教师资格证中学数学知识点
教师资格考试中学数学学科知识
![教师资格考试中学数学学科知识](https://img.taocdn.com/s3/m/ade968b2f80f76c66137ee06eff9aef8941e482c.png)
教师资格考试中学数学学科知识中学数学学科知识是教师资格考试的重要内容之一,涵盖了数学基础知识、基本技能、数学思想方法、数学应用等方面。
对于数学学科知识的理解和掌握,应从以下几个方面入手:数学基础知识:包括代数、几何、概率与统计等基础知识,这些知识是数学学科的基础,必须熟练掌握。
基本技能:包括运算技能、推理技能、作图技能等,这些技能是解决数学问题的基本能力,必须具备扎实的基本功。
数学思想方法:包括函数与方程的思想、分类讨论的思想、化归与转化的思想等,这些思想方法是解决数学问题的关键,必须深入理解和掌握。
数学应用:中学数学学科知识不仅包括基础知识和技能,还包括数学应用方面的知识,如数学建模、数学抽象、数学归纳等,这些知识有助于学生运用数学解决实际问题。
近年来,教师资格考试中学数学学科知识的命题趋势呈现出注重基础、强调应用、考查思维等特点。
因此,在备考过程中,需要注意以下几点:注重基础知识的学习:中学数学学科知识的基础知识非常重要,必须熟练掌握。
在备考过程中,要注重基础知识的学习和巩固,尤其是基本概念、基本公式、基本方法等。
强调数学应用能力的培养:数学应用是中学数学学科知识的重要内容之一,也是命题的重点。
在备考过程中,要注重数学应用能力的培养,学会运用数学知识解决实际问题。
考查思维能力的提高:中学数学学科知识的命题不仅注重基础知识和应用能力,还注重思维能力的考查。
在备考过程中,要注重思维能力的提高,学会运用数学思想方法解决问题。
熟悉题型和考试时间:教师资格考试中学数学学科知识的题型包括选择题、填空题、解答题等,考试时间为120分钟。
在备考过程中,要熟悉各种题型和考试时间分配,提高解题速度和准确率。
中学数学学科知识的内容非常丰富,有些知识点可能比较抽象或复杂,需要考生深入理解和掌握。
以下是一些重点难点及突破方法:函数与方程:函数与方程是中学数学的重要内容之一,也是解决实际问题的重要工具。
在备考过程中,要注重函数与方程的基本概念、性质和方法的掌握,同时要注意与实际问题的和应用。
2024下半年教师资格证笔试预测知识点-高中数学
![2024下半年教师资格证笔试预测知识点-高中数学](https://img.taocdn.com/s3/m/8e482e1e326c1eb91a37f111f18583d049640fc9.png)
2024年下半年全国教师资格证考试重点知识高中数学知识点·极限1.洛必达法则(1)概念:在分子与分母导数都存在的情况下,分别对分子分母进行求导运算,直到该极限的类型为可以直接代入求解即可.(2)适用类型:通常情况下适用于00型或者是∞∞型极限.2.利用两个重要极限0sin lim 1x x x →=,1lim 1e x x x →∞⎛⎫+= ⎪⎝⎭(或()10lim 1e x x x →+=).知识点·导数1.导数的几何意义函数()f x 在点0x 处的导数()'0f x 的几何意义是在曲线()y f x =上点()()00,x f x 处的切线的斜率.相应地,切线方程为()()()'000y f x f x x x -=-.2.导数的运算法则(1)()()()()'''f x g x f x g x ⎡±⎤=±⎣⎦.(2)()()()()()()'''f x g x f x g x f x g x ⎡⋅⎤=+⎣⎦.(3)()()()()()()()()()'''20f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎢⎥⎣⎦.3.导数与函数的单调性在某个区间(),a b 内,如果()'0f x >,那么函数()y f x =在这个区间内是增加的;如果()'0f x <,那么函数()y f x =在这个区间内是减少的.知识点·行列式的基本性质1.行列式的值等于其转置行列式的值,即T D D =.2.行列式中任意两行(列)位置互换,行列式的值反号.3.若行列式中两行(列)对应元素相同,行列式值为零.4.若行列式中某一行(列)有公因子k ,则公因子k 可提取到行列式符号外,即nn n n sn s s n a a a ka ka ka a a a212111211nnn n sn s s n a a a a a a a a a k 212111211=.5.行列式中若一行(列)均为零元素,则此行列式值为零.6.行列式中若两行(列)元素对应成比例,则行列式值为零.知识点·齐次线性方程组1.解的情况(1)当()rA n =,齐次线性方程组只有零解.(2)当()r A n <,齐次线性方程组有非零解.2.解的性质(1)方程组(a )的两个解的和还是方程组(a )的解;(2)方程组(a )的一个解的倍数还是方程组(a )的解.3.基础解系(1)齐次线性方程组(a )的一组解12,,,t ηηηL 称为(a )的一个基础解系,如果①方程组(a )的任何一个解都能表成12,,,t ηηηL 的线性组合;②12,,,t ηηηL 线性无关.(2)在齐次线性方程组(a )有非零解的情况下,它有基础解系,并且基础解系所含解的个数等于n r -,这里r 表示系数矩阵的秩(n r -也就是自由未知量的个数).知识点·非齐次线性方程组1.线性方程组有解的判别定理线性方程组(b )有解的充分必要条件为()()rA r A =.方程组Axb =(A 为m n ⨯矩阵)解的情况:()(r A r A n ==⇔有唯一解()(r A r A n =<⇔有无穷多解()1()r A r A +=⇔无解,即b 不能由A 的列向量线性表出.2.解的性质(1)线性方程组(b )的两个解的差是它的导出组(a )的解.(2)线性方程组(b )的一个解与它的导出组(a )的一个解之和还是线性方程组(b )的解.(3)如果0γ是线性方程组(b )的一个特解,那么方程组(b )的任一个解γ都可表示成0γγη=+,其中η是导出组(a )的一个解.因此,对于方程组(b )的任一个特解0γ,当η取遍它的导出组的全部解时,0γγη=+就给(b )的全部解.(4)在方程组(b )有解的条件下,解是唯一的充分必要条件是它的导出组(a )只有零解.知识点·向量组的线性相关性1.基本概念线性相(无)关向量组12,,,s ααα 称为线性相关,如果有数域P 中不全为零的数12,,,s k k k ,使11220s s k k k ααα+++= ,否则称12,,,s ααα 是线性无关的.注:任意一个包含零向量的向量组一定是线性相关的.2.向量组线性关系的判定(1)向量组12,,,(2)s s ααα≥L 线性相关的充要条件是其中至少有某一向量(1)i i s α≤≤可由其余向量线性表示.(2)如果一向量组的一部分线性相关,那么这个向量组就线性相关;也就是说如果一向量组线性无关,那么它的任何一个非空的部分组也线性无关.3.极大线性无关组若向量组12,,,s ααα 的一部分向量12,,,i i ir ααα 满足:(1)12,,,i i ir ααα 线性无关;(2)12,,,s ααα 中的任一向量i α均可由其线性表示;则称此部分向量组12,,,i i ir ααα 为原向量组的一个极大线性无关组.4.性质(1)任意一个极大线性无关组都与向量组自身等价.(2)向量组的极大线性无关组不一定唯一,但任意两个极大线性无关组等价.5.向量组的秩向量组的极大线性无关组所含向量的个数称为这个向量组的秩.(1)秩为r 的n 维向量组中的任意r 个线性无关的向量都是向量组的一个极大线性无关组.(2)等价的向量组必有相同的秩.(秩相同的向量组未必等价);注:考虑到线性无关的向量组就是它自身的极大线性无关组,因此一向量组线性无关的充要条件是它的秩与它所含向量的个数相同.