’s equation 2T = 0 and the time-averaged boundary conditions. The boundary conditions on the mold surfaces are described in detail by Tang et al. [9]. As for the mechanical boundary conditions, the cavity surface is subjected to the melt pressure, the surfaces of the mold connected to the worktable are fixed in space, and other external surfaces are assumed to be stress free.The derivation of the thermoelastic boundary integral formulation is well known [10]. It is given by:where uk, pk and T are the displacement, traction and temperature,α, ν represent the thermal expansion coefficient and Poisson’s ratio of the material, and r = |y−x|. clk(x) is the surfacecoefficient which depends on the local geometry at x, the orientation of the coordinate frame and Poisson’s ratio for the domain [11]. The fundamental displacement ˜ulk at a point y in the xk direction, in a three-dimensional infinite isotropic elastic domain, results from a unit load concentrated at a point x acting in the xl direction and is of the form:where δlk is the Kronecker delta function and μ is the shear modulus of the mold material.The fundamental traction ˜plk , measured at the point y on a surface with unit normal n, is:Discretizing the surface of the mold into a total of N elements transforms Eq. 22 to:where Γn refers to the n th surface element on the domain.Substituting the appropriate linear shape functions into Eq. 25, the linear boundary element formulation for the mold deformation model is obtained. The equation is applied at each node on the discretized mold surface, thus giving a system of 3N linear equations, where N is the total number of nodes. Each node has eight associated quantities: three components of displacement, three components of traction, a temperature and a heat flux. The steady state thermal model supplies temperature and flux values as known quantities for each node, and of the remaining six quantities, three must be specified. Moreover, the displacement values specified at a certain number of nodes must eliminate the possibility of a rigid-body motion or rigid-body rotation to ensure a non-singular system of equations. The resulting system of equations is assembled into a integrated matrix, which is solved with an iterative solver.2.4 Shrinkage and warpage simulation of the molded partInternal stresses in injection-molded components are the principal cause of shrinkage and warpage. These residual stresses are mainly frozen-in thermal stresses due to inhomogeneous cooling, when surface layers stiffen sooner than the core region, as in free quenching. Based onthe assumption of the linear thermo-elastic and linear thermo-viscoelastic compressible behavior of the polymeric materials, shrinkage and warpage are obtained implicitly using displacement formulations, and the governing equations can be solved numerically using a finite element method.With the basic assumptions of injection molding [12], the components of stress and strain are given by:The deviatoric components of stress and strain, respectively, are given byUsing a similar approach developed by Lee and Rogers [13] for predicting the residual stresses in the tempering of glass, an integral form of the viscoelastic constitutive relationships is used, and the in-plane stresses can be related to the strains by the following equation:Where G1 is the relaxation shear modulus of the material. The dilatational stresses can be related to the strain as follows:Where K is the relaxation bulk modulus of the material, and the definition of α and Θ is:If α(t) = α0, applying Eq. 27 to Eq. 29 results in:Similarly, applying Eq. 31 to Eq. 28 and eliminating strain εxx(z, t) results in:Employing a Laplace transform to Eq. 32, the auxiliary modulus R(ξ) is given by:Using the above constitutive equation (Eq. 33) and simplified forms of the stresses and strains in the mold, the formulation of the residual stress of the injection molded part during the cooling stage is obtain by:Equation 34 can be solved through the application of trapezoidal quadrature. Due to the rapid initial change in the material time, a quasi-numerical procedure is employed for evaluating the integral item. The auxiliary modulus is evaluated numerically by the trapezoidal rule.For warpage analysis, nodal displacements and curvatures for shell elements are expressed as:where [k] is the element stiffness matrix, [Be] is the derivative operator matrix, {d} is the displacements, and {re} is the element load vector which can be evaluated by:The use of a full three-dimensional FEM analysis can achieve accurate warpage results, however, it is cumbersome when the shape of the part is very complicated. In this paper, a twodimensional FEM method, based on shell theory, was used because most injection-molded parts have a sheet-like geometry in which the thickness is much smaller than the other dimensions of the part. Therefore, the part can be regarded as an assembly of flat elements to predict warpage. Each three-node shell element is a combination of a constant strain triangular element (CST) and a discrete Kirchhoff triangular element (DKT), as shown in Fig. 3. Thus, the warpage can be separated into plane-stretching deformation of the CST and plate-bending deformation of the DKT, and correspondingly, the element stiffness matrix to describe warpage can also be divided into the stretching-stiffness matrix and bending-stiffness matrix.Fig. 3a–c. Deformation decomposition of shell element in the local coordinate system. a In-plane stretchingelement b Plate-bending element c Shell element3 Experimental validationTo assess the usefulness of the proposed model and developed program, verification is important. The distortions obtained from the simulation model are compared to the ones from SL injection molding experiments whose data is presented in the literature [8]. A common injection molded part with the dimensions of 36×36×6 mm is considered in the experiment, as shown in Fig. 4. The thickness dimensions of the thin walls and rib are both 1.5 mm; and polypropylene was used as the injection material. The injection machine was a production level ARGURY Hydronica 320-210-750 with the following process parameters: a melt temperature of 250 ◦C; an ambient temperature of 30 ◦C; an injection pressure of 13.79 MPa; an injection time of 3 s; and a cooling time of 48 s. The SL material used, Dupont SOMOSTM 6110 resin, has the ability to resist temperatures of up to 300 ◦C temperatures. As mentioned above, thermal conductivity of the mold is a major factor that differentiates between an SL and a traditional mold. Poor heat transfer in the mold would produce a non-uniform temperature distribution, thus causing warpage that distorts the completed parts. For an SL mold, a longer cycle time would be expected. The method of using a thin shell SL mold backed with a higher thermal conductivity metal (aluminum) was selected to increase thermal conductivity of the SL mold.Fig. 4. Experimental cavity modelFig. 5. A comparison of the distortion variation in the X direction for different thermal conductivity; where “Experimental”, “present”, “three-step”, and “conventional” mean the results of the experimental, the presented simulation, the three-step simulation process and the conventional injection molding simulation, respectively.Fig. 6. Comparison of the distortion variation in the Y direction for different thermal conductivitiesFig. 7. Comparison of the distortion variation in the Z direction for different thermal conductivitiesFig. 8. Comparison of the twist variation for different thermal conductivities For this part, distortion includes the displacements in three directions and the twist (the difference in angle between two initially parallel edges). The validation results are shown in Fig.5 to Fig. 8. These figures also include the distortion values predicted by conventional injection molding simulation and the three-step model reported in [3].4 ConclusionsIn this paper, an integrated model to accomplish the numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. For verification, an experiment is also carried out with an RPfabricated SL mold.It is seen that a conventional simulation using current injection molding software breaks down for a photopolymer mold. It is assumed that this is due to the distortion in the mold caused by the temperature and load conditions of injection. The three-step approach also has much deviation. The developed model gives results closer to experimental.Improvement in thermal conductivity of the photopolymer significantly increases part quality. Since the effect of temperature seems to be more dominant than that of pressure (load), an improvement in the thermal conductivity of the photopolymer can improve the part quality significantly.Rapid Prototyping (RP) is a technology makes it possible to manufacture prototypes quickly and inexpensively, regardless of their comp lexity. Rapid Tooling (RT) is the next step in RP’s steady progress and much work is being done to obtain more accurate tools to define the parameters of the process. Existing simulation tools can not provide the researcher with a useful means of studying relative changes. An integrated model, such as the one presented in this paper, is necessary to obtain accurate predictions of the actual quality of final parts. In the future, we expect to see this work expanded to develop simulations program for injection into RP molds manufactured by other RT processes.References1. Wang KK (1980) System approach to injection molding process. Polym-Plast Technol Eng 14(1):75–93.2. Shelesh-Nezhad K, Siores E (1997) Intelligent system for plastic injection molding process design. J Mater Process Technol 63(1–3):458–462.3. Aluru R, Keefe M, Advani S (2001) Simulation of injection molding into rapid-prototyped molds. Rapid Prototyping J 7(1):42–51.4. Shen SF (1984) Simulation of polymeric flows in the injection molding process. Int J Numer Methods Fluids 4(2):171–184.5. Agassant JF, Alles H, Philipon S, Vincent M (1988) Experimental and theoretical study of the injection molding of thermoplastic materials. Polym Eng Sci 28(7):460–468.6. Chiang HH, Hieber CA, Wang KK (1991) A unified simulation of the filling and post-filling stages in injection molding. Part I: formulation. Polym Eng Sci 31(2):116–124.7. Zhou H, Li D (2001) A numerical simulation of the filling stage in injection molding based on a surface model. Adv Polym Technol 20(2):125–131.8. Himasekhar K, Lottey J, Wang KK (1992) CAE of mold cooling in injection molding using a three-dimensional numerical simulation. J EngInd Trans ASME 114(2):213–221.9. Tang LQ, Pochiraju K, Chassapis C, Manoochehri S (1998) Computeraided optimization approach for the design of injection mold cooling systems. J Mech Des, Trans ASME 120(2):165–174.10. Rizzo FJ, Shippy DJ (1977) An advanced boundary integral equation method for three-dimensional thermoelasticity. Int J Numer Methods Eng 11:1753–1768.11. Hartmann F (1980) Computing the C-matrix in non-smooth boundary points. In: New developments in boundary element methods, CML Publications, Southampton, pp 367–379.12. Chen X, Lama YC, Li DQ (2000) Analysis of thermal residual stress in plastic injection molding. J Mater Process Technol 101(1):275–280.13. Lee EH, Rogers TG (1960) Solution of viscoelastic stress analysis problems using measured creep or relaxation function. J Appl Mech 30(1):127–134.14. Li Y (1997) Studies in direct tooling using stereolithography. Dissertation, University of Delaware, Newark, DE..。

注塑成型工艺流程及条件介绍外文文献翻译、中英文翻译、外文翻译

注塑成型工艺流程及条件介绍外文文献翻译、中英文翻译、外文翻译

注塑成型工艺流程及条件介绍成型条件设定按成型步骤:可分为开锁模,加热,射出,顶出四个过程.锁模条件设定:1,锁模一般分: 快速→中速→低压→高压2.,快锁模一般按模具情况分,如果是平面二板模具,快速锁模段可用较快速度,甚至于用到特快,当用到一般快速时,速度设到55-75%,完全平面模可设定到80-90%,如果用到特快就只能设定在45-55%,压力则可设定于50-75%,位置段视产品的深浅(或长短)不同,一般是开模宽度的1/3.3,中速段,在快速段结束后即转换成中速,中速的位置一般是到模板(包括三板模,二板模)合在一块为止,具体长度应视模板板间隔,速度一般设置在30%-50%间,压力则是20%-45%间.4,低压设定,低速设定一般是在模板接触的一瞬间,具体位置就设在机台显示屏显示的一瞬间的数字为准,这个数字一般是以这点为标准,,即于此点则起不了高压,高于此点则大,轻易起高压.设定的速度一般是15%-25%,视乎不同机种而定,压力一般设定于1-2%,有些机则可设于5-15%,也是视乎不同机种不同.5.高压设定,按一般机台而言,高压位置机台在出厂时都已作了设定,相对来讲,是不可以随便更改的,比如震雄机在50P.速度相对低压略高,大约在30-35%左右,而压力则视乎模具而定,可在55-85%中取,比如完全平面之新模,模具排气良好,甚至于设在55%即可,如果是滑块较多,原来生产时毛边也较多,甚至于可设在90%还略显不足.加热工艺条件设定1.加热段温度设定必须按照产品所使用的原料的不同而不同,但却必须遵循一个这样的规则,即由射口筒到进科段温度是逐步递减的.且递减温度是以10.度为单位.2特殊情况下.如料头抽丝,则射口筒温度应降低,如果是比较特殊的原料冷凝比较快的.则射口筒温度则不止比第二节法兰温度高10度.比如PPS. 尼龙等.3.机台马达启动温度视乎机台不同而不同,一般出于对机台油路中的油封保护需要,油温最好能控制在40度-60度,以免油封长期高压而变化,缩短使用寿命,造成成型不稳定.注射是把塑料原料经加热后射进模腔的过程,它一般可分为第一级,第二级,第三级,第四级及保压几段:1 .第一级注射一般是注射料头段.具注射量一般可根据料头的轻重来估计其行程,当然也可以依据公式来计算,如公式L=Si=Vi/0.785Ds2:L:注射行程; Si: 注射行程;Vi:理论注射容积; Ds:螺杆直径;0.785:是Ω/4的值.当然,如果我们在成型时每设定一个参数都要计算一次,要成型出一个产品就要几个小时才能完成了.2. 第二级是注塑产品约2/3的阶段,当然,根据产品特殊需要,也允许成型不到2/3阶段,比如避免结合线问题,这一阶段的成型速度及压力一般是整个成型段的最大值段,如果排的产品与机台基本是相吻合的.模具结构合理,排气良好,这一段的压力一般也不会超过80%.速度侧视产品需变,可能大到95%也可,自然一般都是在55%-80%间.3. 第三段是注射余下的1/3段,其速度和压力根据产品的需要,一般是小于第二段,速度和压力存在于一个往下降的过程.主要是为了防止产品毛边的产生,但同时又必须把产品充填饱满.4.第四段:一般有机台还有第五,第六段,这段的成型速度和压力相同前,都存在两段一个递减过程.其作用都是起到一个再次充满的作用.5.保压段:不论成型什么产品,都存在一个保压过程.任何产品都不同程度的存在一个厚薄不一的问题,正常情况下,较厚的部分都可能存在一个收缩凹陷的现象,为了解决这种现象,就应应用到保压,保压一般来讲都应用较慢的射速,而压力的设置则应看缩水的情况如何,小到25%,大到80%都有可能.产品经冷却定型后则有一个开模的过程,开模基本上是合模的反过程.开模的未段则有一个慢速设置,开模完成后,产品必须顶出的过程.一.顶前:顶前最好分两个阶级,第一阶可分为中压慢速,即是把产品轻轻顶出一部分,然后是中压中速顶,中压中速一般指的是35%-55%,而低速则有可能低到5%,这需视产品不同而言,顶出行程设定是顶出长度稍比产品垂直深度大1-2cm即可. 二.退针顶退包括两个过程与顶落的过程基本一致,顶退的终点应预留1-3cm的空间,以保护顶针油管不被顶坏.三.顶针顶针方式还包括一个多次顶,单次顶及顶针停留的选择,机械手取产品,脱模顺利的情况都采取多项,为了顶针油缸寿命的延长,多次顶就以不超过三次为宜,顶针停留一般用在顶针带着产品退回有可能对增品产生损伤的模具,同时为配合机械手使用,有时也需要较短的顶针停留.Injection molding technical process and condition introductionSection Molding parameter Setting Molding steps: mold opening/closing, heating injection and knocking out.Mold closing parameter setting1.Mold closing: high-speed →low-speed →low pressure→high pressure2.In high-speed section, Mold closing speed depends on type of mold. For two –plate mold it can set quick and even especially quick usually, it set speed within 55-75%. For full-plate mold it set speed within80-90% while using especially high speed it set speed within 45-55% and pressure within 50-75% position distance setting differs depending on the volume of product and usually it can be set 1/3 of mold opening position.3.In mid-speed section: Mold closing speed changes into mid-speed after high-speed section finish. Mid-speed start position is where two plates meet (include three-plate mold and two-plate mold ) Distance of mid-speed is up to distance of two plates plate it speed within 30-50% and pressure 20-45%.4.Low-pressure section: Mold closing sets low-pressurewhen plates meeting. This position is set to the data of machine screen on this time. This point is the gage of the data. Data lower the point there is no high-pressure. Data higher the point there is high-pressure easily. It set speed within 15-25% and pressure within 1-2% depending on type within 1-2% depending on type of injection molding machine.5. High-pressure section: To normal injection molding machine, high-pressure position had been set before they were sent to customer. It can not be modified. For example high-pressure position of CHENHSONG machine is 50P.The speed of high-pressure section is about 30-35% and higher than that of low-pressure. The pressure is up to mold, it can set within 55-85% For full-plate mold, it’s eject air well, it can set pressure 55% .If mold has a lot of slides and flash rate high in production, pressure can set 90%.Heating technique parameter setting1.The proper temperature setting differs depending on type of resin material, but it must be abide by a rule that temperature setting should diminish in step 10.C from nozzle to feeding resin material position.2 Nozzle temperature setting should low if product line. If resin material such as PPS, PA, cool very soon , Nozzletemperature should higher more 10.C than the second cylinder temperature.3. Pump turning on temperature is different depending on type of injection molding machine. To protect oil seal of machine it set oil temperature within 40.C-60.C, If oil seal work on condition that high pressure and damaged It’s work time will be shorter, it can cause molding stable.Injection is a step which inject melt resin material into mold. It consists of stepl,step2 ,step3,step4 and holding pressure step:1. Step l injects usually tunnel material, Injection V olume can be estimated according to the weight of course it can be calculated by formula:L=Si=Vi/0.785Ds2L: injection stroke Si: injection strokeVi: injection volume of theoretical Ds: diameter of screw0. 785: value of Ω/4.But it cost a lot of time to produce one product if every time molding parameter is setting by calculation.2. Step 2 inject 2/3 of product. It can lower 2/3 of product according to requirement of product. For example to prevent weld line. Molding speed and pressure on this step is the maximum of whole molding section. If Mold suit the injectionmolding machine and mold structure reasonable and eject air well, pressure of this step should lower 80%. Molding speed setting within 55-80% but it may setting 95% for especial product.3. Step3 inject remain 1/3 of product. According to product molding speed and pressure lower than that of step2 To prevent flash speed and pressure should decrease but it can’t shot short. Step4 section: Some injection machines have step5,step6 which are same as former molding speed and pressure this step should diminish and inject once more.5. Holding pressure step: No matter what product there is a holding pressure step. Any product can’t molding a same thickness. Usually the deeper section may sink mark . To prevent this defect it should set holding pressure, The injection speed of holding pressure step is slow but holding pressure setting within 25-80% depending on sink mark.There is a mold opening step after product cooling taking shape. Mold opening is a reverse step of mold closing. The last step of mold opening speed set slow. Product should be knocked out after mold opened.one.Knocking outKnocking out includes two steps, Step1 section setting mid-speed, knocks product out partly step2 section setting mid-pressure and mid-speed . Depending on different product, mid-pressure and mid-speed sets within 35-55% but low-speed can set 5%. Distance of knocking out longer 1-2cm than the vertical thickness of product.two.BackThe same as knocking out, ejector back includes 2 steps. To protect the ejector oil jar, it should make a 1-3mm distance in the ending point of ejector back.Three. ThimbleThe way of knocking out includes knocking out once, Knocking out repeat and ejector delay. Take product by manipulator or take product easy, it should select knocking out once. To longer the work time of ejector oiljar, times of knocking out lower 3 times. Ejector delay used when product will be damaged if ejector back or suit manipulator.。

