常微分方程在数学建模中的应用(免费版)
常微分方程在数学建模中的应用4
的未来状态、研究它的控制手段时,通常要建立对 象的动态模型。建模时首先要根据建模目的和对问 题的具体分析做出简化假设,然后按照对象内在的 或可以类比的其它对象的规律列出微分方程,求出 方程的解并将结果应用于实际对象,就可以进行描 述、分析、预测或控制了。下面我们用例子加以说明。 (一)生物种群数量模型 种群的数目题目是当今世界上引起广泛关注 的一个题目,要预测将来种群的数目,最重要的影 响因素是当前的种群数目,以及往后一段时间内种 群的增长状况和处境因素。种群数目增加到一定程 度后,种群在有限的生存空间进行竞争,种群的增 长状况会随着种群数目的增加而削减,并且在有限 的生存空间,种群数目也不可能无穷增长,推测未 来时间里种群数目如何呢?
美国人口统计数据作比较,发现吻合得相当好,表 明Logistic模型合理地给出了受环境因素制约的 生物种群数鼍变化情况。 (二)腐败人数的预测模型 现如今,我们常常能看到一些政府官员因腐 败而落马的报道.随之牵连出大批的涉案分子。然 而,大量被牵连的腐败分子为逃避法律制裁,往往 是东躲西藏。在已牵连出的腐败分子人数基础上
中图分类号:0172文献标识码:A文章编号:1674—5078(2011)Ol-0042—03 DOI:lO.3969/j.issn.1674—5078.2011.01.012
一、引言 随着社会的发展,生物、医学、社会、经济……, 各学科、各行业都涌现出大量的实际课题,急待人 们去研究和解决。各部门工作人员要善于运用数学 知识及数学的思维方法来解决每天面临的大量实 际问题,从而取得经济效益和社会效益。但这些问 题,只用现成的数学知识就能解决的问题几乎是 没有的。你所能遇到的都是数学和其他东西混杂 在一起的问题,其中的数学奥妙不是明摆在那里 等着你去解决,而是暗藏在深处等着你去发现。换 句话说,要对复杂的问题进行分析,发现其中的关 系或规律,并且用数学语言描述出来,把这个实际 问题化成一个数学问题,这个问题就称为数学模
常微分方程在数学建模中的应用
一般地
一阶微分方程的初始条件为:y xx0 y0 二阶微分方程的初始条件为:y xx0 y0
y x x0 y1
( x0,y0,y1为给定值)
(2)由初始条件确定了通解中任意常数后所得到的解,称为微
分方程的特解。
如 y = x2 + 2是方程(1)的特解.
则C1 2,
于是所求特解为 y 2x ex.
二、分离变量法
1.定义 形如 dy f x g y (1)
dx 的方程称为可分离变量的方程.
特点 -- 等式右端可以分解成两个函数之积,其中一个只是x 的函数,另一个只是y的函数
2.解法
设 dy f xgy
dx
分离变量得
1
g y
dy
f
x dx
k
k
故所求特解为
v
mg k
1
k
em
t
由此可见,随着t的增大,速度趋于常数mg/k,但不会超过 mg/k,这说明跳伞后,开始阶段是加速运动,以后逐渐趋于匀 速运动.
第二节 一阶线性微分方程与可降阶的高阶微分方程
一、一阶线性微分方程
1.定义: 形如
dy P x y Q x (1)
dx
例1 函数y Cx2 1 是方程xy 2 y 1 0的解吗?若是解, 是通解 2
还是特解 ?
解 将y x2 1 及y 2Cx代入所给方程左端得 2
2Cx2
2
Cx2
1 2
1
2Cx2
2Cx2
11
0
y Cx2 1 是所给方程的解. 2
又 y Cx2 1 中含有一个任意常数C,而所给方程又是一阶微分方程,
数学建模在常微分方程中的应用
数学建模在常微分方程中的应用
数学建模是指运用数学方法和技巧分析和解决实际问题的过程。
在数学建模中,常微分方程是一个重要的工具,它用于描述许多实际问题中的变化和发展。
下面将介绍常微分方程在数学建模中的应用。
常微分方程可以用来描述许多自然科学和工程科学中的变化和发展过程。
描述物理学中的运动、天文学中的行星运动和混合和反应过程等。
它们还可以用于解决实际问题,如人口增长、疾病传播、金融模型和生态系统动力学等。
常微分方程的一个重要应用领域是物理学。
在经典力学中,可以通过常微分方程来描述物体在外力作用下的运动。
牛顿第二定律可以用常微分方程的形式表示为:
m*d^2x/dt^2 = F(x,t)
其中m是物体的质量,dx/dt是物体的速度,F(x,t)是物体受到的外力。
这个方程可以用来研究物体的运动轨迹和速度随时间的变化。
常微分方程在工程科学中也有广泛的应用。
热传导方程可以用常微分方程的形式表示为:
d(theta)/dt = k*d^2(theta)/dx^2
其中theta是温度分布,t是时间,k是热传导系数,x是空间位置。
这个方程可以用来研究材料中的温度分布和传热过程。
在生物学和生态学中,常微分方程被用来描述生物种群的增长和相互作用。
Lotka-Volterra方程可以用常微分方程的形式表示为:
dN/dt = r*N - a*N*P
dP/dt = -b*P + c*N*P
其中N是捕食者的数量,P是猎物的数量,t是时间,r、a、b和c是常数。
这个方程可以用来研究捕食者和猎物种群之间的相互作用和稳定性。
常微分方程理论在数学建模中的简单应用
常微分方程理论在数学建模中的简单应用摘要:众所周知,自然界中一切物质都按照自身的规律在运动和演变,不同物质的运动规律总是在时间和空间中运动着的,虽然物质的运动形式千差万别,但我们总可以找到它们共性的一面,即具有共同的量的变化规律。
为了能够定性和定量的研究一些特定的运动和演变过程,就必须将物质运动和演变过程中相关的因素进行数学化。
这种数学化的过程就是数学建模的过程,即根据运动和演变规律找出不同变量之间互相制约、互相影响的关系式。
由于大量的实际问题中,稍微复杂一些的运动过程往往不能直接写出他们的函数,却容易建立变量及其导数(或微分)间的关系式,即微分方程。
微分方程描述的是物质运动的瞬时规律。
将常微分方程应用于数学建模是因为常微分方程理论是用数学方法解决实际问题的强有力的工具,是一门有着重要背景应用的学科,具有悠久的历史,系统理论日臻完善,而且继续保持着进一步发展的活力,其主要原因是它的根源深扎在各种实际问题中。
关键词:常微分方程,常微分方程模型,稳定性,数学建模正:1数学建模简介对复杂现象进行分析,用数学语言来描述其中的关系或规律,抽象出恰当的数学关系,并将其实际问题转化成为一个数学问题,同时运用数学系统的知识方法对数学问题进行求解,对现实问题作出解释的过程,这就是数学建模…。
与数学不同,构建数学模型的过程不仅要对复杂的问题进行提炼、归纳和总结而且还应进行演绎推理。
所以构建数学模型的过程也是一个演绎推理与归纳总结相结合的过程。
对现实问题的观察、假设、归纳,怎样将其化为一个数学问题是数学建模的关键。
但这仅仅是数学建模的开始,完整的数学建模过程还应求解数学问题并能得到所要求的解。
同时还应看到得出的解是否与数据或实际经验相吻合,是否能解释实际问题;否则,还应重新修正。
2常微分方程和数学建模结合的特点通常在建立对象的动态模型时,应对不同的实际对象建立不同的并与之相适合的数学模型。
首先要具体的问题具体分析对建模的目的应该做出简化的假设,而后还要依照对可以类比的其它对象的规律或者其对象内在的微分方程进行解题并求出这一方程的解,这样才能将其结果反馈回实际的对象,然后再进行预测或控制,描述与分析。
常微分方程在数学建模中的应用
常微分方程在数学建模中的应用
常微分方程(Ordinary Differential Equations, ODEs)是一类用来描述物理系统动态变化的方程。
它们在数学建模中有广泛的应用,可以用来描述各种各样的系统,包括力学系统、电学系统、热学系统、生物学系统等等。
举个例子,假设你想描述一个物体在受到重力作用力时的运动轨迹。
这个问题可以用常微分方程来解决,具体来说,你可以用下面的方程来描述物体的运动:
其中,x 是物体的位置,t是时间,g 是重力加速度。
这个方程表示物体受到重力作用力时的加速度,根据牛顿第二定律,加速度等于作用力除以质量。
因此,这个方程可以用来描述物体在受到重力作用力时的运动轨迹。
常微分方程还可以用来描述其他类似的问题,例如:
•电路中的电流和电压的变化
•化学反应过程中物质浓度的变化
•振动系统中振动的频率和振幅的变化
•生物学系统中生物体内激素浓度的变化
总的来说,常微分方程在数学建模中有着广泛的应用。
它们可以用来描述各种各样的物理系统的动态变化,并且通常都有解析解或者近似解的存在。
此外,常微分方程还有很多的数学理论,可以用来解决常微分方程的特殊情况。
尽管常微分方程在数学建模中有着广泛的应用,但它们也有一些局限性。