(3)设12,,,r αααL 与12,,,s βββL 两个向量组,如果向量组12,,,r αααL 可以由12,,,s βββL 线性表出,则()()1212,,,,,,r s r r αααβββ≤ .6.矩阵的秩矩阵的行向量组的秩称为矩阵的行秩,矩阵的列向量组的秩称为矩阵的列秩,对任意矩阵,行秩=列秩=矩阵的秩.矩阵A 的秩是r 的充分必要条件为A 中有一个r 阶子式不为零,同时所有1r +阶子式全为零.n n ⨯矩阵的行列式为零的充要条件是它的秩小于n .知识点·线面位置关系1.两个平面间的关系1111122222:0,:0A x B y C z D A x B y C z D ∏+++=∏+++=,则1∏∥2∏11112222A B C D A B C D ⇔==≠;121212120A A B B C C ∏⊥∏⇔++=;1∏与2∏的夹角θ(法向量间的夹角,不大于90)满足:1212cos n n n n θ⋅== 2.两条直线间的关系设1111111:x x y y z z L l m n ---==,2222222:x x y y z z L l m n ---==,则1L ∥2L 111222l m n l m n ⇔==,且111(,,)x y z 不满足2L 的方程;121212120L L l l m m n n ⊥⇔++=;1L 与2L 的夹角θ(方向向量间的夹角,不大于90度)满足cos θ=.3直线和它在平面投影直线所夹锐角θ称为直线与平面的夹角.当直线与平面垂直时,规定夹角为2π.000:x x y y z z L l m n ---==,:0Ax By Cz D ∏+++=,{,,},{,,}s l m n n A B C == ,则L ∥∏s n ⇔⊥ ,即0Al Bm Cn ++=且0000Ax By Cz D +++≠;L ⊥∏s ⇔ ∥n ,即A B C l m n ==;L 与∏的夹角,2s n πθ=-〈〉 ,sin θ=.知识点·古典概型与几何概型1.古典概型(1)具有以下两个特点的概率模型称为古典概率模型,简称古典概型.①试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.②每一个试验结果出现的可能性相等.(2)如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率()m P A n =.2.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(1)要切实理解并掌握几何概型试验的两个基本特点①无限性:在一次试验中,可能出现的结果有无限多个.②等可能性:每个结果的发生具有等可能性.(2)几何概型中,事件A 的概率计算公式()A P A =构成事件的区域测度(长度、面积、体积等)试验全部结果构成的区域测度(长度、面积、体积等).。
初中数学教师资格证知识点总结
![初中数学教师资格证知识点总结](https://img.taocdn.com/s3/m/d0a39e840408763231126edb6f1aff00bed5700e.png)
初中数学教师资格证知识点总结一、数与代数1.1 数的认识1.1.1 自然数、整数、有理数、无理数、实数的概念及它们之间的关系。
1.1.2 负数的认识,正数、负数的加法、减法及乘法。
1.1.3 整数的乘法与除法。
1.1.4 有理数的加、减、乘、除及乘方。
1.1.5 实数的加、减、乘、除及乘方。
1.2 代数式与方程1.2.1 代数式的概念及代数式的加、减、乘、除。
1.2.2 对代数式进行加、减、乘、除时的化简与展开。
1.2.3 一次方程及一次方程的解法。
1.2.4 一元一次方程组。
1.2.5 整式的概念及整式的加、减、乘、除。
1.2.6 因式分解、公式及分式。
1.3 多项式与因式分解1.3.1 一元多项式及多项式的加、减、乘。
1.3.2 多项式的乘法公式与除法。
1.3.3 多项式的因式分解。
1.4 分式1.4.1 有理分式的概念及有理分式的加、减、乘、除。
1.4.2 分式方程。
1.4.3 分式的化简。
1.5 根式1.5.1 整式的加、减及乘。
1.5.2 一次根式、二次根式、幂的运算及化简。
1.5.3 根式的加、减及乘。
1.6 基本不等式1.6.1 一元一次不等式与二元一次不等式的解法。
1.6.2 绝对值不等式。
二、几何2.1 四边形2.1.1 三角形、四边形、五边形、六边形等概念及性质。
2.1.2 三角形的分类。
2.1.3 四边形的分类。
2.1.4 四边形的性质。
2.1.5 四边形的特殊点与特殊线。
2.2 圆及圆的应用2.2.1 圆的概念。
2.2.2 圆的性质。
2.2.3 圆的周长和面积。
2.2.4 圆的切线及切线定理。
2.2.5 圆的问题求解。
2.3 三角形2.3.1 三角形的概念。
2.3.2 三角形的分类。
2.3.3 三角形的性质。
2.3.4 三角形的面积。
2.3.5 三角形的条件与判定。
2.4 相似三角形2.4.1 相似三角形的概念。
2.4.2 相似三角形的性质。
2.4.3 相似三角形的等比例线段。
教师资格证初中数学知识点总结
![教师资格证初中数学知识点总结](https://img.taocdn.com/s3/m/c57b5d890d22590102020740be1e650e52eacf97.png)
教师资格证初中数学知识点总结一、数与代数1.自然数和整数自然数是人们用来计数的数,用N表示。
整数包括自然数和自然数的负数,用Z表示。
自然数是一种数的集合,是从1开始一直向上无限延伸的,如1,2,3,4,5……。
正整数是自然数加上0的结果,如0,1,2,3,4……。
2.有理数有理数是可以表示为两个整数的比值的数,如整数、两个整数的商、分子分母为整数的分数,用Q表示。
有理数包括正有理数、负有理数、零、分数、百分数等。
3.实数实数是包括有理数和无理数在内的一切数的集合,用R表示。
实数是数轴上所有点的集合,是一个无限的集合。
4.代数式代数式是由数字、字母和运算符号组成的式子,如3x+5、a-b等。
代数式内部可以包含常数、未知数、幂、根式、配方法等。
5.一元一次方程一元一次方程是指只含有一个未知数的一次方程,如2x+3=7。
求解一元一次方程的方法有加减法相消、乘除法相消、两边取相反数等。
6.一元一次不等式一元一次不等式是指只含有一个未知数的一次不等式,如2x+3>7。
求解一元一次不等式的方法同样有加减法相消、乘除法相消、两边取相反数等。
7.方程和不等式的应用方程和不等式可以用来解决各种实际问题,如求方程和不等式的解、利用方程和不等式解决实际问题等。
8.整式与分式整式是由单项式或者多项式通过加法、减法运算得到的式子,如3x+4、2x^2-3x+5等。
分式是由一个整式除以另一个整式得到的式子,如2/3、3/x等。
二、几何平面图形是指平面上的点、线和面的组合,包括点、线、角、三角形、四边形、多边形、圆等。
平面图形可以按照性质和特征来分类。
2.相似与全等相似两个图形是指它们的形状相同,但大小不同,可以通过放缩、旋转等得到另一个。
全等两个图形是指它们的形状和大小完全相同,只是位置不同。
3.三角形三角形是一个有三条边的图形,按照边长和角度可分为不同的种类。
常见的三角形有等边三角形、等腰三角形、直角三角形、等腰直角三角形、直角等边三角形等。
教师资格证初中数学知识点总结
![教师资格证初中数学知识点总结](https://img.taocdn.com/s3/m/a1f6344377c66137ee06eff9aef8941ea76e4b00.png)