注塑模具专业英语 塑胶模具英语 注塑成型专业英语 Injection Mould English

注塑模具专业英语 塑胶模具英语 注塑成型专业英语 Injection Mould English

abrasive grinding 强力磨削abrasive 磨料的,研磨的absence 不在,缺席accesssory 附件accommodate 适应accordingly 因此,从而,相应地accuracy 精度,准确性actuate 开动(机器),驱动adequate 足够的adhesive 粘合剂adjacent 邻近的adopt 采用advance 进步advisable 可取的agitate 摇动a large extent 很大程度algorithm 算法align 定位,调准alignment 校直all-too-frequent 频繁allowance 容差,余量alternate 交替,轮流alternatively 做为选择,也许aluminiun 铝ample 充足的analysis 分析ancillary 补助的,副的angular 有角的annealing 退火aperture 孔applied loads 作用力appropriate 适当的arc 弧,弓形arise 出现,发生arrange 安排article 制品,产品ascertain 确定,查明assemble 组装attitude 态度auxiliary 辅助的avoid 避免axis 轴axle 轮轴,车轴alternative 替换物backup 备份batch 一批bearing 轴承,支座bed 床身behavior 性能bench-work 钳工工作bend 弯曲beneath 在•••下bin 仓,料架blank 坯料blank 冲裁,落料blanking 落料模blast 一阵(风)blemish 缺点,污点bolster 模座,垫板boring 镗削,镗孔bracket 支架brass 黄铜break down 破坏breakage 破坏brine 盐水brittle 易碎的buffer 缓冲器built-in 内装的bulging 凸肚burr 毛刺bush 衬套by far •••得多,最by means of 借助于boost 推进cabinet 橱柜call upon 要求carbide 碳化物carburzing 渗碳carriage 拖板,大拖板carry along 一起带走carry down over 从•••上取下carry out 完成case hardening 表面硬化case 壳,套cast steel 铸钢casting 铸造,铸件category 种类caution 警告,警示cavity and core plates 凹模和凸模板cavity 型腔,腔,洞centre-drilling 中心孔ceramic 陶瓷制品chain doted line 点划线channel 通道,信道characteristic 特性check 核算chip 切屑,铁屑chuck 卡盘chute 斜道circa 大约circlip (开口)簧环circuit 回路,环路circulate (使)循环clamp 夹紧clamp 压板clay 泥土clearance 间隙clip 切断,夹住cold hobbing 冷挤压cold slug well 冷料井collapse 崩塌,瓦解collapsible 可分解的combination 组合commence 开始,着手commence 开始commercial 商业的competitive 竞争的complementary 互补的complexity 复杂性complication 复杂化compression 压缩comprise 包含compromise 妥协,折衷concern with 关于concise 简明的,简练的confront 使面临connector 连接口,接头consequent 随之发生的,必然的console 控制台consume 消耗,占用consummate 使完善container 容器contingent 可能发生的CPU (central processing unit) 中央处理器conventional 常规的converge 集中于一点conversant 熟悉的conversion 换算,转换conveyer 运送装置coolant 冷却液coordinate (使)协调copy machine 仿形(加工)机床core 型芯,核心corresponding 相应的counteract 反作用,抵抗couple with 伴随contour 轮廓crack (使)破裂,裂纹critical 临界的cross-hatching 剖面线cross-section drawn 剖面图cross-slide 横向滑板CRT (cathoder-ray tube) 阴极射线管crush 压碎cryogenic 低温学的crystal 结晶状的cubic 立方的,立方体的cup (使)成杯状,引伸curable 可矫正的curvature 弧线curve 使弯曲cutter bit 刀头,刀片cyanide 氰化物complicated 复杂的dash 破折号daylight 板距decline 下落,下降,减少deform (使)变形demonstrate 证明depict 描述deposite 放置depression 凹穴descend 下降desirable 合适的detail 细节,详情deterioration 退化,恶化determine 决定diagrammmatic 图解的,图表的dictate 支配die 模具,冲模,凹模dielectric 电介质die-set 模架digital 数字式数字dimensional 尺寸的,空间的discharge 放电,卸下,排出discharge 卸下discrete 离散的,分立的dislodge 拉出,取出dissolution 结束distinct 不同的,显著的distort 扭曲distort (使)变形,扭曲distributed system 分布式系统dowel 销子dramaticlly 显著地drastic 激烈的draughting 绘图draughtsman 起草人drawing 制图drill press 钻床drum 鼓轮dual 双的,双重的ductility 延展性dynamic 动力的edge 边缘e.g.(exempli gratia) [拉]例如ejector 排出器ejector plate 顶出板ejector rob 顶杆elasticity 弹性electric dicharge machining 电火花加工electrode 电极electro-deposition 电铸elementary 基本的eliminate 消除,除去elongate (使)伸长,延长emerge 形成,显现emphasise 强调endeavour 尽力engagement 约束,接合enhance 提高,增强ensure 确保,保证erase 抹去,擦掉evaluation 评价,估价eventually 终于evolution 进展excecution 执行,完成execute 执行electrochemical machining 电化学加工exerte 施加experience 经验explosive 爆炸(性)的extend 伸展external 外部的extract 拔出extreme 极端extremely 非常地extremity 极端extrusion 挤压,挤出envisage 设想Fahrenheit 华氏温度fabricate 制作,制造flat-panel technology 平面(显示)技术facility 设备facing 端面车削fall within 属于,适合于fan 风扇far from 毫不,一点不,远非fatigue 疲劳feasible 可行的feature 特色,特征feed 进给feedback 反馈female 阴的,凹形的ferrule 套管file system 文件系统fitter 装配工,钳工fix 使固定,安装fixed half and moving half 定模和动模facilitate 帮助flexibility 适应性,柔性flexible 柔韧的flow mark 流动斑点follow-on tool 连续模foregoing 在前的,前面的foretell 预测,预示,预言forge 锻造forming 成型four screen quadrants 四屏幕象限fracture 破裂free from 免于gap 裂口,间隙gearbox 齿轮箱govern 统治,支配,管理grain 纹理graphic 图解的grasp 抓住grid 格子,网格grind 磨,磨削,研磨grinding 磨光,磨削grinding machine 磨床gripper 抓爪,夹具groove 凹槽guide bush 导套guide pillar 导柱guide pillars and bushes 导柱和导套handset 电话听筒hardness 硬度hardware 硬件headstock 床头箱,主轴箱hexagonal 六角形的,六角的hindrance 障碍,障碍物hob 滚刀,冲头hollow-ware 空心件horizontal 水平的hose 软管,水管hyperbolic 双曲线的i.e. (id est) [拉]也就是identical 同样的identify 确定,识别idle 空闲的immediately 正好,恰好impact 冲击impart 给予implement 实现impossibility 不可能impression 型腔in contact with 接触in terms of 依据inasmuch (as) co因为,由于inch-to-metric conversions 英公制转换inclinable 可倾斜的inclusion 内含物inconspicuous 不显眼的incorporate 合并,混合indentation 压痕indenter 压头independently 独自地,独立地inevitably 不可避免地inexpensive 便宜的inherently 固有的injection mould 注塑模injection 注射in-line-of-draw 直接脱模insert 嵌件inserted die 嵌入式凹模inspection 检查,监督installation 安装integration 集成intelligent 智能的intentinonally 加强地,集中地interface 界面internal 内部的interpolation 插值法investment casting 熔模铸造irregular 不规则的,无规律irrespective of 不论,不管irrespective 不顾的,不考虑的issue 发布,发出joint line 结合线kerosene 煤油keyboard 健盘knock 敲,敲打lance 切缝lathe 车床latitude 自由lay out 布置limitation 限度,限制,局限(性) local intelligence 局部智能locate 定位logic 逻辑longitudinal 纵向的longitudinally 纵向的look upon 视作,看待lubrication 润滑machine shop 车间machine table 工作台machining 加工made-to-measure 定做maintenance 维护,维修majority 多数make use of 利用male 阳的,凸形的malfunction 故障mandrel 心轴manifestation 表现,显示massiveness 厚实,大块measure 大小,度量microcomputer 微型计算机microns 微米microprocessor 微处理器mild steel 低碳钢milling machine 铣床mineral 矿物,矿产minimise 把减到最少,最小化minute 微小的mirror image 镜像mirror 镜子moderate 适度的modification 修改,修正modulus 系数mold 模,铸模mold 制模,造型monitor 监控monograph 专著more often than not 常常motivation 动机mould split line 模具分型线moulding 注塑件move away from 抛弃multi-imprssion mould 多型腔模narrow 狭窄的NC (numerical control) 数控nevertheless 然而,不过nonferrous 不含铁的,非铁的normally 通常地novice 新手,初学者nozzle 喷嘴,注口numerical 数字的objectionable 有异议的,讨厌的observe 观察obviously 明显地off-line 脱机的on-line 联机operational 操作的,运作的opportunity 时机,机会opposing 对立的,对面的opposite 反面optimization 最优化orient 确定方向orthodox 正统的,正规的overall 全面的,全部的overbend 过度弯曲overcome 克服,战胜overlaping 重叠overriding 主要的,占优势的opposite 对立的,对面的pack 包装package 包装pallet 货盘panel 面板paraffin 石蜡parallel 平行的penetration 穿透peripheral 外围的periphery 外围permit 许可,允许pessure casting 压力铸造pillar 柱子,导柱pin 销,栓,钉pin-point gate 针点式浇口piston 活塞plan view 主视图plasma 等离子plastic 塑料platen 压板plotter 绘图机plunge 翻孔plunge 投入plunger 柱塞pocket-size 袖珍portray 描绘pot 壶pour 灌,注practicable 行得通的preferable 更好的,更可取的preliminary 初步的,预备的press setter 装模工press 压,压床,冲床,压力机prevent 妨碍primarily 主要地procedure 步骤,方法,程序productivity 生产力profile 轮廓progressively 渐进地project 项目project 凸出projection 突出部分proper 本身的property 特性prototype 原形proximity 接近prudent 谨慎的punch 冲孔punch shapper tool 刨模机punch-cum-blanking die 凹凸模punched tape 穿孔带purchase 买,购买push back pin 回程杆pyrometer 高温计quality 质量quandrant 象限quantity 量,数量quench 淬火radial 放射状的ram 撞锤rapid 迅速的rapidly 迅速地raster 光栅raw 未加工的raw material 原材料ream 铰大reaming 扩孔,铰孔recall 记起,想起recede 收回,后退recess 凹槽,凹座,凹进处redundancy 过多re-entrant 凹入的refer 指,涉及,谈及reference 参照,参考refresh display 刷新显示register ring 定位环register 记录,显示,记数regrind 再磨研relative 相当的,比较的relay 继电器release 释放relegate 把降低到reliability 可靠性relief valves 安全阀relief 解除relieve 减轻,解除remainder 剩余物,其余部分removal 取出remove 切除,切削reposition 重新安排represent 代表,象征reputable 有名的,受尊敬的reservoir 容器,储存器resident 驻存的resist 抵抗resistance 阻力,抵抗resolution 分辨率respective 分别的,各自的respond 响应,作出反应responsibility 责任restrain 抑制restrict 限制,限定restriction 限制retain 保持,保留retaining plate 顶出固定板reveal 显示,展现reversal 反向right-angled 成直角的rigidity 钢度rod 杆,棒rotate (使)旋转rough machining 粗加工rough 粗略的routine 程序rubber 橡胶runner and gate systems 流道和浇口系统sand casting 砂型铸造satisfactorily 满意地saw 锯子scale 硬壳score 刻划scrap 废料,边角料,切屑screwcutting 切螺纹seal 密封section cutting plane 剖切面secure 固定secure 紧固,夹紧,固定segment 分割sensitive 敏感的sequence 次序sequential 相继的seriously 严重地servomechanism 伺服机构servomotor 伺服马达setter 安装者set-up 机构sever 切断severity 严重shaded 阴影的shank 柄shear 剪,切shot 注射shrink 收缩side sectional view 侧视图signal 信号similarity 类似simplicity 简单single-point cutting tool 单刃刀具situate 使位于,使处于slide 滑动,滑落slideway 导轨slot 槽slug 嵌条soak 浸,泡,均热software 软件solid 立体,固体solidify (使)凝固solidify (使)固化solution 溶液sophisiticated 尖端的,完善的sound 结实的,坚固的spark erosion 火花蚀刻spindle 主轴spline 花键split 侧向分型,分型spool 线轴springback 反弹spring-loaded 装弹簧的sprue bush 主流道衬套sprue puller 浇道拉杆square 使成方形Servomechanism Laboratoies 伺服机构实验室stage 阶段standardisation 标准化startling 令人吃惊的steadily 稳定地step-by-step 逐步stickiness 粘性stiffness 刚度stock 毛坯,坯料storage tube display 储存管显示storage 储存器straightforward 直接的strain 应变strength 强度stress 压力,应力stress-strain 应力--应变stretch 伸展strike 冲击stringent 严厉的stripper 推板stroke 冲程,行程structrural build-up 结构上形成的sub-base 垫板subject 使受到submerge 淹没subsequent 后来的subsequently 后来,随后substantial 实质的substitute 代替,替换subtract 减,减去suitable 合适的,适当的suitably 合适地sunk 下沉,下陷superior 上好的susceptible 易受影响的sweep away 扫过symmetrical 对称的synchronize 同步,同时发生tactile 触觉的,有触觉的tailstock 尾架tapered 锥形的tapping 攻丝technique 技术tempering 回火tendency 趋向,倾向tensile 拉力的,可拉伸的tension 拉紧,张紧terminal 终端机terminology 术语,用辞theoretically 理论地thereby 因此,从而thermoplastic 热塑性的thermoplastic 热塑性塑料thermoset 热固性thoroughly 十分地,彻底地thread pitch 螺距thread 螺纹thrown up 推上tilt 倾斜,翘起tolerance 公差two-plate mould 双板式注射模tong 火钳tonnage 吨位,总吨数tool point 刀锋tool room 工具车间toolholder 刀夹,工具柄toolmaker 模具制造者toolpost grinder 工具磨床toolpost 刀架torsional 扭转的toughness 韧性trace 追踪transverse 横向的tray 盘,盘子,蝶treatment 处理tremendous 惊人的,巨大的trend 趋势trigger stop 始用挡料销tungsten 钨turning 车削twist 扭曲,扭转tracer-controlled milling machine 仿形铣床ultimately 终于undercut moulding 侧向分型模undercut 侧向分型undercut 底切underfeed 底部进料的undergo 经受underside 下面,下侧undue 不适当的,过度的uniform 统一的,一致的utilize 利用Utopian 乌托邦的,理想化的valve 阀vaporize 汽化vaporize (使)蒸发variation 变化various 不同的,各种的vector feedrate computation 向量进刀速率计算vee 字形velocity 速度versatile 多才多艺的,万用的vertical 垂直的via prep经,通过vicinity 附近viewpoint 观点wander 偏离方向warp 翘曲washer 垫圈wear 磨损well line 结合线whereupon 于是winding 绕,卷with respect to 相对于withstand 经受,经得起work 工件workstage 工序wrinkle 皱纹使皱yield 生产zoom 图象电子放大。