例如,常微分方程通常假设系统是连续的、平滑的,并且忽略了离散的、非连续的现象。
在这些情况下,常微分方程可能不再适用。
因此,在使用常微分方程进行数学建模时,需要谨慎考虑是否适用。
常微分方程在数学建模中的应用
常微分方程在数学建模中的应用首先是物理方面。
在物理学中,常微分方程广泛应用于描述运动、波动、电磁学、量子力学等问题。
例如,牛顿第二定律可以用常微分方程的形式表示为:\[m \frac{{d^2x}}{{dt^2}} = F(x,t)\]其中m为质量,x为位置,t为时间,F(x,t)为力。
这个方程可以用来描述物体的运动。
另一个例子是振动方程,可以通过常微分方程来描述弹簧振子、简谐振动等。
生物方面是另一个常见的应用领域。
生物学中经常需要对生物体的增长、衰退、群体动态等问题进行建模。
而常微分方程可以很好地描述这些问题。
例如,布鲁塞尔方程是描述细菌群体增长的常微分方程模型。
该模型使用了增长速率与细菌种群密度之间的关系。
通过求解布鲁塞尔方程,我们可以预测细菌的增长趋势,并为控制细菌的增长提供依据。
此外,常微分方程还可以在生物学中应用于描述神经网络、生物化学反应等。
经济方面也是常微分方程的应用领域之一、经济学中的一些重要问题,如经济增长、通货膨胀、利率变动等,都可以通过常微分方程进行建模和分析。
例如,Solow增长模型是描述经济增长的常微分方程模型。
该模型考虑了资本积累和技术进步对经济增长的影响。
通过求解Solow增长模型,我们可以分析经济增长的稳定状态、长期趋势和影响经济增长的因素。
除了物理、生物和经济学,常微分方程还可以在其他领域中应用。
例如,环境科学中可以通过常微分方程描述污染物的传输和扩散过程;工程学中可以应用常微分方程来描述振动、控制系统等问题。
此外,计算机科学中的数值方法也广泛应用于求解常微分方程的数值解。
总而言之,常微分方程在数学建模中的应用非常广泛,涵盖了物理、生物、经济等多个领域。
通过对常微分方程的求解和分析,我们可以获得有关问题的定量结论,并为问题的解决和决策提供支持。
常微分方程的解法在数学建模中的应用
常微分方程的解法在数学建模中的应用
常微分方程的解法在数学建模中有广泛的应用,涉及到许多领域,如物理学、经济学、生物学、工程学等。
以下介绍其中一些应用:
1. 物理学模型:在物理学建模中,常微分方程可以用来描述射线的传播,弹性杆的变形,振动的周期等。
如著名的二阶线性微分方程 y''+by'+ky=0 可以用来描述简谐振动,而 y'+ky=0 可以用来描述自由阻尼振动。
2. 经济学模型:经济学中很多模型,如经济增长模型、消费模型、储蓄模型等都可以用常微分方程来描述。
经济模型一般包含多个变量,每个变量都可以用常微分方程来表示,构成一组微分方程组,从而得到系统的解析解。
3. 生物学模型:常微分方程也是生物学建模中最常用的工具之一。
生物学中很多现象如人口增长、病毒传播、生物物种的竞争和合作等都可以用常微分方程来描述。
4. 工程学模型:工程学中,常微分方程可以用来描述控制系统中的动态行为,例如控制电路、城市交通流、水力系统等。
综上所述,常微分方程的解法在数学建模中有广泛的应用,能够帮助科学家和工程师更好地预测和解决现实生活中的问题。
常微分方程在数学建模中的应用【开题报告】
件二: 个体获得免疫是永久的, 这意味着假若某个个体获得免疫, 他们将永远不会再感染. 这种模型适合于滤过性霉菌引起的流行病, 如麻疹、天花、腮腺炎等; 条件三: 易感人群的减少速度与易感人群和被感染者数量的乘积呈正比. 条件四: 恢复者的增长速度与被感染者的数量成正比. 后来在SIR模型考虑3类个体的基础上, 增加了1类个体: 已感染但处于潜伏期未发病者. 上述4类个体及描述其相互关系的常微分方程组构成新的传染病动力学模型: SEIR模型.近几年, 人们用数学方法来研究传染病的发病机理、动态过程和发展趋势, 已逐步成为一个活跃的研究领域. 在国外, 数学预测模型已经能够成功地应用于生物分子水平, 模拟体内病毒的复制及半衰期, 让我们更加全面地认识并了解了传染病的感染机制. 而我们的国内学者吴开琛等也成功的把该模型应用于非典型肺炎(SARS)的研究, 并在此基础上提出5分室模型, 即: SEIDR, 其中的D(death)为人群中感染发病者不治死亡的.本文是利用SIR模型来研究传染病问题的, 由于传染病流行过程的研究与其他学科有所不同, 不能通过在人群中实验的方式来获得数据, 所以有关传染病的数据、资料只能从已有的传染病流行的报告中获取, 这些数据往往不够全面, 难以根据这些数据来准确地确定参数, 只能大概估计其范围.这次论文主要是通过全面调查、收集相关的数据资料, 有效应用常微分方程和数学建模的相关知识, 并充分利用图书馆和互联网上的丰富的资源来建立SIR模型, 在对建立好的数学模型进行定量和定性的分析与探究的过程中, 观察和研究实际对象的固有特征和内在规律, 抓住问题的主要矛盾, 对当今社会中经常爆发的传染病建立常微分方程模型并利用常微分方程和数学建模的相关知识对它分别进行分析和研究, 探讨了它的传播规律以及影响它们流行的因素、预测可能发生的后果及如何抑制其流行或恶化. 这个模型的建立及探究说明了在反映客观现实世界运动过程的量与量之间的关系中, 大量存在了满足常微分方程关系式的模型, 需要我们通过求解常微分方程来了解未知函数的性质, 常微分方程是解决实际问题的重要工具. 所建立的模型, 在常微分方程的观点剖析下, 充分展现现代社会生活中常微分方程应用.二、研究的基本内容, 拟解决的主要问题研究的基本内容:利用常微分方程与数学建模的知识建立SIR模型解决的主要问题:1 对建好的SIR模型进行定量和定性的分析2 探讨传染病传播的规律以及影响它流行的因素3 预测可能发生的后果以及如何抑制其流行或恶化三、研究步骤、方法及措施研究步骤:查阅相关资料, 做好笔记;仔细阅读研究文献资料;在老师指导下, 确定整个论文的思路, 列出论文提纲, 撰写开题报告;翻译英文资料;开题报告通过后, 撰写毕业论文;上交论文初稿;反复修改论文, 修改英文翻译, 撰写文献综述;论文定稿.方法、措施:通过到图书馆、上网等查阅收集资料,参考相关内容.在老师指导下, 归四、参考文献[1]May RM et al, Nature [J]. Nature Publishing Group, 1979, 180: 455~461.[2]Langlais M et al, Math Comp Model [J].Elsevier Science, 2000, 31: 117~124.[3]陈文江, 吴开琛等. 运用数学模型探讨SARS聚集性传播的机制[J].中国热带医学,2004, 4(1): 221~228.[4]王高雄,周之铭等. 常微分方程[M]. 北京:高等教育出版社, 2006, 01: 131~135.[5] 丁慧,王亚男. 从实践教学中谈常微分方程的发展及其应用[J]. 科学时代, 2010,4(1): 121~123.[6] 赵静, 但琦等. 数学建模与数学实验[M]. 北京: 高等教育与出版社, 2008, 01:26~31.[7]查淑玲. 传染病的SIR模型[J]. 山西中医学院学报, 2003, 4(2): 52~58.[8] 黄其春. 亚健康的产生及解决对策[J]. 广西中医学院学报, 2002, 03: 32~38.[9] 王育学. 亚健康问题纵横谈[J]. 解放军健康, 2005, 01: 55~61.[10] 阳凌云,符云锦. 一阶线性微分方程组的解法新探[J]. 湖南工业大学学报, 2010,1(1): 68~72。
常微分方程在数学建模中的应用(免费版)