教师资格证初中数学知识点总结一、数的概念和计算1.数的分类:–自然数:0、1、2、3…–整数:负整数、零、正整数–有理数:整数和分数–实数:有理数和无理数2.数的四则运算:–加法:两数相加–减法:从一个数中减去另一个数–乘法:两数相乘–除法:一个数被另一个数整除3.分数的概念和运算:–分子:分数的上部–分母:分数的下部–真分数:分子小于分母的分数–假分数:分子大于等于分母的分数–基本运算:加法、减法、乘法和除法4.百分数:–以100为基准的比例–计算方法:小数移位、转化为分数、计算百分数5.常见计算方法:–谈论一个数的大小时,要考虑数的绝对值、数的正负、数的比较大小–十进制数、分数、百分数的相互转化–奇数和偶数的性质与判断二、代数式与方程式1.代数式:–由数字、字母和运算符号组成的式子–运算法则:加法、减法、乘法和乘方–合并同类项和整理成一般式2.方程式和方程的解:–同一变量的等式–方程式的解:使方程式成立的未知数的值–一次方程式的解法:移项、消元、求解3.一次方程式的应用:–解决实际问题时,可以建立简单的一次方程式–根据方程式解题–根据实际情况检验方程式的解是否正确4.不等式:–同一变量的关系式,用不等号连接–不等式的解集表示不等式的解的范围–不等式的性质:加减,乘除同一个正数(负数),不等号方向不变三、图形的认识和计算1.图形的认识:–点、线、线段、角、三角形、四边形等图形–图形间的关系:平行、垂直、相等、全等等2.直线与角:–直线的性质:两点确定一条直线、垂直、平行线等–角的概念:两条线或两条线段的夹角–角的分类:锐角、直角、钝角等–角的加法和减法:补角、余角、对角等3.三角形:–三角形的分类:按边长和角度划分–三角形的性质:等边三角形、等腰三角形等–三角形的内角和:180度–三角形面积的计算四、数据的分析和统计1.数据与统计:–调查数据、整理数据–数据的分类和处理–用图形表示数据:条形图、折线图、饼状图2.平均数和中位数:–平均数的计算:算术平均数和加权平均数–中位数的计算:有限数据和无限数据3.概率与事件:–试验、样本空间和事件的概念–概率的计算:频率、几何和统计概率–概率的加法和乘法原理五、空间与形体1.空间与形体的认识:–几何图形的属性:线段、面、体–立体图形的命名和分类–空间位置的认识和判断2.视图与投影:–立体图形在平面上的投影–正投影与斜投影–视图的画法和转化3.相似与全等:–相似和全等图形的定义–相似和全等的判断和性质–根据相似和全等解决问题4.平移与旋转:–基本变换:平移和旋转–变换的性质和判断–根据变换解决问题以上是初中数学的主要知识点总结。
教师资格考试中学数学学科知识点汇总
![教师资格考试中学数学学科知识点汇总](https://img.taocdn.com/s3/m/9cdb3f730a4e767f5acfa1c7aa00b52acfc79caa.png)
教师资格考试中学数学学科知识点汇总示例文章篇一:教师资格考试中学数学学科知识点汇总一、数与代数(一)数的认识1. 整数整数包括正整数、零和负整数。
同学们,想想看,我们日常生活中是不是经常用到整数呀?比如买东西找零钱,数数班级里的人数。
那整数的运算规则你们都清楚吗?加法是把两个数合并成一个数的运算,减法是已知两个加数的和与其中一个加数,求另一个加数的运算。
这是不是很简单?2. 分数分数表示一个数是另一个数的几分之几。
比如说,把一个蛋糕平均分成几份,其中的一份就是几分之一。
那分数的加减法怎么算呢?通分可是个关键步骤哦!你们不会觉得这很难吧?3. 小数小数由整数部分、小数部分和小数点组成。
像我们测量身高、体重时,经常会用到小数。
小数的性质你们还记得吗?在小数的末尾添上“0”或去掉“0”,小数的大小不变,这可太神奇啦!(二)式与方程1. 代数式用运算符号把数和字母连接而成的式子叫做代数式。
比如3x + 5 ,这就是一个代数式。
那你们能根据题目写出相应的代数式吗?2. 方程含有未知数的等式叫做方程。
解方程可是个重要技能,能帮我们解决很多实际问题呢!比如说,小明买了5 个本子,每个本子x 元,一共花了10 元,那这个方程怎么列呢?二、图形与几何(一)平面图形1. 三角形三角形具有稳定性,这在生活中的应用可多啦!像自行车的车架、塔吊的结构。
三角形的内角和是180 度,你们能通过实验来证明吗?2. 四边形四边形包括平行四边形、长方形、正方形和梯形。
它们的特点和性质可不一样哦,一定要分清楚!3. 圆圆的周长和面积公式一定要牢记呀!想想看,为什么车轮要做成圆形的呢?(二)立体图形1. 长方体长方体有6 个面,12 条棱,8 个顶点。
计算长方体的表面积和体积可不能马虎!2. 正方体正方体是特殊的长方体,它的六个面都是正方形,而且棱长都相等。
3. 圆柱和圆锥圆柱的侧面积、表面积和体积公式要搞清楚,圆锥的体积是等底等高圆柱体积的三分之一,这可别记错啦!三、统计与概率(一)数据的收集与整理我们可以通过调查、实验、测量等方法收集数据。
教师资格证中学数学知识点
![教师资格证中学数学知识点](https://img.taocdn.com/s3/m/91718129cbaedd3383c4bb4cf7ec4afe05a1b113.png)
教师资格证中学数学知识点教师资格证考试是教育行业中的一个重要评价标准,而在教师资格证考试中,数学知识点一直是备受关注的内容。
教师资格证中学数学知识点主要涵盖了中学阶段的数学教学内容,包括基础知识、解题方法、应用能力等多个方面。
下面我们就来看看教师资格证中学数学知识点的具体内容。
一、基本概念和基础知识1. 整式与分式:整式加减乘除、分式的加减乘除及化简、分式方程等;2. 平面几何:角的概念及性质、平行线和三角形的性质、圆的性质等;3. 空间几何:立体图形的表面积和体积、平面与空间的位置关系等;4. 集合与函数:基本集合的运算、集合的关系与函数的性质、函数的图像和性质等;5. 初等代数:代数式的基本性质、方程、不等式、函数的概念等。
二、解题方法和技巧1. 代数运算:灵活运用代数运算,简化复杂算式,化简分式等;2. 几何推理:掌握几何图形的性质,灵活利用几何定理解题;3. 数据分析:能够分析数据,运用统计方法解决实际问题;4. 数列数论:掌握数列的概念及性质,推导数列的通项公式等。
三、应用能力和跨学科知识1. 数学建模:具备数学建模能力,能够将数学知识运用于实际问题的建模与求解;2. 数学思维:培养学生的数学思维,激发学生对数学的兴趣和探索欲望;3. 数学启发:能够通过数学启发学生思考和解决问题,促进学生的综合素质发展。
通过以上的介绍,可以看出教师资格证中学数学知识点涵盖的范围较广,内容也较为深入。
作为一名中学数学教师,不仅需要扎实的数学基础知识,还需要具备良好的解题能力和教学技巧。
希望广大教师资格证考生能够认真学习,充分准备,顺利通过考试,成为优秀的中学数学教师。
初中数学教资重点笔记
![初中数学教资重点笔记](https://img.taocdn.com/s3/m/307c8c43a7c30c22590102020740be1e650eccf2.png)
初中数学教资重点笔记本文将对初中数学教师资格考试的重点内容进行生动、丰富、明了和清楚的总结和笔记。
这些重点内容将帮助教师备考和提高数学教学能力。
一、数与式1.整数运算:加法、减法、乘法、除法等运算法则及应用。
2.分数运算:分数的加减乘除、化简、比较大小等。
3.方程与不等式:方程的解集、不等式的解集及应用。
二、代数式与函数1.代数式的基本概念:常数项、变量项、系数、次数等。
2.代数式的运算:加减乘除、合并同类项、开平方等。
3.函数的基本概念:定义域、值域、图像等。
4.线性函数与一次函数:斜率、截距、函数图像等。
三、几何形体与空间1.平面图形:三角形、四边形、多边形等的性质、周长、面积计算。
2.立体图形:长方体、正方体、圆柱体、球体等的性质、表面积、体积计算。
3.坐标与变换:平面直角坐标系、平移、旋转、对称等基本概念。
四、数与图1.统计与概率:数据的收集、整理、图表的制作和解读、概率的计算等。