塑料模具注射成型中英文翻译、外文翻译、外文文献翻译

塑料模具注射成型中英文翻译、外文翻译、外文文献翻译

外文翻译原文:Injection MoldingMany different processes are used to transform plastic granules, powders, and liquids into product. The plastic material is in moldable form, and is adaptable to various forming methods. In most cases thermosetting materials require other methods of forming. This is recognized by the fact that thermoplastics are usually heated to a soft state and then reshaped before cooling. Theromosets, on the other hand have not yet been polymerized before processing, and the chemical reaction takes place during the process, usually through heat, a catalyst, or pressure. It is important to remember this concept while studying the plastics manufacturing processes and polymers used.Injection molding is by far the most widely used process of forming thermoplastic materials. It is also one of the oldest. Currently injection molding accounts for 30% of all plastics resin consumption. Since raw material can be converted by a single procedure, injection molding is suitable for mass production of plastics articles and automated one-step production of complex geometries. In most cases, finishing is not necessary. Typical products include toys, automotive parts, household articles, and consumer electronics goods.Since injection molding has a number of interdependent variables, it is a process of considerable complexity. The success of the injection molding operation is dependent not only in the proper setup of the machine hydraulics, barrel temperature variations, and changes in material viscosity. Increasing shot-to-shot repeatability of machine variables helps produce parts with tighter tolerance, lowers the level of rejects, and increases product quality (i.e., appearance and serviceability).The principal objective of any molding operation is the manufacture of products: to a specific quality level, in the shortest time, and using repeatable and fully automaticcycle. Molders strive to reduce or eliminate rejected parts in molding production. For injection molding of high precision optical parts, or parts with a high added value such as appliance cases, the payoff of reduced rejects is high.A typical injection molding cycle or sequence consists of five phases;1. Injection or mold filling2. Packing or compression3. Holding4. Cooling5. Part ejectionPlastic granules are fed into the hopper and through an in the injection cylinder where they are carried forward by the rotating screw. The rotation of the screw forces the granules under high pressure against the heated walls of the cylinder causing them to melt. As the pressure building up, the rotating screw is forced backward until enough plastic has accumulated to make the shot. The injection ram (or screw) forces molten plastic from the barrel, through the nozzle, sprue and runner system, and finally into the mold cavities. During injection, the mold cavity is filled volumetrically. When the plastic contacts the cold mold surfaces, it solidifies (freezes) rapidly to produce the skin layer. Since the core remains in the molten state, plastic follows through the core to complete mold filling. Typically, the cavity is filled to 95%~98% during injection. Then the molding process is switched over to the packing phase.Even as the cavity is filled, the molten plastic begins to cool. Since the cooling plastic contracts or shrinks, it gives rise to defects such as sink marks, voids, and dimensional instabilities. To compensate for shrinkage, addition plastic is forced into the cavity. Once the cavity is packed, pressure applied to the melt prevents molten plastic inside the cavity from back flowing out through the gate. The pressure must be applied until the gate solidifies. The process can be divided into two steps (packing and holding) or may be encompassed in one step(holding or second stage). During packing, melt forced into the cavity by the packing pressure compensates for shrinkage. With holding, the pressure merely prevents back flow of the polymer malt.After the holding stage is completed, the cooling phase starts. During, the part is held in the mold for specified period. The duration of the cooling phase depends primarily on the material properties and the part thickness. Typically, the part temperature must cool below the material’s ejection temperature. While cooling the part, the machine plasticates melt for the next cycle.The polymer is subjected to shearing action as well as the condition of the energy from the heater bands. Once the short is made, plastication ceases. This should occur immediately before the end of the cooling phase. Then the mold opens and the part is ejected.When polymers are fabricated into useful articles they are referred to as plastics, rubbers, and fibers. Some polymers, for example, cotton and wool, occur naturally, but the great majority of commercial products are synthetic in origin. A list of the names of the better known materials would include Bakelite, Dacron, Nylon, Celanese, Orlon, and Styron.Previous to 1930 the use of synthetic polymers was not widespread. However, they should not be classified as new materials for many of them were known in the latter half of the nineteenth century. The failure to develop them during this period was due, in part, to a lack of understanding of their properties, in particular, the problem of the structure of polymers was the subject of much fruitless controversy.Two events of the twentieth century catapulted polymers into a position of worldwide importance. The first of these was the successful commercial production of the plastic now known as Bakelite. Its industrial usefulness was demonstrated in1912 and in the next succeeding years. Today Bakelite is high on the list of important synthetic products. Before 1912 materials made from cellulose were available, but their manufacture never provided the incentive for new work in the polymer field such as occurred after the advent of Bakelite. The second event was concerned with fundamental studies of the nature polymers by Staudinger in Europe and by Carohers, who worked with the Du Pont company in Delaware. A greater part of the studies were made during the 1920’s. Staudinger’s work was primarily fundamental. Carother’s achievements led to the development of our present huge plastics industry by causing an awakening of interest in polymer chemistry, an interest which is still strongly apparent today.The Nature of ThermodynamicsThermodynamics is one of the most important areas of engineering science used to explain how most things work, why some things do not the way that they were intended, and why others things just cannot possibly work at all. It is a key part of the science engineers use to design automotive engines, heat pumps, rocket motors, power stations, gas turbines, air conditioners, super-conducting transmission lines, solar heating systems, etc.Thermodynamics centers about the notions of energy, the idea that energy is conserved is the first low of thermodynamics. It is starting point for the science of thermodynamics is entropy; entropy provides a means for determining if a process is possible.This idea is the basis for the second low of thermodynamics. It also provides the basis for an engineering analysis in which one calculates the maximum amount of useful that can be obtained from a given energy source, or the minimum amount of power input required to do a certain task.A clear understanding of the ideas of entropy is essential for one who needs to use thermodynamics in engineering analysis. Scientists are interested in using thermodynamics to predict and relate the properties of matter; engineers are interested in using this data, together with the basic ideas of energy conservation and entropy production, to analyze the behavior of complex technological systems.There is an example of the sort of system of interest to engineers, a large central power stations. In this particular plant the energy source is petroleum in one of several forms, or sometimes natural gas, and the plant is to convert as much of this energy as possible to electric energy and to send this energy down the transmission line.Simply expressed, the plant does this by boiling water and using the steam to turn a turbine which turns an electric generator.The simplest such power plants are able to convert only about 25 percent of the fuel energy to electric energy. But this particular plant converts approximately 40 percent;it has been ingeniously designed through careful application of the basic principles of thermodynamics to the hundreds of components in the system.The design engineers who made these calculations used data on the properties of steam developed by physical chemists who in turn used experimental measurements in concert with thermodynamics theory to develop the property data.Plants presently being studied could convert as much as 55 percent of the fuel energy to electric energy, if they indeed perform as predicted by thermodynamics analysis.The rule that the spontaneous flow of heat is always from hotter to cooler objects is a new physical idea. There is noting in the energy conservation principle or in any other law of nature that specifies for us the direction of heat flow. If energy were to flow spontaneously from a block of ice to a surrounding volume of water, this could occur in complete accord with energy conservation. But such a process never happens. This idea is the substance of the second law of thermodynamics.Clear, a refrigerator, which is a physical system used in kitchen refrigerators, freezers, and air-conditioning units must obey not only the first law (energy conservation) but the second law as well.To see why the second law is not violated by a refrigerator, we must be careful in our statement of law. The second law of thermodynamics says, in effect, that heat never flows spontaneously from a cooler to a hotter object.Or, alternatively, heat can flow from a cooler to a hotter object only as a result of work done by an external agency. We now see the distinction between an everyday spontaneous process, such as the flow of heat from the inside to the outside of a refrigerator.In the water-ice system, the exchange of energy takes place spontaneously and the flow of heat always proceeds from the water to the ice. The water gives up energy and becomes cooler while the ice receives energy and melts.In a refrigerator, on the other hand, the exchange of energy is not spontaneous. Work provided by an external agency is necessary to reverse the natural flow of heat and cool the interior at the expense of further heating the warmer surroundings.译文:塑料注射成型许多不同的加工过程习惯于把塑料颗粒、粉末和液体转化成最终产品。

注塑成型过程外文文献翻译、中英文翻译

注塑成型过程外文文献翻译、中英文翻译

附录 1:外文翻译介绍如今塑料在日常生活中占据着极其重要的地位。

如果我们说,没有哪个领域的塑料没有不经过制造中直接到宇宙飞船的生产中,这一点也不夸张。

在19 世纪中叶,塑料开始在材料和生活中起主导作用。

耐腐蚀性是塑料甚至成为金属和提高制造生产率方面受到了很高的关注。

从塑料的紧缺,因此在塑料产品设计等各个方面发生巨大的变革,在制造加工领域还在测试阶段,现在,由于很多人最后通过体力劳动取得了卓越的成效,另外人工智能的帮助下,开发出了CAD / CAM 软件。