常微分方程在数学建模中的应用这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型.解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ∆+时间段内,人口的增长量为t t rN t N t t N ∆=-∆+)()()(,并设0t t =时刻的人口为0N ,于是|⎪⎩⎪⎨⎧==.,00)(d d N t N rN t N这就是马尔萨斯人口模型,用分离变量法易求出其解为)(00e )(t t r N t N -=,此式表明人口以指数规律随时间无限增长.模型检验:据估计1961年地球上的人口总数为91006.3⨯,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3⨯=N ,02.0=r ,于是)1961(02.09e1006.3)(-⨯=t t N .这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人口大约每35年翻一番,而上式断定年增加一倍(请读者证明这一点).但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.;例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假设进行修改.1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数m N ,用来表示自然环境条件所能容许的最大人口数(一般说来,一个国家工业化程度越高,它的生活空间就越大,食物就越多,从而m N 就越大),并假设将增长率等于⎪⎪⎭⎫⎝⎛-m N t N r )(1,即净增长率随着)(t N 的增加而减小,当m N t N →)(时,净增长率趋于零,按此假定建立人口预测模型.解 由韦尔侯斯特假定,马尔萨斯模型应改为⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛-=,,000)(1d d N t N N N N r t N 上式就是逻辑模型,该方程可分离变量,其解为,)(00e 11)(t t r m mN N N t N --⎪⎪⎭⎫ ⎝⎛-+=.下面,我们对模型作一简要分析.(1)当∞→t ,m N t N →)(,即无论人口的初值如何,人口总数趋向于极限值m N ;@(2)当m N N <<0时,01d d >⎪⎪⎭⎫ ⎝⎛-=N N N r t N m ,这说明)(t N 是时间t 的单调递增函数;(3)由于N N N N N r t N m m ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=211d d 222,所以当2m N N <时,0d d 22>t N ,t N d d 单增;当2m N N >时,0d d 22<tN ,t N d d 单减,即人口增长率t Nd d 由增变减,在2m N 处最大,也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速率逐渐变小,并且迟早会达到零,这是减速生长期;(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明显的原因是在20世纪60年代美国的实际人口数已经突破了20世纪初所设的极限人口.由此可见该模型的缺点之一是m N 不易确定,事实上,随着一个国家经济的腾飞,它所拥有的食物就越丰富, m N 的值也就越大;(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,029.0=r ,又当人口总数为91006.3⨯时,人口每年以2%的速率增长,由逻辑模型得⎪⎪⎭⎫⎝⎛-=m N N r t N N 1d d 1, 即 ⎪⎪⎭⎫ ⎝⎛⨯-=m N 91006.31029.002.0, 从而得 91086.9⨯=m N ,即世界人口总数极限值近100亿. )值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的鱼等,逻辑模型有着广泛的应用.二、市场价格模型对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.例3 试建立描述市场价格形成的动态过程的数学模型解 假设在某一时刻t ,商品的价格为)(t p ,它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格)(t p 的变化率tpd d 与需求和供给之差成正比,并记),(r p f 为需求函数,)(p g 为供给函数(r 为参数),于是()()[]⎪⎩⎪⎨⎧=-=,,0)0(,d d p p p g r p f tpα 其中0p 为商品在0=t 时刻的价格,α为正常数.若设b ap r p f +-=),(,d cp p g +=)(,则上式变为—⎪⎩⎪⎨⎧=-++-=,,0)0()()(d d p p d b p c a t pαα ① 其中d c b a ,,,均为正常数,其解为ca db c a d b p t p t c a +-+⎪⎭⎫ ⎝⎛+--=+-)(0e)(α. 下面对所得结果进行讨论:(1)设p 为静态均衡价格 ,则其应满足0)(),(=-p g r p f ,即d p c b p a +=+-,于是得ca db p +-=,从而价格函数)(t p 可写为 。
常微分方程在数学建模中应用论文
论常微分方程在数学建模中的应用摘要:常微分方程的形成和发展与去多学科密切相关,诸如力学、天文学等。
如果想用数学解决实际问题,就必须建立模型。
本文重点介绍了常微分方程理论与数学建模结合起来,在人口预测中的应用。
关键词:常微分方程数学建模人口预测引言纵观微分方程的发展史,我们发现微分方程与物理、天文学以及日异月新的科学技术有着密切的联系。
牛顿在研究天体力学和机械力学的时候,就利用了微分方程这个工具,从理论上得到了行星运动的规律。
后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。
这些都证明微分方程在改造自然和认识自然方面有着巨大的力量。
微分方程是自变量、未知函数及函数的导数(或微分)组成的关系式。
在解决实际问题的过程中,我们又得出了常微分方程的概念:如果在一个微分方程中出现的未知函数中只含有一个自变量,那么这个方程则称为常微分方程,也可以简单的叫做微分方程.在反映客观现实世界运动过程的量与量之间的关系中,大量存在满足微分方程关系似的数学模型,需要我们通过求解常微分方程来了解未知函数的性质。
常微分方程是解决实际问题的重要工具。
常微分方程在数学建模中的应用举例微分方程在数学建模中的应用大体是:首先,建立数学模型,根据问题的目的、要求具体分析做出相应的简化和假设;然后按照规律列出微分方程,求出方程的解;最后将实际对象带入结果中,对问题进行描述、分析、预测和控制。
2.1人口指数增长模型最简单的人口增长模型是:记今年人口为,年后人口为,年增长率为,则(4.1)这个公式的基本前提是年增长率保持不变。
二百多年前英国人口学家马尔萨斯调查了英国一百多年的人口统计资料,得出了人口的增长率是常数的假设,并据此建立了著名的人口指数增长模型。
记时刻的人口为,当考察一个国家或一个较大地区的人口时,是一个很大的整数,为了利用微积分这一数学工具,将视为连续、可微函数。
记初始时刻的人口为,假设人口增长率为常数,即单位时间内的增量与的比例系数。
常微分方程在数学建模中的应用
2018年第2期时代农机TIMES AGRICULTURAL MACHINERY第45卷第2期Vol.45No.22018年2月Feb.2018作者简介:覃游(2000-),男,四川达县人。
常微分方程在数学建模中的应用覃游(,610000)摘要:随着社会的不断发展,各个领域当中涌现出了很多新的课题,急需人们去研究和解决,而通过常微分方程来对其进行数学建模,就是一种有效的解决措施。
基于此,文章对常微分方程在数学建模中的应用展开了详细的探讨,分别对腐败人数预测模型、生物种群数量模型和人口预测模型这三大数学模型的建立和创新进行了分析,希望能为相关领域的研究人员提供一定的理论参考。
关键词:常微分方程;数学建模;人口预测模型当前,常微分方程是很多理工科专业设置的一门基础课程。
与微积分相似,常微分方程也是人类认识世界、改造世界不可或缺的一个数学工具。
在长年累月的生产实践中,常微分方程已经演变成了数学领域对理论和实践相联系的重要分支,而利用常微分方程建立数学模型,也成为了解决很多实际问题的重要手段。
因此,对常微分方程在数学建模中的应用展开探究,有着非常重要的意义。
1常微分方程在腐败人数预测模型中的应用当前,人们经常在电视或网络上看到很多政府官员因为腐败问题而落马的报道,而这些腐败官员的落马往往会牵扯出大量的涉案分子,这些被牵扯出来的涉案分子往往会采取东躲西藏的方式来逃避法律对他们的制裁。
为此,可以用常微分方程来进行数学建模和创新,利用这些被牵扯出的涉案分子的人数来对总涉案人数加以预测,建立出一个新的腐败人数预测模型,这包括以下三个步骤。
(1)假设阶段。
设t 表示时间,x (t )表示这个腐败集团所牵扯的涉案分子的总人数有关t 的函数,X0表示在t=0时刻这个腐败集团所牵扯的涉案分子的总人数,r (x )表示牵扯涉案分子的增长率,r 表示在x0时刻牵扯的涉案分子人数的增长率,也称作固有增长率,xm 表示这个腐败事件可能会牵扯的最多人数,μ表示在追查时产生的阻力系数,i (t )表示这个腐败事件所牵扯人数在总人数中的比例,λ表示在t=0时刻这个腐败事件所牵扯人数在所有人数中的比例,λ表示已被抓到的每个腐败分子在每个月之内所招供出的平均人数。