2.函数与图像:函数图像的绘制、函数的性质及应用。
五、数学思想方法1.探究与证明:通过探究问题、提出猜想、举例验证、归纳总结等方法进行证明。
2.问题解决:分析问题、建立模型、寻找解法、检验结果等解题方法。
六、教学设计与评价1.教学目标的设定:根据学生的学情和教学大纲,合理设定教学目标。
2.教学方法与手段:多样化的教学方法、教具和辅助材料的使用。
3.学生评价与反馈:考察学生的基础知识、解题能力、思维方法等。
七、教育教学知识与实践1.教育心理学:学生发展特点、学习动机、学习障碍等。
2.教学管理:课堂管理、学生行为规范、班级管理等。
八、数学教育的理论与实践1.数学史与数学思想:了解数学的发展历程和数学家的贡献。
2.数学教育的现状与趋势:关注国内外数学教育的前沿动态和创新实践。
结语通过对初中数学教师资格考试的重点内容进行生动、丰富、明了和清楚的总结,我们可以更好地备考和提高自己的数学教学能力。
这些重点内容将帮助我们建立全面的数学知识体系,并了解数学教育的理论与实践。
初中数学教资面试常考篇目
![初中数学教资面试常考篇目](https://img.taocdn.com/s3/m/26cbf10eabea998fcc22bcd126fff705cc175c12.png)
初中数学教资面试常考篇目
一、几何:
1、几何图形分类及性质:二维和三维几何图形的概念及性质,直角坐
标系;
2、周长、面积和体积:三角形、正方形、长方形、平行四边形、平行
六面体、立方体等图形的周长、面积和体积计算公式;
3、比例及缩放:比例概念、缩放概念及计算;
4、直线及其属性:直线的性质、直线和圆的位置关系、求线段的斜率;
5、空间直线:正交坐标系及其旋转,垂线方程,平面和平面的位置关系;
6、圆及其属性:圆的性质、圆的方程,圆的内外坐标;
7、曲线及其类型:抛物线、双曲线等曲线的性质及类型;
二、数学归纳法:
1、数学归纳法的概念:数学归纳法简介,归纳法分析问题的步骤;
2、数论归纳:费马小定理、欧拉定理,质因数分解;
3、组合数归纳:排列组合、组合数定义,组合数的应用;
4、概率归纳:概率的概念,与和积法则,期望的概念。
三、推理:
1、猜想、证明与回答:数学模型的猜想,问题的证明,数学思想的发展,猜想、证明与回答的过程;
2、逻辑推理:排除法,连接猜测,规律推理,平行推理;
3、数学思维(模型):抽象数学模型,曲线模式,树结构模型,网状
模型;
4、数学空间:数学空间的概念、多维数学空间的定义和表示,及应用;
5、运算技巧:除法技巧、化简技巧、快速乘方技巧、等比数列的求和
技巧等。
四、数分式:
1、数分式的性质:数分式的概念、数分式的约分、分母为零的异常情况;
2、反比例函数:反比例函数定义、函数表示及曲线图形;
3、分数乘法:分数乘法归纳,不含零和无理数类型的乘法;
4、多项式:多项式定义、根的定义及求根法、优势应用;
5、几何分式:几何分式的定义、图形的因素及计算。
初中教师资格证数学考纲
![初中教师资格证数学考纲](https://img.taocdn.com/s3/m/baf159acb9f67c1cfad6195f312b3169a451ea0f.png)
初中教师资格证数学考纲初中教师资格证数学考纲是指在申请初中数学教师资格证书时所需掌握的数学知识和能力的总结和要求。
它的制定旨在提高初中数学教师的专业水平,确保他们有能力有效地开展数学教学工作。
下面就初中教师资格证数学考纲的内容及其意义进行探讨。
一、数学知识1. 数与代数1.1 数的认识与计算1.2 整数与分数1.3 代数式2. 几何与图形2.1 平面图形2.2 空间图形3. 函数与关系3.1 函数与方程3.2 图像与变换二、数学能力1. 实际问题的数学建模和解决能力2. 利用数学方法表达和解释现象的能力3. 运用数学工具进行问题求解和数学推理的能力4. 分析和解决与数学息息相关的问题的能力5. 良好的数学沟通和合作能力初中教师资格证数学考纲的目的在于确保申请教师资格证书的人具备充分的数学知识和能力。
通过考察候选人对数学知识的掌握程度和运用能力,考纲可以评估教师对数学的理解深度,对学生进行科学、有效的教学。
同时,初中教师资格证数学考纲的制定还能够促进数学教育的不断发展。
通过不断更新考纲的内容,可以对数学教学的内容和方式进行优化,提高教师教学和学生学习的效果。
考纲也为教师的培训提供了方向和依据,使教师能够更好地规划和组织自己的教学活动。
另外,初中教师资格证数学考纲还有助于对教师的选拔和评价。
通过对候选人的数学知识和能力进行量化评估,可以准确判断其适合从事初中数学教学的能力,并为招聘和雇佣教师提供依据。
总而言之,初中教师资格证数学考纲是教师资格认证中重要的一部分。
它明确了申请教师资格证书者需要具备的数学知识和能力,对教师的专业水平提出了明确的要求。
考纲的制定有助于提高教师的教学质量,并推动数学教育的发展。
我们应该重视初中教师资格证数学考纲的作用,提升自己的数学素养,为培养优秀的初中数学教师作出积极贡献。
教师资格证初中数学知识点总结
![教师资格证初中数学知识点总结](https://img.taocdn.com/s3/m/d1764c291fb91a37f111f18583d049649b660e28.png)
教师资格证初中数学知识点总结教师资格证初中数学知识点总结1圆的方程定义:圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
直线和圆的位置关系:1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的`方程联立成方程组,利用判别式δ来讨论位置关系。
①δ>0,直线和圆相交、②δ=0,直线和圆相切、③δ<0,直线和圆相离。
方法二是几何的观点,即把圆心到直线的距离d和半径r的大小加以比较。
①dr,直线和圆相离、2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。
3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。
切线的性质⑴圆心到切线的距离等于圆的半径;⑵过切点的半径垂直于切线;⑶经过圆心,与切线垂直的直线必经过切点;⑷经过切点,与切线垂直的直线必经过圆心;当一条直线满足(1)过圆心;(2)过切点;(3)垂直于切线三个性质中的两个时,第三个性质也满足。
切线的判定定理经过半径的外端点并且垂直于这条半径的直线是圆的切线。
切线长定理从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。
教师资格证初中数学知识点总结2函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈a)中的x 为横坐标,函数值y为纵坐标的点p(x,y)的函数c,叫做函数y=f(x),(x∈a)的图象.c上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在c上.(2)画法a、描点法:b、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.高中数学函数区间的概念(1)函数区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间5.映射一般地,设a、b是两个非空的函数,如果按某一个确定的对应法则f,使对于函数a中的任意一个元素x,在函数b中都有确定的元素y与之对应,那么就称对应f:ab为从函数a到函数b的一个映射。
教资中学知识点总结
![教资中学知识点总结](https://img.taocdn.com/s3/m/27cba09651e2524de518964bcf84b9d529ea2c70.png)