由于高强度的重量比,提高了化学稳定性和耐温性,具有耐热和耐腐蚀的特性,光泽性使其成为材料更好的选择。

塑料在形成过程中消耗的能量更少,并且可以被循环利用。

今天,塑料正在取代黄铜、铜、铸铁、钢铁等金属。

塑料可以根据制造方法分类,在加热时软化,在冷却时凝固。

这些被称为“热塑性塑料”,以及那些由于化学变化而变硬的物质。

这些被称为热固性或混合型塑料材料成为产品选择特殊材料是另一个重要因素。

这对于产品的确定是非常必要的。

它也应该能够承受压力。

每种材料都有自己的属性。

一些材料在高环境和耐磨性方面比较好。

困难的是找到一种合适材料,它将完全满足整个要求。

所以材料应该是通用的,它适合我们产品的所有考虑条件和要求。

在考虑了所有这些点的材料之后,必须选择合适的材料来满足所有这些条件。

注塑成型过程它是一种通过将熔融状态的物质注入模具来生产零件的生产工艺。

注射成型被用在很多领域进行生产,包括金属、眼镜、弹性体、糖果以及最常见的热塑性塑料和热固性塑料。

将材料的一部分送入一个加热的桶,混合,并用高压压入一个模腔,它是可以冷却和硬化地方。

在产品设计后,通常由工业设计师或工程师设计模具,模具由模具制造商(或工具制造商)制造,通常由金属或铝制成,并经过精密加工以形成所需的特性。

注塑成型广泛应用于制造各种零件,从最小的零件到汽车的整个车身。

零件的形状和特点、模具的所需材料,以及造型机的性能都必须考虑在内。

注塑成型的模具设计外文翻译

注塑成型的模具设计外文翻译

Figure 1. Organization of the IKEM Project2 Intelligent Mold Design ToolThe mold design tool in its basic form is a Visual Basic application taking input from a text file that contains information about the part and a User Input form. The text file contains information about the part geometry parsed from a Pro/E information file. The input is used to estimate the dimensions of mold and various other features.2.1 Literature ReviewDesign of molds is another stage of the injection molding process where the experience of an engineer largely helps automate the process and increase its efficiency. The issue that needs attention is the time that goes into designing the molds. Often, design engineers refer to tables and standard handbooks while designing a mold, which consumes lot of time. Also, a great deal of time goes into modeling components of the mold in standard CAD software. Differentresearchers have dealt with the issue of reducing the time it takes to design the mold in different ways. Koelsch and James have employed group technology techniques to reduce the mold design time. A unique coding system that groups a class of injection molded parts, and the tooling required ininjection molding is developed which is general and can be applied to other product lines.A software system to implement the coding system has also been developed. Attempts were also directed towards the automation of the mold design process by capturing experience and knowledge of engineers in the field. The development of a concurrent mold design system is one such approach that attempts to develop a systematic methodology for injection mold design processes in a concurrent engineering environment. The objective of their research was to develop a mold development process that facilitates concurrent engineering-based practice, andFigure 2. Organization of the Mold Design Module.While most of the input, like the number of cavities, cavity image dimensions, cycle time are based on the client specifications, other input like the plasticizing capacity, shots per minute etc., can be obtained from the machine specifications. The output of the application contains mold dimensions and other information, which clearly helps in selecting the standard mold base from catalogs. Apart from the input and output, the Figure 2 also shows the various modules that produce the final output.2.5 Framing rulesAt this stage, the expert’s knowledge is represented in the form of multiple If-Then statements. The rules may be representations of both qualitative and quantitative knowledge. By qualitative knowledge, we mean deterministic information about a problem that can be solved computationally. By qualitative we mean information that is not deterministic, but merely followed as a rule based on previous cases where the rule has worked. A typical rule is illustrated below:If Material = “Acetal” AndRunner Length <= 3 AndRunner Length > 0 ThenRunner Diameter =0.062End IfWhen framing the rules it is important that we represent the information in a compact way while avoiding redundancy, incompleteness and inconsistency. Decision tables help take care of all the above concerns by checking for redundancy and comprehensive expression of the problem statement. As an example, in the process of selecting an appropriate mold base, the size of mold base depends on the number of cavities and inserts. To ensure that all possible combinations of。

模具 塑料注射成型 外文翻译 外文文献 英文文献

模具 塑料注射成型 外文翻译 外文文献 英文文献

模具塑料注射成型外文翻译外文文献英文文献XXXThere are many different processing methods used to convert plastic pellets。

powders。

and liquids into final products。

Plastic materials XXX。

thermoplastic materials XXX。

XXX require other methods。

It is XXX.XXX。

It is also the oldest method。

Suddenly。

XXX account for 30% of all XXX suitable for mass n。

when raw materials XXX in a single step of n。

In most cases。

n machiningis not required for such products。

The us products produced include toys。

automotive parts。

household items。

and electronic consumer goods.Because plastic n molds have many variable nships。

it is a complex and us processing process。

The success of XXX appropriate steps。

but on the XXX。

which leads to the n of XXX。

barrel temperature changes。

XXX ns can help ce tolerances。

ce defect rates。

and increase product quality.XXX operator is to produce products that e first-rate products in the shortest time。

塑模设计中常见术语的英文翻译

塑模设计中常见术语的英文翻译

塑模设计中常见术语的英文翻译1.塑料成型模具:mould for plastics2.热塑性塑料模:mould for thermoplastics3.热固性塑料模:mould for thermosets4.压缩模:compression mould5.压注模:transfer mould6.注射模:injection mould7.热塑性塑料注射模:injection mould for thermoplastics 8.热固性塑料注射模:injection mould for thermosets 9.溢料压缩模:flash mould10.半溢料压缩模:semi-positive mould11.不溢料压缩模:positive mould12.移动式压缩模:portable compression mould13.移动式压注模:portable transfer mould14.固定式压缩模:fixed compression mould15.固定式压注模:fixed transfer mould16.无流道模:runnerless mould17.热流道模:hot runner mould18.绝热流道模:insulated runner mould19.温流道模:warm runner mould20.浇注系统:feed system21.主流道:sprue22.分流道:runner23.浇口:gate24.直接浇口:direct gate 25.环型浇口:ring gate26.盘型浇口:disk gate27.轮辐浇口:spoke.gate28.点浇口:pin-point.gate 29.侧浇口:edge.gate30.潜伏浇口:submarine gate 31.扇形浇口:fan gate32.护耳浇口:tab gate33.冷料穴:cold-slug well 34.浇口套:sprue bush35.浇口镶块:gating insert 36.分流锥:spreader37.流道板:runner plate38.热流道板:manifold block 39.温流道板:warm runner plate 40.二级喷嘴:secondary nozzle 41.热管;heat pipe42.阀式浇口:valve gate43.加料腔:loading chamber44.柱塞:force plunger45.溢料槽:flash groove46.排气槽:vent47.分型面:parting line48.定模:stationary mould 49.动模:movable mould50.上模:upper mould51.下模:lower mould52.型腔:cavity53.凹模:impression54.镶件:mold insert55.活动镶件:movable insert 56.拼块:splits57.凹模拼块:cavity splits 58.型芯拼块:core splits 59.型芯:core60.侧型芯:side core61.螺纹型芯:thread core 62.螺纹型环:thread ring 63.凸模:punch64.嵌件:insert65.定模座板:fixed clamp plate66.动模座板:moving clamp plate 67.上模座板:upper clamp plate 68.下模座板:lower clamp plate 69.凹模固定板:cavity-retainer plate 70.型芯固定板:core- retainer plate 71.凸模固定板:punch- retainer plate 72.模套:chase73.支承板:backing plate74.垫块:spacer75.支架:ejector housing76.支承柱:support pillar77.模板:mould plate78.斜销:angle pin79.滑块:slide80.侧型芯滑块:side core-slide81.滑块导板:slideguide strip82.楔紧块;heel block83.斜槽导板:finger guide plate 84.弯销:dog-leg cam85.斜滑块:angled-lift splits86.导柱:guide pillar87.带头导柱:guide pillar straight88.带肩导柱:guide pillar,shouldered89.推板导柱:ejector guide pillar90.导套:guide bush91.直导套:guide bush,straight92.带头导套:guide bush,head93.推板导套:ejector guide bush94.定位圈:locating ring95.锥形定位件:mould bases locating elements 96.复位杆:ejector plate return pin97.限位钉:stop pin98.限位块:stop block99.定距拉杆:length bolt100.定距拉板:puller plate101.推杆:ejector pin102.圆柱头推杆:ejector pin with cylindrical head 103.带肩推杆:shouldered ejector pin104.扁推杆:flat ejector pin105.推管:ejector sleeve106.推块:ejector pad107.推件板:stripper plate108.推杆固定板:ejector retainer plate109.推板:ejection plate110.连接推杆:ejector tie rod111.拉料杆:sprue puller112.推流道板:runner stripper plate113.冷却管道:cooling channel114.隔板:baffle115.加热板:heating plate116.隔热板:thermal insulation board117.模架:mould bases118.注射能力:shot capacity119.收缩率:shrinkage120.注射压力:injection pressure121.锁模力:clamping force/locking force122.成型压力:moulding pressure123.模内压力:internal mould pressure /cavity pressure 124.开模力:mould opening force125.脱模力:ejection force126.抽芯力:core-pulling distance127.闭合高度:mould shut height128.最大开距:maximum daylight /open daylight129.投影面积:projected area130.脱模斜度:draft131.脱模距:stripper distance。