常微分方程在数学建模中的应用 (2)
2008年2第11卷・第2期宿州教育学院学报一、引言数学建模(MathmaticalModeling)是用数学方法解决各种实际问题的桥梁,随着计算机的发明和计算机技术的飞速发展,数学的应用日益广泛,数学建模的作用也越来越重要,而且已经渗透到各个领域,可以毫不夸张的说,数学和数学建模无处不在。
数学建模的分类方法有许多种,按照建模所应用的数学方法不同,可分为:初等模型,运筹学模型,微分方程模型,概率统计模型,控制论模型等。
在数学建模中,数学模型的建立尤为重要,只有建立了模型,才能进行其他的工作。
微分方程作为数学科学的中心学科,已经有300多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵,微分方程建模对于许多实际问题的解决是一种极有效的数学手段。
对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组来表示。
二、常微分方程在数学建模中的应用当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的变化规律、预测它的未来状态、研究它的控制手段时,通常要建立对象的动态模型。
建模时首先要根据建模目的和对问题的具体分析做出简化假设,然后按照对象内在的或可以类比的其他对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析、预测或控制了。
下面我们就通过几个例子来说明这一过程。
1.传染病模型随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍乱、天花等曾肆虐全球的传染性疾病已经得到有效的控制。
但是一些新的、不断变异着的传染病毒却悄悄向人类袭来。
20世纪80年代艾滋病毒开始肆虐全球,至今仍在蔓延;2003年春来历不明的SARS病毒突袭人间,给人民的生命财产造成极大的危害;2005年禽流感病毒爆发,再次威胁人民生命财产安全。
常微分方程在数学建模中的应用【完整版】
常微分方程在数学建模中的应用【完整版】(文档可以直接使用,也可根据实际需要修订后使用,可编辑放心下载)目录摘要 (2)1引言 (3)2 常微分方程的开展概况 (3)3 数学建模简介 (4)4 常微分方程和数学建模结合的特点 (4)5 常微分方程在数学建模中的应用 (4)5.1 建立微分方程的方法 (5)5.2市场价格模型 (6)5.3广告模型 (8)5.4人口预测模型 (10)5.5混合溶液的数学模型 (12)5.6振动模型 (13)5.7教育问题模型 (17)6 总结 (20)参考文献 (21)常微分方程在数学建模中的应用摘要常微分方程是在17世纪伴随着微积分而开展起来的一门具有重要应用价值的学科.它是研究连续量变化规律的重要工具,是众多实际问题与数学之间联系的重要桥梁.在历史上,牛顿正是通过求解常微分方程证实了地球绕太阳运动的轨道是椭圆;天文学家通过常微分方程的计算,预见了海王星的存在.随着工业化的进展,常微分方程在航海、航空工业生产以及自然科学的研究中发挥了重要作用.计算机和计算技术的开展,使微分方程的求解突破了经典方法的局限,迈向数值计算和图像模拟,这为微分方程的应用提供了更为广阔的天地和有效手段,也使得建立数学模型显得尤为重要.本文主要从市场价格模型、广告模型、人口预测模型、混合溶液的数学模型、教育问题模型来论述常微分方程在数学建模中的应用。
关键字:常微分方程;数学建模;市场价格模型;广告模型;人口预测模型;混合溶液的数学模型;教育问题模型1引言在初等数学中,方程有很多种,比方线性方程、指数方程、对数方程、三角方程等,然而并不能解决所有的实际问题。
要研究实际问题就要寻求满足某些条件的一个或几个未知数方程。
这类问题的根本思想和初等数学的解方程思想有着许多的相似之处,但是在方程的形式、求解的具体方法、求出解的性质等方面依然存在很多不同的地方,为了解决这类问题,从而产生了微分方程。
常微分方程是许多理工科专业需要开设的根底课程,常微分方程与微积分是同时产生的,一开始就成为人类认识世界和改造世界的有力工具,随着生产实践和科学技术的开展,该学科已经演变开展为数学学科理论中理论联系实际的一个重要分支。
常微分在数学建模中的应用
常微分在数学建模中的应用随着数学在各行各业的不断深入应用,数学模型也变得越来越重要。
常微分作为一种基本的数学工具,在各种数学建模中发挥着重要的作用。
本文将从定义、历史发展、应用以及当前常微分在数学模型中的应用四个方面系统地介绍常微分在数学建模中的应用。
首先从定义上来说,微分是一种描述变化的数学概念,常微分是指在一定的条件下,关于函数的变化率的一种数学描述。
它描述的是函数在给定点的变化率。
换句话说,它可以用来衡量函数变化的增加或减少的速度。
其次,常微分的历史发展。
常微分的发展可以追溯到古希腊时期,那时候,古希腊数学家就开始研究如何研究函数变化的速度。
在17世纪,法国数学家莱布尼兹发明了微积分,微积分是用来描述函数变化的一种数学工具,它是常微分的重要基础。
18世纪,英国数学家乔治·贝尔和爱德华·威尔逊发展了更为先进的微积分方法,开创了常微分的新时代。
第三,常微分在数学建模中的应用。
常微分可以用来描述函数变化,因此它可以用来描述各种物理现象,如物体的运动轨迹、流体的流动、电磁场的变化等。
此外,常微分还可以用来描述经济规律,如市场供求关系、个体收入分配、物价变化等。
在生物学领域,常微分也可以用来描述植物或动物的生长发育规律等。
最后,论述当前常微分在数学模型中的应用。
现在,常微分已经应用在许多研究领域,如机器学习、机器人科学、空间探索、环境科学、计算机视觉等。
例如,在机器学习中,常微分可以用来衡量模型的变化,从而更好地解决机器学习中的核心问题。
在机器人科学中,常微分也可以用来描述机器人的运动轨迹,从而更好地控制机器人的运动。
在空间探索中,常微分可以用来衡量宇宙空间中的变化,从而更好地探索宇宙的奥秘。
此外,常微分在环境科学和计算机视觉领域也发挥着重要作用。
综上所述,常微分是一种基本的数学工具,可以用来描述函数变化的变化率,并在各种数学建模中发挥着重要作用。
它已经发展成为多个学科的基础,在实际应用中得到了广泛的应用,可以说常微分在数学模型中发挥着重要的作用。
常微分方程在数学建模中的应用
常微分方程在数学建模中的应用摘要:正文:数学建模概述建模定义:数学建模(Mathematical Modeling)就是通过计算得到的结果来解释实际问题,并接受实际的检验,来建立数学模型的全过程。
数学模型(Mathematical Model)是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。
数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。
这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。
建模步骤:1.模型准备在解决一个问题之前,我们首先要弄清楚这个问题的具体含义,包含的数学关系。
需要求解的问题,限制条件和里面的逻辑关系。
用数学语言将这个问题进行翻译。
同时,要在图书馆或网上资料库找到相关文章,或数据支持。
加深自己对这个问题的理解的同时,也为下文的求解提供一定的理论支持和参考。
2.模型假设实际生活中的问题非常复杂,相关影响因素也特别多,我们不可能把所有的因素都考虑在内,往往需要通过假设忽略其中一些不重要、对结果影响小、发生几率不大、符合常识的假设。
通过这些假设对问题进行简化。
3.模型建立建立模型的过程就是对问题进行数学语言转化的过程,其中要注意模型尽可能地简单,不能太复杂,所运用的数学原理要适用于该问题。
而且尽可能转化成自己熟悉的,擅长的模型。
4.模型求解模型的求解往往要运用合适的数学软件,如SPSS,MATLAB,R,Lingo,Python 等。
根据自己的问题的不同类型选择合适的软件进行求解。
结果可能呈现出数据,图表,分析表等不同的形式。
5.模型检验进行模型检验时,通常通过利用已知过给数据和所给的一个相应结果检验模型的正确性。
如图像重建;预测模型可以通过以往数据进行检验;相关性问题通过R 值进行检验等。
常微分方程在数学建模中的应用
常微分方程在数学建模中的应用常微分方程是数学中的一个重要分支,它研究描述自然现象中连续变化的函数的微分方程。
在数学建模中,常微分方程是一种常用的工具,用于描述和解释各种自然和社会现象。