教资中学知识点总结一、数学知识点总结1. 整数整数是包括正整数、负整数和0在内的数。
在教学中,学生需要掌握整数的加减乘除法,以及整数的绝对值等基本概念和运算规则。
2.分数分数是表示部分和整体的关系的数,分数的加减乘除法是学生学习的重点,其中加减法需要将分母相同,乘法是分子乘分子,分母乘分母,除法需要转化为乘法再进行计算。
3.代数代数是数学的一个重要分支,学生需要学习代数的基本概念和各种代数式的运算规则、因式分解、方程与不等式的解法等内容。
4.平面几何平面几何是研究平面上图形的性质和运算的数学分支,学生需要掌握各种图形的性质、面积和周长的计算方法,以及利用相似三角形解决实际问题等内容。
5.立体几何立体几何是研究与三维空间有关的图形、几何体及其性质的数学分支,学生需要学习如何计算立体图形的表面积和体积,以及利用相似立体图形解决实际问题等内容。
6.函数函数是自变量与因变量之间的对应关系,学生需要学习函数的概念、图象和性质,以及函数的运算、性质和应用等内容。
7.解析几何解析几何是将几何问题用代数方法解决的数学分支,学生需要学习如何用坐标表示平面上的点和表示直线、圆的方程,以及解决几何问题的方法和技巧等内容。
8.概率与统计概率与统计是研究随机现象及其规律的数学分支,学生需要学习如何计算事件的概率,以及如何描述和分析数据,进行统计推断等内容。
二、物理知识点总结1.力和运动力是改变物体运动状态的原因,学生需要学习各种力的性质、测量和计算方法,以及力和运动的关系等内容。
2.能量能量是物体做功的能力,学生需要学习能量的各种形式、能量的转化和守恒定律,以及能量与物体运动、变形等现象的关系等内容。
3.电学电学是研究电荷、电场和电流等现象的物理分支,学生需要学习电荷的性质、电荷之间的相互作用、电流的产生和测量、电阻、电压和电流的关系等内容。
4.光学光学是研究光的传播和相互作用的物理分支,学生需要学习光的反射、折射、色散等现象的规律,以及各种光学仪器和光学现象的应用等内容。
初中数学教师资格证考点
![初中数学教师资格证考点](https://img.taocdn.com/s3/m/682068f2998fcc22bcd10d1f.png)
初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.②任何一个有理数都可以用数轴上的一个点来表示.③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等.④数轴上两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数.绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0.两个负数比较大小,绝对值大的反而小. 有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加.②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.③一个数与0相加不变.减法:减去一个数,等于加上这个数的相反数.乘法:①两数相乘,同号得正,异号得负,绝对值相乘.②任何数与0相乘得0.③乘积为1的两个有理数互为倒数.除法:①除以一个数等于乘以一个数的倒数.②0不能作除数.乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数.混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的.2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根.②如果一个数X的平方等于A,那么这个数X就叫做A的平方根.③一个正数有2个平方根/0的平方根为0/负数没有平方根.④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数.立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根.②正数的立方根是正数、0的立方根是0、负数的立方根是负数.③求一个数A的立方根的运算叫开立方,其中A叫做被开方数.实数:①实数分有理数和无理数.②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样.③每一个实数都可以在数轴上的一个点来表示.3、代数式代数式:单独一个数或者一个字母也是代数式.合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项.②把同类项合并成一项就叫做合并同类项.③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变.4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式.②一个单项式中,所有字母的指数和叫做这个单项式的次数.③一个多项式中,次数最高的项的次数叫做这个多项式的次数.整式运算:加减运算时,如果遇到括号先去括号,再合并同类项.幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样.整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式.方法:提公因式法、运用公式法、分组分解法、十字相乘法.分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0.②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变.分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.除法:除以一个分式等于乘以这个分式的倒数.加减法:①同分母分式相加减,分母不变,把分子相加减.②异分母的分式先通分,化为同分母的分式,再加减.分式方程:①分母中含有未知数的方程叫分式方程.②使方程的分母为0的解称为原方程的增根.B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程.②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式.解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程. 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组.适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解.解二元一次方程组的方法:代入消元法/加减消元法.一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了.那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点.也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法.在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a.利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)2、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式.②不等式的两边都加上或减去同一个整式,不等号的方向不变.③不等式的两边都乘以或者除以一个正数,不等号方向不变.④不等式的两边都乘以或除以同一个负数,不等号方向相反.