注塑模具设计注射模具毕业课程设计外文文献翻译

注塑模具设计注射模具毕业课程设计外文文献翻译

The Injection MoldingThe Introduction of MoldsThe mold is at the core of a plastic manufacturing process because its cavity gives a part its shape. This makes the mold at least as critical-and many cases more so-for the quality of the end product as, for example, the plasticiting unit or other components of the processing equipment.Mold MaterialDepending on the processing parameters for the various processing methods as well as the length of the production run, the number of finished products to be produced, molds for plastics processing must satisfy a great variety of requirements. It is therefore not surprising that molds can be made from a very broad spectrum of materials, including-from a technical standpoint-such exotic materials as paper matched and plaster. However, because most processes require high pressures, often combined with high temperatures, metals still represent by far the most important material group, with steel being the predominant metal. It is interesting in this regard that, in many cases, the selection of the mold material is not only a question of material properties and an optimum price-to-performance ratio but also that the methods used to produce the mold, and thus the entire design, can be influenced.A typical example can be seen in the choice between cast metal molds, with their very different cooling systems, compared to machined molds. In addition, the production technique can also have an effect; for instance, it is often reported that, for the sake of simplicity, a prototype mold is frequently machined from solid stock with the aid of the latest technology such as computer-aided (CAD) and computer-integrated manufacturing (CIM S). In contrast to the previously used methods based on the use of patterns, the use of CAD and CAM often represents the more economical solution today, not only because this production capability is available pin-house but also because with any other technique an order would have to be placed with an outside supplier.Overall, although high-grade materials are often used, as a rule standard materials are used in mold making. New, state-of-the art (high-performance) materials, such as ceramics, for instance, are almost completely absent. This may be related to the fact that their desirable characteristics, such as constant properties up to very high temperatures, are not required on molds, whereas their negative characteristics, e. g. low tensile strength and poor thermal conductivity, have a clearly related to ceramics, such as sintered material, is found in mild making only to a limited degree. This refers less to the modern materials and components produced by powder metallurgy, and possibly by hot isocratic pressing, than to sintered metals in the sense of porous, air-permeable materials.Removal of air from the cavity of a mold is necessary with many different processing methods, and it has been proposed many times that this can be accomplished using porous metallic materials. The advantages over specially fabricated venting devices, particularly in areas where melt flow fronts meet, I, e, at weld lines, are as obvious as the potential problem areas: on one hand, preventing the texture of such surfaces from becoming visible on the finished product, and on the other hand, preventing the microspores from quickly becoming clogged with residues (broken off flash, deposits from the molding material, so-called plate out, etc.). It is also interesting in this case that completely new possibilities with regard to mold design and processing technique result from the use of such materials.A. Design rulesThere are many rules for designing molds. These rules and standard practices are based on logic, past experience, convenience, and economy. For designing, mold making, and molding, it is usually of advantage to follow the rules. But occasionally, it may work out better if a rule is ignored and an alternative way is selected. In this text, the most common rules are noted, but the designer will learn only from experience which way to go. The designer must ever be open to new ideas and methods, to new molding and mold materials that may affect these rules.B. The basic mold1. Mold cavity spaceThe mold cavity space is a shape inside the mold, “excavated” in such a manner that when the molding material is forced into this space it will take on the shape of the cavity space and, therefore, the desired product. The principle of a mold is almost as old as human civilization. Molds have metals into sand forms. Such molds, which are still used today in foundries, can be used only once because the mold is destroyed to release the product after it has solidified. Today, we are looking for permanent molds that can be used over and over. Now molds are made from strong, durable materials, such as steel, or from softer aluminum or metal alloys and even from certain plastics where a long mold life is not required because the planned production is small. In injection molding the plastic is injected into the cavity space with high pressure, so the mold must be strong enough to resist the injection pressure without deforming.2. Number of cavitiesMany molds, particularly molds for larger products, are built for only cavity space, but many molds, especially large production molds, are built with 2 or more cavities. The reason for this is purely economical. It takes only little more time to inject several cavities than to inject one. For example, a 4-cavity mold requires only one-fourth of the machine time of asingle-cavity mold. Conversely, the production increases in proportion to the number of cavities. A mold with more cavities is more expensive to build than a single-cavity mold, but not necessarily 4 times as much as a single-cavity mold. But it may also require a larger machine with larger platen area and more clamping capacity, and because it will use 4 times the amount of plastic, it may need a large injection unit, so the machine hour cost will be higher than for a machine large enough for the smaller mold.3. Cavity shape and shrinkageThe shape of the cavity is essenti ally the “negative” of the shape of the desired product, with dimensional allowance added to allow for shrinking of the plastic. The shape of the cavity is usually created with chip-removing machine tools, or with electric discharge machining, with chemical etching, or by any new method that may be available to remove metal or build it up, such as galvanic processes. It may also be created by casting certain metals in plaster molds created from models of the product to be made, or by casting some suitable hard plastics. The cavity shape can be either cut directly into the mold plates or formed by putting inserts into the plates.C. Cavity and coreBy convention, the hollow portion of the cavity space is called the cavity. The matching, often raised portion of the cavity space is called the core. Most plastic products are cup-shaped. This does not mean that they look like a cup, but they do have an inside and an outside. The outside of the product is formed by the cavity, the inside by the core. The alternative to the cup shape is the flat shape. In this case, there is no specific convex portion, and sometimes, the core looks like a mirror image of the cavity. Typical examples for this are plastic knives, game chips, or round disks such as records. While these items are simple in appearance, they often present serious molding problems for ejection of the product. The reason for this is that all injection molding machines provide an ejection mechanism on the moving platen and the products tend to shrink onto and cling to the core, from where they are then ejected. Most injection molding machines do not provide ejection mechanisms on the injection side.Polymer ProcessingPolymer processing, in its most general context, involves the transformation of a solid (sometimes liquid) polymeric resin, which is in a random form (e.g., powder, pellets, beads), to a solid plastics product of specified shape, dimensions, and properties. This is achieved by means of a transformation process: extrusion, molding, calendaring, coating, thermoforming, etc. The process, in order to achieve the above objective, usually involves the following operations: solid transport, compression, heating, melting, mixing, shaping, cooling,solidification, and finishing. Obviously, these operations do not necessarily occur in sequence, and many of them take place simultaneously.Shaping is required in order to impart to the material the desired geometry and dimensions. It involves combinations of viscoelastic deformations and heat transfer, which are generally associated with solidification of the product from the melt.Shaping includes: two-dimensional operations, e.g. die forming, calendaring and coating; three-dimensional molding and forming operations. Two-dimensional processes are either of the continuous, steady state type (e.g. film and sheet extrusion, wire coating, paper and sheet coating, calendaring, fiber spinning, pipe and profile extrusion, etc.) or intermittent as in the case of extrusions associated with intermittent extrusion blow molding. Generally, molding operations are intermittent, and, thus, they tend to involve unsteady state conditions. Thermoforming, vacuum forming, and similar processes may be considered as secondary shaping operations, since they usually involve the reshaping of an already shaped form. In some cases, like blow molding, the process involves primary shaping (pair-son formation) and secondary shaping (pair son inflation).Shaping operations involve simultaneous or staggered fluid flow and heat transfer. In two-dimensional processes, solidification usually follows the shaping process, whereas solidification and shaping tend to take place simultaneously inside the mold in three dimensional processes. Flow regimes, depending on the nature of the material, the equipment, and the processing conditions, usually involve combinations of shear, extensional, and squeezing flows in conjunction with enclosed (contained) or free surface flows.The thermo-mechanical history experienced by the polymer during flow and solidification results in the development of microstructure (morphology, crystallinity, and orientation distributions) in the manufactured article. The ultimate properties of the article are closely related to the microstructure. Therefore, the control of the process and product quality must be based on an understanding of the interactions between resin properties, equipment design, operating conditions, thermo-mechanical history, microstructure, and ultimate product properties. Mathematical modeling and computer simulation have been employed to obtain an understanding of these interactions. Such an approach has gained more importance in view of the expanding utilization of computer design/computer assisted manufacturing/computer aided engineering (CAD/CAM/CAE) systems in conjunction with plastics processing.It will emphasize recent developments relating to the analysis and simulation of some important commercial process, with due consideration to elucidation of both thermo-mechanical history and microstructure development.As mentioned above, shaping operations involve combinations of fluid flow and heattransfer, with phase change, of a visco-elastic polymer melt. Both steady and unsteady state processes are encountered. A scientific analysis of operations of this type requires solving the relevant equations of continuity, motion, and energy (I. e. conservation equations).Injection MoldingMany different processes are used to transform plastic granules, powders, and liquids into final product. The plastic material is in moldable form, and is adaptable to various forming methods. In most cases thermoplastic materials are suitable for certain processes while thermosetting materials require other methods of forming. This is recognized by the fact that thermoplastics are usually heated to a soft state and then reshaped before cooling. Theromosets, on the other hand have not yet been polymerized before processing, and the chemical reaction takes place during the process, usually through heat, a catalyst, or pressure. It is important to remember this concept while studying the plastics manufacturing processes and the polymers used.Injection molding is by far the most widely used process of forming thermoplastic materials. It is also one of the oldest. Currently injection molding accounts for 30% of all plastics resin consumption. Since raw material can be converted by a single procedure, injection molding is suitable for mass production of plastics articles and automated one-step production of complex geometries. In most cases, finishing is not necessary. Typical products include toys, automotive parts, household articles, and consumer electronics goods,Since injection molding has a number of interdependent variables, it is a process of considerable complexity. The success of the injection molding operation is dependent not only in the proper setup of the machine variables, but also on eliminating shot-to-shot variations that are caused by the machine hydraulics, barrel temperature variations, and changes in material viscosity. Increasing shot-to-shot repeatability of machine variables helps produce parts with tighter tolerance, lowers the level of rejects, and increases product quality ( i.e., appearance and serviceability).The principal objective of any molding operation is the manufacture of products: to a specific quality level, in the shortest time, and using a repeatable and fully automatic cycle. Molders strive to reduce or eliminate rejected parts, or parts with a high added value such as appliance cases, the payoff of reduced rejects is high.A typical injection molding cycle or sequence consists of five phases:1 Injection or mold filling2 Packing or compression3 Holding4 Cooling5 Part ejectionInjection Molding OverviewProcessInjection molding is a cyclic process of forming plastic into a desired shape by forcingthe material under pressure into a cavity. The shaping is achieved by cooling (thermoplastics) or by a chemical reaction (thermosets). It is one of the most commonand versatile operations for mass production of complex plastics parts with excellent dimensional tolerance. It requires minimal or no finishing or assembly operations. In addition to thermoplastics and thermosets, the process is being extended to suchmaterials as fibers, ceramics, and powdered metals, with polymers as binders.ApplicationsApproximately 32 percent by weight of all plastics processed go through injection molding machines. Historically, the major milestones of injection molding include the invention of the reciprocating screw machine and various new alternative processes, and the application of computersimulation to the design and manufacture of plastics parts.Development of the injection molding machineSince its introduction in the early 1870s, the injection molding machine has undergone significantmodifications and improvements. In particular, the invention of the reciprocating screw machine hasrevolutionized the versatility and productivity of the thermoplastic injection molding process.Benefits of the reciprocating screwApart from obvious improvements in machine control and machine functions, the major development for the injection molding machine is the change from a plunger mechanism to a reciprocating screw. Although the plunger-type machine is inherently simple, its popularity waslimited due to the slow heating rate through pure conduction only. The reciprocating screw canplasticize the material more quickly and uniformly with its rotating motion, as shown in Figure 1. Inaddition, it is able to inject the molten polymer in a forward direction, as a plunger.Development of the injection molding processThe injection molding process was first used only with thermoplastic polymers. Advances in theunderstanding of materials, improvements in molding equipment, and the needs of specific industrysegments have expanded the use of the process to areas beyond its original scope. Alternative injection molding processesDuring the past two decades, numerous attempts have been made to develop injection moldingprocesses to produce parts with special design features and properties. Alternative processes derivedfrom conventional injection molding have created a new era for additional applications, more designfreedom, and special structural features. These efforts have resulted in a number of processes,including:Co-injection (sandwich) moldingFusible core injection molding)Gas-assisted injection moldingInjection-compression moldingLamellar (microlayer) injection moldinLive-feed injection moldingLow-pressure injection moldingPush-pull injection moldingReactive moldingStructural foam injection moldingThin-wall moldingComputer simulation of injection molding processesBecause of these extensions and their promising future, computer simulation of the process has alsoexpanded beyond the early "lay-flat," empirical cavity-filling estimates. Now, complex programs simulate post-filling behavior, reaction kinetics, and the use of two materials with different properties, or two distinct phases, during the process.The Simulation section provides information on using C-MOLD products.Among the Design topicsare several examples that illustrate how you can use CAE tools to improve your part and molddesign and optimize processing conditions.Co-injection (sandwich) moldingOverviewCo-injection molding involves sequential or concurrent injection of two different but compatible polymer melts into a cavity. The materials laminate and solidify. This process produces parts that have a laminated structure, with the core material embedded betweenthe layers of the skin material. This innovative process offers the inherent flexibility ofusing the optimal properties of each material or modifying the properties of the molded part.FIGURE 1. Four stages of co-injection molding. (a) Short shot of skin polymer melt (shown in dark green)is injected into the mold. (b) Injection of core polymer melt until cavity is nearly filled, as shown in (c). (d)Skin polymer is injected again, to purge the core polymer away from the sprue.Fusible core injection moldingOverviewThe fusible (lost, soluble) core injection molding process illustrated below producessingle-piece, hollow parts with complex internal geometry. This process molds a coreinside the plastic part. After the molding, the core will be physically melted or chemically dissolved, leaving its outer geometry as the internal shape of the plastic part.FIGURE 1. Fusible (lost, soluble) core injection moldingGas-assisted injection moldingGas-assisted processThe gas-assisted injection molding process begins with a partial or full injection ofpolymer melt into the mold cavity. Compressed gas is then injected into the core of the polymer melt to help fill and pack the mold. This process is illustrated below.FIGURE 1. Gas-assisted injection molding: (a) the electrical system, (b) the hydraulic system, (c) the control panel, and (d) the gas cylinder.Injection-compression moldingOverviewThe injection-compression molding process is an extension of conventional injection molding. After a pre-set amount of polymer melt is fed into an open cavity, it is compressed, as shown below. The compression can also take place when the polymer isto be injected. The primary advantage of this process is the ability to produce dimensionally stable, relatively stress-free parts, at a low clamp tonnage (typically 20 to 50 percent lower).Lamellar (microlayer) injection moldingOverviewThis process uses a feedblock and layer multipliers to combine melt streams from dual injection cylinders. It produces parts from multiple resins in distinct microlayers, as shown in Figure 1 below. Combining different resins in a layered structure enhances a number of properties, such as the gas barrier property, dimensional stability, heat resistance, and optical clarity.Live-feed injection moldingOverviewThe live-feed injection molding process applies oscillating pressure at multiple polymer entrances to cause the melt to oscillate, as shown in the illustration below. The action of the pistons keeps the material in the gates molten while different layers of molecular or fiber orientation are being built up in the mold due to solidification. This process provides a means of making simple or complex parts that are free from voids, cracks, sink marks, and weld-line defects.Low-pressure injection moldingOverviewLow-pressure injection molding is essentially an optimized extension of conventional injection molding (see Figure 1). Low pressure can be achieved by properly programming the screw revolutions per minute, hydraulic back pressure, and screw speed to controlthe melt temperature and the injection speed. It also makes use of a generous gate size ora n reduce umber of valve gates that open and close sequentially to reduce the flow length. Thepacking stage is eliminated with a generally slow and controlled injection speed. The benefits of low-pressure injection molding include a reduction of the clamp force tonnage requirement, less costly molds and presses, and lower stress in the molded parts.Push-pull injection moldingOverviewThe push-pull injection molding process uses a conventional twin-component injection system and a two-gate mold to force material to flow back and forth between a master injection unit and a secondary injection unit, as shown below. This process eliminatesweld lines, voids, and cracks, and controls the fiber orientation.Reactive moldingProcessingMajor reactive molding processes include reactive injection molding (RIM), and composites processing, such as resin transfer molding (RTM) and structural reactive injection molding (SRIM).The typically low viscosity of the reactive materials permits large and complex parts to be moldedwith relatively lower pressure and clamp tonnage than required for thermoplastics molding. relatively For example, to make high-strength and low-volume large parts, RTM and SRIM can be used to include a preform made of long fibers. Another area that is receiving more attention than ever before is the encapsulation of microelectronic IC chips.The adaptation of injection molding to these materials includes only a small increase in temperature in the feed mechanism (barrel) to avoid pre-curing. The cavity, however, is usually hot enough to initiate chemical cross-linking. As the warm pre-polymer is forced into the cavity, heat is added from the cavity wall, from viscous (frictional) heating of the flow, and from the heat released by the reacting components. The temperature of the part often exceeds the temperature of the mold. When the reaction is sufficiently advanced for the part to be rigid (even at a high temperature) the cycle is complete and the part is ejected.Design considerationsThe mold and process design for injection molding of reactive materials is much more complexbecause of the chemical reaction that takes place during the filling and post-filling stages. For instance, slow filling often causes premature gelling and a resultant short shot, while fast fillingcould induce turbulent flow that creates internal porosity. Improper control of mold-wall temperature and/or inadequate part thickness will either give rise to moldability problems duringinjection, or cause scorching of the materials. Computer simulation is generally recognized as amore cost-effective tool than the conventional, time-consuming trial-and-error method for tool andprocess debugging.Structural foam injection moldingOverviewStructural foam molding produces parts consisting of solid external skin surfaces surrounding an inner cellular (or foam) core, as illustrated in Figure 1 below. This processis suitable for large, thick parts that are subject to bending loads in their end-use application. Structural foam parts can be produced with both low and high pressure, withnitrogen gas or chemical blowing agents.Thin-wall moldingOverviewThe term "thin-wall" is relative. Conventional plastic parts are typically 2 to 4 mm thick. Thin-wall designs are called "advanced" when thicknesses range from 1.2 to 2 mm, and "leading-edge" when the dimension is below 1.2 mm. Another definition of thin-wall molding is based on the flow-length-to-wall-thickness ratios. Typical ratios for thesethin-wall applications range from 100:1 to 150:1 or more.Typical applicationsThin-wall molding is more popular in portable communication and computing equipment, whichdemand plastic shells that are much thinner yet still provide the same mechanical strength as conventional parts.ProcessingBecause thin-wall parts freeze off quickly, they require high melt temperatures, high injectio speeds, and very high injection pressures if multiple gates or sequential valve gating are not an optimized ram-speed profile helps to reduce the pressure requirement.Due to the high velocity and shear rate in thin-wall molding, orientation occurs more readily help minimize anisotropic shrinkage in thin-wall parts, it is important to pack the part adequately while the core is still molten.Injection molding machineComponentsFor thermoplastics, the injection molding machine converts granular or pelleted rawplastic into final molded parts via a melt, inject, pack, and cool cycle. A typical injection molding machine consists of the following major components, as illustrated in Figure 1 below.Machine functionInjection molding machines can be generally classified into three categories, based on machinefunction:General-purpose machinesPrecision, tight-tolerance machinesHigh-speed, thin-wall machinesAuxiliary equipmentThe major equipment auxiliary to an injection molding machine includes resin dryers, materials-handling equipment, granulators, mold-temperature controllers and chillers, part-removal robots, and part-handling equipment.中文翻译注塑模设计模具简介模具型腔可赋予制品其形状,因此在塑料加工过程中模具处于非常重要的地位,这使得模具对于产品最终质量的影响与塑化机构和其他成型设备的部件一样关键,有时甚至更重要。