本文将探讨常微分方程在数学建模中的应用,并详细介绍其中的一些具体案例。
首先,常微分方程在经济学建模中发挥着重要作用。
经济学中,人们经常使用常微分方程来描述经济系统中的变化。
例如,经济增长模型可以使用一阶线性常微分方程来描述。
这个方程中的未知函数是时间的函数,表示经济变量(如国内生产总值)的增长率。
通过求解这个方程,可以推导出经济增长模型中的稳定点、周期性和渐近行为等信息,从而对经济现象进行预测和分析。
其次,常微分方程在物理学建模中也有广泛的应用。
物理学中的许多自然现象可以用微分方程来描述,例如运动学、力学、光学等。
例如,一个简单的自由落体模型可以用一阶非线性微分方程来描述。
这个方程中的未知函数是时间的函数,表示物体的高度随时间的变化。
通过求解这个方程,可以推导出物体的运动轨迹、终止位置和速度等信息,从而对物理现象进行分析和预测。
此外,常微分方程在生物学建模中也有重要的应用。
生物学中的许多现象和过程可以用微分方程来描述,例如生物种群的增长、化学反应速率的变化等。
例如,一个简单的生物种群模型可以用一阶线性微分方程来描述。
这个方程中的未知函数是时间的函数,表示种群数量随时间的变化。
通过求解这个方程,可以推导出种群的稳定点、消亡速度和周期性等信息,从而对生物现象进行研究和分析。
最后,常微分方程还在工程学建模中广泛应用。
工程学中的许多问题,如电路、动力学系统、流体力学等,都可以用微分方程来描述。
例如,一个简单的电路模型可以用一阶非线性微分方程来描述。
这个方程中的未知函数是时间的函数,表示电流随时间的变化。
通过求解这个方程,可以推导出电流的稳定值、频率响应和幅频特性等信息,从而对电路的性能进行分析和优化。
综上所述,常微分方程在数学建模中具有重要的应用。
(完整版)常微分方程在数学建模中的应用.
微分方程应用1 引言常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具.数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题.因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用.2 数学模型简介通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助.建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节.3 常微分方程模型3.1 常微分方程的简介微分方程的发展有着渊远的历史.微分方程和微积分产生于同一时代,如苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时就对简单的微分方程用级数来求解.后来,瑞士数学家雅各布·贝努、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程理论.纵观微分方程的发展史,我们发现微分方程与物理、天文学以及日异月新的科学技术有着密切的联系.如牛顿研究天体力学和机械力学的时候,就利用了微分方程这个工具,从理论上得到了行星运动的规律.后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置.而这些都证明微分方程在改造自然和认识自然方面有着巨大的力量.微分方程是自变量、未知函数及函数的导数(或微分)组成的关系式.在解决实际问题的过程中,我们又得出了常微分方程的概念:如果在一个微分方程中出现的未知函数中只含有一个自变量,那么这个方程则称为常微分方程,也可以简单的叫做微分方程.在反映客观现实世界运动过程的量与量之间的关系中,大量存在满足微分方程关系似的数学模型,需要我们通过求解常微分方程来了解未知函数的性质.常微分方程是解决实际问题的重要工具.3.2 常微分方程模型示例数学模型按照建立模型的数学方法可以分为初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型和规划论模型等.当我们描述实际对象的某些特性随时间(或空间)而演变的过程,分析它的变化规律,预测他的未来性态时,通常要建立对象的动态模型,即微分方程模型.建立微分方程模型就是把物理、化学、生物科学、工程科学和社会科学中的规律和原理用含有待定函数的导数或微分的数学关系式表示出来.下面我们由浅入深地介绍一些微分方程模型.例1 细菌的增长率与总数成正比.如果培养的细菌总数在24h内由100增长为400,那么,前12h后总数是多少?解:第一句话说的是在任何瞬间都成立的事实;第二句话给出的是特定瞬间的信息.如果我们用)y表示总数,第一句话告诉我们(tky dtdy = 它的通解为kt y Ae =A 和k 这两个常数可以由问题中第二句话提供的信息计算出来,即,100)0(=y (3.1) 和 ,400)24(=y (3.2) 其中t 的单位为小时.(3.1)意味着.100)0(0===A Ae y(3.2)意味着.400100)24(24==k e y它给出 .24)4(ln =k 故 .100)(244ln t e t y =要我们求的是200100)12(4ln )2412(==e y 个细菌.例 2 将室内一支读数为 60的温度计放到室外.10min 后,温度计的读数为 70;又过了10min ,读数为 76.先不用计算,推测一下室外的温度.然后利用牛顿的冷却定律计算出正确的答案.牛顿的冷却定律或称加热定律是:将温度为T 的物体放进处于常温m 的介质中时,T 的变化速率正比于T 与周围介质的温度差.在这个数学模型中,假定介质足够大,从而,当放入一个较热或较冷的物体时,m 基本上不受影响.实验证明,这是一个相当好的近似.解 显然,对于这个题首先要做的是了解牛顿定律的含义,这已经做过了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常微分方程在数学建模中的应用这里介绍几个典型的用微分方程建立数学模型的例子.一、人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型.解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ∆+时间段内,人口的增长量为t t rN t N t t N ∆=-∆+)()()(,并设0t t =时刻的人口为0N ,于是 ⎪⎩⎪⎨⎧==.,00)(d d N t N rN t N这就是马尔萨斯人口模型,用分离变量法易求出其解为)(00e )(t t r N t N -=,此式表明人口以指数规律随时间无限增长.模型检验:据估计1961年地球上的人口总数为91006.3⨯,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3⨯=N ,02.0=r ,于是 )1961(02.09e 1006.3)(-⨯=t t N .这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点).但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假设进行修改.1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数m N ,用来表示自然环境条件所能容许的最大人口数(一般说来,一个国家工业化程度越高,它的生活空间就越大,食物就越多,从而m N 就越大),并假设将增长率等于⎪⎪⎭⎫ ⎝⎛-m N t N r )(1,即净增长率随着)(t N 的增加而减小,当m N t N →)(时,净增长率趋于零,按此假定建立人口预测模型.解 由韦尔侯斯特假定,马尔萨斯模型应改为⎪⎩⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-=,,000)(1d d N t N N N N r t N上式就是逻辑模型,该方程可分离变量,其解为,)(00e 11)(t t r m mN N N t N --⎪⎪⎭⎫ ⎝⎛-+=.下面,我们对模型作一简要分析.