不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解.②一个含有未知数的不等式的所有解,组成这个不等式的解集.③求不等式解集的过程叫做解不等式.一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式.一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.③求不等式组解集的过程,叫做解不等式组.一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变.在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C 在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C 在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<b*c(c<0)如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;3、函数变量:因变量,自变量.在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量.一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数.②当B=0时,称Y是X的正比例函数.一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.②正比例函数Y=KX的图象是经过原点的一条直线.③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限.④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少.二空间与图形A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的.②面与面相交得线,线与线相交得点.③点动成线,线动成面,面动成体.展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体.②N棱柱就是底面图形有N条边的棱柱.截一个几何体:用一个平面去截一个图形,截出的面叫做截面.视图:主视图,左视图,俯视图.多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形.弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形.②圆可以分割成若干个扇形.2、角线:①线段有两个端点.②将线段向一个方向无限延长就形成了射线.射线只有一个端点.③将线段的两端无限延长就形成了直线.直线没有端点.④经过两点有且只有一条直线.比较长短:①两点之间的所有连线中,线段最短.②两点之间线段的长度,叫做这两点之间的距离.角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点.②一度的1/60是一分,一分的1/60是一秒.角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的.②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.始边继续旋转,当他又和始边重合时,所成的角叫做周角.③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.平行:①同一平面内,不相交的两条直线叫做平行线.②经过直线外一点,有且只有一条直线与这条直线平行.③如果两条直线都与第3条直线平行,那么这两条直线互相平行.垂直:①如果两条直线相交成直角,那么这两条直线互相垂直.②互相垂直的两条直线的交点叫做垂足.③平面内,过一点有且只有一条直线与已知直线垂直.垂直平分线:垂直和平分一条线段的直线叫垂直平分线.垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点.垂直平分线定理:性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段2端点距离相等的点在这线段的垂直平分线上角平分线:把一个角平分的射线叫该角的角平分线.定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点性质定理:角平分线上的点到该角两边的距离相等判定定理:到角的两边距离相等的点在该角的角平分线上正方形:一组邻边相等的矩形是正方形性质:正方形具有平行四边形、菱形、矩形的一切性质判定:1、对角线相等的菱形2、邻边相等的矩形二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆.110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交 d<r②直线L和⊙O相切 d=r③直线L和⊙O相离 d>r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心。
教师资格证初中数学知识点总结
![教师资格证初中数学知识点总结](https://img.taocdn.com/s3/m/93c677c570fe910ef12d2af90242a8956becaaa7.png)
教师资格证初中数学知识点总结教师资格证初中数学知识点总结1一、投影1、投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2、平行投影:由平行光线形成的投影是平行投影。
(光源特别远)3、中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影4、正投影:投影线垂直于投影面产生的投影叫做正投影。
物体正投影的形状、大小与它相对于投影面的位置有关。
5、当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同。
当物体的某个面顶斜于投影面时,这个面的正投影变小。
当物体的某个面垂直于投影面时,这个面的正投影成为一条直线。
二、三视图1、三视图:是观测者从三个不同位置(正面、水平面、侧面)观察同一个空间几何体而画出的图形。
三视图就是主视图、俯视图、左视图的总称。
另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
2、主视图:在正面内得到的由前向后观察物体的视图。
3、俯视图:在水平面内得到的由上向下观察物体的视图。
4、左视图:在侧面内得到的由左向右观察物体的视图。
5、三个视图的.位置关系:①主视图在上、俯视图在下、左视图在右;②主视、俯视表示物体的长,主视、左视表示物体的高,左视、俯视表示物体的宽。
③主视、俯视长对正,主视、左视高平齐,左视、俯视宽相等。
6、画法:看得见的部分的轮廓线画成实线,因被其它部分遮档而看不见的部分的轮廓线画成虚线。
邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
教师资格考试中学数学学科知识点汇总
![教师资格考试中学数学学科知识点汇总](https://img.taocdn.com/s3/m/e8c398d6162ded630b1c59eef8c75fbfc77d9410.png)
教师资格考试中学数学学科知识点汇总教师资格考试中学数学学科知识点汇总一、文章类型声明本文是为准备参加教师资格考试的中学数学教师编写的知识点汇总,旨在帮助读者全面了解考试涉及的数学知识点,为顺利通过考试提供有力支持。