注塑模具设计技术中英文对照外文翻译文献

注塑模具设计技术中英文对照外文翻译文献

中英文资料对照外文翻译英文:Design and Technology of the Injection Mold1、3D solid model to replace the center layer modelThe traditional injection molding simulation software based on products of the center layer model. The user must first be thin-walled plastic products abstract into approximate plane and curved surface, the surface is called the center layer. In the center layer to generate two-dimensional planar triangular meshes, the use of these two-dimensional triangular mesh finite element method, and the final result of the analysis in the surface display. Injection product model using3D solid model, the two models are inconsistent, two modeling inevitable. But because of injection molding product shape is complex and diverse, the myriads of changes from athree-dimensional entity, abstraction of the center layer is a very difficult job, extraction process is very cumbersome and time-consuming, so the design of simulation software have fear of difficulty, it has become widely used in injection molding simulation software the bottleneck.HSCAE3D is largely accepted3D solid / surface model of the STL file format. Now the mainstream CAD/CAM system, such as UG, Pro/ENGINEER, CATIA and SolidWorks, can output high quality STL format file. That is to say, the user can use any commercial CAD/CAE systems to generate the desired products3D geometric model of the STL format file, HSCAE3D can automatically add the STL file into a finite element mesh model, through the surface matching and introduction of a new boundary conditions to ensure coordination of corresponding surface flow, based on3D solid model of analysis, and display of three-dimensional analysis results, replacing the center layer simulation technology to abstract the center layer, and then generate mesh this complicated steps, broke through system simulation application bottlenecks, greatly reducing the burden of user modeling, reduces the technical requirement of the user, the user training time from the past few weeks shorter for a fewhours. Figure 1 is based on the central layer model and surface model based on 3D solid / flow analysis simulation comparison chart.2、Finite element, finite difference, the control volume methodsInjection molding products are thin products, products in the thickness direction of size is much smaller than the other two dimensions, temperature and other physical quantities in the thickness direction of the change is very large, if the use of a simple finite element and finite difference method will cause analysis time is too long, can not meet the actual needs of mold design and manufacturing. We in the flow plane by using finite element method, the thickness direction by using finite difference method, were established and plane flow and thickness directions corresponding to the size of the grid and coupling, while the accuracy is guaranteed under the premise of the calculation speed to meet the need of engineering application, and using the control volume method is solved. The moving boundary problem in. For internal and external correspondence surface differences between products, can be divided into two parts the volume, and respectively formed the control equation, the junction of interpolation to ensure thatthe two part harmony contrast.3、Numerical analysis and artificial intelligence technologyOptimization of injection molding process parameters has been overwhelming majority of mold design staff concerns, the traditional CAE software while in computer simulation of a designated under the conditions of the injection molding conditions, but is unable to automatically optimize the technical parameters. Using CAE software personnel must be set to different process conditions were multiple CAE analysis, combined with practical experience in the program were compared between, can get satisfactory process scheme. At the same time, the parts after the CAE analysis, the system will generate a large amount of information about the project ( product, process, analyzes the results ), which often results in a variety of data form, requiring the user to have the analysis and understanding of the results of CAE analysis ability, so the traditional CAE software is a kind of passive computational tools, can provide users with intuitionistic, effective engineering conclusion, to software users demand is too high, the influence of CAE system in the larger scope of application and popularization. In view of the above, HSCAE3D software in the original CAE system based on accurate calculationfunction, the knowledge engineering technology is introduced the system development, the use of artificial intelligence is the ability of thinking and reasoning, instead of the user to complete a large number of information analysis and processing work, directly provide guiding significance for the process of conclusions and recommendations, effectively solve the CAE of the complexity of the system and the requirements of the users of the contradiction between, shortening of the CAE system and the distance between the user, the simulation software by traditional " passive" computational tools to " active" optimization system. HSCAE3D system artificial intelligence technology will be applied to the initial design, the results of the analysis of CAE interpretation and evaluation, improvement and optimization analysis of3 aspects.译文:注塑模具设计的技术1.用三维实体模型取代中心层模型传统的注塑成形仿真软件基于制品的中心层模型。

注射注塑模具外文翻译外文文献翻译、中英文翻译、外文翻译

注射注塑模具外文翻译外文文献翻译、中英文翻译、外文翻译

外文资料翻译系部:专业:姓名:学号:外文出处:dvanced English literacy course(用外文写)附件:指导老师评语签名:年月日第一篇译文(中文)2.3注射模2.3.1注射模塑注塑主要用于热塑性制件的生产,它也是最古老的塑料成型方式之一。

目前,注塑占所有塑料树脂消费的30%。

典型的注塑产品主要有杯子器具、容器、机架、工具手柄、旋钮(球形捏手)、电器和通讯部件(如电话接收器),玩具和铅管制造装置。

聚合物熔体因其较高的分子质量而具有很高的粘性;它们不能像金属一样在重力流的作用下直接被倒入模具中,而是需要在高压的作用下强行注入模具中。

因此当一个金属铸件的机械性能主要由模壁热传递的速率决定,这决定了最终铸件的晶粒度和纤维取向,也决定了注塑时熔体注入时的高压产生强大的剪切力是物料中分子取向的主要决定力量。

由此所知,成品的机械性能主要受注射条件和在模具中的冷却条件影响。

注塑已经被应用于热塑性塑料和热固性塑料、泡沫部分,而且也已经被改良用于生产反应注塑过程,在此过程中,一个热固树脂系统的两个组成部分在模具中同时被注射填充,然后迅速聚合。

然而大多数注塑被用热塑性塑料上,接下来的讨论就集中在这样的模具上。

典型的注塑周期或流程包括五个阶段(见图2-1):(1)注射或模具填充;(2)填充或压紧;(3)定型;(4)冷却;(5)零件顶出。

图2-1 注塑流程塑料芯块(或粉末)被装入进料斗,穿过一条在注射料筒中通过旋转螺杆的作用下塑料芯块(或粉末)被向前推进的通道。

螺杆的旋转迫使这些芯块在高压下对抗使它们受热融化的料筒加热壁。

加热温度在265至500华氏度之间。

随着压力增强,旋转螺杆被推向后压直到积累了足够的塑料能够发射。

注射活塞迫使熔融塑料从料筒,通过喷嘴、浇口和流道系统,最后进入模具型腔。

在注塑过程中,模具型腔被完全充满。

当塑料接触冰冷的模具表面,便迅速固化形成表层。

由于型芯还处于熔融状态,塑料流经型芯来完成模具的填充。

注塑成型过程外文文献翻译、中英文翻译

注塑成型过程外文文献翻译、中英文翻译

附录 1:外文翻译介绍如今塑料在日常生活中占据着极其重要的地位。

如果我们说,没有哪个领域的塑料没有不经过制造中直接到宇宙飞船的生产中,这一点也不夸张。

在19 世纪中叶,塑料开始在材料和生活中起主导作用。

耐腐蚀性是塑料甚至成为金属和提高制造生产率方面受到了很高的关注。

从塑料的紧缺,因此在塑料产品设计等各个方面发生巨大的变革,在制造加工领域还在测试阶段,现在,由于很多人最后通过体力劳动取得了卓越的成效,另外人工智能的帮助下,开发出了CAD / CAM 软件。

由于高强度的重量比,提高了化学稳定性和耐温性,具有耐热和耐腐蚀的特性,光泽性使其成为材料更好的选择。

塑料在形成过程中消耗的能量更少,并且可以被循环利用。

今天,塑料正在取代黄铜、铜、铸铁、钢铁等金属。

塑料可以根据制造方法分类,在加热时软化,在冷却时凝固。

这些被称为“热塑性塑料”,以及那些由于化学变化而变硬的物质。

这些被称为热固性或混合型塑料材料成为产品选择特殊材料是另一个重要因素。

这对于产品的确定是非常必要的。

它也应该能够承受压力。

每种材料都有自己的属性。

一些材料在高环境和耐磨性方面比较好。

困难的是找到一种合适材料,它将完全满足整个要求。

所以材料应该是通用的,它适合我们产品的所有考虑条件和要求。

在考虑了所有这些点的材料之后,必须选择合适的材料来满足所有这些条件。

注塑成型过程它是一种通过将熔融状态的物质注入模具来生产零件的生产工艺。

注射成型被用在很多领域进行生产,包括金属、眼镜、弹性体、糖果以及最常见的热塑性塑料和热固性塑料。

将材料的一部分送入一个加热的桶,混合,并用高压压入一个模腔,它是可以冷却和硬化地方。

在产品设计后,通常由工业设计师或工程师设计模具,模具由模具制造商(或工具制造商)制造,通常由金属或铝制成,并经过精密加工以形成所需的特性。

注塑成型广泛应用于制造各种零件,从最小的零件到汽车的整个车身。

零件的形状和特点、模具的所需材料,以及造型机的性能都必须考虑在内。

中英文翻译模板-注射成型技术以及住塑优化经典资料

中英文翻译模板-注射成型技术以及住塑优化经典资料

Injection mold design and the new-type injekt by shaping technologeThe plastic injection mold is in the present all plastics mold,uses the broadest mold, can take shape the complex high accuracy,plastic product. Under only is sketchily introduces.The design plastic injection mold first must have the certain,understanding to the plastic, the plastic principal constituent is a polymer. Like we often said the ABS plastic then is the propylene nitrile, the pyprolylene, the styrene three kind of monomers uses the emulsion, the main body or aerosol gathers the legitimate production,enable it to have three kind of monomers the high performance and may the compression molding, injects under the certain temperature and the pressure to the mold cavity, has the flow distortion, the obtaining cavity shape, after guarantees presses cooling to go against becomes the plastic product. The polymer member assumes the chain shape structure generally, the linear molecule chain and a chain molecule thought is the thermoplastic, may heat up the cooling processing repeatedly, but passes through heats up many members to occur hands over the association response, including forms netted the build molecular structure plastic usually is this, cannot duplicate injects the processing, also is the thermosetting plastics which said.Since is the chain shape structure, that plastic when processing contracts the direction also is with the polymer molecular chain under the stress function the orientation and the cooling contraction related, must be more than in the flow direction contraction its vertical direction in contraction. The product contraction also with the product shape, therunner, the temperature,guarantees presses factor and so on time and internal stress concerns.In the usual book provides the shrinkage scope is broad, considers is product wall thickness, the structure and the determination casts the temperature pressure size when the practical application and the orientation. The common product if does not have the core strut, the contraction correspondingly wants big. The plastic casts the mold basically to divide into the static mold and to move the mold. Injection Molding . Injection molding is principally used for the production of thermolplastic part ,although some progress has been made in developing a method for injection molding some thermosetting materials .The problem of injecting a melted plastic into a mold cavity from a reservoir of melted material has been extremely difficult to solve for thermosetting plastics which cure and harden under such conditions within a few minutes 。