(1)当∞→t ,m N t N →)(,即无论人口的初值如何,人口总数趋向于极限值m N ;(2)当m N N <<0时,01d d >⎪⎪⎭⎫ ⎝⎛-=N N N r t N m ,这说明)(t N 是时间t 的单调递增函数; (3)由于N N N N N r t N m m ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=211d d 222,所以当2m N N <时,0d d 22>t N ,t N d d 单增;当2m N N >时,0d d 22<t N ,t N d d 单减,即人口增长率tN d d 由增变减,在2m N 处最大,也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速率逐渐变小,并且迟早会达到零,这是减速生长期;(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明显的原因是在20世纪60年代美国的实际人口数已经突破了20世纪初所设的极限人口.由此可见该模型的缺点之一是m N 不易确定,事实上,随着一个国家经济的腾飞,它所拥有的食物就越丰富, m N 的值也就越大;(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,029.0=r ,又当人口总数为91006.3⨯时,人口每年以2%的速率增长,由逻辑模型得 ⎪⎪⎭⎫ ⎝⎛-=m N N r t N N 1d d 1, 即 ⎪⎪⎭⎫ ⎝⎛⨯-=m N 91006.31029.002.0, 从而得 91086.9⨯=m N ,即世界人口总数极限值近100亿.值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的鱼等,逻辑模型有着广泛的应用.二、市场价格模型对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.例3 试建立描述市场价格形成的动态过程的数学模型解 假设在某一时刻t ,商品的价格为)(t p ,它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格)(t p 的变化率tp d d 与需求和供给之差成正比,并记),(r p f 为需求函数,)(p g 为供给函数(r 为参数),于是()()[]⎪⎩⎪⎨⎧=-=,,0)0(,d d p p p g r p f t p α 其中0p 为商品在0=t 时刻的价格,α为正常数.若设b ap r p f +-=),(,d cp p g +=)(,则上式变为⎪⎩⎪⎨⎧=-++-=,,0)0()()(d d p p d b p c a t p αα ①其中d c b a ,,,均为正常数,其解为 ca dbc ad b p t p t c a +-+⎪⎭⎫ ⎝⎛+--=+-)(0e )(α.下面对所得结果进行讨论:(1)设p 为静态均衡价格 ,则其应满足0)(),(=-p g r p f ,即d p c b p a +=+-, 于是得ca db p +-=,从而价格函数)(t p 可写为 p p p t p tc a +-=+-)(0e )()(α ,令+∞→t ,取极限得p t p t =+∞→)(lim这说明,市场价格逐步趋于均衡价格.又若初始价格p p =0,则动态价格就维持在均衡价格p 上,整个动态过程就化为静态过程;(2)由于t c a c a p p t p )(0e )()(d d +-+-=αα , 所以,当p p >0时,0d d <t p ,)(t p 单调下降向p 靠拢;当p p <0时, 0d d >tp ,)(t p 单调增加向p 靠拢.这说明:初始价格高于均衡价格时,动态价格就要逐步降低,且逐步靠近均衡价格;否则,动态价格就要逐步升高.因此,式①在一定程度上反映了价格影响需求与供给,而需求与供给反过来又影响价格的动态过程,并指出了动态价格逐步向均衡价格靠拢的变化趋势.三、混合溶液的数学模型例 4 设一容器内原有100L 盐,内含有盐10kg,现以3L/min 的速度注入质量浓度为0.01kg/L 的淡盐水,同时以2L/min 的速度抽出混合均匀的盐水,求容器内盐量变化的数学模型.解 设t 时刻容器内的盐量为)(t x kg,考虑t 到t t d +时间内容器中盐的变化情况,在dt 时间内容器中盐的改变量=注入的盐水中所含盐量-抽出的盐水中所含盐量容器内盐的改变量为x d ,注入的盐水中所含盐量为t d 301.0⨯,t 时刻容器内溶液的质量浓度为tt x )23(100)(-+,假设t 到t t d +时间内容器内溶液的质量浓度不变(事实上,容器内的溶液质量浓度时刻在变,由于t d 时间很短,可以这样看).于是抽出的盐水中所含盐量为t tt x d 2)23(100)(-+,这样即可列出方程t tx t x d 1002d 03.0d +-=, 即 tx t x +-=100203.0d d . 又因为0=t 时,容器内有盐10kg,于是得该问题的数学模型为d 20.03d 100(0)10x x t t x ⎧+=⎪+⎪⎨⎪⎪=⎩,, 这是一阶非齐次线性方程的初值问题,其解为 24)100(109)100(01.0)(t t t x +⨯++=. 下面对该问题进行一下简单的讨论,由上式不难发现:t 时刻容器内溶液的质量浓度为34)100(10901.0100)()(t t t x t p +⨯+=+=, 且当+∞→t 时,01.0)(→t p ,即长时间地进行上述稀释过程,容器内盐水的质量浓度将趋于注入溶液的质量浓度.溶液混合问题的更一般的提法是:设有一容器装有某种质量浓度的溶液,以流量1V 注入质量浓度为1C 的溶液 (指同一种类溶液,只是质量浓度不同),假定溶液立即被搅匀,并以2V 的流量流出这种混合溶液,试建立容器中质量浓度与时间的数学模型.首先设容器中溶质的质量为)(t x ,原来的初始质量为0x ,t =0时溶液的体积为2V ,在d t 时间内,容器内溶质的改变量等于流入溶质的数量减去流出溶质的数量,即t V C t V C x d d d 2211-=,其中1C 是流入溶液的质量浓度, 2C 为t 时刻容器中溶液的质量浓度,,tV V V x C )(2102-+=于是,有混合溶液的数学模型 11220d d (0)x C V C V t x x ⎧=-⎪⎨⎪=⎩,. 该模型不仅适用于液体的混合,而且还适用于讨论气体的混合.四、振动模型振动是生活与工程中的常见现象.研究振动规律有着极其重要的意义.在自然界中,许多振动现象都可以抽象为下述振动问题.例5 设有一个弹簧,它的上端固定,下端挂一个质量为m 的物体,试研究其振动规律. 解 假设(1)物体的平衡位置位于坐标原点,并取x 轴的正向铅直向下(见图4).物体的平衡位置指物体处于静止状态时的位置.此时,作用在物体上的重力与弹性力大小相等,方向相反;(2)在一定的初始位移0x 及初始速度0v 下,物体离开平衡位置,并在平衡位置附近作没有摇摆的上下振动;(3)物体在t 时刻的位置坐标为)(t x x =,即t 时刻物体偏离平衡位置的位移;(4)在振动过程中,受阻力作用.阻力的大小与物体速度成正比,阻力的方向总是与速度方向相反,因此阻力为tx h d d -,h 为阻尼系数;(5)当质点有位移)(t x 时,假设所受的弹簧恢复力是与位移成正比的,而恢复力的方向总是指向平衡位置,也就是总与偏离平衡位置的位移方向相反,因此所受弹簧恢复力为kx -,其中k 为劲度系数;(6)在振动过程中受外力)(t f 的作用.在上述假设下,根据牛顿第二定律得 )(d d d d 22x f kx t x h tx m +--= , ① 这就是该物体的强迫振动方程.由于方程①中, )(t f 的具体形式没有给出,所以,不能对式①直接求解.下面我们分四种情形对其进行讨论.1. 无阻尼自由振动在这种情况下,假定物体在振动过程中,既无阻力、又不受外力作用.此时方程①变为0d d 22=+kx tx m , 令2ω=mk ,方程变为 0d d 222=+x tx ω, 特征方程为 022=+ωλ,特征根为 ωλi 2,1±=,通解为 t C t C x ωωcos sin 21+=,或将其写为 ⎪⎪⎭⎫ ⎝⎛++++=t C C C t C C C C C x ωωcos sin 22212222112221图4()t t A ωϕωϕcos sin sin cos +=,)sin(ϕω+=t A 其中 2221C C A +=,22212sin C C C +=ϕ,22211cos C C C +=ϕ.这就是说,无阻尼自由振动的振幅2221C C A +=,频率mk =ω均为常数. 2.有阻尼自由振动在该种情况下,考虑物体所受到的阻力,不考虑物体所受的外力.此时,方程①变为0d d d d 22=++kx t x h tx m , 令2ω=m k ,δ2=mh ,方程变为 0d d 2d d 222=++x t x tx ωδ, 特征方程为0222=++ωδλλ,特征根 222,1ωδδλ-±-=.