二、关键词中学数学,教师资格考试,知识点汇总,数学教学方法三、知识点整理1、数学基本概念 (1) 实数、有理数、无理数的概念与性质 (2) 代数式、方程式、不等式的运算与解法 (3) 平面几何、立体几何的基本概念与性质2、数学教学方法 (1) 启发式教学的基本原则与方法 (2) 合作学习、探究学习等新型学习方式的应用 (3) 教学评价的方法与技巧3、中学数学教育 (1) 中学数学教育的目标与任务 (2) 数学思维、数学能力、数学素养的培养 (3) 数学课程内容的编排与设计4、教学实践 (1) 教学设计的方法与技巧 (2) 课堂教学实施的过程与要点 (3) 教学反思的方法与实例分析四、重点知识点罗列1、实数、有理数、无理数的概念与性质,代数式、方程式、不等式的运算与解法。
2、平面几何、立体几何的基本概念与性质,勾股定理、三角形全等的判定方法等。
3、启发式教学的基本原则与方法,合作学习、探究学习等新型学习方式的应用。
4、中学数学教育的目标与任务,数学思维、数学能力、数学素养的培养。
5、教学设计的方法与技巧,课堂教学实施的过程与要点,教学反思的方法与实例分析。
五、补充细节在整理知识点的过程中,建议读者结合具体实例进行学习,以便更好地理解和掌握相关内容。
同时,关注教学实践,积累教学经验,有助于在教师资格考试中取得更好的成绩。
此外,为了更好地掌握数学教学方法,建议读者阅读相关教育书籍和教学论文,以提高自己的教学水平。
六、检查与修改在完成知识点汇总后,建议读者进行检查和修改,确保文章的结构清晰、逻辑严谨、内容准确。
可以结合自己的教学实践,对文章进行补充和修正,使其更符合个人教学需求。
此外,为了更好地应对教师资格考试,建议读者在复习过程中,注重理论与实践相结合,努力提高自己的教学能力和综合素质。
初中数学教资考试知识点超详细考点总结
![初中数学教资考试知识点超详细考点总结](https://img.taocdn.com/s3/m/4c664d08ce84b9d528ea81c758f5f61fb7362893.png)
初中数学教资考试知识点超详细考点总结
1. 整数
- 整数概念和性质
- 整数的加法、减法、乘法和除法运算
- 整数的绝对值和相反数
- 整数的大小比较和大小关系
2. 分数
- 分数的概念和基本性质
- 分数的等值和化简
- 分数的加法、减法、乘法和除法运算
- 分数与整数的关系
3. 小数
- 小数的概念和表示方法
- 小数的加法、减法、乘法和除法运算
- 小数与分数的关系
4. 比例与比例问题
- 比例的概念和性质
- 比例的表示方法和化简
- 比例的比较和求解
- 比例问题的应用
5. 百分数与百分数问题
- 百分数的概念和性质
- 百分数的表示和转化
- 百分数的加法、减法、乘法和除法运算- 百分数问题的求解
6. 平方与平方根
- 平方的概念和计算
- 平方根的概念和计算
- 平方与平方根的性质和关系
7. 代数式与方程式
- 代数式的概念和基本运算
- 一元一次方程式的解法
- 一元一次方程式的应用和解题
8. 几何与几何问题
- 基本几何概念和性质
- 几何图形的名称和特征
- 几何图形的周长和面积计算
- 几何问题的应用
9. 统计与统计问题
- 数据的收集和整理
- 数据的表示和分析
- 数据的统计指标和解读
- 统计问题的求解
以上是对初中数学教资考试的知识点超详细考点总结。
每个知识点包括了相关概念、性质、运算方法以及应用等内容,可以供您复习和备考使用。
希望对您的考试准备有所帮助!。
教师资格证中学数学知识点
![教师资格证中学数学知识点](https://img.taocdn.com/s3/m/b4bae19277a20029bd64783e0912a21614797f2d.png)
教师资格证中学数学知识点数学是中学教育中的一门基础学科,对于教师资格证考试而言,掌握中学数学的知识点是非常重要的。
本文将针对教师资格证中学数学的知识点进行详细介绍和讲解,以帮助考生更好地备考和应对考试。
一、数与运算1. 自然数与整数自然数是指从1开始的正整数,整数是指包括正整数、负整数和零的数集。
2. 有理数与无理数有理数是可以表示为两个整数之比的数,无理数则是不能表示为有理数的数。
3. 实数与复数实数是指有理数和无理数的集合,而复数是由实部和虚部构成的数。
4. 运算常见的数学运算包括加法、减法、乘法和除法,以及它们之间的运算规则和性质。
二、代数与方程1. 代数式与多项式代数式由数和字母以及运算符号组成,多项式则是由若干个代数项相加或相减而成的表达式。
2. 方程方程是含有一个或多个未知数的等式,在解方程时需要运用到代数式的运算和性质。
3. 不等式不等式是指含有不等关系的数学表达式,解不等式时需要注意不等式的方向和性质。
4. 函数与图像函数是指输入与输出之间存在唯一对应关系的关系式,函数的图像可以通过绘制函数的曲线来进行展示。
三、几何与立体几何1. 点、线、面与体几何学研究的基础概念包括点、线、面和体,几何学通过研究它们的性质和关系来探索空间的形状和结构。
2. 平面图形平面图形包括三角形、四边形、多边形、圆等,了解它们的性质和计算方法是解决几何问题的基础。
3. 空间几何空间几何主要研究立体图形,例如长方体、正方体、棱柱、棱锥、球体等,了解它们的性质和计算方法有助于解决立体几何问题。
四、统计与概率1. 统计统计学是研究收集、整理、分析和解释数据的科学,了解统计学的基本概念和方法可以帮助教师进行学生的成绩分析和评价。
2. 概率概率是指事件发生的可能性,了解概率的基本原理和计算方法有助于分析和解决与概率相关的问题。
五、数学思维与解题方法1. 数学思维数学思维是一种通过数学语言和符号进行思考、推理和解决问题的能力,培养学生的数学思维有助于提高他们的解题能力和创造力。
教师资格考试中学数学学科知识点汇总
![教师资格考试中学数学学科知识点汇总](https://img.taocdn.com/s3/m/316d3a127cd184254b353593.png)
V数学学科知识初中阶段的十个核心概念:数感;符号意识,空间观念,几何观念,数据分析观念;运算能力,推理能力;模型思想;创新思想(提出问题,独立思考,归纳验证);应用意识。
义务教育阶段数学课程总目标1)获得适应生活必要的知识技能思想和经验2)体会数学与生活,其他学科的联系。
分析解决问题能力培养。
3)了解数学价值,增加兴趣,信心,爱好。
养成良好习惯,初步形成科学态度。
数学在义务教育的地位。
义务教育具有基础性发展性和普及性。
数学课程能使学生掌握以后生活工作必备的基本知识,基本技能,思想方法;抽象能力和推理能力;促进情感态度价值观健康发展。
为今后的生活,学习打下基础。
二次根式:就是开根号目标:了解意义,掌握字母取值问题,掌握性质灵活运用通过计算,培养逻辑思维能力领悟数学的对称性和规律美。
重点:根式意义;难点;字母取值范围勾股定理探索证明的基础上,联系实际,归纳抽象,应用解决实际问题。
通过探索分析归纳过程,提高逻辑能力和分析解决问题能力。
数学好奇心,热爱数学。
重点:应用难点:实际问题转化为数学问题平行四边形及性质经历探索平行四边形性质和概念,掌握性质,能够判别体会操作转化的思想过程,积累问题解决的思想。
与他人交流,积极动手的习惯四边形内角和:量角器;内部做三角形;按照边做三角形;按照定点做三角形。
一次函数和二元一次方程的关系。
数形结合数学思想为主体;问题为贯穿;数形结合为工具;提高问题解决能力。
数学课程理念内涵:人人获得良好数学教育,在数学上得到不同发展内容:符合数学特点,认知规律,社会实际。
层次性和多样性。
间接与直接。
过程:师生交往评价:多元发展信息技术与课程:现在信息技术改进教学方法,资源。
1)信息技术开发资源,注重整合2)教学方式的改善3)理解原理的基础上,利用计算器,计算机4)不能完全替代原有的有段。
合情推理:根据已有的结论,实践结果,直观等推测某些结论。