全英文注塑资料注塑机结构,动作,成型工艺标准

全英文注塑资料注塑机结构,动作,成型工艺标准

The question of testing mould1. IntroductionInjection moulding without rejects is the ideal moulders try to attain. This article describes two auxiliary devices that could increase the repeatability of an injection moulding machine. Once the optimum parameters are set, the physical dimensions, weight and other physical properties of the part will stay almost constant. The two devices do clamping force measurement/control and cavity pressure switchover to holding pressure.For injection moulding of high precision optical parts, or parts with a high added value like appliance cases, the payoff of reduced rejects is high. Figure 1 shows the part weight distribution of quality moulding and suboptimal moulding. The nominal weight is 60 g, allowable deviation is +0.1 g and -0.05 g. The white cubes denote parts within the tolerance band.Figure 1. Quality injection moulding and otherwise2. Clamping force measurement/controlThe clamping mechanism of injection moulding machines falls mainly into two categories: toggle and direct hydraulic. The former is more widely used; the latter has the property of automatic clamping force regulation. As a result, direct hydraulic clamp machine do not need clamping force measurement/control.2.1 Toggle clampA 5-point double toggle clamp is shown in Figure 2. After amplification by the toggle mechanism, the clamping cylinder, attached to the tail platen, extends, pushing the moving platen to lock the mould halvestogether. We will investigate in various ways how the clamping force is generated.Figure 2. The 5-point double toggles2.2 Clamping forceAt its simplest, the rated clamping force F o is calculated according to the following formula.F o = P s * A * M ------------------------------------------- (1)whereP s = system pressure,A = clamping cylinder cross sectional area,M = mechanical advantage of the toggles.In most machines, M has a value of between 22 and 30. It is a function of the toggle dimensions and the stiffness of the toggles and tiebars.2.3 Rated clamping force and adequate clamping forceThe clamping force found in the specification table of an injection moulding machine is the rated clamping force F o. By considering the various design parameters, the machine designer calculates it using formula (1).In using an injection moulding machine, it is best to use the minimal but adequate clamping force F. An adequate clamping force holds the mould halves together against the cavity pressure during the injection phase. An excessive clamping force distorts the mould and the mould cavity unnecessarily, affecting the precision of the moulded part. Furthermore, a high clamping force compresses the toggles and the mould, and stretches the tiebars, reducing the fatigue lives of the toggle pins, the mould and the tiebars.2.4 Clamping force problem and solutionThe problem with toggle clamped injection moulding machines is with only the hydraulic pressure meter available there is no way to set an accurate clamping force when the mould is installed and to maintain itconstant during injection. As the mould heats up, it expands, increasing the clamping force. The solution is to attach a device to measure the clamping force and to control the clamping force to within a tolerance as mould temperature changes.For the engineers, the following sections details how clamping force is generated. They also relate to the second device: switchover to holding pressure by cavity pressure measurement.2.5 Mould height adjustment mechanismSince not all moulds have the same mould height, a toggle clamped injection moulding machine has a mould height adjustment mechanism for that purpose. Basically, the tail platen is moved forward or backward so that with the toggles almost fully extended (> 0) the mould halves just touch each other. At this time, the clamping force is zero. See Figure 3a.To generate maximum clamping force (clamping force > 0) and to self lock, the toggles are fully extended (= 0). This is done by extending the clamping stroke further and through the toggles, moves the moving platen forward by a m, which is the amount by which the mould is compressed. At the same time, the tiebars, attached between the stationary and tail platens, are elongated by a t. See Figure 3b. Selflocking means even when the hydraulic pressure in the clamping cylinder is relieved, the clamping force is maintained. This could only be achieved when the toggles are fully extended.Figure 3. Generation of clamping force2.6 Revisiting clamping forceAssume the mould and the tiebars are in the elastic region at the rated clamping force. Their respective compression and elongation could be analysed using Figure 4.In Figure 4a, at the adequate clamping force F, the mould is compressed by a m and the tiebars elongated by a t. Since the tiebars are long and thin, they are more flexible than the mould. Hence, the tiebars line is shallower. Technically speaking, K t = tan t < K m = tan m. As an example, with clamping force measured in tonnes andelongation/compression measured in microns (1 micron = 0.001 mm), aninjection moulding machine with 60 mm diameter tiebars has t = 9.2o, a 300mm thick, 170 mm square steel mould has m = 64o. To facilitate the following analysis, the mould compression line is moved right to intersect the tiebars elongation line at F. See Figure 4b.Figure 4. Clamping force analysisWhen the melt is injected into the mould cavity, the clamping force is increased to F1. See Equation (2). In practice, this increase in clamping force could be observed by a clamping force measuring device. See Figure 5.Figure 5. The effect of cavity pressure on clamping force Figure 6 shows the free-body diagram of the mould halves with cavity pressure introduced. Each mould half is balanced by the force equilibriumF1 = F c + F r ---------------------------------------------- (2)whereF c = cavity pressure force,F r = residual clamping force on the mould.Figure 6. Free body diagram of mould halvesThe cavity pressure force F c offsets part of the clamping force F1, leaving only F1 - F c to compress the mould. As a result, the mould compression is reduced from a m to a m'. The difference is taken up by the tiebars elongating more from a t to a t', increasing the clamping force to F1. See Figure 7.The mould opening force F c due to cavity pressure is seen between the tiebars line and the mould line. This is the graphical way of showing equation (2).Figure 7. Adding cavity pressureFrom Figures 3 and 7, one can see that the distance between the moving platen and the stationary platen is increased (by a m - a m') during injection. In practice, this could be measured by a dial gauge between the platens. In the extreme case when the cavity pressure is so high that the residual clamping force is reduced to zero, the mould opens and flashing occurs.At this point, the mould compression is zero, and cavity pressure force F c = F2, the clamping force when flashing occurs. See the dashed line in Figure 7.As an example, take F = 75 tonnes, the rated clamping force of Tat Ming ME75 III. For a 300 mm thick, 170 mm square steel mould, a m = 0.037 mm. With such a mould mounted, the ME75 III toggle clamp will open at F2 = 81 tonnes, 6 tonnes above its rating. Everything else equal, an injection moulding machine with 50 mm diameter tiebars will open at F2 =78 tonnes, 3 tonnes above its rating.As the mould heats up, it expands. The clamping force is increased as the mechanical interference is increased by the amount of the mould expansion. This is shown in Figure 8 in which the mould line is moved further right by the expansion, intersecting the tiebars line at a higher clamping force F". In this diagram, the tiebars are elongated more (a t" - a t ) and generated the additional clamping force F" - F.To restore the clamping force, a mould height adjustment is made to restore the mould (now hot) compression to a m before the next shot is injected. Such adjustment is clamping force control.As an example, a 300 mm thick steel mould heated up by 10o C expands by 0.045 mm. On the ME75 III injection moulding machine, the increasein clamping force is 7.3 tonnes, which is almost 10% of the rated clamping force.Figure 8. Mould expansion increases clamping force2.7 No problems with hydraulic clampFor the sake of comparison, let us do a similar analysis for a hydraulic clamp machine.The adequate clamping force isF = P * A -------------------------------------------------- (3)whereP = the clamping pressure,A = the clamping cylinder cross sectional area.Clamping force is easily set as it is proportional to P, which, nowadays, is set through a proportional pressure valve. Mould height adjustment isdone by extending or retracting the clamping cylinder rod to accommodate different mould heights. When the mould heats up and expands, it simple pushes the clamping cylinder rod back into the cylinder, but does not increase clamping force. In other words, the clamping mechanism has the automatic regulation property. Clamping force measurement and control is not necessary.2.8 The clamping force measuring deviceSince fast response is not needed, a strain gauge-based device is sufficient to measure and control clamping force. The simplest means is a strain gauge attached to the tail or stationary platen, which deflects under the clamping force.Alternatively, a strain gauge is attached to a tiebar which extends as the mould is locked. An assumption is made that the tiebars are evenly stretched which may not be true if the mould faces are not parallel, the mould cavity is not symmetrical or the tiebars are not balanced out of the factory.The strain gauge output is amplified and digitally displayed. The display is calibrated to read in tons. Such a device is sufficient to help the operator set up an adequate clamping force initially (during mould height adjustment). When for example a 5% deviation from the initialclamping force is detected (after the mould is closed but before injection), the operator could do a mould height adjustment to restore the clamping force to its original value.Alternatively, the computer in the injection moulding machine could set up the clamping force during the initial mould height adjustment, and to restore the clamping force by another mould height adjustment when a prescribed deviation is detected.3. InjectionThe injection of melt into the mould cavity is made up of three phases: the filling phase, the packing phase and the holding phase.The injection phases could be vividly illustrated using the cavity pressure curve. Figure 9 shows the ideal curve which is achieved when the switchover to holding pressure is optimum. The switchover is sometimes called velocity to pressure transfer, where velocity refers to injection velocity and pressure to holding pressure.Figure 9. Ideal cavity pressure curveThe filling phase starts at 1. In the filling phase, the melt is injected into the cavity at a certain velocity. At 2, the melt reaches the cavity pressure sensor. Due to the viscosity of the melt, pressure starts to rise. The cavity is volumetrically filled at 3. Further screw advance compresses the melt up to 4 when the machine switches from injection pressure to the much lower holding pressure. At the holding phase, the low holding pressure incrementally fills the cavity as the part cools to compensate for the shrinkage. At 5, the sprue gate is frozen and the holding pressure could be removed (and the mould could be opened). 1-2-3 makes up the filling phase. 3-4 is the packing phase. 4-5 is the holding phase. Further cooling occurs in 5-6.3.1 Overpacking and underpackingAn overpacked cavity pressure curve is shown in Figure 10b. It is characterized by a pressure peak in the packing phase. The pressure peak is caused by the delay in switchover to holding pressure, so the high injection pressure is still applied after volumetric filling. The pressure peak is relieved at the switchover to the lower holding pressure. Here lies an often overlooked cause of flashing which is easily detected if one has cavity pressure sensing.Figure 10. Underpacked and overpacked cavity curvesRefer to Equation (2) or Figure 7. The momentary cavity pressure peak could produce a momentary F c big enough to reduce the residual clamping force F r to zero, causing the mould to open and the part to flash. To remove the flashing, the straight forward thinking would be to increase the clamping force. Reaching the limit of the machine rated clamping force, one would even move the mould to a bigger machine. Even if the increased clamping force overcomes flashing, overpacking adds weight and stress to the part and makes the part more difficult to demould. An alternative is to reduce the injection pressure. Too low an injection pressure causes defects such as sink marks. In actuality, the problem is easily and better solved by switching over earlier to get back to the ideal cavity pressure curve. In precision injection moulding, overpacking creates a reject.An underpacked curve is shown in Figure 10a. It is characterized by a pressure dip in the packing phase. The switchover occurs too early,before the cavity is volumetrically filled. Part of the filling takes place at the lower holding pressure. Subsequently, the screw advance increases the pressure. The part has reduced dimensions, is underweight, has sink marks and surface marks. It is again a reject.A device that switches over at volumetric filling would avoid the problems of overpacking and underpacking and produces the ideal cavity pressure curve. Switching is initiated at point 3 and completed in point 4 in Figure 9.3.2 Methods of switchoverThe available means to switchover in a modern injection moulding machine, in increasing order of accuracy, are1. injection time,2. screw position,3. hydraulic pressure,4. nozzle pressure,5. cavity pressure.3.2.1 Injection time switchoverTemperature affects the viscosity of the melt, which presents resistance to the advance of the screw. Increased resistance slows down the screw and prevents the cavity from filling in the given injection time. On theother hand, reduced resistance would lead to overpacking. Injection time switchover is the only means available in injection moulding machines without screw position and pressure sensors.3.2.2 Screw position switchoverScrew position switchover is not affected by temperature nor viscosity. This is the preferred method in machines with screw position potentiometer. Like injection time switchover, screw position switchover could be considered open-loop as screw position is not a direct measure of volumetric filling. A leaky nozzle misleads the machine computer into switching over before the cavity is filled. So could a worn screw valve and a worn injection cylinder. Furthermore, if the screw diameter is large relative to (the cube root of) the mould cavity volume, variation of 0.1 mm could give an overpacked or underpacked fill. Despite its deficiencies, this is the most widely used switchover method in a modern injection moulding machine most probably because it is a standard (not optional) feature.3.2.3 Hydraulic pressure switchoverThe packing of the melt in the mould cavity has to be balanced by the hydraulic pressure driving the screw forward. A rise in the hydraulic pressure during injection could be used to signal the switchover. Due toa roughly 10:1 ratio between the twin injection cylinders and the screw cross sectional areas, the injection cylinder hydraulic pressure is less than the screw tip pressure by the same ratio. The pressure drop at the runners and sprue gate separates the cavity pressure from the screw tip pressure. The compressibility of the melt (between the cavity and the screw tip) delays the time the pressure is felt. As a result, hydraulic pressure is not an accurate detector of the volumetric filling point. However, hydraulic pressure switchover does have the advantage of the sensor working in a congenial environment (oil temperature below 50o C, oil pressure at system pressure (usually 140 bars)) and the sensing is independent of the mould (not attached to the mould). Hydraulic pressure sensor is usually an option in an modern injection moulding machine.Hydraulic pressure, nozzle pressure and cavity pressure sensing locations are shown in Figure 11.Figure 11. Hydraulic pressure sensor in the injection cylinder3.2.4 Nozzle pressure switchoverNozzle pressure is also called injection pressure, which is the pressure of the melt in the nozzle or at screw tip. Nozzle pressure switchover is improved over hydraulic pressure as the compressibility of the melt cushion is avoided. The environment is harsher (melt temperature below 400o C, melt pressure at 1400 bars, the melt could be corrosive/abrasive), and the sensor face must be flush with the barrel interior wall. This switchover method is not often used except in research.Figure 12. Nozzle pressure sensor3.2.5 Cavity pressure switchoverThe most accurate measure of volumetric filling is via cavity pressure. Two methods are in common use: direct and indirect. In direct cavity pressure measurement, a sensor in the mould senses the melt pressure in the cavity. Direct cavity pressure measurement is the more accurate of the two, but requires one to drill a hole at the mould for the sensor. Since it is inconvenient to remove the sensor, one needs to dedicate at least one sensor per mould. In a multicavity mould, cavity pressure measurement requires one sensor per cavity, increasing the sensor investment further.Figure 13. Direct cavity pressure sensorIn indirect pressure measurement, a force sensor is placed behind an ejector pin the other end of which is in contact with the melt. Cavity pressure could be calculated from force/ejector pin cross sectional area. The temperature at the sensor is much less than that of the melt. With indirect cavity pressure switchover, the sensor is not dedicated to the mould (mould independent), which comes in handy when mould changing is often. It also reduces the sensor investment. Due to the friction at the ejector pin, indirect cavity pressure sensing is less accurate than its direct cousin.Figure 14. Indirect cavity pressure sensorWhere the required quality on the surface of the moulded parts does not allow marks either by the sensor or the ejector pin, a strain sensor that measures mould deformation could be used. After calibration in a test mould (which has a cavity pressure sensor), it may be used for cavity pressure measurement in the production mould (which does not have a cavity pressure sensor but has the calibrated strain sensor).A device based on cavity pressure sensing could detect the volumetric filling point accurately. Switchover could be initiated by comparing the actual pressure with a set value equals to the cavity pressure at point 3 in Figure 9.Alternatively, Kistler has developed SmartAmp which detects the volumetric filling point. SmartAmp contains a charge amplifier for the quartz type cavity pressure sensor and a chip which uses the principles of artificial intelligence to detect the kink in the pressure curve at volumetric filling. Usually, the learning takes the first few shots.3.3 Monitoring the cavity pressure curveThe cavity pressure curve provides more information of the process in the cavity than can the nozzle pressure or hydraulic pressure curves. The nozzle pressure sensor is always surrounded by the melt and cannotmeasure the process pressure during the cooling period. Neither nozzle nor hydraulic pressure can detect the seal off point in Figure 9, the point when the mould could open. Determination of the seal off point reduces cycle time.Research has shown that that peak pressure and the area under the pressure curve affect thin wall and thick wall mouldings respectively in an important way.Figure 15 shows the overlapped cavity pressure curves of three shots of thin wall moulding like cups and covers. The deviation of peak pressure is found to be a good measure of the quality of the moulding and should be monitored for quality control purposes.Figure 15. Peak pressure is important in thin-wall moulding Figure 16 shows the overlapped cavity pressure curves of three shots of thick wall moulding like gear wheels. The deviation of area under the pressure curve is found to affect the dimensions of the moulding significantly and should be monitored for quality control purposes.Figure 16. Pressure curve area is important in thick-wall moulding AQCS (Automatic Quality Control System) is an instrument from Kistler could monitor peak pressure or area under the pressure curve as well as detecting the switchover point. Tat Ming ME III series of injection moulding machines support the interface to Kistler SmartAmp and AQCS.3.4 Reproducing the cavity pressure curveIf the ideal cavity pressure curve is reproduced every shot, the quality of the moulding is almost guaranteed. To do so, one has to find the ideal curve for the part, record it in the machine computer and ask the machine to reproduce it in subsequent shots. Note that melt temperature and mould temperature also affect the cavity pressure curve in an important way. They should also be held constant.A machine with such a capability has a responsive closed loop servo controlled injection unit. By measuring the actual cavity pressure and comparing it to the ideal, any deviation is minimized by controlling theinjection pressure and injection speed. Unlike the cavity pressure switchover device or AQCS, this capability is not that of an auxiliary device but is that of a new machine altogether. It is mentioned here to put the cavity pressure viewpoint in perspective.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文)外文资料翻译学生姓名:学号:专业:指导教师:学院:日期:外文资料翻译要求一、译文内容须与课题研究或调研内容高度一致。

二、译文翻译得当、语句通顺,不少于4000字。

三、译文格式要求:译文题目(即一级标题)采用小三黑体、二级标题采用四号黑体、三级标题采用13磅黑体;图题和表题采用五号宋体,外文和符号采用五号Times New Roman;正文采用小四宋体,外文和符号采用小四Times New Roman,行间距为20磅;A4纸双面打印。