根据δ与ω的关系,又分为如下三种情形: (1)大阻尼情形, δ>ω.特征根为二不等实根,通解为t t C C x )(2)(12222e e ωδδωδδ-+--+-+=(2)临界阻尼情形,ωδ=.特征根为重根,通解为t t C C x δ-+=e)(21 这两种情形,由于阻尼比较大,都不发生振动.当有一初始扰动以后,质点慢慢回到平衡位置,位移随时间t 的变化规律分别如图5和图6所示.图5 图6(3)小阻尼情形,δ<ω.特征根为共轭复根,通解为)sin C sinC (e 222221t t x t δωδωδ-+-=- 将其简化为 )sin(e 22ϕδωδ+-=-t A x t 其中,cos ,sin ,22211222122221C C C C C C C C A ++=+=ϕϕ振幅A t δ-e 随时间t 的增加而减小.因此,这是一种衰减振动.位移随时间t 的变化规律见图7.3.无阻尼强迫振动在这种情形下,设物体不受阻力作用,其所受外力为简谐力pt m t f sin )(=,此时,方程①化为 pt m kx tx m sin d d 22=+, pt x tx sin d d 222=+ω, 根据p i 是否等于特征根ωi ,其通解分为如下两种情形: (1)当ω≠p 时,其通解为 图7t C t C pt px ωωωcos sin sin 12122++-=, 此时,特解的振幅221p -ω为常数,但当p 接近于ω时,将会导致振幅增大,发生类似共振的现象;(2)当ω=p 时,其通解为t C t C pt t px ωωcos sin cos 2121++-=, 此时,特解的振幅t p21随时间t 的增加而增大,这种现象称为共振,即当外力的频率p 等于物体的固有频率ω时,将发生共振.4.阻尼强迫振动在这种情形下,假定振动物体既受阻力作用,又受外力pt m x f sin )(=的作用,并设ωδ<,方程①变为 pt x t x tx sin d d 2d d 222=++ωδ ,特征根0,i 22≠-±-=δδωδλ,则p i 不可能为特征根,特解为pt B pt A x cos sin *+=, 其中22222224)(p p p A δωω+--= ,222224)(2pp p B δωδ+--=, 还可将其化为*22222221[()sin 2cos ]()4x w p pt p pt w p pδδ=---+, 由此可见,在有阻尼的情况下,将不会发生共振现象,不过,当ω=p 时, pt p x cos 21*δ-=, 若δ很小,则仍会有较大的振幅;若δ比较大,则不会有较大的振幅.常微分方程在数学建模中的应用这里介绍几个典型的用微分方程建立数学模型的例子.一、人口预测模型由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型.例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型.解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ∆+时间段内,人口的增长量为t t rN t N t t N ∆=-∆+)()()(,并设0t t =时刻的人口为0N ,于是 ⎪⎩⎪⎨⎧==.,00)(d d N t N rN t N这就是马尔萨斯人口模型,用分离变量法易求出其解为)(00e )(t t r N t N -=,此式表明人口以指数规律随时间无限增长.模型检验:据估计1961年地球上的人口总数为91006.3⨯,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3⨯=N ,02.0=r ,于是 )1961(02.09e 1006.3)(-⨯=t t N .这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点).但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改.例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地球上的各种资源只能供一定数量的人生活,随着人口的增加,自然资源环境条件等因素对人口增长的限制作用越来越显著,如果当人口较少时,人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随人口的增加而减小.因此,应对马尔萨斯模型中关于净增长率为常数的假设进行修改.1838年,荷兰生物数学家韦尔侯斯特(Verhulst)引入常数m N ,用来表示自然环境条件所能容许的最大人口数(一般说来,一个国家工业化程度越高,它的生活空间就越大,食物就越多,从而m N 就越大),并假设将增长率等于⎪⎪⎭⎫ ⎝⎛-m N t N r )(1,即净增长率随着)(t N 的增加而减小,当m N t N →)(时,净增长率趋于零,按此假定建立人口预测模型.解 由韦尔侯斯特假定,马尔萨斯模型应改为⎪⎩⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-=,,000)(1d d N t N N N N r t N上式就是逻辑模型,该方程可分离变量,其解为,)(00e 11)(t t r m mN N N t N --⎪⎪⎭⎫ ⎝⎛-+=.下面,我们对模型作一简要分析.(1)当∞→t ,m N t N →)(,即无论人口的初值如何,人口总数趋向于极限值m N ;(2)当m N N <<0时,01d d >⎪⎪⎭⎫ ⎝⎛-=N N N r t N m ,这说明)(t N 是时间t 的单调递增函数;(3)由于N N N N N r t N m m ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=211d d 222,所以当2m N N <时,0d d 22>t N ,t N d d 单增;当2m N N >时,0d d 22<t N ,t N d d 单减,即人口增长率tNd d 由增变减,在2m N 处最大,也就是说在人口总数达到极限值一半以前是加速生长期,过这一点后,生长的速率逐渐变小,并且迟早会达到零,这是减速生长期;(4)用该模型检验美国从1790年到1950年的人口,发现模型计算的结果与实际人口在1930年以前都非常吻合,自从1930年以后,误差愈来愈大,一个明显的原因是在20世纪60年代美国的实际人口数已经突破了20世纪初所设的极限人口.由此可见该模型的缺点之一是m N 不易确定,事实上,随着一个国家经济的腾飞,它所拥有的食物就越丰富, m N 的值也就越大;(5)用逻辑模型来预测世界未来人口总数.某生物学家估计,029.0=r ,又当人口总数为91006.3⨯时,人口每年以2%的速率增长,由逻辑模型得⎪⎪⎭⎫⎝⎛-=m N N r t N N 1d d 1, 即 ⎪⎪⎭⎫ ⎝⎛⨯-=m N 91006.31029.002.0, 从而得 91086.9⨯=m N ,即世界人口总数极限值近100亿.值得说明的是:人也是一种生物,因此,上面关于人口模型的讨论,原则上也可以用于在自然环境下单一物种生存着的其他生物,如森林中的树木、池塘中的鱼等,逻辑模型有着广泛的应用.二、市场价格模型对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等(这样的价格称为(静态)均衡价格).也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程.例3 试建立描述市场价格形成的动态过程的数学模型解 假设在某一时刻t ,商品的价格为)(t p ,它与该商品的均衡价格间有差别,此时,存在供需差,此供需差促使价格变动.对新的价格,又有新的供需差,如此不断调节,就构成市场价格形成的动态过程,假设价格)(t p 的变化率tpd d 与需求和供给之差成正比,并记),(r p f为需求函数,)(p g 为供给函数(r 为参数),于是()()[]⎪⎩⎪⎨⎧=-=,,0)0(,d d p p p g r p f tpα 其中0p 为商品在0=t 时刻的价格,α为正常数.若设b ap r p f +-=),(,d cp p g +=)(,则上式变为⎪⎩⎪⎨⎧=-++-=,,0)0()()(d d p p d b p c a t pαα ① 其中d c b a ,,,均为正常数,其解为ca db c a d b p t p t c a +-+⎪⎭⎫ ⎝⎛+--=+-)(0e)(α. 