便于发现问题。
(归纳法:n=1和n大于1成立的证明)演绎推理:根据已有的结论,严格按照逻辑进行推理,用于证明。
初中教资数学知识点总结
![初中教资数学知识点总结](https://img.taocdn.com/s3/m/b408f917e55c3b3567ec102de2bd960590c6d995.png)
初中教资数学知识点总结初中数学知识点总结一、数与代数1. 有理数- 有理数的概念:整数与分数统称为有理数。
- 有理数的分类:正有理数、0、负有理数。
- 有理数的运算:加法、减法、乘法、除法、乘方、开方。
2. 整数- 整数的性质:奇数与偶数、质数与合数。
- 整数的运算:加法、减法、乘法、除法、整除、余数、最大公约数和最小公倍数。
3. 分数与小数- 分数的性质:真分数、假分数、带分数。
- 分数的运算:加减乘除、通分、约分。
- 小数与分数的互化:小数转化为分数的方法,分数转化为小数的方法。
4. 代数式- 单项式:定义、系数、次数。
- 多项式:定义、项、次数、余项、因式分解。
- 代数式的加减乘除运算规则。
5. 一元一次方程与不等式- 方程的解、解方程、同解方程。
- 不等式的性质、解一元一次不等式。
- 用不等式解决实际问题。
6. 二元一次方程组- 方程组的解、解方程组、代入法、消元法。
- 三元一次方程组的解法。
7. 函数- 函数的概念:定义、函数关系、函数图像。
- 线性函数、二次函数、反比例函数的图像和性质。
- 函数的应用:简单线性规划问题。
二、几何1. 平面图形- 点、线、面的基本性质。
- 角的概念:邻角、对顶角、平行线与垂直。
- 三角形:分类、性质、内角和定理、外角定理、海伦公式。
- 四边形:分类、性质、平行四边形、矩形、菱形、正方形的性质。
2. 圆的基本性质- 圆的定义、圆的中心、半径、直径。
- 圆的对称性、弦、直径、弧、切线、圆周角。
- 圆的面积和周长计算公式。
3. 空间图形- 空间几何体的基本概念:点、线、面、体。
- 多面体:棱柱、棱锥、圆柱、圆锥、球的性质和体积计算。
4. 几何变换- 平移:定义、性质、坐标变化。
- 旋转:定义、性质、坐标变化。
- 轴对称(镜像对称):定义、性质、坐标变化。
5. 相似与全等- 全等三角形的判定条件:SSS、SAS、ASA、AAS。
- 相似三角形的判定条件:SAS、SSS、ASA。
教师资格证初中数学考点有哪些
![教师资格证初中数学考点有哪些](https://img.taocdn.com/s3/m/a1af598c0129bd64783e0912a216147917117efa.png)
教师资格证初中数学考点有哪些教师资格证初中数学考点你知道吗?教师资格证综合素质主要考察考生职业理念、教育法律法规、教师职业道德规范、文化素养和基本能力。
一起来看看教师资格证初中数学考点,欢迎查阅!教师资格证初中数学考点根据教师资格证历年试题可以分析出,在教师资格证考试初中数学中,主要考查的知识点有:1、极限与连续:数列、函数极限的定义,两个重要极限、等价无穷小、函数连续的充要条件。
2、矩阵:二次型矩阵、矩阵求秩、矩阵的初等变换、求矩阵特征值和特征向量。
3、空间解析几何:空间中直线与直线、直线与平面、平面与平面的位置关系,空间中的曲面方程。
4、数学史:发现初中数学重要结论的数学家、以及重要数学变革的发起人、重要数学变革时间、时间、结果等。
5、级数:几何级数、P级数、数项级数、正项级数收敛发散的判断,幂级数的收敛半径、收敛域、收敛区间的求法。
考中学教师资格证需要什么条件1、基本条件:具有中华人民共和国国籍;遵守宪法和法律,热爱教育事业,具有良好的思想品德;符合申请认定教师资格的体检标准。
2、学历条件:取得初级中学教师资格,应当具备高等师范专科学校或大学本科毕业及其以上学历;取得高级中学教师资格,应当具备高等师范本科院校或者其他大学本科毕业及其以上学历。
3、普通高等学校在校三年级以上学生,可凭学校出具的在籍学习证明报考。
4、申请人应在户籍或人事关系所在地报名参加教师资格考试。
普通高等学校在校生可在就读学校所在地报名参加教师资格考试。
初中教资和高中教资考哪个如果未来有明确的职业规划,从事教育方向,可是不知道选择哪一个阶段,小编建议考高中教资。
报考高中并获得教师资格证是可以教小学、初中和高中的,就业选择多一些。
虽然难度比起初中会稍微大一些,但是只要做好决定,认真准备,朝着目标努力,相信自己可以做到的。
如果未来职业规划还没有完全决定,并且有可能不会从事这个教育方向,只是想考取一个证书,不知道选择报考哪一个学段,那可以报考小学或初中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1问:数学学科专业知识
考查数学学科专业知识,根据具体题目进行分析解答。
例如2017年上:请列出数学“统计与概率”时涉及到的三种统计图,并分析三种统计图的联系和区别。
第2问:教学目标设计
关于教学目标设计
作答模板:
知识与技能目标
(1)学生能够理解xx的算理。
(低年段)
(2)学生能够知道xx竖式中各部分的名称,并理解xx竖式中每个数的含义。
(低年段)
(3)学生能够会按照xx的特征、xx的特征对xx进行分类(中年段)
(4)学生能够理解并掌握简单的求xx的方法及其意义的应用。
(中年段)
(5)学生能够理解xx的意义,掌握xx的读法、写法。
(高年段)
过程与方法目标
通过小组合作交流讨论的方式理解xx在生活中的应用,能够解决一些简单的数学问题。
(低年段)
通过观察、分类、测量、活动,经历认识xx的过程,提高动手操作能力,发展初步的空间观念/(空间想象能力)。
(中年段)
通过交流、讨论、辨析等教学活动,培养学生独立思考、抽象概括的能力。
(高年段)通过对比和分析,理解xx与xx的区别和联系。
(高年段)
情感、态度与价值观目标
通过对xx的探索,学生的数学兴趣(学习数学的兴趣/积极性)得以提高(增加),能够进一步体会数学来源于生活并服务于生活(数学与生活的密切联系/数学的美/图形的美),培养事物间是普遍联系的辩证唯物主义观念。
第3问:教学过程设计
教学过程设计
一、创设情境、导入新课。
图片导入:为学生们呈现图片、视频
模板:同学们,在正式上课之前,老师先请大家欣赏几幅图片(一段视频),(展示图片或视频后询问)大家能通过观察发现这些图形都有哪些共同特征吗?嗯,都是xxx 的。
今天我带领大家一起来认识xx形。
问题导入:提问引发学生思考
模板:同学们!x年级x班的男女生进行踢毽子比赛,男生四人,女生五人,成绩分别为xxxxxxx,提出问题:我们能帮助他们判断男生队和女生队哪个队的成绩更好嘛?看同学们都在摇头,没关系,这就是我们这节课要讲授的新知识----xxx。
温故导入:复习旧知为新知做铺垫
模板:(出示卡纸,估长方形的面积来学习今天平行四边形面积的计算)同学们,这是一个xxx,它的xxx大约是多少?谁利用我们之前学过的方法估算一下?你是怎么估的,请上来验证一下。
(生展示思路:)xxxxxxxxx,那么xxx的面积就是长乘宽。
二、新课讲授
1.知识铺垫/以旧引新
(1)老师展示素材,学生根据实际情况,提炼出数学问题。
(2)老师通过提问等方法引导学生利用已有的知识猜想新问题的解决方法。
2.选择方法,验证猜想
(1)学生分组合作、交流讨论,利用手中的学具探索、验证猜想。
(2)老师在巡视的过程中给予适当的指导。
3.深入辨析,公式/理论推导
(1)老师带领全班同学深入辨析,沟通不同验证法的联系,引发学生总结其共同特点。
(2)教师适当引导,深化学生对公式或算理算法等内容的理解。
三、巩固练习。
要求学生板演、在练习本上完成教师展示的变式题目,利用本节课的知识解决实际问题,培养分析问题的能力,并规范学生的计算步骤,帮助学生养成细心认真的习惯。
四、归纳小结。
老师带领全班同学分享本节课的收获,包括知识点及数学思想。