四、原文及译文一起装订,顺序依次为封面(背面为外文资料翻译要求)、译文评阅(单面打印)、译文、外文原文。

译文评阅评分:___________________(百分制)指导教师(签名):___________________年月日原文Treating and the modern mould make high speedOne, summarizes1 the present situation that the mould makes at present and trendThe mould is important handicraft equipment , occupies decisive position in industrid departments such as consumer goods , electrical equipment electron , automobile , aircraft fabrication. The mould is important handicraft equipment , occupies decisive position in industrid departments such as consumer goods , electrical equipment electron , automobile , aircraft fabrication. Industrial product part rough process 75%, the finish machining 50% and plastic part 90% will be completed from the mould. The Chinese mould market demand already reaches scale of 500 hundred million yuan at present. The automobile mould , the annual growth rate covering piece of mould especially will exceed 20 %; Also prompt building material mould development , various heterotype material the mould , wall surface and floor mould become new mould growth point , plastic doors and windows and plastic drain-pipe increase to exceeding 30 by in the upcoming several years %; The home appliance mould annual growth rate will exceed 10 %; The IT industry year increases % speed equally exceeding 20 , the need to the mould accounts for 20 of mould marketplace %.2004 annual Chinese machine tools implements industry output valuewill continue to increase. Our country mould fabrication market potential is enormous. The basis data counts , in recent years, our country mould year gross output value reaches 3 billion U. S. dollar , entrance exceeds 1 billion U. S. dollar, exceed 100 million U. S. dollar outlet. Increase by from 25% to increase to 2005 50% of 1995. The expert foretells that abroad: Asia portion being occupied by in mould fabrication in the whole world, will from 25% to increase to 2005 50% of 1995.Chinese mould industry has been expanding by leaps and bounds , has formed east China and two big South China bases, and has expanded gradually arriving at other province. In 2002 (Shandong , Anhui , Sichuan) in 1996 ~, mould manufacturing industry output value annual average growth 14% , grows by 25% in 2003. In 2003 our country mould output value is 45 billion RMB. The gross product place occupies the world the 3rd, exports a mould increases 33.5% compared to last year 336,800,000 U. S. dollar. But, contents low our country technology moulds already pile up in excess of requirement , very most support of accurate , complicated top grade mould imports. Every year the entrance mould exceeds 1 billion U. S. dollar. Exceed 100 million U. S. dollar outlet. Precise mould accuracy requires that 3 mu ms , large-scale moulds require that 8000 satisfied kN agree well with model force injection machine request in 2 ~; The minitype mould needs the request satisfying the diameter 1 mm silent stock tube. At present, adopt quick-cutting to produce a mould already becoming the general trend that the mould makes, a few moulds have produced a manufacturer in abroad , high-speed machine tool large area has substituted the electric spark machine tool , quick-cutting has improved the mould efficacy greatly. Machine tool enterprise aims at mould manufacturing enterprises , some treating centres 60% all above of the machine tool producing a factory sells treating enterprise to a mould. The mould fabrication enterprise substituting the electric spark finish machining mould gradually in abroad has adopt quick-cutting already commonly , quick-cutting has produced a mould already becoming the general trend that the mould makes gradually , has improved the mould efficacy and mass greatly. Adopt quick-cutting to replace electric spark producing a mould , can get on the stick obviously , improves mould accuracy , life time growing.2 high speed processes application in making in the mould2.1 quick-cutting merit:1) cutter high rotation rate and the machine tool height enter be given to and high acceleration , improve metal excision rate greatly;2) quick-cutting diminutions cut a force;3) quick-cutting heat major part generate heat from the cuttings entrainment , workpiece being short;4) quick-cutting cut down vibration , improve treating mass;2.2 high speed treating apply to the beneficial result that the mould processes1) fleetness rough process and half finish machining, improve treating efficiency;2) high speed high-accuracy finish machining replace only entire the height processing , indicating mass , form accuracy rise , 50%, cuts down repair a mill by hand than EDM processes a potentiation;3) cuts the surface processing final molding stiffly , improve surface mass , form accuracy, the treating (not only being that surface harshness is low, and the surface radiance is high) , being used for complicated surface has more advantage;4) the surface loss that EDM treating produces , improve mould life-span 20%;5) processes an electrode rapidly combining with the CAD/CAM technology , especially, the form is complicated , thin-wall is similar to an electrode.3 adopt quick-cutting to process a mould needing the problem solvingIn in the homeland, since the aspect cause such as fund , technology , the quick-cutting applying produce a mould be in the initial stage stage.Return the machine tool , cutter , handicraft back to existence as well as some problem of aspect needs to proceed orderly other solve.The shortcoming is that finished cost is high, correct cutter sigmatism have comparatively high demand, can not have used big cutters , need to have the complicated computer programming technology to be used for support , equipment running cost height.Two, the high speed processing a mould's processes a machine toolMould finish machining and hard cutting treating require that the numerical control high-speed machine tool , form board , model put up the precision processing need , high-effect numerical control machine tool etc.The mould aiming at produces a lot of machine tool enterprise , some treating centres 60% all above of the machine tool producing a factory sells enterprise to a mould.The fixed assets having 5 billion yuan without exception in the upcoming several years throws into mould industry , 80% is the machine tool buying a mould process equipment , just saying every year having 4 billion yuan of RMB to buy Jinqie among them.At present average our country numerical control machine tool utilization ratio approximately 20%, the high-speed machine tool utilization ratio 3 ~ 5%. Also, mould enterprise has the unit suitable to buy a high-speed machine tool , complies with 6000 ~ 40000 rmp's to have.1 high-speed machine tool technology parameter demandsProcess centre chief axis high-power , high rotation rate , satisfied rude finish machining; The finish machining mould wants to need to reach 15000 ~ 20000 rmp like the cutter , the machine tool with minor diameter. Generally, the chief axis rotation rate machine tool under 10000 rpm cancarry out rough process and half finish machining , cannot reach the finish machining accuracy;Have no way to reach 400 the above m/min cutting speed.2 five scrolls of machine tools application increases a trend1) treating route is nimble , the surface form is complicated;2) treating range is big , the various type mould suitable processes;3) cuts life-span of condition easy to cut down cutter wear , to raisea cutter,;3 the softwares buying CAD/CAM and high-speed machine tools assortOn the grounds of the machine tool , major part counting , having several billions U. S. dollar to be used to enter port every year, the electromachining machine tool and the high-speed machine tool need to import. Three, quick-cutting mould cutter technologyQuick-cutting processes the cutter needing allocating proper quick-cutting. Progressing processing cutter material's in high speed has urged development of high speed treating. The cutter , knife edge headquarter and high tenacity base gathering crystal strengthening the ceramics cutter being able to be used giving consideration to high hardness experience and observe carbide alloy coating becoming possibility. Gather the crystal cube nitriding boron (PCBN) bit, whose hardness may amount to 3500 ~ 4500 HV. Gather crystal miamond (PCD) it's hardness but amount to 6000 ~ 10000 HV. Germany SCS , Japan Mitsubishi (magical steel) and Sumitomo ,Switzerland Shanteweike , USA Kenna are in recent years swiftly large wait for the famous abroad cutter company to successively have debuted therespective quick-cutting cutter, not only cutter having average structural steel of quick-cutting, the ceramics cutter still having direct quick-cutting of energy quenching hard steel is waiting for an effect to surpass the hard cutter, especially the coating cutter appears all of a sudden , bringing into play in quenching half finish machining and finish machining of hard steel. New cutter material and cutter technology appearing already make the bottleneck problem that high speed has processed no longer be able to appear on the cutter.But, expensive entrance cutter price also blocks quick-cutting mould key factor.Above to come to saying the cutter and the cutter holder acceleration reach 3 gs the sort, the cutter circular runout needs to be smaller than 0.015 mm, but the knife length is unable greater than 4 times cutters diameter. The reality according to SANDVIK company has counted , the carbide alloy has stood on in the entirety using carbon nitriding titanium (TICN) coating when milling cutters (58 HRC) carry out high speed bright metal chopping , rough process cutter linear speed has been 100 m/min about , whose linear speed has exceeded but 280 m/min when finish machining and microstoning. Such demands to cutter material (include the hardness , tenacity , red hardness keep the form (include row of crumbs function , surface accuracy , dynamic balance sex etc. (cutting the function) , the cutter under high temperature state)) as well as cutter life-span all has very highly.Experience according to in the homeland mould high speed finish machining, linear speed has exceeded 400 ~ 800 m/min when adopt the young diameter ball head milling cutter to carry out mould finish machining. The machine tool choosing sufficient high-speed's cuts mould finish machining stiffly.Delcam adopt 0.8 mm diameter cutter to process the narrow slot , rotation rate 40000 rpm , 0.1 mm depth, feed speed 30 m/min.1 chooses the cutter parameter , the cutter waits if shouldering an anterior angle. The cutter requires that the ability processing request shock resistance tenacity more highly , requiring that heat resistance pounds than average is strong;2 adopts various method improving cutter life-span , reduces cutter cost.3 adopt the high speed hilt , HSK hilt , heat pressing applying the most being at present to pretend to grip a cutter. Pay attention to a cutter pretend to grip overall in the day afer tomorrow dynamic balance;4current cutter enterprise has already done many jobs in the field of the technology resolving the quick-cutting cutter , serving facing the cutter processing may help to solve much problem , the cutter has produced a manufacturer becoming the main body , the reference cutter has produced the technology parameter that the manufacturer provides.Four, improve quick-cutting mould efficiency technology1 cutter diameter and the length choice2 HSM and the EDM choice3 does cutting and the lubricating cooling4 feeds choice: Move forward generally giving amounts <milling cutter diameters 10% , move forward giving a width <milling cutter diameter 40%. According to material, condition chooses the parameter processing handicraft rationallyHigh speed bright metal cuts the mass processing part material abroad fairly good, material quality level isidentical , the treating function comparison is stable; But, the cutter that the company produces abroad is also that the standard makes an experiment with their material; The treating being recommended by is suitable to their standard comparatively like the parameter , material quality has the certain difference with domestic part , this difference shows comparatively obviously , some parameters can apply directly, but some effect dispatches right away comparatively during the period of high speed bright metal chops if using their cutter. But select and use part material quality in the homeland like enterprise having the certain standard, what be put into use part material, can use the part material quality that high speed processes especially , the general meeting is limited in some part material range inner, that this applies the high speed processing technology to us has also provided advantageous condition , has been able to apply to less treating material within range. Being needing to emphasize that here, must choose the treating technological parameter optimizing out a set of capital suitable enterprise on these material , is brought into company standard and.The technology selecting and using the domestic cutter , seldom having the bright metal recommending high speed to chop parametric , is necessary making an experiment, get the comparatively satisfied parameter , produce a manufacturer had better to select and use the fixed cutter , cut down the number of times testing that , the standard forming a processing technology, such can improve effective utilization ratio of equipment , lowers production costs , can get the fairly good economic effect.Five, quick-cutting route processing a cutter and programming1) flat surface feeds the route choice2) 2) outlines process the route choice3) Keep cutting loading stable4) keeps relatively stable moving forward giving amounts and feed speed5) keeps the garden corner in flat surface cutting6) chooses the finish machining margin rationallyProgramming demand of HSC finish machining to CAM:1) the bright metal avoiding a corner to the full cuts motion;2) tries one's best to avoid external feed of workpiece and enter next depth return knife motion , direct from the outline. Or adopt a helical line or being sure enter slanting to moving forward;3) constant each edge feed , improve the quality, prolongs cutter life-span;4) outline treating are kept waiting in level surface.Quick-cutting CAM software:Several years ago will have started quick-cutting processing programming technology research, the Delcam company , has developed the quick-cutting automation programming software module; Lately, the MasterCAM company has also developed the quick-cutting automation programming software module; You also are in in the homeland north navigation developing the quick-cutting automation programming software module;Six, high-speed machine tool numerical control system characteristic1) high speed data is processed2) corner forecasts are handled3) NURBS are not justified appearance strip runin curve treatingSeven, safe quick-cutting mould problem1) Monitoring wearing a cutter away and destroying;2) Intensity that the bit links;3) Strict with the machine tool and the cutter examination is very important and before the average machine tool processing diversity , safety protects and starts up.Eight, there exists problem in our country at present in adopt high speed to process the mould technology 1 machine tool:1) domestic high-speed machine tool overall function still has the gap , the function component function to be able to not satisfy a request. Power and rotation rate including the electricity chief axis, entrance machine tool price is high;2)Under the machine tool high speed, the dynamic behaviour studies the function being not enough to affect a complete machine as a result,;3)The five scroll of machine tool is not enough mature , entrance machine tool price is very high;4) supporting technology and equipment are fairly incomplete2 cutters:1) domestic cutter is not able to adapt to the quick-cutting application , high speed cuts only entire treating especially stiffly. Entrance cutterprice is high. The cutter technology is to affect quick-cutting processing a key factor of mould.2) supporting technologies are not enough to include hilt , online dynamic balance in complete set etc.. 3 high speed moulds process the technology and the experiment1) Be short of the accumulation applying experience since high speed processes the mould history comparatively shortly,;2)The comparison studying comparison stops throwing into lack, sets up a project to quick-cutting handicraft is difficult;3) Be short of the quick-cutting data base or the handbook , is still blank space at present;4) moulds produce the manufacturer cognition lack to quick-cutting , the analysis contrast being short of long range beneficial result;4 Be short of the quick-cutting automation programming software;5 Be short of a five scroll of gear quick-cutting automation programming CAM software.Concluding remarkThe mould marketplace has the intense need, but technology to be unable to keep abreastwith to high speed treating. Starting is late , the basis is relatively poor , overall engineeringlevel not being taller than , develops slowlyRequire that one by one, aspect coordinatedgrowth , the product mimic inkstone throwing into combining with enlarging, eachcomprehensive utilization aspect strengths drive quick-cutting application in making in themould.. Our hope , effort passing every aspect, before the market demand push go down ,pass technological progress, look like automobile , machine tool , home appliance , beforelong, not only our country being going to become a mould producing Great Power, and begoing to become a mould producing the powerful country.References1, Jin Diecheng , Song Fangzhi. The modern mould makes the technology , Beijing:Mechanical industry press, 2001.2, Xu Hefeng, The digitization mould makes the technology , Beijing: Chemical industrypress, 2001.3,Zhao Bo ,High speed processes the forward position technology that the mould processes.Mould technology , 2000 , (2)4,Zhang Haiou,The fleetness mould makes the technology current situation and theirdeveloping trend. Mould technology , 2000 , (6)5,Guo Dongming,Wang Xiaoming,Be geared to the needs of the particular kind processingtechnology that the fleetness creates. Chinese mechanical engineering , 2000 , (11)译文制造高速加工和现代模具一、概述1.目前模具制造的发展现状和趋势模具作为重要的工艺装备,在消费品、电器电子、汽车、飞机制造等工业部门中,占有举足轻重的地位。

相关文档
最新文档