下面对所得结果进行讨论:(1)设p 为静态均衡价格 ,则其应满足0)(),(=-p g r p f ,即d p c b p a +=+-,于是得ca db p +-=,从而价格函数)(t p 可写为 p p p t p t c a +-=+-)(0e )()(α , 令+∞→t ,取极限得p t p t =+∞→)(lim这说明,市场价格逐步趋于均衡价格.又若初始价格p p =0,则动态价格就维持在均衡价格p 上,整个动态过程就化为静态过程;(2)由于t c a c a p p tp)(0e )()(d d +-+-=αα , 所以,当p p >0时,0d d <t p ,)(t p 单调下降向p 靠拢;当p p <0时, 0d d >tp ,)(t p 单调增加向p 靠拢.这说明:初始价格高于均衡价格时,动态价格就要逐步降低,且逐步靠近均衡价格;否则,动态价格就要逐步升高.因此,式①在一定程度上反映了价格影响需求与供给,而需求与供给反过来又影响价格的动态过程,并指出了动态价格逐步向均衡价格靠拢的变化趋势.三、混合溶液的数学模型例 4 设一容器内原有100L 盐,内含有盐10kg,现以3L/min 的速度注入质量浓度为0.01kg/L 的淡盐水,同时以2L/min 的速度抽出混合均匀的盐水,求容器内盐量变化的数学模型.解 设t 时刻容器内的盐量为)(t x kg,考虑t 到t t d +时间内容器中盐的变化情况,在dt 时间内容器中盐的改变量=注入的盐水中所含盐量-抽出的盐水中所含盐量容器内盐的改变量为x d ,注入的盐水中所含盐量为t d 301.0⨯,t 时刻容器内溶液的质量浓度为tt x )23(100)(-+,假设t 到t t d +时间内容器内溶液的质量浓度不变(事实上,容器内的溶液质量浓度时刻在变,由于t d 时间很短,可以这样看).于是抽出的盐水中所含盐量为t tt x d 2)23(100)(-+,这样即可列出方程t txt x d 1002d 03.0d +-=,即txt x +-=100203.0d d . 又因为0=t 时,容器内有盐10kg,于是得该问题的数学模型为d 20.03d 100(0)10x x t tx ⎧+=⎪+⎪⎨⎪⎪=⎩,, 这是一阶非齐次线性方程的初值问题,其解为24)100(109)100(01.0)(t t t x +⨯++=. 下面对该问题进行一下简单的讨论,由上式不难发现:t 时刻容器内溶液的质量浓度为34)100(10901.0100)()(t t t x t p +⨯+=+=, 且当+∞→t 时,01.0)(→t p ,即长时间地进行上述稀释过程,容器内盐水的质量浓度将趋于注入溶液的质量浓度.溶液混合问题的更一般的提法是:设有一容器装有某种质量浓度的溶液,以流量1V 注入质量浓度为1C 的溶液 (指同一种类溶液,只是质量浓度不同),假定溶液立即被搅匀,并以2V 的流量流出这种混合溶液,试建立容器中质量浓度与时间的数学模型.首先设容器中溶质的质量为)(t x ,原来的初始质量为0x ,t =0时溶液的体积为2V ,在d t 时间内,容器内溶质的改变量等于流入溶质的数量减去流出溶质的数量,即t V C t V C x d d d 2211-=,其中1C 是流入溶液的质量浓度, 2C 为t 时刻容器中溶液的质量浓度,,tV V V xC )(2102-+=于是,有混合溶液的数学模型11220d d (0)xC V C V tx x ⎧=-⎪⎨⎪=⎩,. 该模型不仅适用于液体的混合,而且还适用于讨论气体的混合.四、振动模型振动是生活与工程中的常见现象.研究振动规律有着极其重要的意义.在自然界中,许多振动现象都可以抽象为下述振动问题.例5 设有一个弹簧,它的上端固定,下端挂一个质量为m 的物体,试研究其振动规律. 解 假设(1)物体的平衡位置位于坐标原点,并取x 轴的正向铅直向下(见图4).物体的平衡位置指物体处于静止状态时的位置.此时,作用在物体上的重力与弹性力大小相等,方向相反;(2)在一定的初始位移0x 及初始速度0v 下,物体离开平衡位置,并在平衡位置附近作没有摇摆的上下振动;(3)物体在t 时刻的位置坐标为)(t x x =,即t 时刻物体偏离平衡位置的位移;(4)在振动过程中,受阻力作用.阻力的大小与物体速度成正比,阻力的方向总是与速度方向相反,因此阻力为txhd d -,h 为阻尼系数;(5)当质点有位移)(t x 时,假设所受的弹簧恢复力是与位移成正比的,而恢复力的方向总是指向平衡位置,也就是总与偏离平衡位置的位移方向相反,因此所受弹簧恢复力为kx -,其中k 为劲度系数;(6)在振动过程中受外力)(t f 的作用.在上述假设下,根据牛顿第二定律得)(d d d d 22x f kx t xh tx m +--= , ①这就是该物体的强迫振动方程.由于方程①中, )(t f 的具体形式没有给出,所以,不能对式 ①直接求解.下面我们分四种情形对其进行讨论.1. 无阻尼自由振动在这种情况下,假定物体在振动过程中,既无阻力、又不受外力 作用.此时方程①变为0d d 22=+kx txm ,令2ω=mk,方程变为 0d d 222=+x tx ω,特征方程为 022=+ωλ, 特征根为ωλi 2,1±=,通解为 t C t C x ωωcos sin 21+=,或将其写为⎪⎪⎭⎫ ⎝⎛++++=t C C C t C C C C C x ωωcos sin 22212222112221()t t A ωϕωϕcos sin sin cos +=,)sin(ϕω+=t A 其中 2221C C A +=,22212sin CC C +=ϕ,22211cos CC C +=ϕ.这就是说,无阻尼自由振动的振幅2221C C A +=,频率mk=ω均为常数. 2.有阻尼自由振动在该种情况下,考虑物体所受到的阻力,不考虑物体所受的外力.此时,方程①变为0d d d d 22=++kx t xh tx m ,令2ω=m k ,δ2=mh,方程变为 0d d 2d d 222=++x t xtx ωδ, 特征方程为0222=++ωδλλ,特征根 222,1ωδδλ-±-=.根据δ与ω的关系,又分为如下三种情形:(1)大阻尼情形, δ>ω.特征根为二不等实根,通解为ttC C x )(2)(12222eeωδδωδδ-+--+-+=(2)临界阻尼情形,ωδ=.特征根为重根,通解为tt C C x δ-+=e)(21这两种情形,由于阻尼比较大,都不发生振动.当有一初始扰动以后,质点慢慢回到平衡位置,位移随时间t 的变化规律分别如图5和图6所示.图5 图6(3)小阻尼情形,δ<ω.特征根为共轭复根,通解为)sin C sinC (e 222221t t x t δωδωδ-+-=-将其简化为)sin(e 22ϕδωδ+-=-t A x t其中,cos ,sin ,22211222122221C C C C C C C C A ++=+=ϕϕ振幅A tδ-e 随时间t 的增加而减小.因此,这是一种衰减振动.位移随时间t 的变化规律见图7.3.无阻尼强迫振动在这种情形下,设物体不受阻力作用,其所受外力为简谐力pt m t f sin )(=,此时,方程①化为pt m kx t xm sin d d 22=+,pt x tx sin d d 222=+ω, 根据p i 是否等于特征根ωi ,其通解分为如下两种情形:(1)当ω≠p 时,其通解为 图7t C t C pt px ωωωcos sin sin 12122++-=, 此时,特解的振幅221p-ω为常数,但当p 接近于ω时,将会导致振幅增大,发生类似共振的现象;(2)当ω=p 时,其通解为t C t C pt t px ωωcos sin cos 2121++-=, 此时,特解的振幅t p21随时间t 的增加而增大,这种现象称为共振,即当外力的频率p 等于物体的固有频率ω时,将发生共振.4.阻尼强迫振动在这种情形下,假定振动物体既受阻力作用,又受外力pt m x f sin )(=的作用,并设ωδ<,方程①变为pt x t xtx sin d d 2d d 222=++ωδ , 特征根0,i22≠-±-=δδωδλ,则p i 不可能为特征根,特解为pt B pt A x cos sin *+=,其中22222224)(p p p A δωω+--=,222224)(2pp pB δωδ+--=, 还可将其化为*22222221[()sin 2cos ]()4x w p pt p pt w p pδδ=---+, 由此可见,在有阻尼的情况下,将不会发生共振现象,不过,当ω=p 时,pt px cos 21*δ-=, 若δ很小,则仍会有较大的振幅;若δ比较大,则不会有较大的振幅.。